ML20206D791

From kanterella
Jump to navigation Jump to search
Rev 6 to PDB-F0001, COLR for Pnpp Unit 1 Cycle 8,Reload 7
ML20206D791
Person / Time
Site: Perry FirstEnergy icon.png
Issue date: 04/23/1999
From:
CENTERIOR ENERGY
To:
Shared Package
ML20206D786 List:
References
PDB-F0001, PDB-F0001-R06, PDB-F1, PDB-F1-R6, NUDOCS 9905040243
Download: ML20206D791 (25)


Text

, ,

7 I

i

,' e' PDB-F0001 Page: i .

Rev.: 6 PERRY OPERATIONS MANUAL Plant Data Book Entry TITLE: CORE OPERATING LIMITS REPORT FOR THE PERRY NUCLEAR POWER PLANT Ui4IT 1 CYCLE 8 (RELOt.D 7) l' PDB - F0001 /Rev, 6 MPL: J11 EFFECTIVE DATE: 4-23-99 l

SUMMARY

OF LAST CHANGE: Periodic Review - Not Required This incorporates the core thermal limits for Cycle 8. Added the MCPR Safety

. Limit for' Dual and Single Loop Operation. The Maximum Fraction of Limiting i Critical Power Ratio (MFLCPR) was added to support FTI-B-0012 revisions.

Added MAPLHGR data for new fuel types and removed' data from fuel types removed from the reactor.

REFERENCES:

'PY-CEI-NRR-1104 L; PY-CEI-NRR-1157 L; PY-NRR-CEI-0529 l

COMMITMENTS: LO1462, LO1960, LO2362 PREPARED BY: D. A Thayer 3-18-99 Date EFFECTIVE PIC's PIC Type of Effective No. Change Date 9905040243 990430 PDR ADOCK 05000440 ,

P' PDR

F l

l PDB-F0001 i- Page: 1 Rev.: 6 UNIT 1 CORE OPERATING LIMITS REPORT INDEX Specification Page INTRODUCTION AND REFERENCES 3 AVERAGE PLANAR LINEAR HEAT GENERATION RATE 5 (CORRESPONDS TO TS 3.2.1)

Figure 3.2.1-1 Flow Dependent MAPLHGR Factor (MAPFAC f) ,

Fuel Types GE10 6 Figure 3.2.1-2 Flow Dependent MAPLHGR Factor (MAPFACr ) ,

Fuel Types Gell & GE12 7 Figure 3.2.1-3 Power Dependent MAPLHGR Factor (MAPFAC p) ,

Fuel Types GE10 8 Figure 3.2.1-4 Power Dependent MAPLHGR Factor (MAPFAC p) ,

Fuel Types Gell & GE12 9 Figure 3.2.1-5 MAPLHGR Versus Average Planar Exposure, Fuel Type GE12-P10SSB399-16GZ-120T-150-T 10 Figure 3.2.1-6 MAPLHGR Versus Average Planar Exposure, Fuel Type GE12-P10SSB399-14GZ-120T-150-T 11 Figure 3.2.1-7 MAPLHGR Versus Average Planar Exposure, Fuel Type GE12-P10SSB369-14GZ-120T-150-T 12 Figure 3.2.1-8 MAPLHGR Versus Average Planar Exposure, Fuel Type GE12-P10SSB369-12GZ-120T-150-T 13 Figure 3.2.1-9 MAPLHGR Versus Average Planar Exposure, Fuel Type GE11-P9SUB338-12GZ-120T-146-T 14 Figure 3.2.1-10 MAPLHGR Versus Average Planar Exposure, Fuel Type GE11-P9SUB338-10GZ-120T-146-T 15 Figure 3.2.1-11 MAPLHGR Versus Average Planar Exposure, Fuel Type GE10-P8SXB306-11GZ3-120M-150-T l (GE8X8NB-1) 16 PERRY UNIT 1 CYCLE 8 CORE OPERATING l LIMITS REPORT L.

,' 3' PDB-F0001 Page: 2 Rev.: 6 UNIT 1 CORE OPERATING LIMITS REPORT INDEX (Continued)

Specification Page MINIMUM CRITICAL POWER RATIO (CORRESPONDS TO TS 3.2.2) 17 Figure 3.2.2-1 Power Dependent MCPR Limit (MCPR )p ,

Limiting Fuel Type (Two Loop Operation) 18 Figure 3.2.2-2 Flow Dependent MCPR Limit (MCPRr),

Limiting Fuel Type (Two Loop Operation) 19 Figure 3.2.2-3 Power Dependent MCPR Limit (MCPR )p ,

Limiting Fuel Type (Single Loop Operation) 20 Figure 3.2.2-4 Flow Dependent MCPR Limit (MCPRg) ,

Limiting Fuel Type (Single Loop Operation) 21 LINEAR HEAT GENERATION RATE ( CORRESPONDS TO TS 3.2.3)

Linear Heat Generation Rate of each Fuel Type 22 REACTOR PROTECTION SYSTEM INSTRUMENTATION t (CORRESPONDS TO TS 3.3.1.1) )

l Simulated Thermal Power Time Constant 23 l ATTACHMENTS l Attachment 1: Cycle 8 MCPR Limits Per Transient 24 PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

)

l J . PDB-F0001 '

Page: 3 Rev.: 6 )

i INTRODUCTION AND REFERENCES INTRODUCTION 1

This Core Operating' Limits Report for PNPP Unit 1 Cycle 8 is prepared in accordance with the. requirements of PNPP Technical Specification Administrative Controls 5.6.5. The core operating limits presented were developed.using NRC-approved methods (Reference 2). Results from the reload analysis for the General Electric fuel in PNPP Unit 1 for Cycle 8'are j documented in References 3 and 4. 1 The cycle-specific core operating limits for the following PNPP Unit 1

-Technical' Specifications are included in this report:

1. Average Planar Linear Heat Generation Rate (APLHGR) Limits for each fuel / lattice type, including the power and flow dependent MAPFAC curves ,

with the single loop MAPLHGR reduction factor. (Technical I

~ Specification 3.2.1) l

2. Minimum Critical Power Ratio Operating Limit including the power and flow dependent MCPR curves for Two Loop Operation and Single Loop Operation.

(Technical Specification 3.2.2) For Single Loop Operation the MCPR i operating limits are increased by 0.02. (Reference 3)

3. Linear Heat Generation Rate' (LHGR) Limit for each fuel type. (Technical Specification 3.2.3)
4. The simulated thermal power time constant. (Technical Specification 3.3.1.1, SR 3.3.1.1.14) l REFERENCES l
1. Perry Nuclear Power Plant Updated Safety Analysis Report, Unit 1, I Appendix 15B-Reload Safety Analysis. 1
2. " General Electric Standard Application for Reactor Fuel-GESTAR II",

NEDE-24011-P-A-13 and NEDE-24011-P-A-13-US (US Supplement), August 1996.

~3. " Supplement Reload Licensing Report for Perry Nuclear Power Plant Unit 1 Reload 7 Cycle 8", GE Document J11-03371SRLR Rev. 1 (March 1999)

4. " Lattice Dependent MAPLHGR Report for Perry Nuclear Power Plant Unit 1 Reload 7 Cycle 8", GE Document J11-03371 MAP Rev. 0 (January 1999)

-5. J. B. Hopkins - (USNRC) to R. A. Stratman (Centerior): Amendment No. 61 to

' Facility Operating License NPF - 58, June 2, 1994. NRRCEIO719L <L01960)

-6. M. lD. Lyster (CEI) to USNRC, Core Operating Limits Report Submittal  !

(Cycle 4), May'22, 1992. CEINRR1495L' <L01462>

-PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

-- ~

g

,o , PDB-F0001 Page: 4 Rev.: 6 i

7. Technical Specification 3.2.1, Average Planar Linear-Heat Generation Rate
8. Technical' Specification 3.2.2, Minimum Critical Power Ratio
9. Technical Specification 3.2.3, Linear Heat Generation Rate
10. Technical Specification 3.3.1.1, Reactor Protection System Instrumentation l
11. Technical Specification 5.6.5, Core Operating Limits Report
12. Technical Specification 2.1.1.2, Safety Limit MCPR
13. GE Design Basis document -- DB-004, " Nuclear Design Basis - Core Design",

Rev. 5, dated May 1998.

l l

l t

l-i l

PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT b-

l

[

! l PDB-F0001 i

Page: 5

! Rev.: 6 AVERAGE PLANAR LINEAR HEAT GENERATION RATE (TS 3.2.1) l l

l All AVERAGE PLANAR LINEAR HEAT GENERATION RATES (APLHGRs) shall not exceed the result obtained from multiplying the applicable MAPLHGR values

  • by the smaller of either the f]ow dependent MAPLHGR factor (MAPPACr) Figures 3.2.1-1 and 3.2.1-2, or the power dependent MAPLHGR factor (MAPPAC p ) Figures 3.2.1-3 and 3.2.1-4.

l l

These applicable MAPLHGR values are: j i

1. Those for the respective fuel and lattice type as a function of the average planar exposure (as described by the NRC approved methodology l described in GESTAR-II) or,
2. When hand calculations are required, the MAPLHGR as a function of the average planar exposure for the most limiting lattice shown in Figures 3.2.1-5 through Figure 3.2.1-11 for the applicable type of fuel.

i PERRY UNIT 1 CYCLE 8 CORE OPERATING i LIMITS REPORT .

l I

L

)

,' .' PDB-F0001 )

Page: 6 Rev.: 6 l l

Flow Dependent MAPLHGR Factor (MAPFACr) , Fuel Types GE10 1.1 l

I 1.0 .

I I

$[ ---.-.. ..._-

/

O.9 I

I I

j' Fl _____.

i i

I I

P.'_

M l \

A 0.s

' _____#' Y i P ~k[ l \bk- i l l YY---

F A f MAPFACrMIN(1.0,0.4574+0.006758F)

)

,, iiiiiiiii ritiliiii tilitiiii tiii iiti

E 3 CI I F - -

\ l  !

_'__[! __. _

( _

1 Clamped at 0.69 during SLO 0.6 l

i i I

! I l I I 0.5 l 0 20 40 60 80 100 120 CORE FLOW (% RATED),F l FLOW DEPENDENT MAPLHGR FACTOR (MAPFACr)

FUEL TYPE: GE10 Figure 3.2.1-1 PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

l l

l

  • l PDB-F0001 l Page: 7 l Rev.: 6 l

Flow Dependent MAPLHGR Factor (MAPFACr) , Fuel Types Gell & GE12 1.1 l

!, i I

! I 1.0 '

~

_____.__ ___ . __. I Il I l I

(

I

_i__

l i I  !

! . 6L i M / I

}____..

A u

~~~

l\ ' l!

P  !  !

I

\'!

p i I A

j j __y_

Cr 1 I Ig[ ' ~ MAPFACrMIN(1.0,0.4574+0.006758F)

--f tHmi liliull il lii i i

'~~ ~~

0.6 Illll +-+tf Uil llllllll l i i  ! IA ii",i>

11 Il lill  !. I! I, i

j j j ir iii. ,

~

j Clamped at 0.64 during SLO --7---

l i ti lihll lill!lli il l 0 20 40 60 80 100 120 CORE FLOW (% RATED),F FLOW DEPENDENT MAPLHGR FACTOR l

(MAPFACr) 1 FUEL TYPE: Gell & GE12 l Figure 3.2.1-2 l l

l PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

r

.' PDB-F0001 Page: 8 Rev.: 6 Power Dependent M ULHGR Factor (MAPFAC,,) , Fuel Types GE10 1.1 l

i 1.0 ' -,

l V

f 0.9 M APFAC,= 1.0+0.0052(P-100) 40%<P<=100%; All core flows g -f -- ---

, /

M 25%<=P<=40%; Core flow F<=50%

lmjq A 0.s I '' 'III I'll '

P l l llll! - - d

'[---/

~I~

~~

F J! 1 ___hi

/

A ,,,

i i /r i Cp t

/

[ i

~~

p ;  ;

i l f Clamped at 0.69 during SLO -

0.6 .-

gfQll llll l116661l11ll1 L__

i \ 25%<=P<=40%;

MAPFACp=0.6+0.002(P40)

Core flow F>50%

0.5 I I'I'IIIIIII'I'I'IIIIIII O 20 40 60 80 100 CORE TIIERMAL POWER (% RATED),P POWER DEPENDENT MAPLHGR FACTOR (MAPFACp) ,

i FUEL TYPE: GE10 j i

Figure 3.2.1-3 I

l i

l I

i PERRY UNIT 1 CYCLE B  !

CORE OPERATING LIMITS REPORT j l

r

, , PDB-F0001 Page: 9 Rev.. 6 Power Dependent MAPLHGR Factor (MAPFACo) , Fuel Types Gell & GE12 i

1.1 _

l l e l I

i I I 1.0

---. . --- -- />

/ j

  1. f_.___ j I

0.9 i

' d' ' I l c

T M ---M~{j~~

-'- ~'~'

i i i

~

A 0.s F

p I i

!l f L_

,[

l -y#ft-.- -

A ,, i if MAPFAC,,=1.0+0.0052(P-100) ,

! i l1y 5 40%<P<=100%; All core flows CP 1 Ifi 1 25%<=P<=40%; Core flow F<=50%

i #t : I ,

i i iiii ii ii, i i 5.S$$ __Lj d s.._LLLLLLl .!l!Ii!L 0.6 l l- l lP Clamped at 0.64 during SLO -

l' 'od1N  !!!' 'o i T MAPFACp=0.6+0.002(P-40) I

! 25%<=P<=40%; Core flow F>50% I 0.5 ' ' ! ' ' ' ' ' ' ' ' ! ' ' ' ' ' ' ' I I 0 20 40 60 80 100 CORE THERMAL POWER (% RATED),P i POWER DEPENDENT MAPLHGR FACTOR (MAPFACp)

FUEL TYPE: Gell & GE12 l

Figure .3.2.1-4 l

l PERRY UNIT 1 CYCLE 8 l CQRE OPERATING LIMITS REPORT

,otpe ooh yrQo-a -

HO 3m<.- -

m Eg <$$" $8C8 y p!H s P $$ke '

% " gH o gtwee H,Q&u$s5Ob

- t f

G )

wk e r t

H ne ,

, e e ,

, 4 e 1 4 s 7 5 7 7 3 4 2 3 0 s 4 2 ,

L m s. 3 7 1 1 1 1 1-P A (

t ,. a s t.

s ,. s s.

s e e.

s e.

s ,

o 1

0 1

0 1

0 1

u t

8 1

9 e

5 s " s.

s 0

8 S.

7 0

7 5

s M

e )

T 7 -.

ws ,

g .

a a , e2 o

, o 0 0 0 0 8 0 0 0 0 m m 0 0 0 0 '

0 0

0 0 # m 0 0 0 m c, r 0 0 c. 0 c. 0 0 0 e

v p w ,, E m 2 ,0 4 s 7 s e ,

1 1

2 1

3 1

4 1

5 1

7 1

0 2

5 2 " 5 3

0 4

5 4

0 5

5 A G

(

0

_ 0 8

0

\

5

_ 5 l

_ T 0 t

n e

\

0 e Gi 5

c c a e 1

j p d s T a e

- c 2

0 a c

_ 5 c i e

1 4 e t w n Z- I G

G A 0 T A S T-b t

e F

r o

\

- 1

- 0 ) 0 n

T EHSU io .

- 9 4 5 s 9 S 1 ta e 3 c

/

lo RR i

0 d T- p t t

a 5 W A EE 0 r l 3

G E VR 2 1

te n

l e

m 1

P-( N)U RS Z

- ir i 0 E I a d 2

E 1 0 3 R U

LGO RHP C 6 e

n ily h

e c

i G ALX 1 r l N 0 5

2 S

O P

X NPE A AR LMA 9

9 3

B b

d e

m e

i g

n t

n e

S a i E P(N t m

N E

LF BO I! 2 0

0 R

A E EA G TL S

0 1

b o

e r

i l

t s

e A AP P- -

a

- I SN N s m

  • SO A A RRE 2 1

e u e ht I I I! 5 L ENG E la MG 1 P VOA G R v f RE E AI R io te t.

N ER TE E G P I! 0 0

G A MA V UR A P

Y H

L s .

o p

mm 1 R T P E MEN L A

t oe c

a?

I V a a 0

A XE E e s t.i 5 AG U i t

a i

e .

s M F va

  1. F 4 d

e rasi a.

m r c u

c s e e

( e h 5 0 5 0 5 0 sA.,S A 37 y a.

8 8 5 3 A 5 I.tn p T. .i 3 2_ 1 1 0 0 1 2

_ 1 1 1 1 1 1 1 cke w to g$ "

MMWW: D H Cg g n:xGdt M C oOWM OmM 3zO

- a tHZHd W gs

- . g

  • ~ ,o7 ooO#

g

, mN " P#

m ." m f9 b< $i' k$$* "e$.y n$ gc"e' h$ eOy y* Ce4 hon y07yoee

_ R g G t non r. , s1 s H s 6 0 s s 0 i 4 s 7, 7 7 7 4 4 s 3 ,

0 2 4 s s 2 2 2 2 2 1 1 0 7 5 3 9 L n 1 1 7 e. , s. 5 1, , 1

s. 0 5 0 P

S s g s s g s , 0 0 0 0 0 0 0 _

A I

R R

oMa 9 9 9 3 1 1 1 1 1 1 1 e 9 e , s 7 7 6 6 e r en

- g a r s a

r n se e a o t

0 0

0 2

0 0

0 0

0 0

0 0

0 0

0 0

0 0

, 0 0 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 A

0 0

0 0

8 1

Pw 2 , s l 0 0 1 2 3 4 5 ( 7 , ,

0 1 3 4 5 7 0 5 0 0 0 5 9 Av P X o 1 1 1 1 1 1 1 2 2 3 3 4 4 5 5 5 c

0 0

- 4 ~

0 _

5 5

l 0

g T- 0 0 5 5

g T

1 0 1 N 0 5

t n

e c

a i

f i

c c

e 2 j p 1 4 d s h a

_ Z e _

n c G e it _

g 4 ' 0 T e t e

1 0

4 ) AS T- t w l 9 0 e r 9 T EU 5 b o 3

8 S

/ HS 1 o

n F g S ' 0 5

d RR T- it s e

S 0 3 W A VR E EE 0 2

a lo i t

c 1 G ' 1 p t a

P-2 ' 0

(

E N)L I RS Z t

r e

l l

e n

g 1

E 0

R LGO G i f

e 3

RHP r 4

G U a d S ALX N PE 1

9

- e n h e

c l 0 O 9 i

l 5 P A AR 3 y ir n

2 X

E LMA P(N B

S b

d e

e g

n S in E 0 R E EA 0 i

t LFN i!! 0 A G APTL 1 t a i m

BOO I 2

N P- b o

i l

A R ARE I

SNT 2 e ts

% SOA I 0 L ENG VOA 1

E r

a s

e m -

A! R G I

MG R i!! 5 P e u e E

1 ht REP E TE E l

a f ERC P 0 G

A MA V P R v o4.

e ce UR A Y C t e!! 0 R is n .

1 MN E T H o e M'

E L L pr _

mfe I

V XE E P A oe 0 A AG U M cR

" 5 M F te at s t a d

i a ien v o s

e r c 0

0 mLc e se r

eiitnslu 3 30 5 0 5 0 5 O. 5 0 5 0 5 O. 5 t oh a 3 2 2 1 1 0 0 s s E s 7 7 6 s 5 I 1 1 1 1 1 1 l.a l

P 2T. v s

e

_ t

_ o

_ N

_ y$%* P N

  • ym mM%%<* h "g M o<* n c

oO M O*M o hHH O eH H W O]

  • - m0828~

m$o " "

m0 " m ggg <$5a ggg* myg" gogg - ,

2b {3 Q "'f 3 g E m*4 $ [ 8 a0 g 'e, g

n t

n 0 1

s. 0 9

4 0

9 2

9 1

3 2

9 6

3 9

0 5

9 9 5

6 7

7 9

9 8

9 1

0 0

4 1

0 2

0 8

3 0

3 3

0 8

2 0

1 2

0 4

1 0

7 9

9 2

6 8

3 4

9 9

2 5 0 4 3 5

9 1

t s 1 1 1 1 1 1 1 1 9 8 9 8 8 7 7 7 E 6 o

M

)

T S 0 0 0 0 9

W 0

0 0

0 2

0 0

0 1

0 0

2 0

0 3

0 0

4 0

0 1

0 0

6 0

0 7

0 0

8 0

0 9

0 1

0 0

2 0

3 0

4 0

5 0

0 7

2 5

0 0

0 0

0 5

0 0

0 0

0 1

0 0

0 2

5 4

2 8

1 1 1 1 1 1 2 3 3 G 4 4 5 5 5

(

0 0

_ 5 T-0 5

\ 0 5

1 4 T- k 0

n G

2 1

Z.  % 0 0

io p

k 4

1 4 tmd a e a s p n (s a

r i

i t

N 0 5

3 ) T T.

e ni eu ce el t r m

R AS 0 e o P d 5 bF U

u MS 1

2 n 1

E G RR E T- oa G

N 0 0

3

(

E R

U A E E

N I

L VW 5 0

2 1

Z.

G t

sk iu o

pl r le e

e S P 4 1

dr u i f x

N 0

5 2

O P

X E

A RNO N

A L

E R

A 0

0 3

8 r d e e sh n c iir t P n 8 5

yn b e U E TL Ea 0 d g N G AP 1 ei n N 0 0 U P

AR R

E NG VOA E

P 2

1

- nil im o i m

' 2 E

G A

R AT R MA U Rv I

E A

E G

E P

Y ct s ee mn s e m 0 E WE xE I T eh ut f 5 V AG L

E laci 1 A M U v ls e Ric F

G e n Hpro e r

a m

a N ll, 0

0 1

L P o e A cR Met mf e

- E N le s u s a

/ L I

E O is ie n n I de nu

[

e S T m S s

A R 0 mas o s ue a

m u l

E P

5 ki h la e

s E

P O h1. T.

In 2

v n

/ 0 30 5 3 3 9 1 2

1 g ,,, , '

5 8

5 0 5 0 7 7 4 6 M{E w'm h "

m$ C$a y n oeM
  • oOmo@gegO eEsg xgo$

- - EW48O E$* C I < :.

  • E fg" ygy$ ggg pg. e' g$

i a0Yw5lw y{y[$8g?"

Q M

W R(

E  % 0 8

8 4

9 8

5 0

9 9

1 9

2 3

1 6

4 9

1 6

9 5

7 9

0 9

9 5

0 0

1 9

1 0

1 3

3 0

1 4

0 8

3 0

3 2

0 5

2 0

7 1

0 0

0 0

4 7

E 1

3 9

8 8

8 5

4 8

0 0

8 4

5 7

5 0

7 4

5 6

0 2

6 U h 1 1 1 1 1 1 1 M

a m

o p

x )

E T s 5

  1. 0 0

0 2

0 0

0 0 2 0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0 2 0 0

0 0

0 0

0 0

0 0

0 0

0 0

2 2

is N P

0 0 1 2 3 4 5 6 7 8 9 0 1

1 1

2 1

3 1

4 1

5 1

7 0 2

5 2

0 3

5 3

0 5 0 5' 8 e

G(

1 4 4 5 5 5 g

n A

a

\ 0 _

\

0

- 5 _

T- 0 l 0 5

\

5 1 4 T- L 0 t 2 n 1

io Z- 0 p t c l

M 1

0 4

ni ed c

e ep 5 qs l

3 B

S S

0 N 0 5

3 T T-e nic eg e o twl a

r 1

P

)t AS 0 e o s EU 5

bn F.

a 1

2 HS s l

1 E

G N 0 0

G

(

E R

RR AEV R ElU E

T-0 2

1 Z-bo e si io pl g

c o

3 NR S G ul e

\

U LG O 2 t u 8 RH PX 1 inl O AL r d NP E 9 e e 0 P 0 sh 5 X A AR 3 n c 2 E LI IIA 8 ii r Pl 5 yn R E U 8 b e A

I E

G AP TU 4 d g e in N 0 W U A R

ENG R E 4 2

nl itm 0 1 i 2 P VOA E b ot s E AT RI G eo G AEV E r n A MR RE A P a s

r o

' 0 R

E V

EN XE Y

T L

et u f la o5 5

A AG E v e e 1 H U P Rt c s n G o e I  % !l, 0

0 1

H pr L mf P o e A cR Mat u e

" E L

B N

O les n ia ei on mcmc I I d S T e M S A s

[ E I

R E

R E

P O

0 5 . r st eih v m

s u o I.n T. la e

P M /# 0 N1 2 5 , 5 e 5 u2 7 uu0 8

1 t 1 9 t t 1 s'

i 5 5 0 5 7 7 8 g g',

?c@* -

g5 aw5 a58 ~ a og m gmm 8Mksg 3qm @ymH

matoI e;r $o-mog0.

sa .

W-We:< . . nc hgo :jm$

e. >E $ e g7E" M $E '

_ 2S oa0 E@d7[O$'O [ i 3

_ R G t o 5 1 2 3 5 # e

  • - s. 2s. 2 s 7 4 3 2 1 0 H. s. 5 m s. . 0 7 o 5 1
  • ' 7 4 s. 2 1 t

P A

A R

e t

oW 1 1

1 1

1 1

1 1

i 1

2 1

2 1

' 1 1 2 2 2 1

2 1

2 1

2 1

s. 3 1

1 1

1 7

0 1

m e

1

s. s. 2 s 7 7 s.

s e

g r e " o 0 0 o o o 0 0 0 0 0 a

r n e la F n. 2 0 e e 1 0

0 2

c. o 3

c t s. " " m ms

  • 0 0

5 2

o.

5 5

7 0

0 0

0 5

m 0

m 5

0 0

6 0

0 0

0 0

s 5

1 e

Av P " 2 s 1 1 1 1 2 3 3 4 5 5 o.

o s

h o.

X s s t n

e ic f

i

_ l c c a e

.X

_ 0 j p 0 d s T. 5 a e 5 n ic 4

1 T

L

\ 0 e

e w

te t

l t

a r

0 5 T o

- Z 2

1

- 3 4

)

T AS EU T.

6 b

o it n F s

G 0 S HS 4 a e c

2

% / 1 l o

(

0 it 1

4 d RR T- p t a

A VREE r

_ 8 W 0 e l 3

3 G E 2 t n

l e

e B

U 0

5

(

E N)U I RS 1

7-i r

a f

d 5

9 P-3 R LGO G 2 U RHP i l

e n h i

e c

1 0 S A LX PE 1

8

- b y r n

e 1

E 0 O N d g G 3 3 P X A AR LMA 3

3 B i e

n a

in it g

- l 0 E P(N U b t

i m

5 R E EA S 9 e o l t

2 A G AP TL P. a r s o

0 N A ARR E l

l s

e u

m e

ht 0 L ENG E la

- 2 P VOA G R v f o4

- E AIT ER E te e c G iso ne 0

5 G MA V P Y

I I

pr E

LFN BOO 1

A UM R R

E E A T L

F A

mfe oe I N L I cR I

SNT I

0 V XE E B at i M SOA I I R MGE REP 0

1 0

A AG M

U F i d

t e

a e

is s en vo r c u s m s. c e r t. s u n

4-ERO P s e tni h a l

I. T. v p- --_ 0 S I 2 0 t e

o. g 0 #*" 0 5 o. 5 , 5 , 3

- . o 3 2 ' *' 8 s s7 7 s g5 N 1 1 1

2

$Q w*y*4 mMWW<* CZ N H okntM
  • cn

- n oO:M MgaHO eH3Hg Wgo

  • - o

.of"O " as o$*

ee

  • puv We .*

m jkt-s*2oW :< mg >j gj yyN MxD0g ,' _

yep e OM [ 8o y @ y m g 0 8 oH8[y8 R

G )

5 0 s g 6 s s s e s Dn 1 7 2 5 2 2 t 4 3 H 6 7 s. 9 1 2 3 4 7 2 0 4 s o 5 2 _

L o. s. s. s. 5 s. 3 7 0 3 e. c. 2 s.

P A gN(w k 1

1 1

1 1

1 1

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 2

1 1

1 1

1 0

1 0

1 s s s 7 s M

)

e a " T S 0 0 0 0 0 0 0 o 0 o 0 0 0 0 0 0 0 0 0 0 o 0 7 g%

r e N/Wd 0 2 0 0 0 0 0 c. 0 c. 0 0 0

5 2

0 5

5 7

0 0

0 5

0 0

0 5

0 0

m 5

A o

0 5

1 9

v 0 0 1 2 3 4 5 s 7 s 9 1 1 1 1 2 2 3 3 4 4 s 5 5 A UG (

0 0

8 N 3 5

5 t n le e f i

l c c a

l T-

-N 0 0

j d

a e

p s

5 e 6 a c ic 4 e t t

1

- w a i

T c ' o.

5 T t

e l

r o

b 2

1 4

AS T- n F o

Z-G 0 EU 6 4 it a

s e

0 1  % 0 4

M HS RR 1

T-lop ic t

t a

s 3

W A EE E VR 0

2 t r

e l le G n i

3 B

U

\ 0 5

(

E N I )R S U 1 Z

i r

a f

d u

5 9

3 R LGO RHP 0 G i e

n h e

c P- U ly i 1 k 0 S ALX NPE 1

8

- b r

n e

i 1 0 O d g E 3 P A AR 33 e n i n G X E

LMA R ia i t l 0 P(N U b t

o i m

5 R E EA S l G APTL t

2 9 e s A P- a r o N A s m R RE l e 0 A l m e 0 L ENG E l a ht 2 P VOA G R S

f o4.

E AI R E te e 0 G TE P G i c s n E 5 A MA V Y I

I L

oe pr LFN 1 R UR A T P mfe BOOI E MN E L A oe cR I

SNT V I

M at 0 XE E ip-g t

e SOA I 0 A AG U t s a ien s I

R 1 F ia MGE REP M d e

v o r c m ts. u r s pERO 0 5

r ns u teii l e

n oh a I. p T.

1 2 v

0 :s

. 0 e t

5 o. 0 5 0 5 0 5 o. 5 o5 - 0 5 o 3 3 1 0 0 9 9 s s 7 7 s 6 5 N 1 1 1 1 1 1

?$. Q wL 1 o

  • M < C5H s

. o4 MM co oO M O* oMy).go M" y WM o]

  • - maoe,qo oH t

mnc@,

i ,

pm -

mm:< , ,

m g h <eNE ># # ,yj "

so t $ a'

- 2 o$ ?y,"@ $ HOW [ y$fH

- R G g n

_ H i 1

8 1 7 1 1

  • 2 8 4 9 ,

s 0 5 7 t 7 1 A 5 A 7 ,,

=

L i 1 5 5 1 J 1 2 2 s.

P A

A iL m 1 1

1 1 1 2

1 2

$ m 2 1

1 1

0 1

, 8 6 5 R

_ g e

a "' " "* ,

0 0 0 0 0 0 0 0 0 0 3 m

2 0 0 0 , 0 0

= 7 r 0 0 0 0

- e e 1 3 4 5 7

0 5 0 , t 5 0 1 v .

2 2 3 3 4 4 5 5 A E 0

0 8

0 5

5 l

t n c T-

\ 0 e E 0 bl! 0 5 c

a i

c e

5 1 \

\ j d s p

- a S

A k

\ 0 n e

e c

! 0 ' 5 e it t

2 4 a .

_ w _

1 3

- T T-t e lro _

Z G K 0 )

T A

EU S 0 5

b n

o F

HS 1 0 S 1 i s 1- 4 / - t e

d RR M la c 6

0 3

B

% 0 W A VR E EE 0 2

o p

r e

it l

ta G 1 l X 5 3 ( N)U IRS 3

- tn i

e e

E Z r f M R LGO a e

d e

0 0 U RHP G n h

- 1 K 0 S ALX 1 i ly i c

r

(

1 E

3 G O N PE 6 b n e

P A AR 0 d g l 0 X E

LMA 3 B

e m i n P(N la t

\'

5 2

R E EA X S

t b im o i A G APTL 8 P-e r

l t

s o

L 0 N a _

_ 0 2 A A R RE 0 s e

m L ENG 1 E u h e

P VOA la t

\ 0 5

E G

AI R TE G

E R v f o4 e

E 1 MA V P G t .

LFN A UR A Y H is o

BOO R L p I

SNT I

0 E ME I N T F A

n a

o e f.

SOA 0 V XE L M cR I 1 A E at

- MGE I

R AG U te a

is si s

REP M F ea

!7 ERO P

0 5

i d

e ss i

.ru voc rt esc ue s

tet i l 0

0 I.

I n ob a p T. v 2

5 0 3 3 1 1 g0 2 1 1 1 5 0 0

1 0 5 O.

9 s s7 7 s s 5 5 25 o5  :

s e

n e

g

_ ?E$ w,fHd"

  • 3 mMWW<* C3 g n<ott r

- nOoM  : O mggHZO tH: 3H3m e mM $cH

!1 PDB-F0001 l

t Page: 17 i Rev.: 6 MINIMUM CRITICAL POWER RATIO (TS 3.2.2)

The MINIMUM CRITI' CAL POWER RATIO (MCPR) shall be equal to'or greater than the higher of the MCPRr and MCPR p limits at the indicated core flow, THERMAL POWER, l

and delta T* as specified in Figures 3.2.2-1 and 3.2.2-2 for Two Loop l l Operation and Figures 3.2.2-3 and 3.2.2-4 for Single Loop Operation.

The MCPR Safety Limit for Cycle 8 is 1.09. The MCPR Safety Limit for Single

. Loop Operation is 1.11.< TECHNICAL SPECIFICATIONS 2.1.1.2>. During Single Loop l Operation,'the Maximum Fraction of Limiting Critical Power Ratio-(MFLCPR) l shall be equal to or less than 0.98. Use FTI-B12 Single Loop Operation i implements this revised MFLCPR.

' NOTE 1: For Cycle 8, no change to MCPR limits is required for planned reduction of feedwater temperature to as low as 320*F. Final

' feedwater temperature may be reduced to 250*F after all control rods are withdrawn at the end of cycle.

NOTE 2: Planned reduction of rated feedwater temperature from nominal rated

.feedwater temperature is not permitted during plant operation with the reactor recirculation system in Single Loop Operation.

NOTE 3: Figures 3.2.2-1, 3.2.2-2, and 3.2.2-3 depict the limiting fuel type for Two Loop Operation. Figures 3.2.2-4, 3.2.2-5, and 3.2.2-6 depict the limiting fuel type for Single Loop operation. For fuel type specific values, consult Reference 3.

Attachment 1 illustrates the limiting transient for each fuel type.

The thermal limits calculation uses whichever is highest (MCPRt or MCPR p ) for the given pcwer and flow condition.

' NOTE 4: -There are a total of 19 safety / relief valves, the two lowest setpoint valves are assume 4 to be out-of-service in the transient analysis.

NOTE 5: The MCPR operating limit is increased 0.02 to account for'the increase in the single loop MCPR safety limit with the reactor recirculation system in single' loop operation.

  • This, delta T refers to the. planned reduction of rated feedwater temperature from nominal rated feedwater temperature ( 4 2 0*F) , .such as prolonged removal of feedwater heater (s) from service.

l L .

PERRY UNIT 1- CYCLE'8 CORE' OPERATING LIMITS REPORT y

7.......

i PDB-F0001 Page* 18 i Rev.: 6 l

Power Lependent MCPR Limit (MCPR,,h Limiting Fuel Type (Two Loop Operation)*

PNPP No. 9079 Rev. 9/24/97 PDB F0001 2.3 , si,, iii,i,,,,

, i, ii . ..

t i il__. I LLL...L Lit!ii!i!! i11  !

a '

'--~'

._ i MCPR, = (2.1 + 0.0033(40 P)] t- i 2*2 -

FOR 25% 5 P < 40%; Core fkm > 50% ---

s n-  ;

W l

i ii ii 'IIi iiiiiiii Y

2.1

[yCPR, = [1.85 + 0.0133 (40 P)]

2 FOR 25% "< "P- < 40%; Core flows $ 50%

2.0

%, o i i ,

i i

i iii is, ,i i, ,i ,i ,i

% I ~ )

'--~

1.9 PERMISSIBLE ,

9 REGION OF .__-

OPERATION ~::: 1 1.8 in ,

.i..... t .iii. .. ,

QF l 1 I I ll LLLJ.LIJ.I f 1.1 1 L I I g*7 I 5.- * ( i j MCPR, = 1.30 [1.21 + 0.004 (70 P)] [

'eqg ,, s 1i FOR 40% < P570%; AR core flows "

M 3,, 3 d ii  !!!!! !!! '

i  !

C ,

_ Mt--- i p  ; _

_;__-g __ .

i "y v,

~~

1.5 R, __.-

c ---- ' - -

+ - - - - -

=m . i lc

'm iii i fi N Ii +

I iN i i 1.3

~

W'! ==  !!! -

k+

~

_.___ , ~____..

...__h_h. I i; l

'- ~ --~-'

MCPR, = 1.30 [1.0 + 0.005 (100. P)]  !

1.2 --

FOR 70% < P $ 100%,All core flows L---7 1.1  !!! lll ll  !!'lll l lll ---

i l

+ -

i I , '

1.0

' 4 0 20 40 60 80 100 120 CORE THERMAL POWER (% RATED), P POWER DEPENDENT MCPR LIMIT

- (MCPRe)

LIMITING FUEL TYPE

  • Refer to NOTE 3 on Page 17 Figure 3.2.2-1 PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

.' . PDB-F0001 Page: 19 l Rev.: 6 i Flow Dependent MCtL Limit (MCPR,) ,

Limiting Fuel Type (Two Loop Operation)*

4,g PNPP No. 9600 Rav. 9/'47/97 PDB-F0001 Itl

'i I j MCPR, = (1.8134 0.006948F) * (1.0 + 0.0032 (40f))

u * (1.09/1.07]

. a for I-1,7 L F 5,40%; GE10 FUEL

.-,, _2g,_p y u7

[ U /


f

\}... g r 1.6 f ,

N ~ '-

PERMISSIBLE l l __ REGION OF ___

-~

OPERATION L ---

MCPR, = MAX (1.30. [1.8134 0.006948F]

  • 1g _

M I1mi.07D for GE11 and GE12 3 1 llli C 'i ' i i,, ,, 11 ------ MCPR, = MAX (1.30, [1.8134 0.006948F]

  • p 1.5 ' '

g, [1.09/1.07D for 4

~----

4~~

% m F > 40% .

-m .

7-g.-----

n IEIl 1.4 "'

a i i . r

_1y

-Q--/~

% C-  ;

~-]tRATED OPERATING


1D UMIT MCPR = 1.30 f 1.3 ,

4 l

1.2 i i l .

! I  !

1.15 0 20 40 60 80 100 120 CORE FLOW (% RATED), F FLOW DEPENDENT MCPR LIMIT

. (MCPRr)

LIMITING FUEL TYPE Refer to NOTE 3 on Page 17 Figure 3.2.2-2 PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

[:

l PDB-F0001 Page: 20 Rev.: 6 l Power Dependent MCPR Limit (MCPR,,h Limiting Fuel Type (Single Loop Operation)*

l 2.2 , , , , , ,

u  !  !  !  ! l

[

2.1 MCPRp=[2.1+0.0033(40-P)]+0.02 [=

ci

\ 25%<=P<=40%; Core flow >50% ~:::

2.0 Pk l l ll l i l I l! l g._

u m _ _

4% m '

1.9

% 1

~~~~'

MCPRp=[1.85+0.0133(40-P)]+0.02 . i l

25%<=P<=40%; Core flow <=50% 1 1.8 i. ' * ' i i ' '

i i 1

___ _ i i i

- _ -- _.A i --h m PERMISSIBLE {

M j jll ll l l A--% g t- REGION OF

% opgarrios MCPR,= 1.30[ 1.21 +0.004(70-P)]+0.02 .__4 C '

p E 4C%<P<=70%;All core flows -----

j j jj j ___g____ _..

R 3,3

> > .> > ' , i.'

MCPRp=(1.30[ 1.0+0.005( 100-P)])+0.02  % ,

P 70%<P<=100%;All.. core flows -

r r--- 'A 1.4 g___

,,, , , a f

1.2 0 20 40 60 80 100 CORE TIIERMAL POWER (% RATED),P POWER DEPENDENT MCPR LIMIT (MCPRp)

LIMITING FUEL TYPE (SINGLE LOOP OPERATION)

  • Refer to NOTE 3 and NOTE 5 on Page 17 Figure 3.2.2-3 PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

l

' PDB-F0001 Page: 21 Rev.: 6 Flow Dependent MCPR Limit (MCPRg) ,

Limiting Fuel Type (Single Loop Operation)

  • _

1= ... ..... .

i ,4 ,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,, ,

l MCPRf=( 1.8134-0.006948 F)'( 1.0+0.0032(40-F))* [ 1.09/1.07] +0.02 l

_ ... For GEIO with F<40% I

,,7 I i el l E il i i i I ii i

\ f 3

.'p 1.6 i M - -- . b '

.___-_ -___ \ . --

P 1.5 \ PERMISSIBLE REGION OF OPERATION f

3 ,

\

9,4 . 4 l t

/ \ l N

\-

.___ ( .

_j_.____

l l I fl Il l l lll  ! 'lli il I  !!

MCPRrMAX(1.32,[1.8134 - 0.006948F] * [1.09/1.07] + 0.02) '---

For Gell & GE12 all flow For GE10 Flow >40%

1.2 l''''!'+'l''''''''''''''!'

0 20 40 60 80 100 120 CORE FLOW (% RATED),F FLOW DEPENDENT MCPR LIMIT (MCPR f)

Limiting Fuel Type (Single Loop Operation)*

Refer to NOTE 3 and NOTE 5 on Page 17 Figure 3.2.2-4 PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

PDB-F0001 l Page: 22 i Rev.: 6 LINEAR REAT GENERATION RATE ( TS 3.2. 3) l The LINEAR HEAT GENERATION RATE (LHGR) shall not exceed: j

a. 14.4 kw/ft. for the following fuel types:
1. GE10-P8SXB306-11GZ3-120M-150-T (GE8X8NB-1)
2. GE11-P9SUB338-10GZ-120T-146-T (Gell)
3. GE11-P9SUB338-12GZ-120T-146-T (Gell)
b. 11.8 kw/ft, for the following fuel types:
1. GE12-P10SSB399-16GZ-120T-150-T (GE12)
2. GE12-P10SSB399-14GZ-120T-150-T (GE12)  ;
3. GE12-P10SSB369-14GZ-120T-150-T (GE12) l
4. GE12-P10SSB369-12GZ-120T-150-T (GE12)

',. l l

I PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

PDB-F0001 Page: 23 Rev.: 6 REACTOR PROTECTION SYSTEM INSTRUMENTATION ( TS 3.3.1.1) l The simulated thermal power time constant shall be 6+/-0.6 seconds.

1 l

l l

t PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT

,' 1\ttachment 1 PDB-F0001 Page: 24 - LAST Rev.: 6 Cycle 8 MCPR Limits 1.32 1.3 1.28- ---

1.26 '- -

ERWE 1.24 - - - -

EFLE, misorientated EFLE, mislocated 1.22 - - -

am 2- -

LRNBPO420 E FWCF@250 1.18 - - -

1.16 - - -- ~

1.14 - - -

1.12 GE12 GE11 GE10 e

l PERRY UNIT 1 CYCLE 8 CORE OPERATING LIMITS REPORT