ML20133D254: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:.
ATT-    d WESTINGHOUSE PROPRIETARY CLASS 3 STRUCTURAL ANALYSIS OF THE                                            l PRESSURIZER SAFETY AND RELIEF LINE                                !
FOR THE                      _
ALVIN W. V0GTLE NUCLEAR PLANT, UNIT 1 l
l l
1 I
l l
                                                                                          ~l This report is applicable to the Alvin W. Vogtle Nuclear Plant, Unit 1, and contains the structural evaluation of ASE III Nuclear Class 1 piping analyzed to requirements of the ASME Boiler and Pressure Vessel Code Section III, Nuclear Power Plant Components,1977 Edition, up to and including the Sumer 1979 addenda; as well as NNS piping done to requirements of ANSI B31.1 Code.
Results from the Safety and Relief Yalve Test program, conducted by the Electric Power Research Institute (EPRI) and concluded on or before July 1, 1982, were factored into the analyses presented herein.
8510090$05e50916
[DR  ADOCK 05000424 PDR l
1367s:10A                                                                              1 l
 
l D                                WESTINGHOUSE PROPRIETARY CLASS 3
      .4 i
STRUCTURAL ANALYSIS 0F THE                                        l l
PRESSURIZER SAFETY AND RELIEF LINE FOR THE                        __
ALVIN W. V0GTLE NUCLEAR PLANT, UNIT 1 t
This report is applicable to the Alvin W. Vogtle Nuclear Plant, Unit 1, and contains the structural evaluation of ASME III Nuclear Class 1 piping analyzed to requirements of the ASME Boiler and Pressure Vessel Code, Section III, Nuclear Power Plant Components,1977 Edition, up to and including the Summer 1979 addenda; as well as NNS piping done to requirements of ANSI B31.1 Code.
Results from the Safety and Relief Valve Test program, conducted by the Electric Power Research Institute (EPRI) and concluded on or before July 1, 1982, were factored into the analyses presented herein.
1367s:10A
 
TABLE OF CONTENTS Section                      Title                                          Page
                                                                                          ~~
1        INTRODUCTION                                                    1-1 2        PIPE STRESS CRITERIA                                            2-1 2.1 Pipe Stress Calculation - Class 1 Portion                  2-1 2.2 Pipe Stress Calculation - Class NNS Portion                2-1 2.3 Load Combinations                                          2-2 3        LOADING CONDITIONS ANALYZED                                    3-1 3.1 Loading                                                    3-1 3.1.1 Thermal Expansion                                    3-1 3.1.2 Pressure                                            3-1 3.1.3 Weight                                              3-2 3.1.4 Seismic                                              3-2 3.1.5 Transients                                          3-3 3.1.6 Safety and Relief Valve Thrust                      3-3 3.2 Design Conditions                                          3-4 3.2.1 Design Pressure                                      3-4 3.2.2 Design Temperature                                  3-4 j                              3.3 Plant Operating Conditions                                  3-4 1
3.3.1 Normal Conditions                                  3-4 l
3.3.2 Upset Conditions                                    35 3.3.3 Emergency Conditions                                3-5 3.3.4 Faulted Conditions                                  3-5 i
1367s:10A                                  i
 
SECTION 1 INTRODUCTION 4
The Pressurizer Safety and Relief Valve (PSARV) discharge piping system for pressurized water reactors, located on the top of the pressurizer, provides overpressure protection for the reactor coolant system. A water seal is maintained upstream of each pressurizer safety and relief valve to prevent a
.          steam interface at the valve seat. This water seal practically eliminates the possibility of valve leakage. While this arrangement maximizes the plant availability, the water slug, driven by high system pressure upon actuation of the valves, generates severe hydraulic shock loads on the piping and supports, i
Under NUREG 0737, Section II.D.1, " Performance Testing of BWR and PWR Relief and Safety Valves", all operating plant ifcensees and applicants are required to conduct testing to qualify the reactor coolant system relief and safety valves under expected operating conditions for design-basis transients and accidents. In addition to the qualification of valves, the functionability and structural integrity of the as-built discharge piping and supports must also be demonstrated on a plant specific basis.
In response to these requirements, a program for the performance testing of PWR safety and relief valves was formulated by EPRI. The primary objective of l
the Test Program was to provide full scale test data confirming the function-ability of the reactor coolant system power operated relief valves and safety valves for expected operating and accident conditions. The second objective of the program was to obtain sufficient piping thermal hydraulic load data to permit confirmation of models which may be utilized for plant unique analysis of safety and relief valve discharge piping systems. Based on the results of the aforementioned EPRI Safety and Relief Valve Test Program, additional thermal hydraulic analyses are required to adequately define the loads on the piping system due to valve actuation.
This report is the response of the Georgia Power Company to the US NRC NUREG-0737 II.D.1 requirements for piping and support evaluation and is applicable to the Alvin W. Vogtle Nuclear Plant, Unit 1, PSARY piping system.
l l
1367s:10A                                1-1 1
I      -- _    .
 
SECTION 2                                                      .
PIPE STRESS CRITERIA 2.1 PIPE STRESS CALCULATION - CLASS 1 PORTION In general, the criteria for the structural evaluation of the Class 1 components is based upon two categories of loading. These are self-limiting loads and non-self-limiting loads. A non-self-limiting load produces a primary stress while a self-limiting load produces a secondary stress. In order to prevent catastrophic failure of the system, primary stress criteria must be satisfied, which can be accomplished by applying Equation (9) of paragraph NB-3652 of the ASME Boiler and Pressure Vessel Code Section III, up to and including the Summer 1979 Addenda. Fatigue failure may occur if the maximum stress from all loadings is so concentrated at one. location that continued cycling of the loads produces a crack, which may then propagate through the wall and result in leakage. For protection against fatigue failure, cyclic stresses from both self-limiting and non-self-limiting loads must be considered. The component will cycle within acceptable limits for each specified loading combination if Equation (10), subparagraph NB-3653.1 of the Code is satisfied. This requirement insures that incremental distortion will not occur. The peak stress intensity defined by Equation (11) is then used for calculating the alternating stress intensity, S al t. The value of al t is then used to calculate the usage factor for the load set under S
consideration. The cumulative usage factor is then obtained using Miner's rule by considering all other load sets. However, if Equation (10) is not satisfied, which means some plastic deformation occurs with each application of load, the alternate analysis, " Simplified Elastic-Plastic Discontinuity Analysis", described in subparagraph NB-3653.6 of the Code must be considered.
To avoid the possibility of fatigue failure, the cumulative usage factor should not exceed 1.0.
2.2 PIPE STRESS CALCULATION - CLASS NNS PORTION The piping between the valves and the pressurizer relief tank shall be analyzed to satisfy the requirements of the appropriate equations of the ANSI 1367s:10A                                                2-1 1
      ,                              - , , , , - - ~ ~        . . _ . - - , . , - , , . - , - - , - - . . , , ,---.n-          - .-
 
                                                                                          +
                                                                                          . I B31.1 Code. These equations establish limits for stresses from sustained      ,
loads and occasional loads (including earthquake), thermal expansion loads, and sustained plus thermal expansion loads, respectively. The allowable stresses for use with the equations were determined in accordance with the requirements of the ANSI B31.1 Code.
2.3 LOAD COMBINATIONS In order to evaluate the pressurizer safety and relief valve piping, appropriate load combinations and acceptance criteria were developed. The load combinations and acceptance criteria include those recommended by the piping subcommittee of the PWR PSARY test program and are outlined in Tables 2-1 and 2-2 with a definition of load abbreviation provided in Table 2-3.
Additional combinations, per the Piping Specification, are also included in Tables 2-1 and 2-2.
i i
I I
1367s:10A                                2-2
 
TABLE 2-1 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR PRESSURIZER SAFETY AND RELIEF VALVE PIPING - UPSTREAM OF VALVES Piping Plant / System                                        Allowable Stress Operating Condition            Load Combination              Intensity Normal                  N                              1.5 S, Upset                    N + OBE                        1.5 S, Upset                    N + SOT g                      1.5 S, Upset                    N + OBE + SOT g          1.8 S,/1.5 Sy Emergency                N + SOT                  2.25 S ,/1.8 Sy E
Faul ted                N + SSE + SOT p                3.0 S, NOTES: (1) See Table 2-3 for SOT definitions and other load abbreviations.
(2) Use SRSS for combining dynamic load responses.
1367s:10A                              2-3 l
l
 
TABLE 2-2 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR PRESSURIZER SAFETY AND RELIEF VALVE PIPING - DOWNSTREAM OF VALVES Piping Plant / System                                                            Allowable Stress Operating Condition            Load Combination                                  Intensity Normal                    N                                                  1.0 S h Upset                    N + OBE                                            1.2 S h Upset                    N + SOT g                                          1.2 S h Upset                    N + OBE + SOT g                                    1.8 S h            '
Emergency                N + SOT E                                          1.8 S h Faul ted                  N + SSE + SOTy                                    2.4 S h NOTES: (1) See Table 2-3 for SOT definitions and other load abbreviations.
(2) Use SRSS for combining dynamic load responses.
1367s:10A                                2-4
 
TABLE 2-3                                            ,
DEFINITIONS OF LOAD ABBREVIATIONS N        =  Sustained loads during normal plant operation                      -
SOT      =  System operating transient SOT g    =  Relief valve discharge transient SOT      =  Safety valve discharge transient E
SOTp      =  Max (SOTg ; SOTE
                                          ); or transition flow OBE      =  Operating basis earthquake SSE        =  Safe shutdown earthquake S        =  Basic material allowable stress at maximum (hot) temperature h
5,        =  Allowable design stress intensity S
y
                =  Yield strength value 1367s:10A                                    2-5
 
I i
SECTION 3                                            ,
l                                      LOADING CONDITIONS ANALYZED 3.1 LOADING The piping stress analyses described in this section consider the loadings specified in the design specification. These loadings result from thermal expansion, pressure, weight, earthquake, design basis accident (DBA), plant operational thermal and pressure transients, and safety valve and relief valve operation.
3.1.1 THERMAL EXPANSION The thermal growth of the reactor coolant loop equipment and all connected piping is considered in the thermal analysis of this system.
The modulus of elasticity, (E), the coefficient of thermal expansion at the metal temperature, (a), the external movements transmitted to the piping as described above, and the temperature rise above the ambient temperature, (AT),
define the required input data to perfonn .the flexibility analysis for thermal expansion.
Due to different operating modes, the system may experience multiple thermal
    ,        loadings. The tenperatures used in the expansion analysis of the piping are based upon the information presented in the design documents.
3.1.2 PRESSURE Pressure loading in this report is either design pressure or operating pressure. The design pressure is used in the calculation of longitudinal pressure stress in accordance with the Code. The range of operating pressure is used in calculating various stress intensities, as applicable.
1367s:10A                                  3-1
 
e 3.1.3 WEIGHT To meet the requirements of the Code, a weight analysis is performed by applying a 1.0 g uniformly distributed load downward on the complete piping system. The distributed weight characteristics of the piping system are specified as a function of its properties. This method provides a distributed loading to the piping system as a function of the weight of the pipe, insulation, and contained fluid during normal operating conditions.
3.1.4 SEISMIC Seismic motion of the earth is treated as a random process. Certain assumptions reflecting the characteristics of typical earthquakes are made so these characteristics can be readily employed in a dynamic response spectrum analysis.
Piping rarely experiences the actual seismic motion at ground elevation, since it is supported by components attached to the containment building. Al though a band of frequencies is associated with the ground earthquake motion, the building itself acts as a filter to this environment and will effectively transmit those frequencies corresponding to its own natural modes of vibration.
The forcing functions for the piping seismic analyses are derived from dynamic response analyses of the containment building when subjected to seismic ground motion. These forcing functions are in the form of floor response spectra.
Response spectra are obtained by determining the maximum response of a single mass-spring-damper oscillator to a base motion time history. This single mass-spring-damper oscillator system represents a single natural vibration mcde of the piping system. A plot of the maximum responses versus the natural frequencies of the oscillator forms the response spectrum for that particular base motion.
The intensity and character of the earthquake motion producing forced vibration of the equipment mounted within the containment building are specified in terms of the floor response spectrum curves at various elevations within the containment building.
1 l
1367s:10A                              3-2
 
The seismic floor response spectrum curves corresponding to the highest                ,
elevution at which the component or piping is attached to the containment building are used in the piping analysis.
Seismic loads must be known to calculate the resultant moment (Mil used in the design equations The plant operating condition (full load) is the condition under which the specified earthquake is assumed to occur.
3.1.5 TRANSIENTS                                                .
To provide the necessary high degree of integrity for the NSSS, the transient conditions selected for secondary stress evaluation are based on conservative estimates of the magnitude and anticipated frequency of occurrence of the temperature and pressure transients resulting from the possible operating con ditions.
The transients selected are conservative representations of transients for design purposes, and are used as a basis for piping secondary stress evaluation to provide assurance that the piping is acceptable for its application over the design life of the plant.
For purposes of piping evaluation, the number of transient occurrences are based on a plant design life of 40 years.
3.1.6 SAFETY AND RELIEF VALVE THRUST The pressurizer safety and relief valve discharge piping system provide overpressure protection for the RCS. The three spring-loaded safety valves and two power-operated relief valves, located on top of the pressurizer, are designed to prevent system pressure from exceeding design pressure by more than 10 percent and 100 psi, respectively. A water seal is maintained upstream of each valve to minimize leakage. Condensate accumulation on the inlet side of each valve prevents any leakage of hydrogen gas or steam through the valves. The valve outlet side is sloped to prevent the formation of additional water pockets.
l 1367s:10A                                        3-3 l
l
      , .            ,- -- -          -n. . , . . - . - , , ,    . .. , -.. - .,. - - , - . . -  - - -.
 
If the pressure exceeds the set point and the valves open, the water slug from the loop seal discharges. The water slug, driven by high system pressure, generates transient thrust forces at each location where a change in flow direction occurs.
The safety and relief lines are analyzed for various cases of thrust loadings to ensure the primary and secondary stress limits are not exceeded.
3.2 DESIGN CONDITIONS The design conditions are the pressures, temperatures, and various mechanical loads applicable to the design of nuclear power plant piping.
3.2.1 DESIGN PRESSURE The specified internal and external design pressures are not less than the maximum difference in pressure between the inside and outside of the com-ponent, which exists under the specified normal operating conditions. The design pressures are used in the computations made to show compliance with the Code (subparagraph NB-3112.1 of the Code).
3.2.2 DESIGN TEMPERATURE The specified design temperature is not less than the actual maximum metal temperature existing under the specified normal operating conditions for each area of the component considered. It is used in computations involving the design pressure and coincidental design mechanical loads (subparagraph NB-3112.2 of the Code).
3.3 PLANT OPERATING CONDITIONS I
3.3.1 NORMAL CONDITIONS A normal. condition is any condition in the course of system startup, design power range operation, hot standby, and system shutdown, other than upset, l
faulted, emergency, or testing conditions.
l 1367s:10A                            3-4 l
 
3.3.2 UPSET CONDITIONS                                                          .    <
An upset condition is any deviation from normal conditions anticipated to occur often enough that design should include a capability to withstand the condition without operational impairment. Upset conditions include those transients resulting from any single operator error or control malfunction, transients caused by a fault in a system component requiring its isolation from the system, and transients due to loss of load or power. Upset condi-tions include any abnormal incidents not resulting in a forced outage and also forced outages for which the corrective action does not include any repair of mechanical damage.
3.3.3 EMERGENCY CONDITIONS Emergency conditions are defined as those deviations from normal conditions which require shutdown for correction of the conditions or repair of damage in the system. The conditions have a low probability of occurrence but are in-cluded to provide assurance that no gross loss of structural integrity will result as a concomitant effect of any damage developed in the system. The total number of postulated occurrences for such events shall not cause more than 25 stress cycles (subparagraph NB-3113 of the code).
3.3.4 FAULTED CONDITIONS Faulted conditions are those combinations of conditions associated with extremely low probability - postulated events whose consequences are such that the integrity and operability of the nuclear energy system may be impaired to the extent that considerations of public health and safety are involved.
1367s:10A                              35
 
2 SECTION 4                              ,
ANALYTICAL METHODS AND MODELS t
1
 
==4.1 INTRODUCTION==
 
l
:                                  The analytical methods used to obtain a piping deflection solution consist of 4                                  the transfer matrix method and stiffness matrix formulation for the static structural analysis. The response spectrum method is used for the seismic j                                  dynamic analysis.
t The complexity of the piping system requires the use of a computer to obtain the displacements, forces, and stresses in the piping ar.J support members. To
'                                  obtain these results, accurate and adequate mathematical representations (analytical models) of the systems are required. The modeling considerations
]
i                                    depend upon the degree of accuracy desired and the manner in which the results l                                  will subsequently be interpreted and evaluated. All static and dynamic analy-1 ses are performed using the WESTDYN computer program. This program, described in WCAp-8252, was reviewed and approved by the U.S. NRC (NRC letter, April 7, 1981 from R. L. Tedesco to T. M. Anderson),
The integrated piping / supports system model is the basic system model used to          ;
f                                                                                                                              ;
t compute loadings on components, component and piping supports, and piping.
The system model includes the stiffness and mass characteristics of the pip-l ing, attached equipment, and the stiffness of supports, which affects the sys-tem response. The deflection solution of the entire system is obtained for the various loadirg cases from Which the internal member forces and piping              l
!                                    stresses are calculated.
4.2 STATIC ANALYSIS l
t                                    The piping system models, constructed for the WEST 0YN computer program, are
]                                    represented by an ordered set of data, which numerically describes the
]                                      physical system.
The spatial geometric description of the piping model is based upon the isometric piping drawings referenced in this report and equipment drawings i
I i                                      1367s:10A                                      4-1 l
 
referenced in the design specification. Node point coordinates and incremental lengths of the members are determined from these drawings. Node                  '
point coordinates are put on network cards. Incremental member lengths are put on element cards. The geometrical properties along with the modulus of elasticity, E, the coefficient of thermal expansion, a, the average tempera-l            ture change from the ambient temperature, AT, and the weight per unit length, 1            w, are specified for each element. The supports are represented by stiffness
  <          matrices which define restraint characteristics of the supports. Plotted models for various parts of the safety and relief valve discharge piping are j            shown in figures in Section 6.
The static solutions for deadweight and thermal loading conditions are obtained by using the WESTDYN computer program. The WESTDYN computer program is based on the use of transfer matrices which relate a twelve-element vector
[B3 consisting of deflections (three displacements and three rotations) and loads (three forces and three moments) at one location to a similar vector at another location. The fundamental transfer matrix for an element is deter-mined from its geometric and elastic properties. If thermal effects and boundary forces are included, a modified transfer relationship is defined as follows:
T gg  T          A                          A 12        o          't              i
                                            +        =
T      T          F,          f            F 21      22                    t              9 or TBgo +Rg=By where the T matrix is the, fundamental transfer matrix as described above, and the R vector includes thermal effects and both forces. This l            B vector for the element is a function of geometry, temperature, coefff-cient of thermal expansion, weight per unit length, lumped masses, and externally applied loads.
* l                                                                            -
I 1367s:10A                                                  4-2 l
l
 
The overall transfer relationship for a series of elements (a section) can be        ,
written as follows:
B 1  T1 8, + R1 T B, + T R23 +R 2 B2    TB2y+R 2 = T 2y 83=TB32
                          *R 3      TT7B,+TTR32g 323              +TS32+R3 or
                                                ~
                                                                      ~
In      )                n      In      )
B  =    1 Tr    '
0o +    I        , T
* R r-1            +R n n
                                          '*E Y      )                    _  Y      r)          .
A network model is made up of a number of sections, each having an overall transfer relationship formed from its group of elements. The linear elastic properties of a section cre used to define the characteristic stiffness matrix for the section. Using the transfer relationship for a section, the loads required to suppress all deflections at the ends of the section arising from the thermal and beundary forces for the section are obtained. These loads are incorporated in the overall load vector.
After all the sections have been defined in this manner, the overall stiffness matrix, K, and associate'd load vector needed to suppress the deflection of all the network points is determined. By inverting the stiffness matrix, the flexibility matrix is determined. The flexibility matrix is multiplied by the negative of the load vector to determine the network point deflections due to the thermal and boundary force effects. Using the general transfer relation-ship, the deflections and internal forces are then determined at all node points in the system. The support loads, F, are also computed by multiplying the stiffness matrix, K, by the displacement vector, a, at the support point.
4.3 DYNAMIC ANALYSIS The models used in the static analyses are modified for use in the dynamic analyses by including the mass characteristics of tne piping and equipment.
i 1367s:10A                                  4-3 l
 
4.4 SEISMIC ANALYSIS The lumping of the distributed mass of the piping systems is accomplished by locating the total mass at points in the system which will appropriately represent the response of the distributed system. Effects of the equipment motion, that is, the pressurizer, on the piping system are obtained by modeling the mass and the stiffness characteristics of the equipment in the overall system model.
The supports are again represented by stiffness matrices in the system model for the dynamic analysis. Mechanical shock suppressors which resist rapid motions are now considered in the analysis. The solution for the seismic disturbance employs the response spectra method. This method employs the lumped mass technique, linear elastic properties, ar.d the principle of modal superposition.
From the mathematical description of the system, an overall stiffness matrix
[K] is developed from the individual element stiffness matrices using the transfer matrix [K ] associated with mass degrees-of-freedom only. From the R
mass matrix and the reduced stiffness matrix, the natural frequencies and the normal modes are determined. The modal participation factor matrix is                <
computed and combined with the appropriate response spectra value to give the
>                                                                modal amplitude for each mode. Since the modal amplitude is shock direction dependent, the total modal amplitude is obtained conservatively by the absolute stan of the contributions for each direction of shock. - The modal l                                                                amplitudes are then converted to displacements in the global coordinate system I
and applied to the corresponding mass point. From these data the forces.
l                                                                moments, deflections, rotation, support reactions, and piping stresses are l                                                                calculated for all significant modes.
t The seismic response from each earthquake component is computed by combining the contributions of the significant modes.
li 4.5 THERMAL TRANSIENTS Operation of a nuclear power plant causes temperature and/or pressure i                                                                  fluctuations in the fluid of the piping system. The transients for this l                                                                                                                  4.4 l
1367s:10A l
l 1
      - _ . _ _ . . _ - _ _ - - . _ - . - . _ _ - - . _ _ _ _ . _ . _ . ~ . . _ _ _ . , _ , . _ . - _ . . _ . -                                      _
 
system are defined in " Westinghouse Systems Standard Design Criteria 1.3" and    ,
referenced in the Design Specification and were used to define the various operating modes used in the thermal expansion analyses.
4.6 PRESSURIZER SAFETY AND RELIEF LINE ANALYSIS 4.6.1  PLANT HYDRAULIC MODEL When the pressurizer pressure reaches the set pressure (2,500 psia for a safety valve and 2,350 psia for a relief valve) and the valve opens, the high pressure steam in the pressurizer forces the water in the water seal loop through the valve and down the piping system to the pressurizer relief tank.
For the pressurizer safety and relief piping system, analytical hydraulic models, as shown in Figures 4-1 and 4-2, were developed to represent the conditions described above.
The computer code ITCHVALVE was used to perform the transient hydraulic analysis for the system. This program uses the Method of Characteristics approach to generate fluid parameters as a function of time. One-dimensional fluid flow calculations applying both the implicit and explicit characteristic methods are performed. Using this approach the piping network is input as a series of single pipes. The network is generally joined together at one or          ,
more places by two or three-way junctions. Each of the single pipes has associated with it friction factors, angles of elevation and flow areas.
Conservatior, equations can be converted to the following characteristic equations:
dz g = V+c                                                                        ,
              + pC    = C(F + pgcoso)    4' m
h=Y-c 1367s:10                              4-5 l
l
 
4'    C fh - oc ff = -c(F + ogcoso)                                                    ,
ao g2  , - ah/ao an      1
              'Io ~ o3 z        =    variable of length measurement t        =    time V        =      fluid velocity c        =    sonic velocity p        =    pressure o        =    fluid density F        =      flow resistance g        =    gravity e        =    angle off vertical J        =    conversion factor for converting pressure units to equivalent      ,
heat units                                                          '
h        =    enthal py q'''    =    rate of heat generation per unit pipe length                        '
The computer program possesses special provisions to allow analysis of valve opening and closing situations.
Fluid acceleration inside the pipe generates reaction forces on all segments of the line that are bounded at either end by an elbow or bend. Reaction forces resulting from fluid pressure and momentum variations are calculated.
These forces can be expressed in terms of the fluid properties available from the transient hydraulic analysis, performed using program ITCHVALVE. The momentum equation can be expressed in vector form as:
1 a          -          --      -
F                    oVdv + 1  oV(V
* ndA) y
                =7t c        v          c I
l 1367s:10A                                      4-6 l
 
  .                                                                                                                                                            l From this equation, the total force on the pipe can be derived:
j r 1 (1 - cos ag) ,y                                          r 2 II ~ C08 "2I A' pipe " {      sin og    ' lit    Bend 1                            5          SI" *2  E    Bend 2                                            ,
                      + b straight M      di
                                                                                                                ~~
9: pipe        at                                                                                                                        l A    =  piping flow area                                                        ,
7 ge  =  gravitational constant v    =  volume F    =    force r    =    radius of curvature of appropriate elbow a    =  angle of appropriate elbow W    =  mass acceleration All other terms are previously defined.
Unbalanced forces are calculated for each straight segment of pipe from the pressurizer to the relief tank using program FORFUN. The time-histories of these forces are stored on tape to be used for the subsequent structural
!        analysis of the pressurizer safety and relief ifnes.
4.6.2 COMPARISON TO EPRI TEST RESULTS t
Piping load data has been generated from the tests conducted by EPRI at the Combustion Engineering Test Facility. Pertinent tests simulating dynamic opening of the safety valves for representative commercial upstream environ-ments were carried out. The resulting downstream piping loadings and responses were measured. Upstream environments for particular valve opening cases of importance, which envelope the connercial scenarios, are:
i i
:        A. Cold water discharge followed by steam - steam between the pressure source j              and the loop seal - cold loop seal between the steam and the valve, i
1367s:10A                                        4-7 i
      .  -                      _.          _ __, _ _ . ~ . _ - . _ . , . . . _ .                        _  - . _ . _ . _ . - - - , . _ _ _ _ . . - . - -
 
B. Hot water discharge followed by steam - steam between the pressure source and the loop seal - hot loop seal between the steam and the valve.          .
C. Steam discharge - steam between the pressure source and the valve, Specific thermal hydraulic and structural analyses have been completed for the Combustion Engineering Test Configuration. Figure 4-3 illustrates the place-ment of force measurement sensors at the test site. Figures 4 4, 4-5 and 4-6 illustrate a comparison of the thermal hydraulically calculated results using the ITCHVALVE and FORFUN computer programs versus experimental results for Test 908, the cold water discharge followed by steam case. Figure 4.4 shows the pressure time-histories for PT9, which is located just downstream of the valve. Figures 4-5 and 4-6 illustrate, respectively, the force time histories of the horizontal run (WE28/WE29) and the long vertical run (WE32/WE33) immed-2 iately downstream of the safety valve. Significant structural damping in the third segment after the valve was noticed at the test and was verified by                -
structural analyses. Consequently, a comparison of force WE30/WE31 was not presented here. No useable test data for sensor WE34/WE35 was available for Test 908.
Figures 4-7 through 4-11 filustrate a comparison of calculated versus I
experimental results for Test 917, the hot water discharge followed by steam case. Figure 4-7 shows the pressure time histories for PT9. Figures 4-8,                  -
4-9, 4-10 and 4-11 filustrate, respectively, the thermal hydraulically calcu-lated and the experimentally determined force time histories for (WE28/WE29),
(WE32/WE33), (WE30/WE31) and (WE34/WE35). Blowdown forces were included in the total analytically calculated force for WE34/WE35 as this section of pip-ing vents to the atmosphere. Although not presented here, comparisons were also made to the test data available for safety valve discharge without a loop seal (steam discharge).
The application of the ITCHVALVE and FORFUN computer programs for calculating the fluid-induced loads on the piping downstream of the safety and relief valves bas been demonstrated. Although not presented here, the capability has also been shown by direct comparison to the solutions of classical problems.
1367s:10A                              4-8 l
 
The application of the structural computer programs (discussed in Section 4.6.3) for calculating the system response has also been demonstrated.
Structural models representative of the Combustion Engineering Test Configuration were developed. Figures 4 12, 4-13 and 4-14 illustrate, respectively, a comparison of the structural analysis results and the experimental results for locations (WE28/WE29), (WE32/WE33) and (WE30/WE31) for test 908. No useable test data for sensor (WE34/WE35) was vailable.
Figures 4-15, 4-16, 4-17 and 4-18 show for test 917, respectively, the structural analysis results versus the test results for locations (WE28/WE29),
(WE32/WE33), (WE30/WE31) and (WE34/WE35).
4.6.3 VALVE THRUST ANALYSIS The safety and relief lines were modeled statically and dynamically (seismically) as described in Sections 4.1 through 4.4 The mathematical model used in the seismic analysis was modified for the valve thrust analysis to represent the safety and relief valve discharge. The time-history hydraulic forces detemined by FORFUN were applied to the piping system lump mass points. The dynamic solution for the valve thrust was obtained by using a modified-predictor-corrector-integration technique and nomal mode theory.
The time-history solution was found using program FIXFM3, The input to this program consists of natural frequencies, nomal modes, and applied forces.
The natural frequencies and nomal modes for the modified pressurizer safety and relief line dynamic model were detemined with the WESTDYN program. The time-history displacement response was stored on magnetic tape for later use in computing the total system response due to the valve thrust conditions.
The time-history displacements of the FIXFM3 program were used as input to the WESOYN2 program to detemine the time-history internal forces and deflections at each end of the piping elements. For this calculation, the displacements were treated as imposed deflections on the pressurizer safety and relief line masses. The solution was stored on tape for later use in the piping stress evaluation and piping support load evaluation.
i i
i 1367s:10A                              4-9 l
L
 
e The time-history internal forces and displacements of the WESOYN2 program were used as input to the POSDYN2 program to determine the maximum forces, moments.
and displacements that exist at each end of the piping elements and the maximia loads for piping supports. The results from program POSDYN2 are saved on TAFE14 for future use in piping stress analysis and support load evaluation.
1367s:10A      .
4-10
 
j'
* l i
r i
4 i                                                                                                                                                                                                                                                        r i
I i                                                                                                                                                                                                                                                        ;
i                                                                                                                                                                                  I
!                                                                                                                                                                      33        1 25 t
i 1
[
l 24 22    20        3/      6 4
j                                                                                                                                                          23      / 19      2 7
5
!                                                                    10                                                                                                                                              8                                  l
                                                                                                                                                                            \
1 l                                                                                32                                                                                                                                                                    ,
i                                                                                                                                                                                                                                                        r 28
;                                                                                                                                                              27                                                                                        ,
i I              ,                                                                        31 e
4 29      26 1
30 9
t a                                                                                                                                                                                                                                                        '
J Forces 11 through 18 are components for Forces 10 j
33 and 8                                                                              l i
FIGURE 4-1: Safety Line Hydraulic Model - Part !
NOTE: The numbers correspond to force locations. Table 6-1 lists                                                                                                                              (
l i                                                                            the maximum force at each location.                                                                                                                                        .
l                                                                              e I
I                                                                                                                                                                                                                                                          l l                                                                                                                                                                  4-11                                                                                    :
i l
    . - _ . . _ _ . , , _ , _ _ _ , _ _ _ . - - - , . . ~ , , _ _ , . . , . . - . , . _ . . . , _ _ , . ~ . , _ _ _ _ . , . , _ _ . _ , _ _ . . , , . . _ , , _ _ . . _ , _ - , , - - . _ _ _ _ _ . .                      ._.~,,,,.,m,._...__        _
 
4                                                          ,
i 4
i
                          '                          27 f
26
                  /
i
                '  25                        [
J 29 31 1
i 33      34                          '
35
                                                                                =
l l                                                            N36 i
I                                                                37 1
4 39        38 l
40 l
* f                                      1                                        ,
i i
i 4
l 4        .
1 4
1~
44 l                    45 i
\
i d
FIGURE 4-1.-A: Safety Line Hydraulic Model - Part II I
NOTE: The numbers correspond to force locations. Table 6-1-A lists the maximum force at each location.
4-12
 
I
                                                                                        -i 4
:                                                                I
:                                                          24  .t 6
E 25                                        7              27              '
l 14          4
{          2                    [
t 4                                      3
;                            15                                        22 2                                              '
1                                          ;
i                                                    18 19 16                      21                          i.
i 26                            f i
I
  .                                                                                      i i
I                                                                                        i 1                                                                                        i il                                                                                        r FIGURE 4-2: Relief Line Hydraulic.Model - Part I                          j l
a NOTE: The numbers correspond to force locations. Table 6-2                l
                        . lists the maximum force at each location.                      l i
1 4-13                              ,
                                                                                        +
i
 
                          /
                        '                          23 22
                  /
                '    21                      2Y 25 27 3
3)
N32 33 5      34-36                                  ,
37 s
l 38 i
I 39 i
I 40 41 FIGURE 4-2-A: Relief Line Hydraulic Model - Part 11 NOTE: The numbers correspond to force locations. Table 6-2-A lists the maximum force at each location.
4-14'
 
4 T
x                                              N E
        =                                              M G
E V                                                i S 7 Z 1
9 e
45 y 33 F EE WW
                                                                                        ,          s t
s
                                                                                        ,          e
                                                                                        ,          T
                                                                                        ,          I
                                                                                        ,          R
                                                                                        ,          P
                                                                                        ,          E
                                                                                        ,            s      _
                                                                                        ,            n N                                                                  ,            o O                                                                  ,          i I                                          3                      ,          t G                                          T                      ,            a E                                          N                      ,            c R                                          E                      ,            o
                                                                                        ,          L L
A M                      ,
E                      R                  G                        ,
t S                      O                  E                        ,
n T                  S                        ,
e P                      A                                                        m O                      L
                                                                                        ,          e U                                            ,          r O                                                                  ,          u L                      M                                            ,          s
* U                                            ,          a
                        -                  C                                23        ,          e 2            C                                33        ,          M T                                              EE        ,
A                                                        e N
E WW        ,
                                                                                        ,            c r
y M                                                  Y      ,            o F        ,          F G                                                    u    ,
E                                                          ,              -
g S                                                          ,
1    g 01
                                                                                        ,            e
          =                                                                            ,            s yEE T                                            33      ,                          ,            n N    S                                            F                            ,            o E
M O
I WW                                j,,          p s
G    P                      5 e
s          R E
S
                        ~/          ,            x                                      t          l
                      -~                                                                  s          a
            ..j1                                                                          i            r t            u
                                  ; -                                                    s          t g a                                                    i            c
                                      #                                                                u E
                  -      '                                                            hs            t r
                  -      '                                                              i          S V
L                                                                                  s            :
A                                                                                  i          3 V                                                                                  s              -
Y            - ,                                                                  i          4 T
E F
F F 8 9                                                                    hi          E R
2 2                                                ..
A        E E                                                                      t          U S        WW                      3      yL lE eS s
i G
I F
t rS                                        s ue
(
i Sv                                        t i
h b1m l    l  3      I                              . <        !j        a !
 
500 -  -
          ..                                                  s i      s                                    TESTS
                                                                  \
I i
5
                                                                                          - -- THERMAL 400 _  _                                      g i
HYDRAULIC g
                                                                      '                              ANALYSIS i                  ,
          ..                                      I                    s l                      I I
i 300 _  _                                  l                          i                                              .
g                                          I                            \
C                                          l                              '
o w                                                                                                            /
g u      --
t 5                                                                            \
    $                                        i                                    g w                                        I                                      \
                                                                                                /
E 200 -    _
g                                        g        /
                                                                                      \    /
I I                                              %)
          ..                            I I
E 8
100 - -
I I
I I
s 1
0                0.1                                  0.2                          0.3              0.4 TIME (SECONDS) i FIGURE 4-4: Comparison of the EPRI Pressure Time-History l                              for PT09 From Test 908 with the Themal Hydraulic Analysis Predicted Pressure Time-History 4-16
 
I d
1.0E4 -    -
                                                              \
hel      \                                                    .
8        i 1
e
                                  / \
s f/            l i
                            ,                    ,f g
0.0  -    # ~~                                                              < ---
I              /
l i}I i
I l
E                                                              I l
5                                                                1 2                                                                I        I
      -1.0E4                                                        t        l
    ]                .
W                                                                l      l E                                                                I      i 1      l
                                                                        \    \
                                                                          \
                                                                          \
                                                                            \
      -2.0E4 -      -
                                                                            %g TESTS
                                                                                                                            - THERMAL HYDRAULIC ANALYSIS
        -3.0E4                                                                        l 0.05                                                          0.15                                                    0.25 TIME (SECONDS)
FIGURE 4-5: Comparison of the EPRI Force Time-History for WE28 and ME29 From Test 908 with the Thermal Hydraulic Analysis Predicted Force Time-History 4-17
 
1.0E5 0    -
I              .  ---      -
                                                  %I            J l l I  l I
G                                                    l l
        @                                                    l l                                                      '
5                                                    i l
S -1.0E5    -
ll 0                                                    ll 5
6 ll ll Il ll
                                                                                                                      ~
ll
          -2.0E5    -
TESTS
                                                                          ---- TH ER M AL HYDRAULIC ANALYSIS
          -3.0E5                                      !                  !                    !
0              0.1                0.2                0.3                    0.4        0.5 TIME (SECONDS)
FIGURE 4-6: Comparison of the EPRI Force Time-History For WE32 AND WE33 From Test 908 with the the Thermal Hydraulic Analysis Predicted Force Time-History
,                                                  4-18 l
l l
 
I 500 s                                                        .
                                                      \
                                                          \
M              \
400 t                \
                                            >                  \
                                                                \
                                                                  \
                                                                  \
C                                                          \
E                                                            \
w  300                                                          g 5                            o                                  \
m                            i                                      \
g                            i                                          N c
I                                                N I                                          %;                          _-      -    _
                                  ,                                                  's N__.---
200                    g I
I I
    -                          I I
i I
100                I                                                                                      TESTS t
                                                                                                              ~---THERMAL HYDRAULIC i                                                                                              ANALYSIS i
I I
              ,s~g,  -*                                            .
0.1                                      0.2                                0.3              0.4              0.5 TIME (SECONDS)
FIGURE 4-7: Comparison of the EPRI Pressure Time-History for PT09 from Test 917 with the Thermal Hydraulic Analysis Predicted Pressure Time-History f                                                                          4-19 l
I
      . _      ~  --                      _ . . . _ . . _              . _ . _ _ _ . _ . _ _ _ , _ _ _    . ,_      ,
 
                ...                                                                              .    .=.
e 4000 -    -
2000 - - i        ' '
l.
: 4.                4
                            /              1      I i                      l                    (
0.1                  j l; '
8 1  lI        7' E                                ,,f I                                                                    -
e
            ~
n      (
                          "                          l tj -2000 "                                g 5
m I
I
              -4000 -    -
I J
              -6000 -    -                                                                    TESTS
                                                                                        - - - THERMAL                  ,
HYDRAULIC ANALYSIS
              -8000                          e                      i        .        .        ,
0                  0.1                  0.'2          d.3    0'. 4    0.'5      0.6 l
TIME (SECONDS)
FIGURE 4-8: Comparison of the EPRI Force Time-History for WE28 and WE29 from Test 917 with the Themal Hydraulic Analysis Predicted Force Time-History 4-20 l
 
l l
2.0E4 TESTS
                                                                    ---- THERMAL NYDRAULIC jg
                                      ^                                        ANALYSIS 1.OE4  -
fI        g lM                      h is                      I                        g I      i  I g!!
8
        !b.      O q'>  1                        i 18      I                ,
V U
E                                                    If          f O                                                    I          f I
                                                              \      j l 1 1.0E4  -
                                                                )  g
                                                                \
f?
i          2.0E4 o        o.1                        o.2                o.3                  o.4  o.s TIME (SECONDS)
FIGURE 4-9: Comparison of the EPRI Force Time-History for WE32 and WE33 From Test 917 with the Thennal Hydraulic Analysis Predicted Force Time-History 1
i                                                                                                                                          l l
4-21
 
3.0E4 TESTS
                                                                                                      - - - THERMAL HYDRAULIC ANALYSIS 2.0E4 - -                                              #g
                                                                          \
l    \
l      \
l        \
t          \
g  1.0E4 - -                                        ,            g                                                              ,
              @                                                  l              \
8                                                l                \
b                                              I                    \
w                                              I                      \
d                                          /                          \
o        0.  -                    -
g g
e
                                                                                        \                        /
                                                                                        \                    /
                                                                                          \                /
t
                -1.0E4 ~
                              ~
                                                                                                      /
                -2.0E4                l                        l                      ;                        ;
0.0    0.1                    0.2                      0.3                      0.4          0.5 i
l                                                                    TIME (SECONDS) l t                          FIGURE 4-10: Comp'arison of the EPRI Force Time-History j                                      for WE30 and WE31 from Test 917 with the Themal Hydraulic Analysis Predicted Force Time-History 4-22
 
1 l
l l
2.0E4 TESTS
                -- - THERMAL HYDRAULIC
            --          ANALYSIS l '\
I    \
l      \
G                                                          l        \
E                                                        I          \
I            \
E                                                      I 6 1.0E4 -    -
g
                                                                            \
d                                                      I
  $                                                    l                    \
  '                                                    i                        \
l                          \
l I
I t
I
                                              /
0.0                  '
                                                            ;                    l 0          0.1          0.2                0.3                  0.4      0.5 TIME (SECONDS)
FIGURE 4-11: Comparison of the EPRI Force Time-History for WE34 and WE35 From Test 917 with the Thermal Hydraulic Analysis Predicted Force Time-History 4-23 I
j
 
20.00 10.00  -
s l ,i n
l s
i
                      /                                it
    ,      0    = ' /v' (gj , gig' (,^ ppy                            - -  - -
B
    ~
w l        li!    '
k                )
E                                ll1 l
      -10.00  -
[
l l
l                        TESTS j l                              ---- AN ALYSIS
      -20.00    -
l 1
l                                          P
      -26.17 l            0.05                        0.15                    0.25          0.35      0.45 I
TIME (SECONDS)
FIGURE 4-12: Comparison of the EPRI Force Time-History for WE28 and WE29 From Test 908 with the
          ~
Structural Analysis Predicted Force Time-History i
4-24
 
d 5
4  -
P l
I\              ll                                                        '
I\                  >
2            I 'r3 I,
j
                                                                                      \
m          \
1        ;
                                                                    /      t ia i
n I                C 4
(
d                    [i                                          /    'N                                  ~
                                                                                                                                                                                            '-v"'~'
O  '                    g        l                    V  %
                                                                                                                        .                \                    /
1        l l
a,                          '
I l              /
t-t                ,
                                                                                                                                                      )                      ii
                                                      ;                            i        i E .2  -                                              t I
8                                        i          l i        I                                      i 3                                        l      l l    cl
                                                                                                    \    'I 4    -
j I
5 i
6  -
TESTS 7    -                                                                              ---- ANALYSIS
                                                          -8 0                  0.1                              0.2                    0.3                                              0.4                              0.5 TIME (SECONDS)
FIGURE 4-15: Comparison of the EPRI Force Tine-History for WE28 and WE29 From Test 917 with the Structural Analysis Predicted Force Time-History 4-27
 
12.956                    -                                                        e g
I' 10.000                    -                                                    I                                I I          \                l      1 I            \                l      t I            g              i        I I              ;            I          s 5.000                -                                                I                i l
i                                          1                                        [
l              (                            t I
E                                                                                              ( k {l                            I I
E                                                              b                                ]          1l w                            0                    *"[                                                      II g
I- - -
o                                                                                                                                  \                  /
                      '                                                                                                                                fl t
                                                                                                                                                                            /                      lf 5.000                  -
g              g I            I              TESTS g          g        ---- AN ALYSIS
                                -10.000                      -
IgI I
1
                                                                                                                                                                \I
                                                                                                                                                                \I
                                -13.266                      -
I                    I                    I                    I                  I        I      I      I      I O                                  0.100                                      0.200                            0.300        0.400        0.495 TIM E (SECONDS) l                                                                      FIGURE 4-16: Comparison of the EPRI Force Time-History for WE32 and WE33 From Test 917 with the Structural Analysis Predicted Force Time-History 4-28
 
150 100 ll 11 llj 50 ll) 0    -            ,c^ '~          ,                        g  I l  I  i I  NI 50
                                                                          '! I e                                                            h
              .iOO        -
k ll I
150 TESTS
                                ---- ANALYSIS                              gl 200        -
11 lI 11 I      I          I      I            EI              I  I 250 0.1                02                            0.3      0.4 O
TIME (SECONDS)
FIGURE 4-13: Comparison of the EPRI Force Time-History for WE32 and WE33 From Test 908 with the Structural Analysis Predicted Force Time-History l
4-25
 
l I
100 l\
It 75  -                                          l I {i                        D I;                          l\
5    -
1i A                            e
                                                                                !},
l\          I    I          l
                                                                                                ,\
E                                                I              Ji          I    I s                                                I    i      li                          I 1        l v
                                      -- W'                      l i
w    0  -                                              l I      J      l      l      i      I E                                                        I                          Il I      I    I 2
2s  -                                              ll I
i I
I              I I
                                                                              'I i
                                                            \1 i
II            ilyl tg g lI 50 v          g I
75  -    ---
TESTS ANALYSIS
{I lI I
100 l      I      I      l            1            I    dl 0                0.1            0.2                      0.3                          0.4 TIME (SECONDS) l FIGURE 4-14: Comparison of the EPRI Force Time-History for WE30 and UE31 From Test 908 with the Structural
    -                          Analysis Predicted Force Time-History 4-26 i
 
1 1
25.863 25.000    -                                      #                                                    _
l}s I\
20.000    -
g  g i    1 I      \
I      I 15.000  -
g I
i 10.000  -                                            I l
                                                                          \
I              \
E    5.000 -
I                    \
E                                          l              i      \
I                        \
u                                      I                          \
I
              !        O -
h-                                      g I
f*
l                  /
5.000  -
g                /
1              /
                                                                                        \          /
                -10.000    -                                                              g      /
                                                                                            \w TESTS
                              ---- AN ALYSIS 15.000  -
20.000 0        0.100          0.200                      0.300                    0.400                0.495 TIME (SECONDS)
FIGURE 4-17: Comparison of the EPRI Force Time-History for WE30 and W:31 From Test 917 with the Structural Analysis Predicted Force Time-History i
4-29
 
I i
A 14.588 I
l }\i l      i 12.500              -
l        \
l          I I              \
                                                                                                                                                    \              \
t o.ooo              -                                                                                                      l                \                              -
l                  \
                                                                                                                                                                        \                            .
I g                                                                                                                                                    \
9:                                                                                                                            l
                                                                                                                                                                          \
E                                                                                                                            I                        g w    7.500              -
l                            \
i                  S                                                                                                                            I                                                    .
o I
5.000              -
TESTS
                                                        ---- AN ALYSIS i
I 2.50o              -                                                                                          ;
I i
i                                                                                                                                    /
o l__J-                    I                        -/                                    I            I          I  I 0.200                                      0.300                        0.400    0.495 0                    0.100 i
                                                                          -                          TIME (SECONDS)
                                          .a FIGURE 4-18: Comparison of the EPRI Force Time-History for WE34 and WE35 From Test 917 with the Structural i
                            -                                                  Analysis Predicted Force Time-History 1
l I
4-30
                                                            . . - - _ - -      ~ - - - - . _ - - _ _ - . . ___ ., _ - . . - _ . . , . . - . . . -                                    _ ._._.-___
 
SECTION 5                                      ,
METHOD OF STRESS EVALUATION
 
==5.1 INTRODUCTION==
 
The method used to combine the primary loads to evaluate the adequacy of the piping system is described in 'this section.
5.2 PRIMARY STRESS EVALUATION                                                          .
In order to perform a primary stress evaluation in accordance with the rules of the Code, definitions of stress combinations are required for the normal, f,    upset, emergency and faulted plant conditions as defined in Section 3. Tables 2-1 and 2-2 illustrate the allowable stress intensities for the appropriate combination. Table 2-3 defines all pertinent terms.
5.2.1 DESIGN CONDITIONS The piping minimum wall thickness, t,, is calculated in accordance with the
;      Code. The actual pipe minimum wall thickness meets the Code requirement.
i        The combined stresses due to primary loadings of pressure, weight, and design l
mechanical loads calculated using applicable stress intensity factors must not exceed the allowable limit. The resultant moment, M g, due to loads caused by weight and design mechanical loads is calculated using the following
!        equation:
I                        I                                I 2 M                  l  M        + M              i    2 + '#M          + M          I 9=
( *wt              *DML)              ( #wt            #DML) f                            1 2
1/2
                  + l M                    + M#              I (Zwt                    DML) 4 1367s:10A                                                                5-1
 
where                                                                                              ,
My    ,M        ,M y              = deadweight moment components wt      #wt        wt
                        , M,            = design mechanical load moment components M*DPL,M    #DML      'DML The maximum stresses due to pressure, weight, and DPL in the piping system are reported on tables in Section 6.
5.2.2 UPSET CONDITIONS The combined stresses due to the primary loadings of pressure, weight, OBE seismic, and relief valve thrust loadings calculated using the applicable stress intensity factors must not exceed the allowables. The resultant moments, M , due to loads caused by these loadings are calculated as shown 9
b elow.
For seismic and relief valve thrust loading:
M g-f
                          +    l f
Mx      +
                                                  \
2}1/212      +l I
M      + '2 M    +M 2 1 1/21 2
(  M*w t          L OBE        M* SOT  U /        (      wt  i #0BE  #SOTg) f                1 g            g\1/2 T    g      1/?.
          +      M      +      M          +
2              l Z
(      wt      i 0BE              M*S0T  Ul    .
where My    ,M        ,M y              = deadweight moment components wt      #wt        wt          -
              ,M        ,M              = inertial OBE moment components M*0BE#0BE              ''0BE
                ,M          ,M I            = relief line operation moment components M* SOT U SOT g          SOT U
1367s:10A                                                5-2
 
l 5.2.3 EMERGENCY CONDITIONS                                                                                                                      ,
l l
The combined stresses due to primary loadings of pressure, weight and safety valve thrust, using applicable stress intensification factors, must not exceed the allowable limits. The magnitude of the resultant moment, M                                                        g is calculated
                                                                                                                                          ~
from the moment components as shown below:
                                                        +                2  .      g            . g          2    . g              . g      2        1/2 M                    M                M i=                                                                            wt. j I
(* SOTE "I /            ~ ~ ~{
SOT E                      i SOT E                wt j where M          ,M          ,M y            = deadweight moment components x
wt          #wt            wt M
x
                                      ,M              ,M g            - safety if ne operation me.nent components SOT                  SOT          SOT E                E          E i
5.2.4 FAULTED CONDITIONS The combined stresses due to primary loadings of pressure, weight, SSE and 50Tp , using applicable stress intensification factors must not exceed the allowable limits. For the resultant moment loading, M , the                                      9 SSE and SOTp moments are combined using the square-root-of-the- sum-of-the-squares (SRSS) addition and added abso'lutely with deadweight for each moment component (M ,
x M,M).
y g                The        magnitude        of    the  resultant        moment,    M j  , is  calculated          from the three moment components, as shown below:
M                              M 2    +                2'        1/2  +                    2 I=                                                M*SSE/                          M*wtj (i* SOTp 1
If          2                      2i        1/2                    12
                              +                  I M          +        M                        +    M (4 YSOT p                  YSSE        /                    #wt      j lt          2                      2i        1/2                    12            1/2
                              +                    M          +                        I        +    M Z
((* SOT    p              M*SSE/                              wt    j    _
1367s:10A                                                            5-3
 
where M      .M y .M y            = deadweight moment components x
wt      wt      wt
                ,M      ,M I      = inertial SSE moment components M*SSE#SSE              SSE
                            , M,      = maximum of SOT or SOT moment components M, SOT ,M                                        U      E ySOT      ' SOTp p        p For the safety and relief piping, the faulted condition load combination of pressure, weight, and valve thrust is considered as given in Tables 2-1 and 2-2 and defined in Table 2-3. The pipe break loads (Main Steam, Feedwater, or                ,
LOCA) can be ignored for the PSARY system. These loads have very little impact on the pressurizer safety and relief system when compared to the loading conditions discussed in this report.
5.3 SECONDARY STRESS EVALUATION The combined stresses due to the secondary loadings of thermal, pressure, and deadweight using applicable stress intensification factors must not exceed the allowable limit. For the resultant moment loading, M , gthermal moments are combined as shown below:
2  ,                    2              t2    1/2 M
I=
                        -M                [g#    , g#
                                                                  'g* MAX , g* MIN)
(M* MAX    *MINj        ( MAX      MINT      t M* MAX,M    YMAX , M* MAX = maximum thermal moment considering all thermal cases
* including normal operation M
x      *M      *M z      = minimum thermal moment considering all thermal cases MIN      yMIN      MIN including normal operation This, Mg , is then substituted into the appropriate equations of the applicable code.
1367s:10A                                        5-4
 
    .                                                                                              l l
SECTION 6                                .
l RESULTS i
6.1 EVALUATION SUBSEQUENT TO EPRI TEST PROGRAM The Alvin W. Vogtle Nuclear Plant, Unit 1, pressurizer safety and relief valve discharge piping system has received a detailed thermal hydraulic analysis and structural evaluation to ensure the operability and structural integrity of the system. The methods used and the loadings considered are consistent with Sections 2, 3, 4, and 5 of this report.
6.1.1 THERMAL HYDRAULIC RESULTS 2
The thermal hydraulic analysis used computer programs which have been shown to match the results of the EPRI Test Program (Section 4.6.2). Hydraulic forcing functions were generated assuming the simultaneous opening of either the safety valves or the relief valves since these represent the worst applicable loading cases for the piping and supports of this specific layout. Cold overpressur-ization scenarios were also considered in the analysis and evaluation.. This includes water solid events.
Table 6-1 shows the maximum forces on each straight run of pipe for the
        .      simultaneous opening of all three safety valves while Table 6-2 shows the maximum forces for the simultaneous opening of both relief valves. To account for uncertainties in the valve flow capacities due to tolerances and devia-tions, a conservative factor of over 1.20 was included in the maximum rated valve mass flow rate for these cases. This results in conservative forcing functions. For both valve opening cases, cold loop seals were assumed to exist upstream of the valves.
Based on analytical work and tests to date, all acoustic pressures in the upstream piping calculated or observed prior to and during safety valve hot or cold loop seal discharge are below the maximum permissible pressure. The piping between the pressurizer nozzle and the inlet of the safety valves is 6-inch schedule 160. The calculated maximum upstream pressure for this size of piping is below the maximum permissible pressure. A similar evaluation 1367s:10A                                    6-1
 
of this ir.let piping phenomenon, applicable for temperatures below 300"F, was        i conducted and the results are documented in a report entitled " Review of Pressurizer Safety Valve Performance as Observed in the EPRI Safety and Relief i                              Valve Test Program", WCAP-10105, dated June 1982.
6.1.2 STRUCTURAL RESULTS                                                              ,
Primary stress suianaries for the limiting valve discharge loading cases considered are provided in Tables 6-3-A through 6-13-B. Plots of the structural models are shown in Figure 6-1.                                            :
I i                            For purposes of providing stress summaries, the piping system was broken up accordingly:
Vestream of Valves A)    6" SCH 160 Steam Filled Portion - Relief Line l                                    B)  3" SCH 160 Steam Filled Portion - Relief Line C)  3" SCH 160 Water Filled Portion - Relief Line D)  6" SCH 160 Steam Filled Portion - Safety Line E)  3" SCH 160 Water Filled Portion - Safety Line Downstream of Valves - Discharge Piping (Circular Header)
A)  6"  SCH 160 Portion
,                                    B) 12" SCH 100 Portion Downstream of Valves - Discharge Piping (Downcomer Taf1 pipe)                        ,
4 The results of this extensive analysis and evaluation demonstrated that the piping met the applicable' design limits for the various loading cases. In          ,
7 addition, the acceptability of the valve nozzles and equipment nozzles was
!                                assured for the applied loads.
2 j                                1367s:10A                                        6-2 l
 
l      6.2 SUWRY OF RESULTS AND CONCLUSIONS                                          -
I The themal hydraulic analysis and structural evaluation of the Alvin W.
Vogtle Nuclear Plant, Unit 1, pressuri:er safety and relief valve discharge piping system have been completed, except for reconciliation to the as-built conditions, which will be performed when such information is provilled. The operability and structural integrity of the as-designed system have been        ,
ensured for all applicable loadings and load combinations including all pertinent safety and relief valve discharge cases.                        .
4 I
I.
J i
t 1
i 1367s:10A                                6-3
 
TABLE 6-1 HYDRAULIC FORCES - SAFETY LINE Force No.          Force (1bf)          Force No.          Force (1bf) 1                  30                  18                  130 2                310                  19                  30 3                160                  20                  300 4                1720                  21                  200 5                3270                  22                1940 6                3460                  23                3260 7                5920                  24                3460 8              16100                  25                5330 9                4540                  26            -
80 10                7970                  27                  570 11                170                  28                  110 12                2440                  29                1710 13                1740                  30                3260 14                230                  31                3470 15                5090                  32                5190 16                6350                  33                8270 17                7760 The force numbers correspond to the segment numbers on Figure 4-1.
I  1367s:10A                            6-4 l
l i
 
t      .
e I
l      .
TABLE 6-1 A                                            .
HYDRAULIC FORCES - $AFETY LINE Force No.            Force (1bf)          Force No.            Force (1bf)                        j 25                  5640                        36                740                        }
l                          26                  21200                        37                3930                        }
27                  26300                        38                3850                        l 28                  5880                        39 .              1520                        !
29                  14800                        40                3290 30                  3880                        41                1290 31                  13100                        42                3730                        ,
32                  2630                        43                1520                        !
33                  9950                        44                4750                        !
34                  4160                        45                4790                        !
35                  3250                                                                      l I
The force numbers correspond to the segment numbers on Figure 41 A.
k l
i i
t l
l l                      1367s:10A                                65                                                        l i
 
e TA8LE 6-2                            ,
2 I                        HYDRAULIC FORCES - RELIEF LINE i
Force No.        Force (ibf)          Force No.          Force (1bf) i 1                670                  17                  110
!        2                60                  18                  100 1
1        3                310                  19                  100 4                230                  20                  110 j
i        5                310                21                  2900 6                340                  22                2880 l                                                                  3840 7                110                23 i        8                400                24                  2620 i    14                3840                  25                1920
)        15              2880                  26                1690
!      16                2900                  27                1200 I
I The force numbers correspond to the segment numbers on Figure 4-2.
l I
I l
l i
1 i
i l
1367s:10A                            66 I
l
 
O TABLE 6-2-A                            ,
HYDRAULIC FORCES - RELIEF LINE Force No.        Force (1bf)          Force No.          Force (1bf) 21                850                  32                  90 22                2610                  33                  460 23                2980                  34  .              450 24                570                  35                  190 25                1420                  36                  420 26                360                  37                  180 27                1220                  38                  570 28                250                  39                  260 29                970                  40                  630 30                440                  41                  510 31                350 The force numbers correspond to the segment numbers on figure 4-2-A.
1367s:10A                            6-7
 
                                            =. .                          .        _ -
TABLE 6-3-A l
PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES l
Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Steam Load Combination: N + OBE < 1.5 S, Node                                                  Maximus                                        Allowable Point        Piping Comoonent                    Stress (ksi)                                        Stress (ksi) 5010        Butt weld                                      8.7                                              30.5 i
5010        Elbow                                        16.8                                                30.5 5190        Tee                                          13.9                                                30.5 i
4270        Reducer (3x6)                                17.5                                                30.5 5030        Straight run                                    7.5                                              30.5                            .
-      5170        Branch                                      20.9                                                30.5 i
t See Tables 2-1 through 2-3 for load combinations and definitions.
I 1367s:10A                                      6-8
    . - - ,    _ . -  - _ . . -      _ _,      .  - . . _ , _ , . _ . ~ . _ _ . - _ . . _ . . _ . _ _ . - - - - . _ _ . - _ . - - _ , _ _ _
 
TABLE 6-3-B                            .
PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Steam Load Combination: N + OBE 1 1.5 S, Node                                    Maximum    .
Allowable Point      Piping Component          Stress (ksi)    Stress (ksi) 4280        Butt weld                      9.3            30.5 4290        Elbow                        16.9              30.5 4270        Reducer (3x6)                  17.5            30.5 TABLE 6-3-C PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + OBE 1 1.5 S, Node                                    Maximum        Allowable Point      Piping Component          Stress (ksi)    Stress (ksi) 4090        Butt weld                      8.3            30.5 4110        Elbow                          15.9            30.5 4310        Straight run                    8.3            30.5 4380        Butt weld / Valve              10.7            30.5 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-9
 
TACLE 6-3-D PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Loed Combination: N + OBE i 1.5 S, Node                                      Maximum        Allowable Point      Piping Component            Stress (ksi)    Stress (ksi) 1010      Butt weld                      10.4            30.5 1010      Elbow                          19.8            30.5 1030      Straight run                    8.5            30.5 TABLE 6-3-E PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Water Load Combination: N + OBE  15S, 1
Node                                      Maximum        Allowable Point      Piping Component            Stress (ksi)    Stress (ksi) 3110      Butt weld                        7.8            30.5 3100      Elbow                          15.4            30.5
                                ~
3100      Straight run                    7.9            30.5 3110      Butt weld / Flange              7.8            30.5 3090      Branch        ,
19.5            30.5 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A i
6 :
 
TABLE 6-4-A                                              .
PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Stea.n Load Combination: N + SOTU 1 1.5 S, Node                                                      Maximu'            M be., N Point                  Piping Component            Stress f          5, 2 fru D. (ksi) 5020                  Butt weld                                7.C            s.5 5020                  Elbow                                  13.8            30.5 9
5190                  Tee                                    12.5            30.5 4270                  Reducer (3x6)                          14.9            30.5 5030                  Straight run                            7.0            30.5 5170                  Branch                                19.7            30.5 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-11
 
TABLE 6-4-B PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Pioing Subsystem: Pressurizer Relief Line - 3" SCH 160 Steam Load Combination: N + SOTgi 1.5 S, Node                                          Maximum        Allowable Point      Piping Component                Stress (ksi)    Stress (ksi) 4280      Butt weld                            8.0            30.5 4
4290      Elbow                                14.8            30.5 9
4270      Reducer (3x6)                        14.9            30.5
* TABLE 6-4-C PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + SOTU1 1.5 S, Node                                          Maximum        Allowable Point      Piping Component                Stress (ksi)    Stress (ksi) 4090      Butt weld                            7.8            30.5 4300      Elbow                                14.4            30.5 4310    ,
Straight run                          7.7            30.5 4410      Butt weld / Valve                    7.9            30.5 See Tables 2-1 through 2-3 for load combinations and definitions.
i l
1367s:10A 6-12
 
O TABLE 6-4-D                                                ,
PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Pioing Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Load Combination: N + SOTUi 1.5 S ,
Node                                      Maximum      .        Allowable Point      Piping Component            Stress (ksi)            Stress (ksi) 3010        Butt weld                      6.8                      30.5 3010        Elbow                          13.3                      30.5 1030        Straight run                    6.6                      30.5 TABLE 6-4-E PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Water Load Combination: N + SOTUi 1.5 S, Node                                      Maximum                Allowable Point      Piping Component            Stress (ksi)            Stress (ksi) 1100      Butt weld                        6.5                      30.5 1100      Elbow                          12.8                      30.5 1090      Straight run                    6.4                      30.5 1140        Butt weld / Flange              6.2                      30.5 3090        Branch                        11.7                      30.5 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A E-13
 
TABLE 6-5-A                                                                ,
PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Steam Load Combination: N + OBE + SOTU < 1.8 S,/1.5 Sy Node                                                                              Maximum            Allowable Point                        Piping Component                            Stress (ksi)              Stress (ksi) 5010                          Butt weld                                              8.9                33.8 5010                          Elbow                                                17.2                33.8 5190                          Tee                                                  14.3                33.8 4270                          Reducer (3x6)                                        18.2                33.8 Straight run                                                              33.8 5030                                                                                  7.8 5170                          Branch                                                28.1                33.8 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6 l l
_- . _ . _ _      _ . . . . ~ , , . . . -            . . _ . . _ _ . . - . .  . _ _ . , , .-              , , .      . . _ . . - . .    . . . _ _ . ._ .__
 
TABLE 6-5-B PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Picing Subsystem: Pressurizer Relief Line - 3" SCH 160 Steam Load Combination: N + OBE + SOT U
                                            # 1*0 Sm /1.5 Sy Node                                    Maximum      . Allowable Point      Piping Component            Stress (ksi)      Stress (ksi) 4280      Butt weld                      10.1              33.8 4290      Elbow                          18.2              33.8 4270      Reducer (3x6)                  18.2              33.8 TABLE 6 5-C 4                    PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + OBE + SOTU < 1.8 S ,/1.5 S y Node                                      Maximum          Allowable Point      Piping Component            Stress (ksi)      Stress (ksi) 4090      Butt weld                        9.7              33.8 4300      Elbow                          16.8              33.8 4310      Straight run                    9.1              33.8 4120        Butt weld / Valve              11.1              33.8 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-15
 
4 TABLE 6-5-D                                                                  ,
PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Load Combination: N + OBE + SOTg g 1.8 S ,/1.5 Sy Node                                              Maximtm                          Allowable Point        Piping Component                    Stress (ksi)                      Stress (ksi) 1010        Butt weld                              10.4                              33.8 1010        Elbow                                  19.9                              33.8 1030        Straight run                            8.6                                33.8 TABLE 6-5-E PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Water Load Combination: N + OBE + S0TU1 1.8 S ,/1.5 S y Node                                              Maximum                          Allowable l          Point        Piping Component                    Stress (ksi)                      Stress (ksi) 3110        Butt weld                              7.8                                33.8 3100        Elbow                                  15.5                                33.8 l          3100        Straight run                            8.0                                33.8 3110    _
Butt weld / flange                      7.8                                33.8 l
3090        Branch                                24.2                                33.8 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-16 I
l
 
r TABLE 6-6-A                          .
PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Steam Load Combination: N + SOTE<2.25Sgl.8S, Node                                    Maximum    -
Allowable Point      Piping Component          Stress (ksi)    Stress (ksi) 5010      Butt weld                      9.7            40.5 5010      Elbow                          12.0            40.5 5190      Tee                            10.3            40.5 4270      Reducer (3x6)                  25.1            40.5 5030      Straight run                    9.0            40.5 5170      Branch                        29.3            40.5 See Tables 2-1 through 2-3 for load combinations and definitions.
l    1367s:10A l                                          6-17 i
I
 
                                                                            ~
TABLE 6-6-B PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Steam Load Combination: N + SOT E 1 2  25 S,/1.8 Sy Node                                    Maximum        Allowable Point      Piping Component            Stress (ksi)    Stress (ksi) 4280      Butt weld                      16.2            40.5 4290      Elbow                          21.4            40.5 4270      Reducer (3x6)                  25.1            40.5            .
TABLE 6-6-C PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM 0F VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + SOT E i 2.25 S,/1.8 Sy Node                                    Maximum        Allowable Point      Piping Component            Stress (ksi)    Stress (ksi) 4330      Butt weld                      17.0              40.5 4330      Elbow          .              22.6              40.5 4310      Straight run                  16.3              40.5
        ~'
4340        Butt Weld / Valve            18.1              40.5 i
See Tables 2-1 through 2-3 for load combinations and definitions.
l 1367s:10A 6-18
 
r-TABLE 6-6-D                                                            -
PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Load Combination: N + SOT E I 2.25 S ,/1.8 Sy Node                                              Maximum      -
Allowable Point      Piping Component                    Stress (ksi)                Stress (ksi) 3010      Butt weld                                  9.7                    40.5 3010      Elbow                                    12.1                        40.5 1050      Straight run                                8.5                      40.5 TABLE 6-6-E PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Water Load Combination: N + SOTE1 2.25 S ,/1.8 Sy Node                                              Maximum                    Allowable Point      Piping Component                    Stress (ksi)                Stress (ksi) 3110      Butt weld                                  8.3                      40.5 3110      Elbow                                      9.8                      40.5 3100      Straight run                                8.2                      40.5 3110      Butt weld / Flange                          8.3                      40.5 3090      Branch                                  19.0                        40.5                                                  l l
See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A l
6-19 1
      . - . .- -- .. - - _ - , . _ .                -    . . . - , . .-  . - ,    .  . ---_- . - _ , _ . . , -            .    . . . . , _ -  . . . ~ . - - . , , _ _ .
 
1 s
TABLE 6-7-A PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Steam Load Combination: N + SSE + SOTF # 3.0 S ,
Node                                    Maximum        Allowable Point      Piping Component          Stress (ksi)    Stress (ksil 5010      Butt weld                      10.6            60.9 5010      Elbow                          20.2            60.9 5190      Tee                            14.5            60.9          .
4270      Reducer (3x6)                  26.1            60.9 5030      Straight run                    9.3            60.9            -
5170      Branch                        36.9            60.9 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-20 I
l
 
I.
TABLE 6-7-B                                                .
PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Rel'ef Line - 3" SCH 160 Steam Load Combination: N + SSE + SOTp g 3.0 S, Node                                        Maximum      . Allowable Point        Piping Component            Stress (ksi)        Stress (ksi) 4280        Butt weld                        16.9                60.9 4290        Elbow                            29.4                60.9 4270        Reducer (3x6)                    26.1                60.9 TABLE 6-7-C PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + SSE + SOTp1 3.0 S ,
Node                                        Maximum          Allowable Point        Piping Component              Stress (ksi)      Stress (ksi) 4330        Butt weld                        17.3                60.9 4330        Elbow                            30.2                60.9 4310        Straight run                    16.8                60.9 4340        Butt weld / Valve                18.7                60.9 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-21
 
                ~
TABLE 6-7-D PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Load Combination: N + SSE + SOTp 1    3  0 S, Node                                      Maximum        Allowable Point      Piping Component            Stress (ksi)    Stress (ksi) 1010      Butt weld                      12.0            60,9 1010      Elbow                          22.6            60.9 2030      Straight run                      9.3            60.9 TABLE 6-7-E PRIMARY STRESS
 
==SUMMARY==
- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 4ter Load Combination: N + SSE + SOT p 1  3  0 S, Node                                      Maximum        Allowable Point      Piping Component            Stress (ksi)    Stress (ksi) 3110        Butt weld                        8.9            60.9 3100        Elbow                          17.4            60.9 3100        Straight run                    9.0            60.9                  ,
3110 _      Butt weld / Flange              8.9            60.9 i
l 3090        Branch                        29.7            60,9 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-22 1
 
r l
I i
TA8LE 6-8-A                                    -
PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF YALVES Piping Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N<1.dS h              ,
Node                                                                    Maximum    Allowable Point      Piping Component                      Piping Size        Stress (ksi) Stress (ksi) 3210      Straight run                            6" Sch 160                4.4        18.6 3210      Butt weld                              6" Sch 160                4.4        18.6 4030      Elbow                                  6" Sch 160                1.2        18.6 3220      Branch (6x12)                          6" Sch 160                4.7        18.6 300      Straight run                          12" Sch 100                2.4        18.6 160      Butt weld                              12" Sch 100                2.4        18.6 160      Elbow                                  12" Sch 100                2.3        18.6 7000      Tee                                    12" Sch 100                7.7        18.6 See Tables 2-1 through 2-3 for load combinations and definitions.
l l
l l
1367s:10A l
6-23                                              l 1
I
 
I TABLE 6-8-B PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Downcomer Tailpipe Load Combination: N < 1.0 S h Node                                                Maximum    Allowable Point            Piping Component                Stress (ksi) Stress (ksi) 9305              Straight run                        4.1        15.9 9345              Butt weld                            4.0        15.9 9020              Elbow                                4.3        15.9 9000              Tee                                  3.0        15.9 see Tables 2-1 through 2-3 for load combinations and definitions.
)
i 1367s:10A 6-24
  ~' * -
            ---v-----        a~        . , _ , , _ , _ _ _
 
F                                                                                      1 TABLE 6-9-A                                .
PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Pioing Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N + OBE < 1.2 Sh Node                                            Maximum        Allowable Point      Piping Component      Piping Size  Stress (ksi)    Stress (ksi) 2240      Straight run          6" Sch 160      20.5            22.3 2240      Butt weld              6" Sch 160      20.5            22.3 4470      Elbow                  6" Sch 160      5.0            22.3 2250      Branch (6x12)          6" Sch 160      21.8            22.3 125      Straight run          12" Sch 100      6.0            22.3 125      Butt weld            12" Sch 100      6.0            22.3 125      Elbow                12" Sch 100      5.6            22.3 7000      Tee                  12" Sch 100      11.3            22.3 See Tables 2 5 through 2-3 for load combinations and definitions.
1 1
1367s:10A 6-25
 
s TABLE 6-9-B PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Picing Subsystem: Discharge Piping - Downcomer Tailpipe Load Combination: N + OBE < 1.2 Sh Node                              Maximum      Allowable Point      Piping Component      Stress (ksi)  Stress (ksi) 9020      Straight run              17.8          19.1 9020      Butt weld                17.8          19.1 9016      Elbow                    20.9          22.6 9000      Tee                      14.8          19.1 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A                          6-26
 
I                                                                    .
TABLE 6-10-A                              ,
PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Vocomer Circular Header Load Combination: N + SOTU i 1.2 S h Node                                              . Maximum      Allowable Point      Piping Component      Piping Size    Stress (ksi)  Stress (ksi) 4490      Straight run            6" Sch 160        8.6            22.3 4490      Butt weld              6" Sch 160        8.6            22.3 4470      Elbow                  6" Sch 160        5.0            22.3 4500      Branch (6x12)          6" Sch 160        9.0            22.3 225      Straight run          12" Sch 100        3.2            22.3 225-    Butt weld              12" Sch 100        3.2            22.3 150      Elbow                  12" Sch 100        3.1            22.3 7000      Tee                    12" Sch 100        8.7            22.3 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-27
 
3<
TABLE 6-10-B                                                    ,
PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Pfoing Subsystem: Discharge Piping - Downcomer Tailpipe Load Combination: N + SOTU              i 12S h Node                                          Maximum            Allowable Point          Piping Component            Stress (ksi)      Stress (ksi) 9305            Straight run                    4.2                  19.1 9340            Butt weld                        4.0                  19.1 9016            Elbow                            4.7                  19.1 9000            Tee                              3.3                  19.1 See Tables 2-1 through 2-3 for load combinations and definitions.
l I
l l
1367s:10A 6-28
_ _ - . _  _ - .      . - _ - - - . .        .      - . - . _ _      -. - . . . . - . - - _ - . _ . ~ . - - - _ _ - - _
 
r                                                                                      ,
TABLE 6-11-A                                -
PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N + OBE + SOTU < 1.8 Sh Node                                            Maximum        Allowable Point      Piping Component      Piping Size  Stress (ksi)    Stress (ksi) 2240      Straight run          6" Sch 160      20.7            33.5 2240      Butt weld              6" Sch 160      20.7            33.5 4470      Elbow                  6" Sch 160      5.2            33.5 2250      Branch (6x12)          6" Sch 160      22.0            33.5 125      Straight run          12" Sch 100      6.0            33.5 125      Butt weld            12" Sch 100      6.0            33.5    -
125      Elbow                12" Sch 100      5.7            33.5 7000      Tee                  12" Sch 100      11.5            33.5 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-29 1
 
TABLE 6-11-B PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Pfeing Subsystem: Discharge Piping - Downcomer Tailpipe Load Combination: N + OBE + SOTU1 1.8 S h Node                                  Maximum            . Allowable i                          Point        Piping Component      Stress (ksi)          Stress (ksi) 9020          Straight run                17.8                28.6 9020          Butt weld                    17.8                28.6 9016          Elbow                        26.0                28.6                                                      ,
9000          Tee                          14.8                28.6 See Tables 2-1 through 2-3 for load combinations and definitions.
4 1367s:10A
!                                                                  6-30
 
TABLE 6-12-A                                                          ,
PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N + SOTE < I*8 Sh Node                                                            Maximum -              Allowable Point          Piping Comoonent          Piping Size        Stress (ksi)            Stress (ksi) 2240            Straight run                6" Sch 160            28.9                    33.5 2240            Butt weld                  6" Sch 160            28.9                    33.5 4470            Elbow                      6" Sch 160            6.4                    33.5 2250            Branen (6x12)              6" Sch 160            31.1                    33.5 340          Straight run              12" Sch 100            5.8                    33.5 340          Butt weld                  12" Sch 100            5.8                    33.5 365          Elbow                      12" Sch 100            4.9                    33.5 7000            Tee                        12" Sch 100            6.0                    33.5 i
See Tables 2-1 through 2-3 for load combinations and definitions.
r i              1367s:10A l
6-31
 
3 TABLE 6-12-B PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Pioing Subsystem: Discharge Piping . Downcomer Tailpipe Load Combination: N + SOTEi 1.8 S h Node                                Maximum      Allowable Point      Piping Component      Stress (ksi)  Stress (ksi) 9010      Straight run              6.4          28.6 9010      Butt weld                  6.4          28.6 9016      Elbow                      9.6          28.6 9000      Tee                        7.3          28.6 See Tables 2-1 through 2-3 for load combinations and definitions.
l 1367s:10A 6-32
 
(
s TABLE 6-13-A                              '
PRIMARY STRESS
 
==SUMMARY==
- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N + SSE + SOTp < 2.4 Sh Node                                            Maximum        Allowable Point      Piping Component      Piping Size  Stress (ksi)    Stress (ksi) 2240      Straight run          6" Sch 160      34.6            44.6 2240      Butt weld              6" Sch 160      34.6            44.6 4470      Elbow                  6" Sch 160      6.5            44.6 2250      Branch (6x12)          6" Sch 160      37.0            44.6 125      Straight run          12" Sch 100      6.7            44.6 125      Butt weld            12" Sch 100      6.7            44.6 125      Elbow                12" Sch 100      6.3            44.6 7000      Tee                  12" Sch 100      13.0            44.6 See Tables 2-1 through 2-3 for load combinations and definitions.
i i
i 1367s:10A 6-33
                                                                              ~
1 L
 
3 TABLE 6-13-8                    .
PRIMARY STRESS
 
==SUMMARY==
- D0WNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Downcomer Tailpipe load Combination: N + SSE + S0Ty < 2.4 Sh Node                                Maximum      Allowable Point      Piping Component      Stress (ksi)  Stress (ksi) 9020        Straight run              19.9          38.2 9020        Butt weld                19.9          38.2      .
9016        Elbow                    32.4          38.2' 9000        Tee                      17.0          38.2 See Tables 2-1 through 2-3 for load combinations and definitions.
1367s:10A 6-34
 
7 4
(>                                                                            <>
1250 2210                                                                                                      1210 2170 7h l
M1170 212                  2010                                              1010      1120 Pressurizer 050 3180 3140 l
3090                                                                3010 Pressurizer h: Steam / Water Interface FIGURE 6-1: Structural Model - Part I                                                                        l 6-35 Not to scale l
l
 
I I
1 4380    4340
                            $            gp          4160  4120 r-X                  }
X3          90 4410        4300                          4200 4280 4270      4230 4220 L ) 4450                  5170                                  050 4000 4500 5010 Pressurizer G): Steam / Water Interface FIGURE 6-1-A: Structural flodel - Part II Not to scale 6-36 b
 
( ,
3220                                                          ,
4000 H002 2250                                    904.5 025 H003 4500            7000                                H004          ] 055 1250                            ' 9022 9000                ,
H025 001                  [ % 9082 H007              H006 9090 9095 3
A          / H008 9125 H009 H013 9188 9165
                                                              \
010                H014 9200 9170 9225 9185 9235 H026 H02 H027 9250 9200 H024 9302 020
(      Snubber 9315
* HD28
                        '"                                                  /
j                                                        d Vertical Spring FIGURE 6-1-B: Structural Model - Part III 9350  Relief Tank 6-37                                fjot to scale 1                                                        __      _ _    <                          _}}

Latest revision as of 02:41, 23 July 2020

Structural Analysis of Pressurizer Safety & Relief Line for Alvin W Vogtle Nuclear Plant,Unit 1
ML20133D254
Person / Time
Site: Vogtle Southern Nuclear icon.png
Issue date: 09/16/1985
From:
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20133D246 List:
References
NUDOCS 8510090005
Download: ML20133D254 (45)


Text

.

ATT- d WESTINGHOUSE PROPRIETARY CLASS 3 STRUCTURAL ANALYSIS OF THE l PRESSURIZER SAFETY AND RELIEF LINE  !

FOR THE _

ALVIN W. V0GTLE NUCLEAR PLANT, UNIT 1 l

l l

1 I

l l

~l This report is applicable to the Alvin W. Vogtle Nuclear Plant, Unit 1, and contains the structural evaluation of ASE III Nuclear Class 1 piping analyzed to requirements of the ASME Boiler and Pressure Vessel Code Section III, Nuclear Power Plant Components,1977 Edition, up to and including the Sumer 1979 addenda; as well as NNS piping done to requirements of ANSI B31.1 Code.

Results from the Safety and Relief Yalve Test program, conducted by the Electric Power Research Institute (EPRI) and concluded on or before July 1, 1982, were factored into the analyses presented herein.

8510090$05e50916

[DR ADOCK 05000424 PDR l

1367s:10A 1 l

l D WESTINGHOUSE PROPRIETARY CLASS 3

.4 i

STRUCTURAL ANALYSIS 0F THE l l

PRESSURIZER SAFETY AND RELIEF LINE FOR THE __

ALVIN W. V0GTLE NUCLEAR PLANT, UNIT 1 t

This report is applicable to the Alvin W. Vogtle Nuclear Plant, Unit 1, and contains the structural evaluation of ASME III Nuclear Class 1 piping analyzed to requirements of the ASME Boiler and Pressure Vessel Code,Section III, Nuclear Power Plant Components,1977 Edition, up to and including the Summer 1979 addenda; as well as NNS piping done to requirements of ANSI B31.1 Code.

Results from the Safety and Relief Valve Test program, conducted by the Electric Power Research Institute (EPRI) and concluded on or before July 1, 1982, were factored into the analyses presented herein.

1367s:10A

TABLE OF CONTENTS Section Title Page

~~

1 INTRODUCTION 1-1 2 PIPE STRESS CRITERIA 2-1 2.1 Pipe Stress Calculation - Class 1 Portion 2-1 2.2 Pipe Stress Calculation - Class NNS Portion 2-1 2.3 Load Combinations 2-2 3 LOADING CONDITIONS ANALYZED 3-1 3.1 Loading 3-1 3.1.1 Thermal Expansion 3-1 3.1.2 Pressure 3-1 3.1.3 Weight 3-2 3.1.4 Seismic 3-2 3.1.5 Transients 3-3 3.1.6 Safety and Relief Valve Thrust 3-3 3.2 Design Conditions 3-4 3.2.1 Design Pressure 3-4 3.2.2 Design Temperature 3-4 j 3.3 Plant Operating Conditions 3-4 1

3.3.1 Normal Conditions 3-4 l

3.3.2 Upset Conditions 35 3.3.3 Emergency Conditions 3-5 3.3.4 Faulted Conditions 3-5 i

1367s:10A i

SECTION 1 INTRODUCTION 4

The Pressurizer Safety and Relief Valve (PSARV) discharge piping system for pressurized water reactors, located on the top of the pressurizer, provides overpressure protection for the reactor coolant system. A water seal is maintained upstream of each pressurizer safety and relief valve to prevent a

. steam interface at the valve seat. This water seal practically eliminates the possibility of valve leakage. While this arrangement maximizes the plant availability, the water slug, driven by high system pressure upon actuation of the valves, generates severe hydraulic shock loads on the piping and supports, i

Under NUREG 0737,Section II.D.1, " Performance Testing of BWR and PWR Relief and Safety Valves", all operating plant ifcensees and applicants are required to conduct testing to qualify the reactor coolant system relief and safety valves under expected operating conditions for design-basis transients and accidents. In addition to the qualification of valves, the functionability and structural integrity of the as-built discharge piping and supports must also be demonstrated on a plant specific basis.

In response to these requirements, a program for the performance testing of PWR safety and relief valves was formulated by EPRI. The primary objective of l

the Test Program was to provide full scale test data confirming the function-ability of the reactor coolant system power operated relief valves and safety valves for expected operating and accident conditions. The second objective of the program was to obtain sufficient piping thermal hydraulic load data to permit confirmation of models which may be utilized for plant unique analysis of safety and relief valve discharge piping systems. Based on the results of the aforementioned EPRI Safety and Relief Valve Test Program, additional thermal hydraulic analyses are required to adequately define the loads on the piping system due to valve actuation.

This report is the response of the Georgia Power Company to the US NRC NUREG-0737 II.D.1 requirements for piping and support evaluation and is applicable to the Alvin W. Vogtle Nuclear Plant, Unit 1, PSARY piping system.

l l

1367s:10A 1-1 1

I -- _ .

SECTION 2 .

PIPE STRESS CRITERIA 2.1 PIPE STRESS CALCULATION - CLASS 1 PORTION In general, the criteria for the structural evaluation of the Class 1 components is based upon two categories of loading. These are self-limiting loads and non-self-limiting loads. A non-self-limiting load produces a primary stress while a self-limiting load produces a secondary stress. In order to prevent catastrophic failure of the system, primary stress criteria must be satisfied, which can be accomplished by applying Equation (9) of paragraph NB-3652 of the ASME Boiler and Pressure Vessel Code Section III, up to and including the Summer 1979 Addenda. Fatigue failure may occur if the maximum stress from all loadings is so concentrated at one. location that continued cycling of the loads produces a crack, which may then propagate through the wall and result in leakage. For protection against fatigue failure, cyclic stresses from both self-limiting and non-self-limiting loads must be considered. The component will cycle within acceptable limits for each specified loading combination if Equation (10), subparagraph NB-3653.1 of the Code is satisfied. This requirement insures that incremental distortion will not occur. The peak stress intensity defined by Equation (11) is then used for calculating the alternating stress intensity, S al t. The value of al t is then used to calculate the usage factor for the load set under S

consideration. The cumulative usage factor is then obtained using Miner's rule by considering all other load sets. However, if Equation (10) is not satisfied, which means some plastic deformation occurs with each application of load, the alternate analysis, " Simplified Elastic-Plastic Discontinuity Analysis", described in subparagraph NB-3653.6 of the Code must be considered.

To avoid the possibility of fatigue failure, the cumulative usage factor should not exceed 1.0.

2.2 PIPE STRESS CALCULATION - CLASS NNS PORTION The piping between the valves and the pressurizer relief tank shall be analyzed to satisfy the requirements of the appropriate equations of the ANSI 1367s:10A 2-1 1

, - , , , , - - ~ ~ . . _ . - - , . , - , , . - , - - , - - . . , , ,---.n- - .-

+

. I B31.1 Code. These equations establish limits for stresses from sustained ,

loads and occasional loads (including earthquake), thermal expansion loads, and sustained plus thermal expansion loads, respectively. The allowable stresses for use with the equations were determined in accordance with the requirements of the ANSI B31.1 Code.

2.3 LOAD COMBINATIONS In order to evaluate the pressurizer safety and relief valve piping, appropriate load combinations and acceptance criteria were developed. The load combinations and acceptance criteria include those recommended by the piping subcommittee of the PWR PSARY test program and are outlined in Tables 2-1 and 2-2 with a definition of load abbreviation provided in Table 2-3.

Additional combinations, per the Piping Specification, are also included in Tables 2-1 and 2-2.

i i

I I

1367s:10A 2-2

TABLE 2-1 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR PRESSURIZER SAFETY AND RELIEF VALVE PIPING - UPSTREAM OF VALVES Piping Plant / System Allowable Stress Operating Condition Load Combination Intensity Normal N 1.5 S, Upset N + OBE 1.5 S, Upset N + SOT g 1.5 S, Upset N + OBE + SOT g 1.8 S,/1.5 Sy Emergency N + SOT 2.25 S ,/1.8 Sy E

Faul ted N + SSE + SOT p 3.0 S, NOTES: (1) See Table 2-3 for SOT definitions and other load abbreviations.

(2) Use SRSS for combining dynamic load responses.

1367s:10A 2-3 l

l

TABLE 2-2 LOAD COMBINATIONS AND ACCEPTANCE CRITERIA FOR PRESSURIZER SAFETY AND RELIEF VALVE PIPING - DOWNSTREAM OF VALVES Piping Plant / System Allowable Stress Operating Condition Load Combination Intensity Normal N 1.0 S h Upset N + OBE 1.2 S h Upset N + SOT g 1.2 S h Upset N + OBE + SOT g 1.8 S h '

Emergency N + SOT E 1.8 S h Faul ted N + SSE + SOTy 2.4 S h NOTES: (1) See Table 2-3 for SOT definitions and other load abbreviations.

(2) Use SRSS for combining dynamic load responses.

1367s:10A 2-4

TABLE 2-3 ,

DEFINITIONS OF LOAD ABBREVIATIONS N = Sustained loads during normal plant operation -

SOT = System operating transient SOT g = Relief valve discharge transient SOT = Safety valve discharge transient E

SOTp = Max (SOTg ; SOTE

); or transition flow OBE = Operating basis earthquake SSE = Safe shutdown earthquake S = Basic material allowable stress at maximum (hot) temperature h

5, = Allowable design stress intensity S

y

= Yield strength value 1367s:10A 2-5

I i

SECTION 3 ,

l LOADING CONDITIONS ANALYZED 3.1 LOADING The piping stress analyses described in this section consider the loadings specified in the design specification. These loadings result from thermal expansion, pressure, weight, earthquake, design basis accident (DBA), plant operational thermal and pressure transients, and safety valve and relief valve operation.

3.1.1 THERMAL EXPANSION The thermal growth of the reactor coolant loop equipment and all connected piping is considered in the thermal analysis of this system.

The modulus of elasticity, (E), the coefficient of thermal expansion at the metal temperature, (a), the external movements transmitted to the piping as described above, and the temperature rise above the ambient temperature, (AT),

define the required input data to perfonn .the flexibility analysis for thermal expansion.

Due to different operating modes, the system may experience multiple thermal

, loadings. The tenperatures used in the expansion analysis of the piping are based upon the information presented in the design documents.

3.1.2 PRESSURE Pressure loading in this report is either design pressure or operating pressure. The design pressure is used in the calculation of longitudinal pressure stress in accordance with the Code. The range of operating pressure is used in calculating various stress intensities, as applicable.

1367s:10A 3-1

e 3.1.3 WEIGHT To meet the requirements of the Code, a weight analysis is performed by applying a 1.0 g uniformly distributed load downward on the complete piping system. The distributed weight characteristics of the piping system are specified as a function of its properties. This method provides a distributed loading to the piping system as a function of the weight of the pipe, insulation, and contained fluid during normal operating conditions.

3.1.4 SEISMIC Seismic motion of the earth is treated as a random process. Certain assumptions reflecting the characteristics of typical earthquakes are made so these characteristics can be readily employed in a dynamic response spectrum analysis.

Piping rarely experiences the actual seismic motion at ground elevation, since it is supported by components attached to the containment building. Al though a band of frequencies is associated with the ground earthquake motion, the building itself acts as a filter to this environment and will effectively transmit those frequencies corresponding to its own natural modes of vibration.

The forcing functions for the piping seismic analyses are derived from dynamic response analyses of the containment building when subjected to seismic ground motion. These forcing functions are in the form of floor response spectra.

Response spectra are obtained by determining the maximum response of a single mass-spring-damper oscillator to a base motion time history. This single mass-spring-damper oscillator system represents a single natural vibration mcde of the piping system. A plot of the maximum responses versus the natural frequencies of the oscillator forms the response spectrum for that particular base motion.

The intensity and character of the earthquake motion producing forced vibration of the equipment mounted within the containment building are specified in terms of the floor response spectrum curves at various elevations within the containment building.

1 l

1367s:10A 3-2

The seismic floor response spectrum curves corresponding to the highest ,

elevution at which the component or piping is attached to the containment building are used in the piping analysis.

Seismic loads must be known to calculate the resultant moment (Mil used in the design equations The plant operating condition (full load) is the condition under which the specified earthquake is assumed to occur.

3.1.5 TRANSIENTS .

To provide the necessary high degree of integrity for the NSSS, the transient conditions selected for secondary stress evaluation are based on conservative estimates of the magnitude and anticipated frequency of occurrence of the temperature and pressure transients resulting from the possible operating con ditions.

The transients selected are conservative representations of transients for design purposes, and are used as a basis for piping secondary stress evaluation to provide assurance that the piping is acceptable for its application over the design life of the plant.

For purposes of piping evaluation, the number of transient occurrences are based on a plant design life of 40 years.

3.1.6 SAFETY AND RELIEF VALVE THRUST The pressurizer safety and relief valve discharge piping system provide overpressure protection for the RCS. The three spring-loaded safety valves and two power-operated relief valves, located on top of the pressurizer, are designed to prevent system pressure from exceeding design pressure by more than 10 percent and 100 psi, respectively. A water seal is maintained upstream of each valve to minimize leakage. Condensate accumulation on the inlet side of each valve prevents any leakage of hydrogen gas or steam through the valves. The valve outlet side is sloped to prevent the formation of additional water pockets.

l 1367s:10A 3-3 l

l

, . ,- -- - -n. . , . . - . - , , , . .. , -.. - .,. - - , - . . - - - -.

If the pressure exceeds the set point and the valves open, the water slug from the loop seal discharges. The water slug, driven by high system pressure, generates transient thrust forces at each location where a change in flow direction occurs.

The safety and relief lines are analyzed for various cases of thrust loadings to ensure the primary and secondary stress limits are not exceeded.

3.2 DESIGN CONDITIONS The design conditions are the pressures, temperatures, and various mechanical loads applicable to the design of nuclear power plant piping.

3.2.1 DESIGN PRESSURE The specified internal and external design pressures are not less than the maximum difference in pressure between the inside and outside of the com-ponent, which exists under the specified normal operating conditions. The design pressures are used in the computations made to show compliance with the Code (subparagraph NB-3112.1 of the Code).

3.2.2 DESIGN TEMPERATURE The specified design temperature is not less than the actual maximum metal temperature existing under the specified normal operating conditions for each area of the component considered. It is used in computations involving the design pressure and coincidental design mechanical loads (subparagraph NB-3112.2 of the Code).

3.3 PLANT OPERATING CONDITIONS I

3.3.1 NORMAL CONDITIONS A normal. condition is any condition in the course of system startup, design power range operation, hot standby, and system shutdown, other than upset, l

faulted, emergency, or testing conditions.

l 1367s:10A 3-4 l

3.3.2 UPSET CONDITIONS . <

An upset condition is any deviation from normal conditions anticipated to occur often enough that design should include a capability to withstand the condition without operational impairment. Upset conditions include those transients resulting from any single operator error or control malfunction, transients caused by a fault in a system component requiring its isolation from the system, and transients due to loss of load or power. Upset condi-tions include any abnormal incidents not resulting in a forced outage and also forced outages for which the corrective action does not include any repair of mechanical damage.

3.3.3 EMERGENCY CONDITIONS Emergency conditions are defined as those deviations from normal conditions which require shutdown for correction of the conditions or repair of damage in the system. The conditions have a low probability of occurrence but are in-cluded to provide assurance that no gross loss of structural integrity will result as a concomitant effect of any damage developed in the system. The total number of postulated occurrences for such events shall not cause more than 25 stress cycles (subparagraph NB-3113 of the code).

3.3.4 FAULTED CONDITIONS Faulted conditions are those combinations of conditions associated with extremely low probability - postulated events whose consequences are such that the integrity and operability of the nuclear energy system may be impaired to the extent that considerations of public health and safety are involved.

1367s:10A 35

2 SECTION 4 ,

ANALYTICAL METHODS AND MODELS t

1

4.1 INTRODUCTION

l

The analytical methods used to obtain a piping deflection solution consist of 4 the transfer matrix method and stiffness matrix formulation for the static structural analysis. The response spectrum method is used for the seismic j dynamic analysis.

t The complexity of the piping system requires the use of a computer to obtain the displacements, forces, and stresses in the piping ar.J support members. To

' obtain these results, accurate and adequate mathematical representations (analytical models) of the systems are required. The modeling considerations

]

i depend upon the degree of accuracy desired and the manner in which the results l will subsequently be interpreted and evaluated. All static and dynamic analy-1 ses are performed using the WESTDYN computer program. This program, described in WCAp-8252, was reviewed and approved by the U.S. NRC (NRC letter, April 7, 1981 from R. L. Tedesco to T. M. Anderson),

The integrated piping / supports system model is the basic system model used to  ;

f  ;

t compute loadings on components, component and piping supports, and piping.

The system model includes the stiffness and mass characteristics of the pip-l ing, attached equipment, and the stiffness of supports, which affects the sys-tem response. The deflection solution of the entire system is obtained for the various loadirg cases from Which the internal member forces and piping l

! stresses are calculated.

4.2 STATIC ANALYSIS l

t The piping system models, constructed for the WEST 0YN computer program, are

] represented by an ordered set of data, which numerically describes the

] physical system.

The spatial geometric description of the piping model is based upon the isometric piping drawings referenced in this report and equipment drawings i

I i 1367s:10A 4-1 l

referenced in the design specification. Node point coordinates and incremental lengths of the members are determined from these drawings. Node '

point coordinates are put on network cards. Incremental member lengths are put on element cards. The geometrical properties along with the modulus of elasticity, E, the coefficient of thermal expansion, a, the average tempera-l ture change from the ambient temperature, AT, and the weight per unit length, 1 w, are specified for each element. The supports are represented by stiffness

< matrices which define restraint characteristics of the supports. Plotted models for various parts of the safety and relief valve discharge piping are j shown in figures in Section 6.

The static solutions for deadweight and thermal loading conditions are obtained by using the WESTDYN computer program. The WESTDYN computer program is based on the use of transfer matrices which relate a twelve-element vector

[B3 consisting of deflections (three displacements and three rotations) and loads (three forces and three moments) at one location to a similar vector at another location. The fundamental transfer matrix for an element is deter-mined from its geometric and elastic properties. If thermal effects and boundary forces are included, a modified transfer relationship is defined as follows:

T gg T A A 12 o 't i

+ =

T T F, f F 21 22 t 9 or TBgo +Rg=By where the T matrix is the, fundamental transfer matrix as described above, and the R vector includes thermal effects and both forces. This l B vector for the element is a function of geometry, temperature, coefff-cient of thermal expansion, weight per unit length, lumped masses, and externally applied loads.

  • l -

I 1367s:10A 4-2 l

l

The overall transfer relationship for a series of elements (a section) can be ,

written as follows:

B 1 T1 8, + R1 T B, + T R23 +R 2 B2 TB2y+R 2 = T 2y 83=TB32

  • R 3 TT7B,+TTR32g 323 +TS32+R3 or

~

~

In ) n In )

B = 1 Tr '

0o + I , T

  • R r-1 +R n n

'*E Y ) _ Y r) .

A network model is made up of a number of sections, each having an overall transfer relationship formed from its group of elements. The linear elastic properties of a section cre used to define the characteristic stiffness matrix for the section. Using the transfer relationship for a section, the loads required to suppress all deflections at the ends of the section arising from the thermal and beundary forces for the section are obtained. These loads are incorporated in the overall load vector.

After all the sections have been defined in this manner, the overall stiffness matrix, K, and associate'd load vector needed to suppress the deflection of all the network points is determined. By inverting the stiffness matrix, the flexibility matrix is determined. The flexibility matrix is multiplied by the negative of the load vector to determine the network point deflections due to the thermal and boundary force effects. Using the general transfer relation-ship, the deflections and internal forces are then determined at all node points in the system. The support loads, F, are also computed by multiplying the stiffness matrix, K, by the displacement vector, a, at the support point.

4.3 DYNAMIC ANALYSIS The models used in the static analyses are modified for use in the dynamic analyses by including the mass characteristics of tne piping and equipment.

i 1367s:10A 4-3 l

4.4 SEISMIC ANALYSIS The lumping of the distributed mass of the piping systems is accomplished by locating the total mass at points in the system which will appropriately represent the response of the distributed system. Effects of the equipment motion, that is, the pressurizer, on the piping system are obtained by modeling the mass and the stiffness characteristics of the equipment in the overall system model.

The supports are again represented by stiffness matrices in the system model for the dynamic analysis. Mechanical shock suppressors which resist rapid motions are now considered in the analysis. The solution for the seismic disturbance employs the response spectra method. This method employs the lumped mass technique, linear elastic properties, ar.d the principle of modal superposition.

From the mathematical description of the system, an overall stiffness matrix

[K] is developed from the individual element stiffness matrices using the transfer matrix [K ] associated with mass degrees-of-freedom only. From the R

mass matrix and the reduced stiffness matrix, the natural frequencies and the normal modes are determined. The modal participation factor matrix is <

computed and combined with the appropriate response spectra value to give the

> modal amplitude for each mode. Since the modal amplitude is shock direction dependent, the total modal amplitude is obtained conservatively by the absolute stan of the contributions for each direction of shock. - The modal l amplitudes are then converted to displacements in the global coordinate system I

and applied to the corresponding mass point. From these data the forces.

l moments, deflections, rotation, support reactions, and piping stresses are l calculated for all significant modes.

t The seismic response from each earthquake component is computed by combining the contributions of the significant modes.

li 4.5 THERMAL TRANSIENTS Operation of a nuclear power plant causes temperature and/or pressure i fluctuations in the fluid of the piping system. The transients for this l 4.4 l

1367s:10A l

l 1

- _ . _ _ . . _ - _ _ - - . _ - . - . _ _ - - . _ _ _ _ . _ . _ . ~ . . _ _ _ . , _ , . _ . - _ . . _ . - _

system are defined in " Westinghouse Systems Standard Design Criteria 1.3" and ,

referenced in the Design Specification and were used to define the various operating modes used in the thermal expansion analyses.

4.6 PRESSURIZER SAFETY AND RELIEF LINE ANALYSIS 4.6.1 PLANT HYDRAULIC MODEL When the pressurizer pressure reaches the set pressure (2,500 psia for a safety valve and 2,350 psia for a relief valve) and the valve opens, the high pressure steam in the pressurizer forces the water in the water seal loop through the valve and down the piping system to the pressurizer relief tank.

For the pressurizer safety and relief piping system, analytical hydraulic models, as shown in Figures 4-1 and 4-2, were developed to represent the conditions described above.

The computer code ITCHVALVE was used to perform the transient hydraulic analysis for the system. This program uses the Method of Characteristics approach to generate fluid parameters as a function of time. One-dimensional fluid flow calculations applying both the implicit and explicit characteristic methods are performed. Using this approach the piping network is input as a series of single pipes. The network is generally joined together at one or ,

more places by two or three-way junctions. Each of the single pipes has associated with it friction factors, angles of elevation and flow areas.

Conservatior, equations can be converted to the following characteristic equations:

dz g = V+c ,

+ pC = C(F + pgcoso) 4' m

h=Y-c 1367s:10 4-5 l

l

4' C fh - oc ff = -c(F + ogcoso) ,

ao g2 , - ah/ao an 1

'Io ~ o3 z = variable of length measurement t = time V = fluid velocity c = sonic velocity p = pressure o = fluid density F = flow resistance g = gravity e = angle off vertical J = conversion factor for converting pressure units to equivalent ,

heat units '

h = enthal py q = rate of heat generation per unit pipe length '

The computer program possesses special provisions to allow analysis of valve opening and closing situations.

Fluid acceleration inside the pipe generates reaction forces on all segments of the line that are bounded at either end by an elbow or bend. Reaction forces resulting from fluid pressure and momentum variations are calculated.

These forces can be expressed in terms of the fluid properties available from the transient hydraulic analysis, performed using program ITCHVALVE. The momentum equation can be expressed in vector form as:

1 a - -- -

F oVdv + 1 oV(V

  • ndA) y

=7t c v c I

l 1367s:10A 4-6 l

. l From this equation, the total force on the pipe can be derived:

j r 1 (1 - cos ag) ,y r 2 II ~ C08 "2I A' pipe " { sin og ' lit Bend 1 5 SI" *2 E Bend 2 ,

+ b straight M di

~~

9: pipe at l A = piping flow area ,

7 ge = gravitational constant v = volume F = force r = radius of curvature of appropriate elbow a = angle of appropriate elbow W = mass acceleration All other terms are previously defined.

Unbalanced forces are calculated for each straight segment of pipe from the pressurizer to the relief tank using program FORFUN. The time-histories of these forces are stored on tape to be used for the subsequent structural

! analysis of the pressurizer safety and relief ifnes.

4.6.2 COMPARISON TO EPRI TEST RESULTS t

Piping load data has been generated from the tests conducted by EPRI at the Combustion Engineering Test Facility. Pertinent tests simulating dynamic opening of the safety valves for representative commercial upstream environ-ments were carried out. The resulting downstream piping loadings and responses were measured. Upstream environments for particular valve opening cases of importance, which envelope the connercial scenarios, are:

i i

A. Cold water discharge followed by steam - steam between the pressure source j and the loop seal - cold loop seal between the steam and the valve, i

1367s:10A 4-7 i

. - _. _ __, _ _ . ~ . _ - . _ . , . . . _ . _ - . _ . _ . _ . - - - , . _ _ _ _ . . - . - -

B. Hot water discharge followed by steam - steam between the pressure source and the loop seal - hot loop seal between the steam and the valve. .

C. Steam discharge - steam between the pressure source and the valve, Specific thermal hydraulic and structural analyses have been completed for the Combustion Engineering Test Configuration. Figure 4-3 illustrates the place-ment of force measurement sensors at the test site. Figures 4 4, 4-5 and 4-6 illustrate a comparison of the thermal hydraulically calculated results using the ITCHVALVE and FORFUN computer programs versus experimental results for Test 908, the cold water discharge followed by steam case. Figure 4.4 shows the pressure time-histories for PT9, which is located just downstream of the valve. Figures 4-5 and 4-6 illustrate, respectively, the force time histories of the horizontal run (WE28/WE29) and the long vertical run (WE32/WE33) immed-2 iately downstream of the safety valve. Significant structural damping in the third segment after the valve was noticed at the test and was verified by -

structural analyses. Consequently, a comparison of force WE30/WE31 was not presented here. No useable test data for sensor WE34/WE35 was available for Test 908.

Figures 4-7 through 4-11 filustrate a comparison of calculated versus I

experimental results for Test 917, the hot water discharge followed by steam case. Figure 4-7 shows the pressure time histories for PT9. Figures 4-8, -

4-9, 4-10 and 4-11 filustrate, respectively, the thermal hydraulically calcu-lated and the experimentally determined force time histories for (WE28/WE29),

(WE32/WE33), (WE30/WE31) and (WE34/WE35). Blowdown forces were included in the total analytically calculated force for WE34/WE35 as this section of pip-ing vents to the atmosphere. Although not presented here, comparisons were also made to the test data available for safety valve discharge without a loop seal (steam discharge).

The application of the ITCHVALVE and FORFUN computer programs for calculating the fluid-induced loads on the piping downstream of the safety and relief valves bas been demonstrated. Although not presented here, the capability has also been shown by direct comparison to the solutions of classical problems.

1367s:10A 4-8 l

The application of the structural computer programs (discussed in Section 4.6.3) for calculating the system response has also been demonstrated.

Structural models representative of the Combustion Engineering Test Configuration were developed. Figures 4 12, 4-13 and 4-14 illustrate, respectively, a comparison of the structural analysis results and the experimental results for locations (WE28/WE29), (WE32/WE33) and (WE30/WE31) for test 908. No useable test data for sensor (WE34/WE35) was vailable.

Figures 4-15, 4-16, 4-17 and 4-18 show for test 917, respectively, the structural analysis results versus the test results for locations (WE28/WE29),

(WE32/WE33), (WE30/WE31) and (WE34/WE35).

4.6.3 VALVE THRUST ANALYSIS The safety and relief lines were modeled statically and dynamically (seismically) as described in Sections 4.1 through 4.4 The mathematical model used in the seismic analysis was modified for the valve thrust analysis to represent the safety and relief valve discharge. The time-history hydraulic forces detemined by FORFUN were applied to the piping system lump mass points. The dynamic solution for the valve thrust was obtained by using a modified-predictor-corrector-integration technique and nomal mode theory.

The time-history solution was found using program FIXFM3, The input to this program consists of natural frequencies, nomal modes, and applied forces.

The natural frequencies and nomal modes for the modified pressurizer safety and relief line dynamic model were detemined with the WESTDYN program. The time-history displacement response was stored on magnetic tape for later use in computing the total system response due to the valve thrust conditions.

The time-history displacements of the FIXFM3 program were used as input to the WESOYN2 program to detemine the time-history internal forces and deflections at each end of the piping elements. For this calculation, the displacements were treated as imposed deflections on the pressurizer safety and relief line masses. The solution was stored on tape for later use in the piping stress evaluation and piping support load evaluation.

i i

i 1367s:10A 4-9 l

L

e The time-history internal forces and displacements of the WESOYN2 program were used as input to the POSDYN2 program to determine the maximum forces, moments.

and displacements that exist at each end of the piping elements and the maximia loads for piping supports. The results from program POSDYN2 are saved on TAFE14 for future use in piping stress analysis and support load evaluation.

1367s:10A .

4-10

j'

  • l i

r i

4 i r i

I i  ;

i I

! 33 1 25 t

i 1

[

l 24 22 20 3/ 6 4

j 23 / 19 2 7

5

! 10 8 l

\

1 l 32 ,

i r 28

27 ,

i I , 31 e

4 29 26 1

30 9

t a '

J Forces 11 through 18 are components for Forces 10 j

33 and 8 l i

FIGURE 4-1: Safety Line Hydraulic Model - Part !

NOTE: The numbers correspond to force locations. Table 6-1 lists (

l i the maximum force at each location. .

l e I

I l l 4-11  :

i l

. - _ . . _ _ . , , _ , _ _ _ , _ _ _ . - - - , . . ~ , , _ _ , . . , . . - . , . _ . . . , _ _ , . ~ . , _ _ _ _ . , . , _ _ . _ , _ _ . . , , . . _ , , _ _ . . _ , _ - , , - - . _ _ _ _ _ . . ._.~,,,,.,m,._...__ _

4 ,

i 4

i

' 27 f

26

/

i

' 25 [

J 29 31 1

i 33 34 '

35

=

l l N36 i

I 37 1

4 39 38 l

40 l

  • f 1 ,

i i

i 4

l 4 .

1 4

1~

44 l 45 i

\

i d

FIGURE 4-1.-A: Safety Line Hydraulic Model - Part II I

NOTE: The numbers correspond to force locations. Table 6-1-A lists the maximum force at each location.

4-12

I

-i 4

I
24 .t 6

E 25 7 27 '

l 14 4

{ 2 [

t 4 3

15 22 2 '

1  ;

i 18 19 16 21 i.

i 26 f i

I

. i i

I i 1 i il r FIGURE 4-2: Relief Line Hydraulic.Model - Part I j l

a NOTE: The numbers correspond to force locations. Table 6-2 l

. lists the maximum force at each location. l i

1 4-13 ,

+

i

/

' 23 22

/

' 21 2Y 25 27 3

3)

N32 33 5 34-36 ,

37 s

l 38 i

I 39 i

I 40 41 FIGURE 4-2-A: Relief Line Hydraulic Model - Part 11 NOTE: The numbers correspond to force locations. Table 6-2-A lists the maximum force at each location.

4-14'

4 T

x N E

= M G

E V i S 7 Z 1

9 e

45 y 33 F EE WW

, s t

s

, e

, T

, I

, R

, P

, E

, s _

, n N , o O , i I 3 , t G T , a E N , c R E , o

, L L

A M ,

E R G ,

t S O E ,

n T S ,

e P A m O L

, e U , r O , u L M , s

  • U , a

- C 23 , e 2 C 33 , M T EE ,

A e N

E WW ,

, c r

y M Y , o F , F G u ,

E , -

g S ,

1 g 01

, e

= , s yEE T 33 , , n N S F , o E

M O

I WW j,, p s

G P 5 e

s R E

S

~/ , x t l

-~ s a

..j1 i r t u

- s t g a i c
  1. u E

- ' hs t r

- ' i S V

L s  :

A i 3 V s -

Y - , i 4 T

E F

F F 8 9 hi E R

2 2 ..

A E E t U S WW 3 yL lE eS s

i G

I F

t rS s ue

(

i Sv t i

h b1m l l 3 I . < !j a !

500 - -

.. s i s TESTS

\

I i

5

- -- THERMAL 400 _ _ g i

HYDRAULIC g

' ANALYSIS i ,

.. I s l I I

i 300 _ _ l i .

g I \

C l '

o w /

g u --

t 5 \

$ i g w I \

/

E 200 - _

g g /

\ /

I I  %)

.. I I

E 8

100 - -

I I

I I

s 1

0 0.1 0.2 0.3 0.4 TIME (SECONDS) i FIGURE 4-4: Comparison of the EPRI Pressure Time-History l for PT09 From Test 908 with the Themal Hydraulic Analysis Predicted Pressure Time-History 4-16

I d

1.0E4 - -

\

hel \ .

8 i 1

e

/ \

s f/ l i

, ,f g

0.0 - # ~~ < ---

I /

l i}I i

I l

E I l

5 1 2 I I

-1.0E4 t l

] .

W l l E I i 1 l

\ \

\

\

\

-2.0E4 - -

%g TESTS

- THERMAL HYDRAULIC ANALYSIS

-3.0E4 l 0.05 0.15 0.25 TIME (SECONDS)

FIGURE 4-5: Comparison of the EPRI Force Time-History for WE28 and ME29 From Test 908 with the Thermal Hydraulic Analysis Predicted Force Time-History 4-17

1.0E5 0 -

I . --- -

%I J l l I l I

G l l

@ l l '

5 i l

S -1.0E5 -

ll 0 ll 5

6 ll ll Il ll

~

ll

-2.0E5 -

TESTS


TH ER M AL HYDRAULIC ANALYSIS

-3.0E5  !  !  !

0 0.1 0.2 0.3 0.4 0.5 TIME (SECONDS)

FIGURE 4-6: Comparison of the EPRI Force Time-History For WE32 AND WE33 From Test 908 with the the Thermal Hydraulic Analysis Predicted Force Time-History

, 4-18 l

l l

I 500 s .

\

\

M \

400 t \

> \

\

\

\

C \

E \

w 300 g 5 o \

m i \

g i N c

I N I  %; _- - _

, 's N__.---

200 g I

I I

- I I

i I

100 I TESTS t

~---THERMAL HYDRAULIC i ANALYSIS i

I I

,s~g, -* .

0.1 0.2 0.3 0.4 0.5 TIME (SECONDS)

FIGURE 4-7: Comparison of the EPRI Pressure Time-History for PT09 from Test 917 with the Thermal Hydraulic Analysis Predicted Pressure Time-History f 4-19 l

I

. _ ~ -- _ . . . _ . . _ . _ . _ _ _ . _ . _ _ _ , _ _ _ . ,_ ,

... . .=.

e 4000 - -

2000 - - i ' '

l.

4. 4

/ 1 I i l (

0.1 j l; '

8 1 lI 7' E ,,f I -

e

~

n (

" l tj -2000 " g 5

m I

I

-4000 - -

I J

-6000 - - TESTS

- - - THERMAL ,

HYDRAULIC ANALYSIS

-8000 e i . . ,

0 0.1 0.'2 d.3 0'. 4 0.'5 0.6 l

TIME (SECONDS)

FIGURE 4-8: Comparison of the EPRI Force Time-History for WE28 and WE29 from Test 917 with the Themal Hydraulic Analysis Predicted Force Time-History 4-20 l

l l

2.0E4 TESTS


THERMAL NYDRAULIC jg

^ ANALYSIS 1.OE4 -

fI g lM h is I g I i I g!!

8

!b. O q'> 1 i 18 I ,

V U

E If f O I f I

\ j l 1 1.0E4 -

) g

\

f?

i 2.0E4 o o.1 o.2 o.3 o.4 o.s TIME (SECONDS)

FIGURE 4-9: Comparison of the EPRI Force Time-History for WE32 and WE33 From Test 917 with the Thennal Hydraulic Analysis Predicted Force Time-History 1

i l l

4-21

3.0E4 TESTS

- - - THERMAL HYDRAULIC ANALYSIS 2.0E4 - - #g

\

l \

l \

l \

t \

g 1.0E4 - - , g ,

@ l \

8 l \

b I \

w I \

d / \

o 0. - -

g g

e

\ /

\ /

\ /

t

-1.0E4 ~

~

/

-2.0E4 l l  ;  ;

0.0 0.1 0.2 0.3 0.4 0.5 i

l TIME (SECONDS) l t FIGURE 4-10: Comp'arison of the EPRI Force Time-History j for WE30 and WE31 from Test 917 with the Themal Hydraulic Analysis Predicted Force Time-History 4-22

1 l

l l

2.0E4 TESTS

-- - THERMAL HYDRAULIC

-- ANALYSIS l '\

I \

l \

G l \

E I \

I \

E I 6 1.0E4 - -

g

\

d I

$ l \

' i \

l \

l I

I t

I

/

0.0 '

l 0 0.1 0.2 0.3 0.4 0.5 TIME (SECONDS)

FIGURE 4-11: Comparison of the EPRI Force Time-History for WE34 and WE35 From Test 917 with the Thermal Hydraulic Analysis Predicted Force Time-History 4-23 I

j

20.00 10.00 -

s l ,i n

l s

i

/ it

, 0 = ' /v' (gj , gig' (,^ ppy - - - -

B

~

w l li! '

k )

E ll1 l

-10.00 -

[

l l

l TESTS j l ---- AN ALYSIS

-20.00 -

l 1

l P

-26.17 l 0.05 0.15 0.25 0.35 0.45 I

TIME (SECONDS)

FIGURE 4-12: Comparison of the EPRI Force Time-History for WE28 and WE29 From Test 908 with the

~

Structural Analysis Predicted Force Time-History i

4-24

d 5

4 -

P l

I\ ll '

I\ >

2 I 'r3 I,

j

\

m \

1  ;

/ t ia i

n I C 4

(

d [i / 'N ~

'-v"'~'

O ' g l V  %

. \ /

1 l l

a, '

I l /

t-t ,

) ii

i i E .2 - t I

8 i l i I i 3 l l l cl

\ 'I 4 -

j I

5 i

6 -

TESTS 7 - ---- ANALYSIS

-8 0 0.1 0.2 0.3 0.4 0.5 TIME (SECONDS)

FIGURE 4-15: Comparison of the EPRI Force Tine-History for WE28 and WE29 From Test 917 with the Structural Analysis Predicted Force Time-History 4-27

12.956 - e g

I' 10.000 - I I I \ l 1 I \ l t I g i I I  ; I s 5.000 - I i l

i 1 [

l ( t I

E ( k {l I I

E b ] 1l w 0 *"[ II g

I- - -

o \ /

' fl t

/ lf 5.000 -

g g I I TESTS g g ---- AN ALYSIS

-10.000 -

IgI I

1

\I

\I

-13.266 -

I I I I I I I I I O 0.100 0.200 0.300 0.400 0.495 TIM E (SECONDS) l FIGURE 4-16: Comparison of the EPRI Force Time-History for WE32 and WE33 From Test 917 with the Structural Analysis Predicted Force Time-History 4-28

150 100 ll 11 llj 50 ll) 0 - ,c^ '~ , g I l I i I NI 50

'! I e h

.iOO -

k ll I

150 TESTS


ANALYSIS gl 200 -

11 lI 11 I I I I EI I I 250 0.1 02 0.3 0.4 O

TIME (SECONDS)

FIGURE 4-13: Comparison of the EPRI Force Time-History for WE32 and WE33 From Test 908 with the Structural Analysis Predicted Force Time-History l

4-25

l I

100 l\

It 75 - l I {i D I; l\

5 -

1i A e

!},

l\ I I l

,\

E I Ji I I s I i li I 1 l v

-- W' l i

w 0 - l I J l l i I E I Il I I I 2

2s - ll I

i I

I I I

'I i

\1 i

II ilyl tg g lI 50 v g I

75 - ---

TESTS ANALYSIS

{I lI I

100 l I I l 1 I dl 0 0.1 0.2 0.3 0.4 TIME (SECONDS) l FIGURE 4-14: Comparison of the EPRI Force Time-History for WE30 and UE31 From Test 908 with the Structural

- Analysis Predicted Force Time-History 4-26 i

1 1

25.863 25.000 - # _

l}s I\

20.000 -

g g i 1 I \

I I 15.000 -

g I

i 10.000 - I l

\

I \

E 5.000 -

I \

E l i \

I \

u I \

I

! O -

h- g I

f*

l /

5.000 -

g /

1 /

\ /

-10.000 - g /

\w TESTS


AN ALYSIS 15.000 -

20.000 0 0.100 0.200 0.300 0.400 0.495 TIME (SECONDS)

FIGURE 4-17: Comparison of the EPRI Force Time-History for WE30 and W:31 From Test 917 with the Structural Analysis Predicted Force Time-History i

4-29

I i

A 14.588 I

l }\i l i 12.500 -

l \

l I I \

\ \

t o.ooo - l \ -

l \

\ .

I g \

9: l

\

E I g w 7.500 -

l \

i S I .

o I

5.000 -

TESTS


AN ALYSIS i

I 2.50o -  ;

I i

i /

o l__J- I -/ I I I I 0.200 0.300 0.400 0.495 0 0.100 i

- TIME (SECONDS)

.a FIGURE 4-18: Comparison of the EPRI Force Time-History for WE34 and WE35 From Test 917 with the Structural i

- Analysis Predicted Force Time-History 1

l I

4-30

. . - - _ - - ~ - - - - . _ - - _ _ - . . ___ ., _ - . . - _ . . , . . - . . . - _ ._._.-___

SECTION 5 ,

METHOD OF STRESS EVALUATION

5.1 INTRODUCTION

The method used to combine the primary loads to evaluate the adequacy of the piping system is described in 'this section.

5.2 PRIMARY STRESS EVALUATION .

In order to perform a primary stress evaluation in accordance with the rules of the Code, definitions of stress combinations are required for the normal, f, upset, emergency and faulted plant conditions as defined in Section 3. Tables 2-1 and 2-2 illustrate the allowable stress intensities for the appropriate combination. Table 2-3 defines all pertinent terms.

5.2.1 DESIGN CONDITIONS The piping minimum wall thickness, t,, is calculated in accordance with the

Code. The actual pipe minimum wall thickness meets the Code requirement.

i The combined stresses due to primary loadings of pressure, weight, and design l

mechanical loads calculated using applicable stress intensity factors must not exceed the allowable limit. The resultant moment, M g, due to loads caused by weight and design mechanical loads is calculated using the following

! equation:

I I I 2 M l M + M i 2 + '#M + M I 9=

( *wt *DML) ( #wt #DML) f 1 2

1/2

+ l M + M# I (Zwt DML) 4 1367s:10A 5-1

where ,

My ,M ,M y = deadweight moment components wt #wt wt

, M, = design mechanical load moment components M*DPL,M #DML 'DML The maximum stresses due to pressure, weight, and DPL in the piping system are reported on tables in Section 6.

5.2.2 UPSET CONDITIONS The combined stresses due to the primary loadings of pressure, weight, OBE seismic, and relief valve thrust loadings calculated using the applicable stress intensity factors must not exceed the allowables. The resultant moments, M , due to loads caused by these loadings are calculated as shown 9

b elow.

For seismic and relief valve thrust loading:

M g-f

+ l f

Mx +

\

2}1/212 +l I

M + '2 M +M 2 1 1/21 2

( M*w t L OBE M* SOT U / ( wt i #0BE #SOTg) f 1 g g\1/2 T g 1/?.

+ M + M +

2 l Z

( wt i 0BE M*S0T Ul .

where My ,M ,M y = deadweight moment components wt #wt wt -

,M ,M = inertial OBE moment components M*0BE#0BE 0BE

,M ,M I = relief line operation moment components M* SOT U SOT g SOT U

1367s:10A 5-2

l 5.2.3 EMERGENCY CONDITIONS ,

l l

The combined stresses due to primary loadings of pressure, weight and safety valve thrust, using applicable stress intensification factors, must not exceed the allowable limits. The magnitude of the resultant moment, M g is calculated

~

from the moment components as shown below:

+ 2 . g . g 2 . g . g 2 1/2 M M M i= wt. j I

(* SOTE "I / ~ ~ ~{

SOT E i SOT E wt j where M ,M ,M y = deadweight moment components x

wt #wt wt M

x

,M ,M g - safety if ne operation me.nent components SOT SOT SOT E E E i

5.2.4 FAULTED CONDITIONS The combined stresses due to primary loadings of pressure, weight, SSE and 50Tp , using applicable stress intensification factors must not exceed the allowable limits. For the resultant moment loading, M , the 9 SSE and SOTp moments are combined using the square-root-of-the- sum-of-the-squares (SRSS) addition and added abso'lutely with deadweight for each moment component (M ,

x M,M).

y g The magnitude of the resultant moment, M j , is calculated from the three moment components, as shown below:

M M 2 + 2' 1/2 + 2 I= M*SSE/ M*wtj (i* SOTp 1

If 2 2i 1/2 12

+ I M + M + M (4 YSOT p YSSE / #wt j lt 2 2i 1/2 12 1/2

+ M + I + M Z

((* SOT p M*SSE/ wt j _

1367s:10A 5-3

where M .M y .M y = deadweight moment components x

wt wt wt

,M ,M I = inertial SSE moment components M*SSE#SSE SSE

, M, = maximum of SOT or SOT moment components M, SOT ,M U E ySOT ' SOTp p p For the safety and relief piping, the faulted condition load combination of pressure, weight, and valve thrust is considered as given in Tables 2-1 and 2-2 and defined in Table 2-3. The pipe break loads (Main Steam, Feedwater, or ,

LOCA) can be ignored for the PSARY system. These loads have very little impact on the pressurizer safety and relief system when compared to the loading conditions discussed in this report.

5.3 SECONDARY STRESS EVALUATION The combined stresses due to the secondary loadings of thermal, pressure, and deadweight using applicable stress intensification factors must not exceed the allowable limit. For the resultant moment loading, M , gthermal moments are combined as shown below:

2 , 2 t2 1/2 M

I=

-M [g# , g#

'g* MAX , g* MIN)

(M* MAX *MINj ( MAX MINT t M* MAX,M YMAX , M* MAX = maximum thermal moment considering all thermal cases

  • including normal operation M

x *M *M z = minimum thermal moment considering all thermal cases MIN yMIN MIN including normal operation This, Mg , is then substituted into the appropriate equations of the applicable code.

1367s:10A 5-4

. l l

SECTION 6 .

l RESULTS i

6.1 EVALUATION SUBSEQUENT TO EPRI TEST PROGRAM The Alvin W. Vogtle Nuclear Plant, Unit 1, pressurizer safety and relief valve discharge piping system has received a detailed thermal hydraulic analysis and structural evaluation to ensure the operability and structural integrity of the system. The methods used and the loadings considered are consistent with Sections 2, 3, 4, and 5 of this report.

6.1.1 THERMAL HYDRAULIC RESULTS 2

The thermal hydraulic analysis used computer programs which have been shown to match the results of the EPRI Test Program (Section 4.6.2). Hydraulic forcing functions were generated assuming the simultaneous opening of either the safety valves or the relief valves since these represent the worst applicable loading cases for the piping and supports of this specific layout. Cold overpressur-ization scenarios were also considered in the analysis and evaluation.. This includes water solid events.

Table 6-1 shows the maximum forces on each straight run of pipe for the

. simultaneous opening of all three safety valves while Table 6-2 shows the maximum forces for the simultaneous opening of both relief valves. To account for uncertainties in the valve flow capacities due to tolerances and devia-tions, a conservative factor of over 1.20 was included in the maximum rated valve mass flow rate for these cases. This results in conservative forcing functions. For both valve opening cases, cold loop seals were assumed to exist upstream of the valves.

Based on analytical work and tests to date, all acoustic pressures in the upstream piping calculated or observed prior to and during safety valve hot or cold loop seal discharge are below the maximum permissible pressure. The piping between the pressurizer nozzle and the inlet of the safety valves is 6-inch schedule 160. The calculated maximum upstream pressure for this size of piping is below the maximum permissible pressure. A similar evaluation 1367s:10A 6-1

of this ir.let piping phenomenon, applicable for temperatures below 300"F, was i conducted and the results are documented in a report entitled " Review of Pressurizer Safety Valve Performance as Observed in the EPRI Safety and Relief i Valve Test Program", WCAP-10105, dated June 1982.

6.1.2 STRUCTURAL RESULTS ,

Primary stress suianaries for the limiting valve discharge loading cases considered are provided in Tables 6-3-A through 6-13-B. Plots of the structural models are shown in Figure 6-1.  :

I i For purposes of providing stress summaries, the piping system was broken up accordingly:

Vestream of Valves A) 6" SCH 160 Steam Filled Portion - Relief Line l B) 3" SCH 160 Steam Filled Portion - Relief Line C) 3" SCH 160 Water Filled Portion - Relief Line D) 6" SCH 160 Steam Filled Portion - Safety Line E) 3" SCH 160 Water Filled Portion - Safety Line Downstream of Valves - Discharge Piping (Circular Header)

A) 6" SCH 160 Portion

, B) 12" SCH 100 Portion Downstream of Valves - Discharge Piping (Downcomer Taf1 pipe) ,

4 The results of this extensive analysis and evaluation demonstrated that the piping met the applicable' design limits for the various loading cases. In ,

7 addition, the acceptability of the valve nozzles and equipment nozzles was

! assured for the applied loads.

2 j 1367s:10A 6-2 l

l 6.2 SUWRY OF RESULTS AND CONCLUSIONS -

I The themal hydraulic analysis and structural evaluation of the Alvin W.

Vogtle Nuclear Plant, Unit 1, pressuri:er safety and relief valve discharge piping system have been completed, except for reconciliation to the as-built conditions, which will be performed when such information is provilled. The operability and structural integrity of the as-designed system have been ,

ensured for all applicable loadings and load combinations including all pertinent safety and relief valve discharge cases. .

4 I

I.

J i

t 1

i 1367s:10A 6-3

TABLE 6-1 HYDRAULIC FORCES - SAFETY LINE Force No. Force (1bf) Force No. Force (1bf) 1 30 18 130 2 310 19 30 3 160 20 300 4 1720 21 200 5 3270 22 1940 6 3460 23 3260 7 5920 24 3460 8 16100 25 5330 9 4540 26 -

80 10 7970 27 570 11 170 28 110 12 2440 29 1710 13 1740 30 3260 14 230 31 3470 15 5090 32 5190 16 6350 33 8270 17 7760 The force numbers correspond to the segment numbers on Figure 4-1.

I 1367s:10A 6-4 l

l i

t .

e I

l .

TABLE 6-1 A .

HYDRAULIC FORCES - $AFETY LINE Force No. Force (1bf) Force No. Force (1bf) j 25 5640 36 740 }

l 26 21200 37 3930 }

27 26300 38 3850 l 28 5880 39 . 1520  !

29 14800 40 3290 30 3880 41 1290 31 13100 42 3730 ,

32 2630 43 1520  !

33 9950 44 4750  !

34 4160 45 4790  !

35 3250 l I

The force numbers correspond to the segment numbers on Figure 41 A.

k l

i i

t l

l l 1367s:10A 65 l i

e TA8LE 6-2 ,

2 I HYDRAULIC FORCES - RELIEF LINE i

Force No. Force (ibf) Force No. Force (1bf) i 1 670 17 110

! 2 60 18 100 1

1 3 310 19 100 4 230 20 110 j

i 5 310 21 2900 6 340 22 2880 l 3840 7 110 23 i 8 400 24 2620 i 14 3840 25 1920

) 15 2880 26 1690

! 16 2900 27 1200 I

I The force numbers correspond to the segment numbers on Figure 4-2.

l I

I l

l i

1 i

i l

1367s:10A 66 I

l

O TABLE 6-2-A ,

HYDRAULIC FORCES - RELIEF LINE Force No. Force (1bf) Force No. Force (1bf) 21 850 32 90 22 2610 33 460 23 2980 34 . 450 24 570 35 190 25 1420 36 420 26 360 37 180 27 1220 38 570 28 250 39 260 29 970 40 630 30 440 41 510 31 350 The force numbers correspond to the segment numbers on figure 4-2-A.

1367s:10A 6-7

=. . . _ -

TABLE 6-3-A l

PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES l

Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Steam Load Combination: N + OBE < 1.5 S, Node Maximus Allowable Point Piping Comoonent Stress (ksi) Stress (ksi) 5010 Butt weld 8.7 30.5 i

5010 Elbow 16.8 30.5 5190 Tee 13.9 30.5 i

4270 Reducer (3x6) 17.5 30.5 5030 Straight run 7.5 30.5 .

- 5170 Branch 20.9 30.5 i

t See Tables 2-1 through 2-3 for load combinations and definitions.

I 1367s:10A 6-8

. - - , _ . - - _ . . - _ _, . - . . _ , _ , . _ . ~ . _ _ . - _ . . _ . . _ . _ _ . - - - - . _ _ . - _ . - - _ , _ _ _

TABLE 6-3-B .

PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Steam Load Combination: N + OBE 1 1.5 S, Node Maximum .

Allowable Point Piping Component Stress (ksi) Stress (ksi) 4280 Butt weld 9.3 30.5 4290 Elbow 16.9 30.5 4270 Reducer (3x6) 17.5 30.5 TABLE 6-3-C PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + OBE 1 1.5 S, Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 4090 Butt weld 8.3 30.5 4110 Elbow 15.9 30.5 4310 Straight run 8.3 30.5 4380 Butt weld / Valve 10.7 30.5 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-9

TACLE 6-3-D PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Loed Combination: N + OBE i 1.5 S, Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 1010 Butt weld 10.4 30.5 1010 Elbow 19.8 30.5 1030 Straight run 8.5 30.5 TABLE 6-3-E PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Water Load Combination: N + OBE 15S, 1

Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 3110 Butt weld 7.8 30.5 3100 Elbow 15.4 30.5

~

3100 Straight run 7.9 30.5 3110 Butt weld / Flange 7.8 30.5 3090 Branch ,

19.5 30.5 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A i

6 :

TABLE 6-4-A .

PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Stea.n Load Combination: N + SOTU 1 1.5 S, Node Maximu' M be., N Point Piping Component Stress f 5, 2 fru D. (ksi) 5020 Butt weld 7.C s.5 5020 Elbow 13.8 30.5 9

5190 Tee 12.5 30.5 4270 Reducer (3x6) 14.9 30.5 5030 Straight run 7.0 30.5 5170 Branch 19.7 30.5 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-11

TABLE 6-4-B PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Pioing Subsystem: Pressurizer Relief Line - 3" SCH 160 Steam Load Combination: N + SOTgi 1.5 S, Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 4280 Butt weld 8.0 30.5 4

4290 Elbow 14.8 30.5 9

4270 Reducer (3x6) 14.9 30.5

  • TABLE 6-4-C PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + SOTU1 1.5 S, Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 4090 Butt weld 7.8 30.5 4300 Elbow 14.4 30.5 4310 ,

Straight run 7.7 30.5 4410 Butt weld / Valve 7.9 30.5 See Tables 2-1 through 2-3 for load combinations and definitions.

i l

1367s:10A 6-12

O TABLE 6-4-D ,

PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Pioing Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Load Combination: N + SOTUi 1.5 S ,

Node Maximum . Allowable Point Piping Component Stress (ksi) Stress (ksi) 3010 Butt weld 6.8 30.5 3010 Elbow 13.3 30.5 1030 Straight run 6.6 30.5 TABLE 6-4-E PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Water Load Combination: N + SOTUi 1.5 S, Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 1100 Butt weld 6.5 30.5 1100 Elbow 12.8 30.5 1090 Straight run 6.4 30.5 1140 Butt weld / Flange 6.2 30.5 3090 Branch 11.7 30.5 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A E-13

TABLE 6-5-A ,

PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Steam Load Combination: N + OBE + SOTU < 1.8 S,/1.5 Sy Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 5010 Butt weld 8.9 33.8 5010 Elbow 17.2 33.8 5190 Tee 14.3 33.8 4270 Reducer (3x6) 18.2 33.8 Straight run 33.8 5030 7.8 5170 Branch 28.1 33.8 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6 l l

_- . _ . _ _ _ . . . . ~ , , . . . - . . _ . . _ _ . . - . . . _ _ . , , .- , , . . . _ . . - . . . . . _ _ . ._ .__

TABLE 6-5-B PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Picing Subsystem: Pressurizer Relief Line - 3" SCH 160 Steam Load Combination: N + OBE + SOT U

  1. 1*0 Sm /1.5 Sy Node Maximum . Allowable Point Piping Component Stress (ksi) Stress (ksi) 4280 Butt weld 10.1 33.8 4290 Elbow 18.2 33.8 4270 Reducer (3x6) 18.2 33.8 TABLE 6 5-C 4 PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + OBE + SOTU < 1.8 S ,/1.5 S y Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 4090 Butt weld 9.7 33.8 4300 Elbow 16.8 33.8 4310 Straight run 9.1 33.8 4120 Butt weld / Valve 11.1 33.8 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-15

4 TABLE 6-5-D ,

PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Load Combination: N + OBE + SOTg g 1.8 S ,/1.5 Sy Node Maximtm Allowable Point Piping Component Stress (ksi) Stress (ksi) 1010 Butt weld 10.4 33.8 1010 Elbow 19.9 33.8 1030 Straight run 8.6 33.8 TABLE 6-5-E PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Water Load Combination: N + OBE + S0TU1 1.8 S ,/1.5 S y Node Maximum Allowable l Point Piping Component Stress (ksi) Stress (ksi) 3110 Butt weld 7.8 33.8 3100 Elbow 15.5 33.8 l 3100 Straight run 8.0 33.8 3110 _

Butt weld / flange 7.8 33.8 l

3090 Branch 24.2 33.8 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-16 I

l

r TABLE 6-6-A .

PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Steam Load Combination: N + SOTE<2.25Sgl.8S, Node Maximum -

Allowable Point Piping Component Stress (ksi) Stress (ksi) 5010 Butt weld 9.7 40.5 5010 Elbow 12.0 40.5 5190 Tee 10.3 40.5 4270 Reducer (3x6) 25.1 40.5 5030 Straight run 9.0 40.5 5170 Branch 29.3 40.5 See Tables 2-1 through 2-3 for load combinations and definitions.

l 1367s:10A l 6-17 i

I

~

TABLE 6-6-B PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Steam Load Combination: N + SOT E 1 2 25 S,/1.8 Sy Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 4280 Butt weld 16.2 40.5 4290 Elbow 21.4 40.5 4270 Reducer (3x6) 25.1 40.5 .

TABLE 6-6-C PRIMARY STRESS

SUMMARY

- UPSTREAM 0F VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + SOT E i 2.25 S,/1.8 Sy Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 4330 Butt weld 17.0 40.5 4330 Elbow . 22.6 40.5 4310 Straight run 16.3 40.5

~'

4340 Butt Weld / Valve 18.1 40.5 i

See Tables 2-1 through 2-3 for load combinations and definitions.

l 1367s:10A 6-18

r-TABLE 6-6-D -

PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Load Combination: N + SOT E I 2.25 S ,/1.8 Sy Node Maximum -

Allowable Point Piping Component Stress (ksi) Stress (ksi) 3010 Butt weld 9.7 40.5 3010 Elbow 12.1 40.5 1050 Straight run 8.5 40.5 TABLE 6-6-E PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Water Load Combination: N + SOTE1 2.25 S ,/1.8 Sy Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 3110 Butt weld 8.3 40.5 3110 Elbow 9.8 40.5 3100 Straight run 8.2 40.5 3110 Butt weld / Flange 8.3 40.5 3090 Branch 19.0 40.5 l l

See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A l

6-19 1

. - . .- -- .. - - _ - , . _ . - . . . - , . .- . - , . . ---_- . - _ , _ . . , - . . . . . , _ - . . . ~ . - - . , , _ _ .

1 s

TABLE 6-7-A PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 6" SCH 160 Steam Load Combination: N + SSE + SOTF # 3.0 S ,

Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksil 5010 Butt weld 10.6 60.9 5010 Elbow 20.2 60.9 5190 Tee 14.5 60.9 .

4270 Reducer (3x6) 26.1 60.9 5030 Straight run 9.3 60.9 -

5170 Branch 36.9 60.9 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-20 I

l

I.

TABLE 6-7-B .

PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Rel'ef Line - 3" SCH 160 Steam Load Combination: N + SSE + SOTp g 3.0 S, Node Maximum . Allowable Point Piping Component Stress (ksi) Stress (ksi) 4280 Butt weld 16.9 60.9 4290 Elbow 29.4 60.9 4270 Reducer (3x6) 26.1 60.9 TABLE 6-7-C PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Relief Line - 3" SCH 160 Water Load Combination: N + SSE + SOTp1 3.0 S ,

Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 4330 Butt weld 17.3 60.9 4330 Elbow 30.2 60.9 4310 Straight run 16.8 60.9 4340 Butt weld / Valve 18.7 60.9 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-21

~

TABLE 6-7-D PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 Steam Load Combination: N + SSE + SOTp 1 3 0 S, Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 1010 Butt weld 12.0 60,9 1010 Elbow 22.6 60.9 2030 Straight run 9.3 60.9 TABLE 6-7-E PRIMARY STRESS

SUMMARY

- UPSTREAM OF VALVES Piping Subsystem: Pressurizer Safety Line - 6" SCH 160 4ter Load Combination: N + SSE + SOT p 1 3 0 S, Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 3110 Butt weld 8.9 60.9 3100 Elbow 17.4 60.9 3100 Straight run 9.0 60.9 ,

3110 _ Butt weld / Flange 8.9 60.9 i

l 3090 Branch 29.7 60,9 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-22 1

r l

I i

TA8LE 6-8-A -

PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF YALVES Piping Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N<1.dS h ,

Node Maximum Allowable Point Piping Component Piping Size Stress (ksi) Stress (ksi) 3210 Straight run 6" Sch 160 4.4 18.6 3210 Butt weld 6" Sch 160 4.4 18.6 4030 Elbow 6" Sch 160 1.2 18.6 3220 Branch (6x12) 6" Sch 160 4.7 18.6 300 Straight run 12" Sch 100 2.4 18.6 160 Butt weld 12" Sch 100 2.4 18.6 160 Elbow 12" Sch 100 2.3 18.6 7000 Tee 12" Sch 100 7.7 18.6 See Tables 2-1 through 2-3 for load combinations and definitions.

l l

l l

1367s:10A l

6-23 l 1

I

I TABLE 6-8-B PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Downcomer Tailpipe Load Combination: N < 1.0 S h Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 9305 Straight run 4.1 15.9 9345 Butt weld 4.0 15.9 9020 Elbow 4.3 15.9 9000 Tee 3.0 15.9 see Tables 2-1 through 2-3 for load combinations and definitions.

)

i 1367s:10A 6-24

~' * -

---v----- a~ . , _ , , _ , _ _ _

F 1 TABLE 6-9-A .

PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Pioing Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N + OBE < 1.2 Sh Node Maximum Allowable Point Piping Component Piping Size Stress (ksi) Stress (ksi) 2240 Straight run 6" Sch 160 20.5 22.3 2240 Butt weld 6" Sch 160 20.5 22.3 4470 Elbow 6" Sch 160 5.0 22.3 2250 Branch (6x12) 6" Sch 160 21.8 22.3 125 Straight run 12" Sch 100 6.0 22.3 125 Butt weld 12" Sch 100 6.0 22.3 125 Elbow 12" Sch 100 5.6 22.3 7000 Tee 12" Sch 100 11.3 22.3 See Tables 2 5 through 2-3 for load combinations and definitions.

1 1

1367s:10A 6-25

s TABLE 6-9-B PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Picing Subsystem: Discharge Piping - Downcomer Tailpipe Load Combination: N + OBE < 1.2 Sh Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 9020 Straight run 17.8 19.1 9020 Butt weld 17.8 19.1 9016 Elbow 20.9 22.6 9000 Tee 14.8 19.1 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-26

I .

TABLE 6-10-A ,

PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Vocomer Circular Header Load Combination: N + SOTU i 1.2 S h Node . Maximum Allowable Point Piping Component Piping Size Stress (ksi) Stress (ksi) 4490 Straight run 6" Sch 160 8.6 22.3 4490 Butt weld 6" Sch 160 8.6 22.3 4470 Elbow 6" Sch 160 5.0 22.3 4500 Branch (6x12) 6" Sch 160 9.0 22.3 225 Straight run 12" Sch 100 3.2 22.3 225- Butt weld 12" Sch 100 3.2 22.3 150 Elbow 12" Sch 100 3.1 22.3 7000 Tee 12" Sch 100 8.7 22.3 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-27

3<

TABLE 6-10-B ,

PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Pfoing Subsystem: Discharge Piping - Downcomer Tailpipe Load Combination: N + SOTU i 12S h Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 9305 Straight run 4.2 19.1 9340 Butt weld 4.0 19.1 9016 Elbow 4.7 19.1 9000 Tee 3.3 19.1 See Tables 2-1 through 2-3 for load combinations and definitions.

l I

l l

1367s:10A 6-28

_ _ - . _ _ - . . - _ - - - . . . - . - . _ _ -. - . . . . - . - - _ - . _ . ~ . - - - _ _ - - _

r ,

TABLE 6-11-A -

PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N + OBE + SOTU < 1.8 Sh Node Maximum Allowable Point Piping Component Piping Size Stress (ksi) Stress (ksi) 2240 Straight run 6" Sch 160 20.7 33.5 2240 Butt weld 6" Sch 160 20.7 33.5 4470 Elbow 6" Sch 160 5.2 33.5 2250 Branch (6x12) 6" Sch 160 22.0 33.5 125 Straight run 12" Sch 100 6.0 33.5 125 Butt weld 12" Sch 100 6.0 33.5 -

125 Elbow 12" Sch 100 5.7 33.5 7000 Tee 12" Sch 100 11.5 33.5 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-29 1

TABLE 6-11-B PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Pfeing Subsystem: Discharge Piping - Downcomer Tailpipe Load Combination: N + OBE + SOTU1 1.8 S h Node Maximum . Allowable i Point Piping Component Stress (ksi) Stress (ksi) 9020 Straight run 17.8 28.6 9020 Butt weld 17.8 28.6 9016 Elbow 26.0 28.6 ,

9000 Tee 14.8 28.6 See Tables 2-1 through 2-3 for load combinations and definitions.

4 1367s:10A

! 6-30

TABLE 6-12-A ,

PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N + SOTE < I*8 Sh Node Maximum - Allowable Point Piping Comoonent Piping Size Stress (ksi) Stress (ksi) 2240 Straight run 6" Sch 160 28.9 33.5 2240 Butt weld 6" Sch 160 28.9 33.5 4470 Elbow 6" Sch 160 6.4 33.5 2250 Branen (6x12) 6" Sch 160 31.1 33.5 340 Straight run 12" Sch 100 5.8 33.5 340 Butt weld 12" Sch 100 5.8 33.5 365 Elbow 12" Sch 100 4.9 33.5 7000 Tee 12" Sch 100 6.0 33.5 i

See Tables 2-1 through 2-3 for load combinations and definitions.

r i 1367s:10A l

6-31

3 TABLE 6-12-B PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Pioing Subsystem: Discharge Piping . Downcomer Tailpipe Load Combination: N + SOTEi 1.8 S h Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 9010 Straight run 6.4 28.6 9010 Butt weld 6.4 28.6 9016 Elbow 9.6 28.6 9000 Tee 7.3 28.6 See Tables 2-1 through 2-3 for load combinations and definitions.

l 1367s:10A 6-32

(

s TABLE 6-13-A '

PRIMARY STRESS

SUMMARY

- DOWNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Upcomer Circular Header Load Combination: N + SSE + SOTp < 2.4 Sh Node Maximum Allowable Point Piping Component Piping Size Stress (ksi) Stress (ksi) 2240 Straight run 6" Sch 160 34.6 44.6 2240 Butt weld 6" Sch 160 34.6 44.6 4470 Elbow 6" Sch 160 6.5 44.6 2250 Branch (6x12) 6" Sch 160 37.0 44.6 125 Straight run 12" Sch 100 6.7 44.6 125 Butt weld 12" Sch 100 6.7 44.6 125 Elbow 12" Sch 100 6.3 44.6 7000 Tee 12" Sch 100 13.0 44.6 See Tables 2-1 through 2-3 for load combinations and definitions.

i i

i 1367s:10A 6-33

~

1 L

3 TABLE 6-13-8 .

PRIMARY STRESS

SUMMARY

- D0WNSTREAM OF VALVES Piping Subsystem: Discharge Piping - Downcomer Tailpipe load Combination: N + SSE + S0Ty < 2.4 Sh Node Maximum Allowable Point Piping Component Stress (ksi) Stress (ksi) 9020 Straight run 19.9 38.2 9020 Butt weld 19.9 38.2 .

9016 Elbow 32.4 38.2' 9000 Tee 17.0 38.2 See Tables 2-1 through 2-3 for load combinations and definitions.

1367s:10A 6-34

7 4

(> <>

1250 2210 1210 2170 7h l

M1170 212 2010 1010 1120 Pressurizer 050 3180 3140 l

3090 3010 Pressurizer h: Steam / Water Interface FIGURE 6-1: Structural Model - Part I l 6-35 Not to scale l

l

I I

1 4380 4340

$ gp 4160 4120 r-X }

X3 90 4410 4300 4200 4280 4270 4230 4220 L ) 4450 5170 050 4000 4500 5010 Pressurizer G): Steam / Water Interface FIGURE 6-1-A: Structural flodel - Part II Not to scale 6-36 b

( ,

3220 ,

4000 H002 2250 904.5 025 H003 4500 7000 H004 ] 055 1250 ' 9022 9000 ,

H025 001 [ % 9082 H007 H006 9090 9095 3

A / H008 9125 H009 H013 9188 9165

\

010 H014 9200 9170 9225 9185 9235 H026 H02 H027 9250 9200 H024 9302 020

( Snubber 9315

  • HD28

'" /

j d Vertical Spring FIGURE 6-1-B: Structural Model - Part III 9350 Relief Tank 6-37 fjot to scale 1 __ _ _ < _