ML18130A286: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(StriderTol Bot change)
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 07/07/1980
| issue date = 07/07/1980
| title = Submits Addl Info Re Implementation of short-term Lessons Learned Requirements.Status of Remaining Category a Items, mid-yr Status of Design & Installation of Category B Mods & Schedule for Implementation Encl.Forwards Drawings
| title = Submits Addl Info Re Implementation of short-term Lessons Learned Requirements.Status of Remaining Category a Items, mid-yr Status of Design & Installation of Category B Mods & Schedule for Implementation Encl.Forwards Drawings
| author name = SYLVIA B R
| author name = Sylvia B
| author affiliation = VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
| author affiliation = VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
| addressee name = DENTON H R
| addressee name = Denton H
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| docket = 05000280, 05000281, 05000338, 05000339, 05000388
| docket = 05000280, 05000281, 05000338, 05000339, 05000388
Line 19: Line 19:
=Text=
=Text=
{{#Wiki_filter:*
{{#Wiki_filter:*
* VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND,VIRGINIA 23261 July 7, 1980 Mr. Harold R. Denton, Director Office of Nuclear Regulation Serial No. 536 NO/RWC:smv U.S. Nuclear Regulatory Commission Washington, D. C. 20555 Docket Nos. 50-280 50-281 50-338 50-339  
VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND,VIRGINIA 23261 July 7, 1980 Mr. Harold R. Denton, Director                             Serial No. 536 Office of Nuclear Regulation                               NO/RWC:smv U.S. Nuclear Regulatory Commission                       Docket Nos. 50-280 Washington, D. C. 20555                                               50-281 50-338 50-339


==Dear Mr. Denton:==
==Dear Mr. Denton:==
LESSONS LEARNED SHORT TERM REQUIREMENTS SURRY POWER STATION UNITS 1 & 2 NORTH ANNA POWER STATION UNITS 1 & 2 By letters dated August 24, October 24, November 26, December 17, 1979, ary 10, 31, February 1, 8, 27 and April 1, 1980, Vepco has submitted ments and documentation of actions taken at North Anna Units 1 & 2 and Surry Units 1 & 2 to implement the short term Lessons Learned requirements of NUREG 0578. The purpose of this letter is to provide: 1) a documentation and status of the remaining Category A items, 2) a documentation of our response to the requirements of North Anna Unit 2 Condition of License items 2.D.(6)d, 2.D. (5)j, 2.D. (5)k, 2.D. (5)r and NUREG 0660 items II.B.1, II.B.3, II.E.3.1 and ILE. 4, 2, 3) a mid year status of design and installation of the gory B modifications, 4) additional design information, 5) the proposed schedule for implementation of the modifications at North Anna and Surry, and 6) early notification and justification for any modifications that may not be fully installed and tested by the required implementation date. Attachment A provides a discussion of the remaining requirements for each NUREG 0578 item and additional design information.
Attachment B provides a preliminary schedule for implementation of these modifications at North Anna Units 1 & 2 and Surry Units 1 & 2. Attachment C provides a description of the proposed seismic and environmental qualification test program for the cal monitoring system. Attachment D provides additional design information for the post-accident sampling system. Attachments E and F provide design information on additional proposed modifications based upon our continuing review of the events at Three Mile Island. As shown in Attachment B, installation dates for some of these items are after January 1, 1981. The limited number of vendors who can supply equipment qualified to the requirements of NUREG 0578 are attempting to provide timely delivery to the entire industry.
However, their limited production ties have produced particular
* material delivery problems for individua~
\ utilities.
'y)D I (S
* e VIRGINIA ELECTRIC AND POWER COMPANY TO Mr. Harold R. Denton, Director It is our intent to complete these modifications at our four units in an orderly fashion that best utilizes the availability of all our resources.
We will use scheduled outages where possible to perform these modifications.
The Surry Unit 1 modifications will be installed during the steam generator placement outage. We currently plan to extend the duration of the Surry Unit 2 snubber inspection outage presently scheduled in late fall and the North Anna Unit 1 second refueling outage presently scheduled for early December to complete the majority of these modifications.
The schedule for the North Anna Unit 2 outage is dependent upon the date of issue of a full power license. We currently plan to extend the duration of the snubber inspection outage presently scheduled for November.
All work that can be supported by material delivery will be done during these outages. No additional outages will be scheduled for the remaining items until all materials are available for that unit. However, modifications will be installed to the extent possible during unscheduled outages. We hope this letter clearly demonstrates Vepco's commitment to meet the cal and schedule requirements of NUREG 0578 to the best of our ability. We will be glad to provide additional information as it becomes available.
RWG/smv:Hl cc: Mr. James P. O'Reilly Very truly yours, 41:f;L::_.
B. R. ,*-Sylvia Manager -Nuclear Operations and Maintenance Mr. E. H. Webster-NRG/North Anna (w/drawings)
Mr. D. J. Burke -NRG/Surry Cw/drawings)
* TABLE OF CONTENTS *
* ATTACHMENT A: REMAINING NUREG 0578 MODIFICATIONS
-CATEGORY A & B Section Title 2.1.1 Emergency Power Supply -Pressurizer Heaters -Pressurizer Level and Relief Block Valves 2.1.2 Performance Testing for BWR and PWR Relief and Safety Valves 2.1.3.a Direct Indication of Power-Operated Relief Valve and Safety Valve Position for PWRs and BWRs 2.1.3.b Instrumentation for Detection of Inadequate Core Cooling -Subcooling Meter -Additional Instrumentation


====2.1.4 Diverse====
LESSONS LEARNED SHORT TERM REQUIREMENTS SURRY POWER STATION UNITS 1 & 2 NORTH ANNA POWER STATION UNITS 1 & 2 By letters dated August 24, October 24, November 26, December 17, 1979, Janu-ary 10, 31, February 1, 8, 27 and April 1, 1980, Vepco has submitted commit-ments and documentation of actions taken at North Anna Units 1 & 2 and Surry Units 1 & 2 to implement the short term Lessons Learned requirements of NUREG 0578. The purpose of this letter is to provide: 1) a documentation and status of the remaining Category A items, 2) a documentation of our response to the requirements of North Anna Unit 2 Condition of License items 2.D.(6)d, 2.D. (5)j, 2.D. (5)k, 2.D. (5)r and NUREG 0660 items II.B.1, II.B.3, II.E.3.1 and ILE. 4, 2, 3) a mid year status of design and installation of the Cate-gory B modifications, 4) additional design information, 5) the proposed schedule for implementation of the modifications at North Anna and Surry, and
Containment Isolation 2.1.5.a Dedicated H 2 Control Penetrations 2.1.5 .c Capability to Install Hydrogen Recombiner at Each Light Water Nuclear Power Plant 2.1.6.a Integrity of Systems Outside Containment Likely to Contain Radioactive Materials for PWRs and BWRs 2.1.6.b Design Review of Plant Shielding and Environmental Qualification of Equipment for Spaces/Systems Which Hay Be Used in Post-Accident Operations 2.1.7.a Auto Initiation of the Auxiliary Feedwater Systems 2.1.7.b Auxiliary Feedwater Flow Indication to Steam Generators 2.1.8.a Post-Accident Sampling Capability
: 6) early notification and justification for any modifications that may not be fully installed and tested by the required implementation date.
: 2. 1. 8. b Increased Range of Radiation Monitors 2.1.8.c Improved In-Plant Iodine Instrumentation Under Accident Conditions
Attachment A provides a discussion of the remaining requirements for each NUREG 0578 item and additional design information. Attachment B provides a preliminary schedule for implementation of these modifications at North Anna Units 1 & 2 and Surry Units 1 & 2. Attachment C provides a description of the proposed seismic and environmental qualification test program for the acousti-cal monitoring system. Attachment D provides additional design information for the post-accident sampling system. Attachments E and F provide design information on additional proposed modifications based upon our continuing review of the events at Three Mile Island.
: 2. 1. 9 Containment Post-Accident Monitoring
As shown in Attachment B, installation dates for some of these items are after January 1, 1981. The limited number of vendors who can supply equipment qualified to the requirements of NUREG 0578 are attempting to provide timely delivery to the entire industry. However, their limited production capabili-ties have produced particular
-Containment Pressure Indication (ACRS) -Containment Water Level Indication (ACRS) -Containment Hydrogen Indication (ACRS) -Reactor Coolant System Venting (NRR) 2.2.2.b Onsite Technical Support Center Condensate Storage Tank Alarm and Indication 
* material delivery problems for individua~ \
*
utilities.                                                                'y)D ~ I(S
* ATTACHMENT B: SCHEDULE OF IMPLEMENTATION Table I -NUREG 0578 Implementation Status Table II -NUREG 0578 Installation Schedule ATTACB ... MENT C: B&W ACOUSTICAL MONITORING TEST PROGRAM Introduction Test Program Requirements Equipment To Be Tested Containment Environmental Requirements Control Room Equipment Requirements Seismic Testing Test Requirement Margins Failure Criteria Schedule ATTACHMENT D: POST-ACCIDENT SAMPLING SYSTEM DESIGN INFOPJ*!ATION Introduction Design Basis System Description Design Evaluation Tests and Inspections Instrument Applications Design Input Requirements Drawings ATTACHMENT E: POST-ACCIDENT RADIATION WASTE CONNECTION TIE-IN DESIGN INFORtf...ATION ATTACHMENT F: HYDROGEN RECOMBINER GAS COOLER OUTLET MODIFICATION DESIGN INFORMATION ATTACHMENT A REMAINING NUREG 0578 MODIFICATIONS
 
* * 
VIRGINIA ELECTRIC AND POWER COMPANY TO e
*
Mr. Harold R. Denton, Director                    It is our intent to complete these modifications at our four units in an orderly fashion that best utilizes the availability of all our resources. We will use scheduled outages where possible to perform these modifications. The Surry Unit 1 modifications will be installed during the steam generator re-placement outage. We currently plan to extend the duration of the Surry Unit 2 snubber inspection outage presently scheduled in late fall and the North Anna Unit 1 second refueling outage presently scheduled for early December to complete the majority of these modifications. The schedule for the North Anna Unit 2 outage is dependent upon the date of issue of a full power license.
* VIRGINIA ELECTRIC POWER COMPANY NORTH UNITS 1 & 2 AND SURRY UNITS 1 & 2 IMPLEMENTATION STATUS REPORT NUREG 0578: SHORT TERM LESSONS LEARNED REQUIREMENTS June, 1980 
We currently plan to extend the duration of the snubber inspection outage presently scheduled for November.
*
All work that can be supported by material delivery will be done during these outages.       No additional outages will be scheduled for the remaining items until all materials are available for that unit. However, modifications will be installed to the extent possible during unscheduled outages.
* ATTACHMENT A 2.1.1 EHERGENCY POWER SUPPLY Vepco has satisfied all the short term Lessons Learned Category A&B requirements for pressurizer heaters and pressurizer power operated relief valves, block valves and pressurizer level indications at North Anna Units 1 & 2 and Surry Units 1 & 2 . 
We hope this letter clearly demonstrates Vepco's commitment to meet the techni-cal and schedule requirements of NUREG 0578 to the best of our ability. We will be glad to provide additional information as it becomes available.
*
Very truly yours, 41:f;L::_.
* ATTACHMENT A 2 .1. 2 PERFORMANCE TESTING FOR PWR RELIEF AND SAFETY VALVES The reactor coolant system relief and safety valves are required to be functionally tested to demonstrate operability under expected operating conditions.
B. R. ,*-Sylvia Manager - Nuclear Operations and Maintenance RWG/smv:Hl cc:    Mr. James P. O'Reilly Mr. E. H. Webster- NRG/North Anna (w/drawings)
The Electric Power Research Institute's, "Program Plan for the Performance Verification of PWR Safety/Relief Valves and Systems" description and schedule has been found acceptable by the NRC staff. The short term Lessons Learned Category A requirement to commit to form an appropriate test has been satisfied for North Anna and Surry. Completion of the valve test program is presently scheduled for July 1981 and satisfies the short term Lessons Learned requirements . !
Mr. D. J. Burke - NRG/Surry Cw/drawings)
ATTACHMENT A 2.1.3.a DIRECT INDICATION OF POWER-OPERATED RELIEF VALVES AND SAFETY VALVES FOR PWRs Positive indication is required for reactor coolant system relief and safety valves. Vepco has installed acoustical monitors on both the power-operated relief valves (PORVs) and the safety valves at North Anna Units 1 & 2 and Surry Units 1 & 2. The system requires checkout during power operation at North Anna Unit 2 and Surry Unit 2. The acoustical monitor alarms in the control room when any of the valves open. The acoustical monitoring system is powered from vital buses at North Anna (semi-vital buses at Surry) and will be ly and environmentally qualified by the vendor, Babcock and Wilcox Company, and the utilities.
* TABLE OF CONTENTS ATTACHMENT A:    REMAINING NUREG 0578 MODIFICATIONS - CATEGORY A & B Section              Title 2.1.1      Emergency Power Supply
The limit switches on the PORVs, and the pressure and temperature sensors downstream of the PORVs and safety valves, provide backup methods for determining the position of the valves and are discussed in the emergency procedures.
            - Pressurizer Heaters
All short term Lessons Learned Category A & B requirements have been satisfied except for the Category B requirement of seismic and environmental qualification of the system. Attachment C contains a draft of the test program description including a schedule.
            - Pressurizer Level and Relief Block Valves 2.1.2     Performance Testing for BWR and PWR Relief and Safety Valves 2.1.3.a    Direct Indication of Power-Operated Relief Valve and Safety Valve Position for PWRs and BWRs 2.1.3.b    Instrumentation for Detection of Inadequate Core Cooling
The test program is projected to be completed by September, 1981.
            - Subcooling Meter
ATTACHMENT A 2. 1. 3. b INSTRUMENTATION FOR INADEQUATE CORE COOLING 2.1.3.b.l Core Cooling Monitor Vepco has installed at North Anna 1 & 2 and Surry 1 & 2 redundant primary coolant saturation meters designed by Westinghouse.
            - Additional Instrumentation 2.1.4      Diverse Containment Isolation 2.1.5.a    Dedicated H Control Penetrations 2
Each meter consists of a calculator and continuous display in the control room, is powered from a vital bus at North Anna (semi-vital bus at Surry), and alarms on low margin to saturation.
* 2.1.5 .c 2.1.6.a Capability to Install Hydrogen Recombiner at Each Light Water Nuclear Power Plant Integrity of Systems Outside Containment Likely to Contain Radioactive Materials for PWRs and BWRs 2.1.6.b    Design Review of Plant Shielding and Environmental Qualification of Equipment for Spaces/Systems Which Hay Be Used in Post-Accident Operations 2.1.7.a    Auto Initiation of the Auxiliary Feedwater Systems 2.1.7.b    Auxiliary Feedwater Flow Indication to Steam Generators 2.1.8.a    Post-Accident Sampling Capability
Input to the meters consists of eight core exit thermocouples, two from each core quadrant, three resistance temperature detectors from the hot and cold legs, and reactor coolant pressure signals. All short term Lessons Learned Category A & B requirements have been satisfied except the redundant safety grade wide range reactor ant pressure sensors at Surry Units 1 & 2. There is presently one non-safety grade wide range pressure sensor at Surry. Vepco has committed to upgrade the wide range pressure sensor to safety grade and provide a redundant safety grade wide range pressure sensor at Surry by January 1, 1981. North Anna Units 1 & 2 have redundant safety grade wide range pressure signals to the monitor. 2.1.3.b.2 Additional Instrumentation Vepco originally proposed in our letter dated November 26, 1979, to install a system of reactor vessel level measurement to be used in combination with the existing core exit thermocouples and the stalled subcooling meter. This system would measure differential pressure between the top of the reactor vessel and the bottom of the reactor vessel on two narrow range and two wide range instruments.
: 2. 1. 8. b Increased Range of Radiation Monitors 2.1.8.c    Improved In-Plant Iodine Instrumentation Under Accident Conditions
Vepco will install sys tern with the Section 2.1.9. a Westinghouse reactor coolant designed reactor vent system as vessel level described in 
: 2. 1. 9    Containment Post-Accident Monitoring
*
              - Containment Pressure Indication (ACRS)
* ATTACHMENT A 2.1.4 CONTAINMENT ISOLATION North Anna -Diversity At North Anna, all containment isolation valves (CIVs) in non-essential systems that were originally designed to close upon receipt of an matic isolation signal meet the Lessons Learned position on diversity.
              - Containment Water Level Indication (ACRS)
A diverse safety injection signal is provided on these valves with the exception of main steam isolation valves (MSIVs). Diverse parameters are used to initiate MSIV closure. All Category A and B requirements have been satisfied at North Anna Units 1 & 2. North Anna -Reset The North Anna design precludes automatic reopening of containment isolation valves upon reset of the isolation signal. However, the automatic isolation valve in the condenser air ejector vent line would reopen after reset if a high radiation condition exists in the ser. Therefore, administrative controls are in effect to disable the high radiation interlock on this valve prior to resetting the ment isolation signal if containment high pressure exists. Vepco has committed to modifications to North Anna Units 1 & 2 by January 1, 1981 to prevent the condenser air ejector isolation valve from reopening without deliberate operator action. All other Lesson Learned Category A and B requirements have been satisfied at North Anna Units 1 & 2. Surry -Diversity Vepco has provided sufficient isolation provisions for the few essential systems at Surry that are not automatically isolated by containment isolation signal. The penetrations with normally closed manual isolation valves will be locked closed and administratively controlled when open during plant operation.
              - Containment Hydrogen Indication (ACRS)
As a result of recent modifications at Surry, all of the automatic tainment isolation valves in non-essential systems except the condenser air ejector vent line receive diverse isolation signals. Diversity is provided by use of a safety injection signal or steam line isolation signal. The condenser air ejector high radiation vent line isolates upon receipt of a high containment pressure signal. As an interim control, this line is manually isolated upon receipt of a valid safety injection signal. Vepco has committed to provide a diverse isolation signal (contailliuent high radiation) to the condenser air ejector isolation valve by ary 1, 1981. However, delivery of the high range radiation monitors is currently scheduled for March, 1981. All other Category A & B requirements have been satisfied at Surry Units 1 & 2 .
* 2.2.2.b
* ATTACHNENT A 2. 1. 4 CONTAINMENT ISOLATION (Continued)
              - Reactor Coolant System Venting (NRR)
Surry -Reset The Surry design precludes automatic reopening of containment isolation valves upon reset of the isolation signals. However, the condenser air ejector condenser vent line isolation valve will reopen after reset if a high radiation condition exists in the condenser air ejector vent line. The NRC and Vepco have agreed that no modifications are required because this system has an electrical interlock which prevents reset until the containment pressure is subatmospheric.
Onsite Technical Support Center Condensate Storage Tank Alarm and Indication
In addition, a recent modification has installed a second containment isolation valve that does not receive a divert signal. All Category A and B requirements have been satisfied at Surry Units 1 & 2 .
 
*
ATTACHMENT B:    SCHEDULE OF IMPLEMENTATION Table I - NUREG 0578 Implementation Status Table II - NUREG 0578 Installation Schedule ATTACB. .MENT C: B&W ACOUSTICAL MONITORING TEST PROGRAM Introduction Test Program Requirements Equipment To Be Tested Containment Environmental Requirements Control Room Equipment Requirements Seismic Testing Test Requirement Margins Failure Criteria Schedule ATTACHMENT D:    POST-ACCIDENT SAMPLING SYSTEM DESIGN INFOPJ*!ATION Introduction Design Basis
* ATTACHMENT A 2.1.5.a DEDICATED HYDROGEN CONTROL PENETRATIONS Surry Design The Surry design uses hydrogen recombiners internal to the ment. The Containment Vacuum pumps, the Hydrogen Purge lines and the Hydrogen Analyzer each take suction through the common containment penetrations.
 
Two containment isolation valves located outside the containment will be installed on each of these lines. Since active gases could be flowing through these pipes during the accident mode, these systems were considered to be extensions of the containment.
===System Description===
North Anna Design The North Anna design uses redundant external Hydrogen Recombiners shared between Units 1 and 2. The Hydrogen Recombiner line takes suction from the same penetration used for the suction of the Containment Vacuum pumps, the Hydrogen Purge lines and the Hydrogen Analyzer.
Design Evaluation Tests and Inspections Instrument Applications Design Input Requirements Drawings ATTACHMENT E:    POST-ACCIDENT RADIATION WASTE CONNECTION TIE-IN DESIGN INFORtf...ATION ATTACHMENT F:    HYDROGEN RECOMBINER GAS COOLER OUTLET MODIFICATION DESIGN INFORMATION
Each of these lines take sue tion through common ment penetrations.
 
Two containment isolation valves located outside of containment will be installed on each of these lines. Since radioactive gases could be flowing through these pipes during the post-accident mode, these systems were considered to become sions of containment and the modifications listed below were proposed.
ATTACHMENT A REMAINING NUREG 0578 MODIFICATIONS
The discharge line from the hydrogen recombiner shares the same tration with the discharge line from the hydrogen analyzer. ment isolation is provided by a check valve inside containment and two remote manual valves outside containment.
* NORTH VIRGINIA ELECTRIC POWER COMPANY Ai.~NA  UNITS 1 & 2 AND SURRY UNITS 1 & 2 IMPLEMENTATION STATUS REPORT NUREG 0578:    SHORT TERM LESSONS LEARNED REQUIREMENTS
The combined hydrogen recombiner suction and discharge line is sized such that the flow requirements for the use of the combustible gas control system are satisfied.
* June, 1980
Containment Vacuum Systems (North Anna and Surry) Vepco has committed to install redundant, remote manual actuated valves in series to isolate the containment vacuum pumps from the combustible gas control system. This a single failure proof design to isolate the containment vacuum pumps thus dedicating the penetration to the combustible gas control system. Hydrogen Recombiner System(North Anna Only) Vepco has committed to convert the manual valves in the hydrogen combiner piping to remote manual actuation.
 
This is in response to the shielding review of Section 2. 1. 6. b. Hydrogen Purge System (North Anna Only) The backup Hydrogen Purge system is presently isolated from the hydrogen analyzers and recombiners by an administratively locked closed valve. This system is not operated during normal plant operations.
ATTACHMENT A
Its use would only be contemplated if both hydrogen recombiners fail. Vepco has committed to relocation of remote manual valves to areas accessible within five days per the requirements of the North Anna FSAR.
* 2.1.1 EHERGENCY POWER SUPPLY Vepco has satisfied all the short term Lessons Learned Category A&B requirements for pressurizer heaters and pressurizer power operated relief valves, block valves and pressurizer level indications at North Anna Units 1 & 2 and Surry Units 1 & 2 .
*
 
* ATTACHHENT A 2.1.5.a DEDICATED HYDROGEN CONTROL PENETRATIONS (Continued)
ATTACHMENT A
* 2 .1. 2 PERFORMANCE TESTING FOR PWR RELIEF AND SAFETY VALVES The reactor coolant system relief and safety valves are required to be functionally tested to demonstrate operability under expected operating conditions. The Electric Power Research Institute's, "Program Plan for the Performance Verification of PWR Safety/Relief Valves and Systems" description and schedule has been found acceptable by the NRC staff.
The short term Lessons Learned Category A requirement to commit to per-form an appropriate test has been satisfied for North Anna and Surry.
Completion of the valve test program is presently scheduled for July 1981 and satisfies the short term Lessons Learned requirements .
 
ATTACHMENT A 2.1.3.a DIRECT INDICATION OF POWER-OPERATED RELIEF VALVES AND SAFETY VALVES FOR PWRs Positive indication is required for reactor coolant system relief and safety valves. Vepco has installed acoustical monitors on both the power-operated relief valves (PORVs) and the safety valves at North Anna Units 1 & 2 and Surry Units 1 & 2. The system requires checkout during power operation at North Anna Unit 2 and Surry Unit 2.
The acoustical monitor alarms in the control room when any of the valves open. The acoustical monitoring system is powered from vital buses at North Anna (semi-vital buses at Surry) and will be seismical-ly and environmentally qualified by the vendor, Babcock and Wilcox Company, and the utilities. The limit switches on the PORVs, and the pressure and temperature sensors downstream of the PORVs and safety valves, provide backup methods for determining the position of the valves and are discussed in the emergency procedures.
All short term Lessons Learned Category A & B requirements have been satisfied except for the Category B requirement of seismic and environmental qualification of the system. Attachment C contains a draft of the test program description including a schedule.      The test program is projected to be completed by September, 1981.
 
ATTACHMENT A
: 2. 1. 3. b INSTRUMENTATION FOR INADEQUATE CORE COOLING 2.1.3.b.l  Core Cooling Monitor Vepco has installed at North Anna 1 & 2 and Surry 1 & 2 redundant primary coolant saturation meters designed by Westinghouse.      Each meter consists of a calculator and continuous display in the control room, is powered from a vital bus at North Anna (semi-vital bus at Surry), and alarms on low margin to saturation. Input to the meters consists of eight core exit thermocouples, two from each core quadrant, three resistance temperature detectors from the hot and cold legs, and reactor coolant pressure signals.
All short term Lessons Learned Category A & B requirements have been satisfied except the redundant safety grade wide range reactor cool-ant pressure sensors at Surry Units 1 & 2. There is presently one non-safety grade wide range pressure sensor at Surry.       Vepco has committed to upgrade the wide range pressure sensor to safety grade and provide a redundant safety grade wide range pressure sensor at Surry by January 1, 1981. North Anna Units 1 & 2 have redundant safety grade wide range pressure signals to the monitor.
2.1.3.b.2  Additional Instrumentation Vepco originally proposed in our letter dated November 26, 1979, to install a system of reactor vessel level measurement to be used in combination with the existing core exit thermocouples and the in-stalled subcooling meter. This system would measure differential pressure between the top of the reactor vessel and the bottom of the reactor vessel on two narrow range and two wide range instruments.
Vepco will install a Westinghouse      designed reactor vessel level sys tern with  the  reactor coolant  vent system as described in Section 2.1.9.
 
ATTACHMENT A 2.1.4 CONTAINMENT ISOLATION North Anna - Diversity At North Anna, all containment isolation valves (CIVs) in non-essential systems that were originally designed to close upon receipt of an auto-matic isolation signal meet the Lessons Learned position on diversity.
A diverse safety injection signal is provided on these valves with the exception of main steam isolation valves (MSIVs). Diverse parameters are used to initiate MSIV closure. All Category A and B requirements have been satisfied at North Anna Units 1 & 2.
North Anna - Reset The North Anna design precludes automatic reopening of containment isolation valves upon reset of the isolation signal.        However, the automatic isolation valve in the condenser air ejector vent line would reopen after reset if a high radiation condition exists in the conden-ser. Therefore, administrative controls are in effect to disable the high radiation interlock on this valve prior to resetting the contain-ment isolation signal if containment high pressure exists.
Vepco has committed to modifications to North Anna Units 1 & 2 by January 1, 1981 to prevent the condenser air ejector isolation valve from reopening without deliberate operator action.      All other Lesson Learned Category A and B requirements have been satisfied at North Anna Units 1 & 2.
Surry - Diversity Vepco has provided sufficient isolation provisions for the few non-essential systems at Surry that are not automatically isolated by containment isolation signal. The penetrations with normally closed manual isolation valves will be locked closed and administratively controlled when open during plant operation.
As a result of recent modifications at Surry, all of the automatic con-tainment isolation valves in non-essential systems except the condenser air ejector vent line receive diverse isolation signals. Diversity is provided by use of a safety injection signal or steam line isolation signal. The condenser air ejector high radiation vent line isolates upon receipt of a high containment pressure signal.        As an interim control, this line is manually isolated upon receipt of a valid safety injection signal.
Vepco has committed to provide a diverse isolation signal (contailliuent high radiation) to the condenser air ejector isolation valve by Janu-ary 1, 1981. However, delivery of the high range radiation monitors is currently scheduled for March, 1981.      All other Category A & B requirements have been satisfied at Surry Units 1 & 2 .
 
ATTACHNENT A
: 2. 1. 4 CONTAINMENT ISOLATION (Continued)
Surry - Reset The Surry design precludes automatic reopening of containment isolation valves upon reset of the isolation signals. However, the condenser air ejector condenser vent line isolation valve will reopen after reset if a high radiation condition exists in the condenser air ejector vent line. The NRC and Vepco have agreed that no modifications are required because this system has an electrical interlock which prevents reset until the containment pressure is subatmospheric. In addition, a recent modification has installed a second containment isolation valve that does not receive a divert signal.
All Category A and B requirements have been satisfied at Surry Units 1
          & 2.
 
ATTACHMENT A
* 2.1.5.a DEDICATED HYDROGEN CONTROL PENETRATIONS Surry Design The Surry design uses hydrogen recombiners internal to the contain-ment. The Containment Vacuum pumps, the Hydrogen Purge lines and the Hydrogen Analyzer each take suction through the common containment penetrations. Two containment isolation valves located outside the containment will be installed on each of these lines. Since radio-active gases could be flowing through these pipes during the post-accident mode, these systems were considered to be extensions of the containment.
North Anna Design The North Anna design uses redundant external Hydrogen Recombiners shared between Units 1 and 2. The Hydrogen Recombiner line takes suction from the same penetration used for the suction of the Containment Vacuum pumps, the Hydrogen Purge lines and the Hydrogen Analyzer. Each of these lines take sue tion through common contain-ment penetrations. Two containment isolation valves located outside of containment will be installed on each of these lines.        Since radioactive gases could be flowing through these pipes during the post-accident mode, these systems were considered to become exten-sions of containment and the modifications listed below were proposed.
The discharge line from the hydrogen recombiner shares the same pene-tration with the discharge line from the hydrogen analyzer. Contain-ment isolation is provided by a check valve inside containment and two remote manual valves outside containment. The combined hydrogen recombiner suction and discharge line is sized such that the flow requirements for the use of the combustible gas control system are satisfied.
Containment Vacuum Systems (North Anna and Surry)
Vepco has committed to install redundant, remote manual actuated valves in series to isolate the containment vacuum pumps from the combustible gas control system. This p~ovides a single failure proof design to isolate the containment vacuum pumps thus dedicating the penetration to the combustible gas control system.
Hydrogen Recombiner System(North Anna Only)
Vepco has committed to convert the manual valves in the hydrogen re-combiner piping to remote manual actuation. This is in response to the shielding review of Section 2. 1. 6. b.
Hydrogen Purge System (North Anna Only)
* The backup Hydrogen Purge system is presently isolated from the hydrogen analyzers and recombiners by an administratively locked closed valve.
operations.
This system is not operated during normal plant Its use would only be contemplated if both hydrogen recombiners fail. Vepco has committed to relocation of remote manual valves to areas accessible within five days per the requirements of the North Anna FSAR.
 
ATTACHHENT A 2.1.5.a DEDICATED HYDROGEN CONTROL PENETRATIONS (Continued)
Hydrogen Analyzer System Vepco's evaluation of the radiological consequences to personnel opening the administratively locked closed valves of the hydrogen analyzers has concluded that these valves should be administratively locked open. These valves are located downstream of the proposed redundant containment isolation valves. The hydrogen analyzer piping constitutes a closed system outside of containment, and the opening of these manual valves is acceptable.
Hydrogen Analyzer System Vepco's evaluation of the radiological consequences to personnel opening the administratively locked closed valves of the hydrogen analyzers has concluded that these valves should be administratively locked open. These valves are located downstream of the proposed redundant containment isolation valves. The hydrogen analyzer piping constitutes a closed system outside of containment, and the opening of these manual valves is acceptable.
All other short term Lessons Learned Category A & B requirements are satisfied.
All other short term Lessons Learned Category A & B requirements are satisfied. Vepco has committed to complete all the above plant modi-fications by January 1, 1981.
Vepco has committed to complete all the above plant fications by January 1, 1981. These modifications required purchasing 121 solenoid or air operated valves as replacements for manual valves or for new applications.
These modifications required purchasing 121 solenoid or air operated valves as replacements for manual valves or for new applications. As shown in Table II of Attachment B, the scheduled delivery for the solenoid valves is December, 1980. We are at tempting to expedite this order and receive partial shipments. However, all valves may not be available to support the scheduled outages. Where possible, the valves will be used for the new applications and late deliveries will be used as replacement valves as resources and plant availability permit .
As shown in Table II of Attachment B, the scheduled delivery for the solenoid valves is December, 1980. We are at tempting to expedite this order and receive partial shipments.
 
However, all valves may not be available to support the scheduled outages. Where possible, the valves will be used for the new applications and late deliveries will be used as replacement valves as resources and plant availability permit .
ATTACHMENT A
* *
* 2. 1. 5. c HYDROGEN RECOMBINER PROCEDURES All short term Lessons Learned Category A & B requirements are satis-fied. At North Anna, the recombiner procedures will be rereviewed after the modifications of Section 2.1.5.a and 2.1.6.b are complete .
* ATTACHMENT A 2. 1. 5. c HYDROGEN RECOMBINER PROCEDURES All short term Lessons Learned Category A & B requirements are fied. At North Anna, the recombiner procedures will be rereviewed after the modifications of Section 2.1.5.a and 2.1.6.b are complete .
 
*
ATTACHMENT A
* ATTACHMENT A 2.1.6.a INTEGRITY OF SYSTEMS OUTSIDE CONTAINMENT A leakage reduction program has been developed and implemented for both North Anna and Surry. The systems included are those expected to contain highly contaminated fluids after an accident, (Safety Injection, Recirculation Spray, Containment Purge, Hydrogen biner (North Anna), Sampling, Containment Vacuum, Boron Recovery and Resin Waste. A list of systems excluded was provided and justified.
* 2.1.6.a INTEGRITY OF SYSTEMS OUTSIDE CONTAINMENT A leakage reduction program has been developed and implemented for both North Anna and Surry. The systems included are those expected to contain highly contaminated fluids after an accident, (Safety Injection, Recirculation Spray, Containment Purge, Hydrogen Recom-biner (North Anna), Sampling, Containment Vacuum, Boron Recovery and Resin Waste. A list of systems excluded was provided and justified.
Inability to use any of the excluded systems would not preclude any option for cooling the core nor prevent the use of any safety system. Leak rate measurements have been made and reported.
Inability to use any of the excluded systems would not preclude any option for cooling the core nor prevent the use of any safety system.
A preventative maintenance program, including periodic leak tests, has been lished. All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna 1 & 2 and Surry 1 & 2 .
Leak rate measurements have been made and reported. A preventative maintenance program, including periodic leak tests, has been estab-lished.
*
All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna 1 & 2 and Surry 1 & 2 .
* ATTACHMENT A 2. 1. 6. b DESIGN REVIEW OF PLAJ.\l'T SHIELDING AND ENVIRONMENTAL QUALIFICATIONS Shielding Review A design review was conducted using the Stone and Webster Engineering Corporation "Activity-2" and "Radioisotopic" computer codes. The NRC specified source terms were used. All systems designed to tion after an accident were considered as sources, including Safety Injection, Recirculation Spray, Hydrogen Recombiner, Sampling, iary building sump and drain lines. The letdown portion of the CVCS was excluded because it is isolated and because its use in a accident situation would be unacceptable.
 
All vital areas were identified and evaluated.
ATTACHMENT A
Areas where continuous occupancy is required are the control room, the technical support center, counting room, operational support center and security control center. Limited access is needed to such places as emergency power supplies and sampling stations.
* 2. 1. 6. b DESIGN REVIEW OF PLAJ.\l'T SHIELDING AND ENVIRONMENTAL QUALIFICATIONS Shielding Review A design review was conducted using the Stone and Webster Engineering Corporation "Activity-2" and "Radioisotopic" computer codes.           The NRC specified source terms were used. All systems designed to func-tion after an accident were considered as sources, including Safety Injection, Recirculation Spray, Hydrogen Recombiner, Sampling, Auxil-iary building sump and drain lines. The letdown portion of the CVCS was excluded because it is isolated and because its use in a post-accident situation would be unacceptable.         All vital areas were identified and evaluated.         Areas where continuous occupancy is required are the control room, the technical support center, counting room, operational support center and security control center. Limited access is needed to such places as emergency power supplies and sampling stations. The need for modifications was identified in our letter dated January 10, 1980 and detailed in our letter of April 1, 1980.
The need for modifications was identified in our letter dated January 10, 1980 and detailed in our letter of April 1, 1980. All the Category A requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2. Vepco has committed to implementation of the following modifications by January 1, 1981 to satisfy the Category B requirements for North Anna Units 1 & 2 and Surry Units 1 & 2. -Post-accident sampling facilities and associated shielding (2.1.8.a, Additional design information in Attachment D) -Hydrogen recombiner modifications (2.1.8.b, North Anna only, Additional design information in Attachment F) -Containment Atmosphere cleanup system modifications (Design information in April 1, 1980 letter) -Shielding of essential areas -Automatic temperature control of cooling water to oil cooler to charging pumps (Surry only) In addition, Vepco has committed to implementation of the following modifications at North Anna Units 1 & 2 and Surry Units 1 & 2. These modifications are not required to validate the results of the ing review or satisfy the requirements of NUREG 0578 but would reduce personnel exposure during the Recovery phase. Waste cleanup system tie-ins (Additional design information in Attachment E) -Auxiliary building and safeguards building sump drain cations (Design information provided in April 1, 1980 letter)
All the Category A requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2.
* ATTACHNENT A 2. 1. 6. b DESIGN REVIEW OF PLAi'JT SHIELDING AND ENVIRONMENTAL QUALIFICATIONS (Continued)
Vepco has committed to implementation of the following modifications by January 1, 1981 to satisfy the Category B requirements for North Anna Units 1 & 2 and Surry Units 1 & 2.
Equipment Qualification The evaluation of radiation environmental qualification of equipment is proceeding slowly because of the difficulty in obtaining vendor data on older plants. The mechanical equipment review is complete for North Anna and Surry. Vepco has committed to reporting the results of the electrical equipment review as they are available and in conjunction with the responses to I.E. Bulletin 79-0lB. Any sary modifications will be made as material becomes available.
                  - Post-accident sampling facilities and associated shielding (2.1.8.a, Additional design information in Attachment D)
Replacement of, or shielding for, material with insufficient ation resistance in the following equipment has been identified to date and is in progress as noted. These materials meet the ments of the FSAR but not the extended requirements of NUREG 0578. 1) Replacement Safeguards area ventilation fan motors have been ordered. (North Anna) 2) Stainless steel bearings for component cooling water and service water insert check valves to replace teflon lug and plate bearings have been ordered. 3) Replacement service water radiation monitor pump motors have been ordered. 4) 5) 6) 7) 8) 9) 1 O) 11) Replacement mechanical seal bellows for the service water radiation monitor pumps have been ordered. (North Anna) Additional shielding is being designed for the service water ation monitors.
                  - Hydrogen recombiner modifications (2.1.8.b, North Anna only, Additional design information in Attachment F)
Replacement 0-rings in the high head safety injection pump seal cooler are being ordered. Valve seat replacements are on order for component cooling water valves to the reactor coolant pumps. (North Anna) Charging pump gaskets and mechanical seals on cooling water pump on charging pump are on order. (Surry) RWST cross-connect trip valve teflon seats are under further ation. (Surry) Containment Isolation Valve Buna-N diaphrams will be replaced with qualified material during normal maintenance. (Surry) Electrical equipment as identified in response to I.E. Bulletin 79-0lB .
                  - Containment Atmosphere cleanup system       modifications   (Design information in April 1, 1980 letter)
* ATTACHMENT A 2.1.7.a AUTO INITIATION OF THE AUXILIARY FEEDWATER SYSTEMS The auxiliary feedwater system (AFW) is designed as a safety-related system. The AFW initiating circuitry incorporates both automatic and manual system start capability, including manual initiation of the system from the main control room. Manual initiation capability is provided independent of automatic initiation, and the design of the automatic initiation circuitry is such that a single-failure cannot result in total loss of the system function.
                  - Shielding of essential areas
The design incorporates testability, and the system is powered from reliable emergency buses as specified in NUREG-0578 (including automatic actuation of a-c motor driven pumps and valve loads onto the gency buses). All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2 .
                  - Automatic temperature control of cooling water to oil cooler to charging pumps (Surry only)
* ATTACHHENT A 2. 1. 7. b AUXILIARY FEEDWATER FLOW INDICATION TO STEAH GENERATORS Auxiliary feedwater flow to each of the three steam generators is indicated in the .control room. The flow loop for each steam generator is powered from a vital bus. Steam generator level instruments back up the flow instruments to satisfy the single failure criterion.
In addition, Vepco has committed to implementation of the following modifications at North Anna Units 1 & 2 and Surry Units 1 & 2. These modifications are not required to validate the results of the shield-ing review or satisfy the requirements of NUREG 0578 but would reduce personnel exposure during the Recovery phase.
Each steam generator has three narrow range and one wide range level instrument loops which read out in the control room and are energized from vital instrument buses. The auxiliary feedwater flow indication is testable from the mitter back to the indicator.
Waste cleanup system tie-ins (Additional design information in Attachment E)
The total accuracy of the auxiliary feed flow loops satisfies the requirement of +/-10% accuracy.
                  - Auxiliary building and safeguards building sump drain modifi-cations (Design information provided in April 1, 1980 letter)
All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2.
 
* * * -------------------------------
ATTACHNENT A
ATTACHMENT A 2. 1. 8. a IMPROVED POST-ACCIDENT SAMPLING Interim procedures have been written and minor modifications have been made to provide sampling capability under post-accident tions of both the reactor coolant and the containment atmosphere.
: 2. 1. 6. b DESIGN REVIEW OF PLAi'JT SHIELDING AND ENVIRONMENTAL QUALIFICATIONS (Continued)
The containment atmosphere sample lines will be complete except for heat tracing by June 30, 1980 except for Surry Unit 2, which will be complete except for heat tracing prior to startup. All other short term Lessons Learned Category A requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2. Vepco has committed to satisfying the short term Lessons Learned Category B requirements of an improved post-accident sampling system. Attachment D provides a detailed description of these systems ing a schedule.
Equipment Qualification The evaluation of radiation environmental qualification of equipment is proceeding slowly because of the difficulty in obtaining vendor data on older plants.     The mechanical equipment review is complete for North Anna and Surry.       Vepco has committed to reporting the results of the electrical equipment review as they are available and in conjunction with the responses to I.E. Bulletin 79-0lB. Any neces-sary modifications will be made as material becomes available.
Table II of Attachment B shows the projected schedule for installation of this facility at each station. The existing air operated containment isolation valves are being replaced with direct acting solenoid valves to ensure more reliable operation during accident conditions.
Replacement of, or shielding for, material with insufficient radi-ation resistance in the following equipment has been identified to date and is in progress as noted.     These materials meet the require-ments of the FSAR but not the extended requirements of NUREG 0578.
Delivery of these valves is currently scheduled for December, 1980. Existing isolation valves will be utilized until the new valves are available and plant conditions and resources allow replacement .
: 1) Replacement Safeguards area ventilation fan motors have been ordered.
* *
(North Anna)
* ATTACHMENT A 2.1.8.b INCREASED RANGE OF RADIATION MONITORS Interim methods for monitoring high level releases have been developed and implemented.
: 2) Stainless steel bearings for component cooling water and service water insert check valves to replace teflon lug and plate bearings have been ordered.
All potential releases are monitored by ing the ventilation vent stack, the process vent stack and the main steam header discharge. (The air ejector discharge is diverted to containment on high air ejector activity.)
: 3) Replacement   service water   radiation monitor   pump motors have been ordered.
Noble gas releases are monitored by a TA900-TA600 area monitor system installed on each discharge line. This system uses 3 detectors to cover the range from lo-5 to 104 R/hr. The range, power supply and reading frequency requirements are met. Provisions also exist for monitoring iodine and particulate effluents (except for steam line discharges).
: 4) Replacement mechanical seal bellows for the service water radiation monitor pumps have been ordered.     (North Anna)
Samples are collected and the cartridges and filter media are analyzed with multi-channel (GeLi) analyzers.
: 5)  Additional shielding is being designed for the service water radi-ation monitors.
All the short term Lessons Learned Category A requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2. Containment High Range Radiation Monitors The proposed containment high range radiation monitoring system isfies the short term Lessons Learned Category B requirements.  
: 6)  Replacement 0-rings in the     high head safety injection pump seal cooler are being ordered.
-photon radiation is measured -single ion chamber detector with a range of 100 R/hr to 107 R/hr the readout will be located in the control room and consists of a rate meter and strip chart recorder that starts on an alert alarm the system is sensitive to energies from 60 KEV to 3 NEV tons with +/-20% accuracy for photons 0.1 to 3 MEV -the calibration will be performed each refueling outage. The detector will be returned to the factory for calibration.
: 7)  Valve seat replacements are on order for component cooling water valves to the reactor coolant pumps.     (North Anna)
The rate meter will have the electronic realignment performed at the station or the factory -each redundant monitor will be powered by a separate vital instrument bus the monitors were purchased to the seismic Category I ments of Regulatory Guide 1.100 (1977) and to the in ment LOCA conditions in accordance with Regulatory Guide .1.89 (1974) -the detectors are to be at separate locations on the inside crane wall above the operating deck level to provide a able assessment of containment radiation level
: 8)  Charging pump gaskets and mechanical seals on cooling water pump on charging pump are on order.     (Surry)
*
: 9)  RWST cross-connect trip valve teflon seats are under further evalu-ation.   (Surry) 1 O)  Containment Isolation Valve Buna-N diaphrams will be replaced with qualified material during normal maintenance.     (Surry)
* ATTACHMENT A 2. 1. 8. b INCREASED RANGE OF RADIATION HONITORS (Continued)
: 11)  Electrical equipment as identified in response to I.E. Bulletin 79-0lB .
The containment radiation monitors will be supplied by Victoreen Instruments Division.
 
Two monitors are to be shipped from their first manufacturing lot in August, 1980. The remaining six monitors will be shipped from the second manufacturing lot in November, 1980. The control panels will not be shipped until December, 1980, and the Class lE recorders will be shipped in June, 1981. Ventilation Vent(s) and Process Vent Radiation Monitors To satisfy the Category B short term Lessons Learned requirements for accident effluent monitoring, the following system will be installed on the process vent and ventilation vent(s) at Surry and North Anna: The high range noble gas radiation monitors will have a range of 10-7 to 10+5 uci/cc (Xel33) under normal background tions (less than 1 mr/hr). The reduction of effluent detector sensitivity under maximum background conditions will not exceed the normal effluent instrument range. A multi-detector system with an automatic backgound correction feature and sufficient range overlap will be provided to ensure complete coverage for all anticipated background conditions.
ATTACHMENT A 2.1.7.a AUTO INITIATION OF THE AUXILIARY FEEDWATER SYSTEMS The auxiliary feedwater system (AFW) is designed as a safety-related system. The AFW initiating circuitry incorporates both automatic and manual system start capability, including manual initiation of the system from the main control room. Manual initiation capability is provided independent of automatic initiation, and the design of the automatic initiation circuitry is such that a single-failure cannot result in total loss of the AF\~ system function.         The design incorporates testability, and the system is powered from reliable emergency buses as specified in NUREG-0578 (including automatic actuation of a-c motor driven pumps and valve loads onto the emer-gency buses).
Equivalently shielded effluent and background subtract detectors in conjunction with a digital based system are required to obtain the required sensitivities.
All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2 .
Accident particulate and iodine releases will be determined by retrieving fixed filters for laboratory analysis.
 
The filters will be shielded to provide personnel protection during removal and reinstallation.
ATTACHHENT A
Several filters in parallel will provide for continuous sampling during filter removal. Based on proposals received from vendors, an effluent monitoring system that satisfies these requirements cannot be delivered until mid 1981. The interim system will be used until then. Main Steam Radiation Monitors As stated in our letter dated April 1, 1980, the interim increased range radiation monitors installed to satisfy the Category A ments meet all the Category B high range requirements.
* 2. 1. 7. b AUXILIARY FEEDWATER FLOW INDICATION TO STEAH GENERATORS Auxiliary feedwater flow to each of the three steam generators is indicated in the .control room. The flow loop for each steam generator is powered from a vital bus. Steam generator level instruments back up the flow instruments to satisfy the single failure criterion.
The monitor's maximum reading 0£9 10,000 R/hr corresponds to 9 a noble gas tration of 5.4 X 10 uc/cc at Surry and 1.4 X 10 uc/cc at North Anna. Engineering studies are in progress to improve the low range tivity of the interim monitoring capabilities in high background ditions and account for the "softening" of the energy spectrum after the accident, Until such a system can be developed, the existing monitors will be used along with sampling of the secondary system and off site radiation monitoring.
Each steam generator has three narrow range and one wide range level instrument loops which read out in the control room and are energized from vital instrument buses.
*
The auxiliary feedwater flow indication is testable from the trans-mitter back to the indicator. The total accuracy of the auxiliary feed flow loops satisfies the requirement of +/-10% accuracy.
* ATTACHMENT A 2. 1. 8. c IMPROVED IN-PLANT IODINE MONITORING Air monitoring is performed with portable air samplers.
All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2.
Cartridges are removed and counted in the shielded counting room with a channel analyzer.
 
To reduce noble gas interference, silver zeolite cartridges have been obtained.
ATTACHMENT A
To ensure timely analysis of the cartridges in an emergency, a dedicated single channel analyzer has been purchased for use in air monitoring.
* 2. 1. 8. a IMPROVED POST-ACCIDENT SAMPLING Interim procedures have been written and minor modifications have been made to provide sampling capability under post-accident condi-tions of both the reactor coolant and the containment atmosphere.
The required procedures are in effect. All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2 .
The containment atmosphere sample lines will be complete except for heat tracing by June 30, 1980 except for Surry Unit 2, which will be complete except for heat tracing prior to startup. All other short term Lessons Learned Category A requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2.
*
Vepco has committed to satisfying the short term Lessons Learned Category B requirements of an improved post-accident sampling system.
* ATTACHMENT A 2.1.9 CONTAINMENT POST-ACCIDENT MONITORING CONTAINMENT PRESSURE In order to monitor the containment pressure and meet the NUREG 0578 and R.G. 1.97 requirements, two separate transmitters, indicators and a two pen recorder will be installed.
Attachment D provides a detailed description of these systems includ-ing a schedule. Table II of Attachment B shows the projected schedule for installation of this facility at each station. The existing air operated containment isolation valves are being replaced with direct acting solenoid valves to ensure more reliable operation during accident conditions. Delivery of these valves is currently scheduled for December, 1980. Existing isolation valves will be utilized until the new valves are available and plant conditions and resources allow replacement .
The system will be capable of measuring containment pressure from 0 to 180 psia. The transmitters will be located outside of the containment and tap into two existing pressure sensing lines. The transmitter will be qualified for 5 x 106 (Surry) and 2.2 x 108 Rads (North Anna) total dose. The indicators and recorder will be located in the control room. As shown on Table 2 of Attachment B, material delivery is scheduled for December, 1980. CONTAINMENT WATER LEVEL The existing system for measuring containment water level at Surry Units 1 & 2 consists of one narrow range instrument for measuring sump level and starting a sump pump. In addition, there are two wide range instruments for measuring containment water level. The existing instruments are not qualified to the new design criteria.
 
The wide range instruments will be replaced with qualified instruments to measure the water level up to 9 feet. Two new narrow range instruments will be added for water level indication and the existing narrow range will continue to control the sump pump. A purchase order has been placed for Surry with Gems Sensory Division of Transamerica Delaval, Inc. to furnish level transmitters qualified to IEEE 323-1974 and IEEE 344-1975.
ATTACHMENT A
At the present time, there are no manufacturers of transmitters with the required documentation.
* 2.1.8.b INCREASED RANGE OF RADIATION MONITORS Interim methods for monitoring high level releases have been developed and implemented. All potential releases are monitored by instrument-ing the ventilation vent stack, the process vent stack and the main steam header discharge.     (The air ejector discharge is diverted to containment on high air ejector activity.)     Noble gas releases are monitored by a TA900-TA600 area monitor system installed on each discharge line. This system uses 3 detectors to cover the range from lo-5 to 104 R/hr.     The range, power supply and reading frequency requirements are met. Provisions also exist for monitoring iodine and particulate effluents (except for steam line discharges). Samples are collected and the cartridges and filter media are analyzed with multi-channel (GeLi) analyzers.
GENS expects to have testing completed by approximately November, 1980 and is confident that testing will be successful.
All the short term Lessons Learned Category A requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2.
However, if the tion date slips, Vepco will have to install an unqualified transmitter or wait for the required documentation which may call for a modification to the ordered transmitter.
Containment High Range Radiation Monitors The proposed containment high range radiation monitoring system sat-isfies the short term Lessons Learned Category B requirements.
                - photon radiation is measured
*              - single R/hr ion chamber detector with a range of 100 R/hr to 107 the readout will be located in the control room and consists of a rate meter and strip chart recorder that starts on an alert alarm the system is sensitive to energies from 60 KEV to 3 NEV pho-tons with +/-20% accuracy for photons 0.1 to 3 MEV
                - the calibration will be performed each refueling outage. The detector will be returned to the factory for calibration. The rate meter will have the electronic realignment performed at the station or the factory
                - each redundant   monitor will be powered by a separate vital instrument bus the monitors were purchased to the seismic Category I require-ments of Regulatory Guide 1.100 (1977) and to the in contain-ment LOCA conditions in accordance with Regulatory Guide .1.89 (1974)
                - the detectors are to be at separate locations on the inside crane wall above the operating deck level to provide a reason-able assessment of containment radiation level
 
ATTACHMENT A
* 2. 1. 8. b INCREASED RANGE OF RADIATION HONITORS (Continued)
The containment radiation monitors will be supplied by Victoreen Instruments Division. Two monitors are to be shipped from their first manufacturing lot in August, 1980. The remaining six monitors will be shipped from the second manufacturing lot in November, 1980.
The control panels will not be shipped until December, 1980, and the Class lE recorders will be shipped in June, 1981.
Ventilation Vent(s) and Process Vent Radiation Monitors To satisfy the Category B short term Lessons Learned requirements for accident effluent monitoring, the following system will be installed on the process vent and ventilation vent(s) at Surry and North Anna:
The high range noble gas radiation monitors will have a range of 10-7 to 10+5 uci/cc (Xel33) under normal background condi-tions (less than 1 mr/hr). The reduction of effluent detector sensitivity under maximum background conditions will not exceed the normal effluent instrument range. A multi-detector system with an automatic backgound correction feature and sufficient range overlap will be provided to ensure complete coverage for all anticipated background conditions. Equivalently shielded effluent and background subtract detectors in conjunction with a digital based system are required to obtain the required sensitivities.
Accident particulate and iodine releases will be determined by retrieving fixed filters for laboratory analysis. The filters will be shielded to provide personnel protection during removal and reinstallation. Several filters in parallel will provide for continuous sampling during filter removal.
Based on proposals received from vendors, an effluent monitoring system that satisfies these requirements cannot be delivered until mid 1981. The interim system will be used until then.
Main Steam Radiation Monitors As stated in our letter dated April 1, 1980, the interim increased range radiation monitors installed to satisfy the Category A require-ments meet all the Category B high range requirements. The monitor's maximum reading 0£ 10,000 R/hr corresponds to a noble gas concen-9                            9 tration of 5.4 X 10 uc/cc at Surry and 1.4 X 10 uc/cc at North Anna.
Engineering studies are in progress to improve the low range sensi-tivity of the interim monitoring capabilities in high background con-ditions and account for the "softening" of the energy spectrum after the accident,   Until such a system can be developed, the existing monitors will be used along with sampling of the secondary system
* and off site radiation monitoring.
 
ATTACHMENT A
: 2. 1. 8. c IMPROVED IN-PLANT IODINE MONITORING Air monitoring is performed with portable air samplers. Cartridges are removed and counted in the shielded counting room with a multi-channel analyzer. To reduce noble gas interference, silver zeolite cartridges have been obtained. To ensure timely analysis of the cartridges in an emergency, a dedicated single channel analyzer has been purchased for use in air monitoring. The required procedures are in effect.
All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2 .
 
ATTACHMENT A
* 2.1.9 CONTAINMENT POST-ACCIDENT MONITORING CONTAINMENT PRESSURE In order to monitor the containment pressure and meet the NUREG 0578 and R.G. 1.97 requirements, two separate transmitters, indicators and a two pen recorder will be installed. The system will be capable of measuring containment pressure from 0 to 180 psia.     The transmitters will be located outside of the containment and tap into two existing pressure sensing lines. The transmitter will be qualified for 5 x 106 (Surry) and 2.2 x 108 Rads (North Anna) total dose. The indicators and recorder will be located in the control room. As shown on Table 2 of Attachment B, material delivery is scheduled for December, 1980.
CONTAINMENT WATER LEVEL The existing system for measuring containment water level at Surry Units 1 & 2 consists of one narrow range instrument for measuring sump level and starting a sump pump.     In addition, there are two wide range instruments for measuring containment water level.         The existing instruments are not qualified to the new design criteria.       The wide range instruments will be replaced with qualified instruments to measure the water level up to 9 feet. Two new narrow range instruments will be added for water level indication and the existing narrow range will continue to control the sump pump.
A purchase order has been placed for Surry with Gems Sensory Division of Transamerica Delaval, Inc. to furnish level transmitters qualified to IEEE 323-1974 and IEEE 344-1975. At the present time, there are no manufacturers of transmitters with the required documentation.     GENS expects to have testing completed by approximately November, 1980 and is confident that testing will be successful. However, if the qualifica-tion date slips, Vepco will have to install an unqualified transmitter or wait for the required documentation which may call for a modification to the ordered transmitter.
The North Anna Units 1 & 2 containment water level indication system satisfies the short term lessons learned Category A and B requirements.
The North Anna Units 1 & 2 containment water level indication system satisfies the short term lessons learned Category A and B requirements.
CONTAINMENT HYDROGEN ANALYZER A continuous indication of hydrogen concentration in the containment atmosphere will be provided in the control room. The analyzer is quired to provide readout one hour after the accident .
CONTAINMENT HYDROGEN ANALYZER A continuous indication of hydrogen concentration in the containment atmosphere will be provided in the control room. The analyzer is re-quired to provide readout one hour after the accident .
* ATTACHMENT A 2.1.9 CONTAINMENT POST-ACCIDENT MONITORING (Continued)
 
Four new hydrogen analyzers have been purchased from Comsip and will replace the existing hydrogen analyzers.
ATTACHMENT A
This replacement is required to upgrade the qualification of the hydrogen analyzers to IEEE-323, 1974 and IEEE-344, 1974. The existing hydrogen analyzers do not meet these qualifications and the manufacturer will not provide nuclear qualified units. While no vendor has completed an environmental test program showing qualification to Regulatory Guide 1. 89, Comsip plans to have such a program complete several months before other vendors. The two cross-connected hydrogen analyzers will be located in the iary building where the existing hydrogen analyzers are now located and will provide redundancy for both units. The analyzers will take suction from the same penetrations as the containment vacuum pumps and return the sample to the containment through the dedicated hydrogen return line. Indicators and recorders will be located in the control room. Table 2 of Attachment B shows material delivery scheduled for March, 1981. REACTOR COOLANT SYSTEM VENT Vepco provided, in our letter of April 1, 1980, the design for the reactor coolant system vent and has addressed all of the clarification items in the NRC clarification letter of October 30, 1979. All of the short term Lessons Learned Category A requirements have been satisfied for North Anna 1 & 2 and Surry 1 & 2. A purchase order has been placed with Westinghouse to furnish a Reactor Vessel Head Vent System and Pressurizer Vent System that satisfy all NUREG-0578 requirements for North Anna Units 1 & 2 and Surry Units 1 & 2. Westinghouse has encountered problems during the implementation of these systems at another operating plant. Space limitations and high radiation exposure significantly extended the time for installation.
* 2.1.9 CONTAINMENT POST-ACCIDENT MONITORING (Continued)
Vepco and Westinghouse are investigating an alternative method of installing the system to alleviate the installation concerns.
Four new hydrogen analyzers have been purchased from Comsip and will replace the existing hydrogen analyzers. This replacement is required to upgrade the qualification of the hydrogen analyzers to IEEE-323, 1974 and IEEE-344, 1974. The existing hydrogen analyzers do not meet these qualifications and the manufacturer will not provide nuclear qualified units.
This alternative requires connecting the level system to the existing vessel head vent and connecting the head vent to a spare part length CRD:M. This would require removal of the vessel head to allow removal of the CRDM housing internals.
While no vendor has completed an environmental test program showing qualification to Regulatory Guide 1. 89, Comsip plans to have such a program complete several months before other vendors.
Based on the remaining uncertainties with material delivery, the need for revised design analysis, remaining installation concerns, and the requirement for head removal, we plan to install the level and vent systems during refueling outages as shown in Attachment II.
The two cross-connected hydrogen analyzers will be located in the auxil-iary building where the existing hydrogen analyzers are now located and will provide redundancy for both units.
* ATTACHMENT A 2.1.9 POST-ACCIDENT MONITORING AND CONTROL PANEL A Post-Accident Monitoring and Control (PAi'1C) panel will be supplied and mounted in each Main Control Room for North Anna Units 1 & 2 and Surry Units 1 & 2. Each panel will house the controls and indication for the Reactor and Pressurizer Vessel Vents valves, the Reactor Water Level indication, the Hydrogen Analyzer Unit line up control, Hydrogen Analyzer start control and Hydrogen Indicator, and the Containment trip valve control (keyback) and indication for the Hydrogen Analyzers and the Hydrogen Recombine rs. Also, for North Anna, these panels will contain the Post-Accident recorders, which will record Containment Water Level (both and narrow range). The recorders for Surry will be mounted on the existing main control board vertical section due to space limitations.
The analyzers will take suction from the same penetrations as the containment vacuum pumps and return the sample to the containment through the dedicated hydrogen return line. Indicators and recorders will be located in the control room.
These PAMC panels must be installed prior to pletion of the above mentioned NUREG 0578 2.1.9 items.
Table 2 of Attachment B shows material   delivery scheduled for March, 1981.
* ATTACHMEHT A 2.2.2.b ONSITE TECHNICAL SUPPORT CENTER The interim onsite technical support centers established at North Anna and Surry satisfies the Category A requirements.
REACTOR COOLANT SYSTEM VENT Vepco provided, in our letter of April 1, 1980, the design for the reactor coolant system vent and has addressed all of the clarification items in the NRC clarification letter of October 30, 1979. All of the short term Lessons Learned Category A requirements have been satisfied for North Anna 1 & 2 and Surry 1 & 2.
A permanent Technical Support Center (TSC) will be constructed at each site. It will be designed and constructed to meet all ments established in NUREG 0578 and clarified in NRC letters of October 30, 1979 and April 25, 1980. We are proceeding with detailed design of the TSC. We plan to begin construe tion this summer. Based on recent discussions with your staff, we believe this will satisfy your requirements for installation.
A purchase order has been placed with Westinghouse to furnish a Reactor Vessel Head Vent System and Pressurizer Vent System that satisfy all NUREG-0578 requirements for North Anna Units 1 & 2 and Surry Units 1
A target date for installation of data display and transmission ment will be established when requirements in this area are more clearly defined .
        & 2.
ATTACHNENT A CONDENSATE STORAGE TANK LEVEL AND ALARM Vepco has committed to providing redundant safety grade level tion and alarm for the condensate storage tank. This modification was to be implemented in two segments.
Westinghouse has encountered problems during the implementation of these systems at another operating plant. Space limitations and high radiation exposure significantly extended the time for installation.
Part A, short term requirements, would install the redundant indication system. Part B, long term requirements, would upgrade both loops to safety grade Class lE. cause of delays in obtaining materials for the short term segment, the modification will be installed at one time. Material delivery is currently scheduled for December, 1980.
Vepco and Westinghouse are investigating an alternative method of installing the system to alleviate the installation concerns.       This alternative requires connecting the level system to the existing vessel head vent and connecting the head vent to a spare part length CRD:M.
ATTACHMENT B SCHEDULE OF IMPLEMENTATION  
This would require removal of the vessel head to allow removal of the CRDM housing internals. Based on the remaining uncertainties with material delivery, the need for revised design analysis, remaining installation concerns, and the requirement for head removal, we plan to install the level and vent systems during refueling outages as shown in Attachment II.
*
 
* Section Number 2.1.1 2.1.2 2.1.3.a 2.1.3.b Title Emergency Power Supply Pressurizer Heaters Pressurizer Level PORV and Block Valve Relief and Safety Valve Test Progrmn and Schedule Complete Test Direct Indication of Valve Position Instrumentation for Inadequate Core Cooling Procedures Design of New Instrumentation Subcooling Meter Installation of New Instr. (E.G., Level Meter) Containment Isolation TABLE 1 NUREG 0578 IMPLEMENTATION STATUS Implem. Cat. (1) A A A A 07/81 A A A A B A Proposal Review x Implementation Review. x x x x x x x x x x ATTACHME Implementation Status Complete Complete Complete Complete 7/81 (2) Complete Complete Complete (3) (4)
ATTACHMENT A
Section Number 2.1.5 , 2.1.5.c 2.1.6.a 2.1.6.b 2.1.7.a TABLE 1 (Continued)
* 2.1.9 POST-ACCIDENT MONITORING AND CONTROL PANEL A Post-Accident Monitoring and Control (PAi'1C) panel will be supplied and mounted in each Main Control Room for North Anna Units 1 & 2 and Surry Units 1 & 2. Each panel will house the controls and indication for the Reactor and Pressurizer Vessel Vents valves, the Reactor Water Level indication, the Hydrogen Analyzer Unit line up control, Hydrogen Analyzer start control and Hydrogen Indicator, and the Containment trip valve control (keyback) and indication for the Hydrogen Analyzers and the Hydrogen Recombine rs. Also, for North Anna, these panels will contain the Post-Accident recorders, which will record Containment Water Level (both wid~ and narrow range). The recorders for Surry will be mounted on the existing main control board vertical section due to space limitations. These PAMC panels must be installed prior to com-pletion of the above mentioned NUREG 0578 2.1.9 items.
NUREG 0578 STATUS Title Dedicated H 2 Control Penetrations Description and Schedule Installation Recombiner Procedures Systems Integrity for High Rad ioac t ivi ty Leak Reduction Program Prevention Maintenance Program Plant Shielding Review Design Review Plant Modifications Auto Initiation of AFW Control Grade Safety Grade Im pl em. Cat. (1) A B A A A A B A B Proposal Review x x Implementation Review x x x x x x x ATTACHME Implementation Status Complete (5) Complete Complete Complete Complete (6) Complete Complete
 
* Section Number 2.1.7.b 2.1.8.a 2.1.8.b 2.1.8.c 2 .1. 9
ATTACHMEHT A 2.2.2.b ONSITE TECHNICAL SUPPORT CENTER The interim onsite technical support centers established at North Anna and Surry satisfies the Category A requirements.
A permanent Technical Support Center (TSC) will be constructed at each site. It will be designed and constructed to meet all require-ments established in NUREG 0578 and clarified in NRC letters of October 30, 1979 and April 25, 1980.
We are proceeding with detailed design of the TSC. We plan to begin construe tion this summer. Based on recent discussions with your staff, we believe this will satisfy your requirements for installation.
A target date for installation of data display and transmission equip-ment will be established when requirements in this area are more clearly defined .
 
ATTACHNENT A CONDENSATE STORAGE TANK LEVEL AND ALARM Vepco has committed to providing redundant safety grade level indica-tion and alarm for the condensate storage tank. This modification was to be implemented in two segments. Part A, short term requirements, would install the redundant indication system.       Part B, long term requirements, would upgrade both loops to safety grade Class lE. Be-cause of delays in obtaining materials for the short term segment, the modification will be installed at one time.       Material delivery is currently scheduled for December, 1980.
 
ATTACHMENT B SCHEDULE OF IMPLEMENTATION
 
ATTACHME TABLE 1 NUREG 0578 IMPLEMENTATION STATUS Section                                     Implem. Proposal Implementation Implementation Number               Title                Cat. (1)      Review      Review.       Status 2.1.1   Emergency Power Supply Pressurizer Heaters                 A                        x          Complete Pressurizer Level                   A                        x          Complete PORV and Block Valve                 A                        x          Complete 2.1.2  Relief and Safety Valve Test Progrmn and Schedule                 A                        x          Complete Complete Test                     07/81                      x            7/81 2.1.3.a Direct Indication of Valve             A                        x            (2)
Position 2.1.3.b Instrumentation for Inadequate Core Cooling Procedures                           A                        x          Complete Design of New Instrumentation       A                        x          Complete Subcooling Meter                     A                        x          Complete Installation of New Instr.           B            x                        (3)
(E.G., Level Meter)
Containment Isolation                 A                        x            (4)
 
ATTACHME TABLE 1 (Continued)
NUREG 0578 IMPLl~MENTATION  STATUS Section                                      Im pl em. Proposal Implementation Implementation Number                    Title            Cat. (1)       Review     Review         Status 2.1.5  Dedicated H2 Control Penetrations Description and Schedule              A                        x         Complete Installation                          B                        x           (5)
, 2.1.5.c Recombiner Procedures                    A                        x          Complete 2.1.6.a Systems Integrity for High Rad ioac t ivi ty Leak Reduction Program                 A                        x          Complete Prevention Maintenance Program         A                        x          Complete 2.1.6.b Plant Shielding Review Design Review                         A                        x          Complete Plant Modifications                   B                        x            (6) 2.1.7.a Auto Initiation of AFW Control Grade                         A            x                      Complete Safety Grade                           B            x                      Complete
 
TABLE 1 (Continued)
ATTACl!ME NUREG 0578 IMPLEMENTATION STATUS Section                                      Implem. Proposal Implementation Implementation Number                Title                Cat. (1)       Review     Review         Status 2.1.7.b AFW Flow Control Grade                        A                        x          Complete Safety Grade                          B                        x          Complete 2.1.8.a Post-Accident Sampling Design Review                        A                        x          Complete Procedures                            A                        x          Complete Description of Plant Modifications    A                        x          Complete Plant Modifications                  B                        x            (7) 2.1.8.b High Range Radiation Monitors In-Containment                        B            x                        (8)
Effluents - Procedures                A                        x          Complete Implement                B            x                        ( 9) 2.1.8.c Improved Iodine Instrumentation        A                        x          Complete 2 .1. 9 Containment Post Accident Monitoring Containment Pressure Monitor          B                        x            (10)
Containment Water Level Monitor      n                        x            (11)
Containment Hydrogen Monitor          B                        x            (12)
RCS Venting
 
ATTACH ME TABLE 1 (Continued)
NUREG 0578 IMPLEMENTATION STATUS Section                              Implem. Proposal Implementation Implementation Number                Title          Cat. (1)      Review      Review        Status 2.1. 9     Design Complete              A                        x          Complete (Cont'd)  Installation Complete        B            x                      (13) 2.2.2.b  Technical Support Center        A                                  Complete B                                    (14)
 
ATTACHMENT B
* TABLE 1 (Continued)
* TABLE 1 (Continued)
NUREG 0578 IMPLEMENTATION STATUS Implem. Title Cat. (1) AFW Flow Control Grade Safety Grade Post-Accident Sampling Design Review Procedures Description of Plant Modifications Plant Modifications High Range Radiation Monitors In-Containment Effluents
NUREG 0578 IHPLEMENTATION STATUS Notes:
-Procedures Implement Improved Iodine Instrumentation Containment Post Accident Monitoring Containment Pressure Monitor Containment Water Level Monitor Containment Hydrogen Monitor RCS Venting A B A A A B B A B A B n B Proposal Review x x Implementation Review x x x x x x x x x x x ATTACl!ME Implementation Status Complete Complete Complete Complete Complete (7) (8) Complete ( 9) Complete (10) (11) (12)
(1) Category A implementation by January 1, 1980 Cateogry B implementation by January 1, 1981 (2) Qualification program is   scheduled to be complete September, 1981 (Refer to Attachment C).
Section Number Title 2.1. 9 Design Complete (Cont'd) Installation Complete 2.2.2.b Technical Support Center TABLE 1 (Continued)
(3) No additional instrumentation   to be   installed without further de-velopment.
NUREG 0578 IMPLEMENTATION STATUS Implem. Cat. (1) A B A B Proposal Review x Implementation Review x ATTACH ME Implementation Status Complete (13) Complete (14) 
(4) Completion of diverse signals to condenser air ejector isolation valve at Surry is dependent upon delivery of Containment High Range Radiation Monitors currently scheduled for Harch, 1981.
* *
(5) Completion of work is dependent upon delivery of valves currently scheduled for December, 1980 .
* Notes: TABLE 1 (Continued)
*      (6)
NUREG 0578 IHPLEMENTATION STATUS (1) Category A implementation by January 1, 1980 Cateogry B implementation by January 1, 1981 ATTACHMENT B (2) Qualification program is scheduled to be complete September, 1981 (Refer to Attachment C). (3) No additional instrumentation to be installed without further velopment.
(7)
(4) Completion of diverse signals to condenser air ejector isolation valve at Surry is dependent upon delivery of Containment High Range Radiation Monitors currently scheduled for Harch, 1981. (5) Completion of work is dependent upon delivery of valves currently scheduled for December, 1980 . (6) Completion of work is dependent upon delivery of valves and rary relief from Technical Specifications.
Completion of work is dependent upon delivery of valves and tempo-rary relief from Technical Specifications.
(7) Completion of work is dependent upon delivery of valves currently scheduled for December, 1980. (8) Delivery of monitors is currently scheduled for October 1980. (9) Noble gas radiation monitors for the vents are currently scheduled for mid 1981. (10) Transmitter delivery is currently scheduled for December, 1980. (ll) Transmitter qualification program completion and delivery date is currently scheduled for November, 1980. (12) Hydrogen analyzer delivery date is currently scheduled for Harch, 1981. The hydrogen analyzer qualification program is continuing.
Completion of work is dependent upon delivery of valves currently scheduled for December, 1980.
(13) Installation is dependent upon material delivery from Westinghouse.
(8) Delivery of monitors is currently scheduled for October 1980.
(14) The interim technical support center will be used until the ments for the long term TSC are finalized .
(9) Noble gas radiation monitors for the vents are currently scheduled for mid 1981.
* TABLE 2 INSTALLATION SCHEDULE *
(10) Transmitter delivery is currently scheduled for December, 1980.
* 3 l.".ib>2..1.Ll.
(ll) Transmitter qualification program completion and     delivery date is currently scheduled for November, 1980.
riY['lL.::c>Ue'.N
(12) Hydrogen analyzer delivery date is currently scheduled for Harch, 1981. The hydrogen analyzer qualification program is continuing.
\\Y()Rl:Xr*"1 4 ---.. -. ---** ... -**-.l. I 9 A;sT CoµTRol.-PAHcl-5 6 1 n/, ::: ..*. ,.,
(13) Installation is dependent upon material delivery from Westinghouse.
U.111N .sv.:;rtrw1 UNIT NA.*l N"-*2-':>llll.i:.y-I SLli<.l!Y-t N IJP..-2...
(14) The interim technical support center will be used until the require-ments for the long term TSC are finalized .
Sul:.11.)'-I 5ue.it>' NA.-L :\Ui'-ie.>'-1 NIJ-/ /'/A-&deg;l. SvR.e>'-1 5111;;.>y-J..
 
N;I-/ ,V,.-/*l..
TABLE 2 INSTALLATION SCHEDULE
 
TABLE INSTALLATIO      ~DULE NaR.T\-\                                                                    SuR.R.Y UNIT                                                                                        U"'1i I            UN IT Z.
11.:'/iNG fc.' f'll.fJl:.1111!?
NA.*l                                                  1":ArL llt."L n.: 7-31 N"-*2-                                                 l'ANlL n>.-.L ,J-.CO
                                                                            ':>llll.i:.y-I                                          k' l C 0 1 ~ Dt. ~ (,,
* 8 I SLli<.l!Y-t N     .\-
IJP..-2...
Sul:.11.)'-I 3                                                                      5ue.it>'       ~~~-ia..J.:. l.".ib>2..1.Ll.          f:..:E.PLP-C.El<'\&#xa3;NT0~      *~J:>.-1                                              Do.JB'-e ovTA.G.C: R~O.:c.
NA.-L                                                 OR RE'LIEF (JN r>'C.11 riY['lL.::c>Ue'.N A~A.LYZ.ER\ \\Y()Rl:Xr"1
:\Ui'-ie.>'-1                                         SPEC -TRY/Ill\ 10
                  ';:Cr...oM!31'J~R., v'ALVE.~
4          --- ..          -    . ---**      ...
      .l. I 9 A;sT l~1PtiJ.Jr M~tJtTCJA"'-!;. Co&#xb5;TRol.-
                                                                              ~"'""-Y-L                                              t*XPE OtrE NAl FU1AL NIJ-/                                                   REC.01.'Dt: R (&#xa3;* b'*7
                                                                              /'/A-&deg;l.                                             I N5 r11u_ f, 0 (lrl f)t*. I.I V/:1{/
5Al-lr;: AS      /JoRrn    /\NN/'.
PAHcl-T"f<.YllJt\ l/JI< !Pl Olrt; SvR.e>'-1                                               REQL'1P.f!l)      n I~  11\J~WUAlH
                                                                                                                                                                                      /                            MAl[k'1AL Df."LIVt,f:y 5111;;.>y-J..                                           Of AL. L .:2 . I ,C/  J. J"E M S.
                                                                                                                                                                                    **-*---- -*----+--* - - - - - -
* 5                                                                        N;I- /
                                                                            ,V,.-/*l..
5vK.R.Y-I Su;:,ey.2._
5vK.R.Y-I Su;:,ey.2._
NA*/ 11A*'-5ui:.eY*I
I 1 n/, :::..*.,.,    _P,,..,p,v,;;o,;:;c~7H.,J-,JJci?E;fiJJ)
: l. /.9 NA-I 7 t..C>'*L /1.1. . .;/>l..M INDtlATION 1./IJ* 2. ,1;1 ..
                                                                                                                                    ----------------__.___,. .,_____._,_.+--'--;:,,," ;;:-;;,~,,&deg;"'-
&#xa3;'jz;:t 8 TABLE INSTALLATIO NaR.T\-\
NA*/
11.:'/iNG fc.' f'll.fJl:.1111!?
6          U.111N .sv.:;rtrw1                                          11A*'-
1":ArL llt."L n.: 7-31 l'ANlL n>.-.L ,J-.CO k' l C Dt. (,,
5ui:.eY*I
* 8 I Do.JB'-e ovTA.G.C:
                                                                            ~u.c;~1-2.
OR RE'LIEF (JN r>'C.11 SPEC -TRY/Ill\
: l. /.9  CoAJDthJS~Tc- Sl&A-.k.)C/W,....1K~.hu.AJ                      NA-I t..C>'L      /1.1...;/>l..M    Id~;;;  INDtlATION        1./IJ* 2.                                                                                        ,/      ./                           IV/Al/:.f'IJ\L DEL/Vt.Ry 7
10 t*XPE OtrE NAl FU1AL U"'1i I SuR.R.Y UN IT Z. **---------
                                        ,1;1 ..    ,~L*i-e-. H~:.*r;.,    &#xa3;'jz;:t 8
----------
v
REC.01.'Dt:
                                                                                                                                                                                    ,_v    ,_________._,!-----
R (&#xa3;* b'*7 I N5 r11u_ f, 0 (lrl f)t*. I.I V/:1{/ REQL'1P.f!l) n Of AL. L .:2 . I ,C/ J. J"E M S. 5Al-lr;: AS /JoRrn /\NN/'. T"f<.YllJt\
5MIE AS          NOR.TH  ANNA IN<:LU01'5 VALVE REPLJ\C.F.141'1-lf liOUl31.&#xa3; OLfr.A';C llc'IU!ill. 0 Of\
l/JI< !Pl Olrt; / MAl[k'1AL Df."LIVt,f:y
T&#xa3;l' II :Sf*E<'.. HLLlil=
**-*-----*----+--*
14                                                                                                                                                  1---'-4--1--'---l---'--4-~-'---+--IS_S_U_E___,
------* I ---------------
L _____ - - - -        -*----t-----1     PREP
-__ ...,.. ___ .,_ ____ ._,_.+--'--;:,,,"
                                                                                                                                                        ----- - - - - - - - - - - - -           REVIEW i-.
&deg;"'-,/ ./ IV/Al/:.f'IJ\L DEL/Vt.Ry v ,_v ,_________._,!-----
                          --u--.---c--.--D---r--E--,---F---G-T
5MIE AS NOR.TH ANNA IN<:LU01'5 VALVE REPLJ\C.F.141'1-lf liOUl31.&#xa3; OLfr.A';C llc'IU!ill.
__ -----.........----------***                 \1
0 Of\ T&#xa3;l' II :Sf*E<'..
                                                                        *.l --.:"'
HLLlil= 14 L _____ -----*----t-----1 PREP -----------------i-. --u--.---c--.--D---r--E--,---F---G-T I N I I I I I K L M H p a REVIEW I I R s ---*-____ ,.. __ -----.........
                                                                                    ---~---~-----...._ ___ _
----------***  
H I      I K    I  L I        M        I    N      I    p        a    I  R    I    s
\1
 
___ _ *.l --.:"' .----*-**---------*--**-**--'*** 
1Nvc~n<~AT1tJ(1,          ALTLi~~11m*1
;{.t.L.b .)1tev1ct-tv,11Te.e 2 /\/.;;,,.hTO."'!.,AJ-!j  
          ;{.t.L.b    .)1tev1ct-       tv,11Te.e       RR.D1,11/1~AJ                                                                                                                                                  Gf LJ!;,1/J.:.. e.x1sr11Jc.. N01<.ru 2                /\/.;;,,.hTO."'!.,AJ-!j   ,,Cc,,,,.,p A-?o.:>.
,,Cc,,,,.,p A-?o.:>.
ANNA        ~/l.'10"5
3 -:I I [ t_, 4 -Ii./_, 5 ;JI' h 10 / Jt.  
:!.l.~b 3
,('.lltVV..;
  -     :I I [ t_,
RCS PAtCSSiJ,l!C
4
:;
        - Ii./_,
: 2. I 1', h 1:1 J*lf.(f:_
5
1_1/1,1.t,/Jh 1 i-'t'Nt='
      ;JI' h
b'e:111*.:1/J.;.
      ~    / Jt. W.1~.:.r    ,('.lltVV..; RCS PAtCSSiJ,l!C fK.'~"' N117(~*R.
: l. A.:...r.l:
7
r 1 (,b ":.i"t'l kl1LJ1:d IJ f*lt. Nlf'l R ;*1 *. :
: 2. I 1', h     1:1 J*lf.(f:_ 1_1/1,1.t,/Jh 1             i-'t'Nt='
* l*ID :.>1/1&. L.lJI/"._;, 1/,1 I NI\ *2 f'REL-1HINAP.Y Gf LJ!;,1/J.:..
b'e:111*.:1/J.;. l. A.:...r.l: r ~
e.x1sr11Jc..
                                                                                                                                                                                                                        /'f.LLl/.11/v/1 1 10
N01<.ru ANNA
        ~. 1 (,b       ":.i"t'l   kl1LJ1:d     1~  IJ f*lt. Nlf'l R                   1/,1 I NI\ *2                                                    f'REL-1HINAP.Y  OE~IGN                                              PRt:LIMINAh:Y            DE.Sl"N
/'f.LLl/.11/v/1 1 PRt:LIMINAh:Y DE.Sl"N
                        ;*1*.: f'.u.i~l
,,
* l*ID      :.>1/1&. L.lJI/"._;,
I"::. Mt NI!} l -,,,.*I 1'(./'..tA:L 11,',i f 5&#xa3;/IL'". JN kU; ... ,,F'l*./\Y
  ,,                     N.:~ld I"::. Mt            NI!}                                ~/. t~~:: ~:    l
>y)Tt/.) PLUG /itl * .. '1.i*l . 'It I} l1"1)R,l<,'1 q L'/ 12 ---------*--
      ----------------------+---+-----f----i----+-----'f----l---~1----------'-------+----+-----l-----+-------------1
--------------
        ,,,.*I  ~b    1'(./'..tA:L 11,',i kU; ...
1l*-<O .-...t f.*1*1-;..!.
                          /itl ti-:~
1c-bO --**--* ---*---------------...:---------*---
                                                  ,~~ f 5&#xa3;/IL'". JN
-,.:.'/f:.r,_
                                        ,,F'l*./\Y >y)Tt/.) PLUG                        ~~~\ ~              l1"1)R,l<,'1 q L'/
* 14 15* -A I B I c I n I E I F I G ... , ....... . -,-.. --
I PRELIMIN/W{              D&#xa3;SIC.N
I H I J I K I L I M l ,__ _____ _ ------
                                                                                          * .. '1.i*l
N I p a I R ISSUE PREP HEVIEW I PRELIMIN/W{
                                                                                          . 'It      I}                      ~n 12 ---------*-- - - - - - - - - - - - - - -
D&#xa3;SIC.N -STl\RT CC'Nt,n:tl;"1</-I "l -f'*O .IMLNLlfi E:i. G.L . .::....'.Jr:LJ;J.Ul.':.._
                                                                                                                                                                                                                          -STl\RT CC'Nt,n:tl;"1</-I
_ _.sc.filD.:LC 11.c:1::.1 u l.lWl!l.f..Sl'BttL.011T5_U.;_.
                                                                                            ;Jt*~'                :i:.~7S
_'{JliL!tL!IL.L.L
  -   ,.:.'/f:.r,_
__
                                                                                          "1~*11-1                1l*-<O                                                                                                              "l - f'*O
__ _ STON[ & wrns1 t:n t:NGINEERING COf\POf\/\TION 1---:-Ap;_E__,.&----
                                                                                        .-...t  f.*1*1-;..!. 1c-bO
-*------------
* 14  --**--* ---*---------------...:---------*---
I s I T I u I v I -------------------**---*--*--------------------------**
                                                                                                                                                                ,__ ______                      ISSUE PREP
_ .... *----*-------
                                                                                                                                                                                                            .IMLNLlfi E:i. G.L..::....'.Jr:LJ;J.Ul.':.._
                                                                                                                                                                                                            .J.tll&deg;LEJ~f.'l~T/!IJf!N_ _          _.sc.filD.:LC 11.c:1::.1 u l.lWl!l.f..Sl'BttL.011T5_U.;_.
HEVIEW  _'{JliL!tL!IL.L.L __ i_c.~~-Li_- _ _ _
15*                                                                                                                                                                            ------
                                                                                                                                                                                        --~--
1---:-Ap;_E__,.&-----*------------
STON[ & wrns1 t:n t:NGINEERING COf\POf\/\TION A          I        B        I          c          I n
I
                                                                                  ~:*-~~I E        I      F      I   G I H I J I K I L I    M    l    N    I  p      a    I  R    I      s   I         T     I u             I v     I
 
ATTACHMENT C B&W ACOUSTICAL MONITORING TEST PROGRAM
ATTACHMENT C B&W ACOUSTICAL MONITORING TEST PROGRAM
* 1*1**
..... -:: ATTACHMENT C COHT::::iTS
: 1. 0 DrBODUCTION


===1.1 Purpose===
ATTACHMENT C
1.2 Tables of Owners & Equip::;.ent Supplied 2.0 TEST ?ROGF-4'.N REQUIREMENTS 2.1 Test  
*~.
I~
1*1**
COHT::::iTS Pa;ze 1To.
    ~          1. 0 DrBODUCTION                                                                                1 1.1     Purpose                                                                           1 1.2     Tables of Owners & Equip::;.ent Supplied                                           2 & 3 2.0 TEST ?ROGF-4'.N       REQUIREMENTS                                                       4 2.1    Test Require~ents                                                                  4 2.2    Testing Sequence                                                                  5 2.3    Test. Pl~                                                                          6 2.4 Qj._ Req_iJ.ire!!le!:..ts                                                              6 2.5 Report                                                                                6 7
Contair--e~t ~quipnlent                                                            7 Orienta:tio:l of Contai!Till.em: Eq_u.i:;m::ent                                    8 Control 3cu.:ll            ~q_ui-pment                                            9 3.4    Additic::.al :Squip...ent fa"!" Co:rt.;...,gency Testing                          9 & 10 ll 4 .1. 0    Agir_g                                                                        ll & 12 4.1.l      Tfor:nal Operating Ccrrd.itio::.s                                  12 1>.l.2      Additional Require:.ents                                          13 4.2.0      Accident Condition Test                                                       13 4.2.l      Temperature                                                        13 4.2.2      Pressure                                                          18 4.2.3      Che~ical Spray                ~-posuz-e                            18  &  19 4.2.4      Hi.,.....i dity                                                    19 4.2.5      R'-~~iat ion                                                      19 & 20 4.3.0      Post Acciie:it Conditic:l                                                      22
~
~              5. 0 SONT?.OL RCC.f EQUI?MENT                EI[i1J30:"1:,.!...::;_;:;-L~ ?3QUIREH.tS:l1'S    23 5.l    ~o:::-::ia2.. 7n-V:-o!!!:.ental                                                    23 5.2 Aging ':est                                                                            23 & 24 25 6.l    c~~3a=-:::=e::.~ ~~uipment Sei~~~c ~esti~g                                        25 & 26 5.2    Cc~~r~~ ?.oo= Seisraic Testing                                                    26, 27 & 28
~~~f~"*
-..:. ..... -:: T.G                                                                                            29
~
 
[itI'        .
I Paae Iro.
ii~              8.o ?AILT.JRE CRITSRH./FAILURE AVOIDAl:TCE          31 8.l    Pre-test Failure P::-edicticn            3l 8.2    In-test Modification                      31 8.3    Reco~endations for Systen Tuiprovement    31 fl~,.;,
  ?*~~              9.0 S8BFDULE                                        32 rill@
I I
Em      .
J
    ~.
r
-~
~
    !t*tj~"
j
    ~.
{
i
: 1*
*1 f
[,IJ I
Iii I
:*ij J
!II      .  ~
~
l
!m.,  ...
I *"-
15&sect;1      .*.t..l
: 1. 0  I~i'I'RODUCTIO~f The 3a"bc:x:k & Wilc::::ix Co:::i:pany ValYe Monitoring Systen (VMS) is an 1
acous": ic 8e.se'i s;:*s": e::: "n-:.._icl1 wi.ll !:.oni tor a valve and provide the
_i1    pl=.:::~ ::rperstc:::- *,;:.--:..::. :.::.::o:r=lation e.s to -..rO.ether the valve is open or clo s-e-i.      T".::e *y-~,!.S :.:~~::es      accele:::-o=.ete.!"s :::iounted on the valve to The VMS has bee=. s::i.::::. to s:.-e=--=.. ::'1.Stcmers thr::;'C.5b.out the nuclear industry and is                                              ty-:;ies      c~  ::uclear steem supply systems.
__.:;;                                            its ability to tbr::i 1 -,::"-                    1.rorst        ~=-se  sccicient  conditions.        'l'hi s the                                        produce                          results  ~or  all custome.!"s.
This ;:e..c"'.r:::ge r~
l,~~                              ,._._._ oe tested.            *~.::e c-::s-tc~e:-  rs  req_u..ir~ents,    e.s de_,
  ~
1 r~ ~;~-                                          Oj- th~ s l  t
~~
                                                              .,. ,.... \
  ~                                              (:.l and ...:.... C/                2. listi~g    CI... systezr
                                                    ~ch o~ ~~ese                72.:"ictions -,.rill be tested to 86-lll909l-QO
: 2. 0 TEST  ~OGR'lM  P.EQUIRE-W:-ITS The valve        ~onitoring        syste!!l components for both the      cc~t~~~  room and contai:::l!:!l.ent  e~uip.ment    will be tested to      deter~ine  the systems ability to  ~eet    the customers seis:r:iic and environmental require:ients.                  The testing for these con.di tions 'nil be :performed to r.i:;a std. 341~-1975
  *r
.- ff~:
for seis::i.ic and I~""" std. 323-1974 for the envirorn:lental conditions.
These testing guidelines were accepteC. by all owners at the 3-21-80 ow-.:i~s  ::!.eeti"l"'!g.
-~
~
: 2. l TEST REQUTCl2"7'ITS J :
j      The ~est will de::onstrate by ty:pe testing that the equipr:.ent will j
    -~:. ma1~~ain      .functional operability under all service conditions                  ~ostu-lated. to occur during the installed. life.                  .The se.!"'rice cond.i tions irrclude:
: l. Aging o Environmental effects            contribu~ing    to failure
: 2.      Seismic o Containment o Control Room
: 3. Accident Condition I
o Te::perature conditio~s 11                    o Pressure conditions o Che:Jical S9ray o    Re..d.iaticn
: 4.      ?*~s-t ~.::~:.C.e:r: Cb:iditio!J.
86-lll909l-00
: 2. 2 TESTDiG SEQUENCE The sec~e~ce                      0:  ~es~~~5              is sne~ified in I~~ std. 323-1?74.                                  The tes-t sec::.e:::.2e S -..... .:::.,...;
                              ._._ 7;    ____ _~n is:
: 2. o:;e:ca-::.c:~ o~ e*~=--:--e:J.t                          to estaol:.sh baseline data for late!' com:parison
: 3.                                                                                                of the norn2.l operating range
            ~ec~ ~ied.,                    -:.::.=.s: ~=-2..::ies des:.g:i C:e..sis events.
: 4.                                                                          ... _.... ......:.. '""" std.
* 323-1974 to sil!lulate
                ===~-.:e-::.              =:::::.-==-- .::~e          cor!dit~:;=.;          e..gin.s test *. rill include radiation "t;l!lle J and vibration;
                                            ~--*          Ce checked. ou-: ai'te:::- aging                                        satisfactory 5.
            =*::nitored                  a~:.::..g        e..:::.d a:teY' -::::.e test to c..e-ce==.i~e  satisf~ctory      cne=a-tic:i 6.
I ~~:D
~J&~r
~                                                                          ~~=t~c~ ~.;ill                    be  ~onitored        du.ring the test
[]I                                                    --------o of
                                                      -.--=-.-.--~,.,C" e~..:.::..-:--e~~          ~~  post accident conditions
(  _
                                                -~
                                                .....  ,/'
s~at~s                  e.nd condition of equiprnent and a
            -.-.~.--/"""':---  - * ..=:>
                                                                        *.rill be                        components      ~ill    be disassembled 86-lll9092- __ ;'_)Q
 
2 . 3 U:ST        ?L..~I Tee initial phase of the test prog::-a.::n will be the preparation                                                            o~ a testing plan by the testing laboratory.                                                              This plan will present the approach to testing, methods,                                                equi~ent,                e..nd general procedure to be utilized *:tor the V.M.S testing                                              progr~.                This plan will also detail the aging plan and 2.n evaluC!.tion of tbe system's design with respect to seisn.ic and LOCA eYents upon con:pleticn.
The    tes~ :i* "' 71                  ;,--i:'              be S"~fl!:l...itted to all        ~,"""I,fS  owners f'or their information a.!ld 2
* 4 Q,A. REG,UI3.:S*.!EITS
.:\ll  :~stoner* req_~e::!.ents,                                        envelopi::g conditions test requi::-em.ents, test reccr~s,              equipment calibration, and pe:ci'orr:.ance conditions ;;ill be docu-
:mented and placed in a readily auditable packa.ge.                                                                The testing lab's
-procedures will be :monitored by E&W as the o-;.mer 1 s agent.
The laboratory :pe=:form.ing the                                              te~      -...~ ::;roduce a conr9rehensi-ve report
-whi::!b. is readily auditaole, and a cq::r will be sent to all :participants.
The ::-epar:. wi2..l :.r:clucle but not be i.:...,.;ted to the following:
: l.    ~,,.,.,,.,.,,,,..,..y    of test/a::e..lysis results
                        -.--.-:::i,=:-::::::- ..
                        =-      ---~--
                                                  ...,-=:i,
                                                        -~
                                                            "g" leYel,        freque~c~r,              etc.
4    lc12=.tic::::s __. . all se!lsors
: 6. r:..=-.sc.:ls.s-1...:.::. c~ test results and t-=st a.br.orwalities
                                                                                  -o-                                          86-lll909l-CO
 
                                                                          -L-(901 Md. 2D)                        -    ~~-----
                    -xti -a""-a,"Z E'::::rt*JE:Jt"[908 u.-eTIZ.;JOE rec;, r:;:qpunf :=::::-;:::.::=:::=                        .::::
( p;YJ-s::;*+ ::;q o+
                                                                                                        ---~ ;
 
~~~                            LP--'\'0\. ST or;:                                ~QD\PMB**r\
\~~-
  !        *1
~,.i U't'--l;.~\.l~'R~ C>--'0'1.-~
:                                        y,:JZr1c.r.:. L i                                                                            A..C..C &#xa3; '-~ t:;<.O~~~o;i D~x                                                                                                                                                                              JU ~C\\C~                      ~r'.
r co~CU\\
l                                                                                                          S~\SM\C.>.\...L'<
J                                                        ~~ 'i<~Sl~t:..\'MB::l
~
I
                                                  .        \_MOU'"'\\~~
                                                                                                                ~Q.o L\'t-l.~                  c.e...o\.."i.
L  C::S"<~\~'!-1\ '?\?\N~
                                                                  'Q\..OCK
: 3. 2 Q?.._; - : **.:._:\TION OF                CO!f:E:lil'W@~ EQ,LJIPr'!E.i~""T
  ~
T-...ro ::r:.entati.ons o:r contaiill:lent eq_uip:=er::.t *,.rill be considered.                                                                            T11ese are ::.::;::*izontall:r oriented sensor                                            a_-id    junction box                  2.lld    vertically o:r-iented .
  .'j
  '.i                                  These          t~o      orientations are shown belcw:
Mt
~
    *I
  *-'l                                  Horizontal Orientation                                            (Shown Aoove) ve:-~i.c2.l          *oriertta:tion
~
~*                                                .~    Vertical
                                                                                                ~1                                                                                          ~
    'I*;
        ;                                          l                                                                                                    3; v
ifil
                                                  !. ..-7                                      1.:----
j ft t :*..,'
                                                ~  ;
I::
f ;_;J .
                                                                                                                                                                                                                    'I
    ~
I*
1-          '";'0"'"'
                  - - - ~~---..
(!\
I        -*- --""'--
i                          \            1        )
          "                            ~
I_,.
    \*f~,
t~-~~;
FP"'.sr:
        ~***;.
tt~:
i" l
11 "f
86-lll90~1-00
              \I
'~:"~*~:....;+/-.!.~~r.:~:,v..;;;;~M;:..;?-;....,..~~*~~~~~W.J.~~"2~.~~i;,.~~.:\&#xa3;.:-1-.~...'\~'c-&#xa3;:~;...:.'.!!:~;..~-:S.i.-.;::..~7-;zt:~f~,:-:~~-~!'l:::!:-:~'1::.-"':''i."!'!:t\~':"t~~-!":'!--.,.~~~-----------      ....~~~I:::~'"~-~~.
 
The :;:\::i:.lo-...-:ing equi:;:::.==..t is housed inside the control room. a.."ld. :::.ust "be
: 1.      5ig=.al      Ccnd.it:..--~-:::            _.\::2:pli.fie!", Un:'.:oltz-Dickie Model P2?7-*fE..4..-l 2.
: 3.      7:..S~,,,,~  Dis:'~        "'7 ~~cC.-, 1  e, Inte:n:at:.o:lal Instru:nents                                    ~*fodel  9270
: 4.                                        ~c: (Three t"Y:9es :                                      _.:.llen 3radley, Potte!"        & 3runfie~d, and Solid State Relay)
: 5.                                                                                                            Model 2603
                        ~
o.
id..e~t:.i'i.ed E.5 may                                                                                                s~c..::s o~ h~dline c~ble.                Si:::.~e the --:*::ter:titl              f'c~                              exists                      the con.tair.i!:.ent
~-
-~
                                                                                                                                      .        ~  .      .
2n-coni...e..im::..en~
                        .J...
                                                                          --:..~::---~v                    ~ .:.::h      a. ~2=Cline cable of: 200 feet 2.
                                                                                                                  -.,-:_ t:i 30-.foot h<>.,..dline cable
_ic-_:*:-=:                            :=:=:::::i:::g                  bloc~s            tested will have the lin
                                    -~--=
::.ot in                                    to    s~~ul~te    mol!nting    conditio~s
  .*~*~r~1
        -:~.
L:'.:.*
                                        --------- .;~-=
                                                                    .~'.:.::ction                      box asse:.bly will be tested in an                                      o:
i*
:!~*-*
i i
tt'::}
t~:~ld
                                                                                                                                                            *q,,..  , ...... -.. .... ..-.. .,
                                                                                                                                                                \..Jc-_._;~~ :;o' . .    :1...!....-*JO
          -~-~-----*--                                                                                                                                                                                  :~.~
 
The envh*onnenffal capabilities of the Valve r'!onitoring will be demonstrated by type testing actual equipment under si.r:J.ulated service conditions.          The VMS ow-ners have s:pecified the ser-.rice conditions for both normal operation and accident conditions.                                All testing will be perfor::J.ed to the worst ca?e envelope conditions.                              The following princi-ples have been followed ih designati.:l.g the test requirements.
: l.  'I",.. 0 severity of t::.e testing method eq_'-lals                O""I"'  exceeds the maxi.rw.um
                        =-==~~ipated          se!"'7ice conditions.
: 2.  ?~ing re~'-'.ire::.ents                have been    take~  f:ron the customer requirements
                        ~~~smitted            to    3&~1'. Each utility must      doc~ent        their individual require-
                        =.e.:;ts against the generic test req_ui::-enents to back up                          ~he test.
: 3. j;b.en possible, a test will be conducted so that an.upper bound of operation will be established.
: 4.  :*Iodifie<l and/ or dif:ferent bran-::. eq_ui:p:::J.e2'.1:t *will be testf...:*;_ as a cont ill-gency option.
: 5. 3gui:pment will be monitored before, d. 1.l!"ing, and af*+ 0                      .,. service condition testing .
                        .~ing sbula"':ion is chronoloe;icclly the first test to be conducted.
cOj ec.ti7e        o~ t~e      e*;_-uipment agi.1:..g test is to put the Sa!!lnle components
_ st:=::e      =:*.;_::.:.~:::::;  to its end-oI,-li.fe condition.            The aging test consists The fi:=st :pnase is    2-!l. analytical caJ.cula.tion of c:::::.::~    ::::~:::::.::-::::.s,  -:::robable fail1ze !lodes, and e!lviror.:..Tlle!ltal effects      ~.-"nich The secorrd yhase is a      ~hysical      aging test to 1 ie?:ify 86-111.9091-CJO .
.---...._.. ______                                                                                                            ------- ~~,..
 
The ~g~ng ?rogra.w. ~ill =esult in determining the ex~ected li~e of each com~cne~t and a n~int2~ance progre~ to replace or inspecv equip:::!.ent in a plaw"'l.ed s ecue::c: e.        The p~ys~c~! accelerated aging test wilJ. produce a set of co.r:r::c:::.e:::t s      ~~=~~ ;-~ected      end-of-life condition.              This end-of-life i.:J.c~~~= ~he reco::::.er..ded ~aintenance and calibration.
                                        ---~
The contai::rr;:..ent eq_ui?-
life      unde~
                                                                                              .....L.n.e  :toll owing r::e.::::
fTor::..al
                                                    /"--0...,              /" 0 F 60-070                                        200 o:;'..J ::
70 PSI                                        40 200 up -co*    r:;
                                                                                  ~
y__ _,, 09          (Rads)
Mc.x. durin~ flow 200,~                      h.nn -.r,,.l~re R2.l15e 2K-8K .CPS                            cycles l
c~rcles i~t
                                                                        ,,,    1 5,,.o .,.,i' t~~                                                  130-?            oO- - o                                        200 I  !
Atncs:;:2:.ere    -1.25-48.3                                    200
  ~*                                                                                                                  20Q
                          -*~-                                          20-100%
8 up to 2 X 10                        (Rads)
:                                                86-12..19091-00
                                                                                                                    *----*-*---------.~"'
 
4 . l. 2 ADDITIONAL            2~Q,UIR.D:!EDTS The e.ccia.enu . - -'- condition radiation exnosure will be included during the aging test for                I?:E~-323-1974.
4.2.0 ACCIDENT CONDITION TEST The a.cciC.ent condition for containne:::t                                      eq_ui~ent    is the ':.;orst case LOCA c.ransient.                  The LOCA is sinulated. oy applying the transient condition of    t~erature,                ~::::-ess"'.l.:."e,    hUEidity, radiation, and chen.ical s-pre.y.
All      c~~::.itions        e:::~ept            the radiation a:-e applied sir:J.ultaneously, and the      ~,--;~ent          -w-i 11 "be :.nonitored during tr-,.,, transient test.
The s..::cident-condition test is the last test event in tne                                            I*~"-323 spec-= .;:'ication.            .Jl..f'ter the LOG.A transie.:;:t cond.itions ha.Ye die:i a1-rey, the equipment will be maintained in a post-LOCA environnent and moni tared in operation for a perio :. of thi::::-ty (30) days.
Eac~      of the applied test require:.ents a=e given in the follo-wing sections.            A worst case                  envelo~e co~iition                is presented, and each uti2.ity 1 s specific requirement is e.lso nro-v:r.c.ed..                                    Ea.ch utility should ver-:5:7 that the specifications                                      .:..u_        the plants e..re accUYate and t!:l~::;  docu:J.er:;.tation exists to shm.; tt.at t2.e :cequire:::tents a.re conse....,.,ative.
: 4. 2. l T3*fF:::rtATU?.E is    2.=. e=-~=-=-=~e      . . . _,. all custcne:= s:pec:..:f*ied. temperat1..lre transients.          'E'1.e
;-~~~2-:... te:=~~~~--=-e ::::-2~n                  will be    ~ithin            a 10-second du.ration.
            ,'  _  =-~:;_~..:~e:J.e.c.ts are plot-ted in                  figure 4.2.1-2.
                                                              ...                                        86-lll9C91-00 r~- *~:-;:
 
                          **'re~*npnr.at~.1re      of Containn1ent                                                      vs Time E!,nvelope o'f O\Jvners FIGURE 4.2.1-1
              !')(}(J '"
4:50' 1 F w
400 -
2 MIN
_/                                                                    .
l.L 0
:~'10&deg;F
            ~
UJ O:'.
        ~
300 -                      10 MIN _ /                                              281&deg;F
                                                                ~              .... ,ffl7',.......,;;;,,;;;.;.;;_....._w_ _ _._ _ _ _ __
                                                                ...ki6ol__.....__,
        *.:{
n::
LJ.J n_
10 HOURS _ / 220&deg;F ai 1--
DAY~
200 -
1      165oF
                                                                                                                                              **--* .l:*., -
100      .~
O~~~~-~~-~~--lL--~~~~--~~~-~~~~~~~-'-~~~~~~---'~
10&deg;            100                    1,000                                                        10,000          100,000 i
I I
T irne (Sec )
                                                                                                                                            +
1 Day
*~
*~::!
 
                            ~rem;Jerature                    of Containn1ent vs. Time FIGURE 4.2.1-2 FLOfUOA
                                                                                            'TMI NPS 300 -
LL 0
w er:
:::J I-
        <{
er:
LLJ o_
::t::
LLl I-Q u......~~~,~~l-"._'d,......~~*=~-.....--~~-------.r...'~--$-*&#xa3;-_,.."__,.__~Jw**------"""""'--*------------m-**_....-
0            10 SEC                                1 HR 10 ,000          l DAY i                                                                          SEC Time
' ..,, I
  ,,I
 
f~IGUnf~  4. 2. 2-1 lOlr 80
(!)
H                                                  62 PSI U)
Q_                    10  ~j[C              I Ltl  60 -;:- -- - - - -,----*--~,......~.....t:__ w,...._, _ _ ~*-**
                                                                                            /
er
:J U)
U)
Li.J 15 HOURS LC (L
40 -
                                                                                              -    \ 4 DAYS 25 \
PSI ~
                                                                                                .  .D ~
20 -
i 10                      100                        1,000  10,000      100,000 Time (Sec)
 
Containment Pressure vs. T~me StJecific Custon1er Speci*fications FIGURE 4.2.2-2 100 -
80 ....
"-.../  60 .....
LJJ n::
'.__"")
U)
U) w a:
(L VEPCO 10                        1,000 Timo ( 'S -~c)
 
As sco~'TI by figure 4.2.l-2, all utilities' requirements c.re g~ouped closely -..-i.tb. the e:x:ce::rtion Of the initial peak temperatUTe provided oy VE?CO.      Testir:.g le.cs          ~~!l.tacted have indicated a proolE!l T..r+/-tb. reaching seconds.          will prooaoly oe a cost inc re-of 340&deg; F anC.              ?.
4.2.2 ??.3SBE The :::=:=~2~-~==.-:. -~~e tr2.!lsie:rt :.s given in f'+/-ga.re 4.2.2.~l.                          Thls The Eacll.
Ap:pe:::d.ix A to T._,. std.              323-l9T4                a. double U"""'::--
:pres-~=-e a duration of' 24 hol.r:-s i;..-+/-th the. enti:!9e tes*t                    Tee
                                          ~---                              and.
                                                                                                                                  ?
(g2-.l."'/nin
                                                                                                                        . '1~*-
1 *.! ~
                                              - ---* :::::::-: :=--.:.
                                                                                    ,..._18-                                    86-lll9091-00
....... .::...~~-u_,;r~\[.{....-z~.-----*---**----------~------              --
 
The following chemicals will be included in the test s::pray:
: 1. Boric Acid                                                          3.      Cr.L!"c!:lE..ted. Water
: 2. Sodiu:!l Hydroxide                                                  4.      Sodiun Thiosulphate Tb.e possibility of' s:prayh1g tll che:i.ictls at t!:J..e same tine is now being investigated              oy  the testing labs.                          If a      se~a=ate            test is required, the utilities requiTing a. uniq:ue spray will                                            oe      notified of' the addit**' 'Jnal SPRAY HIS:ORY Ph      f
        *1 11.0..-..'- - - - - - - - - - - - - - - - - - - !
m*
z.4  l-.ou~  s          12.r:le 4.2.4 EL1GITY The in-coiltainr:lent humidity ranges net~,;eC.'!1 20~                                              a.na i*da%' relative ht!filicty.            Al:.. testing wi.ll be pe-::::ir:::ed. u:tilizing 100% relative hmrd :iity.
The envelope radie.tion e!lvi...ronme!J.tal req_uire:ment for the                                                          contai~e...rit eq_Ld:--e!!t :.::::::.e=        :::..*:.:~:..=.e!:~  conditions J..s:
T.2 x-:y_o.7 Rads inte.g:-ate.d dose with.. at least
                                !J.. T l('G
:::i,,Q*S i..\-
OCn,,.,...,...;~::;-
                                                                  '- ~ - - - o
                                                                                  ,;;,,.,.;.,,'&deg;"
                                                                                    -~ - - o th '-0 -T~l*r~-'-
                                                                                                                  .::> u hOUI"*
                                =-=.::!. 9 =::: 106 Rads occ~-ri:::!g du:::-ing the first T"".::e  ._._*_-~.,., s::es:..::..c req_ui.re!!:.ents for al2- radiation e_"'CDosure i? gi"Tren 86-lll9C9l-OO


===2.2 Testing===
As discusse'i in sectio~ h.1.0, the radiation exposure required for will be added to t~e ~cci~ent radiation dose. _4.ll raaiation will Oe indi~ced. G:u=ing the    -;:;es ....
Sequence 2.3 2.4 2.5 Test. Qj._ Req_iJ.ire!!le!:..ts Report Orienta:tio:l of Contai!Till.em:
                                      -:-2G-                      86-ll.."!..9092.-CO
Eq_u.i:;m::ent Control 3cu.:ll 3.4 Additic::.al
: 4. 3 POST ACCID"'"lT CONDITION The VMS will be monitored in the :post accident enviror..me!'!t a:fter completion or all accident condition testing.       T~e ~ost  accident condition monitoring will be conducted for a neriod o:f 30 d.e.ys.
:Squip ... ent fa"!" Co:rt.;...,gency Testing 4 .1. 0 Agir_g 4.1.l Tfor:nal Operating Ccrrd.itio::.s 1>.l.2 Additional Require:.ents
The post accident condition are:
Te:lp era.tu.re          165&deg; F Cessure                    5 PSI
      ~~__,; d.ity            100%
The ~cs; acciden~    c~n~ition  radiation dose is spectfied in thA accident dose.
1119091-00


====4.2.0 Accident====
5.0 CONT?:.OL                     ~OOM    EQUIPMENT The    t~erature,                          :pres~e,and                            hu::iidity conditions in the control room are    s::~i:'ied. ;;-=-1                   1  -#--:::::; ~,.,., the operating range of all control rocr:i ""VMS
Condition Test 4.2.l 4.2.2 4.2.3 4.2.4 4.2.5 Temperature Pressure Spray Hi.,.....i dity ion 4.3.0 Post Acciie:it Conditic:l
                                  'E:.e=-e      ~=*e ~een                        no accid.ent condition enviromnental reouire-Tn.e only    ~,*-::::::::i.~=~                      ::.::==.-:::.on that is sig:iii"icant is aging.
: 5. 0 SONT?.OL RCC.f EQUI?MENT
The (;-::::==--:::_:_ roe=                  =----* .:_-==ental                      cor:c. ::tions are giYe:::i. below.         Tne range oft=.~        ?a="a::iete::-s .:.s 0 ~-ven e.s                                    ~;-ell    as the     no1~al      O:?ere.ting "t1a.J.."l1e.
?3QUIREH.tS:l1'S 5.l 7n-V:-o!!!:.ental T.G 5.2 Aging ':est 6.l 5.2
Rele..:::_-re E:=.id.i ty                                                          4c%                              10 C~
?.oo= Seisraic Testing Pa;ze 1To. 1 1 2 & 3 4 4 5 6 6 6 7 7 8 9 9 & 10 ll ll & 12 12 13 13 13 18 18 & 19 19 19 & 20 22 23 23 23 & 24 25 25 & 26 26, 27 & 28 29
                                                                                          .,                                    4 Inte:;:-:?.ted. 3.ad..iatio::i (F-'8)                                              10.J                            up to 10 .
[it' I . I rill@ I I Em ' . J r j { i : 1* *1 f [,IJ I Iii I :*ij J II ! .. . ' l !m., ... ' . I *"--15&sect;1 .*.t..l 8.o 9.0 ?AILT.JRE CRITSRH./FAILURE AVOIDAl:TCE 8.l Pre-test Failure P::-edicticn 8.2 In-test Modification 8.3 for Systen Tuiprovement S8BFDULE .* Paae Iro. 31 3l 31 31 32 1 _i1 1 l t 1. 0 The 3a"bc:x:k
5.2.0        AG~G    I'3ST
& Wilc::::ix Co:::i:pany ValYe Monitoring Systen (VMS) is an acous": ic 8e.se'i s;:*s": e::: "n-:.._icl1 wi.ll !:.oni tor a valve and provide the
:=::.=.:..LE...-:_~              -.       ::.=onolcg=.~~Y*             tl:.e.. f'+/-rst te.s-t to Ce      COI!C."U.Ct eG..
::rperstc:::-
is to :put the semple              cc::.~onent 3.:
*,;:.--:..::.
its end-of-i 7 fe condition.                     Tne agir:.g test consis-t
:.::.::o:r=lation e.s to -..rO.ether the valve is open or clo s-e-i. T".::e accele:::-o=.ete.!"s
                                          =--=---*-- -----* -                       fi-,...5~            is an analytical calculation and envirom:!ental ei"fect s*
:::iounted on the valve to The VMS has bee=. s::i.::::.
            *,..-.. ...... --                                                       The sec end nhase is a physical eging                            '       .I...
to s:.-e=--=..
            *--------           ---~
::'1.Stcmers thr::;'C.5b.out the nuclear industry and is __ .:;; tbr::i 1-,::"-the This ;:e..c"'.r:::ge
                                                                                                                                                      -CeS*G r~
,._._._ oe ty-:;ies ::uclear steem supply systems. its ability to 1.rorst sccicient conditions.
                                                                          -1'1-o:::k.
'l'hi s produce results all custome.!"s.
                                                ~---
tested.
                                                      "": "'j
rs e.s de_, Oj-s (:.l and .,. ,.... \ ...:.... C/ 2.
:..... ~51..llt      in deter:;nining                expected l+/-=e of             e~ch prog:c-22. to       inspecL,        or replace eq_ui:::-'""ent in                   2.
CI ... systezr 72.:"ictions
                                                                                                                                        .. -* s?, _! _1__ 1_ 0 0.0..l __ ,'.l rl_______ --~--
-,.rill be tested to 86-lll909l-QO
: 2. 0 TEST P.EQUIRE-W:-ITS The valve syste!!l components for both the room and contai:::l!:!l.ent will be tested to the systems ability to the customers seis:r:iic and environmental require:ients.
The testing for these con.di tions 'nil be :performed to r.i:;a std.
for seis::i.ic and std. 323-1974 for the envirorn:lental conditions.
-* .
r J : These testing guidelines were accepteC.
by all owners at the 3-21-80
::!.eeti"l"'!g.
: 2. l TEST REQUTCl2"7'ITS j j The will de::onstrate by ty:pe testing that the equipr:.ent will .functional operability under all service conditions lated. to occur during the installed.
life. .The se.!"'rice cond.i tions irrclude:
: l. Aging o Environmental effects to failure 2. Seismic o Containment o Control Room 3. Accident Condition I 11 o Te::perature o Pressure conditions o Che:Jical S9ray o Re..d.iaticn
: 4.
Cb:iditio!J. 86-lll909l-00 I []I 2. 2 TESTDiG SEQUENCE The 0:
is in std. 323-1?74.
The tes-t sec::.e:::.2e S-. .:::.,...;
7; .... ._._ ____ _ is: 2.
to estaol:.sh baseline data for late!' com:parison
: 3. of the norn2.l operating range
-:.::.=.s:
des:.g:i C:e..sis events. 4. ... _ .... ......:..
'""" std.
* 323-1974 to sil!lulate
=:::::.-==--
e..gin.s test * .. rill include radiation . . ' "t;l!lle J and vibration; Ce checked. ou-: ai'te:::-aging satisfactory
: 5. =*::nitored e..:::.d a:teY' -::::.e test -. .
to cne=a-tic:i 6.
be du.ring the test
--------o of post accident conditions *, ..... ! _ . ..,, ,/' ::
e.nd condition of equiprnent and a  
-*------* ..=:> components be disassembled
*.rill be 86-lll9092-
__ ;'_)Q 2 . 3 U:ST Tee initial phase of the test prog::-a.::n will be the preparation a testing plan by the testing laboratory.
This plan will present the approach to testing, methods, e..nd general procedure to be utilized *:tor the V.M.S testing This plan will also detail the aging plan and 2.n evaluC!.tion of tbe system's design with respect to seisn.ic and LOCA eYents upon con:pleticn.
The
:i* "'71 ;,--i:' be to all owners f'or their information a.!ld 2
* 4 Q,A. REG,UI3.:S*.!EITS
.:\ll envelopi::g conditions test requi::-em.ents, test equipment calibration, and pe:ci'orr:.ance conditions
;;ill be docu-:mented and placed in a readily auditable packa.ge.
The testing lab's -procedures will be :monitored by E&W as the o-;.mer 1 s agent. The laboratory
:pe=:form.ing the -... ::;roduce a conr9rehensi-ve report -whi::!b.
is readily auditaole, and a cq::r will be sent to all :participants.
The ::-epar:.
wi2..l :.r:clucle but not be i.:...,.;ted to the following:
: l.
of test/a::e..lysis results -.--.-:::i,=:-::::::-
.. ...,-=:i, =-"g" leYel, 4 lc12=.tic::::s
__ .... all se!lsors etc. 6. r:..=-.sc.:ls.s-1...:.::. test results and t-=st a.br.orwalities
,.. -o-86-lll909l-CO 
-L-(901 Md. 2D) -xti -a""-a,"Z E'::::rt*JE:Jt"[908 u.-eTIZ.;JOE rec;, r:;:qpunf
:=::::-;:::.::=:::= ( p;YJ-s::;*+
::;q o+ -_--.... , -.---
-------__ . --*-*
; .::::
LP--'\'0\
.. ST or;: ! *1
: i l J " I y,:JZr1c.r.:.
L A..C..C &#xa3;
--
c.e...o\.."i.
L .
'Q\..OCK
: 3. 2 Q?.._; -: **.:._:\TION OF JU T-...ro ::r:.entati.ons o:r contaiill:lent eq_uip:=er::.t
*,.rill be considered.
T11ese are ::.::;::*izontall:r oriented sensor a_-id junction box 2.lld vertically o:r-iented . .'j Mt'.i ' ' *I *-'l 'I *; ; ifil j These orientations are shown belcw: Horizontal Orientation (Shown Aoove)
*oriertta:tion Vertical l 3; ! . ..-7 1.:----v ft I:: ; ' t :*.., I* .. 1-f ;_;J . '";'0"'"'
(!\ ---
I -*---""'--i "
I_,. FP"'.sr:
i" l 11 "f \ I \ 1 ) ' I
...  
....
.
L:'.:.* i*
i i tt'::}
The :;:\::i:.lo-
... -:ing equi:;:::.==..t is housed inside the control room. a.."ld. :::.ust "be 1. 5ig=.al
_.\::2:pli.fie!", Un:'.:oltz-Dickie Model P2?7-*fE .. 4..-l 2. 3.  
"'7 e, Inte:n:at:.o:lal Instru:nents 9270 4. 5. o. may the --:*::ter:titl , .J... 2. _ic-_:*:-=:
-----.
-.:;
.. ---------(Three t"Y:9es : _.:.llen 3radley, Potte!" &
and Solid State Relay) Model 2603 E.5 exists the con.tair.i!:.ent . . . . ' .:.;-"" ...... .,......_.
::.....,--.:.::h a.
cable of: 200 feet -.,-:_ t:i 30-.foot h<>.,..dline cable :=:=:::::i:::g tested will have the lin ::.ot in to mol!nting box asse:.bly will be tested in an o: *q,,.. , ...... -.. .... ..-.. .,
:;o' .... :1...!....-*JO The envh*onnenffal capabilities of the Valve r'!onitoring will be demonstrated by type testing actual equipment under si.r:J.ulated service conditions.
The VMS ow-ners have s:pecified the ser-.rice conditions for both normal operation and accident conditions.
All testing will be perfor::J.ed to the worst ca?e envelope conditions.
The following princi-ples have been followed ih designati.:l.g the test requirements.
: l. 'I",..0 severity of t::.e testing method eq_'-lals O""I"' exceeds the maxi.rw.um se!"'7ice conditions.
: 2.
have been f:ron the customer requirements to Each utility must their individual require-=.e.:;ts against the generic test req_ui::-enents to back up test. 3. j;b.en possible, a test will be conducted so that an.upper bound of operation will be established.
: 4. :*Iodifie<l and/ or dif:ferent bran-::. eq_ui:p:::J.e2'.1:t
*will be testf...:*;_
as a cont ill-gency option. 5. 3gui:pment will be monitored before, d.1.l!"ing, and af*+0.,. service condition testing . .
sbula"':ion is chronoloe;icclly the first test to be conducted.
cOj ec.ti7e e*;_-uipment agi.1:..g test is to put the Sa!!lnle components
_ st:=::e to its end-oI,-li.fe condition.
The aging test consists The fi:=st :pnase is 2-!l. analytical caJ.cula.tion of  
-:::robable fail1ze !lodes, and e!lviror.:..Tlle!ltal effects The secorrd yhase is a aging test to 1 ie?:ify 86-111.9091-CJO . -------.---...._..
_____ _
l I ! ; The
?rogra.w.
=esult in determining the of each and a to replace or . ..... inspecv equip:::!.ent in a plaw"'l.ed s ecue::c: e. co.r:r::c:::.e:::t s r::e.::::
The accelerated aging test wilJ. produce a set of end-of-life condition.
This end-of-life reco::::.er..ded and calibration.
fTor::..al
/"--0..., o:;'..J :: 130-? Atncs:;:2:.ere The contai::rr;:..ent eq_ui?-life 6 /" 0 0-070 F 70 PSI ..... L.n.e
* r:; y _,, 09 up -co __ :toll owing 200 40 200 (Rads) Mc.x.
flow h.nn R2.l15e 2K-8K .CPS ,,, 1 5,,.o .,., oO--o i' -1.25-48.3 cycles 200 200 .-----20-100% 20Q ------.-up to 2 X 10 8 (Rads) :-12-86-12..19091-00
*----*-*---------.
4 . l. 2 ADDITIONAL The . --'-e.ccia.enu condition radiation exnosure will be included during the aging test for


====4.2.0 ACCIDENT====
The physical accelerated aging test will produce a set of co~ponents in thel: ex:;iected end-of-life condition. This end-of-life condition will include the reco!:!!T..ended maintenance exd calioration.
CONDITION TEST The a.cciC.ent condition for containne:::t is the ':.;orst case LOCA c.ransient.
The LOCA is sinulated.
oy applying the transient condition of hUEidity, radiation, and chen.ical s-pre.y. All the radiation a:-e applied sir:J.ultaneously, and the -w-i 11 "be :.nonitored during tr-,.,, transient test. The s..::cident-condition test is the last test event in tne spec-= .;:'ication. .Jl..f'ter the LOG.A transie.:;:t cond.itions ha.Ye die:i a1-rey, the equipment will be maintained in a post-LOCA environnent and moni tared in operation for a perio :. of thi::::-ty (30) days.
of the applied test require:.ents a=e given in the follo-wing sections.
A worst case is presented, and each uti2.ity 1 s specific requirement is e.lso nro-v:r.c.ed..
Ea.ch utility should ver-:5:7 that the specifications
..;:-...,.,_
.:..u_ the plants e..re accUYate and docu:J.er:;.tation exists to shm.; tt.at t2.e :cequire:::tents a.re conse....,.,ative.
: 4. 2. l T3*fF:::rtATU?.E is 2.=.
...... _,. all custcne:=
s:pec:..:f*ied.
temperat1..lre transients.
'E'1.e will be a 10-second du.ration.
,' _
are plot-ted in figure 4.2.1-2. ...-13-86-lll9C91-00
----**-*---..
::! i I I l.L 0 UJ O:'. ,.-*.:{ n:: LJ.J n_ ai 1--
of Containn1ent vs Time E!,nvelope o'f O\Jvners FIGURE 4.2.1-1 !')(}(J '" 4:50'1 F w 2 MIN 400 -_/ .
300 -10 MIN _/ 281&deg;F ... ki6ol__.....__, .... ,ffl7',.... . ..,;;;,,;;;.;.;;_....._w
___ . _____ _ 10 HOURS _/ 220&deg;F 200 -1 165oF **--* .l:*., -100 100 1,000 10,000 10&deg; 100,000 T irne (Sec ) + 1 Day i I ' .. ,, I ,, LL 0 w er: :::J <{ er: LLJ o_ ::t:: LLl I-300 -
of Containn1ent vs. Time FIGURE 4.2.1-2 FLOfUOA 'TMI NPS Q
__
10 SEC 1 HR 10 ,000 l DAY 0 SEC Time *,***
: 4. 2. 2-1 lOlr 80 62 PSI 10 I Ltl 60 -;:------
...... ..... t: __ w, .... _, __
(!) H U) Q_ er :J U) U) Li.J LC (L 40 i 10 100 1,000 Time (Sec) 15 HOURS / -\ 4 DAYS 25 \ PSI . .D 10,000 100,000 100 -80 .... "-.../ 60 ..... LJJ n:: '.__"") U) U) w a: (L Containment Pressure vs.
StJecific Custon1er Speci*fications FIGURE 4.2.2-2 VEPCO 10 1,000 T imo ( 'S As by figure 4.2.l-2, all utilities' requirements c.re closely -..-i.tb.
the e:x:ce::rtion Of the initial peak temperatUTe provided oy VE?CO. Testir:.g le.cs have indicated a proolE!l T..r+/-tb. reaching seconds. will prooaoly oe a cost inc re-of 340&deg; F anC. ?. 4.2.2 ??.3SBE The tr2.!lsie:rt
:.s given in f'+/-ga.re Thls The Eacll. Ap:pe:::d.ix A to T._,. std. 323-l9T4 a. double U"""'::--
a duration of' 24 hol.r:-s i;..-+/-th the. enti:!9e tes*t Tee and. ? ( "'/ .
g2-.l. nin 1 *.! ----* :::::::-:
:=--.:. ,..._18-86-lll9091-00
.. -.......
....
--
The following chemicals will be included in the test s::pray: 1. Boric Acid 3. Cr.L!"c!:lE..ted.
Water 2. Sodiu:!l Hydroxide
: 4. Sodiun Thiosulphate Tb.e possibility of' s:prayh 1 g tll che:i.ictls at t!:J..e same tine is now being investigated oy the testing labs. If a test is required, the utilities requiTing
: a. uniq:ue spray will oe notified of' the addit**' 'Jnal Ph f *1 SPRAY HIS:ORY 11.0..-..'
-------------------!
z.4 s m* 12.r:le 4.2.4 EL1GITY The in-coiltainr:lent humidity ranges a.na i*da%' relative ht!filicty.
Al:.. testing wi.ll be pe-::::ir:::ed.
u:tilizing 100% relative hmrd :ii ty. The envelope radie.tion e!lvi...ronme!J.tal req_uire:ment for the eq_Ld:--e!!t
:.::::::.e=
conditions J..s: T.2 x-:y_o.7 Rads inte.g:-ate.d dose with.. at least !J. T l('G :::i,,Q*S
,;;,,.,.;.,,'&deg;" th 0 hOUI"* . ---_, i..\-'----o --o '--.::> u =-=.::!. 9 =::: 106 Rads du:::-ing the first T"".::e s::es:..::..c req_ui.re!!:.ents for al2-radiation e_"'CDosure i? gi"Tren 86-lll9C9l-OO As discusse'i in h.1.0, the radiation exposure required for will be added to radiation dose. _4.ll raaiation will Oe G:u=ing the . .... -;:;es .... -:-2G-86-ll.."!..9092.-CO
: 4. 3 POST ACCID"'"lT CONDITION The VMS will be monitored in the :post accident enviror..me!'!t a:fter completion or all accident condition testing.
accident condition monitoring will be conducted for a neriod o:f 30 d.e.ys. The post accident condition are: T e:lp era. tu.re Cessure d.ity 165&deg; F 5 PSI 100% The radiation dose is spectfied in thA accident dose. -36-1119091-00 
' 5.0 CONT?:.OL EQUIPMENT The hu::iidity conditions in the control room are
;;-=-1 1 -#--:::::;
the operating range of all control rocr:i ""VMS 'E:.e=-e no accid.ent condition enviromnental reouire-Tn.e only
::.::==.-:::.on that is sig:iii"icant is aging. The (;-::::==--:::_:_
roe= =----* .:_-==ental cor:c .. ::tions are giYe:::i.
below. Tne range
?a="a::iete::-s
.:.s e.s as the O:?ere.ting "t1a.J.."l1e.
Rele..:::_-re E:=.id.i ty 4c% Inte:;:-:?.ted.
3.ad..iatio::i (F-'8) ., 10.J 10 -
4 up to 10 . . -.. . ---. =--=---* -----* -*,..-.. ...... --
*--------5.2.0 I'3ST tl:.e.. f'+/-rst te.s-t to Ce COI!C."U.Ct eG.. is to :put the semple 3.: its end-of-i 7 fe condition.
Tne agir:.g test consis-t is an analytical calculation and envirom:!ental ei"fect s* The sec end nhase is a physical eging ' .I... -CeS*G -1'1-o:::k.
"": "'j in deter:;nining
:. ....
expected l+/-=e of prog:c-22.
to .. .... inspecL, or replace eq_ui:::-'""ent in 2. .. -* s?, _ ! _1 __ 1_ 0 0.0 .. l __ ,'.l rl _______
The physical accelerated aging test will produce a set of in thel: ex:;iected end-of-life condition.
This end-of-life condition will include the reco!:!!T..ended maintenance exd calioration.
36-lll909l-OO
36-lll909l-OO
: 6. 0 SSIS:-IIC TES'.::'I:!:IG The contai.noent and room portions of the VMS equipment have distinctly and seismic test requirements.
: 6. 0 SSIS:-IIC TES'.::'I:!:IG The contai.noent and                               c~nt=ol          room portions of the VMS equipment have distinctly           di.&#xa3;&#xa3;e~ent                      -~-"'"?.cteristics          and seismic test requirements.
All seis.ni.c te.s=ing oe perfon:led the equipment mounted in ::'.::e equipment to be tested and mounting details are i!1 All s.:: * --*:::  
All seis.ni.c te.s=ing                             ~~_.:_:    oe     perfon:led   w-it~      the equipment mounted in
'.:le perfor:::!.ed to ;;:ieet the guidelines presented in S---:?.. 344-15-, .:r. .0.11 owners' sej swi.c requirements will be en-The equipment in  
::'.::e equipment to be tested and mounting details are di.sc~se!i          i!1         s~ ~ee.
?rese::=s a problem in obtaining seismic infor-==.tion for the ?ipe mounted and the seis;;:iically restrained Since ci:.e se-.;S7il.;,..
All s.:: * - - *:::   =es~-,-'::-"'--::::_                    '.:le perfor:::!.ed to ;;:ieet the guidelines presented in 'P'~ S---:?.. 344-15-, .:r.                             .0.11     owners' sej swi.c requirements will be en-The v~-5    equipment in                             couta;~went          ?rese::=s a problem in obtaining seismic infor-==.tion for the ?ipe mounted                                         e~,.:.i~e!!=    and the seis;;:iically restrained Since ci:.e se-.;S7il.;,.. requ-ir:nE:.t.s c::in,,ot be well defined,                               sine~beat The sine-beat ticn                                                                                                           ~n specified as
requ-ir:nE:.t.s c::in,,ot be well defined, The sine-beat ticn specified as
~ ~~--.:::~===.:~ v=~~                                  _ =eview of several architect engineers' pipe-
_ =eview of several architect engineers' pipe-
~~~~        _,;.;..;_C::.=::::::. :;;.- ---' -                   :::-equ.irements showed that 4. 5 g's is the maximum 7
_,;.;..;_C::.=::::::.
                      =-:::::         ~ ::-:..--:::e::-           should ve:?:"ify the acceptibility of the proposed
:;;.----' -:::-equ.irements showed that 4. 5 g's is the maximum 7=-::::: ::-:..--:::e::-
_.::e     followir..g testing requirements will be fol-s:.z._,_ C::e mounted on the testing table (shaker table)
should ve:?:"ify the acceptibility of the proposed  
                                            ......   ,::..;-,1~.._o configurations as
-.... -=:,. _.::e followir..g testing requirements will be fol-s:.z._,_ C::e mounted on the testing table (shaker table) -......
          -"'~--      -  .... -=:,.                -~--e-L...-
:....._  configurations as 86-lll90?l-OO
86-lll90?l-OO
: 2. Test procedures shall be in accordance with IEEE std. 344-1975.
: 2. Test procedures shall be in accordance with IEEE std. 344-1975.
: 3. Single sine-beat testing shall be used to test all in-containment equipment.
: 3. Single sine-beat testing shall be used to test all in-containment equipment.
: 4. The equipment signals shall be monitored before, during, and after the test, and any unusual characteristics will be noted. 5. A low level sine sweep resoc.ance search shall be performed in the frequency range of 1-35 Hz in each of the three principal directions of the specimen independently.
: 4. The equipment signals shall be monitored before, during, and after the test, and any unusual characteristics will be noted.
: 6. A frequency vibration test shall be performed in to back/ver-...ical plane with a 4.5 g input in each direction.
: 5. A low level sine sweep resoc.ance search shall be performed in the frequency range of 1-35 Hz in each of the three principal directions of the specimen independently.
A test at eve"!:"']
: 6. A s~~~1e  frequency       bi.a.._~ial vibration test shall be performed in fro-~    to back/ver-...ical plane with a 4.5 g input in each direction.
resonance frequency of the comp*-nent and at every spaced at 1/3 octave intervals will be performed.
A test at eve"!:"'] resonance frequency of the comp*- nent and at every fre~'ency    spaced at 1/3 octave intervals will be performed.                   This tes~  shall be repeated si:{ times.
This shall be repeated si:{ times. 7. Four tests as described in 6 above will be performed:
: 7. Four tests as described in 6 above will be performed:                     first, with the inputs in phase; second, with one irlput 180&deg; out of phase; thi~d with the equipment rotated 90&deg; horizontally; fourth, with the equip-ment oriented as in test 3.               One input. is to he induce<l 180&deg; ou~ of phcse..
first, with the inputs in phase; second, with one irlput 180&deg; out of phase; with the equipment rotated 90&deg; horizontally; fourth, with the equip-ment oriented as in test 3. One input. is to he induce<l 180&deg; of phcse.. 6. 2 CntTTROL ROOM SEIS:MIC T'ne rcc:n equi:pment consist c= several different electronic corrq;:c::ents mounted. in 2. B&W su:p:plie*i cabi::et or in a customer su:p:plied f'or the VMS the large. *re:iety of :m.oUD.ting coni'i:gur::,.t be seismically  
: 6. 2 CntTTROL ROOM SEIS:MIC T'ne ~~-s co~trol  rcc:n equi:pment consist c= several different electronic corrq;:c::ents mounted. in 2. B&W su:p:plie*i cabi::et or in a customer su:p:plied f'or the VMS
"'.:.este".i individually.
::.~::-~-Cate      the large. *re:iety of :m.oUD.ting coni'i:gur::,.t tons.~
For syste!!!.s 2'..:.s-:o-::.er's r2.cks, it will be the customer's responsibility control room seismic lecrels at :rack do levels. A will be este.Dlished. -to -..teTify .86-111 909.l-GO the acceptability the components in 3&W supplied cabinets.
                    ~,-'~ 1 be seismically "'.:.este".i individually.       For syste!!!.s 2'..:.s-:o-::.er's r2.cks, it will be the customer's responsibility control room seismic lecrels at                         :rack do s~eci~ied        levels. A progr~...:;: will be este.Dlished. -to -..teTify
This addition"'  
                                                                              .86-111 909.l-GO
?rogr2.!ll  
 
'"-i.2.2.
the acceptability                         o!~    the components in 3&W supplied cabinets.                                         This addition"' ?rogr2.!ll '"-i.2.2. ap:ply only to the utilities purchasing the B&'iv cabinets.
ap:ply only to the utilities purchasing the B&'iv cabinets.
The f'.Jl.lo-..r::.ng testi::..5 ::'-,...Ocedures                               *,.,-i "11 oe   .followed:
The f'.Jl.lo-..r::.ng testi::..5
: l.                                       ;:;,_.____                                              testing table (shaker table) sinulate                               nounting configurations as
::'-,...Ocedures  
: 2.   ::~--:: -:;*roe~:.:_-~ ~ ~e                                        in  e.ccc=~ce ~,.rith r~:..          ri  std. 344-1975.
*,.,-i "11 oe .followed:
            =-::-s~c,.,se. ~'='-- -~ - ::-eauireC. ::-es~cnse spectra TRS-R...-r:tS).
: l. 2. ;:;,_. ___ _ testing table (shaker table) sinulate nounting configurations as in ri std. 344-1975. -::-eauireC.
3-   ?.~ =at:.::= ::~.s-25) :::ietb.od. s.,_,::. 1 1                                            ce    used r~or the q_ua.lincation
spectra TRS-R...-r:tS).
:90SSible.
3-=at:.::=
      =-=.=. e..fL:er -crre              ~~S-:       a.:!d      ~ny      1.:2::::.sual    c~a:-acteristic.s        s!J..all Oe noteC..
:::ietb.od.
: 5. A 2.o-;; level si::..e                                      reso:t!.a.::.ce                    sh"l l be                    in range                                                                                          direct ic:::s
s.,_,::.1 1 ce used the q_ua.lincation
: o.                                                          O.J..   ... ne                        s"<=>l l be e.."X"ci ted s:ixmltaneously
: 5. ,. o. 7. :90SSible.  
: 7.    :::.-=:.-:_=--~              s~ c~              s-...:=jected to 3C-seca~d du.ration si:!rrulte..neous
=-=.=. e..fL:er -crre a.:!d 1.:2::::.sual s!J..all Oe noteC.. A 2.o-;; level si::..e reso:t!.a.::.ce sh"l l be in range direct ic:::s .:> _,_. O.J.. ... ne s"<=>l l be e.."X"ci ted s:ixmltaneously s-...:=jected to du.ration si:!rrulte..neous
      ---        ---~                                                          s-::ac-=-:. one-third octave apart ave:-::
---------..:::;..;
35 Ez.
__ = ::. __ ----:e..=-= ----__ . ..,._._,;.
f'igure 6. 2-1.                 T:'le vertical                   is given
s-::ac-=-:.
            ..:::;..; _ _ = ::. __      --
one-third octave apart ave:-:: 35 Ez. f'igure 6. 2-1. T:'le vertical is given SSE and GBZ Doth defined . s:':lall be 2.n2.lyzed by a spect:ru::i.
                      -                                       SSE and GBZ                  a=~    Doth defined .
arlalyze::-
                                -:e..=-=   __. -- s:':lall be 2.n2.lyzed
at 1-5% :.-=-=:::  
                                            ---- ..,._._,;.                                          by a spect:ru::i. arlalyze::- at 1-5%
-..._::_;:-
:.-=-=::: -..._::_;:-                              -=:3E.           5%   dam::ping_is snecified in                 1~77  std.
_ .... __ -=:3E. 5% dam::ping_is snecified in std.
1mlL'1.o~m          daI::::ping.
daI::::ping.
* 86-lh)109~L-00
* lC. T!:le test sh.e.ll consist of fiire (5) OBE tests a::::d one (l) SSE test in each orientation of the  
 
-28 86-lll9091-00
lC. T!:le test sh.e.ll consist of fiire (5) OBE tests a::::d one (l) SSE test in each orientation of the     equi:;JI:J.e~t.
-. . . . . . . . .  
                                    -28                               86-lll9091-00
...........  
 
,,.....,_  
-                     . .               .     . .   .       . . . ........... ,,.....,_..,.---- ., ... , :. -~-----e,..,.,,.,_, **-*- 1vr-.*t; .*--* ~"'-"*~*''~*~*-*-l*':-.;{.**,~---* '!'-.'..';'[*--1;----~~:~~
.. ,.----., ... , :.  
i[~****-----:.:_~;_,;;;:;J---'.1;:-..::~:::J---'J;;:;;:j --**}:.;;~ ******----~ ---~~ --*--**~=~ **----~.~~-----*=---*~:*:-"~.----~---- ~*** ~f~z1o1 t11&-f ~2
.. ,.,,.,_, **-*-1vr-.*t; .*--*
                                                                                                                                                                                                                                .,_,*:* . ~~:L~;-    1 ~=-*_*iiJ.Xl t!]jltiil'.~    f~.w- *r\:' .
t11&-f
I 1
_*iiJ.Xl
D                            '
.,_,*:* .
v'iec1un"ec~ ~-~es1Jonsa ~pectra
*r\:' . I D ' !II' ,,.. 1*
                                                                                                                                                            !II'                                                ,,..
1 () ....... . 8 Hoon1 Con1ponents
Gic~ntrol Hoon1 Con1ponents - ~Jorlzont~I Direction FIGURE 6.2 .. .l.
-
1()          ........                                                                 t). 0% DAMPING 1'.:t.At(ILl~.Jal...!q1~:t~i;H1;ruu~wU~}Ul~ ... ,..\'~~9.,f~~u~~IO ...,,..t>o~llCIO;~#ll~~l~JJIJ.\...........I..
Direction FIGURE 6.2 .. .l. t). 0% DAMPING SSE
SSE 8        -
...
5.0% DAMPING 6        -
..  
o ... _____ L -
...........
1
I .. 5.0% DAMPING o ... _____ L -... J. __ L. __ 1._.1._ , .. ..1 "I 1 2 3 4 5 6 7 8 9 10 20 30 40 *50 60 70 809C Jill FREQUENCY (CPS) 
                                                                                                            ... J. _ _              L.__1._.1._ ,....1                          "I 2                        3                4               5         6        7 8 9 10                                      20       30         40           *50 60 70 809C Jill FREQUENCY (CPS)
........ tll 4.0 5.0% DAMPING -Ol J .._,,. ti H tc ;-.. ::-J Ld u u <[ 2.0 : -5.0% DAMPING ------0 0 2 3 4 5 i5 78910 20 30 40 50 60 70 80 90 100 FREQUENCY (CPS) I j 
 
;:;ac!:i cu..sto:::.er 1 s re*:;_ .. -;-e::.e:::J.ts have been exa,.,,ined and r,rnrst case envelope cond.it:.*::::ns deri7ed..
      ........                                     5.0% DAMPING tll  4.0 Ol J
_:.=..e e!l.Veloping test conditions a.re specified i..11 t .j e No addi-tiona.l D..E.7e c=e::?. added to tb.e supplied req_uirenents.
ti H
to l. 2. 3. 4. 5. /' o. T. These :margins will be added. :':4.:i C).
                                    ..           5.0% DAMPING tc
testing is conducted
    ~
:rn.argin shall oe P:--ess!Ze:  
::-J Ld u
+lQ of gauge vc:_-:.age:  
u
+10 ?e=ce:r:;.:t o:f rated .Ti=.s--.:
    <[
_;..l.O c=-perioC..
2.0 : -                                                                    ------
the is required
0 ~--~~--.-1~~-.1..~--A.~~-.&.--4---.l--"--'--~--~~i..-----1~-.J.----....-.--i-__,_-.......v 0            2      3    4   5  i5 78910              20      30  40  50 60 70 80 90 100 I  j FREQUENCY (CPS)
__ _ .. __ =.,.._, ___ * .;;::. ,.._ . _ c_,_1 o-,.,-:.ng __ .:. -----,.... . -=:= ... .. _;:;,_,:=
 
.... -.... .;:). *
;:;ac!:i cu..sto:::.er 1 s re*:;_.. -;-e::.e:::J.ts have been exa,.,,ined and r,rnrst case envelope cond.it:.*::::ns deri7ed..                    _:.=..e e!l.Veloping test conditions a.re specified i..11 t .j e No addi-tiona.l      ~5..:~s D..E.7e            c=e::?.                 added to tb.e                ~..:.tility    supplied req_uirenents.
..... rt_t....;.
These :margins will be added.
...... .e.dded :ia.s.is event peak tel'.rr!Jerature 7.0-1) e..cc e2.eratio!J.
to
a= 86-lll909l-GO I i! 1: L I! . i I*. I :I i I Ii I. i ' ! ' ! [ : I! I ; I : I . I i i ! I . i ,: ! '* i '. I *' I ' I I I '. I : i ; i :* I ,. ! f l\ccident Conditior1 Test Environrrter1t 69 UJ 0::: :::> VJ (/) UJ 0:: a.. 10 2 2 a 10 2 to 6 10 SECS MINS llHS SECS MHIS MINS IHlS HRS ---* --*-* ......... .............. .............
: l.                                                       :':4.:i          C).                 ~,~ 1 ~icat~on        testing is conducted t~eature          :rn.argin shall  oe
GO 69 PSI I PSI i I
: 2.     P:--ess!Ze:              +lQ  ~erce~t                          of gauge 3.
* I t I I I I I' I I I I I . . o : : I 0 10 2 2 0 10 SECS MINS HRS MINS TEMPERATURE/PRESSURE LOGA DBE PROFILES Fi gu r o 7. 0-1 15 HRS DAY 28 PS I 30 DAYS 4 30 DAYS DAYS re **I]* .. " l ' i i ] I 11 11 >J I I 11 .. , _*:JJ i-i 8. 0 ?AIL1.JRE CRITIBIA/?AIL\J?..E AVO ITI."'..NCE The o::ia:-a:c;ion of tte V<>i-:re System will be checked during and aft e.:-test The will be considered if' at t+-e d.oes -,....,..;..
: 4.     vc:_-:.age:              +10 ?e=ce:r:;.:t o:f rated                              ~"-::U-c..e 5.
_..,.., :pe!"for::i.
/'
its intended task. The large VMS ape!"at.;...,g
: o.     .Ti=.s--.:        _;..l.O ~e=~e!:t c=- t~e perioC.. *~-= ~:!..::.e the eq_u.i::'~e::t is required
:::..a::-gi::.s e.__c-.,.-
_    c_,_ o-,.,-:.ng 1
signif'ica:it si::-ia.l degradation to occur while t:'::.e
                                                                                  .                     :ia.s.is event T.                                   ~--
"'te::
                                        =:=...~. _;:;,_,:=. . -
functional.
                                                                      .... .;:).
'Y.:'.le test will be conducted so be established for any faile::. De re:placed and ccnrpletion.
* t~~sient      peak tel'.rr!Jerature
Each c==c::r.ent of
                                                            -:--*~"'
'72*:!.S is oeing ex221ined 2X.d accessed a co::panent replacE=!n.ent . .
                                                            ..... rt_t....;. ......                      7.0-1)
in of a fa+/-l:=e. Sho"Ul*i _
        ~=---~.:         __ _
_ ....
        .. _ _ =.,.._, _ _ _ *
*----* ----; ------_:_:.._, **--**-----
                                                                                .e.dded            e..cc e2.eratio!J. a=
.-. . .:> ---_..:::::::::;:  
86-lll909l-GO
'be expected.
 
to fail, B&W will reco:t!!!!le!'.ld t:-:=.e system If* possible, tested. as specified previously.  
l\ccident Conditior1 Test Environrrter1t I
=.::.d recc:::!:lended.
i!
2odifications will be made 2.S ::::--::olems occur. 86-ll.19091-00 
1:
".il . .. 1'.1* u 9.0 SCHEDULE The :milestone in the YalYe monitoring system test program and exnected i ll . -completion dates are provided oelow: o Tran.Sl!lit request for quote to testing-le.as Hay 5, 1980 ' . . o Receive from testing lab J\me 2, 1980 o Conple.te 3-&W rev-iew of quotes/select test lab June 20, 1980. o Iss\le ::-eYision.:;
L II.    !
to ::grog:ra.r:i.  
i I         i I           10     2         2 a 10           2              to                6  10                  30
& cost Jm1e 20, 1980 o order July 1, 1980 00 . . o of test :;il2.:l 1, 1980 October l, 1980 Balar:ce of schedule depends on .... .... . t.JeSvlng la.0 se2..ected. 86-1119091-00 i i I ! I I I i i I I l I I i 1 I I i l 1 1 1 t 1
    .Ii SECS      MINS    llHS  SECS MHIS                      MINS 69      -~*
* B&W Valve Honitoring Svstem Summary of Radiation Dose In Containment
GO
* Recuired bv Customers for Testing Utili!:7 LD-Year Dose 2.ads ..!..
                                    - - -* - - *-*                                             IHlS HRS
* 7 Arkansas ?ower &. T..;
                                                      .........~_..............~............."""""""'--..-~
3 .3 X 10 -2. .., .) . 4. .) . 6. i . 3. 0 -'* 10. '11
69 DAY      DAYS I
?7A>er &#xa3; -
I i
?owe"!: Flo-.riC.a
PSI                                                    PSI
:?ow er &
['      !:             i     I*              I I!
Jersey Central General ?ublic Util. Northe:::st TI--iJ ities North.e.::::r
I;            UJ 0:::
: 12. Wisccr--_s-in
t      I                I 28 PS I I:           VJ
?c:b:i_j_c Serv:iJ::..:
(/)
--_-_2;__._::  
I'I II II UJ I        . 0::
-.  
a..
----*** -.=..,,' = ?&deg;::"""'IT!p
Ii i      !            ~ I  I                    . .
& Cable :;_c x 10 9-
                      ~:
'7 10 4 _,_ "7 10 7 .:,. 5 x 10 6 2 x 10 8 ":l "'"' nb _re--.5.5 X l..1 Set & Cab-::-::; 7C. x 10 1 l I 10 8 "."'22-Post Accident Integrated Dose Rads --_7 _, 0 8* ..:... . ) ,,. 6z 2.0 /' -0 ... t -3 x 1 0 6 '*"'""' l.. -... 1 'I 10 8 TID 7.2 x 10 7 Instantaneous Dose Rads 9 x 10 6** 2 x 10 6** 5 l.7Xl0 @ 1 hour 86-lll9091-00
I .
; . i . '. '
i ,:
* ATTACHMENT D POST-ACCIDENT SAMPLING DESIGN INFOR.lvlATION
i '.
I I      *'
*
o            :               I I        ~
* I. Introduction II. Design Basis III. System Description IV. Design Evaluation
0 10        2        2  0 10                                                      15          4    30 I                      SECS MINS            HRS MINS                                                      HRS        DAYS DAYS I '.                                               TEMPERATURE/PRESSURE LOGA DBE PROFILES I:
: v. Tests and Inspections VI. Instrument Application Attachments ATTACHMENT D TABLE OF CONTENTS Tab l -Design Input Document No. 5324-P-101 Tab 2 -North Anna Unit 1 & 2 Process Flow Diagrams, P&ID's, General Arrangement Drawings Tab 3 -Surry Unit 1 & 2 Process Flow Diagrams, P&ID's, General Arrangement Drawings Tab 4 -Liquid Panel, Containment Air Sample Panel, Chemical Analysis Panel, Functional Descriptions 1 1 5 12 15 , -_:;, 
i; i :*                                                                        Fi gu r o 7. 0-1 I        ,.
*
!        f
* I. Introduction The High Radiation Sample System (HR.SS) has been designed in respcnse to NUREG 0578 "TMI-2 Lessons Learned Task Force Status Report and Short-Term tions" Section 2.1.8.a, entitled "Improved Post-Accident Sampling Capability." This recorrnnendation states that timely information from reactor coolant and containment air samples can be important to reactor operators for their ment of system conditions and can influence subsequent actions to maintain the facility in a safe condition.
 
Following an accident, significant amounts of fission products may be present in the reactor coolant and containment air, creating abnormally high radiation levels throughout the facility.
re
These high radiation levels may delay the obtaining of information from samples because people taking and analyzing the 3amples would be exposed to high levels of radiation.
~l
In addition, the abnormally high background radiation, high ple radiation, and high levels of airborne contamination may render in-plant radiological spectrum analysis equipment inoperable during and after an accident.
: 8. 0 ?AIL1.JRE CRITIBIA/?AIL\J?..E AVO ITI."'..NCE
II. Design Basis The High Radiation Sampling (HRSS), as shown for Anna and Surry in the attached Process Flow Diagrams and P&IDs (Tabs 2 and 3) , is designed to obtain and analyze representative samples of reactor containment atmosphere, and the containment sump in a timely fashion after the occurrence l
**I]*
* *
"l The o::ia:-a:c;ion of tte V<>i-:re                                  ~fonitoring        System will be checked during i        and aft e.:- test                                                        The  equi~ent            will be considered    faile~
* of an accident.
~J        if' at      ~~y    t+-e                d.oes -,....,..;.. _..,.., :pe!"for::i. its intended task.              The large VMS i        ape!"at.;...,g        :::..a::-gi::.s e.__c-.,.- signif'ica:it si::-ia.l degradation to occur
Prompt sampling and analysis of reactor coolant and contain-ment atmosphere sample can provide information important to the efforts to assess and control the course of an accident.
]          while t:'::.e      ::.~* "'te::    ::-,,,......,,--~          functional.            'Y.:'.le test will be conducted I
The system -provides the ity to obtain grab samples from each reactor coolant hot leg, each reactor coolant cold leg, the RHR system, the CVCS mixed bed demineralizer effluent, the containment sump, and the containment atmosphere within one hour after the accident.
so                                                                e.:J.d~a.nce c~            be established for any 11 faile::.                                                                                           De re:placed and ccnrpletion.
The system has the capability to cool and depressurize samples at high temperature and high pressure to allow grab sampling and in-line chemical analysis.
Each c==c::r.ent of                    ~::.e          '72*:!.S is oeing ex221ined 2X.d accessed a                  fail~e
The system also provides the means to dilute reactor cooldnt and containment sump samples by a factor of 1,000 to reduce the personnel expo-sure levels which would otherwise be associated with post-accident conditions.
                                                                                                            .  . ~
                                                                                                            ~es-cec. co::panent replacE=!n.ent in        ca~=  of a fa+/-l:=e.
Sho"Ul*i _        Cc::}:C~ent
                                                    *----*:.-.-~'"":
                                                                                'be expected. to fail, B&W will reco:t!!!!le!'.ld
                                                                                  ~ro7e      t:-:=.e system      r:~~.iability. If* possible,
          ----;                                                                          tested. as specified previously.
                ~--
                                              -- - _..:::::::::;:          =.::.d recc:::!:lended. 2odifications will be made            2.S
  ~.  ~ ~
::::--::olems occur.
11
  >J I
I 11,
_*:JJ 86-ll.19091-00 i-i
 
..".il .                                    9.0 SCHEDULE 1'u .1* The :milestone in the YalYe monitoring system test program and exnected i    completion dates are provided oelow:
ll-  .
o  Tran.Sl!lit request for quote to testing-le.as                      Hay 5, 1980
~'
.       o  Receive    ~uote  from testing lab                                  J\me 2, 1980 o  Conple.te 3-&W rev-iew of quotes/select test lab                    June 20, 1980.
o  Iss\le ::-eYision.:; to ::grog:ra.r:i. & cost                      Jm1e 20, 1980 o  Rece~7e custo:::.~ aut2orization/is~~e purc~ase              order July 1, 1980
                                                                                ~Tuly 1, 1980 00  .
o  Rel~e      of test :;il2.:l                                        October l, 1980 Balar:ce of schedule depends on ....t.JeSvlng .... . la.0 se2..ected.
86-1119091-00
 
B&W Valve Honitoring Svstem Summary of          G~          Radiation Dose In Containment Recuired bv Customers for Testing Post Accident            Instantaneous LD-Year Dose                    Integrated Dose                    Dose Utili!:7                                 2.ads                                Rads                  Rads i                                                                            7
        ..!..
* Arkansas ?ower &.             T..; ::-=i~ 3 .3 X 10 -
i I
                                                          ?&deg;::"""'IT!p & Cable
!                                                          :;_c x          10 -
9 I                                                          s:-=~sor I
i                                                                                            - )-
                                                                                            ..:... .   ,,. _, 0
_7 8*              6 I        2. Carol~~-          ?7A>er &#xa3;  r~~-      -
6z                          9 x 10  **
          ..,                                                  _,_ 10 4                      2.0                                 6
          .)  .                                              '7
                                                                                                    -                    2 x 10  **
I
                                                                                              /'
0 ...t 7                                   6                  5
: 4.     Cons~e:::::;~        ?owe"!:              ~
                                                              "7 10                     -l.. 3 -x ... 1 0  '*"'""' l.7Xl0 l
                                                                                                                          @ 1 hour I         .. Flo-.riC.a :?ow er      & Li~~                                            1 'I 10 8
TID 6
: 6. Jersey Central                            5  x    10 8
. General ?ublic Util.                      2  x    10 I        3.
0
          -'*    Northe:::st TI--iJ ities
: 10.      North.e.::::r St"~as ?C\;"e-~            ":l
_re--.5.5  "'"'
X l..1nb Set & Cab-::-
::; 7C. x 10 1
8
      '11                                                l I 10
: 12.      Wisccr--_s-in ?c:b:i_j_c Serv:iJ::..:
                                  -_-_2;__._::                                                                  7
                                                -                                        7.2        x  10 i.
                                ---~-
    * ***        -.=..,,' =
                                                                          "."'22-                                        86-lll9091-00
 
ATTACHMENT D POST-ACCIDENT SAMPLING DESIGN INFOR.lvlATION
* ATTACHMENT D TABLE OF CONTENTS I. Introduction                                            1 II. Design Basis                                            1 III. System Description                                      5 IV. Design Evaluation                                      12
: v. Tests and Inspections                                  15 VI. Instrument Application                                ,-
Attachments Tab l - Design Input  Requir~~ents:  Document No. 5324-P-101 Tab 2 - North Anna Unit 1 & 2 Process Flow Diagrams, P&ID's, General Arrangement Drawings Tab 3 - Surry Unit 1 & 2 Process Flow Diagrams, P&ID's, General Arrangement Drawings Tab 4 - Liquid Sa~ple  Panel, Containment Air Sample Panel, Chemical Analysis Panel, Functional Descriptions
* I. Introduction The High Radiation Sample System (HR.SS) has been designed in respcnse to NUREG 0578 "TMI-2 Lessons Learned Task Force Status Report and Short-Term Recorrnnenda-tions" Section 2.1.8.a, entitled "Improved Post-Accident Sampling Capability."
This recorrnnendation states that timely information from reactor coolant and containment air samples can be important to reactor operators for their assess-ment of system conditions and can influence subsequent actions to maintain the facility in a safe condition. Following an accident, significant amounts of fission products may be present in the reactor coolant and containment air, creating abnormally high radiation levels throughout the facility. These high radiation levels may delay the obtaining of information from samples because people taking and analyzing the 3amples would be exposed to high levels of radiation. In addition, the abnormally high background radiation, high sam-ple radiation, and high levels of airborne contamination may render in-plant radiological spectrum analysis equipment inoperable during and after an accident.
II. Design Basis The High Radiation Sampling   Systa~  (HRSS), as shown for ~orth Anna and Surry in the attached Process Flow Diagrams and P&IDs (Tabs 2 and 3) , is designed to obtain and analyze representative samples of reactor   coola~t, containment atmosphere, and the containment sump in a timely fashion after the occurrence l
* of an accident. Prompt sampling and analysis of reactor coolant and contain-ment atmosphere sample can provide information important to the efforts to assess and control the course of an accident.     The system -provides the abil-ity to obtain grab samples from each reactor coolant hot leg, each reactor coolant cold leg, the RHR system, the CVCS mixed bed demineralizer effluent, the containment sump, and the containment atmosphere within one hour after the accident. The system has the capability to cool and depressurize samples at high temperature and high pressure to allow grab sampling and in-line chemical analysis.
The system also provides the means to   re.~otely dilute reactor cooldnt and containment sump samples by a factor of 1,000 to reduce the personnel expo-sure levels which would otherwise be associated with post-accident conditions.
This initial dilution also reduces the exposure that would be associated with subsequent manual dilutions, if required.
This initial dilution also reduces the exposure that would be associated with subsequent manual dilutions, if required.
The diluted and undiluted liquid grab samples and the containment air samples are put into specially designed transfer carts with integral shielding. ment of the samples inside the shields can be accomplished with minimal operator exposure by virtue of the cart being designed to nest within sample panel and cart integral design. The transfer carts facilitate ease of sample rr.ovement to designated areas for isotopic or chemical analysis with low operator exposure.
The diluted and undiluted liquid grab samples and the containment air samples are put into specially designed transfer carts with integral shielding.       Place-ment of the samples inside the shields can be accomplished with minimal operator exposure by virtue of the cart being designed to nest within sample panel and cart integral design. The transfer carts facilitate ease of sample rr.ovement to designated areas for isotopic or chemical analysis with low operator exposure.
A feature of the sampling is the ability to strip reactor coolant of dissolved gases for grab sampling and analysis.
A feature of the sampling   syst~~ is the ability to strip reactor coolant of dissolved gases for grab sampling and analysis.
2
2
* An in-line chel7lic2l c.n2.lys5.s p.::nel is includeJ to relnatc: mec:.su.r:c*-
* An in-line chel7lic2l c.n2.lys5.s p.::nel is includeJ to           facj~li. tatc~  relnatc: mec:.su.r:c*-
posu..r:e to the Tbi.s. chemicaJ.  
posu..r:e to the   o:;<:~rato::. Tbi.s. chemicaJ. ;mc,lysis panel bas the           c2*,~.,*,:bili ty to as well as,       con~airu0~nt    hydrogen conc2ntration2.         The capatility to             measu~~
;mc,lysis panel bas the ty to as well as, hydrogen conc2ntration2.
chloride in-J.ine at Surry is also provided.               Chloride 2nalysis is not planred for North Anne: since it is a fresh w;_;ter s:i.te.           E.::.ch p0.i:c:.rr*eter is either: in-dicated or recorded on a reraote control p2nel located in a sep&rate area of the st.::tion.
The capatility to chloride in-J.ine at Surry is also provided.
The Hl1SS sar:1pl*2 pancols \*1ill be located with'.cn e:d.st.ir-:.g sp.:H'.:'2 in               au:*:-
Chloride 2nalysis is not planred for North Anne: since it is a fresh w;_;ter s:i.te. E.::.ch p0.i:c:.rr*eter is either: in-dicated or recorded on a reraote control p2nel located in a sep&rate area of the st.::tion.
lines, outside       o[   containment, upstream of the existing saruple system The IIP.SS Syste.iTi Desig*n Input H.eqL:.ire1~~2nt DocLunent,       532(-r'-*i.Ol.r Revo 1 J..S attac!"led ..."anina
The Hl1SS sar:1pl*2 pancols \*1ill be located with'.cn e:d.st.ir-:.g sp.:H'.:'2 in au:*:-lines, outside o[ containment, upstream of the existing saruple system The IIP.SS Syste.iTi Desig*n Input DocLunent, 532(-r'-*i.Ol.r Revo 1 J..S attac!"led " . . ' ... anina Tab 1. This dcctrment dc:scri.bcs for systerr-.
                  . . ' Tab 1.     This dcctrment dc:scri.bcs                                     crit~;ria for systerr-. equi.pm2nt and s'.:ation       intc~rfc.ces .
equi.pm2nt and s'.:ation .
* 3
* 3
* Sp:::cific d,::sign criteri.01 frc::1 follows:
*
                                            ~JUREG  0578 are addressed in this docu:n1=-11t c:s Design  Inp~t Requircraent Refe~ance (Document No. 5324*--P*-101, Rev. l, ::_s~~; T~-----
* Sp:::cific d,::sign criteri.01 frc::1 0578 are addressed in this docu:n1=-11t c:s follows: l.
: l. E;;~diation f:::*:*posure liIL,it cf 3 rem         Section l7.0 whole b:x3y and 18. 75 rce.m extremity at t = l hour after the accident
f:::*:*posure liIL,it cf 3 rem whole b:x3y and 18. 75 rce.m extremity at t = l hour after the accident 2. i\ccident source tem. basi.s (Reg. Guide 1.4) 3. Cor:sid2ru.tio;1 cf. operator exposure fro:n sources external to sa::cpli.:1g
: 2. i\ccident source tem. basi.s (Reg.                 Section (.0 Guide 1.4)
: 4. ?.nalyses of boi:on anc. chlorid2 Design Requircraent (Document No. 5324*--P*-101, Rev. l, Section l7.0 Section (.0 Scctioi1 17. O Section Chloride at Sur.ry onlv routed to a new 1-5:\.SS \*!&Ste T2nk fro:n ;-:bei:-e the fluid can be or " . C!l.S-placed ',!i\.:h nitrog,.::n b2,ck to the contairi:7<<::nt su1;"tp. Con:12ction;:;
: 3. Cor:sid2ru.tio;1 cf. operator exposure             Scctioi1 17. O fro:n sources external to sa::cpli.:1g equip~nent
arc to rcsirculate, purge, and drain non-accid*2r:t liquid swr:ple::;
: 4.   ?.nalyses of boi:on anc. chlorid2                   Section 13.0~ Chloride             a~alysi~  at Sur.ry onlv routed to a new 1-5:\.SS \*!&Ste T2nk fro:n ;-:bei:-e the fluid can be       pu:;i1.i_~'2d  or " .
1ri.2 norn:.::11 sc..:,\-ple system flow pa i:bs for purposes of oper .:1tor traini.ng and pe:* iodic eqc:i p:r.en ': testing. The contninraent at.:nosphere saD.ple panel wi.11 have the capabili t".;7 to t.:lke sue-tion fro:-.1 w:i.t.hin the existir,g hydrogen monitor syst0>:*1.
C!l.S-placed ',!i\.:h nitrog,.::n b2,ck to the contairi:7<<::nt su1;"tp. Con:12ction;:; arc       provid~d to rcsirculate, purge, and drain non-accid*2r:t liquid swr:ple::; 1ri.2 norn:.::11 sc..:,\-
Motive 1.:...rc2 f:or t.he HRSS contair.rnent atmosphere panel is provided by an integrc.l nit:::oge1:
ple system flow pa i:bs for purposes of oper .:1tor traini.ng and pe:* iodic eqc:i p:r.en ':
eductor. The discharge of t.l:e containment at.'"riosphc:e p.3nel will b-2 routr.:!cl back to the contai.nment  
testing.
*;i:i. the hyc:*ogen monitor system pi.ping.
The contninraent at.:nosphere saD.ple panel wi.11 have the capabili t".;7 to t.:lke sue-tion fro:-.1 w:i.t.hin the existir,g hydrogen monitor syst0>:*1.       Motive 1.:...rc2 f:or t.he HRSS contair.rnent atmosphere         sc.m~1le  panel is provided by an integrc.l nit:::oge1:
* *
eductor. The discharge of t.l:e containment at.'"riosphc:e p.3nel will b-2 routr.:!cl back to the contai.nment       *;i:i. the   existir~g hyc:*ogen monitor system pi.ping.
* The FIRSS system and com:i;;onents are designated non-safety related and are considered Quality Group D, non-seismic, as defined in Regulatory Guide 1.26 with the exception of two com:i;;onents.
* The FIRSS system and com:i;;onents are designated non-safety related and are considered Quality Group D, non-seismic, as defined in Regulatory Guide 1.26 with the exception of two   syst~~  com:i;;onents. The first of these exceptions is the electrical isolation breakers which will allow manual tie-in to the station emergency bus in the event of failure of normal system power.           The second safety related item is the North Anna component cooling water supply and return valves which will interface with an existing safety class 3 pip-ing system.
The first of these exceptions is the electrical isolation breakers which will allow manual tie-in to the station emergency bus in the event of failure of normal system power. The second safety related item is the North Anna component cooling water supply and return valves which will interface with an existing safety class 3 ing system. III. Svstem Descriotion Representative
III. Svstem Descriotion
:i;;ost-accident liquid and gas samples from either reactor unit will be routed to one common High Radiation Sample System. Samples will be received from the sources listed in Table III-1. The tie-in locations for all reactor coolant samples are outside of existing sample system coolers. Since the existing reactor coolant sample lines are combined into common headers inside containment, one corrunon hot leg sample, and one corrcrnon cold leg sample, for each unit is routed to the new h"RSS liquid sample panel. The motive force for all reactor coolant samples is primary system pressure.
* Representative :i;;ost-accident liquid and gas samples from either reactor unit will be routed to one common High Radiation Sample System.
A new environmentally qualified containment sump pump will be provided to obtain containment sump samples. The motive force for containment will be a nitrogen eductor contained within the air sample panel. 5
received from the sources listed in Table III-1.
* The :mss for liquid samples is designed such that samples will be lated to purge incoming lines and ensure that the grab are tative. Five times the line volume will be purged during this operation.
Samples will be The tie-in locations for all reactor coolant samples are outside       ~,e contai~.ment ~'Pstream of ~~e existing sample system coolers.     Since the existing reactor coolant sample lines are combined into common headers inside containment, one corrunon hot leg sample, and one corrcrnon cold leg sample, for each unit is routed to the new h"RSS liquid sample panel.
If the primary system is at operating pressure this recirculation liquid can be purged to the containment sump without intermediate collection and pumping by the HRSS waste tank and pump subsystem.
The motive force for all reactor coolant samples is primary system pressure.
For system test and operator ing, liquid samples can be recirculated via the normal sample pathways to the appropriate volume control tank or high level drain tank purge headers. HRSS Subsvstem Descriotion The HRSS is comprised of five These are: 1. Liquid Sample Panel and Ccolers 2. Containment Sample Panel 3.
A new environmentally qualified containment sump pump will be provided to obtain containment sump samples.     The motive force for containment     a~~osphere s~~ples  will be a nitrogen eductor contained within the       contain~ent  air sample
Analysis Panel 4. Waste Tank and Pump S. Process Control Panel Licruid S2I!lole Panel and Coolers The Liquid Sample Panel (LSP) Coolers _E:*rform multiple functions.
* panel.
These are: 1. Sample cooling to about 13S&deg;F during the mode and about 1200:' during the grab sample mode 6
5
 
The :mss for liquid samples is designed such that samples will     be recircu-lated to purge incoming lines and ensure that the grab       sa~ples are represen-tative. Five times the line volume will be purged during this operation.       If the primary system is at operating pressure this recirculation liquid can be purged to the containment sump without intermediate collection and pumping by the HRSS waste tank and pump subsystem.     For system test and operator train-ing, liquid samples can be recirculated via the normal sample pathways to the appropriate volume control tank or high level drain tank purge headers.
HRSS Subsvstem Descriotion The HRSS is comprised of five     subsysta~s. These are:
: 1. Liquid Sample Panel and Ccolers
: 2. Containment   At.~osphere Sample Panel
: 3. Ch~~ical  Analysis Panel
: 4. Waste Tank and Pump S. Process Control Panel Licruid S2I!lole Panel and Coolers The Liquid Sample Panel (LSP)     a~d Coolers _E:rform multiple functions. These are:
* 1. Sample cooling to about 13S&deg;F during the 1200:' during the grab sample mode rec~rculation  mode and about 6
* 2. Sample depressurization
* 2. Sample depressurization
: 3. Liquid degassing to obtain a representative dissolved gas sample 4. Liquid degassing to the extent necessary to allow in-line chemical ysis downstream S. Provides undiluted liquid grab sample inside a shielding transfer cask 6. Provides diluted (1,000 to 1) liquid grab sample inside a shielded trans-fer cask 7. Provides diluted dissolved gas grab sample inside a shielded syringe 8. Provides integral shielding to minimize operator expcsure while working in front of the panel 9. Provides a ventilated cabinet, held below pressure, to contain potential LSP subsystem leakage. Cabinet ventilation is connected to auxiliary building HV?.C system. The LSP is divided into three modules based upcn the pressure of the incoming liquid. The reactor coolant module will handle hot leg, cold leg, and RER samples. The demineralizer module will handle the Chemical Volume and trol System mixed eed demineralizer effluent samples. The radwaste module will handle the contairuuent sump samples. 7 The LSP contains provisions for flushing with station primary grade water. The flush water will be routed to the Waste Tank. A detailed description of the LSP and coolers is located behind Tab 4 attached to this document.
: 3. Liquid degassing to obtain a representative dissolved gas sample
Containment Air Panel The Containment Air Sample Panel (CASP) performs the following functions:
: 4. Liquid degassing to the extent necessary to allow in-line chemical anal-ysis downstream S. Provides undiluted liquid grab sample inside a shielding transfer cask
: 1. Provides the motive force to obtain a representative grab sample of containment A nitrogen eductor will be provided which is capable of operation when the containment pressure is either slightly negative or at the maximum post-accident pressure.
: 6. Provides diluted (1,000 to 1) liquid grab sample inside a shielded trans-fer cask
: 2. Provides four shielded sample bombs to obtain containment samples on a preprogranmied timer sequence.
: 7. Provides diluted dissolved gas grab sample inside a shielded syringe
: 3. Provides a motive force by a nitrogen eductor to celiver containment air sample flow to the Chemical Analysis Panel for analysis to determine the hydrogen concentration.
: 8. Provides integral shielding to minimize operator expcsure while working in front of the panel
: 9. Provides a ventilated cabinet, held below   a~~ospheric pressure, to contain potential LSP subsystem leakage. Cabinet ventilation is connected to G~e auxiliary building HV?.C system.
The LSP is divided into three modules based upcn the pressure of the incoming liquid. The reactor coolant module will handle hot leg, cold leg, and RER samples. The demineralizer module will handle the Chemical Volume and Con-trol System mixed eed demineralizer effluent samples. The radwaste module will handle the contairuuent sump samples.
7
 
The LSP contains provisions for flushing with station primary grade water.
The flush water will be routed to the Waste Tank.
A detailed description of the LSP and coolers is located behind Tab 4 attached to this document.
Containment Air Sam~le  Panel The Containment Air Sample Panel (CASP) performs the following functions:
: 1. Provides the motive force to obtain a representative grab sample of containment at.~osphere. A nitrogen eductor will be provided which is capable of operation when the containment pressure is either slightly negative or at the maximum post-accident pressure.
: 2. Provides four shielded sample bombs to obtain containment   aG~osphere samples on a preprogranmied timer sequence.
: 3. Provides a motive force by a nitrogen eductor to celiver containment air sample flow to the Chemical Analysis Panel for a~~ospheric  analysis to determine the hydrogen concentration.
: 4. Provides a means to purge and backflush containment air sample lines back to the affected containment.
: 4. Provides a means to purge and backflush containment air sample lines back to the affected containment.
8
8
*
* 5. Provides an integrally shielded panel front to minimize p::ist-accident operator dose rates.
* 5. Provides an integrally shielded panel front to minimize p::ist-accident operator dose rates. 6. Provides a ventilated cabinet held l:elow atmospheric pressure to contain potential CASP system leakage. Cabinet ventilation is connected to the auxiliary building HVAC system. A detailed description of the is located behind Tab 4 attached to document.
: 6. Provides a ventilated cabinet held l:elow atmospheric pressure to contain potential CASP system leakage. Cabinet ventilation is connected to the auxiliary building HVAC system.
Chemical Analvsis Panel The Chemical Analysis Panel (CAP) performs the following functions:
A detailed description of the CP~P is located behind Tab 4 attached to t~is document.
: 1. Accept a preconditioned, ccoled, depressurized and degassed, liquid sample from the LSP for post-accident chemical analysis for boron, pH, dissolved hydrogen and dissolved oxygen, and hydrogen concentration in containment samples. (In addition it will orovide in-line chloride analysis of post-accident liquid samples for Surry.) 2. Provide remote readout of chemical analysis panel parameters on the remote ERSS Process Control Panel (FCP) . 3. Provide an integrally shielded panel f=ont to minimize operator dose rates. 9
Chemical Analvsis Panel
*
* The Chemical Analysis Panel (CAP) performs the following functions:
* 4. Provide a ventilated cabinet held below atmospheric pressure to contain potential CAP subsystem leakage. Cabinet ventilation is connected to the auxiliary building HVAC system. Table III-2 lists the types of instrumentation to be used for determina-tion of post-accident chemical parameters.
: 1. Accept a preconditioned, ccoled, depressurized and degassed, liquid sample from the LSP for post-accident chemical analysis for boron, pH, dissolved hydrogen and dissolved oxygen, and hydrogen concentration in ~st-accident containment at.~osphere samples.   (In addition it will orovide in-line chloride analysis of post-accident liquid samples for Surry.)
Instrumentation has been selected based upon the following criteria:
: 2. Provide remote readout of chemical analysis panel parameters on the remote ERSS Process Control Panel (FCP) .
(1) the ability to measure accurately the full anticipated range of paraneters, (2) the ability to withstand high radiation fields, (3) the ability to reproduce results after calibration, (4) the ability to measure chemical parameters with small sample volumes. The CAP is designed with built-in instrument calibration equipment.
: 3. Provide an integrally shielded panel f=ont to minimize ~st-accident operator dose rates.
Instrument cali::iration will be performed by station personnel on a periodic basis to maintain the CAP in a ready condition and to minimize instrument drift. Waste Tank, Pumps, and Evacuatino Compressor The Waste Tank and Pumps collect and return system purge and flush liquids to containment.
9
The Waste Tank and Pumps will be bypassed during those periods of line purging when primary pressure has sufficient force to return the purge volume directly to the containment without intermediate col-lection and pump-out.
* 4. Provide a ventilated cabinet held below atmospheric pressure to contain potential CAP subsystem leakage. Cabinet ventilation is connected to the auxiliary building HVAC system.
The liquid purge return lines to the contain-ment for liquid sample purges will be routed to the sump. The 10
Table III-2 lists the types of instrumentation to be used for determina-tion of post-accident chemical parameters. Instrumentation has been selected based upon the following criteria:
* *
(1)   the ability to measure accurately the full anticipated range of paraneters, (2)   the ability to withstand high radiation fields, (3)   the ability to reproduce results after calibration,
* I_ Waste Tank is sized to hold the volume of liquid residue generated by the acquisition of two post-accident samples. Two 100 percent capacity HRSS Waste Tank Pumps are provided to purge the tank contents back to the containment.
* (4)   the ability to measure chemical parameters with small sample volumes.
A nitrogen.purge connection is provided to force the contents of the tank back to the containment in the event of pump failure, and also to maintain a nitrogen blanket in the Waste Tank to preclude accumulation of hydrogen.
The CAP is designed with built-in instrument calibration equipment. Instrument cali::iration will be performed by station personnel on a periodic basis to maintain the CAP in a ready condition and to minimize instrument drift.
The Waste Tank will be held under a slight vacuum at all times by an Evacuating Compressor and will be nitrogen blanketed.
Waste Tank, Pumps, and Evacuatino Compressor The Waste Tank and Pumps collect and return system purge and flush liquids to containment. The Waste Tank and Pumps will be bypassed during those periods of line purging when primary   syste~ pressure has sufficient ~otive force to return the purge volume directly to the containment without intermediate col-lection and pump-out. The liquid sa~ple purge return lines to the contain-ment for liquid sample purges will be routed to the   contain~ent sump. The 10
An Evacuating Compressor is vided to maintain the tank vacuum. A bleed-and-feed will control the Evacuating Ccmpressor and nitrogen purge flow. The Evacuating Compressor charges to the containment via the same flow path as the CASP containment return line. Tables III-3, III-4, and III-5 provide design data information for the Waste Tank, the Waste Tank Pumps, and the Evacuating Compressor resp*ctively.
* Waste Tank is sized to hold the volume of liquid residue generated by the acquisition of two post-accident samples.
Two 100 percent capacity HRSS Waste Tank Pumps are provided to purge the tank contents back to the containment. A nitrogen.purge connection is provided to force the contents of the tank back to the containment in the event of pump failure, and also to maintain a nitrogen blanket in the Waste Tank to preclude accumulation of hydrogen.
The Waste Tank will be held under a slight vacuum at all times by an Evacuating Compressor and will be nitrogen blanketed. An Evacuating Compressor is pro-
* vided to maintain the tank vacuum. A bleed-and-feed Evacuating Ccmpressor and nitrogen purge flow.
systa~ will control the The Evacuating Compressor dis-charges to the containment via the same flow path as the CASP containment return line.
Tables III-3, III-4, and III-5 provide design data information for the Waste Tank, the Waste Tank Pumps, and the Evacuating Compressor respctively.
Process Control Panel The Process Control Panel (PCP) performs the following functions:
Process Control Panel The Process Control Panel (PCP) performs the following functions:
: 1. Provides remote location in the Service Building in a low dose rate area for operation of all HR.SS remotely 09*rated valves the 11
: 1. Provides remote location in the Service Building in a low dose rate area
*
* for operation of all HR.SS syst~~  remotely 09rated valves 11
* exception of the existing sample system containment isolation valves which will be operated from the main control room. 2. Provides space for Chemical Analysis Panel (CAP) instrument indicators and recorders.
                                                                  ~ith the
The PCP will contain a complete system graphic display for the LSP, the CASP, the CAP, and the Waste Tank Pump, and Evacuating Compressor subsyste!il.
* exception of the existing sample system containment isolation valves which will be operated from the main control room.
A communication system will be provided between the sample panel area in the auxiliary building, the PCP in the Service Building, and the main control room
: 2. Provides space for Chemical Analysis Panel (CAP) instrument indicators and recorders.
* IV. Desicn Evaluation The h"RSS system equipment is designated Quality Group D, non-seismic, as fined in Regulatory Guide 1.26. A static seismic analysis will be performed on system components to ensure that seismic failure will not damage existing station safety related equipment or the building structure.
The PCP will contain a complete system graphic display for the LSP, the CASP, the CAP, and the Waste Tank Pump, and Evacuating Compressor subsyste!il. A communication system will be provided between the sample panel area in the auxiliary building, the PCP in the Service Building, and the main control room *
HRSS electrical power supply will be from the normal buses; however, a manual tie-in to the station emergency bus will be provided in the event.of loss of normal power. System air-operated valves which are required to operate in order to obtain the one-hour reactor coolant are furnished with dedicated instrt.:!Tient 12
* IV. Desicn Evaluation The h"RSS system equipment is designated Quality Group D, non-seismic, as de-fined in Regulatory Guide 1.26. A static seismic analysis will be performed on system components to ensure that seismic failure will not damage existing station safety related equipment or the building structure.
*
HRSS electrical power supply will be from the normal buses; however, a manual tie-in to the station emergency bus will be provided in the event.of loss of normal power.
* air accumulators so that the ability to open the valves remotely will be able in the event the station instrument air system is temporarily inoperable.
System air-operated valves which are required to operate in order to obtain the one-hour reactor coolant s~~ple are furnished with dedicated instrt.:!Tient 12
* air accumulators so that the ability to open the valves remotely will be avail-able in the event the station instrument air system is temporarily inoperable.
System interlocks are provided throughout to perform the following basic functions:
System interlocks are provided throughout to perform the following basic functions:
: 1. To ensure samples obtained after an accident can only be returned to the affected A similar philosophy is applied to system purge and flush fluids. 2. To ensure that post-accident sample fluid cannot inadvertently enter the existing sample system. Permanent system connections to the station nitrogen system are provided along with a nitrogen bottle back-up system. Redundant Waste Tank are provided to pump post-accident samples back to t.1-ie affected containment.
: 1. To ensure samples obtained after an accident can only be returned to the affected   contai~~ent. A similar philosophy is applied to system purge and flush fluids.
Nitrogen can be used to empty the Waste Tank in the event of dual pump failure or loss of electric power. System flush water is obtained from the station's primary grade water system. Primary grade water connections to the system are quick disconnect type. After each use of flush water, the system will be disconnected to the possibility of primary grade water contamination by post-accident samples . Each sample acquisition will be followed by a flush to keep background radi-ation levels to a minimum in accordance with the ALJ>...RA concept. 13
: 2. To ensure that post-accident sample fluid cannot inadvertently enter the existing sample system.
*
Permanent system connections to the station nitrogen system are provided along with a nitrogen bottle back-up system.
* A shielding analysis has been performed to ensure operator exposure while obtaining and analyzing a post-accident sample will be less than 3 rem whole body and 18.75 rem to the extremities as recommended in NUREG 0578. Operator exposure will be accumulated while entering and exiting the sample panel area, operating sample panel manual valves, positioning the grab sample into the shielded transfer carts, and performing additional manual sample dilutions, if required, for isotopic analysis.
Redundant Waste Tank   Plli~ps are provided to pump post-accident samples back to t.1-ie affected containment. Nitrogen can be used to empty the Waste Tank in the event of dual pump failure or loss of electric power.
The major sources of operator exposure are from: 1. General auxiliary building background from components not associated with the HRSS sampling system . 2. Direct radiation from samples lines which are routed behind the shielded HRSS and Analysis Panels. 3. Backscatter from the walls and roof and above the shielded HRSS Sample and Analysis Panels. The operator exposure from source (1) is limited by the stay time associated with sample panel manual operations and bv selecting entrance and exit routes to room via the lowest dose rate paths. The operator exposure from source (2) is limited by the integral shielding located in front of each of the system sample analysis panels (LSP, CAP, CASP) . This shielding will consist of up to six inches of lead shot poured panel front sections.
System flush water is obtained from the station's primary grade water system.
* The operator exposure from source (3) is limited by positioning the panel in an orientation such that the distance from the back of the panel to the nearest wall is maximized to the greatest extent practicable.
Primary grade water connections to the system are quick disconnect type.
The shielding analysis indicates for the locations selected at North Anna and Surry, addi-tional shield walls above the panels will not be required for this source. For the worst case assumption of obtaining and analyzing a one-hour reactor coolant sample, the maximum operator exposure will be less than 2. 5 rem whole body and 15 rem to the extremities.
After each use of flush water, the system will be disconnected to     ~inimize the possibility of primary grade water contamination by post-accident samples .
V. Test and Inspections The HRSS is designed to be used under post-accident conditions and will not be used regularly during power operation, cooldown, and/or shutdown.
* Each sample acquisition will be followed by a flush to keep background radi-ation levels to a minimum in accordance with the ALJ>...RA concept.
There-fore, the system will be tested and maintained on a regular schedule to en-all system components are in ready condition.
13
Station personnel will undergo regular training sessions to ensure good familiarity with the function and operation cf the system. The Chemical Analysis Panel Instru-mentation will be recalibrated and tested on a regular basis to ensure accuracy and readiness of the instruments.
* A shielding analysis has been performed to ensure     ~~at operator exposure while obtaining and analyzing a post-accident sample will be less than 3 rem whole body and 18.75 rem to the extremities as recommended in NUREG 0578.
VI. Instrument Annlication The Chemical A:-ial::!sis Panel (C.1\P) measured parameters will be indic2te*:J and recorded on the Remote Process Control Panel. Parameters to be measured are boron concentration, pH, dissol*:ed oxygen, chloride (for Surry), cissolved 1 -_::i
Operator exposure will be accumulated while entering and exiting the sample panel area, operating sample panel manual valves, positioning the grab sample into the shielded transfer carts, and performing additional manual sample dilutions, if required, for isotopic analysis.     The major sources of operator exposure are from:
* *
: 1. General auxiliary building background from components not associated with the HRSS sampling system .
* hydrogen and containment air hydrogen concentration.
* 2. Direct radiation from samples lines which are routed behind the shielded HRSS Sa~ple  and Analysis Panels.
Local flow and sure indication will be on the face of the LSP, CASP, and CAP to enable the operator to manually align and adjust system flows. The Process Control Panel will permit remote operation of all HRSS automatic valves including the existing inside containment sample system valves which are normally operated from a panel in the existing sample room. Isotopic analysis of reactor coolant and containment atmosphere samples will be available within one hour of sample acquisition.
: 3. Backscatter from the walls and roof   ~ehind and above the shielded HRSS Sample and Analysis Panels.
The postulated activity concentration of post-accident samples is far in excess of the capabilities of normal counting equipment and geometries.
The operator exposure from source (1) is limited by the stay time associated with sample panel manual operations and bv selecting entrance and exit routes to ~~e  sa~ple  room via the lowest dose rate paths.
Thus, sample dilution will be required prior to analysis.
The operator exposure from source (2) is limited by the integral shielding located in   ~~e  front of each of the system sample analysis panels (LSP, CAP, CASP) . This shielding will consist of up to six inches of lead shot poured i~to  panel front sections.
The LSP provides a 1,000 to 1 dilution of reactor coolant samples. However, depending upon the accident condition, additional final dilution can be accomplished in a shielded fume hood
* The operator exposure from source (3) is limited by positioning the panel in an orientation such that the distance from the back of the panel to the nearest wall is maximized to the greatest extent practicable.           The shielding analysis indicates for the locations selected at North Anna and Surry, addi-tional shield walls above the panels will not be required for this source.
For the worst case assumption of obtaining and analyzing a one-hour reactor coolant sample, the maximum operator exposure will be less than 2. 5 rem whole body and 15 rem to the extremities.
V. Test and Inspections The HRSS is designed to be used under post-accident conditions and will not be used regularly during power operation, cooldown, and/or shutdown.           There-fore, the system will be tested and maintained on a regular schedule to en-s~re  all system components are in     ~~e  ready condition. Station personnel will undergo regular training sessions to ensure good familiarity with the function and operation cf the system.           The Chemical Analysis Panel Instru-mentation will be recalibrated and tested on a regular basis to ensure accuracy and readiness of the instruments.
VI. Instrument Annlication The Chemical A:-ial::!sis Panel (C.1\P) measured parameters will be indic2te*:J and recorded on the Remote Process Control Panel.           Parameters to be measured are boron concentration, pH, dissol*:ed oxygen, chloride (for Surry), cissolved 1 -
_::i
* hydrogen and containment air hydrogen concentration.     Local flow and pres-sure indication will be on the face of the LSP, CASP, and CAP to enable the operator to manually align and adjust system flows.
The Process Control Panel will permit remote operation of all HRSS automatic valves including the existing inside containment sample system valves which are normally operated from a panel in the existing sample room.
Isotopic analysis of reactor coolant and containment atmosphere samples will be available within one hour of sample acquisition.     The postulated activity concentration of post-accident samples is far in excess of the capabilities
* of normal counting equipment and geometries.
required prior to analysis.
coolant samples.
Thus, sample dilution will be The LSP provides a 1,000 to 1 dilution of reactor However, depending upon the accident condition, additional final dilution can be accomplished in a shielded fume hood
* The diluted sample can then be analyzed by existing laboratory counting equipment.
* The diluted sample can then be analyzed by existing laboratory counting equipment.
The LSP provides a shielded syringe sample of diluted reactor coolant gases which can also be further diluted, if necessary, in the adjacent shielded fume hcod. These can then be analyzed in existing laboratory count-. ing equipment.
The LSP provides a shielded syringe sample of diluted reactor coolant gases which can also be further diluted, if necessary, in the adjacent shielded fume hcod. These sa~ples  can then be analyzed in existing laboratory count- .
The containment samples are collected in l ml shielded sample bombs in the samples will be isotopically analyzed ty a Ge detector which measures through a one-fourth inch aperture in the sample vessel lead 16
ing equipment.
*
The containment   a~~osphere  samples are collected in l ml shielded sample bombs
* shield. The 1 ml sample shield apertures will be designed to allow surement in several orientations.
* in the C~.SP. T~ese samples will be isotopically analyzed ty a Ge detector which measures through a one-fourth inch aperture in the sample vessel lead 16
Halides and noble gases can be analyzed together.
* shield. The 1 ml sample shield apertures will be designed to allow mea-surement in several orientations. Halides and noble gases can be analyzed together. Successive analyses of containment air samples collected on a known time sequence will enable the operator to determine the extent of the accident and the effectiveness of the containment spray system .
Successive analyses of containment air samples collected on a known time sequence will enable the operator to determine the extent of the accident and the effectiveness of the containment spray system . 17 Table III-1 HRSS Sample Points Sample Source Reactor Coolant a. Hot Leg b. Cold Leg c. RHR Loop d. eves Mixed Bed Demineralizer Outlet Containment Sump Containment Atmosphere No. of Sample Points For Each Reactor 4 Locations*
* 17
3 Locations*
2 Locations*
1 Location 1 Location 1 Location *One common header from outside the containment is routed to the HRSS. One sample inlet valve per header is qualified to be after an accident.
* Table III-2 Chemical Analysis Panel Instrumentation Parameter Reactor Coolant and Containment Sumo Boron Dissolved oxygen Dissolved hydrogen Chloride {Surry only) Containment Hydrogen 19 Instrument or Method Selective ion electrode Probe, Parmer or equal Probe, Yellow Springs Instrument Gas chromatograph, Baseline or equal Ion chromatograph, Dionex or equal Gas chromatograph, Baseline or equal Range of Measurement 200-2,000 ppm 1-13 1-20 ppm 10-2, 000 cc/kg 0-20 ppm 0-10 percent
* Table III-3 HRSS Waste Tank Quantity per station Capacity Material of construction Code Design pressure Design 20 1 17 gallons Stainless steel ASME VIII 150 psig lSO&deg;F Table III-4 HRSS Waste Tank Pumps Quantity per station 2 Capacity 5 gpm Discharge head Later Material of construction Stainless steel Shaft seal Double, mechanical Motor horsepower Later 21
* Table III-5 HRSS Evacuating Bellows Compressor Quantity per station 1 Capacity 2 scfm Discharge pressure (maximum) 40 psig Material of construction Stainless steel Motive device Reciprocating bellows Motor horsepower Later 22
* Tl\13 1 De sigr. Input Requirements Documc:nt No. 5324*-P-101 Rev. 1 **
PLMH: North 1\nna 1Cr2'--, _S_u_r_r-'-y_J
______ _ CLIENT: Virginia ::kr.:tric rind P0'-'.'Cr Cornpanv LOC/\TIOfiJ:
_1'.-\irwra!.
\' -'',: Surry__,__
__
1-----------------*
DESIGN INPUT REQUIREMENTS for HIGH R/-\DI/\ TlON SAMPLING SYSTEMS at Surry 1/2 N0t-th Anna 1/2 Nucle2.r Eledric Generating Stations Nus cor-nr.r-\CT r-.10: SPECIFIC/', TION NO:
P [;;JJ Q.) f*v J b 5324-P-IOI, lkv. l I -------------*--
!
* DESIGN INPUT REQUIREMENTS 5324--P-101 REVISION TABLE OF CONTENTS 1.0 BASIC FUNCTIONS TO BE PERFORMED


===2.0 PERFORMANCE===
Table III-1 HRSS Sample Points No. of Sample Points Sample Source                For Each Reactor Reactor Coolant
: a. Hot Leg                      4 Locations*
: b. Cold Leg                      3 Locations*
: c. RHR Loop                      2 Locations*
: d. eves Mixed Bed Demineralizer Outlet                        1 Location Containment Sump                    1 Location Containment Atmosphere              1 Location
*One common header from outside the containment is routed to the HRSS. One sample inlet valve per header is enviro~Jnentally qualified to be ope~able after an accident.
* Table III-2 Chemical Analysis Panel Instrumentation Instrument or      Range of Parameter                        Method        Measurement Reactor Coolant and Containment Sumo Boron                                  Selective ion      200-2,000 ppm electrode Probe, Cole-      1-13 Parmer or equal Dissolved oxygen                      Probe, Yellow      1-20 ppm Springs Instrument Dissolved hydrogen                    Gas chromatograph, 10-2, 000 cc/kg Baseline or equal Chloride {Surry only)                  Ion chromatograph, 0-20 ppm Dionex or equal Containment A~~osohere Hydrogen                              Gas chromatograph, 0-10 percent Baseline or equal 19
* Table III-3 HRSS Waste Tank Quantity per station            1 Capacity                        17 gallons Material of construction        Stainless steel Code                            ASME VIII Design pressure                  150 psig Design ta~perature              lSO&deg;F 20


REQUIREMENTS 3.0 CODES, STANDARDS, AND REGULATORY REQUIREMENTS 4-.0 DESIGN CONDITIONS
Table III-4 HRSS Waste Tank Pumps Quantity per station              2 Capacity                          5 gpm Discharge head                    Later Material of construction          Stainless steel Shaft seal                        Double, mechanical Motor horsepower                  Later 21
* HRSS Table III-5 Evacuating Bellows Compressor Quantity per station                  1 Capacity                              2 scfm Discharge pressure (maximum)          40 psig Material of construction              Stainless steel Motive device                          Reciprocating bellows Motor horsepower                      Later 22
* De sigr. Input Requirements Tl\13 1 Documc:nt No. 5324*-P-101  Rev. 1


===5.0 DESIGN===
PLMH:        North 1\nna 1Cr2'--,_S_u_r_r-'-y_JL_~r_2_______            Nus cor-nr.r-\CT r-.10:
LOADS 6.0 INTERFACE REQUIREMENTS
CLIENT:      Virginia ::kr.:tric rind P0'-'.'Cr Cornpanv V~A-'----------
LOC/\TIOfiJ: _1'.-\irwra!. \' -'',: Surry__,____
                                                                                                    -------------*--!I SPECIFIC/', TION NO: 5324-P-IOI, lkv. l 1-----------------*
DESIGN INPUT REQUIREMENTS for HIGH R/-\DI/\ TlON SAMPLING SYSTEMS at Surry 1/2 N0t-th Anna 1/2 Nucle2.r Eledric Generating Stations G~ {;~~\ ~~::21 P~~  f~~r~ r-~*:d f\~ f*v
[;;JJ ~~:J Q.) tL~J. U~;;J Li~~ l~  J b l\LITHOr~


===7.0 MATERIAL===
DESIGN INPUT REVISION PAGE REQUIREMENTS  5324--P-101                                      i of 25 TABLE OF CONTENTS Page 1.0  BASIC FUNCTIONS TO BE PERFORMED                        l 2.0  PERFORMANCE REQUIREMENTS                                2 3.0  CODES, STANDARDS, AND REGULATORY REQUIREMENTS          4-4-.0  DESIGN CONDITIONS                                      9 5.0  DESIGN LOADS                                          11 6.0  INTERFACE REQUIREMENTS                                12 7.0   MATERIAL REQUIREMENTS                                13 8.0  MECHANICAL REQUIREMENTS                              14-9.0  STRUCTURAL REQUIREMENTS                              16 10.0  HYDRAULIC REQUIREMENTS                                17 11.0  ELECTRICAL REQUIREMENTS                                18 12.0  LAYOUT AND ARRANGEMENT REQUIREMENTS                    19 13.0  OPERATIONAL REOUIREMENTS                              20 14-.0 TEST REQUIREMENTS                                      21 15.0  ACCESSIBILITY, MAINTENANCE, REPAIR, AND INSERVICE INSPECTION REQUIREMENTS                      22 16.0  TRANSPORTABILITY REQUIREMENTS                          23 17.0  HANDLING, STORAGE, AND SHIPPING REQUIREMENTS          24-18.0  CHEMISTRY REQUIREMENTS                                25
REQUIREMENTS
* ED-33A (1/80)


===8.0 MECHANICAL===
DESIGN INPUT REVISION              PAGE REQUIREMENTS    5324--P!Ol                                                              1 ,....f ""
1.0  BASIC FUNCTIONS TO BE PERFORMED 1.1  The High Radiation Sampling System (HRSS) is to provide the capability to extract, analyze, and dispose of samples of reactor coolant, containment atmosphere, and containment sump under post-accident conditions. The HRSS is to allow the above sampling activities to be conducted under ALARA conditions and in conformance with the requirements of Section 2.1.8.a of NUREG-0578. The extracted sample(s) shall be adequately contained to allow for either in-situ analysis or for transport offsite to an independent laboratory. The system shall be capable of performing the analyses listed in Section 2.0. The system shall provide disposition of sample waste to an HRSS waste tank, plant radwaste, or by recycling the sample stream back to containment .
1.2  The system design will include provision of facilities for safely extracting the sam-ples. These facilities will be located within existing space at each station. These locations will be ventilated and cooled in a manner to make them habitable during normal and post-accident conditions. The new facility will be integrated with the existing facilities with minimum interference or impact.
1.3  Additionally, the HRSS equipment will be suitable for use during normal operation.
1.4- A Containment Air Sampling (CAS) system adjunct to the sampling capability will provide for sampling of the containment atmosphere during accident conditions .
* ED-33A (1/80)


REQUIREMENTS  
DESIGN INPUT 5324--PlOl                            REVISION  l            PAGE    2 of 25 REQUIREMENTS 2.0   PERFORMANCE REQUIREMENTS 2.1  In the post-accident state the HRSS shall be capable of extracting and analyzing the following samples within the times indicated:
 
Sample Source                        Analyze for                      Time After Accident Reactor Coolant Radionucli des*                  Extract and analyze (10 ci/cc to 10 curies/cc) sample within l hour a)    Hot leg                      Boron                            except spectral (200-2000 ppm) b)    Cold leg                                                        which  is 2 hours.
===9.0 STRUCTURAL===
c)    RHR loop                      Total gas (oxygen & hydrogen) d)    RC letdown                    pH (demn outlet)                  0-14-)
 
Containment Atmosphere              Radionuclides*,                  Within 2 hours after Hydrogen accident and once per shift thereafter Containment Sump                    Same as reactor coolant          Same as reactor coolant
REQUIREMENTS 10.0 HYDRAULIC REQUIREMENTS 11.0 ELECTRICAL REQUIREMENTS 12.0 LAYOUT AND ARRANGEMENT REQUIREMENTS 13.0 OPERATIONAL REOUIREMENTS 14-.0 TEST REQUIREMENTS 15.0 ACCESSIBILITY, MAINTENANCE, REPAIR, AND INSERVICE INSPECTION REQUIREMENTS 16.0 TRANSPORTABILITY REQUIREMENTS 17.0 HANDLING, STORAGE, AND SHIPPING REQUIREMENTS 18.0 CHEMISTRY REQUIREMENTS PAGE i of 25 Page l 2 4-9 11 12 13 14-16 17 18 19 20 21 22 23 24-25 ED-33A (1/80)
*
*
* REVISION PAGE DESIGN INPUT REQUIREMENTS 5324--P!Ol 1 ,....f "" 1.0 BASIC FUNCTIONS TO BE PERFORMED 1.1 The High Radiation Sampling System (HRSS) is to provide the capability to extract, analyze, and dispose of samples of reactor coolant, containment atmosphere, and containment sump under post-accident conditions.
* Normal to TID-14-84 concentrations. Analyzers are not a part of NUS scope of supply.
The HRSS is to allow the above sampling activities to be conducted under ALARA conditions and in conformance with the requirements of Section 2.1.8.a of NUREG-0578.
ED-33A (1/80)
The extracted sample(s) shall be adequately contained to allow for either in-situ analysis or for transport offsite to an independent laboratory.
The system shall be capable of performing the analyses listed in Section 2.0. The system shall provide disposition of sample waste to an HRSS waste tank, plant radwaste, or by recycling the sample stream back to containment . 1.2 The system design will include provision of facilities for safely extracting the ples. These facilities will be located within existing space at each station. These locations will be ventilated and cooled in a manner to make them habitable during normal and post-accident conditions.
The new facility will be integrated with the existing facilities with minimum interference or impact. 1.3 Additionally, the HRSS equipment will be suitable for use during normal operation.
1.4-A Containment Air Sampling (CAS) system adjunct to the sampling capability will provide for sampling of the containment atmosphere during accident conditions . ED-33A (1/80)
* DESIGN INPUT REQUIREMENTS 5324--PlOl REVISION l PAGE 2 of 25 2.0 PERFORMANCE REQUIREMENTS 2.1 In the post-accident state the HRSS shall be capable of extracting and analyzing the following samples within the times indicated:
Sample Source Reactor Coolant a) Hot leg b) Cold leg c) RHR loop d) RC letdown (demn outlet) Containment Atmosphere Containment Sump
* Analyze for Radionucli des* (10 ci/cc to 10 curies/cc)
Boron (200-2000 ppm) Total gas (oxygen & hydrogen) pH 0-14-) Radionuclides*, Hydrogen Same as reactor coolant Time After Accident Extract and analyze sample within l hour except spectral which is 2 hours. Within 2 hours after accident and once per shift thereafter Same as reactor coolant Normal to TID-14-84 concentrations.
Analyzers are not a part of NUS scope of supply. ED-33A (1/80)
* DESIGN INPUT REQUIREMENTS 5324--P-101 REVISION l PAGE 3 of 25 2.2 During normal operations the following additional grab sampling capability is to be provided:
RC-hot leg 2.3 The HRSS shall have the ability to sample the reactor coolant system, containment atmosphere, and sump water under the following conditions:
: 1. After containment isolation signal is initiated, 2 . Potential for high airborne activities in vicinity where sample stations are located, 3. High radiation levels from sample lines, t+. High radiation levels from other equipment which may be post-accident sources, and 5. Normal and post-accident conditions (pressure and temperature) in the reactor coolant system and the containment atmosphere.
2.t+ The HRSS shall be capable of collecting and disposing of the samples by: 1. Storing in a waste holdup tank, and 2. Returning high level liquid waste to containment sump, or 3. Pumping liquid to the station liquid radwaste system, and t+. Recycling gaseous sample waste to containment.
ED-33A ( 1 /80)
* DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION PAGE 4 of 25 3.0 CODES, STANDARDS, AND REGULATORY RE0UIREMENTS The following codes, standards, and regulatory requirements shall be utilized, in defining the design of the HRSS system and associated buildings.


===3.1 General===
DESIGN INPUT REQUIREMENTS 5324--P-101                          REVISION l            PAGE  3 of 25 2.2    During normal operations the following additional grab sampling capability is to be provided:
3.1.1 Code of Federal Regulations, Title 10, Part 50 a. b
RC-hot leg 2.3   The HRSS shall have the ability to sample the reactor coolant system, containment atmosphere, and sump water under the following conditions:
* General Design Criteria for Nuclear Power Plants, Appendix A, 1979. Quality Assurance Criteria for Nuclear Power Plants, Appendix B, 1979.* 3.1.2 Nuclear Regulatory Commission Regulatory Guides a. 1.4 Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss-of-Coolant Accident for Pressurized Water Reactors, Rev. 2, 1974. b. 1.7 Control of Combustible Gas Concentrations in Containment Following a Loss-of-Coolant Accident, Rev. 2, 1978. c. 1.11 Instrument Lines Penetrating Primary Reactor Containment (Safety Guide 11) Supplement to Safety Guide 11, Backfitting Considerations, 1972. d. 1.21 Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Rev. 1, 1974. *To the extent defined by the Quality Assurance Plan. ED-33A (1/80) 
: 1. After containment isolation signal is initiated,
*
: 2. Potential for high airborne activities in vicinity where sample stations are
* DESIGN INPUT REVISION PAGE REQUIREMENTS 5324--P-101
* 3.
: e. 1.26 Quality Group Classifications and Standards for Water-, Steam-, and Radioactive-Waste-Containing Components of Nuclear Power Plants, Rev. 3, 1976. f. 1.52 Design, Testing and Maintenance Criteria for Post Accident Engineered-
located, High radiation levels from sample lines, t+. High radiation levels from other equipment which may be post-accident sources, and
: g. h. Safety-Feature Atmosphere Cleanup System Air Filtration and tion Units of Light Water-Cooled Nuclear Power Plants, Rev. 2, 1978. 1. 97 Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant Conditions During and Following an Accident, Rev. 2, Proposed Draft Dec. 1, 1979 . . 0578 TMI-2 Lessons Learned, Task Force Status Report and Short Term Re-commendations, 1979. 3.2 Structural
: 5. Normal and post-accident conditions (pressure and temperature) in the reactor coolant system and the containment atmosphere.
2.t+  The HRSS shall be capable of collecting and disposing of the samples by:
: 1. Storing in a waste holdup tank, and
: 2. Returning high level liquid waste to containment sump, or
: 3. Pumping liquid to the station liquid radwaste system, and t+. Recycling gaseous sample waste to containment.
ED-33A ( 1/80)


====3.2.1 American====
DESIGN INPUT            5324-P-101                                                PAGE    4 of 25 REVISION REQUIREMENTS 3.0  CODES, STANDARDS, AND REGULATORY RE0UIREMENTS The following codes, standards, and regulatory requirements shall be utilized, in defining the design of the HRSS system and associated buildings.
Concrete Institute (ACI) a. 315 t\fanual of Standard Practice for Detailing Reinforced Concrete Struc-tures, 197 It. b. 318 Building Code Requirements for Reinforced Concrete, 1971. 3.2.2 i\merican Institute of Steel Construction (1\ISC) Specification for the Design, Fabrication, and Erection of Structurai Steel for Buildings, 1978 . 5 of 25 ED-33A (1/80)
3.1  General 3.1.1 Code of Federal Regulations, Title 10, Part 50
*
: a.         General Design Criteria for Nuclear Power Plants, Appendix A, 1979.
* DESIGN INPUT REQUIREMENTS 5324--P-101
b*          Quality Assurance Criteria for Nuclear Power Plants, Appendix B, 1979.*
3.1.2 Nuclear Regulatory Commission Regulatory Guides
: a. 1.4  Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss-of-Coolant Accident for Pressurized Water Reactors, Rev.
2, 1974.
: b. 1.7  Control of Combustible Gas Concentrations in Containment Following a Loss-of-Coolant Accident, Rev. 2, 1978.
: c. 1.11 Instrument Lines Penetrating Primary Reactor Containment (Safety Guide 11) Supplement to Safety Guide 11, Backfitting Considerations, 1972.
: d. 1.21 Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Rev. 1, 1974.
  *To the extent defined by the Quality Assurance Plan.
ED-33A (1/80)


====3.2.3 American====
DESIGN INPUT                                                                        PAGE REVISION REQUIREMENTS      5324--P-101                                                              5 of 25
Welding Society (AWS) D 1.1 Structural Welding Code, Rev. 2, 1977. 3.2.4-International Conference of Building Officials Uniform Building Code, 1979. 3.2.5 Applicable State and Local Codes. 3.2.6 VEPCO Standards . 3.3 Mechanical 3.3.l Air Conditioning and Refrigeration Institute (ACRI) REVISION PAGE 4-10 Standard for Forced Circulation Air-Cooling and Air-Heating Coils, 1972. 3.3.2 Air Movement and Control Association (AMCA) -Formerly Air Moving and tion Association 210 Laboratory Methods of Testing Fans for Rating Purposes, 1974-. 3.3.3 American National Standards Institute (ANSI), the latest addenda of a. B 16.5 Steel Pipe Flanges and Flanged Fittings, 1977. b. Bl6.25Buttwelding Ends, 1979 c. B31.l Power Piping, 1977. 6 of 25 ED-33A (1/801 
: e. 1.26 Quality Group Classifications and Standards for Water-, Steam-, and Radioactive-Waste-Containing Components of Nuclear Power Plants, Rev. 3, 1976.
*
: f. 1.52 Design, Testing and Maintenance Criteria for Post Accident Engineered-Safety-Feature Atmosphere Cleanup System Air Filtration and Adsorp-tion Units of Light Water-Cooled Nuclear Power Plants, Rev. 2, 1978.
* DESIGN INPUT REQUIREMENTS 5324-P-lOl REVISION l PAGE 7 of 25 c. N509 Requirements for Nuclear Power Plant Air Cleaning Units and ents, 1976. d. N510 Standard for Testing of Nuclear Air Cleaning Systems, 1975. 3.3.4 American Society of Mechanical Engineers (ASME), the latest addenda of Boiler and Pressure Vessel Code, a. Section III Rules for Construction of Nuclear Power Plant Components, b. c. Section VIII 1979 Section IX (for plant specific code year of record and applicable addenda) . Pressure Vessels, Divisions l & 2, 1977, Summer Addenda Welding and Brazing Qualifications, 1977, Summer Addenda 1979. 3.3.5 National Fire Protection Association (NFPA) 90A Standard for the Installation of Air Conditioning and Ventilating tems, 1978. 3.3.6 Sheet Metal and Air Conditioning Contractors National Association (SMACNA) High Pressure Duct Construction Standards, 1975. 3.4 Electrical 3.4.l American National Standards Institute (ANSI) Cl National Electrical Code, 1978. ED*33A (1/80)
: g. 1. 97 Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant Conditions During and Following an Accident, Rev. 2, Proposed Draft Dec. 1, 1979 .
* REVISION PAGE DESIGN INPUT REQUIREMENTS 5324-P-101 8 of 25 3.4.2 Institute of Electrical and Electronic Engineers (IEEE) a. 279 Criteria for Protection Systems for Nuclear Power Operating Systems, 1971. b. 34-4 Recommended Practice for Seismic Oualification of Class lE Equipment for Nuclear Power Operating Stations, 1975. c. 383 Standard for Type Test of Class lE Electrical Cables, Field Splices and Connections for Nuclear Power Operating Stations, 1974-. d. 384 Standard Criteria for Independence of Class IE Equipment and Circuits, 1977. e. 494-Standard Method for Identification of Documents Related to Class IE Equipment and Systems for Nuclear Power, 197lL. Note: Standards (b) thru (e) shall be implemented only on as required by process and on the isolation device from the ass power source to the Non-Class lE distribution center. ED-33A 11/801
* 3.2 h.
* DESIGN INPUT REQUIREMENTS 5324-P-101
Structural commendations, 1979.
0578 TMI-2 Lessons Learned, Task Force Status Report and Short Term Re-3.2.1 American Concrete Institute (ACI)
: a. 315    t\fanual of Standard Practice for Detailing Reinforced Concrete Struc-tures, 197 It.
: b. 318    Building Code Requirements for Reinforced Concrete, 1971.
3.2.2 i\merican Institute of Steel Construction (1\ISC)
Specification for the Design, Fabrication, and Erection of Structurai Steel for Buildings, 1978 .
* ED-33A (1/80)


===4.0 DESIGN===
DESIGN INPUT                    5324--P-101                  REVISION             PAGE 6 of 25 REQUIREMENTS 3.2.3 American Welding Society (AWS)
CONDITIONS REVISION PAGE 9 of 25 4.1 The following design conditions are applicable to both the North Anna and Surry sampling panels: (1) Process Pressure:
D 1.1 Structural Welding Code, Rev. 2, 1977.
Temperature:
3.2.4- International Conference of Building Officials Uniform Building Code, 1979.
RC Sampling Sump Sampling Containment Atmosphere RC Sampling Sump Sampling Containment Atmosphere (2) In-containment ambient Pressure:
3.2.5 Applicable State and Local Codes.
Temperature:
3.2.6 VEPCO Standards .
Rel. Humidity:
* 3.3    Mechanical 3.3.l Air Conditioning and Refrigeration Institute (ACRI) 4-10  Standard for Forced Circulation Air-Cooling and Air-Heating Coils, 1972.
Radiation:
3.3.2 Air Movement and Control Association (AMCA) - Formerly Air Moving and Condi-tion Association 210    Laboratory Methods of Testing Fans for Rating Purposes, 1974-.
9 psia to 60 psia 310&deg;F 0-100% gamma (later) Rads Beta (later) Rads (3) Outside Containment Ambient Pressure:
3.3.3 American National Standards Institute (ANSI), the latest addenda of
Temperature:
: a. B 16.5 Steel Pipe Flanges and Flanged Fittings, 1977.
Rel. Humidity:
: b. Bl6.25Buttwelding Ends, 1979
Radiation:
: c. B31.l Power Piping, 1977.
(4) Design Life: Atmospheric 40-120&deg;F 0-100% l x 10 7 Rads 40 years Min (later) Min (later) Max 2485 psig 75 psig 60 psig Max 700&deg;F 220&deg;F 310&deg;F ED-33A (1/80) 1.1. 
ED-33A (1/801
*
* DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION PAGE 10 of 25 4.2 Existing sample lines shall be utilized to the greatest extent practicable with quired new sample lines being provided for containment sump, waste returns, and containment sampling.
A new line is being installed by S&W which will tie the aux iliary building floor drain sump to the containment sump. This line will be used, if practicable, to route HRSS waste returns to the containment.  


===4.3 Piping===
DESIGN INPUT REQUIREMENTS    5324 -P-lOl                                  REVISION  l            PAGE 7 of 25
and equipment need not be seismically supported except if required to prevent damage to safety-related equipment.
: c. N509    Requirements for Nuclear Power Plant Air Cleaning Units and Compon-ents, 1976.
4.4 The sampling panel downstream of the pressure reducing valve shall be protected with relief capability to 75 psig max . 4.5 The source term is as defined in Regulatory Guides 1.4 and 1.7 . ED-33A (1/80)
: d. N510 Standard for Testing of Nuclear Air Cleaning Systems, 1975.
*
3.3.4 American Society of Mechanical Engineers (ASME), the latest addenda of Boiler and Pressure Vessel Code,
* DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION l PAGEU of 25 5.0 DESIGN LOADS 5.1 Mechanical and structural loads shall be in accordance with standard design tices. Seismic loads need not be considered except where necessary to protect safety-related equipment.
: a. Section III        Rules for Construction of Nuclear Power Plant Components, (for plant specific code year of record and applicable addenda) .
5.2 The sample rooms will be analyzed to factor in the additional weight of the sampling panel and shielding . ED-33A (1/80)
* b.
* DESIGN INPUT REQUIREMENTS 5324--P-101 REVISION l PAGE 12 of 25 6.0 INTERFACE REQUIREMENTS
c.
Section VIII 1979 Section IX Pressure Vessels, Divisions l & 2, 1977, Summer Addenda Welding and Brazing Qualifications, 1977, Summer Addenda 1979.
3.3.5 National Fire Protection Association (NFPA) 90A Standard for the Installation of Air Conditioning and Ventilating Sys-tems, 1978.
3.3.6 Sheet Metal and Air Conditioning Contractors National Association (SMACNA)
High Pressure Duct Construction Standards, 1975.
3.4    Electrical
* 3.4.l American National Standards Institute (ANSI)
Cl    National Electrical Code, 1978.
ED*33A (1/80)


===6.1 Process===
DESIGN INPUT REVISION              PAGE REQUIREMENTS            5324-P-101                                                      8 of 25 3.4.2 Institute of Electrical and Electronic Engineers (IEEE)
The HRSS will interface with existing reactor coolant sampling system, containment atmosphere sampling and plant radwaste systems, containment floor drain systems, iliary building heating and ventilation system, and auxiliary building floor drain system. All plants will interface with cooling and demineralized water systems, station service and instrument air systems, ventilation exhaust systems, and inert gas systems. 6.2 Structural The existing sampling room will be utilized for the HRSS if structurally possible and room is available.  
: a. 279  Criteria for Protection Systems for Nuclear Power Operating Systems, 1971.
: b. 34-4  Recommended Practice for Seismic Oualification of Class lE Equipment for Nuclear Power Operating Stations, 1975.
: c. 383  Standard for Type Test of Class lE Electrical Cables, Field Splices and Connections for Nuclear Power Operating Stations, 1974-.
: d. 384  Standard Criteria for Independence of Class IE Equipment and Circuits, 1977.
: e. 494-  Standard Method for Identification of Documents Related to Class IE Equipment and Systems for Nuclear Power, 197lL.
Standards (b) thru (e) shall be implemented only on isolation alve ~chemes Note:
0 as required by process and on the isolation device from the ass    1 power source to the Non-Class lE distribution center.
ED-33A 11/801


===6.3 Mechanical===
DESIGN INPUT REQUIREMENTS          5324-P-101                          REVISION            PAGE    9 of 25 4.0  DESIGN CONDITIONS 4.1  The following design conditions are applicable to both the North Anna and Surry sampling panels:
(1)  Process                                              Min          Max Pressure:        RC Sampling                  (later)    2485 psig Sump Sampling                            75 psig Containment Atmosphere                    60 psig Min            Max Temperature:      RC Sampling                  (later)      700&deg;F
*            (2)  In-containment ambient Pressure:
Sump Sampling Containment Atmosphere 9 psia to 60 psia 220&deg;F 310&deg;F


HVAC and drain systems will interface with station facilities.
===1.1. Temperature===
6.4-Electrical Power and lighting is to be drawn from existing nearby electrical supplies.
310&deg;F Rel. Humidity:    0-100%
Power supplies are to be available from the emergency buses or uninterruptible power supplies.
gamma (later) Rads Radiation:        Beta (later) Rads (3)  Outside Containment Ambient Pressure:        Atmospheric Temperature:      40-120&deg;F Rel. Humidity:    0-100%
Isolation devices will be supplied as required per IEEE-384-. E0-33A (1/80)
Radiation:        l x 10 7 Rads (4)  Design Life:          40 years ED-33A (1/80)
DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION l PAG9_3 of 25 7 .0 MA TE RIAL REQUIREMENTS


===7.1 Process===
DESIGN INPUT            5324-P-101                          REVISION              PAGE  10 of 25 REQUIREMENTS 4.2  Existing sample lines shall be utilized to the greatest extent practicable with re-quired new sample lines being provided for containment sump, waste returns, and containment sampling. A new line is being installed by S&W which will tie the aux iliary building floor drain sump to the containment sump. This line will be used, if practicable, to route HRSS waste returns to the containment.
compatibility and environmental conditions dictate process material tion. Stainless steel 300 series is to be used to the greatest extent possible.
4.3  Piping and equipment need not be seismically supported except if required to prevent damage to safety-related equipment.
Surface materials and/or finishes shall be such as to facilitate washdown and/or nation where applicable.
4.4  The sampling panel downstream of the pressure reducing valve shall be protected with relief capability to 75 psig max .
* 4.5  The source term is as defined in Regulatory Guides 1.4 and 1.7 .
ED-33A (1/80)


===7.2 Teflon===
DESIGN INPUT REQUIREMENTS    5324-P-101                              REVISION  l            PAGEU  of 25 5.0  DESIGN LOADS 5.1  Mechanical and structural loads shall be in accordance with standard design prac-tices. Seismic loads need not be considered except where necessary to protect safety-related equipment.
or other elastomer valve packings are acceptable provided the potential for radiation damage and its consequences are assessed as acceptable.
5.2 The sample rooms will be analyzed to factor in the additional weight of the sampling panel and shielding .
ED-33A (1/80)
ED-33A (1/80)
DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION l PAGE 14 of 25 8.0 MECHANICAL REQUIREMENTS 8.1 To the extent practicable, a passive system should be provided for backup fluid transfer in lieu of redundant motorized pumps. 8.2 All pumps, fans, and compressors serving the HRSS shall be served by electric power from one of the emergency buses. The pumps, fans, and compressors will not be redundant.*


===8.3 Piping===
DESIGN INPUT 5324--P-101                        REVISION  l            PAGE  12 of 25 REQUIREMENTS 6.0    INTERFACE REQUIREMENTS 6.1    Process The HRSS will interface with existing reactor coolant sampling system, containment atmosphere sampling and plant radwaste systems, containment floor drain systems, aux-iliary building heating and ventilation system, and auxiliary building floor drain system.
and support shall be designed for normal process loads including thermal. 8.4 Isolation and throttling valves for sample lines shall be ball, gate or plug type designed to minimize restrictions and traps in the sample line. Valves not used for sample lines shall be gate or globe or as otherwise dictated by the process requirements.  
All plants will interface with cooling and demineralized water systems, station service and instrument air systems, ventilation exhaust systems, and inert gas systems.
6.2    Structural The existing sampling room will be utilized for the HRSS if structurally possible and room is available.
6.3    Mechanical HVAC and drain systems will interface with station facilities.
6.4-  Electrical Power and lighting is to be drawn from existing nearby electrical supplies. Power supplies are to be available from the emergency buses or uninterruptible power supplies. Isolation devices will be supplied as required per IEEE-384- .
E0-33A (1/80)


===8.5 Ventilation===
DESIGN INPUT REQUIREMENTS      5324-P-101                                REVISION  l            PAG9_3 of  25 7 .0 MA TE RIAL REQUIREMENTS 7.1  Process compatibility and environmental conditions dictate process material selec-tion. Stainless steel 300 series is to be used to the greatest extent possible. Surface materials and/or finishes shall be such as to facilitate washdown and/or decontami-nation where applicable.
7.2  Teflon or other elastomer valve packings are acceptable provided the potential for radiation damage and its consequences are assessed as acceptable.
ED-33A (1/80)


and air conditioning ductwork shall be galvanized sheetmetal constructed in accordance with the recommendations of SMACNA High Pressure Duct Construction.  
DESIGN INPUT            5324-P-101                          REVISION  l            PAGE  14 of 25 REQUIREMENTS 8.0    MECHANICAL REQUIREMENTS 8.1  To the extent practicable, a passive system should be provided for backup fluid transfer in lieu of redundant motorized pumps.
8.2    All pumps, fans, and compressors serving the HRSS shall be served by electric power from one of the emergency buses. The pumps, fans, and compressors will not be redundant.*
8.3    Piping and support shall be designed for normal process loads including thermal.
8.4    Isolation and throttling valves for sample lines shall be ball, gate or plug type designed to minimize restrictions and traps in the sample line. Valves not used for sample lines shall be gate or globe or as otherwise dictated by the process requirements.
8.5    Ventilation and air conditioning ductwork shall be galvanized sheetmetal constructed in accordance with the recommendations of SMACNA High Pressure Duct Construction.
8.6  Piping and ventilation ductwork shall be insulated depending upon the process tern perature for personnel protection, anti-sweat protection, or heat loss reduction.
The insulation shall be fire proof with a flame spread of 25 or less and a smoke developed rating of 25 or less.
8.7  Stainless steel, galvanized sheetmetal and non-ferrous alloy surfaces will not be painted. Other surfaces will be painted with inorganic base paints not susceptible to scaling or peeling.
ED-33A (1/801


===8.6 Piping===
DESIGN INPUT REQUIREMENTS     5324-P-101                               REVISION               PAGE15 of 25 8.8 Filters for ventilation air for the HRSS sample rooms, if required, shall be of the type for nuclear plant service and shall be within the general requirements specified by Regulatory Guide 1.52 for items such as filter efficiency, charcoal selection, construction features, etc., except that the ventilation systems and filters are not engineered safety systems and the filters will not be redundant. The filters will be tested in place after installation with portable DOP generators and freon gas.
and ventilation ductwork shall be insulated depending upon the process tern perature for personnel protection, anti-sweat protection, or heat loss reduction.
8.9 The design temperature for the sample rooms will be 50-l05&deg;F and 100% RH max imum and post-accident and the ventilation rate will be based upon 20 CFM per person or the room leakage rate whichever is larger. Exhaust air from the room will be filtered through a charcoal HEPA filter assembly.
The insulation shall be fire proof with a flame spread of 25 or less and a smoke developed rating of 25 or less. 8.7 Stainless steel, galvanized sheetmetal and non-ferrous alloy surfaces will not be painted. Other surfaces will be painted with inorganic base paints not susceptible to scaling or peeling. ED-33A (1/801 DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION PAGE15 of 25 8.8 Filters for ventilation air for the HRSS sample rooms, if required, shall be of the type for nuclear plant service and shall be within the general requirements specified by Regulatory Guide 1.52 for items such as filter efficiency, charcoal selection, construction features, etc., except that the ventilation systems and filters are not engineered safety systems and the filters will not be redundant.
8.10 The hood exhaust will be routed to an existing station monitored release point.
The filters will be tested in place after installation with portable DOP generators and freon gas. 8.9 The design temperature for the sample rooms will be 50-l05&deg;F and 100% RH max imum and post-accident and the ventilation rate will be based upon 20 CFM per person or the room leakage rate whichever is larger. Exhaust air from the room will be filtered through a charcoal HEPA filter assembly.
8.11 The HRSS shall be classified as Quality Group D, as defined in NRC Regulatory Guide 1.26, from the sampling panels to the root valve located near the main process line. The root valve and piping upstream up to the connection on the main process line shall have the same classification as the process line except that process sample lines 3/4 inch NPS and less are not classified greater than Class B.
8.10 The hood exhaust will be routed to an existing station monitored release point. 8.11 The HRSS shall be classified as Quality Group D, as defined in NRC Regulatory Guide 1.26, from the sampling panels to the root valve located near the main process line. The root valve and piping upstream up to the connection on the main process line shall have the same classification as the process line except that process sample lines 3/4 inch NPS and less are not classified greater than Class B. 8.12 Pressure relief protection shall be provided for the HRSS panel. Relief discharge shall be controlled.
8.12 Pressure relief protection shall be provided for the HRSS panel. Relief discharge shall be controlled.
8.13 Hoods are to be provided to control leakage of radioactive gases from process equip ment unless leakproof components are selected.
8.13 Hoods are to be provided to control leakage of radioactive gases from process equip ment unless leakproof components are selected.
8.14 The design of the HRSS and waste collection system shall consider the potential for dissolved hydrogen release into the system, and shall include, as a minimum, overpressure protection and capability to inert the HRSS waste tank. ED-33A (1/80)
8.14 The design of the HRSS and waste collection system shall consider the potential for dissolved hydrogen release into the system, and shall include, as a minimum, overpressure protection and capability to inert the HRSS waste tank.
* *
ED-33A (1/80)
* DESIGN INPUJ324--P-l0l REQUIREMENTS REVISION l PAGE l6 of 25 9.0 STRUCTURAL REQUIREMENTS  
* DESIGN INPUJ324--P-l0l                                     REVISION l           PAGE l6 of 25 REQUIREMENTS 9.0 STRUCTURAL REQUIREMENTS 9.1  Location and sizes of structural members shall be determined to support design loads except where shielding requirements dictate greater thickness or different location without jeopardizing the structural integrity.
9.2  Loads imposed by permanent and/or portable shielding must be factored into the structural design.
9.3  Effects on the auxiliary building structure of the HRSS panel toppling due to seismic motion shall be evaluated .
ED-33A ( 1 /80)
* ENGINEERING DIVISION DESIGN INPUT      5324--P-101                              REVISION  l            PAGE17 of 25 REQUIREMENTS 10.0 HYDRAULIC REQUIREMENTS 10.l Pipe sizing shall be such as to assure sufficient velocity to minimize plateout in the lines and assure representative samples. The Reynolds number is to be in the turbulent zone, i.e., 5000.
10.2 Pipe routing shall avoid deadlegs, low points, and other similar crud trap orienta-tions so as to minimize radiation effects.
10.3 Pipe sizing shall be such as to allow purge of the line prior to drawing sample.
Capability shall be to flush three line volumes within ten minutes .
* 10.4- Containment sump sample line design must consider possible elevated sump temper-atures, debris in sump, chemical contaminants in sump, possible containment pres-surization, as well as negative (subatmospheric) pressure in containment.
10.5 Passive flow restrictors are to be evaluated to limit loss of reactor coolant in case of sample line break.
10.6 The analytical chemistry equipment requires a design flow of 200 ml/min source pressure 25 psi greater than the backpressure at the exit of the panel.
10.7 The sampling waste holdup tank shall be sized to hold waste from two samples before the contents are to be disposed of .
ED-33A (1/80)


===9.1 Location===
DESIGN INPUT          5324-P-101                                                PAGE18 of 25 REVISION REQUIREMENTS 11.0 ELECTRICAL REQUIREMENTS
and sizes of structural members shall be determined to support design loads except where shielding requirements dictate greater thickness or different location without jeopardizing the structural integrity.  
: 11. l Normal design practice(s) supplemented by VEPCO standards.
11.2 Power shall be provided from the emergency buses or uninterruptible power supplies.
Other non-essential loads shall be supplied from the plant auxiliary buses.
11.3 Intraplant communication system shall be provided in the sampling rooms .
ED-33A (1/80)


===9.2 Loads===
DESIGN INPUT REQUIREMENTS 5324-P-101                           REVISION           PAGE19   of 25 12.0 LAYOUT AND ARRANGEMENT REQUIREMENT(S) 12.1 Layouts shall be optimized for efficient sampling and to implement ALARA require-ments. Layout shall consider floor load distribution.
imposed by permanent and/or portable shielding must be factored into the structural design. 9.3 Effects on the auxiliary building structure of the HRSS panel toppling due to seismic motion shall be evaluated . ED-33A ( 1 /80) 
12.2 The sample room should be arranged to provide access control between potentially contaminated areas and clean areas .
* *
ED-33A (1/80)
* ENGINEERING DIVISION DESIGN INPUT 5324--P-101 REVISION l PAGE17 of 25 REQUIREMENTS 10.0 HYDRAULIC REQUIREMENTS 10.l Pipe sizing shall be such as to assure sufficient velocity to minimize plateout in the lines and assure representative samples. The Reynolds number is to be in the turbulent zone, i.e., 5000. 10.2 Pipe routing shall avoid deadlegs, low points, and other similar crud trap tions so as to minimize radiation effects. 10.3 Pipe sizing shall be such as to allow purge of the line prior to drawing sample. Capability shall be to flush three line volumes within ten minutes . 10.4-Containment sump sample line design must consider possible elevated sump atures, debris in sump, chemical contaminants in sump, possible containment surization, as well as negative (subatmospheric) pressure in containment.
 
10.5 Passive flow restrictors are to be evaluated to limit loss of reactor coolant in case of sample line break. 10.6 The analytical chemistry equipment requires a design flow of 200 ml/min source pressure 25 psi greater than the backpressure at the exit of the panel. 10.7 The sampling waste holdup tank shall be sized to hold waste from two samples before the contents are to be disposed of . ED-33A (1/80)
DESIGN INPUT 532~-P-101                    REVISION             PAGE 20 of 25 REQUIREMENTS 13.0 OPERATIONAL REQUIREMENTS 13.l HRSS is to be used for post-accident sampling only with the exception of RC hot-leg sampling.
* DESIGN INPUT REQUIREMENTS 5324-P-101 11.0 ELECTRICAL REQUIREMENTS REVISION 11. l Normal design practice(s) supplemented by VEPCO standards.
13.2 For post-accident condition in-line analyzers are to be provided for chemical analy-sis of the sample within one hour of the accident.
PAGE18 of 25 11.2 Power shall be provided from the emergency buses or uninterruptible power supplies.
Other non-essential loads shall be supplied from the plant auxiliary buses. 11.3 Intraplant communication system shall be provided in the sampling rooms . ED-33A (1/80)
* DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION PAGE19 of 25 12.0 LAYOUT AND ARRANGEMENT REQUIREMENT(S) 12.1 Layouts shall be optimized for efficient sampling and to implement ALARA ments. Layout shall consider floor load distribution.
12.2 The sample room should be arranged to provide access control between potentially contaminated areas and clean areas . ED-33A (1/80)
DESIGN INPUT REQUIREMENTS REVISION PAGE 20 of 25 13.0 OPERATIONAL REQUIREMENTS 13.l HRSS is to be used for post-accident sampling only with the exception of RC leg sampling.
13.2 For post-accident condition in-line analyzers are to be provided for chemical sis of the sample within one hour of the accident.
13.3 Method to contain spills while extracting a grab sample shall be provided.
13.3 Method to contain spills while extracting a grab sample shall be provided.
ED-33A (1/80)
ED-33A (1/80)
* ENGINEERING DIVISION DESIGN INPUT REQUIREMENTS 5324--P-101 14-.0 TEST REQUIREMENTS REVISION PAGE 21 of 25 14-.1 Immediately prior to use of the system for post-accident sampling the system shall be capable of being leak checked using air or nitrogen.
 
The mechanical functioning of the remote grab sample vial handling system shall also be verifiable.
ENGINEERING DIVISION DESIGN INPUT REQUIREMENTS 5324--P-101                         REVISION                PAGE 21 of 25 14-.0 TEST REQUIREMENTS 14-.1 Immediately prior to use of the system for post-accident sampling the system shall be capable of being leak checked using air or nitrogen. The mechanical functioning of the remote grab sample vial handling system shall also be verifiable.
14-.2 Filter systems for the ventilation supply air and exhaust air from hoods will be tested in accordance with ANSI N510. 14.3 The system will be tested when installed and on a periodic basis thereafter.
14-.2 Filter systems for the ventilation supply air and exhaust air from hoods will be tested in accordance with ANSI N510.
Station personnel training will serve as system checkout for many components . ED-33A ( 1 /80)
14.3 The system will be tested when installed and on a periodic basis thereafter. Station personnel training will serve as system checkout for many components .
DESIGN INPUT REQUIREMENTS 5324--P-101 REVISION PAGE 22 of 25 15.0 ACCESSABILITY, MAINTENANCE, REPAIR, AND INSERVICE INSPECTION REQUIREMENTS 15.1 The HRSS shall be serviceable during the accident recovery phase. Flushing sions shall be incorporated to reduce radiation levels at ALARA conditions.
ED-33A ( 1 /80)
To facilitate this requirement, crud traps are to be particularly avoided. 15.2 The sample piping is to be routed near ceilings and areas to minimize personnel exposure.
 
Where not practicable by routing local shielding is to be provided.
DESIGN INPUT           5324--P-101                         REVISION             PAGE 22 of 25 REQUIREMENTS 15.0 ACCESSABILITY, MAINTENANCE, REPAIR, AND INSERVICE INSPECTION REQUIREMENTS 15.1 The HRSS shall be serviceable during the accident recovery phase. Flushing provi-sions shall be incorporated to reduce radiation levels at ALARA conditions. To facilitate this requirement, crud traps are to be particularly avoided.
15.2 The sample piping is to be routed near ceilings and areas to minimize personnel exposure. Where not practicable by routing local shielding is to be provided.
ED-33A ( 1 /80)
ED-33A ( 1 /80)
* rn CORPORATION  
* rn     CORPORATION ENGINEERING DIVISION DESIGN INPUT REQUIREMENTS 5324-P-101                         REVISION               PAGE 23 of 25 16.0 TRANSPORTABLILITY REQUIREMENTS 16.l Grab sample vial (liquid and gas) containers are to be designed for offsite shipment by commercially available DOT/NRC approved overpack. Remote handling for loading into shipping containers is to be provided .
*
ED-33A (1/801
* ENGINEERING DIVISION DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION PAGE 23 of 25 16.0 TRANSPORTABLILITY REQUIREMENTS 16.l Grab sample vial (liquid and gas) containers are to be designed for offsite shipment by commercially available DOT/NRC approved overpack.
 
Remote handling for loading into shipping containers is to be provided . ED-33A (1/801
DESIGN INPUT REQUIREMENTS                   5324-P-101                     REVISION l           PAGE24of 25 17 .0 HANDLING, STORAGE, AND SHIPPING REQUIREMENTS 17.1 The HRSS shall provide for adequate shielding to meet ALARA considerations.
* DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION l PAGE24of 25 17 .0 HANDLING, STORAGE, AND SHIPPING REQUIREMENTS 17.1 The HRSS shall provide for adequate shielding to meet ALARA considerations.
The design objective per sample is to limit personnel exposure to 100 mrem per sample whole body and 150 mrem per sample additional to extremeties from sampling operations exclusive of the surrounding background radlevels.
The design objective per sample is to limit personnel exposure to 100 mrem per sample whole body and 150 mrem per sample additional to extremeties from sampling operations exclusive of the surrounding background radlevels.
17 .2 The off site shipping cask handling radioactive samples shall be designed to limit dose rates to 100 mrem/hr contact and shall be compatible with DOT/NRC approved overpack.
17 .2 The off site shipping cask handling radioactive samples shall be designed to limit dose rates to 100 mrem/hr contact and shall be compatible with DOT/NRC approved overpack.
17.3 If floor loading limitations dictate, the dose limits for the 1 hour sample of 17.1 are increased to l R per sample whole body exclusive of the surrounding radlevels.
17.3 If floor loading limitations dictate, the dose limits for the 1 hour sample of 17.1 are increased to l R per sample whole body exclusive of the surrounding radlevels.
Subsequent sample (8 hours) at all stations shall be obtained within the 17.l dose limits. 17 .4 The total dose which is allowed by NUREG 0578 for sampling and analysis taken one hour after the accident is 3 rem whole body and 18 3/4 rem to the extremities.
Subsequent sample (8 hours) at all stations shall be obtained within the 17.l dose limits.
At North Anna this limit is lowered to 2.5 Rem whole body and/or 15 rem to the extremities (l-OP-12.1, 1-23-80) . ED-33A (1/80)
17 .4 The total dose which is allowed by NUREG 0578 for sampling and analysis taken one hour after the accident is 3 rem whole body and 18 3/4 rem to the extremities.
*
At North Anna this limit is lowered to 2.5 Rem whole body and/or 15 rem to the extremities (l-OP-12.1, 1-23-80) .
* DESIGN INPUT REQUIREMENTS 5324--P-101 18.0 CHEMISTRY REQUIREMENTS REVISION l PAGE25 of 25 18.1 The material selection for this system shall consider compatibility with commercial decontamination solution which may be used when maintenance is required.
ED-33A (1/80)
18.2 The following sump chemistry is to be considered in design: Boron, 0-2000 ppm NaOH, 0-15,000 ppm ED-33A (1/80)
* DESIGN INPUT 5324--P-101                         REVISION l            PAGE25 of  25 REQUIREMENTS 18.0 CHEMISTRY REQUIREMENTS 18.1 The material selection for this system shall consider compatibility with commercial decontamination solution which may be used when maintenance is required.
* TAB 2 North Anna Units & 2 High Radiation Sample System Drawings Process Flow Diagram Liquid Sampling Process Flow Diagram Containment Air Sampling P &ID Liquid Sampling P &ID Containment Air Sampling General Arrangement  
18.2 The following sump chemistry is to be considered in design:
-Elevation 274'-0" General Arrangement  
Boron, 0-2000 ppm NaOH, 0-15,000 ppm ED-33A (1/80)
-Elevation 244 '-6" 5324M3510 sh 1,2 5324M3511 5324M3500 sh 1 to 5 5324M3501 5324M3600 sh 1,2 5324M3601sh1,2
* TAB 2 North Anna Units ~ & 2 High Radiation Sample System Drawings Process Flow Diagram Liquid Sampling                   5324M3510 sh 1,2 Process Flow Diagram Containment Air Sampling           5324M3511 P &ID Liquid Sampling                                   5324M3500 sh 1 to 5 P &ID Containment Air Sampling                         5324M3501 General Arrangement - Elevation 274'-0"                 5324M3600 sh 1,2 General Arrangement - Elevation 244 '-6"               5324M3601sh1,2
*
* T.ll.B 3 Surry Units 1 & 2 High Radiation Sample System Drawings Process Flow Diagram Liquid Sampling                   5324M3010 sh 1,2 Process Flow Diagram Containment Air Sampling         5324M3011 P &ID Liquid Sampling                                   5324M3000 shs 1 to 5 P &ID Containment Air Sampling                         5324M3001 General Arrangement - Elevation 2 7 '-6"               5324M3100 sh l, 2 General Arrangement - Elevation 2 '-0"                 5324M3101
* T.ll.B 3 Surry Units 1 & 2 High Radiation Sample System Drawings Process Flow Diagram Liquid Sampling Process Flow Diagram Containment Air Sampling P &ID Liquid Sampling P &ID Containment Air Sampling General Arrangement  
 
-Elevation 2 7 '-6" General Arrangement  
TAB 4 Surry and North Anna High Radiation Sample System Sample Pane 1 Description
-Elevation 2 '-0" 5324M3010 sh 1,2 5324M3011 5324M3000 shs 1 to 5 5324M3001 5324M3100 sh l, 2 5324M3101 TAB 4 Surry and North Anna High Radiation Sample System Sample Pane 1 Description
: 1. Liquid Sample Panel (LSP)                       152-11-001-lrl (5 pages)
: 1. Liquid Sample Panel (LSP) a. Reactor Coolant Module b. Demineralizer Reactor Coolant Module c. Radwaste Module d. HiRad Sample Cooler Rack 2. Containment Air Sample Panel (GASP) 152-11-001-lrl (5 pages) 153-11-001-lrl (2 pages) 153-ll-002-lr3 (1 page) l 53-ll-003-lr3 (4 pages) 154-11-001-lrl (1 page) 154-11-002-lrl (1 page) 154-11-003-lrl (2 pages) 155-11-001-lrl (1 page) 155-ll-002-lr4 (1 page) 155-ll-003-lr2 (3 pages) 151-11-001-lrl (3 pages) 151-11-002-lrl (1 page) 151-11-003-lrl (2 pages) 160-ll-001-lr2 (4 pages) 160-ll-002-lr5 (1 page) 160-ll-003-lr2 (1 page)
: a. Reactor Coolant Module                      153-11-001-lrl   (2 pages) 153-ll-002-lr3   (1 page) l 53-ll-003- lr3 (4 pages)
*,
: b. Demineralizer Reactor Coolant Module        154-11-001-lrl   (1 page) 154-11-002- lrl (1 page) 154-11-003-lrl   (2 pages)
1 of 5 DRAWING NO. , 52*-11-001-1
: c. Radwaste Module                            155-11-001-lrl   (1 page) 155-ll-002-lr4   (1 page) 155-ll-003-lr2   (3 pages)
* Sentry Equipment Corp. Date 3-12-80 Ck'd LE Rev _ _..... __ _
: d. HiRad Sample Cooler Rack                    151-11-001-lrl   (3 pages) 151-11-002-lrl   (1 page) 151-11-003-lrl   (2 pages)
DESCRIPTION  
: 2. Containment Air Sample Panel (GASP)            160-ll-001-lr2 (4 pages) 160-ll-002-lr5 (1 page) 160-ll-003-lr2 (1 page)
& FUNCTION:
 
LIOUID SAMPLING PANEL (LSP) HRSS LIQUID SAMPLING SYSTEM 1
Pa~c  1 of 5
* i1 REFERENCES p ID : Parts Identification:
* Sentry Equipment Corp.                             Date 3-12-80 Ck'd LE       Rev __.....___
Operating Pr'Ocedures:  
DRAWING NO.   , 52*-11-001-1
                                                                    -~-~--~~~-~~
DESCRIPTION & FUNCTION:         LIOUID SAMPLING PANEL (LSP)
HRSS LIQUID SAMPLING SYSTEM 1
* i1   REFERENCES p ~ ID                 : 15 0-11-002- 3 Parts Identification: ref data for specific Operating Pr'Ocedures: ref data for spt7ci fi c


==2.0 DESCRIPTION==
==2.0     DESCRIPTION==


15 0-11-002-3 ref data for specific ref data for spt7ci fi c 2.1 The LSP includes the following Modules installed on a common panel-shield:
2.1   The LSP includes the following Modules installed on a common panel-shield:
a) One (1) Reactor Coolant Sampling Module b) One (1) Demin R.C. Sampling Module c) One (1) Radwaste Sampling Module d) Carts, casks and other specialized equipment.
a) One (1) Reactor Coolant Sampling Module b) One (1) Demin R.C. Sampling Module c) One (1) Radwaste Sampling Module d) Carts, casks and other specialized equipment.
2.2 Panel-Shield  
2.2   Panel-Shield & Base: The panel-shield consists of 7" of 11 Heavy Pak 11 0.03 11 diameter lead shot contained between two 1/2 11 steel plates. The panel-shield is pr'Ovided with 12 11 thick lead glass portholes for viewing bottle sampling.
& Base: The panel-shield consists of 7" of 11 Heavy Pak 11 0.03 11 diameter lead shot contained between two 1/2 11 steel plates. The panel-shield is pr'Ovided with 12 11 thick lead glass portholes for viewing bottle sampling.
Glass is SCHOTT type RS520.
Glass is SCHOTT type RS520. The panel shield is supported by a integral steel base, adequately shielded for the radioactive fluid raceway and radiation backscatter.
The panel shield is supported by a integral steel base, adequately shielded for the radioactive fluid raceway and radiation backscatter. The panel base has a chamber for the entry of the remote operated cart/cask which captures samples of reactor coolant and radwaste water.
The panel base has a chamber for the entry of the remote operated cart/cask which captures samples of reactor coolant and radwaste water. 2.3 Component Mounting:
2.3   Component Mounting: Most tubing and components are mounted on the backside of the panel, within the plenum. Extension for va1ve stems penetrate the panel-shield via steel bushings. These bushings also serve a stay rods for the front and rear faces of the panel shield to contain the considerable weight of lead shot.
Most tubing and components are mounted on the backside of the panel, within the plenum. Extension for va1ve stems penetrate the shield via steel bushings.
Flow indicators, pressure gauges and remote dial thermometers are mounted on the panel face and are routed over the panel top. Gauqes are connected to the sample lines via filled capillaries and diaphram seals.
These bushings also serve a stay rods for the front and rear faces of the panel shield to contain the considerable weight of lead shot. Flow indicators, pressure gauges and remote dial thermometers are mounted on the panel face and are routed over the panel top. Gauqes are connected to the sample lines via filled capillaries and diaphram seals. 2.4 Ventilation Ventilation control is provided by a plenum which encloses the space behind the panel shield. The plenum is to be maintained at a negative pressure of .25 11 wate\" gauge, so that 360 CFM of air infi1trates from the side of the Panel through its penetrations and into the plenum. ihus any gas leakage through valve stem packing and similar leak sources, is captured by the plenum and routed to a rad gas treating system. The bottom of the plenum is provided w1th a basin to catch any minor drips. The plenum has swing doors in rear for maintenance access. Plenum is 12ga stee1; basin is 16ga T304SS. Lamps are installed in the plenum to light the bottle filling operations
2.4     Ventilation Ventilation control is provided by a plenum which encloses the space behind the panel shield. The plenum is to be maintained at a negative pressure of .25 wate\" gauge, so that 360 CFM of air infi1trates from the out-11 side of the Panel through its penetrations and into the plenum. ihus any gas leakage through valve stem packing and similar leak sources, is captured by the plenum and routed to a rad gas treating system. The bottom of the plenum is provided w1th a basin to catch any minor drips. The plenum has swing doors in rear for maintenance access. Plenum is 12ga stee1; basin is 16ga T304SS.
., I I . Sentry Equipment Corp Dwg 152-11-001-1 Rl Paqe 2 of 5 f (1 i1 Fl*.;
Lamps are installed in the plenum to light the bottle filling operations.
t"\
y
\.: .!. 1.J u q
* t t 1 '*: r.J..a :*
* u
* u &#xa3;1 2.5 Splash Box Open grab sample spigots and the non-accident Sample Bomb are located in a splash box to capture and contain any accidental liquid spill or release of gas. The box has a sink, a drain line to waste disposal and a ventilation hose connected to the panel plenum. The sliding doors of this box must be closed before the operator can reach the grab sample valve to draw a sample. 2.6 Valve Reach Rod During worse accident situation the valve extensions the panel front face are operated*
with one meter long reach-rods.  


===2.7 Jubinq===
Rl                    Paqe 2 of 5 y
Raceway Radio:ictive fluid lines are routed thru the panel base. and into the plenum space. After penetrating the plenum, the lines disperse to connect to their proper components.
  . Sentry Equipment Corp                            Dwg 152-11-001-1
2 .R Remotely Opel"'ated Cart/cask Remotely operated Cask-Carts. (ref Function Data sheet 156-11-001-1) are provided to insert, elevate and remove the bottles which capture samples of diluted and undiluted reactor cbolant and radwaste water. 2.9 Valves, Tubinq & Joints Isolation valves are 1/4 11 Whitey globe or Nupro plug type. Plug valves are extensively used in the panel to pennit the operator to line up valves in a speedy, visual and logical manner. Throttling valves are 1/4 Whitey regulating globes. Sentry VREL is used if pressure reduction is greater than 500 psi. These variable rod-in-capillary devices can be cleaned in place by a quick pull of their handle---to allow system pressure to blow the crud out. Three and four-way ball switching valves are used in the certain of the sample capturing equipment.
  ~:'"\  r~> f( i1 r~1 t~ ffi-:*~ t~\~; t"\ ~:~}:
TFE is not used in the purging and flushing lines handling reactor coolant. Valve packing and seating, and thread sealing are*TFE in radwaste lines and for the other lines discharging to radwaste.
1
TFE is used in these lines because: (a) TFE is the only practical seating material for the necessary valve designs, (b) TFE has the minimum sealing and packing leakage rate, and {c) these TFE components have demonstrated a service life in a high radiation.
:.~.,, \.: .!. ~ 1.J u qv1~ri *t t1'*: r.J..a :*
field equal to their mechanical service life. Tubing is T304SS, l/4 11 00 by approximately  
Fl*.;
.17 11 bore. Fluid velocity developed in this bore is optimum for*assurance of con.temporary sample and fol"' minim"fz1ng crud build-up in the lines. The filling needles have a o .. 047 11 bore, and are protected by a 140 micron filter---cleanable in place by back-flushing.
  ~ u u~l6U1av                    *u    &#xa3;1  ~
2.5          Splash Box Open grab sample spigots and the non-accident Sample Bomb are located in a splash box to capture and contain any accidental liquid spill or release of gas. The box has a sink, a drain line to waste disposal and a ventilation hose connected to the panel plenum. The sliding doors of this box must be closed before the operator can reach the grab sample valve to draw a sample.
2.6        Valve Reach Rod During worse accident situation the valve extensions                                        ~ the panel front face are operated* with one meter long reach-rods.
2.7       Jubinq Raceway Radio:ictive fluid lines are routed thru the panel base. and into the plenum space. After penetrating the plenum, the lines disperse to connect to their proper components.
2 .R       Remotely Opel"'ated Cart/cask Remotely operated Cask-Carts. (ref Description-Function Data sheet 156-11-001-1) are provided to insert, elevate and remove the bottles which capture samples of diluted and undiluted reactor cbolant and radwaste water.
2.9       Valves, Tubinq & Joints Isolation valves are 1/4 11 Whitey globe or Nupro plug type. Plug valves are extensively used in the panel to pennit the operator to line up valves in a speedy, visual and logical manner. Throttling valves are 1/4 Whitey regulating globes. Sentry VREL is used i f pressure reduction is greater than 500 psi. These variable rod-in-capillary devices can be cleaned in place by a quick pull of their handle---to allow system pressure to blow the crud out.
Three and four-way ball switching valves are used in the certain of the sample capturing equipment.
TFE is not used in the purging and flushing lines handling reactor coolant.
Valve packing and seating, and                     thread sealing are*TFE in radwaste lines and for the other lines discharging to radwaste. TFE is used in these lines because: (a) TFE is the only practical seating material for the necessary valve designs, (b) TFE has the minimum sealing and packing leakage rate, and
{c) these TFE components have demonstrated a service life in a high radiation.
field equal to their mechanical service life.
Tubing is T304SS, l/4 11 00 by approximately .17 11 bore.                                 Fluid velocity developed in this bore is optimum for*assurance of con.temporary                                   sample and fol"' minim"fz1ng crud build-up in the lines. The filling needles have                                     a o.. 047 bore, and are 11 protected by a 140 micron filter---cleanable in place                                   by back-flushing.
Joints are Swagelok, Gryolok, threaded and silver solder brazed as best suited for particular components, for maximum joint tightness, for minimal fluid volume and for optimum maintenance.
Joints are Swagelok, Gryolok, threaded and silver solder brazed as best suited for particular components, for maximum joint tightness, for minimal fluid volume and for optimum maintenance.
2.10 Size and Weight (ref dwo 1$2-11-005-4)
2.10 Size and Weight (ref dwo 1$2-11-005-4) The dimentians of the Panel are 7 feet high x 4 feet deep x 8 feet wide. Weight is approximately 20000 lbs.
The dimentians of the Panel are 7 feet high x 4 feet deep x 8 feet wide. Weight is approximately 20000 lbs. REFER TO PAGE 4 OF THIS SPECIFICATION FOR PERTINENT INSTALLATION orTAILS. . I 31s UOCUt;:E:n IS THE PROPERTY OF SENT RY E(.'[J Ip iVl r. -.,:*, .. ('ORP .... ' .J l . ..,,,, \.
REFER TO PAGE 4 OF THIS SPECIFICATION FOR PERTINENT INSTALLATION orTAILS.
* Oco1iomo"Woc,
                                        .               I 31s UOCUt;:E:n IS THE PROPERTY OF SENT RY E(.'[J Ip iVl r. l -.,:*,
:.; 3 06 0 is to be usad only ror the purpose ... 1 ...  
                                                                              ....          ' .J .
..-;iU1 ::;cntlt lo whicii n 1s t t;rnished
                                                                                                  .. ('ORP
* Sentry Equipment Corp. Dwg 152-11-001-1 Rl Pclge 3 of 5 * ........ ' . I ' I 'i I h r * * ; ,', I \' <
                                                                                                      ..,,,, \.
* fix{ it* fi'. *
* Oco1iomo"Woc, ~Vi"s :.; 3 06 0 zi~d is to be usad only ror the purpose
* 3,0 FUNCTION; The Liquid Sampling Panel Modules captures samples for the followinq  
                                                      ... 1 th~ ~~... e;~;11~nt ..-;iU1 ::;cntlt pur~uant lo whicii n 1s t t;rnished
*
* I I
* types of tests; LSP ell so routes s.imples to CAP for gas & 1 iquid analysis: (a) Gases stripped from pressurized reactor coolant for hydrogen and istopic analysis: (b) Dissolved oxygen (reactor coolant);
 
liquid sample. (c) ph (reactor coolant);
Sentry Equipment Corp.                         Dwg 152-11-001-1                 Rl                             Pclge 3 of 5 r.*::.11~
liquid s_ample. (d) Chloride {reactor coolant)*;
                'i      "'~~~~~~~j'I
liquid sample. (e) Specific conductivity (reactor.coolant);
                          ~- h ~ r ** ; ,', ~l ~~
liquid sample. {f) Boron {reactor coolant);
  < *~r~U:L~~'Vkr:
liquid sample. {g} Isotopic analysis (reactor coolant, sumps and various radwaste tanks).; liquid samples. Refer to the detailed schematics, parts and procedures for the Modules of the Liquid Samol inq Panel and for CAP---in order to accomp1 ish these tasks. 4.0 ACTIVITIES  
      . I '  I    I                          I \'
& DOSE RATES 4.1 Worst Case Accident Activities Following activity levels are for one hour into accident, for a "no-line break" in a BWR. (a) Reactor Coolant 3 15000 rem/hr/cc, contact. (b) Noble & Halogen gases stripped from reactor coolant = 9900 rem/hr/cc, contact . 4.2 Radiation Fielrl@ 1 .0 Meter In Front of Panel During Sampling The radiation field at 1 .O meter in front of the panel varies with sampling actions, as follows: (a} Purging mode = foo mrem/hr., (b) Depressurizing reactor coolant = 320 mrem/hr. . (c) Capturing 15cc of diluted Reactor Coolant Off-Gas = 320 mRem/hr. (d) Flowing Reactor Coolant Off-Gas to CAP "' 320 mRem/hr. (e) Capturing 15cc reactor coolant= 400 mRem/hr. (f) Capturing 90 cc diluted reactor coolant = 250 mRem/hr. {g) Flowing Reactor Coolant Liquid to CAP = 250 mRem/hr. 4.3 Sampling Dose The panel shield and time of samolinQ results in a dose per sample which will not exceed 100 mrem at one meter distance.
3,0 fix{ it* fi'.
5.0 LEAK RATE & TESTING CRITERIA 5. l Defination "High side" 3 upstream of PROPERTY OF d":r.J"'r:NT "Low side" *= downstream of
* FUNCTION; The Liquid Sampling Panel Modules captures samples for the followinq
*F. '-L ... * . UL0tli.-1t/.IJ
* types of tests; LSP ell so routes s.imples to CAP for gas & 1 iquid analysis:
..... uc, vV _., ,J ... Ubo i!i to be us;;;ci oniy for the purpose . " the l!ei1i...nt
(a) Gases stripped from pressurized reactor coolant for hydrogen and istopic analysis:
*;1itl1 Sentry pursuant io whicil it is furnished.
(b) Dissolved oxygen (reactor coolant); liquid sample.
-, ...... 'l 5. 2 ., .... Rl Cqu 1 . Dwg. 152-11-001-1
(c) ph (reactor coolant); liquid s_ample.
'.,. '. :.;i * !".\/ .. i r. r.: .1; V *:
(d) Chloride {reactor coolant)*; liquid sample.
* i .
(e) Specific conductivity (reactor.coolant); liquid sample.
* u-l*l\. ,. ii.:;;i**u
{f) Boron {reactor coolant); liquid sample.
*1 u*1J 1 U Maximum eak rate o atmosphere shall be each joint and component when interior cavities are nitrogen as follows: (a) High side @200 psig. (b) Low side @ 20 psig. Paqe 4 of 5 l -4 x 1 O cc/sec for pressurized with dry The R-1 reservoir circuits are nqt tested with pressurized nitrogen, but shall show no visable leakage when filled with water at atmospheric pressure.
{g} Isotopic analysis (reactor coolant, sumps and various radwaste tanks).; liquid samples.
The 15 ml (BS-1) and 250 ml (DBS-1) are exempt from pressurized gas testing. Leak testing material is Product 277NE (American Gas & Chemical Co) applied in accordance with the appliciable portions of AG & C Bubble Leak Testing Process Specification.
Refer to the detailed schematics, parts and procedures for the Modules of the Liquid Samol inq Panel and for CAP---in order to accomp1 ish these tasks.
PRELIMINARY PG. 5 OF 5 0 . . ' * '.'.(I' I ** ,.. -:1 ** '' .... l !! .. l:. n p (J In' :. r*.,* ;: *.: ',. * *J**' ""*'*I '. " 1 ' ' TQL.ERANCES
4.0       ACTIVITIES & DOSE RATES 4.1     Worst Case Accident Activities Following activity levels are for one hour into accident, for a "no-line break" in a BWR.
-<:'( (fl I =o -I -V) "" a: .....J f.::J -o _, co cO ::x:: V') a: L ! =c J -* ,.._ JOB NO. RC. . . , . ' ' . . \
(a) Reactor Coolant 15000 rem/hr/cc, contact.
* i .. : .. * '" * :* l ,., ... * .... *"' '. "' -.'
3 (b) Noble & Halogen gases stripped from reactor coolant                               = 9900 rem/hr/cc, contact .
1 ;* * '..... 1 r !.'.
4.2     Radiation Fielrl@ 1 .0 Meter In Front of Panel During Sampling The radiation field at 1 .O meter in front of the panel varies with sampling actions, as follows:
* J '''ALL"o1M*s.
(a}   Purging mode = foo mrem/hr.,
UNL.ESS SENTRY EQUIPMENT CORP . l.!IQUID SAMPLING PANEL ; ,* * . . /I I:, ' . ' *. \*>> ... . , '/OTHERWISE SPECIFIED HRSS LIQUID SAMPLING SYSTEM
(b)   Depressurizing reactor coolant = 320 mrem/hr.                           .
.* .**** .. :* **: ..
(c)   Capturing 15cc of diluted Reactor Coolant Off-Gas = 320 mRem/hr.
.. '" .: ; .... ...
(d)   Flowing Reactor Coolant Off-Gas to CAP "' 320 mRem/hr.
U/P INC. !SOM SOO*l*77 2 .l"RACTICINAL.  
(e)   Capturing 15cc reactor coolant= 400 mRem/hr.
+/- c.e:c1.u.1.
(f) Capturing 90 cc diluted reactor coolant = 250 mRem/hr.
::: *I. ANGUL.AR +/-
{g) Flowing Reactor Coolant Liquid to CAP = 250 mRem/hr.
INCH t-DA_T_E ____ .J;;... __
4.3       Sampling Dose The panel shield and time of samolinQ results in a dose per sample which will not exceed 100 mrem at one meter distance.
__
5.0     LEAK RATE & TESTING CRITERIA
DRAWJNG NO. 1s2-11-001-1 I 1 Pg. 5 Or 5 c E A
: 5. l   Defination "High side"       3 upstream of pressur1l!liSro.acuo't~n:.!TMv.i;Jl~ PROPERTY OF C'f'.-'Lffl:f.i~>-' 'f'-,~n1 d":r.J"'r:NT co1~0 "Low side" *= downstream of pressU1"~. ~e~kB~~- 1 ?eV,1.~.~*-:-
* Page l of 2 Original Date 3-13-80 Ck 1 s 4-15-80 LE Rev 1 Sentry DRAWING MO. 153-11-001-1 DESCRIPTION  
* F . '-                    L  ...
& FUNCTION:
* uc, vV _.,        Ubo
REACTOR COOLANT MODULE (N0.1) HRSS Liquid Sampling Systnf  
                                                                    .           UL0tli.-1t/.IJ .....             ,J ...
                                                                            ~nd    i!i to be us;;;ci oniy for the purpose
                                                                            . " the a~. l!ei1i...nt *;1itl1 Sentry pursuant io whicil it is furnished.
 
              ~entry Cqu 1~men~ ~[*                             . Dwg. 152-11-001-1 Rl Paqe 4 of 5
          'l
          ~~l
          ~
: 5. 2
                          ~~ ii.:;;i**u
* u*1J U rtl
                              '.,. '. :.;i
                                            ~nn~r\~~'
* i . * ~1*'*1 1  l*l\. *~- ~'l*w
                                              !".\/.. i r. r.:    .1; 1
V *:
Maximum 1nd1viduaV~ eak rate o atmosphere shall be l x 1O-4 cc/sec for u-
          ....        each joint and component when interior cavities are pressurized with dry nitrogen as follows:
      )~
  *.~~  ~
(a) High side        @200 psig.
(b)  Low side @ 20 psig.
The R-1 reservoir circuits are nqt tested with pressurized nitrogen, but shall show no visable leakage when filled with water at atmospheric pressure.
The 15 ml (BS-1) and 250 ml (DBS-1) are exempt from pressurized gas testing.
Leak testing material is Product 277NE (American Gas & Chemical Co) applied in accordance with the appliciable portions of AG & C Bubble Leak Testing Process Specification.
 
PRELIMINARY                                         PG. 5     OF     5
                                                                                                                                                                                                          -<:'(
(fl
                                                                                                                            ~~~-l c
                                                                                                                                                                                                          =o I- -  I V) a:
                                                                                                                                                        .....J f.::J E
                                                                                                                                                                                                                -o 0                                                                                                  ~
co cO
::x::
V')
a:
                                                                                                                                          ~.
L I~                                    =c
                                                                                                                                                                    -*,.._                            J A
JOB NO.                                      RC.
                *   '.'.(I'
                    * *J**'
I * * ,..
                                ""*'*I
                                        -:1 ** ' '
l:. 1n
                                                            ....l !! ..        p (J In' :.
r*.,* ;:TQL.ERANCES
                                                                                                                *.:               SENTRY EQUIPMENT CORP .
            . .,.      ' ' .     .         \
* i .. : .. *           ~ '" * :* l ,., ... * .... *"' '. "' -
    .' '~.1.*:'                                       1 r !.'. *'~n.
* J     '''ALL"o1M*s. UNL.ESS I:,
1              ;*       *
                                                                  ~  ; ,* *
                                                                    \*>> ...
                                                                                    ..     /I
                                                                                      . , '/OTHERWISE SPECIFIED l.!IQUID SAMPLING PANEL
                                                                                            .l"RACTICINAL.         +/-
HRSS LIQUID SAMPLING SYSTEM INCHt----x--.-:,.-,~~~-=-:--::-~~--,-.,.-~~~~~~
c.e:c1.u.1.           :::  INCH t-DA_T_E____.J;;..._ _o_.R_A_W_N_...;J~J'""S_ _
c_H_K_'D___,;;;~-s-c...,AJ...E    :~/.A.
              \.:l~  .* .****.. :*          **:      .. *.~,L        ~~~.i.iy                              *I.
              .. '"        .: ; .... ~ ... ~;~.:J ANGUL.AR              +/-
DRAWJNG NO.                      1s2-11-001-1 U/P INC.    !SOM        SOO*l*77 2                                                              I                                            1        Pg. 5        Or      5
 
Page l of 2 4-15-80 Original Date 3-13-80              Ck 1 s LE  Rev  1 Sentry DRAWING MO. 153-11-001-1 DESCRIPTION & FUNCTION:   REACTOR COOLANT MODULE (N0.1)
HRSS Liquid Sampling Systnf


==1.0 REFERENCES==
==1.0 REFERENCES==


P & ID Parts Identification:
SEJ.J/~yCUM,_~NT      IS .THE PROPERTY OF
Operating Procedure
                                                                    !!.QU lPlvIENT CO P & ID                 153-11-002-1       .. ?conomowoc, iVis~ 53066 RP.
: 153-11-002-1 l 53-11 -003-1 lli-11-004-1 IS .THE PROPERTY OF !!.QU lPlvIENT CO .. ?conomowoc, 53066 RP.
Parts Identification: l 53-11 -003-1       1.1~d IS to be used only for the u Operating Procedure : lli-11-004-1        ut the ag1eerne11t with Sentry P rposa lo which it is turnissed.         pursuant
IS to be used only for the u ut the ag1eerne11t with Sentry P rposa lo which it is turnissed.
pursuant  


==2.0 DESCRIPTION==
==2.0   DESCRIPTION==
& FUNCTION Mod 1 accepts (5) different samples of primary Reactor Coolant entering (only one @ a time) at maximum of 120&deg;F and 2300 psig.
Maximum flowrates are:    (a) 1900 cc/min during purging, and (b) 200 cc/min during sampling.
Module l has (6) separate capabilities as follows:
2.1  For routine, non-accident sampling, Module can capture a pressurized coolant sample in a 30 ml sample Flask. The flask is removable for transport to an on-site lab for hydrogen and isotopic analysis.
2.2  For routine, non-accident sampling, Module can capture a pressurized coolant as an open grab sample for measuring DO, Boron etc.
2.3  For accident, Module captures pressurized coolant in a 30 ml Flask and degasses it into a 300 ml evacuated Expansion Vessel. Pressurized Argon is bubbled through the bottom of the 30 ml flask to: (a) scavenge residual gases from the coolant, and (b) increase pressure to 1 psig. Additional Argon is added to the expansion vessel to: (a) force any liquid back into the 30 ml Flask, and (b) increase Expansion Vessel pressure to 10 psig. The pressurized stripped qas is routed to an evacuated line. This line connects the Module l'lith an evacuated chamber in Gas Chromatograph---for hydrogen determination. The chromatograph is located in the nearby Chemical Analysis Panel.
A .02 ml "bite" of the stripped gas ts captured in the Module 1 s Diluter Valve. This bite is piped into an evacuated 15 ml Serum Bottle. The Serum Bottle pressure fs boosted to 0 psig with Argon. Bottle is removed via grip tongs, placed in a shielded carrying case and transported to an on-site facility for isotopic analysis.
2.4  For accident, Module captures a sample of undiluted coolant in a 15 ml sealed bottle. The bottle is remotely lowered into a cask resting on a special cart.
The cart with cask is removed from the panel and transported to an offsite facility.
2.5  For accident~ Module captures 90 ml of 1000 to one diluted sample in a sealed bottle and lowers it into a cask on a cart. The cart is removed from the Pane!
and transported to an on-site lab for boron and isotopic analysis.
 
Sentry  [quipn~nt  Corp.          Dwg. 153-11-001-1 R1 Dtd 4-15-80    Page 2 of 2
  *~ ~n~~1~~mnA~"n'll5il~ ~
a*~@vg b~~U~tl UJJ~~*.
2.6  For accident, Module pipes a depressurized reactor coolant sample to a nearby on-line Chemical Analysis Panel to measure Conductivity., PH, Chloride and 00.
2.7 Module reduces samples pressure: (a) to 60 psig while sampling per para 2.6 and (b} to 20 psig whil sampling per paras 2.2, 2.4 and 2.5.
2.8 Module has power operated valves ta automatically stop either purge or sample flow in event of excess sample temperature.
2.9 Module flushing capabilities include:
(a) Flush liquid sample supply lines to HRSS Waste Tank (via owner's remote power oper~ted flush valves---located upstream of the Sample Cooler Rack).
(b)  Flush liquid purge line to HRSS Waste Tank.
( c) Flush in-panel liquid sample lines to HRSS Waste Tank.
(d)  Flush in-panel gas stripping lines/components to HRSS Waste Tank or equivalent.
(e)  Flush fluids. may be demin water, nitrogen gas or appropriate decontaminating solutions.


& FUNCTION Mod 1 accepts (5) different samples of primary Reactor Coolant entering (only one @ a time) at maximum of 120&deg;F and 2300 psig. Maximum flowrates are: (a) 1900 cc/min during purging, and (b) 200 cc/min during sampling.
TOP                        PRELIMINARY FlRC,DN    <<>..:  F-:,C;1t
Module l has (6) separate capabilities as follows: 2.1 For routine, non-accident sampling, Module can capture a pressurized coolant sample in a 30 ml sample Flask. The flask is removable for transport to an site lab for hydrogen and isotopic analysis.
                                                                            -----~
2.2 For routine, non-accident sampling, Module can capture a pressurized coolant as an open grab sample for measuring DO, Boron etc. 2.3 For accident, Module captures pressurized coolant in a 30 ml Flask and degasses it into a 300 ml evacuated Expansion Vessel. Pressurized Argon is bubbled through the bottom of the 30 ml flask to: (a) scavenge residual gases from the coolant, and (b) increase pressure to 1 psig. Additional Argon is added to the expansion vessel to: (a) force any liquid back into the 30 ml Flask, and (b) increase Expansion Vessel pressure to 10 psig. The pressurized stripped qas is routed to an evacuated line. This line connects the Module l'lith an evacuated chamber in Gas Chromatograph---for hydrogen determination.
1-1
The chromatograph is located in the nearby Chemical Analysis Panel. A .02 ml "bite" of the stripped gas ts captured in the Module 1 s Diluter Valve. This bite is piped into an evacuated 15 ml Serum Bottle. The Serum Bottle pressure fs boosted to 0 psig with Argon. Bottle is removed via grip tongs, placed in a shielded carrying case and transported to an on-site facility for isotopic analysis.
                                                                              ~~---.
2.4 For accident, Module captures a sample of undiluted coolant in a 15 ml sealed bottle. The bottle is remotely lowered into a cask resting on a special cart. The cart with cask is removed from the panel and transported to an offsite facility.
IPP-S-1!1
2.5 For Module captures 90 ml of 1000 to one diluted sample in a sealed bottle and lowers it into a cask on a cart. The cart is removed from the Pane! and transported to an on-site lab for boron and isotopic analysis.
:I:
* Sentry Corp. Dwg. 153-11-001-1 R1 Dtd 4-15-80 Page 2 of 2
                                                                                                            ,~    3i 1-----4'--f::l<~J.-.;Cl..
* 2.6 For accident, Module pipes a depressurized reactor coolant sample to a nearby on-line Chemical Analysis Panel to measure Conductivity., PH, Chloride and 00. 2.7 Module reduces samples pressure: (a) to 60 psig while sampling per para 2.6 and (b} to 20 psig whil sampling per paras 2.2, 2.4 and 2.5. 2.8 Module has power operated valves ta automatically stop either purge or sample flow in event of excess sample temperature.
Vt2 c
V1.3 V8:2.
Y5.2.
* V1. '-l Y7 PC-3 V1~                c.yl\
                              .-====r-YR&#xa3; L- 2.
                                                                              ~
                                                                              .t-*.           .....:.
C.Vt.3    ,,       ..             *'
                                                                              "                                      8 V18 y  PRY-2.
I 3
                                          ?UNUM a..
a:
                                      <.)
J""' -
DV1
_ D.B51 A
B/P INC. 180M  500-t-77 2                         'BOTTOM                1


===2.9 Module===
Page 1 of 4 5-27-80 Sentry Equipment Corp.                                     Org1na1 Date 3-5-80                 Chk'd LE             Rev       3 DRAWING NO. 153-11-003-1 PARTS IDENTIFICATION:             Reactor Cao*l ant Module NO .1 l .O VALVES, MANUAL RSS Liqui Samp ing Panel (ref. p & ID dwg no. 152-11-002-1 )
flushing capabilities include: (a) (b) ( c) (d) (e) Flush liquid sample supply lines to HRSS Waste Tank (via owner's remote power flush valves---located upstream of the Sample Cooler Rack). Flush liquid purge line to HRSS Waste Tank. Flush in-panel liquid sample lines to HRSS Waste Tank. Flush in-panel gas stripping lines/components to HRSS Waste Tank or equivalent.
p~* r,=
Flush fluids. may be demin water, nitrogen gas or appropriate decontaminating solutions.
                                                                                    ~f
1-1 Vt2 V1.3 V1. '-l . ' B/P INC. 180M 500-t-77 2 TOP PRELIMINARY FlRC,DN <<>..: F-:,C;1t V8:2. Y5.2.
                                                                                      ~ l::J R~f ~;* [fr**:
* Y7 .-====r-Y R&#xa3; L-2. ' y PRY-2. , 3 ?UNUM a.. a: <.) ""' -J DV1 _ D.B51 'BOTTOM PC-3 C.Vt.3 V18 IPP-S-1!1
rr  u      :)  ,.
:I: c.yl\ -.. .. .t-*. ,, *,., " 1 , __, 3 i
                                                                                    *~~lb ov( u~~. fi1lu* .
.. ! I :. ... *' .. c 8 A
prx~. r            V' f~*"", **
* Page 1 of 4 Sentry Equipment Corp. Org1na1 Date 3-5-80 5-27-80 Chk'd LE Rev 3 DRAWING NO. 153-11-003-1 . *---*--*-**--**------------------.
r.i\{:iJ l .1       TWO-WAY GLOBE VALVE, ISOLATION, SEVERE SERVICE. Whitey SS-3NB Series. Body and stem are T3l6SS. Stem tip ;s Stellite ball. Packing is Grafoil. Temp/press rating is 700&deg;F/4110#. Connections are 1/4u Swagelok or 1/8" or 1/4" MPT or FPT as required.
PARTS IDENTIFICATION:
Vl *l , Vl *2, Vl *3, Vl *4   & Vl *5.
Reactor Cao*l ant Module NO .1 l .O VALVES, MANUAL RSS L iqui Samp ing Panel r,= (ref. p & ID dwg no. 152-11-002-1 ) l::J R p r.i V' rr u :) ,. [fr**: r \ {:iJ ** ..
V3 1 .2       TWO-WAY GLOBE VALVE, ISOLATION. Whitey SS-1VS4, Vee Stem. Body and stem are T3l6SS. Packing 1s TFE. Temp/press rating is l50&deg;F/2955#. Connections are 1/4" Swagelok., l /8" or l /4" MPT or FPT as required.
ov( .. fi1lu* . l .1 TWO-WAY GLOBE VALVE, ISOLATION, SEVERE SERVICE. Whitey SS-3NB Series. Body and stem are T3l6SS. Stem tip ;s Stellite ball. Packing is Grafoil. Temp/press rating is 700&deg;F/4110#.
V2; VS.l, 5.2; V6.l, 6.2 {angle); V8.l, V8.2.
Connections are 1/4u Swagelok or 1/8" or 1/4" MPT or FPT as required.
1 .3       TWO-WAY BALL VALVE, ISOLATION. Whitey 554354-A. Angle type.                             T316SS body and stem; TFE packing. Temp/press rating 150&deg;F/1000 psig.
Vl
V9 l .4       TWO-WAY PLUG VALVE? ISOLATION. Nupro P4T Series. Body and plug are T316SS.
* l , Vl
Plug is TFE coated. 0-ring seals are Viton. Temp/press rating is 120&deg;F/2600#.
* 2, Vl
* 3, Vl
* 4 & Vl
* 5. V3 1 .2 TWO-WAY GLOBE VALVE, ISOLATION.
Whitey SS-1VS4, Vee Stem. Body and stem are T3l6SS. Packing 1s TFE. Temp/press rating is l50&deg;F/2955#.
Connections are 1/4" Swagelok., l /8" or l /4" MPT or FPT as required.
V2; VS.l, 5.2; V6.l, 6.2 {angle); V8.l, V8.2. 1 .3 TWO-WAY BALL VALVE, ISOLATION.
Whitey 554354-A.
Angle type. T316SS body and stem; TFE packing. Temp/press rating 150&deg;F/1000 psig. V9 l .4 TWO-WAY PLUG VALVE? ISOLATION.
Nupro P4T Series. Body and plug are T316SS. Plug is TFE coated. 0-ring seals are Viton. Temp/press rating is 120&deg;F/2600#.
Connections are 1/4" Swagelok, MPT or FPT as required.
Connections are 1/4" Swagelok, MPT or FPT as required.
V7 , Vl 0 , Vl 2 , Vl 3 , Vl 5 l .5 TWO-WAY GLOBE VALVE, REGULATING.
V7 , Vl 0 , Vl 2 , Vl 3 , Vl 5 l .5       TWO-WAY GLOBE VALVE, REGULATING. Whitey SS-1R4, Regulating Stem. Body and stem are T316SS. Connections are l/4 11 Swagelok, 1/8 11 or 1/4" FPT as required.
Whitey SS-1R4, Regulating Stem. Body and stem are T316SS. Connections are l/4 11 Swagelok, 1/8 11 or 1/4" FPT as required.
Temp/press rating is 150&deg;F/2955#.
Temp/press rating is 150&deg;F/2955#.
V4.l & V4.2 Packing is Garlock 7020. Vll, V14, V16, Vl7. Packing is TFE. 1 .6 THREE-WAY BALL VALVE, SWITCHING.
V4.l & V4.2 Packing is Garlock 7020.
Whitey SS-42X or SS-43X Series. Body and stem are T3l6SS. Packing is TFE. Temp/press rating is 150&deg;F/1000#.
Vll, V14, V16, Vl7.             Packing is TFE.
1 .6       THREE-WAY BALL VALVE, SWITCHING. Whitey SS-42X or SS-43X Series. Body and stem are T3l6SS. Packing is TFE. Temp/press rating is 150&deg;F/1000#.
Connections are 1/8 11 or 1/4" Swagelok, MPT, FPT as required.
Connections are 1/8 11 or 1/4" Swagelok, MPT, FPT as required.
VlR, V22 1 .7 FOUR-WAY BALL VALVE, SWITCHING.
VlR, V22 1 .7       FOUR-WAY BALL VALVE, SWITCHING. Whitey SS-43Y Series. Body and stem are T316SS.
Whitey SS-43Y Series. Body and stem are T316SS. Packing is TFE. Temp/press rating is 150&deg;F/1000#.
Packing is TFE. Temp/press rating is 150&deg;F/1000#. Connections are 1/8" FPT.
Connections are 1/8" FPT. Vl 9, V20 1.8 DILUTER VALVE, LIQUID. Modified Whitey SS-43YHF2, 3-43-00125 ball ( .1.25 11 orifice* equipped with a 30455 16 gauge needle OD x 0.047" ID).
Vl 9, V20
* DVl (Sen.try P/N to fol low) -AJ_. * ' "'-.&.
* 1.8         DILUTER VALVE, LIQUID. Modified Whitey SS-43YHF2, 3-43-00125 ball ( .1.25 11 orifice*
V l. 1: lYl !!.JJ.'/ 1 l.., U 1< lJ, Oco nr.: 111 Wc:Jnc, VI is 5 3 0"60 .;nd is to oe usi;d only for the purpose *, the ab. r::c:lknt 1vit11 Sentry
equipped with a 30455 16 gauge needle (.065~ OD x 0.047" ID).
* u whic11 it is f urn1sheu.
DVl (Sen.try P/N to fol low)
. Sentry Equipment Corp. Dwg. 153-11-003-1 R.3 :i-7.7-80 Pil!]C 2 of 'I :: *.1 ri r-TJ t1 n [\ A** ':\\* ' " I, .:i 'I . f I' ' ,l .. :: \J \L:..,L:l
                                                                        - AJ_. * ' "'- .&. L.n.*~ V l. 1: lYl !!.JJ.'/ 1 Oco nr.: 111 Wc:Jnc, VI is 5 3 0"60
* Li'/ W d\ Ui w** :
                                                                          .;nd is to oe usi;d only for the purpose
* l .9 DILUTER VALVE, GAS. Whitey SS-43YF2, 0.062 orifice. T316SS Body and ball;
                                                                            *, the ab. r::c:lknt 1vit11 Sentry ~ursuant l.., U 1< lJ,
* TFE packing. Temp/press rating 150&deg;F/1000 psig. Connections 1/8" FPT. DV2 l.10 PRESSURE REDUCER ELEMENT (VREL). Adjustable variable rod in capillary device to breakdown a large pressure differential.
* u whic11 it is f urn1sheu.
Cleanable in place without shutting off sample fl ow. Ro.d and capil 1 ary are T303SS. Temp/pressure rating is 300&deg;F/5000D.
 
Connections are 1/4 11 Swagelok.
              . Sentry Equipment Corp.                       Dwg. 153-11-003-1       R.3 :i-7.7-80                     Pil!]C       2 of 'I 1
VREL-1. Packing is Grafoil. Sentry P/N (to follow). VREL-2. Packing is TFE. *Sentry P/N (to follow). 2.0 VALVE, ISOLATION, AIR OPERATED (with solenoid air control valve). Whitey Severe Service Globe valve SS-3NBS4-95NC.
::' *. " ri r-TJ ~* ~* t1 ~* n I, .:i     'I   . f I'[\ ~* A**' ~) ':\\*~*
Equipped with 3-way solenoid, NC ASCO #8320813, 120 VAC. Globe valve specifications same as para l .1 AVl pl us SVl AV2 pl us SV2 1.0 BALL CHECK VALVE. Hoke 6133 Series, 2 ps1 cracking pressure.
                                                ,l ..
Body, ball and spring are T303SS. Seats are Viton. Temp/pressure rating is 350&deg;F/3000#. nections are 1/4" Swagelok.
::      \J \L:..,L:l
CVl .1, 1.2, l .3; CV2;CV3;CV4;CV5 4.0 VALVE, PRESSURE RELIEF, LOW PRESSURE.
* Li'/ Wd\ Ui w** :
Hoke 6133 Series. 5.0 Seats are Vi ton. Temp/pressure rating is 350&deg;F/3000#.
l .9   DILUTER VALVE, GAS.                 Whitey SS-43YF2, 0.062 orifice. T316SS Body and ball; TFE packing.                 Temp/press rating 150&deg;F/1000 psig. Connections 1/8" FPT.
Connections are 1 /'I" Swagelok or 1/8" or 1/4" MPT or FPT as required.
DV2 l.10     PRESSURE REDUCER ELEMENT (VREL). Adjustable variable rod in capillary device to breakdown a large pressure differential. Cleanable in place without shutting off sample fl ow. Ro.d and capil 1ary are T303SS. Temp/pressure rating is 300&deg;F/5000D. Connections are 1/4 11 Swagelok.
Material is T303SS. PRV-1; PRV-3 -25 psig cracking pressure.
VREL-1.         Packing is Grafoil. Sentry P/N (to follow).
PRV-4 -2 psig cracking pressure.
VREL-2.         Packing is TFE. *Sentry P/N (to follow).
VALVE, PRESSURE RELIEF, HIGH PRESSURE.
2.0       VALVE, ISOLATION, AIR OPERATED (with solenoid air control valve). Whitey Severe Service Globe valve SS-3NBS4-95NC. Equipped with 3-way solenoid, NC ASCO #8320813, 120 VAC. Globe valve specifications same as para l .1 ~
Circle Seal Controls 559-T Series, cracking pressure.
AVl pl us SVl AV2 pl us SV2 1.0     BALL CHECK VALVE. Hoke 6133 Series, 2 ps1 cracking pressure. Body, ball and spring are T303SS. Seats are Viton. Temp/pressure rating is 350&deg;F/3000#. Con-nections are 1/4" Swagelok.
Body, poppet and spring are T303SS. Seats are Viton. pressure rating is 275&deg;F/2001.
CVl .1, 1.2, l .3; CV2;CV3;CV4;CV5 4.0     VALVE, PRESSURE RELIEF, LOW PRESSURE. Hoke 6133 Series.
Connections are 1/8" or 1/4" MPT or PFT as required.
Seats are Vi ton. Temp/pressure rating is 350&deg;F/3000#. Connections are 1 /'I" Swagelok or 1/8" or 1/4" MPT or FPT as required. Material is T303SS.
PRV-2 65 psi Temp/ 6.0 NEEDLE BLOCK ASSEMBLY.
PRV-1; PRV 25 psig cracking pressure.
Sentry P/N (to follow), T304SS Block with two (2) T304SS 16 gauge needles (.065 11 OD x .047" ID). Connections are 1/4 11 Swagelok or 1/8" or 1/4 11 MPTor PFT as required.
PRV 2 psig cracking pressure.
NB-l 7.0 CYLINDER GRADUATED.
5.0      VALVE, PRESSURE RELIEF, HIGH PRESSURE. Circle Seal Controls 559-T Series, 65 psi cracking pressure. Body, poppet and spring are T303SS. Seats are Viton. Temp/
Corning 6383; 125cc Pyrex Separating Funnel with integral TFE stopcock.
pressure rating is 275&deg;F/2001. Connections are 1/8" or 1/4" MPT or PFT as required.
Cl & V21 8.0 RESERVOIR ASSEMBLY.
PRV-2 6.0     NEEDLE BLOCK ASSEMBLY.                 Sentry P/N (to follow), T304SS Block with two (2) T304SS 16 gauge needles (.065 11 OD x .047" ID).               Connections are 1/4 11 Swagelok or 1/8" or 1/4 11 MPTor PFT as required.
One assembly shared between RC & R'll Module. Sentry P/N glass, or equal; 300cc; with Whitey 1RS6A stainless valve. ---Rl & V23 rn1s..,...ooc:::,iENT IS THE .oROPERP 'JF  
NB-l 7.0     CYLINDER GRADUATED.                 Corning 6383; 125cc Pyrex Separating Funnel with integral TFE stopcock.
,,.,(.'" 'I _,,j,\: /\ / ,, *. , 1 ,...1.* r ,,,,, .... (,Q . "'" ,,,
Cl & V21 8.0     RESERVOIR ASSEMBLY. One assembly shared between RC & R'll Module. Sentry P/N glass, po1y~thylene or equal; 300cc; with Whitey 1RS6A stainless valve.                                                           ---
_, Ucu ,..,
* Rl & V23                                                 rn1s..,...ooc:::,iENT IS THE .oROPERP 'JF 01
* l!t u*: . .> 11.; 1.*i!; ,. : -. fJ '-. . ' , . u *. ..) () l) Jnd 1s to ue u'"'*' 0 .:,. 'o* .. *. "
                                                                                                      ~!
illJ I
SE_,,j,\:
* ll/e 01 the a*-**e*i* *1 t :.1 1.. t . " *. "'.* l i.11, .:ie1, ry pur5u;,;,t to wh1cn 1t 1s i t.rr::sneu.
Ucu f">'~
Sentry Equipment Ct>rp. Owg. 153-11-003-1 R 3 5-21-80 3 of 4
                                                                                                            /\    /
* 9.0 l\.
Jnd 1s to ue u'"'*'
u U EXPANSION VESSEL. Hoke 4L0300; 300 ml capacity; T304SS; service pressure is Connect1ons are l/4M FPT. EV-1 10.0 SAMPLE FLASK. Sentry P/N (below); 30cc capacity; T316SS. Temp/press rating is 150&deg;F/3000#.
                                                                                                                        ,,.,(.'"
Connections are 1/4" Swagelok or l/8 11 or 1/4" MPT or FPT as required.
the* .a*-"'.* **e*i*
* SF1 .1 Sentry P/N (to follow) SF1 .2 Sentry P/N (to follow) 11 .0 QUICK DISCONNECT COUPLING.
Jt,;~
Hanson ML-Hll-143 socket with ML-Hll-143 plug. Material is T316SS; seals are V1ton. Connections are l/8 11 or 1/4" FPT as required.
                                                                                                                            *t
Dl. 02.l & 02.2 12.0 SS-4TF-140S; T316SS with SS strainer 140 micron. Tem.,/prP.ss rating 900&deg;F/l000 psig. FILT-1 OEGASIFIER.
                                                                                                                    ~., *~* 1l 1
Sentry P/N -----T303SS. Temp/pressure rating 200&deg;F/200 psig. DG-1 14.0 OVER TEMPERATURE PROTECTION SWITCH. United Electric 9214; F-7 with S.S. 6225-193 thennoweld.
                                                                                                              ,.., *l!t u*:..> 11.; '
Temp/press rating 200&deg;F/500 psig. TS-1 160&deg;F Setting TS-2 l20&deg;F Setting 15.0 PRESSURE GAUGE. McDaniel ABM; 2.5 11 style PMLB, 1/4" MPT, T316SS internals, glycerine filled. Gl : 0-5000 PSIG G2. l , 2 .2: 30 11 Hg-0-15 PSIG G3: 0-100 PSIG G4: 0-160 PSIG 16.0 DIAPHRAGM GAUGE PROTECTOR.
                                                                                                                                      ,...1.* r ,,,,, ....
Bellofram Corporation 12000-lONS-2.
0illJ
Process side mt1 is T316SS with V1ton d1aphagm.
                                                                                                                                            ;v11~.'*1 1.*i!;
Temp/press rating is 400&deg;F/2500#.
:.1 1 ..
Connections are l /4" FPT GS1.1, GSl .2, GSl.3 GS2.l, GS2.2 9 GS2.3 THIS DOCUMENT IS THE PROPERTY OF SENTRY EQUIPMENT CORP. Oconnmownc, Vvis .'53065 <ind is to be usc:d u:1iy for the purpose vi the  
I
*,,,ith Sentry pursu:rnt whicn it is furnished.
                                                                                                                                                . u
                                                                                                                                              'o* ..ll/e t
                                                                                                                                                        *. ..)
i.11, .:ie1, ry pur5u;,;,t
(,Q' I
: -. fJ ()
                                                                                                                                                                  '- l).
                                                                                                                                                              ~urncsa l~P to wh1cn 1t 1s i t.rr::sneu.
 
Sentry Equipment Ct>rp.       Owg. 153-11-003-1   R 3 5-21-80               P~gc  3 of 4
                                                            ~~rT:n R~ t1r~q l\. ~~.f u ~~tLtLLlLi.vuUu*~1r~u'i U
* 9.0  EXPANSION VESSEL. Hoke 4L0300; 300 ml capacity; T304SS; service pressure is 400#~ Connect1ons are l/4M FPT.
EV-1 10.0 SAMPLE FLASK. Sentry P/N (below); 30cc capacity; T316SS. Temp/press rating is 150&deg;F/3000#. Connections are 1/4" Swagelok or l/8 11 or 1/4" MPT or FPT as required.
* SF1 .1   Sentry P/N (to follow)
SF1 .2   Sentry P/N (to follow) 11 .0 QUICK DISCONNECT COUPLING. Hanson ML-Hll-143 socket with ML-Hll-143 plug.
Material is T316SS; seals are V1ton. Connections are l/8 11 or 1/4" FPT as required.
Dl. 02.l & 02.2 12.0   FILTER~Nupro SS-4TF-140S; T316SS with SS strainer 140 micron.                   Tem.,/prP.ss rating 900&deg;F/l000 psig.
FILT-1 13~0  OEGASIFIER.     Sentry P/N
                                    -----         T303SS. Temp/pressure rating 200&deg;F/200 psig.
DG-1 14.0 OVER TEMPERATURE PROTECTION SWITCH. United Electric 9214; F-7 with S.S. 6225-193 thennoweld. Temp/press rating 200&deg;F/500 psig.
TS-1 160&deg;F Setting TS-2 l20&deg;F Setting 15.0   PRESSURE GAUGE.     McDaniel ABM; 2.5 11 style PMLB, 1/4" MPT, T316SS internals, glycerine filled.
Gl : 0-5000 PSIG G2. l , 2 .2: 30 11 Hg-0-15 PSIG G3: 0-100 PSIG G4: 0-160 PSIG 16.0   DIAPHRAGM GAUGE PROTECTOR. Bellofram Corporation 12000-lONS-2. Process side mt1 is T316SS with V1ton d1aphagm. Temp/press rating is 400&deg;F/2500#. Connections are l /4" FPT GS1.1, GSl .2, GSl.3 GS2.l, GS2.2 9 GS2.3                 THIS DOCUMENT IS THE PROPERTY OF SENTRY EQUIPMENT CORP.
Oconnmownc, Vvis .'53065
                                                      <ind is to be usc:d u:1iy for the purpose vi the a~ieein..:nt *,,,ith Sentry pursu:rnt
                                                      ~o whicn it is furnished.
 
Sentry Equipment Carp
Sentry Equipment Carp
* Dwg. 153-11-003-1
* Dwg. 153-11-003-1
* 17.l 17 .2 FLOW INDICATOR.
* 17.l           FLOW INDICATOR. PURGE LINE. Dwyer differential pressure gauge, 4050 Capsuhelic.
PURGE LINE. Dwyer differential pressure gauge, 4050 Capsuhelic.
range 0-50" WG. Interior surfaces are aluminum, diaphram is Buna-N. Temp/pressure rating ts 200&deg;F/500#.                                                   *
range 0-50" WG. Interior surfaces are aluminum, diaphram is Buna-N. Temp/pressure rating ts 200&deg;F/500#.  
* FI-1 17 .2          FLOW ORIFICE, PURGE LINE. Sentry P/N_ _ _ _ _ _* T304SS.                                                 Temp/pressure rating is 200&deg;F/SOOI.
*
OR-1 18.0             FLOW INDICATOR, SAMPLE LINE. Dwyer differential pressure gauge, 4050 Capsuhelic, range 0-50" WG. Interior surfaces are aluminum, diaphram is Buna-N. Temp/pressure rating is 200&deg;F/500#.
* FI-1 FLOW ORIFICE, PURGE LINE. Sentry P/N ______
FI-2 19.0             PLENUM SiATIC PRESSURE SENSOR SWITCH.                         Dwyer 1638-1, 15 amp, 120 VAC.                   Connections 1/8" FPT. Range 0.20 to 1.0" W.C.
* T304SS. Temp/pressure rating is 200&deg;F/SOOI.
PPS-1 _
OR-1 18.0 FLOW INDICATOR, SAMPLE LINE. Dwyer differential pressure gauge, 4050 Capsuhelic, range 0-50" WG. Interior surfaces are aluminum, diaphram is Buna-N. Temp/pressure rating is 200&deg;F/500#.
20.0             PRESSURE CONTROLLER, GO Inc. pressure control valve. T316 diaphragm, TFE lined, Temp/pressure rating is 350&deg;F/3000#. Connections 1/4" FPT.
FI-2 19.0 PLENUM SiATIC PRESSURE SENSOR SWITCH. Dwyer 1638-1, 15 amp, 120 VAC. Connections 1/8" FPT. Range 0.20 to 1.0" W.C. PPS-1 _ 20.0 PRESSURE CONTROLLER, GO Inc. pressure control valve. T316 diaphragm, TFE lined, Temp/pressure rating is 350&deg;F/3000#.
PC-1 P/N 100690. Range 0-251. Setting 11 psig. Brass Body.
Connections 1/4" FPT. PC-1 PC-2 PC-3 P/N 100690. P/N 100689. P/N 100151
PC-2 P/N 100689. Range 0-10#. Setting l psig. Brass Body.
* Range 0-251. Range 0-10#. Range 0-25#. Setting 11 psig. Setting l psig. Setting 15 psig. Brass Body. Brass Body. T316 SS Body. VACUUM PUMP. Air-Vac UV143H; aluminum, brass fitted; vacuum force of 29" Hg with 80 psig motive gas. VT-1 *-----*--**-----***--------*-**-*.  
PC-3 P/N 100151
**--------t  
* Range 0-25#. Setting 15 psig. T316 SS Body.
"'C Q.I 0 !... +.I (lJ 0 .c +J.-E :> * ::I '<:t" VI 0 c:: ,_ !.. IU o.c:: ... :::i ,_ C'l2: ,.... :::I * >..-OE c.. +-' ra * !.. .. N :> VI ,_ c::i VI .... I rJ") c.. Q.. .-+J 1 o. ra I-,... .,,. ..Ql,t')-J.-
VACUUM PUMP. Air-Vac UV143H; aluminum, brass fitted; vacuum force of 29" Hg with 80 psig motive gas.
(.::l .... -<1J >.> u. cc
VT-1
* l'c:I N 3: 0 cc I * *+J C N NCIJN .C:>M *.-1-00<. \O<!:l I ....,,...
                                                                                        *-----*--**-----***--------*-**-*. **--------t
N :::>C
                                  "'C Q.I         N
* O'lO U .-CJ'I +J .. <.!J , :>C'I N .. IJ")I c c:: N
                                                  .                                                                                            Ir 0         !...
* l,t') VI :::> O'l.-N !... 0 S... -I LU-= Q.l > Vl l'c:I 0 <1J l.LJ IX ,... U l-< <.!J C.c( I-C ,_ u 0 +J .... 0: Vl > .... I VI Vl 0 .... N . co . *0 .,,. . O:N Q.. . 0 +J l""lO u
                        +.I       (lJ
* Q.. co n)
                                  .c VI                                          u                                                    I 0
* s.. 0 '&deg;
                +J.-               E                                                         0                *0
* c. co E ta 0 !... s... '&deg; c.. .. .... .-,_ I l.LJ
              '<:t" VI 0 c::
* N 1--J CO :>> > 0 co c.-.. I** *O:C. .-LU .... L.L.J <...:: IZ'fO**z ""'c:::::
                                *  ::I
s... CIC:::: :I: '&deg; Cl ::::: MU C.<:,U I r I I ------------L Paqe l of 7
                              !.. IU o.c::
[qu1pmcnt Corp. DRAWING NO. 153-11-004-1 PRELIMINARY Original Date 5-21-80 Ck* d LE Rev O 5-21 -80 PROCEDURES:
c::i VI
REACTOR COOLANT MODULE I  
                                                                                            +J 0:
O:N Q..
I
                    . . . :::i
              ,_ C'l2:
                ,.... :::I
* I                                                            . 0
                                                                                                                  +J
                >..-OE                         rJ")                                        ~              l""lO c.. +-' ra             c..                                          Vl            u
* co
              .-0.-'+-
                .-+J 1 o .
                                    !..         Q..
I Q..
n) ra         I-,...           .,,.                                        VI
* s..
                ..Ql,t')-J.-
                        .... -     <1J
(.::l                                        Vl 0    '&deg;
* c.
                  >.>         u. cc                 *                                       ....0          co l'c:I                         N                                                                 E 3:               0           cc                                                           ta 0 I       *   *+J           C           N                               N
                                                                                                  .        !... s...
NCIJN 00<.
                        .C:>M N
                                                    *.                                                 \O<!:l
:::>C *
                                                        *~
co
                                                                                                  .. c..'&deg; ....'+-
                                                                                                            ,_      I
    ,     I IJ")I c CJ'I
:>C'I O'lO c::
                              +J N
N U
                                                    .. *~
l,t')  VI
                                                            <.!J l.LJ
                                                                                      -J CO 0
* N 1-co           c.- ..
      ~~ ~~=                ~~ ~ ~~&sect; I**           *O:C.
                                                                                      .-LU ....                 L.L.J N~.                        <...::
IZ'fO**z LU-
            ~ ~
IX ,... U
                =        O'l.- N Q.l l-Vl
                                          !... 0 l'c:I 0
                                  <.!J C.c( I- C S... - I
                                                      <1J l.LJ
                                                                                      ""'c:::::
:I:
MU C.<:,U
                                                                                                    '&deg;s... CIC::::
Cl :::::
                                                                                                                                    ------------L
 
Paqe l of 7
      ~entry          [qu1pmcnt Corp.                                                     DRAWING NO. 153-11-004-1 PRELIMINARY                                                   Original Date 5-21-80                   Ck* d LE           Rev O 5-21 -80 TillS Goe:;, ~; r IS THE Pr:OPE!HY i1F
~ATING                      PROCEDURES:             REACTOR COOLANT MODULE             I     Sl!-f'.; '/ R. i' il.CJU li' LV!l~L\'f' CO kP.
* Oconnmowoc, Wis. 53066


==REFERENCES:==
==REFERENCES:==
Description & Function:                        153-11-001    <ind il) to be used only for the purpose
                                ? & ID                                          153-11-002    of the agreement with Sentr1 pursuant Parts Identification                            153-11-003    to which it is turnisbed.
  ;-.. INDEX                        ... ......... ..      ........................... "                                                          . .. I
  .-----,..-----------------..;._------~*------*                              .                                      . *-.. --... *--**------***------~I Page                GENERAL INFORMATION & INSTRUCTIONS                                                                                          '
(
I Para      1.0      Mode  1:        Preoperations For All Sampling l!
Para      2.0      Mode  2:        Non accident: Capture Open Grab Sample                                                                    .,
Para      3.0      Mode  3: Non accident: Capture Pressurized Coolant in Sample Fl ask SF1 .1                                                  '
Para      4.0      Mode  4: Accident: Capture Pressurized Coolant; Degas Sample; Route Off                                                    \
Gas Sample to CAP Gas Chromatograph; Capture Diluted Gas Sample                                            ,
in 013S2 for transport to Isotope Analysis Lab.                                                            !I Para 5.0 Mode 5: Accident: Capture Coolant Sample in BS1
  , Para 6.0 Mode 6: Accident: Capture Diluted Coolant Sample in DBSl                                                                                  I
  *1 Para 7.0 Mode 7:                        Accident: Route Coolant Sample to CAP On Line Liquid Analyzers._J
  ; Para 8.0 Mode 8: Prepare Module for Future Sampling.
          ,  ,              ----------*--                                          *------~. *-***- .. ---------*--*------*-----*--*-*-*
GENER/\L INFORMATION & INSTRUCTIONS A.Ooeration Modes
* A .1 A.2 A.3 For routine, non accident sampling, Module has an open grab sampling Mode.
For routine, non accident sampling, Module has a mode to capture pressurized coolant in a removeab1 e 30cc Flask (SF1 .1).
For accident. Module has a mode to: (1) capture 30cc of pressurized coolant.
(2) degas sample and collect the Off-Gas in an expansion vessel, (3) boost pressure of Off-Gas to 10 psig with Argon, (4) tranfer Off-Gas to an adjacent CAP (Chemical Analysis Panel), to measure the Hydrogen content of Off-Gas,
                      . and (5) to capture 15cc of 15000 to one diluted Off-Gas in "DBS-2 11 , a 15cc sealed bottle---and transport it to an onsite facility for isotope analysis.
A.4          For accident, Module has mode to capture l Scc of undiluted coolant in "BSl ", a 15cc sealed bottle---and transport it to an offsite facility for analysis.
A.S          For accident, Module has mode to capture 90cc of 1000 to one diluted coolant in 11 DBSl 11 , a 250 cc sealed bottle---and transport it to an onsite facility for analysis.
A.6            For accident, Module has mode to transport 200 ccm of coolant to the adjacent CAP 1 s on-line liquid analyzers. Coolant is filtered and degassed and at 60 psig.
B.      As a safety measure, the module's non-accident 30cc Flask and spigot (for open grab sampling) are located in a usplash Box~ to capture and contain any accidental liquid spi 11 or gas rel ease of radioactive f1 uids. This box has: (a) a sink connected to a drain to waste and, (b) a ventilation base connected to the LSP ventilation
* system. The operator must close the sliding door of the Splash Box before he can open: (a) the spigot valves to grab sample, or (b) capture sample in the 30cc Flask.
Sentry [qu1 pmcnt Corp.                          Dwg. 153-11-004-l              RO      Page 2 of    7 PRF.l IMHIARY
: r. .        hand powered vacuum pump is required ta    cv~cuate "DOSl" prior to using it.
I\
Ref dwg 157-11-003-l, Item 5.
D.      The transport and positioning of BSl & DBSl requires the use of a mobile CART/CASK (ref 156-11-004-1). *
* E.      I\  "Needle Flush Tool" (ref dwg 157-11-003-l, Item 4) is requ1red to complete the flushing mode for BS1.
F. An "Off-Gas Bottle Grip Tang" is required to manipulate and transport "OBS2".
(Ref dwg 157-11-003-1, Item 6)
G.      Meter-long "Reach Rods" (ref dwg 157-11-003-1, Items 1,2 & 3) are required to manipulate valves during maximum accident dose situation.
H.      Remoted, power-operated Valves 11 A11 are for isolation of sample supply lines. Valves 11 811 are for flushing of sample supply lines. Valves A & Bare operated ,from the PROCESS CONTROL PANEL.
I.      From source to Module, the assumed Volume of each supply line and its components is 2280cc {equivalent to 250 feet of .245 inch bore 1 ine). Volume for 5 changes is 11400 cc. At flowrate of 1900 con, purging time is 6 minutes.
J.      Diluted Off-Gas is transported from the Module ta the CAP's gas chromatograph by 25 feet by tubing l/8 11 00 x 11 bore volume for 2 changes is __cc. At Argon flowrate of __con, flushing time is _minutes.
Undiluted coolant is transported from the Module to the CAP's liquid analyzers via 25 feet of interconnecting tubing plus 15 feet of internal CAP Tubing.
1 .O Mode 1 :          PREOPERATIONS FOR All SAMPLING MOOES 1 .1      All sample lines must be filled with demin water or Argon gas from previous flushing
* Provide 120 VAC to SVl & SV2 to open air operated valves 1Wl & AV2.
P.osition remaining valves as follows:
DV2: Connect port l    to 3.
OVl : Connect port 2    to 4.
Vl 8, V22 Connect port  1 to 2.
Vl 9, V20 Connect po rt l to 2.
All other valves closed, including Valves A &B.
1.2      Fill Reservoir Rl with demin water. Fill cylinder Cl with demin water.          Close V23.
1 ,3 Securely tighten cap/septum of DBSl. Evacuate DBSl to 26" Hg VAC with hand operated vacuum pump. Observe pump gauge for 3 minutes to verify that bott1e is satisfactorily maintaining vacuum.
T~IS DOCUMENT IS THE PROPERTY OF 1.4 Securely tighten cap/septum of BSl.                      SENTRY EQUIPMENT CORP .
Oconomowoc, Wis. 53066 and is to be used only for the purpose of the agreement witb Sentry pursuant to wbicb it is furnished.
_Sentry Equipment Corp.              Dwg. 153-11-004-1          IW          Page 3 of    7 PP.fl IM TNf\RY l.5    Lo~d IlSl or DBSl 1nto CART/CASK. Position loaded CART/CASK under filling needles.
Elevate bottle onto needles.
1.6    Open Splash Box door. Insert Grab Sample Bottle near, but not directly under spigot from V6. Visually verify that Sample* Flask SFl .1 is properly installed and connected.
1.7 Verify that Gauge G4 reads minimum 75 psig to insure proper supply of Argon.
1.8    Inspect SBS2 to verify that its rubber septum is properly installed. Load OBS2 into the Off-Gas Bottle Grip Tong (OGBGT). Insert loaded OGBGT into the station.
Visually verify that the needle of DV2 penetrates the Septum of DBS2.
l .9    Prepare CAP to receive Samples from Module, per CAP procedures.
1.10 At PROCESS PANEL, determine that following lights for Sample Cooler Rack are ON and GREEN. This condition verifies that cooler are in satisfactory re.adiness for sampling. Cooler lights include:
(a) Sufficient cooling water flow.
(b) Sufficient cooling water pressure.
(c) Sufficiently low cooling water temperature.
2 .O Mode 2:      NON ACCIDENT ONLY:  CAPTURE OPEN GRAB SAMPLE:        LINE RCl 2 .1    Step 1 : Purge To Secure Contemporary Sample At PROCESS CONTROL PANEL, open Valve A. At LSP, fully open Vl .1 and V3. Open VREL-1 until FI-1 reads __"\~G (1900 ccm). Purge 5 minutes to PURGE. Close V3.
2.2  ?tep 2: Pur9e Module Open v7 and V2. Open VREL-2 until FI-2 reads        "WG (200      ccm),    and G3  read~
20 psig maximum. Purge 1 minute to WASTE.        --
2.3    Step 3:    Draw Grab Sample Open Vl7  and flow sample to Splash Box for 2 seconds. Clase V17. Open Splash Box door  to place Sample Bottle directly under Vl7 spigot and close door.
Open V17  and draw Sample and close V17. Close Vl .1.
2.4    Step 4: Flush Module Open v4 .1 unti 1 FI-2 reads    "WG ( 200 ccm). Flush 3 minutes to WASTE. Open Vl 7 and flush 1 minute into the empty Splash Box. Close Vl 7. Close V2. Clase V7.
2.5    Step 5: Flush Purge Line Open V3 until FI-2 reads_"WG (200 ccm).        Flush 3 minutes to PURGE.          Close V3 ..
2.6    Steo 6: Flush Suoolv Line At PROCESS CONTROL PANEL, close Valve A and open Valve B. At LS?, open Vl .1 for 6 minutes. Close Vl .1. At PROCESS CONTROL PANEL close Valve 8.
3.0    Mode    3:  NON ACCIDENT ONLY:  CAPTURE PRESSURIZED COOLANT IN REMOVEABLE            SAMPLf:
FLASK:  LINE RC1
* THIS DOCU1i.EilT IS THE PROPUTY SENTRY EQUIPMENT CORP.
Oconomo<Woc, Wis. 53066 and is to be used only ior the purpose
                                                                                                      ;)f of tbe agreement 1*1ith Sentry pursuant to l'lbich it is furnished.
Sentry    E~uipment    Corp.            Owq 153-11-004-1  RO              Paae il of 7 PflF.LIMINARY 1HIS QOClli".E"~l :s Tiit l'_l<ll_l'_li* !! l>>I*;.
                                                                ~*in"-iTk'{ i*:<Jllli'MJ*,Nl r.01...J
* 3.1    _<itr>jl l:  Pur9n To Secure Comtr.mporilry Sumplc                                w*      :JJUU u4*
Pcrfonn the actions of para 2.1.                            ()co1tm1111woc,            t:i.      'J Jnd i:; lu lie u~t.:J only (ur tho purpose 3.2    Step 2: Purge Module                                    ot the agreement with Sentry pursuant Perfonn the actions of para 2 .2                      t 0 'l'lhich \t is turnistled.
3.3    Step 3: Capture Pressurized Coolant in SF1 .1 Open VS.1, V6.l, V6.2 & VS.2. Close V7. Flow thru SF1.1 ta PURGE for one minute. Close V6.2 and V6.l. Close Vl.l, open V7. Close VS.2 and VS.1.
3.4    Step 4: Remove Sample Flask SFl .l Open Splash Box door. Uncouple 02.1 and 02.2 and remove SF1 .1 assembly for Splash Box. Couple backup SF1.1 assembly to 02.1 and 02.2. Close Splash Box door.
3.5    St_&#xa3;E.._5: F1 ush Module Open VS.l, V6.l, V6.2 and VS.2. Close V7. Open V4 .1 until FI-2 reads                        "WG (200 ccm). Flush 3 minutes to HASTE. Close VS.2 and open V7 and flus~minute ta WASTE. Close VS.2 and V7.
3.6    Step 6: Flush Purae Line Perfonn the actions of para 2.5.
3.7    Step 7: Flush Supply Line Perform the actions of para 2.6.
4.0    Mode 4:    CAPTURE PRESSURIZED SAMPLE AND DEGAS IT. DILUTE OFF-GAS & ROUTE IT TO
* GAS CHROMATOGRAPH (in CAP). CAPTURE AND REMOVE A DILUTED SAMPLE OF OFF GAS IN OBS2. Line RCl.
CAUTION: Before starting Mode 4, insure that the CAP (Chemical Analysis Panel) is prepared to receive Off-Gas Sample from the RC Module. Ref CAP procedure 158- 11-004-1
* 4 .1  ?tep 1: Evacuate DBS2 Verify that DV2 is rotated to connect port l ta 3. Verify that G4 reads 75 psig minimum. Open* V12. Open V13 until '12.2 rea<is 29" Hg vacuum. Close Vl'.l.
Observe G2.2 for 1 minute to verify that OBS2 is maintaining 29" Hg VAC. Rotate DV2 ta connect port 2 to 4.
4.2    Step 2: Evacuate EVl Verify that V9. V11, V15 & V4.2 are closed. Open '110 until G2.1 reads 29" Hg vacuum Clase VlO. Observe G2.l for 1 minute to verify that EVl & connected lines ;ire maintaining 29" Hg VAC. Close V12.
4.3    Step 3: Puroe To Secure Contemoorary Samo1 e Perform actions of para 2 .1.
4,4    Step 4: Purge Module Perform actions of para 2 .2.
4.5    Step 5: Capture Pressurized Coolant in SF1 .2 Open V8.1 and VS.2. Close V7. Flow thru SF1 .2 to PURGE for one minute.                      Open V7. Close VB.2 and V8.1
* Sentry    E~uipment  Corp.            Dwq. 153-11-004-1        RO                  f>tl <J0. ')          0    f    7 PP.FL IMINJ\RY 4.6    Step fi: F1ush Module
          -Close Vl .1
* Open V4 .1 until FI-2 reads WASTE.                                      - - -"WG(200    ccm).        Flush 2 minutes to 4.7    Step 7: Flush Purge Line Close V2. Open V3 until FI-1 reads          "WG (200 ccm). Flush 3 minutes to PURGE.
Close V3. Close V4.l.
4 ,8  Step 8: Degas SFl .2 Slowly open V9 and observe that.G2.1 increases in pressure to 25 to 22" Hg VAC.
: 4. 9    _Step 9: Sea v enqe Off-Gas From SF1 . 2 Slowly open V16 until G2.1 reads approximately 1.0 psig.          Close Vl6.
4.10 Step 10: Boost Pressure in EVl Slowly open Vll until G2.1 reads exactly 10 psig.      Close Vll.          Close V9.
    ~.11  Step 11: Route Diluted Off-Gas to \.AP Open Vl5 to permit Off-Gas to flow to the Gas Chromatograph in the CAP.                                    Observe that G2.1 decreases in pressure to approximate 4 psig. Close V15.
4.12 Step 12: Capture Diluted Off-Gas In DBS2 Rotate DV2 to connect port 1 to 3. Observe that G2.2 reads approximately 28" Hg VAC. Slowly open V14 until G2.2 reads 0 psig. Close V14. Rotate DV2 to connect port 2 to 4. Remove DBS2 from the LSP, usinq Off-Gas Bottle Grip Tong. Insert DBS2 and Tong into shielded carry case for transport to counting facility .
* 4.13 Steo 13:. Flush SFl .2 and EVl with Demin Water Ful1y open VREL-2. Open VB.l and V9. Open V4.2 until FI-2 reads Flush thru EVl and SFl .2 to WASTE for 2 minutes. Open VB.2 and close VB.1.
Flush to WASTE for 1 minute. Close V4.2.
4.14 5tep 14: Flush EVl with Argon Open Vll and flush EVl for one minute.      Close Vll. Close V9.          Close V8.2.
11
                                                                                                                \.IG (200 cm)
Close VREL-2.
4.15 Step 15: Dry Out EVl Open V12. Open vla until G2.l reads 29" Hg 1/AC for 2 minutes.                Close 1/10 anci Vl2.
4.16 Step 16: Flush Supply Line Al PROCESS CONTROL PANEL, c1ose Valve A and open Valve B. At LSP, open Vl .1 and V4 .1 . Flush for 6 minutes *. Close V4 .1 and Vl .1. At PROCESS CONTROL PA:lEL, close l/alve B.
5.0    Mode 5:    CAPTURE BSl SAMPLE:  Line RCl 5.1    Step 1: Load 8S1 into CART/CASK. Remove Needle* Flush Tool from LSP.                                    Position CART/CASK. Elevate BSl onto needles of NBl.
5.2    Step 2: Purge To Secure Contemoorary Samole.
Perform actions of para 2.1.
5.3    Step 3: Puroe Module Perform actions of para 2.2.
TH l S 00C11 t 1E.," T I".:i -11:c.
1                      .. ~ P.:?Qpco-v SENTR
                                                                            ., 1      v      -,..~( . . . TT,              .    '-" I '          .
0
                                                                                                      *!t) 1 P :'*rI ENT              r.o;::
Oconomowoc w,* ,. - ..,rJ....., ,                              4
                                                                          ~ d.                                      '      "* O..; 6 v an, ....IS to be US13d Oil/'j ;'u,** *Lh.e ;iu;:--o~*                      '
01 u1e agreemc'lt ... ;r* I/~ s.bti lf,1
                                                                                  '  ' ,                I      11 I l    ."    ,.,
                                                                                                                                  -..jl""!
y(.
ro wn1cn      ;ti~ f:.rni~~~_.                          1 :Ju*~Uui.
Sentry Equipment Corp.                  Dwg    15~-11-004-1      RO                    Page 6 of 7 rnrt  1M INJiRY s.~    step 1: Fill ns1
* 5.5
          *Rotate Vl 9 to connect port 1 to 4. Open VREL-2 until FI-2 reads Visually observe that BS1 fi11s completely. Flow additional 30 seconds. Rotate V19 to connect port 1 to 2. Close Vl .1.
Step 5: Flush Module, Preliminar,x Open V4.l until F2-1 reads        "WG (200 ccm).
flushing, proceed with next step 6, (below).
Flush to WASTE for 2 minutes.
                                                                                                    "WG (200 ccm) .
                                                                                                                                    /Jhile 5.6    Step 6: Remove BS1 Operate CARf/CASK to remove BS1 from NBl needles; lower BSl into CASK and cover BSL with CASK lid. Remove CART/CASK from LSP. Install Needle Flush Tool in LSP to seal needles of NBl.
5.7    Step 7: Flush Module, Finallr Rotate Vl 9 to connect ports l to 4. Open VREL-2 until FI-1 reads                        11 WG (200 ccm).
Visually observe that BSl fills completely. Flush to WASTE for 2 minutes. Rotate 1/19 to connect ports 1 to 2. Close V2.
5.8    Step 8: Flush Purge Line Perform actions of para 2.5.
5.9    Step 9: Flush Supplz Line Perform actions of para 2.6.
6.0    Mode 6:    CAPTURE 0!3Sl SAMPLE:    Line RCl 6.1    Step 1: Load evacuated DBSl into CART/CASK.        Position CART/CASK.                  Elevate DBSl into needle of DV1.
6.2    Step 2: Purge To Secure Contemporary Samole.
Perform actions of para 2 .1.
6.3    Step 3: Purge Module Perform actions of para 2.2.
6.4    aotate '120 to connect port 1 to 4. Flow to WASTE for 30 seconds. Rotate DV1 to connect port l to 3. Close Vl .1. Slowly open '121 to permit the demin water in Cl to flow through DVl into DBSl. Visually verify that a stream of water is properly injecting into DBS1. Close V21 after precisely 90cc of demin water have exited from Cl. Rotate DVl to connect port 4 to 2.
6.5    Steo 5: Flush Module Open V4. l until F2-1 reads
* 11 WG (200 ccm). Flush to WASTE one minute. Rotate V20 to connect port 1 to 2 andflUsh to WASTE an additional one minute. Close V2.
6.6    Steo 6: Flush Puroe Line Perform actions of para 2.5.
6.7    Step 7: Flush Supply Line Perform actions of para 2.6.
6.8    Steo 8: Remove nBS1
* Operate CART/CASK to remove OBSl from DV1 needle, lower. .nBs.J jnto CASK & cover DBSl with CASK 1 id. Remove CART/CASK from LSP.                  r/
                                                                        ., l _.
T)*/
J.'\. L
                                                                                          ~**
                                                                                            \ ,~
j u ,
TlflS uOt.;:1. t.*l IS T;;E ?i\U?E, TY !JF SEN Oconomuwoc, Wis. 5 3066 f ,J
                                                                                                    "' J.
l'y*1"':'-.J~ l.*. . '!"
and is to be used onl1 fo; th.:: purpose of th~ agreement wit!J Sentr:1 pursu<Jnt J
('Q
                                                                                                                                            ') ~
                                                                                                                                          .t.\. J.i...J to wb1ch it is furnisbed.
Sentry Equipment Coro.                nwq. 1 53-11 -004-1      RO              Paqe 7 of 7 rnEL IM INJ\RY
: 7. 0  Mo<lc 7:  ROUTF. COOLANT SAMPLE iO CJ\P 1 s otl-LINE J\NJ\L YZERS CAUTION: Before starting Mode 7, insure that the CAP (Chemical Analysis Panel) is prepared to receive liquid Coolant Sample from the RC Module. Ref CAP procedure 158-11-004-1.                                                                        _
THIS DOCUt-!1Efn IS THE PROPEdY OF
: 7. 1  Step 1: Purqe To Secure Contemporary Sample                  SENTRY EQUIPMENT COl~P.
Perfonn actions of para 2.1.                                      Oconomowoc, Wis. 53066 and is to be used only for the purpose 7.2 Step 2: Purge ~~dule                                            ot the agreement with Sentry pursuant Perform actions of para 2 .2.                                to wbich it is turnished.
7.3    Step 3: Route Liquid Sample to CAP Rotate V22 to connect port l to 3. As necessary open VREL-2 until FI-2 reads "WG {200 con). Continue to flow coolant to CAP until CAP's operator advises that hts Sampling Exercise is satisfactorily completed. Close Vl .1.
CAUTION: The maximum allowable time for flowing a coolant sample to CAP is 17 minutes. If this time is exceeded, the operator may exceed the target 100 mR dose rate for the CAP sampling mode.
7.4    Step 4:    Terminate CAP Sampling Mode.      Flush Module.      Flush CAP.
CAUTION: LSP Operdtor advises, and secures concurrence from CAP Operator of intent to tenninate CAP sampling Mode and to commence module and CAP flushing.
Open V4.1 until FI-2 reads      11 WG (200 ccm). Flush 3 minutes to CAP, thru CAP, thence to PURGE. Close V2. Rotate V22 to connect port 1 to 2.
7,5    Step 5:    Flush Purge Line Perform act ions of para 2 .5.
7.n  Step 6: Flush Supply Line Perform actions of para 2.6.
: n. 0 Mode 8:      PREPARE MODULE FOR FUTURE SAMPLING Manipulate valves and equipment to conditions as required by para 1 .o.
9 .O  SAMPLING FROM THE OTHER FOUR (4) LINES ARE MADE IN ACCORDANCES WITH PARAS- 1 .O THRU 8.0---BY MAKING CORRESPONDING VALVE AND EQUIPMENT MANIPULATIONS.


Description
Page l of 1 5-8-80 Sentry Equipment Corp.                  Original Date 3-13-80                Ck 1 d    LE      Rev  l
& Function:
                                                                                                        ~-
153-11-001 TillS Goe:;, r IS THE Pr:OPE!HY i1F Sl!-f'.; '/ R. i' il.CJU li' CO kP.
DRAWING NO.           l 54- 1l -001 - l (O"ESCRIPTION & FUNCTION:   DEMIN REACTOR COOLANT MODULE!
* Oconnmowoc, Wis. 53066 <ind il) to be used only for the purpose of the agreement with Sentr1 pursuant to which it is turnisbed.
HRSS Liquid Sampling System                , .. \S 1.*&#xa3; Pl'OPEf{T'f UF THIS OOCti: .* &#xa3;t** 1 1. " ...1 ,
? & ID 1 53-11-002 Parts Identification 153-11-003
                                                          ~E*~ r1 RY EC~U L;J i'll ;.,I'1 f C~ R i .
;-.. INDEX ... .........
.. . .......................... " . . .. I
.. *-.. --...
Page Para Para Para Para 1.0 2.0 3.0 4.0 . I ' ( I GENERAL INFORMATION
& INSTRUCTIONS l Preoperations For All Sampling ! Non accident:
Capture Open Grab Sample ., Non accident:
Capture Pressurized Coolant in Sample Fl ask SF1 .1 ' Accident:
Capture Pressurized Coolant; Degas Sample; Route Off \ Gas Sample to CAP Gas Chromatograph; Capture Diluted Gas Sample , Mode 1 : Mode 2: Mode 3: Mode 4: in 013S2 for transport to Isotope Analysis Lab. !I Para 5.0 Mode 5: Accident:
Capture Coolant Sample in BS1 , Para 6.0 Mode 6: Accident:
Capture Diluted Coolant Sample in DBSl I *1 Para 7.0 Mode 7: Accident:
Route Coolant Sample to CAP On Line Liquid Analyzers._J
; Para 8.0 Mode 8: Prepare Module for Future Sampling. , __ .. __ , __ , **-***----*--
----------*--
.. *-***-.. ---------*--*------*-----*--*-*-*
GENER/\L INFORMATION
& INSTRUCTIONS A.Ooeration Modes
* A .1 A.2 For routine, non accident sampling, Module has an open grab sampling Mode. For routine, non accident sampling, Module has a mode to capture pressurized coolant in a removeab1 e 30cc Flask (SF1 .1).
* A.3 For accident.
Module has a mode to: (1) capture 30cc of pressurized coolant. (2) degas sample and collect the Off-Gas in an expansion vessel, (3) boost pressure of Off-Gas to 10 psig with Argon, (4) tranfer Off-Gas to an adjacent CAP (Chemical Analysis Panel), to measure the Hydrogen content of Off-Gas, . and (5) to capture 15cc of 15000 to one diluted Off-Gas in "DBS-2 11 , a 15cc sealed bottle---and transport it to an onsite facility for isotope analysis.
A.4 For accident, Module has mode to capture l Scc of undiluted coolant in "BSl ", a 15cc sealed bottle---and transport it to an offsite facility for analysis.
A.S For accident, Module has mode to capture 90cc of 1000 to one diluted coolant in 11 DBSl 11 , a 250 cc sealed bottle---and transport it to an onsite facility for analysis.
A.6 For accident, Module has mode to transport 200 ccm of coolant to the adjacent CAP 1 s on-line liquid analyzers.
Coolant is filtered and degassed and at 60 psig. B. As a safety measure, the module's non-accident 30cc Flask and spigot (for open grab sampling) are located in a usplash to capture and contain any accidental liquid spi 11 or gas rel ease of radioactive f1 uids. This box has: (a) a sink connected to a drain to waste and, (b) a ventilation base connected to the LSP ventilation system. The operator must close the sliding door of the Splash Box before he can open: (a) the spigot valves to grab sample, or (b) capture sample in the 30cc Flask. 
*
* Sentry [qu1 pmcnt Corp. PRF.l IMHIARY Dwg. 153-11-004-l RO Page 2 of 7 r. . D. E. F. G. H. I\ hand powered vacuum pump is required ta "DOSl" prior to using it. Ref dwg 157-11-003-l, Item 5. The transport and positioning of BSl & DBSl requires the use of a mobile CART/CASK (ref 156-11-004-1).
*
* I\ "Needle Flush Tool" (ref dwg 157-11-003-l, Item 4) is requ1red to complete the flushing mode for BS1. An "Off-Gas Bottle Grip Tang" is required to manipulate and transport "OBS2". (Ref dwg 157-11-003-1, Item 6) Meter-long "Reach Rods" (ref dwg 157-11-003-1, Items 1,2 & 3) are required to manipulate valves during maximum accident dose situation.
Remoted, power-operated Valves 11 A 11 are for isolation of sample supply lines. Valves 11 8 11 are for flushing of sample supply lines. Valves A & Bare operated ,from the PROCESS CONTROL PANEL. I. From source to Module, the assumed Volume of each supply line and its components is 2280cc {equivalent to 250 feet of .245 inch bore 1 ine). Volume for 5 changes is 11400 cc. At flowrate of 1900 con, purging time is 6 minutes. J. Diluted Off-Gas is transported from the Module ta the CAP's gas chromatograph by 25 feet by tubing l/8 11 00 x 11 bore volume for 2 changes is __ cc. At Argon flowrate of __ con, flushing time is _minutes.
Undiluted coolant is transported from the Module to the CAP's liquid analyzers via 25 feet of interconnecting tubing plus 15 feet of internal CAP Tubing. 1 .O Mode 1 : PREOPERATIONS FOR All SAMPLING MOOES 1 .1 All sample lines must be filled with demin water or Argon gas from previous flushing
* Provide 120 VAC to SVl & SV2 to open air operated valves 1Wl & AV2. P.osition remaining valves as follows: DV2: Connect port l to 3. OVl : Connect port 2 to 4. Vl 8, V22 Connect port 1 to 2. Vl 9, V20 Connect po rt l to 2. All other valves closed, including Valves A & B. 1.2 Fill Reservoir Rl with demin water. Fill cylinder Cl with demin water. Close V23. 1 ,3 Securely tighten cap/septum of DBSl. Evacuate DBSl to 26" Hg VAC with hand operated vacuum pump. Observe pump gauge for 3 minutes to verify that bott1e is satisfactorily maintaining vacuum. 1.4 Securely tighten cap/septum of BSl.
DOCUMENT IS THE PROPERTY OF SENTRY EQUIPMENT CORP . Oconomowoc, Wis. 53066 and is to be used only for the purpose of the agreement witb Sentry pursuant to wbicb it is furnished. 
*
* _Sentry Equipment Corp. Dwg. 153-11-004-1 IW Page 3 of 7 PP.fl IM TNf\RY l.5 IlSl or DBSl 1nto CART/CASK.
Elevate bottle onto needles. Position loaded CART/CASK under filling needles. 1.6 Open Splash Box door. Insert Grab Sample Bottle near, but not directly under spigot from V6. Visually verify that Sample* Flask SFl .1 is properly installed and connected.  


===1.7 Verify===
==1.0    REFERENCES==
that Gauge G4 reads minimum 75 psig to insure proper supply of Argon. 1.8 Inspect SBS2 to verify that its rubber septum is properly installed.
o01  !~                        *.r * '""06o P & IO                  154-11-002-1                   Oconm1w.-...voc, h *S J.:l
Load OBS2 into the Off-Gas Bottle Grip Tong (OGBGT). Insert loaded OGBGT into the station. Visually verify that the needle of DV2 penetrates the Septum of DBS2. l .9 Prepare CAP to receive Samples from Module, per CAP procedures.
* Parts Identification: 154-11-003-1                 and is to be ust:J unl1 \~r tile purpu:u.
1.10 At PROCESS PANEL, determine that following lights for Sample Cooler Rack are ON and GREEN. This condition verifies that cooler are in satisfactory re.adiness for sampling.
Operating Procedure : T54-1 l-004-l               a1 tile a1r,i eement *,*1ith ~entry pursuant to wllicn it iz turnisaed.
Cooler lights include: (a) Sufficient cooling water flow. (b) Sufficient cooling water pressure. (c) Sufficiently low cooling water temperature.
2 .O Mode 2: NON ACCIDENT ONLY: CAPTURE OPEN GRAB SAMPLE: LINE RCl 2 .1 Step 1 : Purge To Secure Contemporary Sample At PROCESS CONTROL PANEL, open Valve A. At LSP, fully open Vl .1 and V3. Open VREL-1 until FI-1 reads __
(1900 ccm). Purge 5 minutes to PURGE. Close V3. 2.2 ?tep 2: Pur9e Module Open v7 and V2. Open VREL-2 until FI-2 reads "WG (200 ccm), and G3 20 psig maximum. Purge 1 minute to WASTE. --2.3 Step 3: Draw Grab Sample Open Vl7 and flow sample to Splash Box for 2 seconds. Clase V17. Open Splash Box door to place Sample Bottle directly under Vl7 spigot and close door. Open V17 and draw Sample and close V17. Close Vl .1. 2.4 Step 4: Flush Module Open v4 .1 unti 1 FI-2 reads "WG ( 200 ccm). Flush 3 minutes to WASTE. Open Vl 7 and flush 1 minute into the empty Splash Box. Close Vl 7. Close V2. Clase V7. 2.5 Step 5: Flush Purge Line Open V3 until FI-2 reads_"WG (200 ccm). Flush 3 minutes to PURGE. Close V3 .. 2.6 Steo 6: Flush Suoolv Line At PROCESS CONTROL PANEL, close Valve A and open Valve B. At LS?, open Vl .1 for 6 minutes. Close Vl .1. At PROCESS CONTROL PANEL close Valve 8. 3.0 Mode 3: NON ACCIDENT ONLY: CAPTURE PRESSURIZED COOLANT IN REMOVEABLE SAMPLf: FLASK: LINE RC1 THIS DOCU1i.EilT IS THE PROPUTY ;)f SENTRY EQUIPMENT CORP. Oconomo<Woc, Wis. 53066 and is to be used only ior the purpose of tbe agreement 1*1ith Sentry pursuant to l'lbich it is furnished. 
* *
* Sentry Corp. PflF.LIMINARY Owq 153-11-004-1 RO Paae il of 7 1HIS
:s Tiit l'_l<ll_l'_li*
! ! l>>I*;.
i*:<Jllli'MJ*,Nl r.01...J
* 3.1 _<itr>jl l: Pur9n To Secure Comtr.mporilry Sumplc Pcrfonn the actions of para 2.1. u4* w* :JJUU ()co1tm1111woc, t:i. 'J Jnd i:; lu lie only (ur tho purpose ot the agreement with Sentry pursuant t 0 'l'lhich \t is turnistled.
3.2 Step 2: Purge Module Perfonn the actions of para 2 .2 3.3 Step 3: Capture Pressurized Coolant in SF1 .1 Open VS.1, V6.l, V6.2 & VS.2. Close V7. Flow thru SF1.1 ta PURGE for one minute. Close V6.2 and V6.l. Close Vl.l, open V7. Close VS.2 and VS.1. 3.4 Step 4: Remove Sample Flask SFl .l Open Splash Box door. Uncouple 02.1 and 02.2 and remove SF1 .1 assembly for Splash Box. Couple backup SF1.1 assembly to 02.1 and 02.2. Close Splash Box door. 3.5 St_&#xa3;E.._5:
F1 ush Module Open VS.l, V6.l, V6.2 and VS.2. Close (200 ccm). Flush 3 minutes to HASTE. ta WASTE. Close VS.2 and V7. V7. Open V4 .1 until FI-2 reads "WG Close VS.2 and open V7 and 3.6 Step 6: Flush Purae Line Perfonn the actions of para 2.5. 3.7 Step 7: Flush Supply Line Perform the actions of para 2.6. 4.0 4 .1 4.2 4.3 Mode 4: CAPTURE PRESSURIZED SAMPLE AND DEGAS IT. DILUTE OFF-GAS & ROUTE IT TO GAS CHROMATOGRAPH (in CAP). CAPTURE AND REMOVE A DILUTED SAMPLE OF OFF GAS IN OBS2. Line RCl. CAUTION: Before starting Mode 4, insure that the CAP (Chemical Analysis Panel) is prepared to receive Off-Gas Sample from the RC Module. Ref CAP procedure 158-11-004-1 * ?tep 1: Evacuate DBS2 Verify that DV2 is rotated to connect port l ta 3. Verify that G4 reads 75 psig minimum. Open* V12. Open V13 until '12.2 rea<is 29" Hg vacuum. Close Vl'.l. Observe G2.2 for 1 minute to verify that OBS2 is maintaining 29" Hg VAC. Rotate DV2 ta connect port 2 to 4. Step 2: Evacuate EVl Verify that V9. V11, V15 & V4.2 are closed. Open '110 until G2.1 reads 29" Hg vacuum Clase VlO. Observe G2.l for 1 minute to verify that EVl & connected lines ;ire maintaining 29" Hg VAC. Close V12. Step 3: Puroe To Secure Contemoorary Samo1 e Perform actions of para 2 .1. 4,4 Step 4: Purge Module Perform actions of para 2 .2. 4.5 Step 5: Capture Pressurized Coolant in SF1 .2 Open V8.1 and VS.2. Close V7. Flow thru SF1 .2 to PURGE for one minute. Open V7. Close VB.2 and V8.1 *
* Sentry Corp. Dwq. 153-11-004-1 RO f>tl <J0. ') 0 f 7 PP.FL IMINJ\RY 4.6 Step fi: F1ush Module -Close Vl .1
* Open V4 .1 until FI-2 reads WASTE. "WG(200 ccm). Flush 2 minutes to ---4.7 Step 7: Flush Purge Line Close V2. Open V3 until FI-1 reads "WG (200 ccm). Flush 3 minutes to PURGE. Close V3. Close V4.l. 4 ,8 Step 8: Degas SFl .2 Slowly open V9 and observe that.G2.1 increases in pressure to 25 to 22" Hg VAC. 4. 9 _Step 9: Sea v enqe Off-Gas From SF1 . 2 Slowly open V16 until G2.1 reads approximately 1.0 psig. Close Vl6. 4.10 Step 10: Boost Pressure in EVl Slowly open Vll until G2.1 reads exactly 10 psig. Close Vll. Close V9.
Step 11: Route Diluted Off-Gas to \.AP Open Vl5 to permit Off-Gas to flow to the Gas Chromatograph in the CAP. Observe that G2.1 decreases in pressure to approximate 4 psig. Close V15. 4.12 Step 12: Capture Diluted Off-Gas In DBS2 Rotate DV2 to connect port 1 to 3. Observe that G2.2 reads approximately 28" Hg VAC. Slowly open V14 until G2.2 reads 0 psig. Close V14. Rotate DV2 to connect port 2 to 4. Remove DBS2 from the LSP, usinq Off-Gas Bottle Grip Tong. Insert DBS2 and Tong into shielded carry case for transport to counting facility . 4.13 Steo 13:. Flush SFl .2 and EVl with Demin Water Ful1y open VREL-2. Open VB.l and V9. Open V4.2 Flush thru EVl and SFl .2 to WASTE for 2 minutes. Flush to WASTE for 1 minute. Close V4.2. until FI-2 reads 11\.IG (200 cm) Open VB.2 and close VB.1. 4.14 5tep 14: Flush EVl with Argon Open Vll and flush EVl for one minute. Close Vll. Close V9. Close V8.2. Close VREL-2. 4.15 Step 15: Dry Out EVl Open V12. Open vla until G2.l reads 29" Hg 1/AC for 2 minutes. Close 1/10 anci Vl2. 4.16 Step 16: Flush Supply Line Al PROCESS CONTROL PANEL, c1ose Valve A and open Valve B. At LSP, open Vl .1 and V4 .1 . Flush for 6 minutes *. Close V4 .1 and Vl .1. At PROCESS CONTROL PA:lEL, close l/alve B. 5.0 Mode 5: CAPTURE BSl SAMPLE: Line RCl 5.1 Step 1: Load 8S1 into CART/CASK.
Remove Needle* Flush Tool from LSP. Position CART/CASK.
Elevate BSl onto needles of NBl. 5.2 Step 2: Purge To Secure Contemoorary Samole. Perform actions of para 2.1. 5.3 Step 3: Puroe Module Perform actions of para 2.2. TH l S 00C11 t 1 1 E., T I" -.. , SENTR " .:i 11:c. P.:?Qpco-v
., 1 v
..... TT, . '-" I ' . -0 *!t) 1 P :'*rI ENT r.o;:: Oconomowoc w,* ,. -..,rJ....., 6 , 4 d. ' "* O..; v an IS to be US13d Oil/'j ; *** h ' , .... 'u, L .e 01 u1e agreemc'lt
... ;r* s. l ." ,., y(. ' ' , I 11 I I/ bti lf,1 -..jl""! ...., ... ro wn1cn 1 
*
* Sentry Equipment Corp. rnrt 1M INJiRY Dwg RO Page 6 of 7 step 1: Fill ns1 *Rotate Vl 9 to connect port 1 to 4. Open VREL-2 until FI-2 reads "WG (200 ccm) . Visually observe that BS1 fi11s completely.
Flow additional 30 seconds. Rotate V19 to connect port 1 to 2. Close Vl .1. 5.5 Step 5: Flush Module, Preliminar,x Open V4.l until F2-1 reads "WG (200 ccm). Flush to WASTE for 2 minutes. /Jhile flushing, proceed with next step 6, (below). 5.6 Step 6: Remove BS1 Operate CARf/CASK to remove BS1 from NBl needles; lower BSl into CASK and cover BSL with CASK lid. Remove CART/CASK from LSP. Install Needle Flush Tool in LSP to seal needles of NBl. 5.7 Step 7: Flush Module, Finallr Rotate Vl 9 to connect ports l to 4. Open VREL-2 until FI-1 reads 11 WG (200 ccm). Visually observe that BSl fills completely.
Flush to WASTE for 2 minutes. Rotate 1/19 to connect ports 1 to 2. Close V2. 5.8 Step 8: Flush Purge Line Perform actions of para 2.5. 5.9 Step 9: Flush Supplz Line Perform actions of para 2.6. 6.0 Mode 6: CAPTURE 0!3Sl SAMPLE: Line RCl 6.1 Step 1: Load evacuated DBSl into CART/CASK.
Position CART/CASK.
Elevate DBSl into needle of DV1. 6.2 Step 2: Purge To Secure Contemporary Samole. Perform actions of para 2 .1. 6.3 Step 3: Purge Module Perform actions of para 2.2. 6.4 aotate '120 to connect port 1 to 4. Flow to WASTE for 30 seconds. Rotate DV1 to connect port l to 3. Close Vl .1. Slowly open '121 to permit the demin water in Cl to flow through DVl into DBSl. Visually verify that a stream of water is properly injecting into DBS1. Close V21 after precisely 90cc of demin water have exited from Cl. Rotate DVl to connect port 4 to 2. 6.5 Steo 5: Flush Module Open V4. l until F2-1 reads
* 11 WG (200 ccm). Flush to WASTE one minute. Rotate V20 to connect port 1 to 2 andflUsh to WASTE an additional one minute. Close V2. 6.6 Steo 6: Flush Puroe Line Perform actions of para 2.5. 6.7 Step 7: Flush Supply Line Perform actions of para 2.6. 6.8 Steo 8: Remove nBS1 Operate CART/CASK to remove OBSl from DV1 needle, DBSl with CASK 1 id. Remove CART/CASK from LSP. lower. .nBs.J jnto CASK & cover TlflS uOt.;:1. t.*l IS T;;E ?i\U?E, TY !JF SEN r/ T)*/ ,, . u , ., l _. J.'\. L j f ,J l'y*1"': .*. '!" ('Q ') \ "' J. ... '-.J l . J ""' .t.\. J.i...J Oconomuwoc, Wis. 5 3066 and is to be used onl1 fo; th.:: purpose of agreement wit!J Sentr:1 pursu<Jnt to wb1ch it is furnisbed.
Sentry Equipment Coro. nwq. 1 53-11 -004-1 RO Paqe 7 of 7 rnEL IM INJ\RY 7. 0 Mo<lc 7: ROUTF. COOLANT SAMPLE iO CJ\P 1 s otl-LINE J\NJ\L YZERS 7. 1 CAUTION: Before starting Mode 7, insure that the CAP (Chemical Analysis Panel) is prepared to receive liquid Coolant Sample from the RC Module. Ref CAP procedure 158-11-004-1.
_ THIS DOCUt-!1Efn IS THE PROPEdY OF Step 1: Purqe To Secure Contemporary Sample Perfonn actions of para 2.1. SENTRY EQUIPMENT 7.2 Step 2: Purge Perform actions of para 2 .2. Oconomowoc, Wis. 53066 and is to be used only for the purpose ot the agreement with Sentry pursuant to wbich it is turnished.
7.3 Step 3: Route Liquid Sample to CAP Rotate V22 to connect port l to 3. As necessary open VREL-2 until FI-2 reads "WG {200 con). Continue to flow coolant to CAP until CAP's operator advises that hts Sampling Exercise is satisfactorily completed.
Close Vl .1. CAUTION: The maximum allowable time for flowing a coolant sample to CAP is 17 minutes. If this time is exceeded, the operator may exceed the target 100 mR dose rate for the CAP sampling mode. 7.4 Step 4: Terminate CAP Sampling Mode. Flush Module. Flush CAP. CAUTION: LSP Operdtor advises, and secures concurrence from CAP Operator of intent to tenninate CAP sampling Mode and to commence module and CAP flushing.
Open V4.1 until FI-2 reads 11 WG (200 ccm). Flush 3 minutes to CAP, thru CAP, thence to PURGE. Close V2. Rotate V22 to connect port 1 to 2. 7,5 Step 5: Flush Purge Line Perform act ions of para 2 .5. 7.n Step 6: Flush Supply Line Perform actions of para 2.6. n. 0 Mode 8: PREPARE MODULE FOR FUTURE SAMPLING Manipulate valves and equipment to conditions as required by para 1 .o. 9 .O SAMPLING FROM THE OTHER FOUR (4) LINES ARE MADE IN ACCORDANCES WITH PARAS-1 .O THRU 8.0---BY MAKING CORRESPONDING VALVE AND EQUIPMENT MANIPULATIONS.
* Page l of 1 5-8-80 Sentry Equipment Corp. Original Date 3-13-80 Ck 1 d LE Rev l DRAWING NO. l 54-1 l -001 -l (O"ESCRIPTION
& FUNCTION:
DEMIN REACTOR COOLANT MODULE! 1.0 HRSS Liquid Sampling System , .. 1\S 1 1.*&#xa3; Pl'OPEf{T'f UF THIS OOCti: .* &#xa3;t** . " ... 1 , '
r1 RY L ;J i'll ;.,I'1 f R i . REFERENCES P & IO Parts Identification:
Operating Procedure
: 154-11-002-1 154-11-003-1 T54-1 l-004-l o01 *.r * '""06o Oconm1w.-...voc, h *S J.:l
* and is to be ust:J unl1 tile purpu:u. a1 tile a1r,i eement *,*1ith pursuant  


==2.0 DESCRIPTION==
==2.0 DESCRIPTION==
& FUNCTION 2.1  Mod 2 accepts (3) different samples of Reactor Coolant, from clean-up demins, entering (only one @ a time) at maximum of 120&deg;F and 1250 psig.
2.2  Maximum flowrates are:  (a) 1900 cc/min during purging, and (b)SOO cc/min during sampling.
2.3  For routine, non-accident sampling, Module can capture depressurized coolant as an open grab sample for routine analysis.
2.4 Module reduces samples pressure to 25 psig.
2.5 Module flushing capabilities include:
(a) Flush liquid sample supply lines to HRSS Waste Tank (via owner 1 s remote power operated flush valves--located upstream of the Sample Cooler Rack).
(b) Flush in-panel liquid sample lines to HRSS Waste Tank.
(c) Flush fluids may be demin water, nitrogen gas or appropriate decontuminatin~
solutions.


& FUNCTION to wllicn it iz turnisaed.
PRELIMINARY 3.L S'V M c
2.1 Mod 2 accepts (3) different samples of Reactor Coolant, from clean-up demins, entering (only one @ a time) at maximum of 120&deg;F and 1250 psig. 2.2 Maximum flowrates are: (a) 1900 cc/min during purging, and (b)SOO cc/min during sampling.
:E 0
2.3 For routine, non-accident sampling, Module can capture depressurized coolant as an open grab sample for routine analysis.
I-I-
0 CD 8
A JOB NO.                                                  RC.
TOU:RANCES            SENTRY EQUIPMENT CORP.
AL..L. OIM'S. UN.U:SS    HRSS LIQ&#xb5;ID SAMPLING PANEL OTHERWISE SPEClll"IED        OEMIN REACTOR COOLANT MODULE FRACTIONAL      +/-      INCH 1----..,,,-.,........,,....,,,---..,.,....,..,.,--------,,,------l ci::ci MAL      ::!:  INCH ~DA_T_E__.;:;.3_-~--'8~0'-D_R_A_w_N_.;.:W..;;:.J.:..:.N__c_H_K_'D--:L:.;;E'--_s__,cALE    ~I I A ANGUL.AR        +/-            DRAWING NO.                               154-11-002-1 1
ISSUE  1 U/P INC, l130M 500*1*77 2                                                                                         1


===2.4 Module===
                                        . r / * *I ;*;*' 1***'. r* * * ., ....
reduces samples pressure to 25 psig. 2.5 Module flushing capabilities include: (a) Flush liquid sample supply lines to HRSS Waste Tank (via owner 1 s remote power operated flush valves--located upstream of the Sample Cooler Rack). (b) Flush in-panel liquid sample lines to HRSS Waste Tank. (c) Flush fluids may be demin water, nitrogen gas or appropriate solutions.
                                          **   .. I
PRELIMINARY 3.L S'V M JOB NO. RC. TOU:RANCES SENTRY EQUIPMENT CORP. AL..L. OIM'S. UN.U:SS HRSS LIQ&#xb5;ID SAMPLING PANEL OTHERWISE SPEClll"IED OEMIN REACTOR COOLANT MODULE FRACTIONAL
* I             J / l . ::*   :
+/- INCH 1----..,,,-.,........,,....,,,---..,.,....,..,.,--------,,,------l ci::ci MAL ::!: INCH
11
__ c_H_K_' D--:L:.;;E'--_s__,cALE I A ANGUL.AR +/- DRAWING NO .. 154-11-002-1 1 ISSUE 1 U/P INC, l130M 500*1*77 2 1 c :E 0 I-0 CD 8 A Fquipment Corp. t.. r / * * ;* *** r* * * ., .... 11 * * * .. I
                                                                                      ' \
* I I ;*' 1 '. J / l . ::* : ' \ I . )  
                                                                                              ~*,
.. ; " 1* j' I : I 11,* \I .: 'I ".I : ' I'. I .)*; t. *' . ':, :' .. r* 1. ! 1 I j ' -. Ll ..... 1 *' ,, ... ;,""" .,. \ .. \ r* **t I , 1 , 1 1 * [ I I, ;.j
I . ) ~'.\, ..;
... ; ... ::; ... : *,.,,, .. l .1 Ori<Jina1 nate 3/6/80 DRAWING NO. ra<Je l of? C:hk'<l Lr Rev l 154-11-003-1  
ra<Je l of?
'"* ii , I .. :. : * .. l .0 VALVES. MANUAL 1. i llit; :1 ..... : ,;, i. i :-*:. * .. \i./:.t 1.1 TWO-WAY GLOBE VALVE. ISOLATION.
t . *' .j' I ':,: I 11,*:' .\I. r*.: 'I ".I! 1:
Hhitey SS-1VS4.
                                        "  1*                                            'I I'.j 'I .)*;
stem are T316SS. Packing is Garlock 7020. Temp/press rating is 150&deg;F/2955#.
Llt .....1.~.;;::l..-.~.1~
Connections are 1/4 Swagelok.
1.
1/R" or 1/4" MPT or FPT as required.
                                            ;.j
Vl . 1 , Vl . 2, V1
                                                **t  1 *' ,, ... ; , " " " .,.
* 3 l .? THO-WJ\Y GLOl3E VALVE, REGULATING.
I   , 1 ,       11        *
Whitey SS-1R4, Regulating Stem. Eady and stem are T316SS. Connections are 1/4" Swagelok, 1/8" or 1/4" MPT or FPT as required.
[   I \    ..
I, \
                                                                                        *,.,,, . l r*.1 Fquipment Corp.                              Ori<Jina1                 nate 3/6/80                                         C:hk'<l Lr           Rev       l DRAWING NO.                    154-11-003-1
                                                                                                                  '"* ii ~J ,~. I .. :. : *..
l .0   VALVES. MANUAL                                                                                           1. i llit;   :1 .....
: ,;, i. i :-*:. *. \i./:.t 1.1     TWO-WAY GLOBE VALVE. ISOLATION. Hhitey SS-1VS4. V~ewt~~:~~;.;,;13~'dy:*~~d stem are T316SS. Packing is Garlock 7020. Temp/press rating is 150&deg;F/2955#. Connections are 1/4 Swagelok. 1/R" or 1/4" MPT or FPT as required.
Vl . 1 , Vl . 2, V1 *3 l .?   THO-WJ\Y GLOl3E VALVE, REGULATING. Whitey SS-1R4, Regulating Stem. Eady and stem are T316SS. Connections are 1/4" Swagelok, 1/8" or 1/4" MPT or FPT as required.
Temp/press rating is 150&deg;F/2955U.
Temp/press rating is 150&deg;F/2955U.
V?.1, V2.?., V2.3. Packing is TFE. V3. Packing is Garlock 7020. 1.3 !11\LL CHECK VALVE. Hoke 6133 Series, 15 psi crackinq pressure.
V?.1, V2.?., V2.3. Packing is TFE.
13ody, bal1 and spring are T303SS. Seats are Viton. Temp/pressure rating is 350&deg;F/3000#. nections are 1/4" Swagelok.
V3. Packing is Garlock 7020.
1.3     !11\LL CHECK VALVE. Hoke 6133 Series, 15 psi crackinq pressure. 13ody, bal1 and spring are T303SS. Seats are Viton. Temp/pressure rating is 350&deg;F/3000#. Con-nections are 1/4" Swagelok.
CV1 . 1
CV1 . 1
* 1 . 2, 1 . CV2.l, 2.2, 2.3. l .4 PRESSURE REDUCER ELEMENT (VREL). Sentry P/N (to follow) is an adjustable variable rod in capillary device to breakdown a large pressure differential out seat/plunger wire drawing. Cleanable in place without shutting off samrle flow. Rod anrl capillary are T303SS. Temp/pressure is 100&deg;F/5000#.
* 1 . 2, 1 . ~.
Connections are 1/4" Swagelok.
CV2.l, 2.2, 2.3.
Packing is Grafoil. VREL-1.1, 1.2 & 1.3 2.0 QUICK nISCONNECT COUPLING.
l .4     PRESSURE REDUCER ELEMENT (VREL). Sentry P/N (to follow) is an adjustable variable rod in capillary device to breakdown a large pressure differential with-out seat/plunger wire drawing. Cleanable in place without shutting off samrle flow. Rod anrl capillary are T303SS. Temp/pressure ratin~ is 100&deg;F/5000#.
Hanson ML-Hll-143 socket plug ML-Hll-143 plug. Material is T316SS; seals are Viton. Connections are 1/8" or 1/4" FPT as required.
Connections are 1/4" Swagelok. Packing is Grafoil.
rn .
VREL-1.1, 1.2 & 1.3 2.0     QUICK nISCONNECT COUPLING. Hanson ML-Hll-143 socket plug ML-Hll-143 plug.
.r-ntry l.quipmcnt Corp.
Material is T316SS; seals are Viton. Connections are 1/8" or 1/4" FPT as required.
No. 154-11-001-1 S/fl./P.O rn P;i r:ie 2 of ?
rn .
u-
 
[LuG.JUJ!.i 1* I -.J*i*\\ u FLOW INOICJ\TOR.
  .r-ntry l.quipmcnt Corp.                                                               Ow~. No. 154-11-001-1                   S/fl./P.O             rn u-LlLJ~a    r1:nr1~[\~-~f~ ~~*)\~r                P;i r:ie 2 of ?
Dwyer 4050 CapsuheTic, ranl)e '"0-::i ...
                                                                                                ~~;, [LuG.JUJ!.i -.J*i*\\ u 1
Interior surfaces arc uluminum, cliaphrum is [3una-N. Temp/pressure rating is 200&deg;F/500#.
* I FLOW INOICJ\TOR. Dwyer 4050 CapsuheTic, ranl)e '"0-::i ... ~?,.                                    Interior surfaces arc uluminum, cliaphrum is [3una-N. Temp/pressure rating is 200&deg;F/500#.
FI-1 :.2 FLOW ORIFICE. Sentry P/N (to follow). Wetted material is T304. Temp/pressure rating is 200&deg;F/200#.
FI-1
OR-1 .-1 .n n l J\PllR/\r.M r./\llt.F
:.2                       FLOW ORIFICE. Sentry P/N (to follow).                                       Wetted material is T304.           Temp/pressure rating is 200&deg;F/200#.
* T316SS with Viton diaphram.
OR-1
*-n .:. . '\ :.:'l , .. -.... 'r> ' "' . "'\. c:'4' ol) . ... **-,, \U ::*: *:/) .....
.-1     .n                 nl J\PllR/\r.M                 r./\llt.F PROTECTOI~
*: *= ..c: . .::::: ,._"" *1' ...... ,-1= .., "' -"' _.
* Bellofram Corporation 12000-lOMS-?.                     Proce~s    side mt1 is T316SS with Viton diaphram. Temp/press rating is 400&deg;F/2500#.
co .L:ll '*' , ('*" *--E 0: 0 .... GSl.l, GS1.2 .. "'O "'O QJ VI QJ .._, S.. ON M <UE *1 9Q(JJ > :::w.-, U g_o:: I ,..-,..: i t.n -o *
GSl.l, GS1.2
* r ClJClJ VI Cl):..-! g'E ,....
  . '\
I I-*....,>  
n
<u ::J VI S..: VI I-Ill 0 QJ 0::: , "'O _.._,EVI *
              '~
<i....iio..
:.:'l
QJ *w-.,,,....,.....
  ,.. - .... 'r>
I .._, VI "'1" ::::I n::l 0 l Vl: 0 .... :> w > 0 ::;:-:: 01 **1S.. c: **1 u Q.(X), c::. c.. CJ c::. "'O 1 -:11w cw ***j<l.l<lJ  
    . "'\.     "'
.._ I :U,.J CT. -t..L.J 0 0... Bellofram Corporation 12000-lOMS-?.
c:'4' ol)         ~
Temp/press rating is 400&deg;F/2500#.
    ,,          \U
Vl co11--l<lJ o c..::.I"'
::*:     *:/)
c.1 .... ,.... I > U")i _J ::i E c:::: N c.. E E I LW--' LW "' 0 = I> c Q) t'C I Ol U U UC::::: I-V'1 I L-L ...... *--* ... ___ ***--**-** ____ J.. ... _ .................... .
              ..::.J~
side mt1 is 
      *: *= ..c:
* * '.;enLry lquipmcnt Corp. ORAWINf. NO.
                ~ -~
l'HLLIMIM/\RY Date S-lG-80 Ck'd LE 0 5-16-r.o nrrr>AT r r1r.
                        ~
Description
                ~=      ~
& Function:
                *1'  ......
P & ID Part Identification GENERAL INSTRUCTIONS 154-11-001-l 154-11-002-1 154-11-003-1 I 111 !-> lJ 0 (; ll 1v.I:. i'I I i I ii !: I' I \(J I' E ii I Y u r SENTJ<Y HJllii'iVli 1;NT (;()J-.!p.
1= ..,
Oconomu*ivoc, Wis. 53066 Jnd is lo Ul! 11:;i:d 1111ly i11r lilt! &#xb5;ur&#xb5;u1;u of tlle agreement with Sentry purs\lant to wblcll it i:; f urnisl1cli.
                ~:.;;,-
This module is for routine, non accident grab sampling As a safety measure. the spiqots are located in a "Splash Rox" to capture and contain any accidental liquid spill or gas release of radioactive fluids. This box has: (a) a sink connected to a drain to waste and, (b) a ventilation hose connected to the LSP ventilation system. The operator must close the sliding door of the Splash Box before he can open the spigot valves to draw a sample. Remoted, power-operated Valves "A" are for isolation of sample supply lines: Valves "B" are for flushing of sample supply. Valves A & B are operated from the PROCESS CONTROL PANEL. From source to Module, the assumed Volume of each supply line and its components is 2280cc (equivalent to 250 feet of .245 inch bore line). Volume for 5 times chan0e is ll400cc. At flowrate of l900ccm purging time is 6 minutes. l . n Mode l
co    .L:ll
* PREOPERATIONS 1.1 J\11 valves must be closed. All sample lines must be filled 1"1ith demin water from previous flushing.
        -=~,     ('*"
l .? Open Splash Rox door; insert Grab Sample Bottle near, but not directly under spigots. l .1 At PROCESS PANEL, determine that following 1 ights for Sample Cool er Rack are ON anrl This condition verifies that cooler are in satisfactory for sampling.
E 0:
Cooler lights include: (a) Sufficient coolinq water flow. (b) Sufficient cooling water pressure. (c) Sufficiently low cooling water temperature.
                                                      ....0            .. "'O
2.n Mode 2:CAPTURE OPEN GRAB SAMPLE: LINE DMl 2.1 Step 1: Purge To Secure Contemporary Sample At PROCESS CONTROL PANEL, open remote Valve A. At LSP, orien Vl .1. Open VR.::L-1 .i until FI-l reads __ "WG (corresponding to 1900 ccm). Purge 6 minutes to '.IASiE. 2.2 Step 2: Draw Grab Samole Throttle VREL-1.l until FI-1 reads "1.-IG, (corresponding to 500 ccm). Open V2.l and flow sample to Splash Box drainfor 10 seconds. Close V2.l. Open Splash Rox door; position Grab Bottle under V2.1 spigot; close door. Open V2.l and draw Grab Sample. Close V2.l. Open Splash door; remove Grab Sample 3ottle; Close Splash Box door .
                                                                  "'O QJ VI           QJ .._,
nwfJ /11 SI\ 00'1-l RO !'.i 'J" ? (),. ;' l'Rrl !MHIJ\RY :i.*1 ',Lr?f> J: rlusll Module Close Vl .1. Open V3 until FI-1 reads "WG (correspondinf) to SOO r.cm). rl11sh 2.,, to HASTE for 2 minutes. Open '12.l and-ffush spigot line into Splash Box drain for l O seconds. Close V2. l . Close VREL-1
S.. ON M             <UE           *1 9Q(JJ           >             :::w.-,
                                      ~.~            U             g_o::             I
                                          ,..-                               ,..: i t.n                         -o       *
* r ClJClJ           VI         Cl):..-!
g'E             ,....       ~~t2              I
::~ ~~~~~I                           <u I-*....,>
::J VI VI I-         Ill   0 S..:
QJ
                                                                                ~
0:::
                              ,       "'O           _.._,EVI n~::                    ~.,,.s~~
                              <i....iio.. QJ                                          I
                              *~1          .._, VI
                                                    *w-
                                                              "'1"
::::I n::l 0     l
:> w         > 0 Vl:
                      -:11w 0
                        ;:-: 01 c::.**1S..c..
:Q.(X),
c:   **1 CJ c::.
cw
                                                                          "'O
                                                                ***j<l.l<lJ u      1 Vl
                      .._       co11--l<lJ I :U,.J   CT. o 0.~ -
c..::.I"' t..L.J
: c. .... 0 ,....
0... I LW--' LW
                        ~:r-!C U")i _J      ::i
                                            "' 0 Ol U E
                                                      =I> c 1 c::::
U N    c.. E E UC:::::
Q)  t'C I- V'1 I
I I
L-L ...... *--* ... ___ ***-- **-** ____ J.. ... _.................... .
 
  '.;enLry lquipmcnt     Corp.
ORAWINf. NO.                     l~~-ll-00~-l l'HLLIMIM/\RY Ori~inal    Date S-lG-80           Ck'd               LE           r~cv        0 5-16-r.o nrrr>AT rr1r. rno~_E_~,~~~~--~--~-~-~~Miri_~~~-~-A.:c_T.g~~~~~ooLA~.I-~P.~  I 111 !-> lJ 0 (; ll 1v.I:. i'I I i !~ I ii !: I' I\(J I' Eii I Y ur SENTJ<Y HJllii'iVli ;NT (;()J-.!p.             1 Description & Function:            154-11-001-l                Oconomu*ivoc, Wis. 53066 P & ID                              154-11-002-1          Jnd is lo Ul! 11:;i:d 1111ly i11r lilt! &#xb5;ur&#xb5;u1;u Part Identification                154-11-003-1 of tlle agreement with Sentry purs\lant GENERAL INSTRUCTIONS                                                      to wblcll it i:; f urnisl1cli.
This module is for routine, non accident grab sampling ONLY~ As a safety measure. the spiqots are located in a "Splash Rox" to capture and contain any accidental liquid spill or gas release of radioactive fluids. This box has: (a) a sink connected to a drain to waste and, (b) a ventilation hose connected to the LSP ventilation system. The operator must close the sliding door of the Splash Box before he can open the spigot valves to draw a sample.
Remoted, power-operated Valves "A" are for isolation of sample supply lines: Valves "B" are for flushing of sample supply. Valves A & B are operated from the PROCESS CONTROL PANEL.
From source to Module, the assumed Volume of each supply line and its components is 2280cc (equivalent to 250 feet of .245 inch bore line). Volume for 5 times chan0e is ll400cc. At flowrate of l900ccm purging time is 6 minutes.
l . n Mode l
* PREOPERATIONS
* 1.1 l .?
J\11 valves must be closed.
previous flushing.
All sample lines must be filled 1"1ith demin water from Open Splash Rox door; insert Grab Sample Bottle near, but not directly under spigots.
l .1 At PROCESS PANEL, determine that following 1 ights for Sample Cool er Rack are ON anrl ~REEN. This condition verifies that cooler are in satisfactory readine~~
for sampling. Cooler lights include:
(a) Sufficient coolinq water flow.
(b) Sufficient cooling water pressure.
(c) Sufficiently low cooling water temperature.
2.n Mode 2:CAPTURE OPEN GRAB SAMPLE:                 LINE DMl 2.1   Step 1: Purge To Secure Contemporary Sample At PROCESS CONTROL PANEL, open remote Valve A. At LSP, orien Vl .1. Open VR.::L-1 .i until FI-l reads __"WG (corresponding to 1900 ccm). Purge 6 minutes to '.IASiE.
2.2   Step 2: Draw Grab Samole Throttle VREL-1.l until FI-1 reads "1.-IG, (corresponding to 500 ccm). Open V2.l and flow sample to Splash Box drainfor 10 seconds. Close V2.l. Open Splash Rox door; position Grab Sam~e Bottle under V2.1 spigot; close door. Open V2.l and draw Grab Sample. Close V2.l. Open Splash door; remove Grab Sample 3ottle; Close Splash Box door .
 
nwfJ /11 SI\ 00'1- l     RO                               !'.i 'J" ? (),. ;'
l'Rrl !MHIJ\RY
:i.*1  ',Lr?f> J:  rlusll Module Close Vl .1. Open V3 until FI-1 reads                 "WG (correspondinf) to SOO r.cm). rl11sh to HASTE for 2 minutes. Open '12.l and-ffush spigot line into Splash Box drain for l O seconds. Close V2. l . Close VREL-1
* l
* l
* F1 ush Supply Line At PROCESS CONTROL PANEL, close Valve flush throuqh Valve B for 3 minutes. PANEL close Valve B. A and open Valve B. At LSP, open Vl .1 and Close Vl .1. Close V3. At PROCESS CONTROL 2.5 CAPTURE OPEN GRAB SAMPLE: LINES DMZ & DM3 Make corresponding valve manipulations in accordance with the steps of paras 2 .1. 2.2, 2.3 and 2.4. 1.0 J: rREPAP.E MODULE FOR FUT!JRE SAMPLHlG close all valves. 1--*---*-**--*  
* 2.,,  -~4:        F1 ush Supply Line At PROCESS CONTROL PANEL, close Valve A and open Valve B. At LSP, open Vl .1 and flush throuqh Valve B for 3 minutes. Close Vl .1. Close V3. At PROCESS CONTROL PANEL close Valve B.
-------*---*----****-*--*-***-
2.5   CAPTURE OPEN GRAB SAMPLE:       LINES DMZ & DM3 Make corresponding valve manipulations in accordance with the steps of paras 2 .1.
........ *-.. ! i I I ! ";&deg;:.*I IS THE PfWPERTY OF :::;('...N l 1-<. Y ECiU' I fJ \1* ,; .. , 1*r , '-" ., -* "-.
2.2, 2.3 and 2.4.
* J .. L. \. '-\_..' I *'\.. l-0 Ci; IZ r i /IL IJ '(;) () ,_; 1,.!,l ;,. *;*  
1.0     t~ode    J: rREPAP.E MODULE FOR FUT!JRE SAMPLHlG close all valves.
* .._ ...... * *
1--*---*-**--* -------*---*----****-*--*-***- ........ *- ..
* i v *: nd j<' 1-Q '*. ' r,.... I ., .. !, . . ' _ , " u t u111y r 1 Jr l;i:.; Ji.WJJ:.i"
i II
                                                                                      .~HIS. ~~C:JMDT IS THE PfWPERTY OF
";&deg;:.*I
:::;('...N l 1-<. Y ECiU'   "-
I fJ. *\1* J,;...., *r , '-" ., -*
L. \.
1
                                                                                                                                                      '-     \_..' I   *'\.. l -
0 Ci; IZ ri /IL IJ '(;) () ,_; 1,.!,l ;,. *;* ~){)'-)_.&deg;., * .._
                                                                                                                              ~      ...... *     *
* i   v
                                                                                        *: nd j<'
u 1-Q '*.
t
                                                                                                              ' r,....
u~ :J~'=u I ., .. !,   .         . '
u111y r 1Jr l;i:.; Ji.WJJ:.i" v
or tu e i.l gr ee:n er; r vw ~ ,~ ,, ~ ;,,, .. ,,-,.. ,-,1r*
* _.
* _.
* J.\. . . ' r-v !
* J.\.                     .     .                             '     r-l!
* or tu e i.l gr e e :n er; r vw ,, ; , ,, .. , , -, .. , -, 1 r* l l.U VU1l1.I J j.Jul , ***--*---*-*------------***------**--*---*---------------**-*-----*.to.
* l.U VU1l1.I         J     j.Jul *.l'i.J~j
it. iurrH55eti.-
      , ***--*---*-*------------***------**--*---*---------------**-*-----*.to. *~bic:-i it. i~* iurrH55eti.- *                                                             --
* --
 
Page l of l r,P.nt.ry rciuipment Corp. Ori9ina1 Date J-13-r.n Ck'd u: 4-2 3-80 Rev l DRAWING NO. 155-11-001-1 DESCRIPTION  
Page l of l 4-2 3-80 r,P.nt.ry rciuipment Corp.                               Ori9ina1 Date J-13-r.n                     Ck'd             u:               Rev               l DRAWING     NO.     155-11-001-1 DESCRIPTION & FUNCTION:                   RADWASTE MODULE (NO. 4)
& FUNCTION:
HRSS Liquid Sampling System THIS oocur.!t::~::               :s   Tii[ l'!~OPE:nY                          UF 1 . 0 REFERENCES                                                        SFNTJ~V
RADWASTE MODULE (NO. 4) HRSS Liquid Sampling System 1 . 0 REFERENCES P p, ID 155-11-002-1:
                                                                            ,J        j 1'*, 1*{
155-11-003-1 l 55-11-004-1 THIS
1 ,*:*,
:s Tii[
* I
UF 1'*1*{1 ,*:*, .. ,, .... ,.,, *. , ,J j , * .:: * *
                                                                                                                        , ,I. . ! .'...!    ~
* I I. ! .' ! .. t J J\' -* Parts I<lentification:
                                                                                                                                            , ... t, ,J J\'
Operating Procedure
P p, ID                        155-11-002-1:                   Ol:,u:c *:;: .. :. : "                               * .. ifl;,.,
: 2.0 OESCRIPTION
Parts I<lentification:          155-11-003-1
& FUNCTION 2.1 Mod 4 accepts: Ol:,u:c *:;: .. :. : " * .. ifl;,., .. r1G 1:, lu l,l:  
                                                                        .. r1G 1:, lu   l,l: l.v::~*      '*.i :1 : :: i.i;t: &#xb5;UllJL,!,,;
'*.i :1 : :: i.i;t: &#xb5;UllJL,!,,;  
Operating Procedure :            l 55-11-004-1
*. the <J,;.*;L.:l  
                                                                          *. the <J,;.*;L.:l ... ! ':!*:; *;,;;1t.y                     ;;111;;:J.;l:i 2.0          OESCRIPTION & FUNCTION                                    1u wtmr1 1l i~ 1:ii11::i;1..:d.
... ! ':!*:; *;,;;1t.y  
2.1            Mod 4 accepts:
;;111;;:J.;l:i 1u wtmr1 1l 1:ii11::i;1..:d. (a) Two (2) different samples of (liquid)sump water entering at maximum of l20&deg;r and 150 psig. (b) Eight (B) different samples of radwaste water entering at maximum of 120&deg;F and 150 psig. 2.2 Only one source can be sampled at a time. Maximum flowrates are : (a) 1900 cc/min during recirculatinq mode, anrl (b) 200 cc/min during sampling.
(a) Two (2) different samples of (liquid)sump water entering at maximum of l20&deg;r and 150 psig.
2.1 For routine, non-accident sampling, Module can capture depressurized sample as an open qrab sample for routine analysis.  
(b) Eight (B) different samples of radwaste water entering at maximum of 120&deg;F and 150 psig.
? . 5 For accident, Module captures a sample of undiluted sample *in a l 5ml sealed bottle. The bottle is remotely lowered into a cask resting on J special cJrt. The cart with cask is removed from the panel and transported to an o ff-s i tc faci 1 ity. 2.6 For Module captures 90 ml of 1000-to-one diluted sample in .i se.i1cd . hottle and lowers it into a cask on il cart. Thi! cart is removed from the Panel and transported to lab for isotopic and other ana1ysis.  
2.2           Only one source can be sampled at a time.
*2.7 Module reduces samples pressure to 20 psig. ?. .q Module has power operated valves to automatically stop sample flow in event of excessive sample temperature.  
2.~            Maximum flowrates are : (a) 1900 cc/min during recirculatinq mode, anrl (b) 200 cc/min during sampling.
2.1             For routine, non-accident sampling, Module can capture depressurized sample as an open qrab sample for routine analysis.
    ? .5             For accident, Module captures a sample of undiluted sample *in a l 5ml sealed bottle. The bottle is remotely lowered into a cask resting on J special cJrt.
The cart with cask is removed from the panel and transported to an o ff-s i tc faci 1 ity.
2.6             For accident~ Module captures 90 ml of 1000-to-one diluted sample in .i se.i1cd
                  . hottle and lowers it into a cask on il cart. Thi! cart is removed from the Panel and transported to ~non-site lab for isotopic and other ana1ysis.
  *2.7             Module reduces samples pressure to 20 psig.
    ?. .q           Module has power operated valves to automatically stop sample flow in event of excessive sample temperature.
2.9            Module flushing capabilities include:
(a)    Flush liquid sample supply lines ta HRSS Waste Tank or to source.
(h)    Flush recirc lines to source.
(c)    Flush in-panel liquid sample lines to HRSS Waste Tank.
(d)    Flush fluids may be dernin water, nitrogen gas or appropriate decontar.:inating so 1utions.
0 Vl LU
::;:: ...J,.....
* 0~NN..,..        "&deg;'
V'l N            VI
      ..._,. I    " ' C.
        >    "d"    ~
w            ~o C:r-~N
 
c:
z RE Vi fl 1 - - ' - - - - - - - 1
    ~
:.ioDcD TCi-~}S*I, SV-1 l .
                                                                                                                                                                                        *-----"-->*~--- ~-.                                --:-.: :-_ - i
    ~ ;r:~o~ ~~-:~                                                                                                                                                                          ~.            \3 8                                                                                                                                                                                                                                                    I l'
      *-::t..:n;, T::.IJ OG $
:: ~ : :* - .- r T ::~
* I I/ I.:'.;,                                                I
:j 3]5=8-=80 L :
P.oo REr10TE.'..'                                                                                                                                                                                                                                  I
:soLATIO"".;kuSH f\)    IRLV5.                                                                                                                                                                                                                                          I
        -i 5-21-AD U:-
C~s;~iq~D                    R1ToC1                                                                                                                                                                                                              I f::..DDED            R1 1V1D
            >      0      "'1 I
z ci fl1 n >
ll v I.?>                                                                                                                                                                              I c ~          Q
            ~ > Ci                                                                                                                                                        ;:                                                                            I
:n    r z                                          R                                                                          'v ?.6
                          >                                                                                                    \2.3 c..v2.~                                                                                        I r
It ll It                                                y 1.4            c.* I. l          0'2.4                                                          itc..v1.11                                                    '/J
                                                      ~-1--_,_      _ _ __ ,_ _ _                    ~rx:;                                    !><1---f'--J~I----------..l-----z___;.~~-,~~~*                                          :~ ::::'        I z z                                          R                F                -I-                        \2.4        V2.9 - -                      i:                                ~ .:; ~ ~ .'j~ I :-
                                                                                                                                                                                                                                        --,J=                -
n n x x VI.':>      l Ii  0 I5
                                                                                                . CV2.5 V2..5
                                                                                                                                                          ,. V ~
vc.10 ..... L.IC>
J J,' C\ I. IC
                                                                                                                                                                          *~
V I. I 0      g~ ~ c* .-j 5 I
                                                                                                                                                                                                              ;=. ....*
                                                                                                                                                                                                                                          -4~
                                                                                                                                                                                                                                                              ~
c                              m 0m                                                                                                                                                                                              * ::=
0        ::0  :r:      L.      .....+----'------'------'i'-.}---*";:o..."...---t---; :i..'1--- ' 1 - - - - - - - - - - L - - - - - - - , , - , ..~ -*:
:;o          :I>    >    ;:o
                                                                                                                                                                                                                            .... -.1..:.:
7 I
        )>
                      -l (11 CJ Vl
:Ii: Vl  mz                                                                                                                  --
PR\/- I c.r.
        ~
        ~
I I
                              ):>.
I.Ill
                              --t >--<
l"T1 *-=>
z
                                        .... 0
                                                                                                                                                                                                                                        *:i-
                                                                                                                                                                                                                                                  ~.
2:                          c:
C'i                  3: ,_.
00        ;a                                                                                                                                                                                        ..... -
2 0
C)
C: VI
                              ~~
                                        -<                    V CY 1.12.
        *                    ..-..r
                                    -0  m t.n
::-!:~
02        0 U1 I
c_            G')
                                .s:. -u c                                                                                                                                                                                  "
                              ~:x>      """"'
_.      0 I
()            ,,,
z lJ
                                        ~ :uC) 0            I              r N            /\                                                                                                                                                                                                                                        z I
0 r
rn 7
rr                ..... L. -                                                                                                                                  3 D* I                                                        -  _J _
                                        -I
(/)
()                ()                                                                                                                                                                    il.\
:I>                                                                                                                                                                              ']
Ui
(/)
r Jl1                0                                                                                                                                                                2.
                                                                                                                                                                                                                ~-
if* -*
c AJ                              ._.                                                                                                            ;:i.
                                                                                                                                                                                                          ~
L ~-  r (11
__c
                >                      11                . /
                                                                          ~
L~ ~, ..~
c-'.*
l~
i:::"1-*c-::
                                                                                        ,._      I
                                                                                        \':=.1*-vc.-
                                                                                                      *-~
                                                                                                ,.-.c:::
l''(*~-c~:-;;;
                                                                                                          .. L-(J/.. . . . . I
_,      1-'\
                                                                                                                          ;::o, ;::.~..-c)
                                                                                                                                          )"C'
                                                                                                                                            -      ~-er,*
_ .... ,,
* D                D  >"        ;
:~
m                                                                                ()


===2.9 Module===
r* .* .... : * .. :                                                                   Pa~e            l of        .1 I   .
flushing capabilities include: Vl LU (a) Flush liquid sample supply lines ta HRSS Waste Tank or to source. (h) Flush recirc lines to source. (c) Flush in-panel liquid sample lines to HRSS Waste Tank. (d) Flush fluids may be dernin water, nitrogen gas or appropriate decontar.:inating so 1 utions. 0 ..... ::;:: ...J,.....
[,.           I "
* 0 "&deg;'
                                      ~i   ; t \~.I *~ I
V'l N VI ..._,. I "' C. > "d" w f\) _. c: RE Vi . *-.,---' z fl 1--'-------1
~~ntry f~uirment Corp.                                     Original     Date 3/6/80                             Chk'd LE                               RP.V            ?
:.ioDcD SV-1 8 *-::t..:n;, T::.IJ OG $ :: : :* -.-r T
5-27 -BO DRAWING NO.                 155-11-003-1 fr'.iS ii(li*.....     ~    :   r*     :   *.~    .1::r;~1f.::T'(        :.1;-*
* I :j 3]5=8-=80 L : P.oo REr10TE.'..'
  ~*ARTS    IDENTIFICATION:        Radwaste Module (NO .4)                         ~-; ;*:; .... * ::
:soLATIO"".;kuSH IRLV*5. -i 5-21-AD R1ToC1 f::..DDED R1 1 V1D > 0 "'1 z fl1 ll ci n > c Q > Ci :n r z > r It ll It c :;o )> -2: C'i 2 0
HRSS Liquid Sampling Panel                                 ... , .                               .
* t.n U1 I I 0 0 N I Ui (/) c (11 z z n n x x 0 :I> -l (11 I I c_ () I /\ 0 r rr (/) () :I> r Jl1 --....... > __c ::0 :r: m > ;:o CJ Vl m :Ii: Vl ):>. z I.Ill --t >--< .... l"T1 *-=> c: 3: ,_. ;a 00 C) -< C: VI m -0 ..-..r 0 02 . G') c .s:. -u """"'
(ref. P & ID dw no. 155-11-003-1 ) ci"," * **                               "*       *                 .. ,:: ;,::'_,.'1 g       ;                    *~(j 1'' l(J l*r. ii' " ' .. *' * '"'' 'Jl'rfl[J'."'*
lJ z ,,, r rn 7 ..... -I () 0 AJ 11 L. 0 m z 0 :u C) L. -*--:----! l . ----:-.: :-_ -i \ 3 ' I l I/ I.:'.;, I I I I I v I.?> I ;: ---PR\/-I itc..v1.11 F -I-\2.4 V2.9 --i: .:; Ii 0 I 5 ,. V J J,' C\ I. IC V I. I 0 c* l . CV2.5 V2..5 vc.10 ..... L.IC> ;=. ....* .....+----'------'------'i'-.}---*" ;:o..."...---t---;
t,.. I   *)     I \..,   ~* , , '1 'I   .'   * ,J, , ,, v I .! j-1 0    ,11.*
:i..'1---'1----------L-------,,-, .. -*: --c.r. -.::.* c.* I. l 0'2.4
11 1111e l1:.:.r: ::l: !,; '.,i*i: ~.: :~i:'/ r1q;:::J;J,;1:
___ _, ___
l .0    I/ALVES. MANUAL                                                                                  0      1 iu wliit;,, it /:. l ~i li.~l,..:J.
'v ?.6 R y 1.4 R VI.':> \2.3 .. .. I I '/J I ::::' --,J= -
l .1    TWO-WJ\Y   PLUG VALVE, ISOLATION.             Nupro P4T- Series. Body and plug arc TJ16~S. Plug is TFE coated. 0-rinq seals are Viton. Temp/press ratinq is 120&deg;F/2600#.                                                                                   Con-nections are 1/4" Swage1ok, MPT or FPT as required.
I :-.-j 5 I * ::= **-7 I -.1..:.: .:; :: *-* -**---. .:. *:i-..... -. . . V CY 1.12. " 3 D* I -_J _ ._. c-'.* .. i:::"1-*c-::
Vl.l, 1.2, 1.3, l.4, 1.5, l.6, 1.7, 1.8, l.9, 1.10.
..
V2.l, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10.
)"C' ,._ I L-_, 1-'\ -_ .... ,,
l .2    TWO-WAY GLOBE VALVE, REGULATING. Whitey SS-1R4, Regulating Stem. Body and stem are T316SS. Connections are 1/4" Swagelok, 1/8" or 1/4" MPT or FPT as required.
* l \':=.1 ,.-.c::: (J/. ;::o, *-vc.-.........
Temp/press rating is 150&deg;F/2955#. Packing is TFE.
I -*---"-. / -. > '] il.\ ;:i. 2. if* L D D > **--*'
V3 V4 V5 THREE-WAY BALL VALVE, SWITCHING. Whitey SS-42X or SS-43X Series. Body and stem are T316SS. Packing is TFE. Temp/press rating is 150&deg;F/2500#. Connections are 1/8" or 1/4" Swagelok, MPT, FPT as required.
* r " ; _:._ m () z > :::> -<
vs l .4     FOllR-WAY !3ALL VALVE, SWITCHING. Whitey SS-43Y Series. Rody and stem c3re ill t1SS.
r* .* .... : * .. : I .
Packing is TFE. Temp/press rating is 150&deg;F/1000#. Connections are 1/8" FPT.
l of .1 [,. I " ; t
Vl & V8 1.5     DILUTER VALVE. Sentry P/M (to fol low) is a modified Hhitey SS-43YHF2, with 1-43-n0125 equipped with a 304SS 16 gauge needle (.055" od x 0.047" id) assembly on 6 oclock port.
* I Corp. Original Date 3/6/80 Chk'd LE DRAWING NO. 155-11-003-1 RP.V ? 5-27 -BO IDENTIFICATION:
DVl.
fr'.iS ii(li* ..... : r* :
1.6     BALL CHEC:< VALVE. Hoke 6133 Series. 2 psi cracking pressure. !Jody, ball and spring are T303SS. Seats are Viton. Temp/pressure rating is 350&deg;F/3000#. Con-nections are 1/4" Swagelok.
:.1;-* Radwaste Module (NO .4) ;*:; .... * :: HRSS Liquid Sampling Panel ... , . . (ref. P & ID dw no. 155-11-003-1 ) ci"," * ** "* * .. ,:: ;,::'_,.'1 g 1'' l(J l*r. ii' "' .. *' * '"'' 'Jl'rfl[J'."'*  
CVl *1 , 1 . 2 , 1
; t,.. I *) I \.., , , '1 'I .' * ,J, , , , v I .! 0 j-1 ,11 .* l . 0 I/ALVES. MANUAL 1 1 1111e l1:.:.r: 0::l: 1 !,; '.,i*i:
r1q;:::J;J,;1: l . 1 l . 2 iu wliit;,, it /:. l TWO-WJ\Y PLUG VALVE, ISOLATION.
Nupro P4T-Series. Body and plug arc Plug is TFE coated. 0-rinq seals are Viton. Temp/press ratinq is 120&deg;F/2600#. nections are 1/4" Swage1ok, MPT or FPT as required.
Vl.l, 1.2, 1.3, l.4, 1.5, l.6, 1.7, 1.8, l.9, 1.10. V2.l, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10. TWO-WAY GLOBE VALVE, REGULATING.
are T316SS. Connections are 1/4" Temp/press rating is 150&deg;F/2955#.
V3 V4 V5 Whitey SS-1R4, Regulating Stem. Body and stem Swagelok, 1/8" or 1/4" MPT or FPT as required.
Packing is TFE. THREE-WAY BALL VALVE, SWITCHING.
Whitey SS-42X or SS-43X Series. Body and stem are T316SS. Packing is TFE. Temp/press rating is 150&deg;F/2500#.
Connections are 1/8" or 1/4" Swagelok, MPT, FPT as required.
vs l .4 FOllR-WAY  
!3ALL VALVE, SWITCHING.
Whitey SS-43Y Series. Rody and stem c3re ill t1SS. Packing is TFE. Temp/press rating is 150&deg;F/1000#.
Connections are 1/8" FPT. Vl & V8 1.5 DILUTER VALVE. Sentry P/M (to fol low) is a modified Hhitey SS-43YHF2, with 1-43-n0125 equipped with a 304SS 16 gauge needle (.055" od x 0.047" id) assembly on 6 oclock port. DVl. 1.6 BALL CHEC:< VALVE. Hoke 6133 Series. 2 psi cracking pressure.  
!Jody, ball and spring are T303SS. Seats are Viton. Temp/pressure rating is 350&deg;F/3000#. nections are 1/4" Swagelok.
CVl
* 1 , 1 . 2 , 1
* 3, 1 . 4 , 1
* 3, 1 . 4 , 1
* 5, 1
* 5, 1
* 5, 1 . 7 , l
* 5, 1 . 7 , l
* 8, 1 . 9 , 1 . 1 0, 1 . 11 & 1 . l 2 .
* 8, 1 . 9 , 1 . 1 0, 1 . 11 & 1 . l 2 .
CV2. l , 2. 2, 2. 3, 2. 4, 2. 5, 2. 5, 2. 7, 2. 8, 2. 9 & 2 . l 0. CV3. ( flel
CV2. l , 2. 2, 2. 3, 2. 4, 2. 5, 2. 5, 2. 7, 2. 8, 2. 9 & 2 . l 0.
'//\Liff, r.1tinri rRV-1 25 psi9 cracking l'uqe ('.of *1 r?
CV3.
a re Vi ton. T em ri/
( flel et~d)
u rr. Nrrn1r 11UKK f\SSrMP.l.Y.
 
Sentry P/N (to follow). T104SS P.lock with two(?) T201\'.:.'.:.
l'uqe ('.of       *1 r?
JC 9auqe needles ( .065" od x .047" id). M!3-l *., l CYLINDER GRADUATED.
                                                                                      ~-0-i'.()
Corning 6383; 125cc Pyrex Separatinq Funnel with TFE stop cock. Sentry P/N (to follow), glass or equal; 300 cc capacity; with dust cover. Cl ,9, V<J RF.SERVOIR f\SSEM!3LY. (One shared between RC & RW Modules) Sentry P/N or equal; 100cc; with Whitey lRS6A stainless Valve. glass r.n Rl & Vl 0 OllI\.K 11ISCONNECT COUPLING.
        '//\Liff,                                                                    a re Vi ton.             Tem ri/ pres~. u rr.
is TJlhSS; seals are Viton. Dl Hanson ML-Hll-143 socket pluq plug. Material Connections are 1/8 11 or 1/4" FPT as required.  
r.1tinri rRV-1            25 psi9 cracking  prcssur~
!.il FILTER. Nupro SS-4TF-140S.
~Jl      Nrrn1r 11UKK f\SSrMP.l.Y.           Sentry P/N (to follow). T104SS P.lock with two(?) T201\'.:.'.:. JC 9auqe needles ( .065" od x .047" id).
Temp/pressure rating 900&deg;F/1000 psig. FILT-1 f) ** o TI.J0-1:/J\Y ISOLATION VALVE, POWER OPERATED.
M!3-l
Skinner Solenoid valve R2HOx2Pi; T301SS hod'f Jnrl stem; Viton seating material.
*., l   CYLINDER GRADUATED.               Corning 6383; 125cc Pyrex Separatinq Funnel with TFE stop cock.
Temp/pressure rating is l80&deg;F/1250#.
Sentry P/N (to follow), glass or equal; 300 cc capacity; with dust cover.
SV-1 ri .n nvrn TEMrERJ\TURE PROTECTION SH ITCH. TS-1: 120&deg;F Setting. 111.n PRESSURE GAUGE, REMOTE. McDaniel ABM; 2.5" style PMLB, 1/4" MPT, TJ16SS internals, glycerine filled. Fl : 0-1 00 PS I il.O OIAPHRAGM GAUGE PROTECTOR.
Cl   ,9, V<J
Bellofram 12000-10-NS-2; T316SS; Viton diaphraqm.
'*.:~    RF.SERVOIR f\SSEM!3LY. (One shared between RC & RW Modules)                   Sentry P/N                                       glass or equal; 100cc; with Whitey lRS6A stainless Valve.
Fi11 is silicone fluid. Temp/pressure rating is 150&deg;F/1000#.
Rl & Vl 0 r.n      OllI\.K 11ISCONNECT COUPLING. Hanson ML-Hll-143 socket pluq ML-Hll-1~1 plug.                                       Material is TJlhSS; seals are Viton. Connections are 1/8 11 or 1/4" FPT as required.
Connections are 1/4" FPT. GS-1, GS2.l, c;s2.2. 1?.0 FLOW INOTCATOR (differential pressure gauge), LOW PRESSURE.
Dl
Dwyer Series 4000 Capsuhelic, range (to fo1low). Interior surfaces are aluminum, diaphrar.i is Buna-N. Temp/pressure rating is 200&deg;F/500#.
!.il     FILTER.       Nupro SS-4TF-140S.       Temp/pressure rating 900&deg;F/1000 psig.
FI-1 nm, 0 0 CIH.1 GIT 1$ T ii E Pfi 0 p rn T':' l) F  
FILT-1 f)*
'''''}' ,.-.
* o TI.J0-1:/J\Y ISOLATION VALVE, POWER OPERATED. Skinner Solenoid valve R2HOx2Pi; T301SS hod'f Jnrl stem; Viton seating material. Temp/pressure rating is l80&deg;F/1250#.
l..J '.i\. A i :-:Yj. l.1.,1" 1 l ..... 1 ()Rr.J. Oco :toi:: I) 1:..* <; c. i;/ is. 5 3 () 6 (j <ind is trJ L0 !JS1:t.'.
SV-1 ri .n nvrn TEMrERJ\TURE PROTECTION SH ITCH.
ori1y for the o1 the JGreen:::nt wit:1 Sentry to wbich it f urr:ished.
TS-1:       120&deg;F Setting.
*
111.n PRESSURE GAUGE, REMOTE.               McDaniel ABM; 2.5" style PMLB, 1/4" MPT, TJ16SS internals, glycerine filled.
* Sl"nt.ry F<iuipment lorp. l RfVISIONS
Fl :     0- 1 00 PS I il.O OIAPHRAGM GAUGE PROTECTOR. Bellofram 12000-10-NS-2; T316SS; Viton diaphraqm. Fi11 is silicone fluid. Temp/pressure rating is 150&deg;F/1000#. Connections are 1/4" FPT.
:-,-\ 4-22-80 \ LE Page 3 of J P? S-;>
GS-1, GS2.l, c;s2.2.
:: Para 2.0: deleted entirely.
1?.0 FLOW INOTCATOR (differential pressure gauge), LOW PRESSURE. Dwyer Series 4000 Capsuhelic, range (to fo1low). Interior surfaces are aluminum, diaphrar.i is Buna-N.
Para 3.0: deleted words "Low Pressure" and chanried PRV-2 to PRV-1. Para 7.0: Changed Filter from Sentry P/N to Mupro SS-4TF-140S.
Temp/pressure rating is 200&deg;F/500#.
FI-1 nm, 0 0 CIH.1'GIT r,7'1Jr1>~1 1$   Tii E Pfi 0 p rn T':' l) F
                                                                                                                ,.- . .,~.,.,    ~..--
l..J   '.i\. A
                                                                                                ''''}'
l..r\.~l      i :- :Yj. l.1.,1" 1 l ..... ()Rr.J.
1 Oco :toi:: I) 1:..* <; c. i;/ is. 5 3 () 6 (j
                                                                              <ind is trJ L0 !JS1:t.'. ori1y for the pur~Js,:
o1 the JGreen:::nt wit:1 Sentry ~uiS:!Jfit to wbich it ;~ f urr:ished.
 
Sl"nt.ry F<iuipment lorp.                                                                                                         Page 3 of J P?
S-;> /-:~r1
* l RfVISIONS
:- ,- \ 4-22-80 \     LE
: Para 2.0: deleted entirely. Para 3.0: deleted words "Low Pressure" and chanried PRV-2 to PRV-1. Para 7.0: Changed Filter from Sentry P/N to Mupro SS-4TF-140S.
: Para 9.0: deleted TG-1. Para 11.0: Changed Ashcroft P/N to Bellofram 12000-lONS-2.
: Para 9.0: deleted TG-1. Para 11.0: Changed Ashcroft P/N to Bellofram 12000-lONS-2.
_
_A?~~~---?~~e. . 3~-- -*---***-*----------*--***-*- --------*--*-*** __ ..... ******-***********.
.. -*---***-*----------*--***-*-
    ?. S-?l-RO       LE Para 5. 0 ~ renumbered 5 .1 ; changed Rl to Cl .                                 Added para 5. 2 for Reservoir P.1 with valve VlO
--------*--*-***
* TH IS 0 0 CI ii!. EiH ;S THC: Pf( OP[;~ T Y ,j F SE1\1*;*
__ ..... ******-***********.  
1)''
?. S-?l-RO LE Para 5. 0 renumbered 5 .1 ; changed Rl to Cl . Added para 5. 2 for Reservoir P.1 with valve VlO
J.\. l  1..J .i..~l
* TH IS 0 0 CI ii!. E iH ; S THC: Pf( O P T Y ,j F SE1\1*;* 1)'' ;,-c**r;f
                                                                                                                                              .. ,.,r , . - ..
*i .. ,.,r , . --.. , ' J.\. l 1..J 1 ,,_,'  
                                                                                                                        ;,-c**r;f 1*i ,,_,'~r ~~\j      \_,, \.,,' i\ lJ.
\_,, \.,,' i\ lJ. Ocniw1;-u;'"..*:oc.  
Ocniw1;-u;'"..*:oc. \,Vis. 5.)IJri, 2nrl 1s lo Ll! u::.t;~ uri:y ror U1e ;.:~c.:.>:;
\,Vis. 5.)IJri, 2nrl 1s lo Ll!
of the ag1eemr:11t with Sentry pu.:.ua11t lo which it is furnished.
uri:y ror U1e of the ag1eemr:11t with Sentry pu.:.ua11t lo which it is furnished.


l of I\ *'.,entry
PiHJ~  l of       I\
[quipmcnt Corp.
  *'.,entry [quipmcnt Corp.
NO.
OR/\WIN~    NO. l'i~-11-nn~-l PRELIMIN/\RY Ori<Jinal 0.1t.e 'i-l'l-P.O     O:'.cl 1.r     Rc~v    ri 5-1 9-1\0-
PRELIMIN/\RY Ori<Jinal 0.1t.e 'i-l'l-P.O O:'.cl 1.r ri
* I 0 PERATING      PRO CEDUR~ ~-'-~ _flil DW~T~30 D_lJ_L E                    THIS OOC!li\Ei;;* ::; 'fHF. l'l(Qf'Ef!T'f fJF
* I 0 PERA TING PRO
                                                                              ~EN"!l<.Y UJUll'Mi~NT CUH.P.
_flil D_lJ_L E 5-1 9-1\0-THIS OOC!li\Ei;;*
::; 'fHF. l'l(Qf'Ef!T'f fJF CUH.P. *


==REFERENCES:==
==REFERENCES:==
 
Description & Function:           155-11-001 -1         Ocomm111wnc:, \Vis. 5J()t)(,
Description  
r & IO                            l 55- 11 -002-1    .:nu 1s to bu useJ only 1or the purpose Part Identification                1 55-11-003-1      ul the agreement with Sentry purst1an1 to wbich it *1s f urn1shed.
& Function:
i,ENER/\L INFORMATION & INSTRUCTIONS
r & IO Part Identification i,ENER/\L INFORMATION
    /\. Module has an open l)rab sampl inq mode for routine, non-accident samrl inlJ. Module has two (2) modes for accident sampling': (a) capturing lScc of undiluted sample in "RSl", a 15cc sealed bottle, and (b) capturing 90 cc of 1000 to one diluted sample in "OBSl", c1 250cc sealed bottle.
& INSTRUCTIONS 155-11-001  
: n. As a safety measure, the modules spigots (for open grab sampling) are located in "Splash r.ox" to capture and contain any accidental liquid. spill or gas release of radioactive fluids. This box has: (a) a sink connected to a drain to waste and, (b) a ventilation base connected to the LSP ventilation system. The operator must close a sliding door of the Splash Box before he can open the spigot valves to draw a sample.
-1 l 55-11 -002-1 1 55-11-003-1 Ocomm111wnc:, \Vis. 5J()t)(, .:nu 1s to bu useJ only 1or the purpose ul the agreement with Sentry purst1an1 to wbich it *1s f urn1shed.  
/\. Module has an open l)rab sampl inq mode for routine, non-accident samrl inlJ. Module has two (2) modes for accident sampling': (a) capturing lScc of undiluted sample in "RSl", a 15cc sealed bottle, and (b) capturing 90 cc of 1000 to one diluted sample in "OBSl", c1 250cc sealed bottle. n. As a safety measure, the modules spigots (for open grab sampling) are located in "Splash r.ox" to capture and contain any accidental liquid. spill or gas release of radioactive fluids. This box has: (a) a sink connected to a drain to waste and, (b) a ventilation base connected to the LSP ventilation system. The operator must close a sliding door of the Splash Box before he can open the spigot valves to draw a sample.
* C. I\ hand powered vacuum pump is required to evacuate "DBSl" (ref dwg 157-11-003-1, Item 5) prior to using it for sampling.
* C. I\ hand powered vacuum pump is required to evacuate "DBSl" (ref dwg 157-11-003-1, Item 5) prior to using it for sampling.
O. The transport and positioning of BS1 & DBSl requires the use of a mobile CART/CASK (ref procedure 156-11-004-1) . r.. "tlee<Jle rlush Tool" (ref dwg 157-11-003-1, Item 4) is required to complete the fl us hi nq mode for BSl
O. The transport and positioning of BS1               & DBSl   requires the use of a mobile CART/CASK (ref procedure 156-11-004-1) .
r..   "tlee<Jle rlush Tool" (ref dwg 157-11-003-1, Item 4) is required to complete the fl us hi nq mode for BSl
* F. Meter-lonci "Reach Rods" (ref dwq 157-11-003-1, Items 1,2 ?,J) are rP.ciuired to manipulate valves during maximum accident dose situation.
* F. Meter-lonci "Reach Rods" (ref dwq 157-11-003-1, Items 1,2 ?,J) are rP.ciuired to manipulate valves during maximum accident dose situation.
G. Remoted, power-operated Valves "A" are for isolation of samrlc supply lines. Vulves "!"!''.are for f1ushin1J of sample supply lines. Valves A?, r. are oricrutcd from the PROCESS CONTROL PANEL. H. From source to Module, the assumed volume of each supply line and its components is 2280cc (equivalent to 250 feet of .245 inch bore line). Volume for 5 changes is At flowrate of 1900 ccm, purging time is 6 minutes. l .0 Mode 1: PREOPERATIONS FOR ALL SAMPLING MODES 1.1 Provide 120 VAC to open SVl. Position Valve DVl to connect port 4 to 2. Position V7 and VS to connect port 1 to 2. Position VS to connect port 1 to 3. All other valves must be closed. All sample lines must be filled with demin water from previous flushing.
G. Remoted, power-operated Valves "A" are for isolation of samrlc supply lines. Vulves
1.2 Fill Reservoir R1 with demin water. Fill cylinder Cl with demin C1ose Vl 0. l .1 Securely tighten cap/septum of OBS1. Evacuate DBS1 to 26" Hg VAC with hand operated vacuum pump. Observe pump gauge for 1 minutes to verify that bottle is satisfactorily maintaining vacuum.
            "!"!''.are for f1ushin1J of sample supply lines. Valves A?, r. are oricrutcd from the PROCESS CONTROL PANEL.
* *
H. From source to Module, the assumed volume of each supply line and its components is 2280cc (equivalent to 250 feet of .245 inch bore line). Volume for 5 changes is ll~OOcc.      At flowrate of 1900 ccm, purging time is 6 minutes.
* Sentry F.quipment Coro. l'f{l l. lMlN/\HY nwci. 155-11-004-1 RO Pa CJ" ? of I\ I lllS liUCll; .. I ,*;I ;:; I Iii. l'lilil'I  
l .0     Mode 1:     PREOPERATIONS FOR ALL SAMPLING MODES 1.1     Provide 120 VAC to open SVl. Position Valve DVl to connect port 4 to 2. Position V7 and VS to connect port 1 to 2. Position VS to connect port 1 to 3. All other valves must be closed. All sample lines must be filled with demin water from previous flushing.
.; I y 111  
1.2   Fill Reservoir R1 with demin water.                 Fill cylinder Cl with demin             *~1ater. C1ose Vl 0.
'i' i*:<,il ( :r) /,* J>. l . I\ 1.5 w* . .'; .iiJ(Jb and 1s lo lie used 011ly 101 ll11.:
l .1   Securely tighten cap/septum of OBS1. Evacuate DBS1 to 26" Hg VAC with hand operated vacuum pump. Observe pump gauge for 1 minutes to verify that bottle is satisfactorily maintaining vacuum.
Securely tighten cap/septum of !3Sl. nf the agreement with Seulry pursuant lo wbich it i3 I urnJ!lRerJ Load or DBSl into CART/CASK.
 
Position loaded CART/CASrCunder fill inQ Elevate bottle onto needles. needles. l .6 Open Splash Box door. Insert Grab Sample Bottle near. but not directly under spigot from V6. 1.7 At PROC:F.SS PANEL. determine that followinci li'lhts for Samplf' Cooler Rack are ON GREEN. This condition verifies that coolers are in satisfactory readiness for samplinl").
Sentry F.quipment Coro.               nwci. 155-11-004-1       RO                                     Pa CJ" ? of I\
Cooler liQhts include: (a) Sufficient cooling water flow. (b) Sufficient cooling water pressure. (c) Sufficiently low cooling water temperature.
I lllS liUCll; .. I ,*;I ;:; I Iii. l'lilil'I .; I y 111 l'f{l l. lMlN/\HY
2.0 Mode 2: CAPTURE OPEN GRAB SAMPLE: LINE RH3 2 .1 Step 1: Recirculate to Secure Sample ;At PROCESS CONTROL PANEL, Open Valve A. At LSP. fully open Vl. for 6 minutes. Close Vl .5. 2.? .s  
                                                              ~;[.;j\J 'i' I~'\' i*:<,il Iii',~./:*:;"*: ( :r) /,* J>.
? : Purrie Madu le Fully open V2.5. Slowly open V4 until FI-1 reads "HG (2()() ccm) and Gl reads 20 psig maximum. Purge l minute to WASTE. 2.1 3: NON ACCIDENT ONLY: Draw Grab Sample Open V6 and flow sample to Splash Box for 2 seconds. Close V6. Open Splash P.ox door and place sample bottle direct1y under V6 spigot and close door. Open 1/6 and rlraw sample and close V6. Close V2.5. Open Splash Box door and remove sample bottle and close door. 2.4 4: Flush Module;At PROCESS CONTROL PANEL, close Valve A. At LSP, open V3 until FI-1 reads __ "WG (200 ccm). Flush ta WASTE for 2 minutes. Close 'II\. 2.5 Step 5: Flush Recirc Line. Open Vl .5 for 6 minutes. Close Vl .5. 2.6 Step n: Flush Supply Line;At PROCESS CONTROL PANEL, open Valve B for 6 minutes. Close Valve B. At LSP close V3. 2.7 Non Accident Grab Samples From The Other Nine (9) Lines Make corresponding valve and equipment manipulations for the other nine sample lines in accordance with paras 2.1 thru 2.6. 3.0 Mode 3: CAPTURE BS1 SAMPLE: LINE RW 3 3.1 Step l: Load BS1 into CART/CASK.
U<:o111nil1J'l~)llC,      w* i~ .   .'; .iiJ(Jb and 1s lo lie used 011ly 101 ll11.: &#xb5;ur&#xb5;u~u
Remove Needle Flush Tool from LSP. Position CART/CASK.
* l . I\
Elevate BSl onto need1es of NBl. 3.2 Step 2: Recirculate To Secure Contemporary Samole;At PROCESS CONTROL PMEL, Open Valve A. At LSP, fully open Vl .5 for 6 minutes. Close Vl .5. 3.3 3: Purge Module Fully open V2.5. Slowly open V4 until FI-1 reads (200 ccm) and Gl reods 20 psig maximum. Purge 1 minute to WASTE.
1.5 l .6 Securely tighten cap/septum of !3Sl.               nf the agreement with Seulry pursuant lo wbich it i3 I urnJ!lRerJ Load ~Sl or DBSl into CART/CASK. Position loaded CART/CASrCunder fill inQ needles.
_Sentry Equipment l'l<t" l IM I rl/\HY Dwq. 155-11-004-1 RO PMJ<' 1 () f '1 l.'1 <itr>r> il: Fill "Rotate V7 to connect port l to 4. Open V4 until FI-1 reads "Wr; (200 ccm). Visually observe that RSl fills completely
Elevate bottle onto needles.
* Flow additiona-C-30 seconds. Rotate V7 to connect port 1 to 2. Close V2.5. 3.5 Step 5: Flush Module. Preliminary_
Open Splash Box door.         Insert Grab Sample Bottle near. but not directly under spigot from V6.
li.t PROCESS CONTROL PANEL. close Valve A. At LSP open V3 until FI-1 Reads "WG (200 ccm). Flush to WASTE for 2 minutes. While flushing.
1.7     At PROC:F.SS PANEL. determine that followinci li'lhts for Samplf' Cooler Rack are ON ~ GREEN. This condition verifies that coolers are in satisfactory readiness for samplinl"). Cooler liQhts include:
proceed with next step 6, (below). 1.G Step F,: Remove !3Sl Operate CART/CASK to remove RSl from NRl needles; lower P.Sl into C/\SK and cover !3Sl with CASK lid. Remove CART/CASK from LSP. Install Needle Flush Tool in LSP to seal needles of NRl. 1.7 Step 7: Flush Module, Finally *Rotate v7 to connect ports 1 to 4. Open V4 until FI-1 reads "HG (200 ccm). Visually observe that !151 fills completely.
(a) Sufficient cooling water flow.
Flush to WASTE for l minutes. Rotate V7 to connect ports 1 to 2. Close V4. 3.8 Steo 8: Flush Recirc Line Open V1.5 for 6 minutes. Close Vl.5. 3.CJ Step 9: Flush Supply Line;At PROCESS CONTROL PANEL, open Valve rl for 6 minutes. Close Valve B. At LSP close V3. 3.10 BSl Sampling From The Other Nine (9) Lines Make corresponding valve and equipment manipulations for the other nine lines in accordance with paras 3.1 thru 3.9. 4.0 Mode 4: CAPTURE DBSl SAMPLE: LINE RW3 4.1 Step l: Load evacuated 013Sl into CART/CASK.
(b) Sufficient cooling water pressure.
Position CART/CJ\SK.
(c) Sufficiently low cooling water temperature.
Elevate OP.Sl into needle of nv1. 4 .? Step ? : Recirculate To Contcmpor.2.!:Y.
2.0     Mode 2:     CAPTURE OPEN GRAB SAMPLE:     LINE RH3 2 .1     Step 1: Recirculate to Secure Contem~orary Sample ;At PROCESS CONTROL PANEL, Open Valve A. At LSP. fully open Vl. for 6 minutes. Close Vl .5.
Sampl c ;At PROCESS l.ONTROL PANEL, Open Valve A. At LSP, fully open Vl .5 for 6 minutes. Close Vl .5. 4.3 Step 3: Purqe Module Fully open V2.5. Slo\'1ly open V4 until FI-1 reads 20 psig maximum. Purge 1 minute to WASTE. Steo4: Fill DV1 "HG ( 200 ccm) and Gl reads 4.4 V8 to connect port 1 to 4. Flow to WASTE for 30 seconds. Rotate OVl to connect port 1 to 3. Close V2.5. Slowly open V9 to permit the demin \'later in Cl to flow through V9, and DVl into DBSl. Visually verify that a stream of water is properly injecting into DBS1. Close V9 after precisely 90 cc of demin water have exited from Cl. Rotate DVl to connect port 4 to 2. 4.5 Step 5: Flush Module At PROCESS CONTROL PANEL, close Valve A. At LSP open V3 until FI-1 reads "',.IG * ( 200 ccm). Flush to WASTE one minute. Rotate VS to connect port l to 2 ariCl flush to WASTE an additional one minute. Close V4. . '. .) ,T IS .THE PROPERTY OP . . . . n
2.?     .s tr~p ? : Purrie Madu le Fully open V2.5. Slowly open V4 until FI-1 reads                     "HG (2()() ccm) and Gl reads 20 psig maximum. Purge l minute to WASTE.
* t*.A.J( ll P 1 W /T,NT CORP . . * * " 1 u*mu'll.'(IC, Wis. 53066 .. ; ut! used unly for the  
2.1     ~tep    3: NON ACCIDENT ONLY: Draw Grab Sample Open V6 and flow sample to Splash Box for 2 seconds. Close V6. Open Splash P.ox door and place sample bottle direct1y under V6 spigot and close door. Open 1/6 and rlraw sample and close V6. Close V2.5. Open Splash Box door and remove sample bottle and close door.
'' * :,;:
2.4       ~-~    4: Flush Module;At PROCESS CONTROL PANEL, close Valve A. At LSP, open V3 until FI-1 reads __"WG (200 ccm). Flush ta WASTE for 2 minutes. Close 'II\.
with Seatij  
2.5     Step 5:     Flush Recirc Line. Open Vl .5 for 6 minutes.                 Close Vl .5.
'"' *:t:'.; it i.s  
2.6     Step n: Flush Supply Line;At PROCESS CONTROL PANEL, open Valve B for 6 minutes.
* *
Close Valve B. At LSP close V3.
* Sentry Coro. J>HELlMlNARY Dwq 155-11-004-1 llllS llOCllMHll IS l!IF 1'HOl 1 F!;!Y llf l\'. Y I I 1 ' i\I I< i'i T C 0 I<. L-'. II
2.7     Non Accident Grab Samples From The Other Nine (9) Lines Make corresponding valve and equipment manipulations for the other nine sample lines in accordance with paras 2.1 thru 2.6.
* fi 4.7 Strp ri:
3.0     Mode 3:     CAPTURE BS1 SAMPLE:     LINE RW 3 3.1       Step l: Load BS1 into CART/CASK. Remove Needle Flush Tool from LSP.                                       Position CART/CASK. Elevate BSl onto need1es of NBl.
Recirc Line -Open Vl .5 for 6 minutes. Close Vl .5. Step 7: Fl At PROCESS CONTROL PANEL, open Valve B At LSP close V3. Ocon"uw*1voc, W i:;. :;J06f1 <.ind is to be used only ior tilt! &#xb5;urpoaa ul lbe agre11111c11l wilb St:nlry &#xb5;ur suaut to wblcb it Is furnished.
3.2       Step 2: Recirculate To Secure Contemporary Samole;At PROCESS CONTROL PMEL, Open Valve A. At LSP, fully open Vl .5 for 6 minutes. Close Vl .5.
for 6 minutes. Close Valve B. 4.8 Step R: Remove OBSl Operate CART/CASK to remove DBSl from DVl needle, lower OflSl into CASK and cover nRSl with CASK lid. Remove CART/CASK from LSP. 4.9 nBSl Sample From the Other Nine (9) Lines Make corresponding valves and equipment manipulations for sampling the other nine lines in accordances with paras 4.1 thru 4.8. 5 .0 Mode -5: PREPARE MODULE FOR FUTURE SAMPLING Manipulate valves to positions as required by para l .1. I ____.j..---*-----****--*--*---------**  
3.3       -~~    3: Purge Module Fully open V2.5. Slowly open V4 until FI-1 reads                         11
*-***-****  
                                                                                            \~G (200 ccm) and Gl reods 20 psig maximum. Purge 1 minute to WASTE.
... ----*-' -----********  
 
-*. -*****. *--....... -. h*-********  
_Sentry Equipment                   Dwq. 155-11-004-1     RO                 PMJ<' 1 () f '1 l'l<t" l IM I rl/\HY l.'1   <itr>r> il:   Fill P.~l "Rotate V7 to connect port l to 4. Open V4 until FI-1 reads         "Wr; (200 ccm).
..... -...
Visually observe that RSl fills completely
* Page I of z Sen try Equ i pmcnt DRAWING NO. 151-11-001-1 PRELIMINARY Date 3-20-80 Ck'd RRH Rev DESCRIPTION FUNCTION:
* Flow additiona-C-30 seconds. Rotate V7 to connect port 1 to 2. Close V2.5.
SAMPLE COOLER RACK HRSS Sampling System l .O REFERENCES Description  
3.5     Step 5: Flush Module. Preliminary_
& Function:
li.t PROCESS CONTROL PANEL. close Valve A. At LSP open V3 until FI-1 Reads           "WG (200 ccm). Flush to WASTE for 2 minutes. While flushing. proceed with next step 6, (below).
P & IO Parts Identification Operating Procedures
1.G     Step F,: Remove !3Sl Operate CART/CASK to remove RSl from NRl needles; lower P.Sl into C/\SK and cover
?..O DESCRIPTION 151-11 -001 _, 151-11-002-1 151-11'."'003-l 1 51 004-1 nns DOCUMENT IS THE PROPERTY OF SENTRY EQUIPMt*:NT CORP. Oco11omowoc, Wis 53066 and is to be used only for the purpose of with Sentry pursuant io which 1t is furnished.  
                              !3Sl with CASK lid. Remove CART/CASK from LSP. Install Needle Flush Tool in LSP to seal needles of NRl.
?..l The Sample Cooler Rack includes 10 coolers mounted on a* welded steel frame. The frame is designed to bolt to a vertical wall. 2.2 Five (5) coolers (SCl series) are provided for the Reactor Coolant .Module. 2.3 Five (5) coolers (SC2 series) are provided for the Radwaste and Demin Modules (2 for Radwaste and 3 for Demin). The BTUH requirement for SC2 coolers is less than the requirement for SCl coolers. Therefore the SC2 coolers less heat transfer surface and less cooling water GPM. 2.4 The HRSS System is designed for only one source to be sampled at a time. Therefore: (a) the five SC1 coolers are connected in series on the cooling water, and (b) the five SC2 coolers are connected in series on the cooling water side. 2. 5 Safeguards Each bank of five coolers is provided with the following: (a) Cooling water over-temperature switch. (b) Cooling water under-pressure switch. (c) Cooling water low flow switch. (d) Cooling water relief valve sized to relieve a full bore flow from a broken sample coil * (e) Cooling water isolation valves for the inlet and discharge for each bank. (f) Each sample line is provided with an inlet isolation valve for maintenance purposes.
1.7     Step 7: Flush Module, Finally
These valves must be open for normal operation.  
                              *Rotate v7 to connect ports 1 to 4. Open V4 until FI-1 reads             "HG (200 ccm).
Visually observe that !151 fills completely. Flush to WASTE for l minutes. Rotate V7 to connect ports 1 to 2. Close V4.
3.8     Steo 8: Flush Recirc Line Open V1.5 for 6 minutes. Close Vl.5.
3.CJ     Step 9: Flush Supply Line;At PROCESS CONTROL PANEL, open Valve rl for 6 minutes.
Close Valve B. At LSP close V3.
3.10 BSl Sampling From The Other Nine (9) Lines Make corresponding valve and equipment manipulations for     sam~inq    the other nine lines in accordance with paras 3.1 thru 3.9.
4.0       Mode 4:     CAPTURE DBSl SAMPLE: LINE RW3 4.1     Step l: Load evacuated 013Sl into CART/CASK. Position CART/CJ\SK.     Elevate OP.Sl into needle of nv1.
4 .?     Step ? : Recirculate To ~cure Contcmpor.2.!:Y. Sampl c ;At PROCESS l.ONTROL PANEL, Open Valve A. At LSP, fully open Vl .5 for 6 minutes. Close Vl .5.
4.3     Step 3: Purqe Module Fully open V2.5. Slo\'1ly open V4 until FI-1 reads        "HG ( 200 ccm) and Gl reads 20 psig maximum. Purge 1 minute to WASTE.
 
===4.4 Steo4===
Fill DV1
                                ~otate    V8 to connect port 1 to 4. Flow to WASTE for 30 seconds. Rotate OVl to connect port 1 to 3. Close V2.5. Slowly open V9 to permit the demin \'later in Cl to flow through V9, and DVl into DBSl. Visually verify that a stream of water is properly injecting into DBS1. Close V9 after precisely 90 cc of demin water have exited from Cl. Rotate DVl to connect port 4 to 2.
4.5     Step 5: Flush Module At PROCESS CONTROL PANEL, close Valve A. At LSP open V3 until FI-1 reads             "',.IG
( 200 ccm). Flush to WASTE one minute. Rotate VS to connect port l to 2 ariCl
                'C'J!'E~l        flush to WASTE an additional one minute. Close V4.
.*            '. .) *~.1 ,T IS .THE PROPERTY OP
...     . n
* t*.A.J( ll P 1W /T,NT CORP .
    . * * " 1u*mu'll.'(IC, Wis. 53066
      ..; ~" ut! used unly for the purpo~
'' * :,;: J~.ri:~ment with Seatij Rur~nt
'"'   *:t:'.; it i.s fi.:rn1~he:J.      *
* Sentry F.~uipment Coro.                                     Dwq 155-11-004-1 J>HELlMlNARY                                                                          llllS llOCllMHll IS l!IF 1'HOl 1 F!;!Y llf
                                                                                      ~ENT l\'. Y I *A~(! I 1' i\I I< i'i T C 0 I<. L-'.
Strp ri: rlu~h Recirc Line                                                       Ocon"uw*1voc, W i:;. :;J06f1 II
* fi
*          -Open Vl .5 for 6 minutes. Close Vl .5.                                       <.ind is to be used only ior tilt! &#xb5;urpoaa ul lbe agre11111c11l wilb St:nlry &#xb5;ur suaut 4.7      Step 7:    Fl us_~--~.!:!Jl.21.Y_.!:_ine                                    to wblcb it Is furnished.
At PROCESS    CONTROL PANEL, open Valve B for 6 minutes.                                                     Close Valve B.
At LSP close V3.
4.8     Step R:   Remove OBSl Operate CART/CASK to remove DBSl from DVl needle, lower OflSl into CASK and cover nRSl with CASK lid. Remove CART/CASK from LSP.
4.9     nBSl Sample From the Other Nine (9) Lines Make corresponding valves and equipment manipulations for sampling the other nine lines in accordances with paras 4.1 thru 4.8.
5 .0   Mode -5:   PREPARE MODULE FOR FUTURE SAMPLING Manipulate valves to positions as required by para l .1.
____.j..---*-----****--*--*---------** *-***-**** ... ----*-' -----******** -*. -*****. *--....... -. h*-********
I
 
Page   I of z Sen try Equ i pmcnt                                 DRAWING NO. 151-11-001-1 PRELIMINARY                           Ori~inal  Date 3-20-80       Ck'd     RRH   Rev DESCRIPTION     ~  FUNCTION: SAMPLE COOLER RACK HRSS Sampling System nns  DOCUMENT IS THE PROPERTY OF l .O   REFERENCES                                     SENTRY EQUIPMt*:NT CORP.
Description & Function:   151-11 -001 _,         Oco11omowoc, Wis 53066 P & IO                    151-11-002-1       and is to be used only for the purpose Parts Identification      151-11'."'003-l   of th~ a~ieement with Sentry pursuant Operating Procedures      1 51 004-1     io which 1t is furnished.
  ?..O  DESCRIPTION
    ?..l The Sample Cooler Rack includes 10 coolers mounted on a* welded steel frame.
The frame is designed to bolt to a vertical wall.
2.2   Five (5) coolers (SCl series) are provided for the Reactor Coolant .Module.
2.3   Five (5) coolers (SC2 series) are provided for the Radwaste and Demin Modules (2 for Radwaste and 3 for Demin). The BTUH requirement for SC2 coolers is less than the requirement for SCl coolers. Therefore the SC2 coolers re~uire less heat transfer surface and less cooling water GPM.
2.4   The HRSS System is designed for only one source to be sampled at a time.
Therefore: (a) the five SC1 coolers are connected in series on the cooling water, and (b) the five SC2 coolers are connected in series on the cooling water side.
: 2. 5 Safeguards Each bank of five coolers is provided with the following:
(a) Cooling water over-temperature switch.
(b) Cooling water under-pressure switch.
(c) Cooling water low flow switch.
(d) Cooling water relief valve sized to relieve a full bore flow from a broken sample coil *
(e) Cooling water isolation valves for the inlet and discharge for each bank.
(f) Each sample line is provided with an inlet isolation valve for maintenance purposes. These valves must be open for normal operation.
2.6  Service life The sample cooler coil has a fatigue life of greater than 40,000 instantaneous temperature and pressure step changes from ambient to a design reactor coolant sample conditions and then back to ambient. Because these step changes actually occur gradually, a conservative fatigue life is estimated to sub-stantially exceed the service life. Considering a11 factors, Sentry recommends replacing the SCl series coolers every twenty years.
Failure of coolers in SCl type service is not rare. Sentry knows of no con-firmed failures in SC2 type service. Failures caused by tube side conditions are usually because of throttling up stream of the cooler instead of down stream. Failures attributable to the shell side are usually caused by localized boiling of the cooling water and the resulting corrosion, cavitation and vibration. Special antivibration devices are used in the coolers, but the solution is to: (a) maintain the highest possible static pressure in the cooling water circuit , (b) do not throttle the inlet cooling water line, and (c) maintain flaw rate close to the design condition. The sample coolers are designed for 400 PSI to encourage the user to maintain the highest possible cooling water system pressure.
 
Sentry Equipment Corp.              Dwg 151-11-001-1      Rl                    Page ?. of 2 rr.rL IM Hll\RY
    ?.7    noscR,1tc
*  ?..8 When handling one sample of Reactor Coolant (worse case) the dose rate at a meter distance from the active cooler is 300 mR/h. ThP. residual dose (after complete flushing) from the cooler rack is estimated to be 5 R/h @ one cm.
Servicing A  flanged cooler design is used to allow the cooler shell to be removed without disturbing the sample connections. A tube side hydro test can be perfonned with the shells removed (recommended yearly when in continuous use). The estimated time to repair/replace a worse case failure is one hour.
The installer should make provisions in the cooling water system to completely flush out decontamination 1 n the event of tube leakage.
3.0    PERFORMl\NCE nURING PURGING (nominal 1900 ccm flowratc) 1.1    SAMPLE SIDE (tubeside)            SCl Type  SCl Type        SCl Type SC2 Type (a) Phase                        Steam    Steam          Water          Hater (b) Flowrate~ ccm                1900      1000            1900            1900 (c) Velocity ft/sec              6.1                      6.0
( d) Source                      Reactor  Reactor        Reactor        Sump/Drywel 1 (e) Type Reactor                  PWR      PWR            B~JR            P\*IR/BWR
( f) &deg;F to Cooler                700F      700F            580F            340F
( g) &deg;F from Cool er              132F      102F            103F            l15F (h) &deg;F from Pressure Reducer      137F      107F            107F            11 FiF
( i) PS I G to Coo 1er            2300      2300            1 565          1 50 (j) PSI, Sample Pressure Drop 20                            20              13 3.2    COOLING WATER (Shellside)
(a) Fl owrate, GPM                10        10              10              7 (b) &deg;F to Cooler                  95F      95F            95F              95F (c) &deg;F from Cooler                146F                      121 F            111 F (d) PSIG Static, Maximum          400      400            400              400 (e) PSI, Rack Press. Drop        30        30              30              30 (Header-to-Header) 3.3    OVERALL (a.) BTUH Transferred            252000                    128600          57000 (b) Fouling Factor                .001                      .001            .001 (c) Design Resistance Overall    .0021                    .0021            .0021 (d) LM & D &deg;F                    l80F                      112              86 3.4    Required total cooling water flow is 17 GPM and 30 psi pressure loss---
inlet to outlet header.
4.0    PERFORMANCE DURING SAMPLING (nomina 1 200 ccm fl owrate)
At 200  ccm,sa~ples leave coolers about 1&deg;F hotter than the entering cooling
          'Nater---and r1 se in temperature as they pass through pressure reducing valves.
With para 3 .2 c~ol i ng water. the maximum sample ~ne:r~G:IJr~~ 1q&sect;sfn~%i:.wf :.r~1ovF pressure reduction valves are:                      SJ~i*;'(R.Y EQUli)iVIJL*..,7 CORP.
Reactor Coolant Module:                            Oco;;:.:uw-:J<;c, 1N is :J 3066
* 1 01 &deg;F Demi n Module              99&deg;F              ~nd is to be us.~~ u;1iy for the purpose Radwaste f.!;0dul e        96&deg;F              1;: the ac; ..:1;11u:r 11i1il Sentiy pursu<rnt
: a whic:i it is furnished.
 
PRELIMINARY i...---------- ".;l .:nt
**:~i~Ll~{ ~3L~ ~nt700J~~~~~~~~~~~~~~~~~~~-~-~~
                                                                              ,.L&#xa3; Wdb L          ~.LnO ~"J ~-~                                                                          I
                                                                                                              .1 I        c I
I I
I I
I I u.:.
I~
I-~
E I
            .GOH :)Cl O.L S ?(:! _...1.---_J'_ _ _ _ __                                                          I 3J~nos_J__&#xa3;________                                                                    I    1* .
          . Q OW :)Ci      Ol \-\  ~ C:! ---1-11,--M-------- -----L..=::::::::.....::-_!!.2-_ __J                I 3J~l/OS _J__&#xa3;________ ----.------~----.                                                I
            'QQl,..J  :>Ci  OJ. ct. :121~1-I- - - - - - ----1C::::::.....~gj__ __J                                I I
I
::::i:
Jl c
c::
                                                                                                                            .A JOB NO.                          RC.
SENTRY EQUIPMENT CORP.
SAMPLE COOLER RACK HRSS LIQUID SAMPLING SYSTEM ISSUE    1 U/P. INC:. 160"4  500*1-77 2                                                          1
 
rage      1    or c.
Sentry Equipment Corp.
llRAW ING NO. l 51-11 -OOJ-1 PRELIMINARY                                                                                                            '.i-1 S-P.O Original Date 3/8/RO      Ck'd        LE                      Rl
* PARTS l .O InErlTIFICATION:
VALVE, MANUAL, ISOLATION Sample Cooler Rack HRSS Liquid Sampling System*
THIS OOC!i" E,; I !S fl.:E PIIOPE!i TY Of 01!,1-. *, i<. / J.~(.,!(J i "'NJ i~1\ T CO RP.
Oco1umwwoc, Wis 5 .3066 (ref. P & ID dwg no. 151-11-002-1 )and is to be use:d only for the purpose nt the ll(!iccrnent with Sentry pursuant to wbich it is f urnislled.
1 .1  TWO-WAY ANGLE BALL VALVE, COOLING WATER INLET. McCannaseal; carbon steel TFE packing. Temp/press rating is* 310&deg;F/400 #. Connections 3/4" IPS SW.
Vl .1      &  V1 .2 1.2    TWO-W/\Y ANGLE GLOBE VALVE, COOLING WATER OUTLET.                              Marsh 1936 FFG, T316SS; TFE packing; 6000# WOG.
V2 .1:        3/4" FPT V2 . 2 :      1 /2" FPT 1.1 TWO-WJ\Y ANGLE GLOBE VALVE, SAMPLE INLET. Whitey SS-3NBSW4T; T316SS; 1/4" tube socket weld. Tempipressure rating is 700&deg;F/4110#. Grafoil packing.
V3.l, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 & 3.10.
2.0 SAMPLE COOLER (Sample-to-cooling water heat exchanger). Sentry P/N (below).
Tubeside (Sample side) is continuous helical tube, 1/4" od x .030 wall x T316SS.
Shell side (cooling waterside) water wetted surface is T304SS or equilvalent .
* Shell is flanged to remove to inspect/clean tubeside (without disconnecting sample lines). Temp/press ratings are (a) TUBESIOE: 700&deg;F/2500#, (b) SHELLSIDE 650&deg;F/400#. ASME Section VIII Code Stamped.
SCl .1, 1.2, 1.3, 1.4, 1.5 : Sentry P/N TLFH-4222 SC2.1, 2.2, 2.3, 2.4, 2.5 : Sentry P/N TSFH-4222 3.0 COOLING WATER OVER TEMPERATURE PROTECTION SWITCH. United Electric Controls C54-9135- l 03; range 0-225F, l SA. Control 1oca ted in T304SS well . Temp/press r.atinq 250&deg;F/1000#.
TS-1              Setting=plant water temperature, plus 55&deg;F TS-2              Setting=plant water temperature, plus 30&deg;F.
4.0    COOLING WATER OVER PRESSURE PROTECTION SWITCH. United Electric Control J6- 9632-364 Wet"ted surface is T347SS. Temp/press rating is 250&deg;F/500#. Range 0 to 500#.
PS-1      &    PS-2                Set per plant pressure. Ref 151-11-001-1, para 2.6.
5.0 COOLING WATER INADEQUATE FLOW PROTECTION SWITCH (paddle type) W.E. Anderson.
V6EPB-S-S-4D to actuate @4 GPM and deactuate @2 GPM. Switch rating is Sa @
125/250 VAC. Wetted surface is T303/304SS. Temp/press rating is 220&deg;F/1000#.
FS-1      &    FS-2 6.0    COOLING \~ATER PIPE/FITIINGS. Sch 80 T304SS; 1 1/4" SW.                                      Parker 4-HW-SS/12-12 CB2 tube unions. Other SS fittings---as required *
* 7.0    COOLING WATER PRESS RELIEF VALVE. Consolidated 1975C. Wetted surfaces T300 series stainless; 1/2 FPT. Temp/press ratin~ 400&deg;F/2000#.
                    ~ & ?;r Setting
            ....; t ", '/ ~ : ""*** !-.) >*:. J * ,....,
i: * '            i    } I'*
I 400 psig .


===2.6 Service===
v    r: *,;;,   i.,c,._;. '*f - IC -1 '
life The sample cooler coil has a fatigue life of greater than 40,000 instantaneous temperature and pressure step changes from ambient to a design reactor coolant sample conditions and then back to ambient. Because these step changes actually occur gradually, a conservative fatigue life is estimated to stantially exceed the service life. Considering a11 factors, Sentry recommends replacing the SCl series coolers every twenty years. Failure of coolers in SCl type service is not rare. Sentry knows of no firmed failures in SC2 type service. Failures caused by tube side conditions are usually because of throttling up stream of the cooler instead of down stream. Failures attributable to the shell side are usually caused by localized boiling of the cooling water and the resulting corrosion, cavitation and vibration.
                                      ~ *T ,- ., * ** "            ,) -* f P: oPE ., n .
Special antivibration devices are used in the coolers, but the solution is to: (a) maintain the highest possible static pressure in the cooling water circuit , (b) do not throttle the inlet cooling water line, and (c) maintain flaw rate close to the design condition.
1 ! 1, r*1 . ; ~ , r *. ; J
The sample coolers are designed for 400 PSI to encourage the user to maintain the highest possible cooling water system pressure.
                          ... J  ~ :. ~ ~:  *                                        *, ~ *
* Sentry Equipment Corp. rr.rL IM Hll\RY Dwg 151-11-001-1 Rl Page ?. of 2 ?.7 noscR,1tc When handling one sample of Reactor Coolant (worse case) the dose rate at a meter distance from the active cooler is 300 mR/h. ThP. residual dose (after complete flushing) from the cooler rack is estimated to be 5 R/h @ one cm. ?..8 Servicing 3.0 1.1 3.2 3.3 3.4 4.0 A flanged cooler design is used to allow the cooler shell to be removed without disturbing the sample connections.
(1 '              -- .. ' ' . -. ' '. \ j        c. r-1 .
A tube side hydro test can be perfonned with the shells removed (recommended yearly when in continuous use). The estimated time to repair/replace a worse case failure is one hour. The installer should make provisions in the cooling water system to completely flush out decontamination 1 n the event of tube leakage. PERFORMl\NCE nURING PURGING (nominal 1900 ccm flowratc)
_,L(.),*~*J/,l1J:_**1t:        \*** ..    ~-.    ,.* -
SAMPLE SIDE (tubeside)
                                -~*
SCl Type SCl Type SCl Type SC2 Type (a) Phase Steam Steam Water Hater (b) ccm 1900 1000 1900 1900 (c) Velocity ft/sec 6.1 6.0 ( d) Source Reactor Reactor Reactor Sump/Drywel 1 (e) Type Reactor PWR PWR P\*IR/BWR ( f) &deg;F to Cooler 700F 700F 580F 340F ( g) &deg;F from Cool er 132F 102F 103F l15F (h) &deg;F from Pressure Reducer 137F 107F 107F 11 FiF ( i) PS I G to Coo 1 er 2300 2300 1 565 1 50 (j) PSI, Sample Pressure Drop 20 20 13 COOLING WATER (Shellside) (a) Fl owrate, GPM 10 10 10 7 (b) &deg;F to Cooler 95F 95F 95F 95F (c) &deg;F from Cooler 146F 121 F 111 F (d) PSIG Static, Maximum 400 400 400 400 (e) PSI, Rack Press. Drop 30 30 30 30 (Header-to-Header)
c:,,L b
OVERALL (a.) BTUH Transferred 252000 128600 57000 (b) Fouling Factor .001 .001 .001 (c) Design Resistance Overall .0021 .0021 .0021 (d) LM & D &deg;F l80F 112 86 Required total cooling water flow is 17 GPM and 30 psi pressure inlet to outlet header. PERFORMANCE DURING SAMPLING (nomina 1 200 ccm fl owrate) At 200 leave coolers about 1&deg;F hotter than the entering cooling 'Nater---and r1 se in temperature as they pass through pressure reducing valves. With para 3 .2 i ng water. the maximum sample pressure reduction valves are:
                                          *- t*u be      us~~
EQUli)iVIJL*..,7 CORP. Reactor Coolant Module: Demi n Module Radwaste f.!;0dul e 1 01 &deg;F 99&deg;F 96&deg;F Oco;;:.:uw-:J<;c, 1 N is :J 3066
                                                                      , . 1.,
* is to be u;1iy for the purpose 1;: the ac; ..:1;11u:r 11i1il Sentiy pursu<rnt : a whic:i it is furnished.
o*.: .. r*,,. t
PRELIMINARY i...----------
                                                                                    ,)Jl_1t;/*
".;l .:nt ,.L&#xa3; ..., ,-
                              "' th                          --     '"J    "*    i;e p11ip0Ja
----, Wdb L . GOH :)Cl O.L S ?(:! _...1.---_J'
                              .,,          e ag;eeni.:nr \';ith Sen tr RE\/ISIOllS                  io    which it is fornished. ' Y pursua.r;.t                            -;:)  Vl
_____ _ . Q OW :)Ci Ol \-\ C:! ---1-11,--M--------
---r*-----------1-r--------------                                                                     ::=:::
-----L..=::::::::.....::-_!!.2-
IT1 I
__ _J
:t.>
_J__&#xa3;________
:l
'QQl,..J :>Ci OJ. ct.
                                                                                                              .-+
------
1  5-15-80 LE I                                                *                                            ;
__ _J JOB NO. RC. ..... I .1 I I I I I I I I u.:. I I I I I I I I Jl SENTRY EQUIPMENT CORP. SAMPLE COOLER RACK HRSS LIQUID SAMPLING SYSTEM ISSUE 1 U/P. INC:. 160"4 500*1-77 2 1 c E 1* . ::::i: ....; >->-c c:: .
3:    '<
* *
CHANGES: Para 1.1: From Whitey to*------*                                                            .....
* Sentry Equipment Corp. llRAW ING NO. l 51-11 -OOJ-1 PRELIMINARY Original Date 3/8/RO Ck'd LE rage 1 or c. '.i-1 S-P.O Rl PARTS InErlTIFICATION:
z      ni McCannaseal valves. Para 1.2: From Powell                                                            >
Sample Cooler Rack HRSS Liquid Sampling (ref. P & ID dwg no. THIS OOC!i" E,; I !S fl.:E PIIOPE!i TY Of 01!,1-. *, i<. /
::0 c:
i "'NJ T CO RP. l .O VALVE, MANUAL, ISOLATION System* Oco1umwwoc, Wis 5 .3066 151-11-002-1 )and is to be use:d only for the purpose nt the ll(!iccrnent with Sentry pursuant to wbich it is f urnislled.
                                                                                                            .!)
1 .1 TWO-WAY ANGLE BALL VALVE, COOLING WATER INLET. McCannaseal; carbon steel TFE packing. Temp/press rating is* 310&deg;F/400
to Marsh valves. Para 1.3: From Edwards                                                                -< .....
#. Connections 3/4" IPS SW. Vl .1 & V1 .2 1.2 TWO-W/\Y ANGLE GLOBE VALVE, COOLING WATER OUTLET. Marsh 1936 FFG, T316SS; TFE packing; 6000# WOG. V2 .1: 3/4" FPT V2 . 2 : 1 /2" FPT 1.1 TWO-WJ\Y ANGLE GLOBE VALVE, SAMPLE INLET. Whitey SS-3NBSW4T; T316SS; 1/4" tube socket weld. Tempipressure rating is 700&deg;F/4110#.
to Wh1tey valves. Para 4.0: From P/N                                    11 9575-670 to 9632-364.
Grafoil packing. V3.l, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 & 3.10. 2.0 SAMPLE COOLER (Sample-to-cooling water heat exchanger).
* Para 6.0: From .75 to l
Sentry P/N (below). Tubeside (Sample side) is continuous helical tube, 1/4" od x .030 wall x T316SS. Shell side (cooling waterside) water wetted surface is T304SS or equilvalent . Shell is flanged to remove to inspect/clean tubeside (without disconnecting sample lines). Temp/press ratings are (a) TUBESIOE:
* 25".
700&deg;F/2500#, (b) SHELLSIDE 650&deg;F/400#.
Anos: Para 1.0.
ASME Section VIII Code Stamped. SCl .1, 1.2, 1.3, 1.4, 1.5 : Sentry P/N TLFH-4222 SC2.1, 2.2, 2.3, 2.4, 2.5 : Sentry P/N TSFH-4222
                                                                                                              ?
                                                                                                            ..:l l.11 I
I 0
w I
::0 I                                "1 I
:.n I
:0
{                                ::>
I I
I I                                ....,
i                              ..:i i                                :",)
I N
I                                0 j                                ~
N


===3.0 COOLING===
Page l of
WATER OVER TEMPERATURE PROTECTION SWITCH. United Electric Controls C54-9135-l 03; range 0-225F, l SA. Control 1oca ted in T304SS well . Temp/press r.atinq 250&deg;F/1000#.
    .Sen try Eriui pment Corp.
TS-1 Setting=plant water temperature, plus 55&deg;F TS-2 Setting=plant water temperature, plus 30&deg;F. 4.0 COOLING WATER OVER PRESSURE PROTECTION SWITCH. United Electric Control J6-9632-364 Wet"ted surface is T347SS. Temp/press rating is 250&deg;F/500#.
rnr:LIMINARY                                        DRAW ING NO. l 51 -1 l -004-l Original Date 5-29-80                  Ck'd LE      Rev O 5-30-80
Range 0 to 500#. PS-1 & PS-2 Set per plant pressure.
* .1------------------~
Ref 151-11-001-1, para 2.6. 5.0 COOLING WATER INADEQUATE FLOW PROTECTION SWITCH (paddle type) W.E. Anderson.
  . Ol'FR "TI~rr. pnocEn11nF.s* Sfl..Ml'LF. ".001.E'n R"CK                  THIS DOCU.
V6EPB-S-S-4D to actuate @4 GPM and deactuate
* E*. f IS T11"E S/*'11.1*;*1**~*
@2 GPM. Switch rating is Sa @ 125/250 VAC. Wetted surface is T303/304SS.
* 1*-C2Uli'Mli,t.''f
Temp/press rating is 220&deg;F/1000#.
                                                                                                .*       PROPEi:TY OF
FS-1 & FS-2 6.0 COOLING PIPE/FITIINGS.
          . '" I', I\ ,   I\...             **     I\ I\               '     .~*.    \. i                     CORP HRSS Sampling System                             f!connmowoc, wis. 5306 (j           *
Sch 80 T304SS; 1 1/4" SW. Parker 4-HW-SS/12-12 CB2 tube unions. Other SS fittings---as required
                                                                            <rnd is to ~e used only for the purpose REFERENCES nescription & Function:       1 51-11-001-1                     of th~ a~re~ment with Sentry pursuant P ?c ID                        151-11-002-1                       to which 1t 1s furnished.
* 7.0 COOLING WATER PRESS RELIEF VALVE. Consolidated 1975C. Wetted surfaces T300 series stainless; 1/2 FPT. Temp/press 400&deg;F/2000#. & ?;r Setting 400 psig . ....; t ", '/ : ""*** !-.) >*:. I J * ,...., i: * ' i } I'* , --
Parts Identification           1 51 003-1 Operating Procedures          1 51-11-004-1
: *,;;, i.,c,._;.
'*f -IC -' v r
* T ,-., * ** " ,) 1 -* f P: o PE ., n . ... J :.
* 1 ! 1, r
* 1 . ; , r *. ; J * , * (1 ' --.. ' ' . -. ' '. \ j c. r-1 .  
\*** .. ,.* -*-t* , . 1., ,)Jl_1t;/*
c:,,L b u be o*.: .. r*,,. t -"' th --'"J "* i;e p11ip0Ja .,, e ag;eeni.:nr
\';ith Sen tr RE\/ISIOllS io which it is fornished.
' Y pursua.r;.t
---r*-----------1-r--------------
1 5-15-80 LE I
* CHANGES: Para 1.1: From Whitey to*------*
McCannaseal valves. Para 1.2: From Powell to Marsh valves. Para 1.3: From Edwards to Wh1tey valves. Para 4.0: From P/N 9575-670 to 9632-364.
* Para 6.0: From .75 11 to l
* 2 5". Anos: Para 1.0. I { I I I I i i I I j ** -;:) Vl ::=::: :t.> IT1 :l I .-+ ...... ; 3: '< ..... z ni > .!) ::0 c: -< ..... ? ..:l _, l.11 _, I _, _.....!! ,. I ::::> 0 w I _, ::0 _, "1 I _, :.n I :0 ::> ...., ;:.. ..:i :",) N 0 N 
.Sen try Eriui pment Corp. rnr:LIMINARY Page l of DRAW ING NO. l 51 -1 l -004-l
* Original Date 5-29-80 Ck'd LE Rev O 5-30-80 ...
THIS DOCU.
* E*. f IS T "E pnocEn11nF.s*
Sfl..Ml'LF.
".001.E'n R"CK
*1.* 11 PROPEi:TY OF * * . '" I', I\ , I\... ** I\ I\ '  
\. i *-C2Uli'Mli,t.''f CORP HRSS Sampling System f!connmowoc, w is. 5306 (j
* REFERENCES nescription  
& Function:
P ?c ID Parts Identification Operating Procedures 1 51-11-001-1 151-11-002-1 1 51 003-1 1 51-11-004-1
<rnd is to used only for the purpose of with Sentry pursuant to which 1t 1s furnished.
* \Pntry Corp. Po<JC 1 of I\ Orginal Date 3-11-AO Ck'd LF DRAWING NO. lfin-11-nnl-l Dte '1-i''J-1:0 flr>v 2 ----DESCRIPTION
& FUNCTION:
CASP (Containment Air Sampling Panel) HRSS SAMPLING SYSTEM 1 . '1 REFERENCE r & m Parts Identification:
nperatinq Procedures:
2.n rESCRIPTION 160-11 :.002-1 1 60-11 -003-1 16()-11-00tl-1 TRIS OOC\Jt;:ENT IS THI: PROPERTY ilf SF.NT RY j;'.r: :u { M rn,:T en i'. p () (. \) i l / ; * ; * * * *'. * ' :I;" 1 * *1 :; {) ,*:, I 1 i;, to ?;: .. : ... , *'/ ;;,: li:'!
d\ the J& .... .;i: ... :i* ..
..,J1:liy
&#xb5;ursuant 'tO Y..hlC11 it i::.
2.1 Panel-Shielci 9i Rase: The panel-shield consists of 3" steel. The panel shield is supported by a steel base, which provides adequate shfelding for the radioactive piping raceway and radiation backscatter.
The panel base has connections to attach the remote operated cart/casks which capture samples of containment air. ?..2 Ventilation Ventilation control is provided by a plenum which encloseci the space behind the panel shield. The plenum is to be maintained at a ne<)ative pressure of .25" water gauge, so that 160 CFM of air infiltrates from the side of the Panel through its penetrations and into the plenum. Thus any gas leakage through '/alve stem packing and similar leak sources, is captured by the plenum and routed to a rad gas treating system. The bottom of the plenum is provided with a basin to catch any minor drips. The plenum ha$ a removable panel in its rear for maintenance access. Plenum is l2ga steel; basin is 16CJJ T304SS. Plenum has a pressure switch to alarm@ lack of negative pressure.


===2.3 Component===
Po<JC          1 of          I\
Dte '1-i''J-1:0
  \Pntry      Fqui~ncnt    Corp.                Orginal Date 3-11-AO            Ck'd              LF                  flr>v            2 DRAWING NO.          lfin-11-nnl-l DESCRIPTION & FUNCTION:          CASP (Containment Air Sampling Panel)
HRSS SAMPLING SYSTEM TRIS OOC\Jt;:ENT IS THI: PROPERTY                                            ilf 1 . '1    REFERENCE r  &  m                  160-11 :.002-1 SF.NT RY              j;'.r:  :u {      r~ M rn,:T en i'. p
() (. \) i l / ; * ; * * * *'. *        ' :I;" 1 ~:  * *1 :; {) ,*:, I 1 Parts Identification:    1 60-11 -003-1          ~nd  i;, to    ;J~    ?;: . . : . .. , *'/    ;;,:    li:'!    piir&#xb5;u~~!
nperatinq Procedures:    16()-11-00tl-1 d\ the J& .... .;i: ...      :i* .. !Li~        ..,J1:liy &#xb5;ursuant
                                                                'tO Y..hlC11    it i::. 1>.iii:~llt;Ll.
2.n      rESCRIPTION 2.1      Panel-Shielci 9i Rase: The panel-shield consists of 3" steel. The panel shield is supported by a intc~ral steel base, which provides adequate shfelding for the radioactive piping raceway and radiation backscatter. The panel base has connections to attach the remote operated cart/casks which capture samples of containment air.
      ?..2    Ventilation Ventilation control is provided by a plenum which encloseci the space behind the panel shield. The plenum is to be maintained at a ne<)ative pressure of .25" water gauge, so that 160 CFM of air infiltrates from the out-side of the Panel through its penetrations and into the plenum. Thus any gas leakage through '/alve stem packing and similar leak sources, is captured by the plenum and routed to a rad gas treating system. The bottom of the plenum is provided with a basin to catch any minor drips. The plenum ha$ a removable panel in its rear for maintenance access. Plenum is l2ga steel; basin is 16CJJ T304SS. Plenum has a pressure switch to alarm@ lack of negative pressure.
2.3     Component Mounting Tubing and components are mounted on the backside of the panel within its plenum.
      ?..4    Measures To Prevent Iodine Plate-Out Special measures are employed to prevent particle ts Iodine plate-out in the 0.17" bore inlet line to the cask containing SFl. Special measures include:
(a)  Thermostatically controlled electric heating cord to maintain the line surface temperature at 200&deg;F---to prevent steam condensation.
(b) Minimum 1 .7" radius line bends (10 times diameter).                                              _
( c) Plug valves to avoid abrupt <lirection changes, or expansions/contractions.
2.5      Motive Force The Panel is equipped with a nitrogen-operated vacuum pump 1-1hich induces 0.2 cfm flow of air from the containment to the Panel, and through the Sample Casks. The 2.0 cfm exhaust from the vacuum pump is.discharged to containment via a nominal 0 .43" bore tube.
2.6    Remotely Operated Cart/Cask Remotely operated Cask-Carts (ref Description-Funct1on Data sheet 162-11-001-1) are provided to insert, couple, uncouple and remove the casks which capture samples of containment a1r. Cart/Casks are transported to an on-site facility. SF2.l, .2, .3 are counted (in place within the casks) by a hand held detector (ORTEC Intrinsic Germanium shie1ded
* detector, or equal). The contents of SFl Flask are transferred into a standard holder (containing a particulate filter and silver zeolite cartridge) for radioiodine measurement by a Ge(Li) detector. The empty flask is subsequentl removed from its cask for residual counting~


Mounting Tubing and components are mounted on the backside of the panel within its plenum. ?..4 Measures To Prevent Iodine Plate-Out Special measures are employed to prevent particle ts Iodine plate-out in the 0.17" bore inlet line to the cask containing SFl. Special measures include: (a) (b) ( c) Thermostatically controlled electric heating cord to maintain the line surface temperature at 200&deg;F---to prevent steam condensation.
s~ntry              Fquipment  ~orp.                                                    raqr? of *1 4-29-80
Minimum 1 .7" radius line bends (10 times diameter).
                            '?.7      Valv_es,__I~bin~ .9w ,1oints    Three manual pluq valves are provirlcd for maintenance isolation. Isolation and switching volves for operation are power operated. controlled from the Panels remoterl control station (ref.
_ Plug valves to avoid abrupt <lirection changes, or expansions/contractions.  
Description-Function Data Sheet 161-11-001-1 for details).
                                      '\signal from the Panel flow monitor is routed to an indicator in the Panel's remote Control station.
        ,.,')
        *./)
Ci
                    ,,,                Power operated pluq valves are used in two (2) locations: (a) upstream of
          ~
                    ="
            ...1.. V?                  the SFl    Flask      -t:o prevent Iodine plate out. and (b) on the
                    -,                vacuum pump exhaust to avoid "choking" the pump. The remainin<J power orerated
        *"l..      L-'.:l..
valves are globe type.
I)      ::-..,
          *~      ~
          ..        tJJ
        .-:      *"/)                Valve packing, seating, and thread sealing are TFE. TFE is used because:
              -. J.':
          * . '.:;: .r:.;;
                            ~          (a) TFF. is the only practical seating material for the necessary valve desi~ns,
          *.:~          : -~            (b) TFE has the minimum sealing and packing leakage rate, and (c) thes.e TFE.
* I    '
                        '    ~=:-1    components have demonstrated a service life in a high radiation fie1d equal to
          **~
            *. , .--c:*      -
their mechanical service life.
          *I*      ~;; -~
          '    I    '.')    *'=
1
              ,    l,H1
(.'Q      :~
Sample tubinq is T304SS. 1/4 11 OD by approximately .17 11 bore. Vacuum exhaust
          *- ...c  u*
                            ~
                              "*-      tubing is l/2"00 x approximately .43" bore. Fluid velocity developed in a .17"
    ~-- --0        .......    ;;:
bore is optimum for assurance of contemporary sample and minimizing plate-
          '"                          out in the 1 ines. The .43 bore exhaust velocity is low enough to not "choke" the vacuum pump. Material is T304SS.
                                        ,Joints are Swagelok, Gryolok, threaded and silver solder brazed as best
* 2.8 suited for particular components, for maximum joint tightness, for minimal fluid volume and for optimum maintenance.
Size and Wei of the Panel and approximately ertinent installation details) The dimensions 7" deep x 3 6" wide. ~*/eight is 1, t1          FllNCTHlN 3.1. General When the routine Containment Air Monitoring System is* isolated in Jn accident CASP is operated to capture grab samples. CASP induces .2 cfm (minimum~ containment air from a source over a pressure range of 0.5 (negative) to 60 psig and over a temperature range of 50 to 310&deg;F; the air mass flow & cfm varies with pressure and temperature. CASP's auxiliary equipment includes four (4) mobile s.hield casks each containing a sample vessel of approximate1y 5 ml c~pacity. All casks have integral, manual isolation valves.
1.2      Operations (a) During initial installation the four (4) carts are positioned and coupled to companion quick disconnect fittings on the CASP.
(b) Appropriate valves are remotely manipulated to purge supply and discharge lines using the 110 psig nitrogen motive gas. CASP 1 s flow monitor svstem indicates flowrate forward or backward.
(c) Appropriate valves are manipulated to capture a sample in the desired cas~.
The time interv,~1 bet\'1een samples and the time of flow for a given sa11ip1 inCJ exercise are controlled by adjustable timers in CASP's remote control panel .


===2.5 Motive===
Sentry Equipment Corp.
Force The Panel is equipped with a nitrogen-operated vacuum pump 1-1hich induces 0.2 cfm flow of air from the containment to the Panel, and through the Sample Casks. The 2.0 cfm exhaust from the vacuum pump is.discharged to containment via a nominal 0 .43" bore tube. 2.6 Remotely Operated Cart/Cask Remotely operated Cask-Carts (ref Funct1on Data sheet 162-11-001-1) are provided to insert, couple, uncouple and remove the casks which capture samples of containment a1r. Cart/Casks are transported to an on-site facility.
Dwg. 160-11-001-1 rr'IA,. 2~
SF2.l, .2, .3 are counted (in place within the casks) by a hand held detector (ORTEC Intrinsic Germanium shie1ded detector, or equal). The contents of SFl Flask are transferred into a standard holder (containing a particulate filter and silver zeolite cartridge) for radioiodine measurement by a Ge(Li) detector.
                                                              )\'' \ ,1 r1:-i 1 1 **
The empty flask is subsequentl removed from its cask for residual 
                                                                                                ,.,~l)-1,11 p\aq~1~,'~f ~-2<J-no I         L'     ,\(
. ,
                                                            ,./     I! '.l           11
Fquipment raqr? of *1 4-29-80 '?.7
                                                                                            \
.9w ,1oints Three manual pluq valves are provirlcd for maintenance isolation.
I' I:
Isolation and switching volves for operation are power operated.
11 ' '
controlled from the Panels remoterl control station (ref. Description-Function Data Sheet 161-11-001-1 for details).
i
,.,') Ci *./) ,,, . ' =" . ..1.. V? "-** ..__ -, -, *"l.. L-'.:l.. I) ::-.., . .:: .. _ .. .. tJJ .-: *"/) -. J.': *. '.:;: .r:.;;
:I' I   '   I,     \.
:
hu u'*\\IL:....;i l.:.::.l I l*U:*           :J*1. ::1 ilJ .. ILJ' !1-~
* I ' ' : :-1 c:* -*. , .--*I* ' I '.') *'= 1 , l,H1 (.'Q '\signal from the Panel flow monitor is routed to an indicator in the Panel's remote Control station. Power operated pluq valves are used in two (2) locations: (a) upstream of the SFl Flask -t:o prevent Iodine plate out. and (b) on the vacuum pump exhaust to avoid "choking" the pump. The remainin<J power orerated valves are globe type. Valve packing, seating, and thread sealing are TFE. TFE is used because: (a) TFF. is the only practical seating material for the necessary valve (b) TFE has the minimum sealing and packing leakage rate, and (c) thes.e TFE. components have demonstrated a service life in a high radiation fie1d equal to their mechanical service life. " '"' u* *-*-...c --0 ....... ;;: Sample tubinq is T304SS. 1/4 11 OD by approximately
1 u ' u ...J u \.1 :..I ..... *
.17 11 bore. Vacuum exhaust tubing is l/2"00 x approximately
                                                                    '1.1
.43" bore. Fluid velocity developed in a .17" bore is optimum for assurance of contemporary sample and minimizing plate-'-' '" *
( d) After a sample is drawn and isolated by power operated valves, other v~lvr.s are manipulated to pur~e radioactive gases with CASP's 110 psig nitroqen motive gas.
* out in the 1 ines. The .43 bore exhaust velocity is low enough to not "choke" the vacuum pump. Material is T304SS. ,Joints are Swagelok, Gryolok, threaded and silver solder brazed as best suited for particular components, for maximum joint tightness, for minimal fluid volume and for optimum maintenance.
{e) After purginq the lines, the operator manually:                       (l) closes the cask's isolation valves with a one meter long reach rod and (2) manipulates the cask's cart to uncouple the quick disconnect couplings, and (3) transports the cart/cask to an on-site facility for isotopic analysis.
2.8 Size and Wei of the Panel and approximately 1, t1 FllNCTHlN ertinent installation details) The dimensions 7" deep x 3 6" wide.
( f) Backup cart/casks are positioned and coupled to the CASP for next sampling exercise.                   *
is 3.1. General When the routine Containment Air Monitoring System is* isolated in Jn accident CASP is operated to capture grab samples. CASP induces .2 cfm containment air from a source over a pressure range of 0.5 (negative) to 60 psig and over a temperature range of 50 to 310&deg;F; the air mass flow & cfm varies with pressure and temperature.
( g) !Jsed sample vessels are decontaminated or replaced to prepare casks for 11ext use.
CASP's auxiliary equipment includes four (4) mobile s.hield casks each containing a sample vessel of approximate1y 5 ml All casks have integral, manual isolation valves. 1.2 Operations (a) During initial installation the four (4) carts are positioned and coupled to companion quick disconnect fittings on the CASP. (b) Appropriate valves are remotely manipulated to purge supply and discharge lines using the 110 psig nitrogen motive gas. CASP 1 s flow monitor svstem indicates flowrate forward or backward. (c) Appropriate valves are manipulated to capture a sample in the desired The time bet\'1een samples and the time of flow for a given sa11ip1 inCJ exercise are controlled by adjustable timers in CASP's remote control panel . 
4.n     ACTIVITY~      nosE RATES
* *
: 4. l   Worst Case Accident Activity For a "line break" RWR, 5 hours into accident, the containment air hctivity level is 300 rem/hr/cc, contact.
* Sentry Equipment Corp. Dwg. 160-11-001-1 rr'IA, .. r1:-i ( d) {e) ( f) ( g) )\'' \ ,1 1 1** \ 11 '' I :I' L' ,\( ,./ I! '.l 11 I' I: i I ' I, \. h '*\\I I l*U:* :J*1. 1::1 ilJ .. ILJ' !1 u u '1.1 L:....;i l.:.::.l u ' u ...J u \.1 :..I .....
4.2    Radiation Field @ 1 .O Meter in Front of Panel @ 5 Hours Into Accident is 225 mrem/hr. Dose rate for casks is 100 mrem/hr @one meter.
* After a sample is drawn and isolated by power operated valves, other are manipulated to radioactive gases with CASP's 110 psig nitroqen motive gas. After purginq the lines, the operator manually: (l) closes the cask's isolation valves with a one meter long reach rod and (2) manipulates the cask's cart to uncouple the quick disconnect couplings, and (3) transports the cart/cask to an on-site facility for isotopic analysis.
4.1    Ooerator dose while manipulating the cask's isolation valve (with one meter long reach rod) will not exceed 100 mrem per sampling exercise.
Backup cart/casks are positioned and coupled to the CASP for next sampling exercise.  
After a subsequent power operated valve manipulation to purrie the quick
* !Jsed sample vessels are decontaminated or replaced to prepare casks for 11ext use. 4.n nosE RATES 4. l Worst Case Accident Activity 4.2 4.1 5.0 For a "line break" RWR, 5 hours into accident, the containment air hctivity level is 300 rem/hr/cc, contact. Radiation Field @ 1 .O Meter in Front of Panel @ 5 Hours Into Accident is 225 mrem/hr. Dose rate for casks is 100 mrem/hr @one meter. Ooerator dose while manipulating the cask's isolation valve (with one meter long reach rod) will not exceed 100 mrem per sampling exercise.
* 5.0 disconnect coupling with nitrogen, the CASP's radiation field closely approaches the room ambient.
After a subsequent power operated valve manipulation to purrie the quick disconnect coupling with nitrogen, the CASP's radiation field closely approaches the room ambient. LEAK RATE TESTING CRITERIA Maximum individual 1 eak to atmosphere shall be 1 x l o-4 cc/sec for each joint and component when interior cavities are pressurized with dry nitrogen at 90 psig. Leak testinq material is Product 277NE (American rias ?, Chemical C:o) ilf"lpl ied in accordance with the appliciable portions of AG & C Bubble Leak Testing Process Specification
LEAK RATE   ~  TESTING CRITERIA Maximum individual 1 eak to atmosphere shall be 1 x l o- 4 cc/sec for each joint and component when interior cavities are pressurized with dry nitrogen at 90 psig.
* THIS DOCU/11E:-iT iS THE 2ROPU;T\'
Leak testinq material is Product 277NE (American rias ?, Chemical C:o) ilf"lpl ied in accordance with the appliciable portions of AG & C Bubble Leak Testing Process Specification *
:if SENTI?.':/
* THIS DOCU/11E:-iT iS THE 2ROPU;T\' :if SENTI?.':/                   l:~t.~(!;i:-1'lli*~t:*1*
Ocon::in::*1*"*'*. '* i Jnd is to be .:~ .!.; \:,;.~'
::i the        ab*.~:...
if1r
                                                                                                                    . ... **::~ . ._,
l&deg;.':J;..:;)_
l&deg;.':J;..:;)_
Ocon::in::*1*"*'*.
:., :. .")0.'1.,
'* i :., : . .")0.'1., Jnd is to be .!.;
t: ..~  ~.;~~,;SG
if1r t: ..
                                                                                                                                      ,J * *.* :J1.::.t
::i the . ... . ._,, ,J * *.* :J1.::.t Y;hiC. ii'** .. ... .;;.
                                                                        ~(J Y;hiC. ii'** .. :,~ ....;;.
Ill .J .1) 1-'.\ '-u .\: () l I) ..j lu '-') ::> a: .r: *:*\... 'I,,*'&deg;' . ' (\ ..j 4.1 V) \:( 2 . '4.1*0.:: tl. u a r-3Dl " I I I I b I I I I I .o .. O* O*o a*Oo. i:::::> *" * .. * .LS'nl;:;JHX
 
:;>
~                            (\
NOi.i(;.17(.iC'/3/A C:>* * *o*o o.o .. .. '*. :. ,* .*.* i I\'-,. :\ '...' 1 Lr, I I 1; r . ..-. ;.*' .. '*' r:****-... ,..) . .,,) '4J ' * * . \.. . * . ' . * . I \ '\ .\ -J ***** *' :\. .. i:: : .*
                            ..j
G73CH.S NO\.ltj!O{:JCi 30 IS .LNOC!.:i a _, ]'--0 0 0 0 0 0 0 0 I I . ' 111 SENTRY EQUIPMENT CORP. CASP (Containment Air Sampling Panel) HRSS SAMPLING SYSTEM DATE3-14-8C0RAWN JJS CHK'D LE SCALE::/!, DRAWING NO.
~
ISSUE 2. -I 
4.1
.-c: ..._ '1l z (l REVISE'D )i-.;iER-a; "FRCc L\1'.Jc$.
                            ~
0 DCLETE Gil !: "' r'.OD TS-1
~*
* 0 c. :?>-c ,BO JJ 5 0 -DHETC OR *..DPT, !=lDD FD'\, 5 SY '.S (. .., c:v 1, . Re: 1'.JUM DER V;;i1IU$ I\) Yro.LVfiS 3 4-2.-BO LE RELOCl'\TE.
V)                                                                                                                                       I
FoR C:RSKS Li y-J5-BO RuD S'll l,1 DE.LETE TS*).UJC-l CofiRcCT DESCRll'-T10IJ DI'" StRVJC[ 5 9-BD Lt
                      ~
* .SFi 10 5cc E.CHANC::,:'.:
04...1~
FC-1 1 TO
                                  \:(                                   .LS'nl;:;JHX :;>                 ~l'-:J                                                    I NOi.i(;.17(.iC'/3/A ~
;;oo PPS-1 oo :r: (/) n :;:o ::0-(/) m
                      ~j~        2                                                                                        ~nN~7d
(/\ (/) Y1 " z -n .....,,. lT1 0 z -i C\ 0 :x:-;o ..... 0 :z -< :u :-;::: 0 }> (Tl :E z m 0 z -i :;p. D :7' c.., ...... 0 -* :;o c I
                      . '4.1*0.:: ~                                                                          -'O~o*
(/) ..... :P 1J I {) 3: .::> -0 ...... :::> I r " ;;<; ....... I 0 z m _, Cl ,-"U z rn :,0. :z -I fT1 Ul r {) 0 1* iii r 0 -;u Pl -........ 1J \Jl ):. L 0 m z 0 ;u 0 ..__ :r:: a: u IX er: -----------1
C:>*
--7 D 1. 1 f  
* tl. u    a                                                                          *o*o..
' " Ci:: 1--<>> (j a::: (L ) -... ' 0 i' (.),.:.;, t.J.. .SF "1 ( CART :( (j' OuJ ex. ll) &#xb5;_ <::i A.JOT&#xa3;: SF 2..1 CART / ./ Di.5 f
o.o            G73CH.S NO\.ltj!O{:JCi G~>
' SF ?...c CC.ART -"' ./ Dl7 f
r-3Dl 30 IS .LNOC!.:i Ill
.........
            .J
-.... SF 2.3 CART IPPS-1 I tf) ..J l9" '-,.., > () ('J 0:: 0::
          .1) 0  0 I
a:_,,_,_ SF 1 THRU 5F 2..3 FH-'.E 5Rl1PLC: FLH'5XS > t: l1CH
I 0  0 I
\*/l1'Hl/0 Fl SHlclDLUG CA5K. CRSl<S ARE P6Sll"J6fJcD TRA.USP()J<JED 5Y 5PECJRLl Y CARTS. R = F. ) -I l -/'\ /\ } -) '-. L:..,,.._
I 1-'.\
.1 \....U rn BOTTOM () 1t: () I : I : I I I I , I : I I I I r-_J I 4-_J = :It <eJ Q "' (J z lt c:. I-i..
b I
:...:.: fr I-..,-, ;; -0 ;x:> rT1 r-...... 3: ...... z ::. :u -<
0  0
Page l of 2 Ote 4-29-80 Oriqinal Date 3-7-80 Chk'd LE Rev 1 DRAWING NO. lfi0-11-001-1
                                                                                                                                                                    .111'
]--*-** **--*------
  '-u                                        I
rnF.N_TIFICATION:
  .\:
CASP {Containment Air Sam lin HRSS--Sampling System (ref. P & ID dwg no. Panel t nOCIJMf.ilT IS THE P!?OPERTY 0F .,;
I
CORP.
  ~
* 160-11-002-1 ) Oni*,.;
()                                        I                                                                                                        0  0 l I)
* 1;1. ""''!:.* :.*.;;, i/v' S 3 06 6 : !Ill \O tdy [01 the &#xb5;urpo::m 1.0 VALVE. MANUAL * .. "'*'  
I
;:1U1 :lcutry &#xb5;:u:;uaflt 1.1 TIIO-WAY PLUG VALVE, ISOLATION.
  ~'( ..j
Nupro P4T Series.
  ~.)        lu
  '-')
  .r: *:*\. .
a:
  .''I,,*'&deg;'
                                              .o..
O*          O*o
                                            ~Poe; a*Oo.
                                                *i:::::>.. * *"
a_,
                                                                                                                                    ]'--
                                . . '*. :. ,* . * .
* i I\'- ,. :\ '...' 1 Lr,  I  I  1;  r
                                  .'    ..-. ;.*'           .. '*'. ' .r:****-       ... ,..) J*~..,,)  '4J
                                        * *.      \.. . *                * . I      \ '\            .\  -J SENTRY EQUIPMENT CORP.
CASP (Containment Air Sampling Panel)
                *****    *' :\. .. i:: :.*                                                                          HRSS SAMPLING SYSTEM DATE3-14-8C0RAWN JJS        CHK'D LE SCALE::/!,
DRAWING NO.        160-11-001-~        ISSUE 2.
 
c:
                                                                                                                                    -----------1
        '1l z
(l REVISE'D )i-.;iER-a;  "FRCc L\1'.Jc$.
0
        !:   DCLETE r'.OD TS-1 HC-~
Gil I
        "' c. :?>-c 0
0                           ,BO JJ 5
      -.., !=lDD
      ~
DHETC OR ..DPT, FD'\, 5 SY '.S (.
:          I c:v 1,                                    .
Re: 1'.JUM DER V;;i1IU$
Yro.LVfiS ~ fLt.sK~
:           I I\)
3 4-2.-BO LE RELOCl'\TE.                         FoR I
I     ,
I C:RSKS Li y-J5-BO RuD S'll l,1 ~'                                                                                                                                            IPPS-1 I          ~: I DE.LETE TS*).UJC-l CofiRcCT DESCRll'-
T10IJ DI'" StRVJC[
:     I  I 5 ~-2 9-BD Lt
            ~~,i;~~  .SFi 10                                                                                                                                                                1~1
                                                                                                                                                                                              ,~~
5cc E.CHANC::,:'.:
I      I FC-1 TO FM-~.
r-1
            ;;oo PPS-1                                                                                                                                                                            _J    I oo                ~    :r:      (/)     L            --7                ,;I-                                   /      ./
f D1.~~          -"'          ./
f Dl.8~
4-        _J
                ~~
                ~fll n :;:o
::0- (/)
mm 0
D1. 1 f   Di.'2~                                  Di.5              Dl7 tf) 1t:()
(/\ (/)
                                                                                                                                                    .........               ..J
                ~ lT1 z~
Y1    "
                                  -n 0
z
                                        -i z
                                                  ~
z 0                    '                                                  '                                          ~
l9"      =:It
                                                                                                                                                                                    <eJ Q C\          0          :x:-
                                        .....   ;o                                                                                                                          '-,..,        (J 0        :z
                                                  -<                  Ci::                                                                                                            z"'
                ~            :u
                              }>
(Tl                      1-- <>>                                                                                                    ~            ~*
0                      z                        ~~-                                                                                                       >
0             :E z        -i      m                    (j                                                                                                    ()
lt c:.
c..,
:;p.
                                        ...... D          ..__
                                                                  ~~                                                                                                        ('J I-
                                                                                                                                                                                                          -0
                                                                                                                                                                                                          ;x:>
0
:7' I              -*
                          -~---'
:;o c.....     ~    ~~
a:::
                                                                                                                                                                                          ~
i..
rT1 r-(/)
:P                  :r:: ~- (L            .SF "1                            SF 2..1        SF ?...c                  SF 2.3                      -;-~
:...:.:         3:
I
            .::>              {)
3:
                                        -0 1J        ~    )
                                                                  -... ~-
                                                                        '                                                                                                                  fr              z CART          CC.ART                      CART                                        ::.
I r
z       ~      ;u a:
                                                            ~    0    i'
(.),.:.;,
( CART                                                                                                      I-
                                                                                                                                                                                          ..,-,          :u I
_,                0        Cl m0          ~
                                                            ~
t.J..
:( (j'                                                                                                                  ;;
rn "U
:,0.
:z z          u    OuJ ex. ll)
A.JOT&#xa3;:
SF 1 THRU 5F 2..3 FH-'.E 5Rl1PLC: FLH'5XS                > t: l1CH LOC~1?ED
                                                  -I        ~    &#xb5;_ <::i
                                                                                    \*/l1'Hl/0 Fl SHlclDLUG CA5K. CRSl<S ARE P6Sll"J6fJcD ~
fT1 Ul r
0          IX  0:: 0::
{)
TRA.USP()J<JED 5Y 5PECJRLl Y DESIGIJ~P CARTS.
1*
                                                                  ~\..'I er:  a:_,,_,_
0                                  R'=
iii          r
                                                                                        -F.
                                                                                          . )L:..,,.._ -
                                                                                              /~ ~      I l - \....U
                                                                                                              /'\ /\ } - )
                ~            ~I
                                                                                                        .1 Pl
                                                  ;u
              \Jl        ):.                    1J
()
rn    BOTTOM
 
Page l of 2 Ote 4-29-80 Oriqinal Date 3-7-80                Chk'd        LE                      Rev    1 DRAWING NO. lfi0-11-001-1
]--~ART5    rnF.N_TIFICATION:        CASP {Containment Air Sam lin Panel t ~ nOCIJMf.ilT IS THE P!?OPERTY 0F HRSS--Sampling System                        .,; .J'/'i~l' i~(JlJJPlvlENT CORP.
(ref. P & ID dwg no. 160-11-002-1 )                  Oni*,.; *1;1. ""''!:.* :.*.;;, i/v' ~~. S 3 06 6
: !Ill i~ \O ~'U 1JZ~;J tdy            [01  the &#xb5;urpo::m 1.0 VALVE. MANUAL                                                                  *.. \~c "'*' .:.;.1~y.1t        ;:1U1  :lcutry &#xb5;:u:;uaflt 1.1      TIIO-WAY PLUG VALVE, ISOLATION. Nupro P4T Series. itlo~~~~~~hhfdgi~ofg-T316SS.
Plug is TFE coated. 0-ring seals are Viton. Temp/press rating is 400&deg;F/1000#.
Plug is TFE coated. 0-ring seals are Viton. Temp/press rating is 400&deg;F/1000#.
Connections are 1/4" Swagelok, MPT or FPT as required.
Connections are 1/4" Swagelok, MPT or FPT as required.
Vl , V2 1 .2 TWO-WAY nALL VALVE, ISOLATION.
Vl , V2 1 .2     TWO-WAY nALL VALVE, ISOLATION. Whitey SS-45 Series. Body and stem are T316SS.
Whitey SS-45 Series. Body and stem are T316SS. Packing is TFE. Temp/press rating is 150&deg;F/2500#.
Packing is TFE. Temp/press rating is 150&deg;F/2500#. Connections are Swagelok 1/2",
Connections are Swagelok 1/2", or 1/2" FPT as required.
or 1/2" FPT as required.
V3. 2.n VALVE, POWER OPERATED 2. l BALL VALVE, AIR OPERATED, ISOLATION.
V3.
rotation, spring return. Whitey SS-4558 ball packing TFE. Temp/press rating 150&deg;F/2500#.
2.n VALVE, POWER OPERATED
: 2. l     ~AO-WAY      BALL VALVE, AIR OPERATED, ISOLATION. 11lhitey operator MS-133SR, go                                        0 rotation, spring return. Whitey SS-4558 ball valve, body and stem T316SS; packing TFE. Temp/press rating 150&deg;F/2500#. Operator air connections 1/R" FPT.
Valve connections are 1/2" Swagelok.
Valve connections are 1/2" Swagelok.
AV-2 1 1lhitey operator MS-133SR, go 0 valve, body and stem T316SS; Operator air connections 1/R" FPT. 2 .2 TI/0-WAY PLUG VALVE, AIR OPERATED.
AV-2 2 .2     TI/0-WAY PLUG VALVE, AIR OPERATED. ISOLATION.                   Whitey opera tor MS-131 SR, goo rotation, spring return.             NUPRO P4T Series plug valve (per para 1 .1) with a flexible coupling.
ISOLATION.
AV-1
Whitey opera tor MS-131 SR, goo rotation, spring return. NUPRO P4T Series plug valve (per para 1 .1) with a flexible coupling.
: 2. 3     TI/0-WAY GLOBE VALVE, ELECTRIC SOLENOID, ISOLATION. Skinner; norma 11 y closed; V52DB1100; orifice diameter is .13", 120 VAC. Valve body and stem are T303SS; seating is Viton. Temp/press rating is 310&deg;F/1000#. Connections are 1/3" FPT.
AV-1 2. 3 TI/0-WAY GLOBE VALVE, ELECTRIC SOLENOID, ISOLATION.
Maximum operating pressure differenttal is 100 psi.
Skinner; norma 11 y closed; V52DB1100; orifice diameter is .13", 120 VAC. Valve body and stem are T303SS; seating is Viton. Temp/press rating is 310&deg;F/1000#.
SVl .2. SV2.1, 2.2. SV3.l, 3.2. SV4.l, 4.2, SV5. SV6. SV7. SV8. SV9. SVlO.
Connections are 1/3" FPT. Maximum operating pressure differenttal is 100 psi. SVl .2. SV2.1, 2.2. SV3.l, 3.2. SV4.l, 4.2, SV5. SV6. SV7. SV8. SV9. SVlO. 2.4 THREE WAY GLOBE VALVE, ELECTRIC SOLENOID, ISOLATION  
2.4     THREE WAY GLOBE VALVE, ELECTRIC SOLENOID, ISOLATION & BLEED. ASCO normally closed, exhaust to atmosphere;8320 813. Pressure rating is 300 psig. 120 VAC.
& BLEED. ASCO normally closed, exhaust to atmosphere;8320 813. Pressure rating is 300 psig. 120 VAC. SVl 1. SVl 2. 3.0 0UICK DISCONNECT COUPLING.
SVl 1. SVl 2.
Hanson ML-Hll-143 socket plug ML-Hll-143 plug. is T316SS; seals are Viton. Connections are 1/A" or 1/4" FPT as required . 01 . 1 ' 1 . 2
3.0   0UICK DISCONNECT COUPLING. Hanson ML-Hll-143 socket plug ML-Hll-143 plug.                                                   Ma teri a1 is T316SS; seals are Viton. Connections are 1/A" or 1/4" FPT as required .
* 1 . 3. l
01 . 1 ' 1 . 2
* 4. 1 . 5. 1 . 6' 1 . 7 & 1
* 1 . 3. l *4. 1 . 5. 1 . 6' 1 . 7 & 1 *8
* 8 Ma teri a 1 Dwg. 160-11-003-1 RJ '1-?.'l-HO Paqe 2 of 4.n FLECTRIC HEATING CORO. Cole-Palmer 3122-12 heating cord, NiChrome wire encased in fihcrqlass sheath; approximately 12 lineal feet; 28H watts; 120 VAC. Cord wrapped around l /4" OD tube on l /2" centers. Or equal . Not included (to be furnished and insta11ed by owner as part of the total line heat tracing).  
 
Dwg. 160-11-003-1               RJ       Paqe 2 of
                                                                                  '1-?.'l-HO 4.n         FLECTRIC HEATING CORO. Cole-Palmer 3122-12 heating cord, NiChrome wire encased in fihcrqlass sheath; approximately 12 lineal feet; 28H watts; 120 VAC.
Cord wrapped around l /4" OD tube on l /2" centers. Or equal .
Not included (to be furnished and insta11ed by owner as part of the total line heat tracing).
5.0          THERMAL SWITCH, SURFACE MOUNTED. Fenwall 30002-0; adjustable 50-600&deg;F temp range; 10 amp rating; stainless stee-1 case. Or equal.
Not included {to be furnished an*d installed by owner as part of the total line heat tracing).
* 6.0          FLOW MONITOR & SWITCH. Fluid Components Inc 1".odel FR78-4. Set point 0.2 ACFM.
            \~etted        surface is T316SS. Temp/press rating is 3l0&deg;F/500 psig.
FM-1 7 .0        EnllCTOR, NITROGEN OPERATED. Air-Vac Engineering Company AVR-093H. Rated @
minimum .2 cfm sample flow and 23" Hg vacuum force when supplied with 1 .0 cfm of nitrogen @110 psig. Material is T303SS. Vacuum and air supply 1/8" FPT/MPT.
Exhaust is 1/8" FPT increased to nominal .43" bore exhaust tube. Supply 1 ine to CASP not to exceed 3 psi @ .2 cfm. Sample exhaust line from CASP not to exceed 1 . 5 ps i @ l
* 2 sc fm.
EV-1 8.0          CHECK VALVE. Circle Seal 532-T-2M or 2?-3. Cracking pressure 3 psig. Wetted surface T303SS; elastomer V1ton. Temp/press rating is 310&deg;F/100 psig. End connection 1/4" M or FPT.
CV-1 9.0          PLENUM STATIC PRESSURE SENSOR SWITCH. Dwyer 1638-1, 15 amp, 120 I/AC. Connections 1/8" FPT. Range 0.20 to 1.0" W.C.
PPS-1 a
0 I    ,....
                      -I    ~
CJ          Cl u
V)    N U")
u tC    I                i::
: 0. I CJ - I      0 c:o          ~
C"")
V)
N 0
c.n V')I~
c: . ..c ow V')
> c...
<lJ z
 
Pa<Je l of 2
* Sentry Equipment Corp.
OPERATING PROCEDURES:
DRAWING NO.
Orginal Date 4-28-80 CASP (Containment Air Sampling Panel)
HRSS SAMPLING SYSTEM l fi0-11 -004-1 Ck'd  ~~
LE        Rev Date 4-28-80 0~~-
REFERENCES                                                  THIS OOCl!r: Fr**1 1~: fl!E l'l<fif'U: I'( Of Oescription & Function:    160-11-001-1                  0ENT~ t' i*~!~iJ l ;*;Wl*~i'IT CORP.
P ?. IO                    160-11-002-1                      O<:on*1ll1IJ'W1>1:,  vV is. :; .")()(,(,
Parts Identification      160-11 -003-1                  and is to be used oniy 1or tile pur&#xb5;ose Operatinq Procedures      160-11-004-1 ol the agret!menl with Sentry &#xb5;ursu;rnt to which it is f urnishe!.1.
GENERAL BACKGROUND INFORMATION Typically a nuclear plant has an in-being "CAMS'~ (Containment Air Monitoring System) which functions far routine use. As a post accident measure, this CAMS will be modified so that its GGD (gross gamma detector) generates a signal to (a) isolate the CAMS routine "r>It;" and (b) divert the containment air sample flowpath to the "CASP".
  ~uring the post accident duration, th~ CAMS shall remain electrically powered, but no containment air shall flow through its "PIG". However it is desirable to design the system so that the operator can move to the CAM gas chromatoqraph station and manually override the isolation valves to take a reading in that instrument---during accident.
1.0    Mode 1:  Preoperation Verify that (thennostatically contro11ed) electric heating cord is "on" and maintaining tube surface temperature@ 200&deg;F. Verify manual valves Vl, V2, V3 are open. Verify all power operated valves are closed.
2.0    Made 2: Backflow Nitrooen through CASP to purge GGD (gross aamma detector) so as to qet a true background reading for the GGO.
Open SVlO, SV8, SV9, SVS. Increase Nitrogen pressure until "CASP Flow" 1 ight verifies a minimum flowrate of 0.2 acfm of containment air through FM-1 (note:
Nitrogen pressure regulator and flow signal light are located in CASP remoted control panel). Maintain flowrate for 2 minutes. Record true radiation background @ GGD.
3.0    Mode 3:  Capture Containment Air Samele in SF 2.1 Close SVS, SV8, SV9. Open SVll (to open AV2). Open SV2.1, SV2.2, SV6, SV7.
Increase Nitrogen pressure until "CASP Flow" 1 ight verifies a minimum flowrate 0.2 acfm of* containment air through FM-1. Maintain flowrate for 2 minutes to secure a contemporary sample. Close SV2.2 and (after 15 second time delay) close SV.t.I. Maintain Nitrogen flowrate for minimum of 2 additional minutes.
4.0    Mode 4:  Flush CASP  & Sample Suoply lii es with Nitrogen.
While maintaining Nitrogen flowrate, close SV11 (to close AV2). Close SV!1, SV7.
Open sva, SV9. After 15 second time delay, open SVS. After 15 additional seconds, close SVS.


===5.0 THERMAL===
Sentry  E~uipment  Corp.       Dwg.160-11-004-1                     Page 2 of 2              RO
SWITCH, SURFACE MOUNTED. Fenwall 30002-0; adjustable 50-600&deg;F temp range; 10 amp rating; stainless stee-1 case. Or equal. Not included {to be furnished an*d installed by owner as part of the total line heat tracing).
  'i . () MorlP. S: rlu!;h SF2. l 11ne with N1 tro')cn.
* 6.0 FLOW MONITOR & SWITCH. Fluid Components Inc 1".odel FR78-4. Set point 0.2 ACFM.
* 5.0 While mclintain1ng N1trogcn flowrate. manually close inlet & o.utlet valves, and open bypass valve of SF2.1---using one meter long reach rod. Remotely oren SV2.l and SV2.2. Maintain Nitrogen flowrate for minimum 15 seconds.
surface is T316SS. Temp/press rating is 3l0&deg;F/500 psig. FM-1 7 .0 EnllCTOR, NITROGEN OPERATED.
Mode 6:  Complete SF2.l Sampling exercise and secure the CASP.
Air-Vac Engineering Company AVR-093H.
Close all open power operated valves; SV12 (to close AVl), SV2.l, SV2.2, SV6, SV7, SVlO, SVll (to close AV2).     .
Rated @ minimum .2 cfm sample flow and 23" Hg vacuum force when supplied with 1 .0 cfm of nitrogen @110 psig. Material is T303SS. Vacuum and air supply 1/8" FPT/MPT. Exhaust is 1/8" FPT increased to nominal .43" bore exhaust tube. Supply 1 ine to CASP not to exceed 3 psi @ .2 cfm. Sample exhaust line from CASP not to exceed 8.0 9.0 ,... ...... ::> V) N ::> < 0 ...... ,..... > c.n ..
7.0    Mode 7:  Uncouple SF2.l and Transport to On-site Lab For Isotopic Analysis Note: SF2.1 is contained within a cask to shield radiation.           The cask is equipped with wheels and a one meter long towing handle.
c: . ..c ow V') z > c... <lJ 1 . 5 ps i @ l
Uncouple SF2.l from CASP (procedure Dwg 162-11-004-1 ), and tow to onsite lab.
* 2 sc fm. EV-1 CHECK VALVE. Circle Seal 532-T-2M or 2?-3. Cracking pressure 3 psig. surface T303SS; elastomer V1ton. Temp/press rating is 310&deg;F/100 psig. connection 1/4" M or FPT. CV-1 PLENUM STATIC PRESSURE SENSOR SWITCH. Dwyer 1638-1, 15 amp, 120 I/AC. 1/8" FPT. Range 0.20 to 1.0" W.C. PPS-1 I -I CJ <:: u V) tC I ...... -0. I CJ -I c:o C"") .. a 0 ,.... ,.... Cl N U") :> 0 u i:: -Wetted End Connections
Couple new, empty SF2.l to CASP.
* Pa<Je l of 2 Sentry Equipment Corp. DRAWING NO. l fi0-11 -004-1 Orginal Date 4-28-80 Ck'd LE Rev 0 Date 4-28-80 OPERATING PROCEDURES:
A.O, 9.0, 10.0    Modes 8,9 & 10. Capturing Samples in SFl, SF2.2 & SF2.3.
CASP (Containment Air Sampling Panel) HRSS SAMPLING SYSTEM REFERENCES Oescription
Samples are captured in these Sample Fl asks in a similar manner as for SF2 .1 by making their corresponding manipulations, in general accord \'lith paras 3.0, 4.0, 5.0 and 6,0 and 7.0.
& Function:
11.0  CAUTION: Only SFl and its supply lines shall be used to capture sample for Particulate & Iodine counting. Thi5 flask and lines are designed to prevent
P ?. IO Parts Identification Operatinq Procedures 160-11-001-1 160-11-002-1 160-11 -003-1 160-11-004-1 GENERAL BACKGROUND INFORMATION THIS OOCl!r: Fr**1 fl!E l'l<fif'U:
* Iodine plate out.
I'( Of t'
SF2.l, 2.2 & 2.3 are designed to capture samples for counting of Noble gases only.
l CORP. O<:on*1ll1IJ'W1>1:, vV is. :; .")()(,(, and is to be used oniy 1 or tile pur&#xb5;ose ol the agret!menl with Sentry &#xb5;ursu;rnt to which it is f urnishe!.1.
THIS DOCiJlliEi*;T /S THE  ?f:l(Jto:>r .. T*t  . _
Typically a nuclear plant has an in-being (Containment Air Monitoring System) which functions far routine use. As a post accident measure, this CAMS will be modified so that its GGD (gross gamma detector) generates a signal to (a) isolate the CAMS routine "r>It;" and (b) divert the containment air sample flowpath to the "CASP".
S&#xa3;11.f'T"R"'                    .,    c ..     tl/-
the post accident duration, CAMS shall remain electrically powered, but no containment air shall flow through its "PIG". However it is desirable to design the system so that the operator can move to the CAM gas chromatoqraph station and manually override the isolation valves to take a reading in that instrument---during accident.
I' l'i,    1  i~(!UlPMJ*'.:' _.1J.\ 1
1.0 Mode 1: Preoperation Verify that (thennostatically contro11ed) electric heating cord is "on" and maintaining tube surface temperature@
                                                                                                    ~ ~_...
200&deg;F. Verify manual valves Vl, V2, V3 are open. Verify all power operated valves are closed. 2.0 Made 2: Backflow Nitrooen through CASP to purge GGD (gross aamma detector) so as to qet a true background reading for the GGO. Open SVlO, SV8, SV9, SVS. Increase Nitrogen pressure until "CASP Flow" 1 ight verifies a minimum flowrate of 0.2 acfm of containment air through FM-1 (note: Nitrogen pressure regulator and flow signal light are located in CASP remoted control panel). Maintain flowrate for 2 minutes. Record true radiation background
                                                                                                        "'0;:'.,7-..
@ GGD. 3.0 Mode 3: Capture Containment Air Samele in SF 2.1 Close SVS, SV8, SV9. Open SVll (to open AV2). Open SV2.1, SV2.2, SV6, SV7. Increase Nitrogen pressure until "CASP Flow" 1 ight verifies a minimum flowrate 0.2 acfm of* containment air through FM-1. Maintain flowrate for 2 minutes to secure a contemporary sample. Close SV2.2 and (after 15 second time delay) close SV.t.I. Maintain Nitrogen flowrate for minimum of 2 additional minutes. 4.0 Mode 4: Flush CASP & Sample Suoply lii es with Nitrogen.
l\.l. ........
While maintaining Nitrogen flowrate, close SV11 (to close AV2). Close SV!1, SV7. Open sva, SV9. After 15 second time delay, open SVS. After 15 additional seconds, close SVS. 
: 0. conmnowoc,. vVi**... .)..,),U.'6**1)
* *
                                                              ;;.n~ is to be used u1ily for the ~uipose
* Sentry Corp. Dwg.160-11-004-1 Page 2 of 2 RO 'i . () MorlP. S: rlu!;h SF2. l 11ne with N1 tro')cn. While mclintain1ng N1trogcn flowrate.
                                                              ~t Lhe <lg_re~ment *r.-1th Sentry pursu;rnt 10  wb1ch 1t 1s furnished.
manually close inlet & o.utlet valves, and open bypass valve of SF2.1---using one meter long reach rod. Remotely oren SV2.l and SV2.2. Maintain Nitrogen flowrate for minimum 15 seconds. 5.0 Mode 6: Complete SF2.l Sampling exercise and secure the CASP. Close all open power operated valves; SV12 (to close AVl), SV2.l, SV2.2, SV6, SV7, SVlO, SVll (to close AV2). . 7.0 Mode 7: Uncouple SF2.l and Transport to On-site Lab For Isotopic Analysis Note: SF2.1 is contained within a cask to shield radiation.
* ATTACHMENT E POST-ACCIDENT RADIATION WASTE CONNECTION TIE-IN DESIGN INFORMATION
The cask is equipped with wheels and a one meter long towing handle. Uncouple SF2.l from CASP (procedure Dwg 162-11-004-1
 
), and tow to onsite lab. Couple new, empty SF2.l to CASP. A.O, 9.0, 10.0 Modes 8,9 & 10. Capturing Samples in SFl, SF2.2 & SF2.3. Samples are captured in these Sample Fl asks in a similar manner as for SF2 .1 by making their corresponding manipulations, in general accord \'lith paras 3.0, 4.0, 5.0 and 6,0 and 7.0. 11.0 CAUTION: Only SFl and its supply lines shall be used to capture sample for Particulate
ATTACHMENT E
& Iodine counting.
* POST ACCIDENT RADIATION WASTE CONNECTIONS We have completed our investigation of the modifications required to interface with an external radioactive waste processing system at North Anna.
Thi5 flask and lines are designed to prevent Iodine plate out. SF2.l, 2.2 & 2.3 are designed to capture samples for counting of Noble gases only. THIS DOCiJlliEi*;T
vestigation is still in progress for Surry.
/S THE ?f:l(Jto:>r
The in-The external radioactive waste processing system would be state of the art technology at the time of a postulated accident and would be used to remove and process radioactive gases and fluids from the plant during the Recovery Phase. Attached are preliminary drawings showing proposed system connections to permit this interface. These modifications will be made at this time to minimize the personnel exposure and spread of contamination associated with installation after an accident.
.. T*t . _ S&#xa3;11.f'T"R"'
The ability to vent the containment to the atmosphere already exists. Future technological advances may develop viable alternatives to controlled contain-ment venting. Therefore, we plan the addition of connections at the discharge of the containment atmosphere purge blowers and the containment return lines from the hydrogen recombiner which could interface with an external process system as shown in Figure 2A.     This would permit the removal of ra_dioactive gases from the containment and the addition of clean makeup air.
., c .. I' tl/-l'i, 1 "'0;:'.,7-..
The system ptesently being used to process the radioactive        fluid after the accident at Three Mile Island is the EPICOR II system.       The  proposed liquid connections are designed on the basis of this system.       The  actual external process system would be designed based on the extent of the      accident and the state of the art technology.
0 _.1J.\
A containment sump sample pump is being added for the post accident sampling system (not a NUREG 0578 requirement). This pump will be used in conjunction with a new connection in the drain system.     This will provide the ability to pump highly radioactive fluid from the floor of the containment through the connections shown on Figures 4A and B to the external process system.
l\.l. ........ conmnowoc, vVi** .. ,U.'6** . . ... .) ,) 1) is to be used u1ily for the Lhe
In addition, connections are being evaluated to allow the processing of highly radioactive post-accident fluids that might be stored in the boron recovery tanks or the high and low level waste tanks (Figures lA, lB and 3A).
*r.-1th Sentry pursu;rnt 10 wb1ch 1t 1s furnished. 
The area south of the reactor containments would provide sufficient laydown area for an external process system.       To reduce the amount of shielding required, the interface connection lines will run through the existing pipe tunnel in the fuel building and terminate in the waste disposal building area .
*
 
* ATTACHMENT E POST-ACCIDENT RADIATION WASTE CONNECTION TIE-IN DESIGN INFORMATION 
ATTACMENT F HYDROGEN RECOMBINER GAS COOLER OUTLET MODIFICATION DESIGN INFORMATION
* * ** ATTACHMENT E POST ACCIDENT RADIATION WASTE CONNECTIONS We have completed our investigation of the modifications required to interface with an external radioactive waste processing system at North Anna. The vestigation is still in progress for Surry. The external radioactive waste processing system would be state of the art technology at the time of a postulated accident and would be used to remove and process radioactive gases and fluids from the plant during the Recovery Phase. Attached are preliminary drawings showing proposed system connections to permit this interface.
*~
These modifications will be made at this time to minimize the personnel exposure and spread of contamination associated with installation after an accident.
 
The ability to vent the containment to the atmosphere already exists. Future technological advances may develop viable alternatives to controlled ment venting. Therefore, we plan the addition of connections at the discharge of the containment atmosphere purge blowers and the containment return lines from the hydrogen recombiner which could interface with an external process system as shown in Figure 2A. This would permit the removal of ra_dioactive gases from the containment and the addition of clean makeup air. The system ptesently being used to process the radioactive fluid after the accident at Three Mile Island is the EPICOR II system. The proposed liquid connections are designed on the basis of this system. The actual external process system would be designed based on the extent of the accident and the state of the art technology.
ATTACHMENT F HYDROGEN RECOMBINER GAS COOLER OUTLET MODIFICATIONS (NORTH ANNA ONLY)
A containment sump sample pump is being added for the post accident sampling system (not a NUREG 0578 requirement).
A modification is proposed to add discharge ductwork to the hydrogen recom-biner and revise the hydrogen recombiner vault and Auxiliary Building Ventilation system to prevent the potential of having an unmonitored release of radioactivity from the hydrogen recombiner to the atmosphere following an accident, should the sealed recombiner system leak.
This pump will be used in conjunction with a new connection in the drain system. This will provide the ability to pump highly radioactive fluid from the floor of the containment through the connections shown on Figures 4A and B to the external process system. In addition, connections are being evaluated to allow the processing of highly radioactive post-accident fluids that might be stored in the boron recovery tanks or the high and low level waste tanks (Figures lA, lB and 3A). The area south of the reactor containments would provide sufficient laydown area for an external process system. To reduce the amount of shielding required, the interface connection lines will run through the existing pipe tunnel in the fuel building and terminate in the waste disposal building area .
Modifications to the hydrogen recombiner ventilation, hydrogen recombiner vault, and Auxiliary Building Ventilation systems will be made to comply with the requirements of NUREG 0578, Section 2.1.8.b, by eliminating the hydrogen recombiner vault as a potential effluent release point of unmonitored radio-activity. Attached is a sketch showing the basic recombiner vault arrangement after modification. The exit doorways and ceiling vent will be sealed.
ATTACMENT F HYDROGEN RECOMBINER GAS COOLER OUTLET MODIFICATION DESIGN INFORMATION HYDROGEN RECOMBINER GAS COOLER OUTLET MODIFICATIONS (NORTH ANNA ONLY) ATTACHMENT F A modification is proposed to add discharge ductwork to the hydrogen biner and revise the hydrogen recombiner vault and Auxiliary Building Ventilation system to prevent the potential of having an unmonitored release of radioactivity from the hydrogen recombiner to the atmosphere following an accident, should the sealed recombiner system leak. Modifications to the hydrogen recombiner ventilation, hydrogen recombiner vault, and Auxiliary Building Ventilation systems will be made to comply with the requirements of NUREG 0578, Section 2.1.8.b, by eliminating the hydrogen recombiner vault as a potential effluent release point of unmonitored activity.
Suction air for the hydrogen recombiner heat exchanger will be taken from the 259 ft. elevation of the Auxiliary Building through holes in the floor in the recombiner vault to seismically supported ducts that terminate near the ceiling of the vault. The air discharging from the recombiner heat exchanger will be ducted via a seismically supported system to the Auxiliary Building Central Area Exhaust system in the 259 ft. elevation of the Auxiliary Building.
Attached is a sketch showing the basic recombiner vault arrangement after modification.
Seismically supported fire dampers, rated for 112 hour service, will be in-stalled in the suction and discharge penetrations between the recombiner vault and the Auxiliary Building. Air flow balancing of the Auxiliary Building Central Air Exhaust system will be performed to verify that the required accident flow rates are not affected. The air will then discharge through a ventilation vent stack which is monitored for radiation rel~ase.       To accom-plish this modification, the hydrogen recombiner control cabinet will be relocated to an adjacent area which will provide missile protection and adequate shielding of radiation for personnel operating the recombiner.     The control cabinet will be hard wired with interconnecting wiring to the recom-biner. Reach rods will be added to enable operation of the required manual valves and volume dampers.
The exit doorways and ceiling vent will be sealed. Suction air for the hydrogen recombiner heat exchanger will be taken from the 259 ft. elevation of the Auxiliary Building through holes in the floor in the recombiner vault to seismically supported ducts that terminate near the ceiling of the vault. The air discharging from the recombiner heat exchanger will be ducted via a seismically supported system to the Auxiliary Building Central Area Exhaust system in the 259 ft. elevation of the Auxiliary Building.
Much of this modification can be accomplished without an outage (cut suction and discharge penetrations, install fire dampers, install discharge due ts, and install missile protection). However, installation of the block walls for I
Seismically supported fire dampers, rated for 112 hour service, will be stalled in the suction and discharge penetrations between the recombiner vault and the Auxiliary Building.
the plenum, hard wiring the recombiners, installation of the containment pene-
Air flow balancing of the Auxiliary Building Central Air Exhaust system will be performed to verify that the required accident flow rates are not affected.
                                                                                    .1 tration valves, along with installation of the hydrogen analyzers requires taking the hydrogen recombiner and/ or hydrogen analyzers out of service.
The air will then discharge through a ventilation vent stack which is monitored for radiation To plish this modification, the hydrogen recombiner control cabinet will be relocated to an adjacent area which will provide missile protection and adequate shielding of radiation for personnel operating the recombiner.
North Anna Technical Specification 3/4. 6. 4. 2 requires two separate and inde-pendent containment hydrogen systems (shared with Units 1 and 2) to be operable. This modification will require both uni ts to be in (<lodes 3, 4, 5 or 6 or an exemption to technical specifications during construction.
The control cabinet will be hard wired with interconnecting wiring to the biner. Reach rods will be added to enable operation of the required manual valves and volume dampers. Much of this modification can be accomplished without an outage (cut suction and discharge penetrations, install fire dampers, install discharge due ts, and install missile protection).
*~}}
However, installation of the block walls for the plenum, hard wiring the recombiners, installation of the containment tration valves, along with installation of the hydrogen analyzers requires taking the hydrogen recombiner and/ or hydrogen analyzers out of service. North Anna Technical Specification 3/4. 6. 4. 2 requires two separate and pendent containment hydrogen systems (shared with Units 1 and 2) to be operable.
This modification will require both uni ts to be in (<lodes 3, 4, 5 or 6 or an exemption to technical specifications during construction.
I .1}}

Latest revision as of 06:01, 23 February 2020

Submits Addl Info Re Implementation of short-term Lessons Learned Requirements.Status of Remaining Category a Items, mid-yr Status of Design & Installation of Category B Mods & Schedule for Implementation Encl.Forwards Drawings
ML18130A286
Person / Time
Site: Susquehanna, Surry, North Anna  Dominion icon.png
Issue date: 07/07/1980
From: Sylvia B
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To: Harold Denton
Office of Nuclear Reactor Regulation
Shared Package
ML18130A287 List:
References
RTR-NUREG-0578, RTR-NUREG-578 NUDOCS 8007100273
Download: ML18130A286 (180)


Text

VIRGINIA ELECTRIC AND POWER COMPANY RICHMOND,VIRGINIA 23261 July 7, 1980 Mr. Harold R. Denton, Director Serial No. 536 Office of Nuclear Regulation NO/RWC:smv U.S. Nuclear Regulatory Commission Docket Nos. 50-280 Washington, D. C. 20555 50-281 50-338 50-339

Dear Mr. Denton:

LESSONS LEARNED SHORT TERM REQUIREMENTS SURRY POWER STATION UNITS 1 & 2 NORTH ANNA POWER STATION UNITS 1 & 2 By letters dated August 24, October 24, November 26, December 17, 1979, Janu-ary 10, 31, February 1, 8, 27 and April 1, 1980, Vepco has submitted commit-ments and documentation of actions taken at North Anna Units 1 & 2 and Surry Units 1 & 2 to implement the short term Lessons Learned requirements of NUREG 0578. The purpose of this letter is to provide: 1) a documentation and status of the remaining Category A items, 2) a documentation of our response to the requirements of North Anna Unit 2 Condition of License items 2.D.(6)d, 2.D. (5)j, 2.D. (5)k, 2.D. (5)r and NUREG 0660 items II.B.1, II.B.3, II.E.3.1 and ILE. 4, 2, 3) a mid year status of design and installation of the Cate-gory B modifications, 4) additional design information, 5) the proposed schedule for implementation of the modifications at North Anna and Surry, and

6) early notification and justification for any modifications that may not be fully installed and tested by the required implementation date.

Attachment A provides a discussion of the remaining requirements for each NUREG 0578 item and additional design information. Attachment B provides a preliminary schedule for implementation of these modifications at North Anna Units 1 & 2 and Surry Units 1 & 2. Attachment C provides a description of the proposed seismic and environmental qualification test program for the acousti-cal monitoring system. Attachment D provides additional design information for the post-accident sampling system. Attachments E and F provide design information on additional proposed modifications based upon our continuing review of the events at Three Mile Island.

As shown in Attachment B, installation dates for some of these items are after January 1, 1981. The limited number of vendors who can supply equipment qualified to the requirements of NUREG 0578 are attempting to provide timely delivery to the entire industry. However, their limited production capabili-ties have produced particular

  • material delivery problems for individua~ \

utilities. 'y)D ~ I(S

VIRGINIA ELECTRIC AND POWER COMPANY TO e

Mr. Harold R. Denton, Director It is our intent to complete these modifications at our four units in an orderly fashion that best utilizes the availability of all our resources. We will use scheduled outages where possible to perform these modifications. The Surry Unit 1 modifications will be installed during the steam generator re-placement outage. We currently plan to extend the duration of the Surry Unit 2 snubber inspection outage presently scheduled in late fall and the North Anna Unit 1 second refueling outage presently scheduled for early December to complete the majority of these modifications. The schedule for the North Anna Unit 2 outage is dependent upon the date of issue of a full power license.

We currently plan to extend the duration of the snubber inspection outage presently scheduled for November.

All work that can be supported by material delivery will be done during these outages. No additional outages will be scheduled for the remaining items until all materials are available for that unit. However, modifications will be installed to the extent possible during unscheduled outages.

We hope this letter clearly demonstrates Vepco's commitment to meet the techni-cal and schedule requirements of NUREG 0578 to the best of our ability. We will be glad to provide additional information as it becomes available.

Very truly yours, 41:f;L::_.

B. R. ,*-Sylvia Manager - Nuclear Operations and Maintenance RWG/smv:Hl cc: Mr. James P. O'Reilly Mr. E. H. Webster- NRG/North Anna (w/drawings)

Mr. D. J. Burke - NRG/Surry Cw/drawings)

  • TABLE OF CONTENTS ATTACHMENT A: REMAINING NUREG 0578 MODIFICATIONS - CATEGORY A & B Section Title 2.1.1 Emergency Power Supply

- Pressurizer Heaters

- Pressurizer Level and Relief Block Valves 2.1.2 Performance Testing for BWR and PWR Relief and Safety Valves 2.1.3.a Direct Indication of Power-Operated Relief Valve and Safety Valve Position for PWRs and BWRs 2.1.3.b Instrumentation for Detection of Inadequate Core Cooling

- Subcooling Meter

- Additional Instrumentation 2.1.4 Diverse Containment Isolation 2.1.5.a Dedicated H Control Penetrations 2

  • 2.1.5 .c 2.1.6.a Capability to Install Hydrogen Recombiner at Each Light Water Nuclear Power Plant Integrity of Systems Outside Containment Likely to Contain Radioactive Materials for PWRs and BWRs 2.1.6.b Design Review of Plant Shielding and Environmental Qualification of Equipment for Spaces/Systems Which Hay Be Used in Post-Accident Operations 2.1.7.a Auto Initiation of the Auxiliary Feedwater Systems 2.1.7.b Auxiliary Feedwater Flow Indication to Steam Generators 2.1.8.a Post-Accident Sampling Capability
2. 1. 8. b Increased Range of Radiation Monitors 2.1.8.c Improved In-Plant Iodine Instrumentation Under Accident Conditions
2. 1. 9 Containment Post-Accident Monitoring

- Containment Pressure Indication (ACRS)

- Containment Water Level Indication (ACRS)

- Containment Hydrogen Indication (ACRS)

  • 2.2.2.b

- Reactor Coolant System Venting (NRR)

Onsite Technical Support Center Condensate Storage Tank Alarm and Indication

ATTACHMENT B: SCHEDULE OF IMPLEMENTATION Table I - NUREG 0578 Implementation Status Table II - NUREG 0578 Installation Schedule ATTACB. .MENT C: B&W ACOUSTICAL MONITORING TEST PROGRAM Introduction Test Program Requirements Equipment To Be Tested Containment Environmental Requirements Control Room Equipment Requirements Seismic Testing Test Requirement Margins Failure Criteria Schedule ATTACHMENT D: POST-ACCIDENT SAMPLING SYSTEM DESIGN INFOPJ*!ATION Introduction Design Basis

System Description

Design Evaluation Tests and Inspections Instrument Applications Design Input Requirements Drawings ATTACHMENT E: POST-ACCIDENT RADIATION WASTE CONNECTION TIE-IN DESIGN INFORtf...ATION ATTACHMENT F: HYDROGEN RECOMBINER GAS COOLER OUTLET MODIFICATION DESIGN INFORMATION

ATTACHMENT A REMAINING NUREG 0578 MODIFICATIONS

  • NORTH VIRGINIA ELECTRIC POWER COMPANY Ai.~NA UNITS 1 & 2 AND SURRY UNITS 1 & 2 IMPLEMENTATION STATUS REPORT NUREG 0578: SHORT TERM LESSONS LEARNED REQUIREMENTS
  • June, 1980

ATTACHMENT A

  • 2.1.1 EHERGENCY POWER SUPPLY Vepco has satisfied all the short term Lessons Learned Category A&B requirements for pressurizer heaters and pressurizer power operated relief valves, block valves and pressurizer level indications at North Anna Units 1 & 2 and Surry Units 1 & 2 .

ATTACHMENT A

  • 2 .1. 2 PERFORMANCE TESTING FOR PWR RELIEF AND SAFETY VALVES The reactor coolant system relief and safety valves are required to be functionally tested to demonstrate operability under expected operating conditions. The Electric Power Research Institute's, "Program Plan for the Performance Verification of PWR Safety/Relief Valves and Systems" description and schedule has been found acceptable by the NRC staff.

The short term Lessons Learned Category A requirement to commit to per-form an appropriate test has been satisfied for North Anna and Surry.

Completion of the valve test program is presently scheduled for July 1981 and satisfies the short term Lessons Learned requirements .

ATTACHMENT A 2.1.3.a DIRECT INDICATION OF POWER-OPERATED RELIEF VALVES AND SAFETY VALVES FOR PWRs Positive indication is required for reactor coolant system relief and safety valves. Vepco has installed acoustical monitors on both the power-operated relief valves (PORVs) and the safety valves at North Anna Units 1 & 2 and Surry Units 1 & 2. The system requires checkout during power operation at North Anna Unit 2 and Surry Unit 2.

The acoustical monitor alarms in the control room when any of the valves open. The acoustical monitoring system is powered from vital buses at North Anna (semi-vital buses at Surry) and will be seismical-ly and environmentally qualified by the vendor, Babcock and Wilcox Company, and the utilities. The limit switches on the PORVs, and the pressure and temperature sensors downstream of the PORVs and safety valves, provide backup methods for determining the position of the valves and are discussed in the emergency procedures.

All short term Lessons Learned Category A & B requirements have been satisfied except for the Category B requirement of seismic and environmental qualification of the system. Attachment C contains a draft of the test program description including a schedule. The test program is projected to be completed by September, 1981.

ATTACHMENT A

2. 1. 3. b INSTRUMENTATION FOR INADEQUATE CORE COOLING 2.1.3.b.l Core Cooling Monitor Vepco has installed at North Anna 1 & 2 and Surry 1 & 2 redundant primary coolant saturation meters designed by Westinghouse. Each meter consists of a calculator and continuous display in the control room, is powered from a vital bus at North Anna (semi-vital bus at Surry), and alarms on low margin to saturation. Input to the meters consists of eight core exit thermocouples, two from each core quadrant, three resistance temperature detectors from the hot and cold legs, and reactor coolant pressure signals.

All short term Lessons Learned Category A & B requirements have been satisfied except the redundant safety grade wide range reactor cool-ant pressure sensors at Surry Units 1 & 2. There is presently one non-safety grade wide range pressure sensor at Surry. Vepco has committed to upgrade the wide range pressure sensor to safety grade and provide a redundant safety grade wide range pressure sensor at Surry by January 1, 1981. North Anna Units 1 & 2 have redundant safety grade wide range pressure signals to the monitor.

2.1.3.b.2 Additional Instrumentation Vepco originally proposed in our letter dated November 26, 1979, to install a system of reactor vessel level measurement to be used in combination with the existing core exit thermocouples and the in-stalled subcooling meter. This system would measure differential pressure between the top of the reactor vessel and the bottom of the reactor vessel on two narrow range and two wide range instruments.

Vepco will install a Westinghouse designed reactor vessel level sys tern with the reactor coolant vent system as described in Section 2.1.9.

ATTACHMENT A 2.1.4 CONTAINMENT ISOLATION North Anna - Diversity At North Anna, all containment isolation valves (CIVs) in non-essential systems that were originally designed to close upon receipt of an auto-matic isolation signal meet the Lessons Learned position on diversity.

A diverse safety injection signal is provided on these valves with the exception of main steam isolation valves (MSIVs). Diverse parameters are used to initiate MSIV closure. All Category A and B requirements have been satisfied at North Anna Units 1 & 2.

North Anna - Reset The North Anna design precludes automatic reopening of containment isolation valves upon reset of the isolation signal. However, the automatic isolation valve in the condenser air ejector vent line would reopen after reset if a high radiation condition exists in the conden-ser. Therefore, administrative controls are in effect to disable the high radiation interlock on this valve prior to resetting the contain-ment isolation signal if containment high pressure exists.

Vepco has committed to modifications to North Anna Units 1 & 2 by January 1, 1981 to prevent the condenser air ejector isolation valve from reopening without deliberate operator action. All other Lesson Learned Category A and B requirements have been satisfied at North Anna Units 1 & 2.

Surry - Diversity Vepco has provided sufficient isolation provisions for the few non-essential systems at Surry that are not automatically isolated by containment isolation signal. The penetrations with normally closed manual isolation valves will be locked closed and administratively controlled when open during plant operation.

As a result of recent modifications at Surry, all of the automatic con-tainment isolation valves in non-essential systems except the condenser air ejector vent line receive diverse isolation signals. Diversity is provided by use of a safety injection signal or steam line isolation signal. The condenser air ejector high radiation vent line isolates upon receipt of a high containment pressure signal. As an interim control, this line is manually isolated upon receipt of a valid safety injection signal.

Vepco has committed to provide a diverse isolation signal (contailliuent high radiation) to the condenser air ejector isolation valve by Janu-ary 1, 1981. However, delivery of the high range radiation monitors is currently scheduled for March, 1981. All other Category A & B requirements have been satisfied at Surry Units 1 & 2 .

ATTACHNENT A

2. 1. 4 CONTAINMENT ISOLATION (Continued)

Surry - Reset The Surry design precludes automatic reopening of containment isolation valves upon reset of the isolation signals. However, the condenser air ejector condenser vent line isolation valve will reopen after reset if a high radiation condition exists in the condenser air ejector vent line. The NRC and Vepco have agreed that no modifications are required because this system has an electrical interlock which prevents reset until the containment pressure is subatmospheric. In addition, a recent modification has installed a second containment isolation valve that does not receive a divert signal.

All Category A and B requirements have been satisfied at Surry Units 1

& 2.

ATTACHMENT A

  • 2.1.5.a DEDICATED HYDROGEN CONTROL PENETRATIONS Surry Design The Surry design uses hydrogen recombiners internal to the contain-ment. The Containment Vacuum pumps, the Hydrogen Purge lines and the Hydrogen Analyzer each take suction through the common containment penetrations. Two containment isolation valves located outside the containment will be installed on each of these lines. Since radio-active gases could be flowing through these pipes during the post-accident mode, these systems were considered to be extensions of the containment.

North Anna Design The North Anna design uses redundant external Hydrogen Recombiners shared between Units 1 and 2. The Hydrogen Recombiner line takes suction from the same penetration used for the suction of the Containment Vacuum pumps, the Hydrogen Purge lines and the Hydrogen Analyzer. Each of these lines take sue tion through common contain-ment penetrations. Two containment isolation valves located outside of containment will be installed on each of these lines. Since radioactive gases could be flowing through these pipes during the post-accident mode, these systems were considered to become exten-sions of containment and the modifications listed below were proposed.

The discharge line from the hydrogen recombiner shares the same pene-tration with the discharge line from the hydrogen analyzer. Contain-ment isolation is provided by a check valve inside containment and two remote manual valves outside containment. The combined hydrogen recombiner suction and discharge line is sized such that the flow requirements for the use of the combustible gas control system are satisfied.

Containment Vacuum Systems (North Anna and Surry)

Vepco has committed to install redundant, remote manual actuated valves in series to isolate the containment vacuum pumps from the combustible gas control system. This p~ovides a single failure proof design to isolate the containment vacuum pumps thus dedicating the penetration to the combustible gas control system.

Hydrogen Recombiner System(North Anna Only)

Vepco has committed to convert the manual valves in the hydrogen re-combiner piping to remote manual actuation. This is in response to the shielding review of Section 2. 1. 6. b.

Hydrogen Purge System (North Anna Only)

  • The backup Hydrogen Purge system is presently isolated from the hydrogen analyzers and recombiners by an administratively locked closed valve.

operations.

This system is not operated during normal plant Its use would only be contemplated if both hydrogen recombiners fail. Vepco has committed to relocation of remote manual valves to areas accessible within five days per the requirements of the North Anna FSAR.

ATTACHHENT A 2.1.5.a DEDICATED HYDROGEN CONTROL PENETRATIONS (Continued)

Hydrogen Analyzer System Vepco's evaluation of the radiological consequences to personnel opening the administratively locked closed valves of the hydrogen analyzers has concluded that these valves should be administratively locked open. These valves are located downstream of the proposed redundant containment isolation valves. The hydrogen analyzer piping constitutes a closed system outside of containment, and the opening of these manual valves is acceptable.

All other short term Lessons Learned Category A & B requirements are satisfied. Vepco has committed to complete all the above plant modi-fications by January 1, 1981.

These modifications required purchasing 121 solenoid or air operated valves as replacements for manual valves or for new applications. As shown in Table II of Attachment B, the scheduled delivery for the solenoid valves is December, 1980. We are at tempting to expedite this order and receive partial shipments. However, all valves may not be available to support the scheduled outages. Where possible, the valves will be used for the new applications and late deliveries will be used as replacement valves as resources and plant availability permit .

ATTACHMENT A

  • 2. 1. 5. c HYDROGEN RECOMBINER PROCEDURES All short term Lessons Learned Category A & B requirements are satis-fied. At North Anna, the recombiner procedures will be rereviewed after the modifications of Section 2.1.5.a and 2.1.6.b are complete .

ATTACHMENT A

  • 2.1.6.a INTEGRITY OF SYSTEMS OUTSIDE CONTAINMENT A leakage reduction program has been developed and implemented for both North Anna and Surry. The systems included are those expected to contain highly contaminated fluids after an accident, (Safety Injection, Recirculation Spray, Containment Purge, Hydrogen Recom-biner (North Anna), Sampling, Containment Vacuum, Boron Recovery and Resin Waste. A list of systems excluded was provided and justified.

Inability to use any of the excluded systems would not preclude any option for cooling the core nor prevent the use of any safety system.

Leak rate measurements have been made and reported. A preventative maintenance program, including periodic leak tests, has been estab-lished.

All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna 1 & 2 and Surry 1 & 2 .

ATTACHMENT A

  • 2. 1. 6. b DESIGN REVIEW OF PLAJ.\l'T SHIELDING AND ENVIRONMENTAL QUALIFICATIONS Shielding Review A design review was conducted using the Stone and Webster Engineering Corporation "Activity-2" and "Radioisotopic" computer codes. The NRC specified source terms were used. All systems designed to func-tion after an accident were considered as sources, including Safety Injection, Recirculation Spray, Hydrogen Recombiner, Sampling, Auxil-iary building sump and drain lines. The letdown portion of the CVCS was excluded because it is isolated and because its use in a post-accident situation would be unacceptable. All vital areas were identified and evaluated. Areas where continuous occupancy is required are the control room, the technical support center, counting room, operational support center and security control center. Limited access is needed to such places as emergency power supplies and sampling stations. The need for modifications was identified in our letter dated January 10, 1980 and detailed in our letter of April 1, 1980.

All the Category A requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2.

Vepco has committed to implementation of the following modifications by January 1, 1981 to satisfy the Category B requirements for North Anna Units 1 & 2 and Surry Units 1 & 2.

- Post-accident sampling facilities and associated shielding (2.1.8.a, Additional design information in Attachment D)

- Hydrogen recombiner modifications (2.1.8.b, North Anna only, Additional design information in Attachment F)

- Containment Atmosphere cleanup system modifications (Design information in April 1, 1980 letter)

- Shielding of essential areas

- Automatic temperature control of cooling water to oil cooler to charging pumps (Surry only)

In addition, Vepco has committed to implementation of the following modifications at North Anna Units 1 & 2 and Surry Units 1 & 2. These modifications are not required to validate the results of the shield-ing review or satisfy the requirements of NUREG 0578 but would reduce personnel exposure during the Recovery phase.

Waste cleanup system tie-ins (Additional design information in Attachment E)

- Auxiliary building and safeguards building sump drain modifi-cations (Design information provided in April 1, 1980 letter)

ATTACHNENT A

2. 1. 6. b DESIGN REVIEW OF PLAi'JT SHIELDING AND ENVIRONMENTAL QUALIFICATIONS (Continued)

Equipment Qualification The evaluation of radiation environmental qualification of equipment is proceeding slowly because of the difficulty in obtaining vendor data on older plants. The mechanical equipment review is complete for North Anna and Surry. Vepco has committed to reporting the results of the electrical equipment review as they are available and in conjunction with the responses to I.E. Bulletin 79-0lB. Any neces-sary modifications will be made as material becomes available.

Replacement of, or shielding for, material with insufficient radi-ation resistance in the following equipment has been identified to date and is in progress as noted. These materials meet the require-ments of the FSAR but not the extended requirements of NUREG 0578.

1) Replacement Safeguards area ventilation fan motors have been ordered.

(North Anna)

2) Stainless steel bearings for component cooling water and service water insert check valves to replace teflon lug and plate bearings have been ordered.
3) Replacement service water radiation monitor pump motors have been ordered.
4) Replacement mechanical seal bellows for the service water radiation monitor pumps have been ordered. (North Anna)
5) Additional shielding is being designed for the service water radi-ation monitors.
6) Replacement 0-rings in the high head safety injection pump seal cooler are being ordered.
7) Valve seat replacements are on order for component cooling water valves to the reactor coolant pumps. (North Anna)
8) Charging pump gaskets and mechanical seals on cooling water pump on charging pump are on order. (Surry)
9) RWST cross-connect trip valve teflon seats are under further evalu-ation. (Surry) 1 O) Containment Isolation Valve Buna-N diaphrams will be replaced with qualified material during normal maintenance. (Surry)
11) Electrical equipment as identified in response to I.E. Bulletin 79-0lB .

ATTACHMENT A 2.1.7.a AUTO INITIATION OF THE AUXILIARY FEEDWATER SYSTEMS The auxiliary feedwater system (AFW) is designed as a safety-related system. The AFW initiating circuitry incorporates both automatic and manual system start capability, including manual initiation of the system from the main control room. Manual initiation capability is provided independent of automatic initiation, and the design of the automatic initiation circuitry is such that a single-failure cannot result in total loss of the AF\~ system function. The design incorporates testability, and the system is powered from reliable emergency buses as specified in NUREG-0578 (including automatic actuation of a-c motor driven pumps and valve loads onto the emer-gency buses).

All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2 .

ATTACHHENT A

Each steam generator has three narrow range and one wide range level instrument loops which read out in the control room and are energized from vital instrument buses.

The auxiliary feedwater flow indication is testable from the trans-mitter back to the indicator. The total accuracy of the auxiliary feed flow loops satisfies the requirement of +/-10% accuracy.

All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2.

ATTACHMENT A

  • 2. 1. 8. a IMPROVED POST-ACCIDENT SAMPLING Interim procedures have been written and minor modifications have been made to provide sampling capability under post-accident condi-tions of both the reactor coolant and the containment atmosphere.

The containment atmosphere sample lines will be complete except for heat tracing by June 30, 1980 except for Surry Unit 2, which will be complete except for heat tracing prior to startup. All other short term Lessons Learned Category A requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2.

Vepco has committed to satisfying the short term Lessons Learned Category B requirements of an improved post-accident sampling system.

Attachment D provides a detailed description of these systems includ-ing a schedule. Table II of Attachment B shows the projected schedule for installation of this facility at each station. The existing air operated containment isolation valves are being replaced with direct acting solenoid valves to ensure more reliable operation during accident conditions. Delivery of these valves is currently scheduled for December, 1980. Existing isolation valves will be utilized until the new valves are available and plant conditions and resources allow replacement .

ATTACHMENT A

  • 2.1.8.b INCREASED RANGE OF RADIATION MONITORS Interim methods for monitoring high level releases have been developed and implemented. All potential releases are monitored by instrument-ing the ventilation vent stack, the process vent stack and the main steam header discharge. (The air ejector discharge is diverted to containment on high air ejector activity.) Noble gas releases are monitored by a TA900-TA600 area monitor system installed on each discharge line. This system uses 3 detectors to cover the range from lo-5 to 104 R/hr. The range, power supply and reading frequency requirements are met. Provisions also exist for monitoring iodine and particulate effluents (except for steam line discharges). Samples are collected and the cartridges and filter media are analyzed with multi-channel (GeLi) analyzers.

All the short term Lessons Learned Category A requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2.

Containment High Range Radiation Monitors The proposed containment high range radiation monitoring system sat-isfies the short term Lessons Learned Category B requirements.

- photon radiation is measured

  • - single R/hr ion chamber detector with a range of 100 R/hr to 107 the readout will be located in the control room and consists of a rate meter and strip chart recorder that starts on an alert alarm the system is sensitive to energies from 60 KEV to 3 NEV pho-tons with +/-20% accuracy for photons 0.1 to 3 MEV

- the calibration will be performed each refueling outage. The detector will be returned to the factory for calibration. The rate meter will have the electronic realignment performed at the station or the factory

- each redundant monitor will be powered by a separate vital instrument bus the monitors were purchased to the seismic Category I require-ments of Regulatory Guide 1.100 (1977) and to the in contain-ment LOCA conditions in accordance with Regulatory Guide .1.89 (1974)

- the detectors are to be at separate locations on the inside crane wall above the operating deck level to provide a reason-able assessment of containment radiation level

ATTACHMENT A

  • 2. 1. 8. b INCREASED RANGE OF RADIATION HONITORS (Continued)

The containment radiation monitors will be supplied by Victoreen Instruments Division. Two monitors are to be shipped from their first manufacturing lot in August, 1980. The remaining six monitors will be shipped from the second manufacturing lot in November, 1980.

The control panels will not be shipped until December, 1980, and the Class lE recorders will be shipped in June, 1981.

Ventilation Vent(s) and Process Vent Radiation Monitors To satisfy the Category B short term Lessons Learned requirements for accident effluent monitoring, the following system will be installed on the process vent and ventilation vent(s) at Surry and North Anna:

The high range noble gas radiation monitors will have a range of 10-7 to 10+5 uci/cc (Xel33) under normal background condi-tions (less than 1 mr/hr). The reduction of effluent detector sensitivity under maximum background conditions will not exceed the normal effluent instrument range. A multi-detector system with an automatic backgound correction feature and sufficient range overlap will be provided to ensure complete coverage for all anticipated background conditions. Equivalently shielded effluent and background subtract detectors in conjunction with a digital based system are required to obtain the required sensitivities.

Accident particulate and iodine releases will be determined by retrieving fixed filters for laboratory analysis. The filters will be shielded to provide personnel protection during removal and reinstallation. Several filters in parallel will provide for continuous sampling during filter removal.

Based on proposals received from vendors, an effluent monitoring system that satisfies these requirements cannot be delivered until mid 1981. The interim system will be used until then.

Main Steam Radiation Monitors As stated in our letter dated April 1, 1980, the interim increased range radiation monitors installed to satisfy the Category A require-ments meet all the Category B high range requirements. The monitor's maximum reading 0£ 10,000 R/hr corresponds to a noble gas concen-9 9 tration of 5.4 X 10 uc/cc at Surry and 1.4 X 10 uc/cc at North Anna.

Engineering studies are in progress to improve the low range sensi-tivity of the interim monitoring capabilities in high background con-ditions and account for the "softening" of the energy spectrum after the accident, Until such a system can be developed, the existing monitors will be used along with sampling of the secondary system

  • and off site radiation monitoring.

ATTACHMENT A

2. 1. 8. c IMPROVED IN-PLANT IODINE MONITORING Air monitoring is performed with portable air samplers. Cartridges are removed and counted in the shielded counting room with a multi-channel analyzer. To reduce noble gas interference, silver zeolite cartridges have been obtained. To ensure timely analysis of the cartridges in an emergency, a dedicated single channel analyzer has been purchased for use in air monitoring. The required procedures are in effect.

All the short term Lessons Learned Category A & B requirements have been satisfied at North Anna Units 1 & 2 and Surry Units 1 & 2 .

ATTACHMENT A

  • 2.1.9 CONTAINMENT POST-ACCIDENT MONITORING CONTAINMENT PRESSURE In order to monitor the containment pressure and meet the NUREG 0578 and R.G. 1.97 requirements, two separate transmitters, indicators and a two pen recorder will be installed. The system will be capable of measuring containment pressure from 0 to 180 psia. The transmitters will be located outside of the containment and tap into two existing pressure sensing lines. The transmitter will be qualified for 5 x 106 (Surry) and 2.2 x 108 Rads (North Anna) total dose. The indicators and recorder will be located in the control room. As shown on Table 2 of Attachment B, material delivery is scheduled for December, 1980.

CONTAINMENT WATER LEVEL The existing system for measuring containment water level at Surry Units 1 & 2 consists of one narrow range instrument for measuring sump level and starting a sump pump. In addition, there are two wide range instruments for measuring containment water level. The existing instruments are not qualified to the new design criteria. The wide range instruments will be replaced with qualified instruments to measure the water level up to 9 feet. Two new narrow range instruments will be added for water level indication and the existing narrow range will continue to control the sump pump.

A purchase order has been placed for Surry with Gems Sensory Division of Transamerica Delaval, Inc. to furnish level transmitters qualified to IEEE 323-1974 and IEEE 344-1975. At the present time, there are no manufacturers of transmitters with the required documentation. GENS expects to have testing completed by approximately November, 1980 and is confident that testing will be successful. However, if the qualifica-tion date slips, Vepco will have to install an unqualified transmitter or wait for the required documentation which may call for a modification to the ordered transmitter.

The North Anna Units 1 & 2 containment water level indication system satisfies the short term lessons learned Category A and B requirements.

CONTAINMENT HYDROGEN ANALYZER A continuous indication of hydrogen concentration in the containment atmosphere will be provided in the control room. The analyzer is re-quired to provide readout one hour after the accident .

ATTACHMENT A

  • 2.1.9 CONTAINMENT POST-ACCIDENT MONITORING (Continued)

Four new hydrogen analyzers have been purchased from Comsip and will replace the existing hydrogen analyzers. This replacement is required to upgrade the qualification of the hydrogen analyzers to IEEE-323, 1974 and IEEE-344, 1974. The existing hydrogen analyzers do not meet these qualifications and the manufacturer will not provide nuclear qualified units.

While no vendor has completed an environmental test program showing qualification to Regulatory Guide 1. 89, Comsip plans to have such a program complete several months before other vendors.

The two cross-connected hydrogen analyzers will be located in the auxil-iary building where the existing hydrogen analyzers are now located and will provide redundancy for both units.

The analyzers will take suction from the same penetrations as the containment vacuum pumps and return the sample to the containment through the dedicated hydrogen return line. Indicators and recorders will be located in the control room.

Table 2 of Attachment B shows material delivery scheduled for March, 1981.

REACTOR COOLANT SYSTEM VENT Vepco provided, in our letter of April 1, 1980, the design for the reactor coolant system vent and has addressed all of the clarification items in the NRC clarification letter of October 30, 1979. All of the short term Lessons Learned Category A requirements have been satisfied for North Anna 1 & 2 and Surry 1 & 2.

A purchase order has been placed with Westinghouse to furnish a Reactor Vessel Head Vent System and Pressurizer Vent System that satisfy all NUREG-0578 requirements for North Anna Units 1 & 2 and Surry Units 1

& 2.

Westinghouse has encountered problems during the implementation of these systems at another operating plant. Space limitations and high radiation exposure significantly extended the time for installation.

Vepco and Westinghouse are investigating an alternative method of installing the system to alleviate the installation concerns. This alternative requires connecting the level system to the existing vessel head vent and connecting the head vent to a spare part length CRD:M.

This would require removal of the vessel head to allow removal of the CRDM housing internals. Based on the remaining uncertainties with material delivery, the need for revised design analysis, remaining installation concerns, and the requirement for head removal, we plan to install the level and vent systems during refueling outages as shown in Attachment II.

ATTACHMENT A

  • 2.1.9 POST-ACCIDENT MONITORING AND CONTROL PANEL A Post-Accident Monitoring and Control (PAi'1C) panel will be supplied and mounted in each Main Control Room for North Anna Units 1 & 2 and Surry Units 1 & 2. Each panel will house the controls and indication for the Reactor and Pressurizer Vessel Vents valves, the Reactor Water Level indication, the Hydrogen Analyzer Unit line up control, Hydrogen Analyzer start control and Hydrogen Indicator, and the Containment trip valve control (keyback) and indication for the Hydrogen Analyzers and the Hydrogen Recombine rs. Also, for North Anna, these panels will contain the Post-Accident recorders, which will record Containment Water Level (both wid~ and narrow range). The recorders for Surry will be mounted on the existing main control board vertical section due to space limitations. These PAMC panels must be installed prior to com-pletion of the above mentioned NUREG 0578 2.1.9 items.

ATTACHMEHT A 2.2.2.b ONSITE TECHNICAL SUPPORT CENTER The interim onsite technical support centers established at North Anna and Surry satisfies the Category A requirements.

A permanent Technical Support Center (TSC) will be constructed at each site. It will be designed and constructed to meet all require-ments established in NUREG 0578 and clarified in NRC letters of October 30, 1979 and April 25, 1980.

We are proceeding with detailed design of the TSC. We plan to begin construe tion this summer. Based on recent discussions with your staff, we believe this will satisfy your requirements for installation.

A target date for installation of data display and transmission equip-ment will be established when requirements in this area are more clearly defined .

ATTACHNENT A CONDENSATE STORAGE TANK LEVEL AND ALARM Vepco has committed to providing redundant safety grade level indica-tion and alarm for the condensate storage tank. This modification was to be implemented in two segments. Part A, short term requirements, would install the redundant indication system. Part B, long term requirements, would upgrade both loops to safety grade Class lE. Be-cause of delays in obtaining materials for the short term segment, the modification will be installed at one time. Material delivery is currently scheduled for December, 1980.

ATTACHMENT B SCHEDULE OF IMPLEMENTATION

ATTACHME TABLE 1 NUREG 0578 IMPLEMENTATION STATUS Section Implem. Proposal Implementation Implementation Number Title Cat. (1) Review Review. Status 2.1.1 Emergency Power Supply Pressurizer Heaters A x Complete Pressurizer Level A x Complete PORV and Block Valve A x Complete 2.1.2 Relief and Safety Valve Test Progrmn and Schedule A x Complete Complete Test 07/81 x 7/81 2.1.3.a Direct Indication of Valve A x (2)

Position 2.1.3.b Instrumentation for Inadequate Core Cooling Procedures A x Complete Design of New Instrumentation A x Complete Subcooling Meter A x Complete Installation of New Instr. B x (3)

(E.G., Level Meter)

Containment Isolation A x (4)

ATTACHME TABLE 1 (Continued)

NUREG 0578 IMPLl~MENTATION STATUS Section Im pl em. Proposal Implementation Implementation Number Title Cat. (1) Review Review Status 2.1.5 Dedicated H2 Control Penetrations Description and Schedule A x Complete Installation B x (5)

, 2.1.5.c Recombiner Procedures A x Complete 2.1.6.a Systems Integrity for High Rad ioac t ivi ty Leak Reduction Program A x Complete Prevention Maintenance Program A x Complete 2.1.6.b Plant Shielding Review Design Review A x Complete Plant Modifications B x (6) 2.1.7.a Auto Initiation of AFW Control Grade A x Complete Safety Grade B x Complete

TABLE 1 (Continued)

ATTACl!ME NUREG 0578 IMPLEMENTATION STATUS Section Implem. Proposal Implementation Implementation Number Title Cat. (1) Review Review Status 2.1.7.b AFW Flow Control Grade A x Complete Safety Grade B x Complete 2.1.8.a Post-Accident Sampling Design Review A x Complete Procedures A x Complete Description of Plant Modifications A x Complete Plant Modifications B x (7) 2.1.8.b High Range Radiation Monitors In-Containment B x (8)

Effluents - Procedures A x Complete Implement B x ( 9) 2.1.8.c Improved Iodine Instrumentation A x Complete 2 .1. 9 Containment Post Accident Monitoring Containment Pressure Monitor B x (10)

Containment Water Level Monitor n x (11)

Containment Hydrogen Monitor B x (12)

RCS Venting

ATTACH ME TABLE 1 (Continued)

NUREG 0578 IMPLEMENTATION STATUS Section Implem. Proposal Implementation Implementation Number Title Cat. (1) Review Review Status 2.1. 9 Design Complete A x Complete (Cont'd) Installation Complete B x (13) 2.2.2.b Technical Support Center A Complete B (14)

ATTACHMENT B

  • TABLE 1 (Continued)

NUREG 0578 IHPLEMENTATION STATUS Notes:

(1) Category A implementation by January 1, 1980 Cateogry B implementation by January 1, 1981 (2) Qualification program is scheduled to be complete September, 1981 (Refer to Attachment C).

(3) No additional instrumentation to be installed without further de-velopment.

(4) Completion of diverse signals to condenser air ejector isolation valve at Surry is dependent upon delivery of Containment High Range Radiation Monitors currently scheduled for Harch, 1981.

(5) Completion of work is dependent upon delivery of valves currently scheduled for December, 1980 .

  • (6)

(7)

Completion of work is dependent upon delivery of valves and tempo-rary relief from Technical Specifications.

Completion of work is dependent upon delivery of valves currently scheduled for December, 1980.

(8) Delivery of monitors is currently scheduled for October 1980.

(9) Noble gas radiation monitors for the vents are currently scheduled for mid 1981.

(10) Transmitter delivery is currently scheduled for December, 1980.

(ll) Transmitter qualification program completion and delivery date is currently scheduled for November, 1980.

(12) Hydrogen analyzer delivery date is currently scheduled for Harch, 1981. The hydrogen analyzer qualification program is continuing.

(13) Installation is dependent upon material delivery from Westinghouse.

(14) The interim technical support center will be used until the require-ments for the long term TSC are finalized .

TABLE 2 INSTALLATION SCHEDULE

TABLE INSTALLATIO ~DULE NaR.T\-\ SuR.R.Y UNIT U"'1i I UN IT Z.

11.:'/iNG fc.' f'll.fJl:.1111!?

NA.*l 1":ArL llt."L n.: 7-31 N"-*2- l'ANlL n>.-.L ,J-.CO

':>llll.i:.y-I k' l C 0 1 ~ Dt. ~ (,,

  • 8 I SLli<.l!Y-t N .\-

IJP..-2...

Sul:.11.)'-I 3 5ue.it>' ~~~-ia..J.:. l.".ib>2..1.Ll. f:..:E.PLP-C.El<'\£NT0~ *~J:>.-1 Do.JB'-e ovTA.G.C: R~O.:c.

NA.-L OR RE'LIEF (JN r>'C.11 riY['lL.::c>Ue'.N A~A.LYZ.ER\ \\Y()Rl:Xr"1

\Ui'-ie.>'-1 SPEC -TRY/Ill\ 10

';:Cr...oM!31'J~R., v'ALVE.~

4 --- .. - . ---** ...

.l. I 9 A;sT l~1PtiJ.Jr M~tJtTCJA"'-!;. CoµTRol.-

~"'""-Y-L t*XPE OtrE NAl FU1AL NIJ-/ REC.01.'Dt: R (£* b'*7

/'/A-°l. I N5 r11u_ f, 0 (lrl f)t*. I.I V/:1{/

5Al-lr;: AS /JoRrn /\NN/'.

PAHcl-T"f<.YllJt\ l/JI< !Pl Olrt; SvR.e>'-1 REQL'1P.f!l) n I~ 11\J~WUAlH

/ MAl[k'1AL Df."LIVt,f:y 5111;;.>y-J.. Of AL. L .:2 . I ,C/ J. J"E M S.

    • -*---- -*----+--* - - - - - -
  • 5 N;I- /

,V,.-/*l..

5vK.R.Y-I Su;:,ey.2._

I 1 n/, :::..*.,., _P,,..,p,v,;;o,;:;c~7H.,J-,JJci?E;fiJJ)


__.___,. .,_____._,_.+--'--;:,,," ;;:-;;,~,,°"'-

NA*/

6 U.111N .sv.:;rtrw1 11A*'-

5ui:.eY*I

~u.c;~1-2.

l. /.9 CoAJDthJS~Tc- Sl&A-.k.)C/W,....1K~.hu.AJ NA-I t..C>'L /1.1...;/>l..M Id~;;; INDtlATION 1./IJ* 2. ,/ ./ IV/Al/:.f'IJ\L DEL/Vt.Ry 7

,1;1 .. ,~L*i-e-. H~:.*r;., £'jz;:t 8

v

,_v ,_________._,!-----

5MIE AS NOR.TH ANNA IN<:LU01'5 VALVE REPLJ\C.F.141'1-lf liOUl31.£ OLfr.A';C llc'IU!ill. 0 Of\

T£l' II :Sf*E<'.. HLLlil=

14 1---'-4--1--'---l---'--4-~-'---+--IS_S_U_E___,

L _____ - - - - -*----t-----1 PREP


- - - - - - - - - - - - REVIEW i-.

--u--.---c--.--D---r--E--,---F---G-T

__ -----.........----------*** \1

  • .l --.:"'

---~---~-----...._ ___ _

H I I K I L I M I N I p a I R I s

1Nvc~n<~AT1tJ(1, ALTLi~~11m*1

{.t.L.b .)1tev1ct- tv,11Te.e RR.D1,11/1~AJ Gf LJ!;,1/J.
.. e.x1sr11Jc.. N01<.ru 2 /\/.;;,,.hTO."'!.,AJ-!j ,,Cc,,,,.,p A-?o.:>.

ANNA ~/l.'10"5

!.l.~b 3

- :I I [ t_,

4

- Ii./_,

5

JI' h

~ / Jt. W.1~.:.r ,('.lltVV..; RCS PAtCSSiJ,l!C fK.'~"' N117(~*R.

7

2. I 1', h 1:1 J*lf.(f:_ 1_1/1,1.t,/Jh 1 i-'t'Nt='

b'e:111*.:1/J.;. l. A.:...r.l: r ~

/'f.LLl/.11/v/1 1 10

~. 1 (,b ":.i"t'l kl1LJ1:d 1~ IJ f*lt. Nlf'l R 1/,1 I NI\ *2 f'REL-1HINAP.Y OE~IGN PRt:LIMINAh:Y DE.Sl"N

1*.
  • f'.u.i~l
  • l*ID  :.>1/1&. L.lJI/"._;,

,, N.:~ld I"::. Mt NI!} ~/. t~~:: ~: l


+---+-----f----i----+-----'f----l---~1----------'-------+----+-----l-----+-------------1

,,,.*I ~b 1'(./'..tA:L 11,',i kU; ...

/itl ti-:~

,~~ f 5£/IL'". JN

,,F'l*./\Y >y)Tt/.) PLUG ~~~\ ~ l1"1)R,l<,'1 q L'/

I PRELIMIN/W{ D£SIC.N

  • .. '1.i*l

. 'It I} ~n 12 ---------*-- - - - - - - - - - - - - - -

-STl\RT CC'Nt,n:tl;"1</-I

Jt*~'
i:.~7S

- ,.:.'/f:.r,_

"1~*11-1 1l*-<O "l - f'*O

.-...t f.*1*1-;..!. 1c-bO

  • 14 --**--* ---*---------------...:---------*---

,__ ______ ISSUE PREP

.IMLNLlfi E:i. G.L..::....'.Jr:LJ;J.Ul.':.._

.J.tll°LEJ~f.'l~T/!IJf!N_ _ _.sc.filD.:LC 11.c:1::.1 u l.lWl!l.f..Sl'BttL.011T5_U.;_.

HEVIEW _'{JliL!tL!IL.L.L __ i_c.~~-Li_- _ _ _

15* ------

--~--

1---:-Ap;_E__,.&-----*------------

STON[ & wrns1 t:n t:NGINEERING COf\POf\/\TION A I B I c I n

I

~:*-~~I E I F I G I H I J I K I L I M l N I p a I R I s I T I u I v I

ATTACHMENT C B&W ACOUSTICAL MONITORING TEST PROGRAM

ATTACHMENT C

  • ~.

I~

1*1**

COHT::::iTS Pa;ze 1To.

~ 1. 0 DrBODUCTION 1 1.1 Purpose 1 1.2 Tables of Owners & Equip::;.ent Supplied 2 & 3 2.0 TEST ?ROGF-4'.N REQUIREMENTS 4 2.1 Test Require~ents 4 2.2 Testing Sequence 5 2.3 Test. Pl~ 6 2.4 Qj._ Req_iJ.ire!!le!:..ts 6 2.5 Report 6 7

Contair--e~t ~quipnlent 7 Orienta:tio:l of Contai!Till.em: Eq_u.i:;m::ent 8 Control 3cu.:ll ~q_ui-pment 9 3.4 Additic::.al :Squip...ent fa"!" Co:rt.;...,gency Testing 9 & 10 ll 4 .1. 0 Agir_g ll & 12 4.1.l Tfor:nal Operating Ccrrd.itio::.s 12 1>.l.2 Additional Require:.ents 13 4.2.0 Accident Condition Test 13 4.2.l Temperature 13 4.2.2 Pressure 18 4.2.3 Che~ical Spray ~-posuz-e 18 & 19 4.2.4 Hi.,.....i dity 19 4.2.5 R'-~~iat ion 19 & 20 4.3.0 Post Acciie:it Conditic:l 22

~

~ 5. 0 SONT?.OL RCC.f EQUI?MENT EI[i1J30:"1:,.!...::;_;:;-L~ ?3QUIREH.tS:l1'S 23 5.l ~o:::-::ia2.. 7n-V:-o!!!:.ental 23 5.2 Aging ':est 23 & 24 25 6.l c~~3a=-:::=e::.~ ~~uipment Sei~~~c ~esti~g 25 & 26 5.2 Cc~~r~~ ?.oo= Seisraic Testing 26, 27 & 28

~~~f~"*

-..:. ..... -:: T.G 29

~

[itI' .

I Paae Iro.

ii~ 8.o ?AILT.JRE CRITSRH./FAILURE AVOIDAl:TCE 31 8.l Pre-test Failure P::-edicticn 3l 8.2 In-test Modification 31 8.3 Reco~endations for Systen Tuiprovement 31 fl~,.;,

?*~~ 9.0 S8BFDULE 32 rill@

I I

Em .

J

~.

r

-~

~

!t*tj~"

j

~.

{

i

1*
  • 1 f

[,IJ I

Iii I

  • ij J

!II . ~

~

l

!m., ...

I *"-

15§1 .*.t..l

1. 0 I~i'I'RODUCTIO~f The 3a"bc:x:k & Wilc::::ix Co:::i:pany ValYe Monitoring Systen (VMS) is an 1

acous": ic 8e.se'i s;:*s": e::: "n-:.._icl1 wi.ll !:.oni tor a valve and provide the

_i1 pl=.:::~ ::rperstc:::- *,;:.--:..::. :.::.::o:r=lation e.s to -..rO.ether the valve is open or clo s-e-i. T".::e *y-~,!.S :.:~~::es accele:::-o=.ete.!"s :::iounted on the valve to The VMS has bee=. s::i.::::. to s:.-e=--=.. ::'1.Stcmers thr::;'C.5b.out the nuclear industry and is ty-:;ies c~  ::uclear steem supply systems.

__.:;; its ability to tbr::i 1 -,::"- 1.rorst ~=-se sccicient conditions. 'l'hi s the produce results ~or all custome.!"s.

This ;:e..c"'.r:::ge r~

l,~~ ,._._._ oe tested. *~.::e c-::s-tc~e:- rs req_u..ir~ents, e.s de_,

~

1 r~ ~;~- Oj- th~ s l t

~~

.,. ,.... \

~ (:.l and ...:.... C/ 2. listi~g CI... systezr

~ch o~ ~~ese 72.:"ictions -,.rill be tested to 86-lll909l-QO

2. 0 TEST ~OGR'lM P.EQUIRE-W:-ITS The valve ~onitoring syste!!l components for both the cc~t~~~ room and contai:::l!:!l.ent e~uip.ment will be tested to deter~ine the systems ability to ~eet the customers seis:r:iic and environmental require:ients. The testing for these con.di tions 'nil be :performed to r.i:;a std. 341~-1975
  • r

.- ff~:

for seis::i.ic and I~""" std. 323-1974 for the envirorn:lental conditions.

These testing guidelines were accepteC. by all owners at the 3-21-80 ow-.:i~s  ::!.eeti"l"'!g.

-~

~

2. l TEST REQUTCl2"7'ITS J :

j The ~est will de::onstrate by ty:pe testing that the equipr:.ent will j

-~:. ma1~~ain .functional operability under all service conditions ~ostu-lated. to occur during the installed. life. .The se.!"'rice cond.i tions irrclude:

l. Aging o Environmental effects contribu~ing to failure
2. Seismic o Containment o Control Room
3. Accident Condition I

o Te::perature conditio~s 11 o Pressure conditions o Che:Jical S9ray o Re..d.iaticn

4.  ?*~s-t ~.::~:.C.e:r: Cb:iditio!J.

86-lll909l-00

2. 2 TESTDiG SEQUENCE The sec~e~ce 0: ~es~~~5 is sne~ified in I~~ std. 323-1?74. The tes-t sec::.e:::.2e S -..... .:::.,...;

._._ 7; ____ _~n is:

2. o:;e:ca-::.c:~ o~ e*~=--:--e:J.t to estaol:.sh baseline data for late!' com:parison
3. of the norn2.l operating range

~ec~ ~ied., -:.::.=.s: ~=-2..::ies des:.g:i C:e..sis events.

4. ... _.... ......:.. '""" std.
  • 323-1974 to sil!lulate

===~-.:e-::. =:::::.-==-- .::~e cor!dit~:;=.; e..gin.s test *. rill include radiation "t;l!lle J and vibration;

~--* Ce checked. ou-: ai'te:::- aging satisfactory 5.

=*::nitored a~:.::..g e..:::.d a:teY' -::::.e test to c..e-ce==.i~e satisf~ctory cne=a-tic:i 6.

I ~~:D

~J&~r

~ ~~=t~c~ ~.;ill be ~onitored du.ring the test

[]I --------o of

-.--=-.-.--~,.,C" e~..:.::..-:--e~~ ~~ post accident conditions

( _

-~

..... ,/'

s~at~s e.nd condition of equiprnent and a

-.-.~.--/"""':--- - * ..=:>

  • .rill be components ~ill be disassembled 86-lll9092- __ ;'_)Q

2 . 3 U:ST ?L..~I Tee initial phase of the test prog::-a.::n will be the preparation o~ a testing plan by the testing laboratory. This plan will present the approach to testing, methods, equi~ent, e..nd general procedure to be utilized *:tor the V.M.S testing progr~. This plan will also detail the aging plan and 2.n evaluC!.tion of tbe system's design with respect to seisn.ic and LOCA eYents upon con:pleticn.

The tes~ :i* "' 71  ;,--i:' be S"~fl!:l...itted to all ~,"""I,fS owners f'or their information a.!ld 2

  • 4 Q,A. REG,UI3.:S*.!EITS

.:\ll  :~stoner* req_~e::!.ents, envelopi::g conditions test requi::-em.ents, test reccr~s, equipment calibration, and pe:ci'orr:.ance conditions ;;ill be docu-

mented and placed in a readily auditable packa.ge. The testing lab's

-procedures will be :monitored by E&W as the o-;.mer 1 s agent.

The laboratory :pe=:form.ing the te~ -...~ ::;roduce a conr9rehensi-ve report

-whi::!b. is readily auditaole, and a cq::r will be sent to all :participants.

The ::-epar:. wi2..l :.r:clucle but not be i.:...,.;ted to the following:

l. ~,,.,.,,.,.,,,,..,..y of test/a::e..lysis results

-.--.-:::i,=:-::::::- ..

=- ---~--

...,-=:i,

-~

"g" leYel, freque~c~r, etc.

4 lc12=.tic::::s __. . all se!lsors

6. r:..=-.sc.:ls.s-1...:.::. c~ test results and t-=st a.br.orwalities

-o- 86-lll909l-CO

-L-(901 Md. 2D) - ~~-----

-xti -a""-a,"Z E'::::rt*JE:Jt"[908 u.-eTIZ.;JOE rec;, r:;:qpunf :=::::-;:::.::=:::= .::::

( p;YJ-s::;*+ ::;q o+

---~ ;

~~~ LP--'\'0\. ST or;: ~QD\PMB**r\

\~~-

! *1

~,.i U't'--l;.~\.l~'R~ C>--'0'1.-~

y,:JZr1c.r.:. L i A..C..C £ '-~ t:;<.O~~~o;i D~x JU ~C\\C~ ~r'.

r co~CU\\

l S~\SM\C.>.\...L'<

J ~~ 'i<~Sl~t:..\'MB::l

~

I

. \_MOU'"'\\~~

~Q.o L\'t-l.~ c.e...o\.."i.

L C::S"<~\~'!-1\ '?\?\N~

'Q\..OCK

3. 2 Q?.._; - : **.:._:\TION OF CO!f:E:lil'W@~ EQ,LJIPr'!E.i~""T

~

T-...ro ::r:.entati.ons o:r contaiill:lent eq_uip:=er::.t *,.rill be considered. T11ese are ::.::;::*izontall:r oriented sensor a_-id junction box 2.lld vertically o:r-iented .

.'j

'.i These t~o orientations are shown belcw:

Mt

~

  • I
  • -'l Horizontal Orientation (Shown Aoove) ve:-~i.c2.l *oriertta:tion

~

~* .~ Vertical

~1 ~

'I*;

l 3; v

ifil

!. ..-7 1.:----

j ft t :*..,'

~  ;

I::

f ;_;J .

'I

~

I*

1- '";'0"'"'

- - - ~~---..

(!\

I -*- --""'--

i \ 1 )

" ~

I_,.

\*f~,

t~-~~;

FP"'.sr:

~***;.

tt~:

i" l

11 "f

86-lll90~1-00

\I

'~:"~*~:....;+/-.!.~~r.:~:,v..;;;;~M;:..;?-;....,..~~*~~~~~W.J.~~"2~.~~i;,.~~.:\£.:-1-.~...'\~'c-£:~;...:.'.!!:~;..~-:S.i.-.;::..~7-;zt:~f~,:-:~~-~!'l:::!:-:~'1::.-"':i."!'!:t\~':"t~~-!":'!--.,.~~~----------- ....~~~I:::~'"~-~~.

The :;:\::i:.lo-...-:ing equi:;:::.==..t is housed inside the control room. a.."ld. :::.ust "be

1. 5ig=.al Ccnd.it:..--~-::: _.\::2:pli.fie!", Un:'.:oltz-Dickie Model P2?7-*fE..4..-l 2.
3. 7:..S~,,,,~ Dis:'~ "'7 ~~cC.-, 1 e, Inte:n:at:.o:lal Instru:nents ~*fodel 9270
4. ~c: (Three t"Y:9es : _.:.llen 3radley, Potte!" & 3runfie~d, and Solid State Relay)
5. Model 2603

~

o.

id..e~t:.i'i.ed E.5 may s~c..::s o~ h~dline c~ble. Si:::.~e the --:*::ter:titl f'c~ exists the con.tair.i!:.ent

~-

-~

. ~ . .

2n-coni...e..im::..en~

.J...

--:..~::---~v ~ .:.::h a. ~2=Cline cable of: 200 feet 2.

-.,-:_ t:i 30-.foot h<>.,..dline cable

_ic-_:*:-=:  :=:=:::::i:::g bloc~s tested will have the lin

-~--=

.ot in to s~~ul~te mol!nting conditio~s

.*~*~r~1

-:~.

L:'.:.*


.;~-=

.~'.:.::ction box asse:.bly will be tested in an o:

i*

!~*-*

i i

tt'::}

t~:~ld

  • q,,.. , ...... -.. .... ..-.. .,

\..Jc-_._;~~ :;o' . . :1...!....-*JO

-~-~-----*--  :~.~

The envh*onnenffal capabilities of the Valve r'!onitoring will be demonstrated by type testing actual equipment under si.r:J.ulated service conditions. The VMS ow-ners have s:pecified the ser-.rice conditions for both normal operation and accident conditions. All testing will be perfor::J.ed to the worst ca?e envelope conditions. The following princi-ples have been followed ih designati.:l.g the test requirements.

l. 'I",.. 0 severity of t::.e testing method eq_'-lals O""I"' exceeds the maxi.rw.um

=-==~~ipated se!"'7ice conditions.

2.  ?~ing re~'-'.ire::.ents have been take~ f:ron the customer requirements

~~~smitted to 3&~1'. Each utility must doc~ent their individual require-

=.e.:;ts against the generic test req_ui::-enents to back up ~he test.

3. j;b.en possible, a test will be conducted so that an.upper bound of operation will be established.
4.  :*Iodifie<l and/ or dif:ferent bran-::. eq_ui:p:::J.e2'.1:t *will be testf...:*;_ as a cont ill-gency option.
5. 3gui:pment will be monitored before, d. 1.l!"ing, and af*+ 0 .,. service condition testing .

.~ing sbula"':ion is chronoloe;icclly the first test to be conducted.

cOj ec.ti7e o~ t~e e*;_-uipment agi.1:..g test is to put the Sa!!lnle components

_ st:=::e =:*.;_::.:.~:::::; to its end-oI,-li.fe condition. The aging test consists The fi:=st :pnase is 2-!l. analytical caJ.cula.tion of c:::::.::~  ::::~:::::.::-::::.s, -:::robable fail1ze !lodes, and e!lviror.:..Tlle!ltal effects ~.-"nich The secorrd yhase is a ~hysical aging test to 1 ie?:ify 86-111.9091-CJO .

.---...._.. ______ ------- ~~,..

The ~g~ng ?rogra.w. ~ill =esult in determining the ex~ected li~e of each com~cne~t and a n~int2~ance progre~ to replace or inspecv equip:::!.ent in a plaw"'l.ed s ecue::c: e. The p~ys~c~! accelerated aging test wilJ. produce a set of co.r:r::c:::.e:::t s ~~=~~ ;-~ected end-of-life condition. This end-of-life i.:J.c~~~= ~he reco::::.er..ded ~aintenance and calibration.

---~

The contai::rr;:..ent eq_ui?-

life unde~

.....L.n.e :toll owing r::e.::::

fTor::..al

/"--0..., /" 0 F 60-070 200 o:;'..J ::

70 PSI 40 200 up -co* r:;

~

y__ _,, 09 (Rads)

Mc.x. durin~ flow 200,~ h.nn -.r,,.l~re R2.l15e 2K-8K .CPS cycles l

c~rcles i~t

,,, 1 5,,.o .,.,i' t~~ 130-? oO- - o 200 I  !

Atncs:;:2:.ere -1.25-48.3 200

~* 20Q

-*~- 20-100%

8 up to 2 X 10 (Rads)

86-12..19091-00
  • ----*-*---------.~"'

4 . l. 2 ADDITIONAL 2~Q,UIR.D:!EDTS The e.ccia.enu . - -'- condition radiation exnosure will be included during the aging test for I?:E~-323-1974.

4.2.0 ACCIDENT CONDITION TEST The a.cciC.ent condition for containne:::t eq_ui~ent is the ':.;orst case LOCA c.ransient. The LOCA is sinulated. oy applying the transient condition of t~erature, ~::::-ess"'.l.:."e, hUEidity, radiation, and chen.ical s-pre.y.

All c~~::.itions e:::~ept the radiation a:-e applied sir:J.ultaneously, and the ~,--;~ent -w-i 11 "be :.nonitored during tr-,.,, transient test.

The s..::cident-condition test is the last test event in tne I*~"-323 spec-= .;:'ication. .Jl..f'ter the LOG.A transie.:;:t cond.itions ha.Ye die:i a1-rey, the equipment will be maintained in a post-LOCA environnent and moni tared in operation for a perio :. of thi::::-ty (30) days.

Eac~ of the applied test require:.ents a=e given in the follo-wing sections. A worst case envelo~e co~iition is presented, and each uti2.ity 1 s specific requirement is e.lso nro-v:r.c.ed.. Ea.ch utility should ver-:5:7 that the specifications .:..u_ the plants e..re accUYate and t!:l~::; docu:J.er:;.tation exists to shm.; tt.at t2.e :cequire:::tents a.re conse....,.,ative.

4. 2. l T3*fF:::rtATU?.E is 2.=. e=-~=-=-=~e . . . _,. all custcne:= s:pec:..:f*ied. temperat1..lre transients. 'E'1.e
-~~~2-
... te:=~~~~--=-e ::::-2~n will be ~ithin a 10-second du.ration.

,' _ =-~:;_~..:~e:J.e.c.ts are plot-ted in figure 4.2.1-2.

... 86-lll9C91-00 r~- *~:-;:

    • 're~*npnr.at~.1re of Containn1ent vs Time E!,nvelope o'f O\Jvners FIGURE 4.2.1-1

!')(}(J '"

4:50' 1 F w

400 -

2 MIN

_/ .

l.L 0

~'10°F

~

UJ O:'.

~

300 - 10 MIN _ / 281°F

~ .... ,ffl7',.......,;;;,,;;;.;.;;_....._w_ _ _._ _ _ _ __

...ki6ol__.....__,

  • .:{

n::

LJ.J n_

10 HOURS _ / 220°F ai 1--

DAY~

200 -

1 165oF

    • --* .l:*., -

100 .~

O~~~~-~~-~~--lL--~~~~--~~~-~~~~~~~-'-~~~~~~---'~

10° 100 1,000 10,000 100,000 i

I I

T irne (Sec )

+

1 Day

  • ~
  • ~::!

~rem;Jerature of Containn1ent vs. Time FIGURE 4.2.1-2 FLOfUOA

'TMI NPS 300 -

LL 0

w er:

J I-

<{

er:

LLJ o_

t::

LLl I-Q u......~~~,~~l-"._'d,......~~*=~-.....--~~-------.r...'~--$-*£-_,.."__,.__~Jw**------"""""'--*------------m-**_....-

0 10 SEC 1 HR 10 ,000 l DAY i SEC Time

' ..,, I

,,I

f~IGUnf~ 4. 2. 2-1 lOlr 80

(!)

H 62 PSI U)

Q_ 10 ~j[C I Ltl 60 -;:- -- - - - -,----*--~,......~.....t:__ w,...._, _ _ ~*-**

/

er

J U)

U)

Li.J 15 HOURS LC (L

40 -

- \ 4 DAYS 25 \

PSI ~

. .D ~

20 -

i 10 100 1,000 10,000 100,000 Time (Sec)

Containment Pressure vs. T~me StJecific Custon1er Speci*fications FIGURE 4.2.2-2 100 -

80 ....

"-.../ 60 .....

LJJ n::

'.__"")

U)

U) w a:

(L VEPCO 10 1,000 Timo ( 'S -~c)

As sco~'TI by figure 4.2.l-2, all utilities' requirements c.re g~ouped closely -..-i.tb. the e:x:ce::rtion Of the initial peak temperatUTe provided oy VE?CO. Testir:.g le.cs ~~!l.tacted have indicated a proolE!l T..r+/-tb. reaching seconds. will prooaoly oe a cost inc re-of 340° F anC.  ?.

4.2.2 ??.3SBE The :::=:=~2~-~==.-:. -~~e tr2.!lsie:rt :.s given in f'+/-ga.re 4.2.2.~l. Thls The Eacll.

Ap:pe:::d.ix A to T._,. std. 323-l9T4 a. double U"""'::--

pres-~=-e a duration of' 24 hol.r:-s i;..-+/-th the. enti:!9e tes*t Tee

~--- and.

?

(g2-.l."'/nin

. '1~*-

1 *.! ~

- ---* :::::::-: :=--.:.

,..._18- 86-lll9091-00

....... .::...~~-u_,;r~\[.{....-z~.-----*---**----------~------ --

The following chemicals will be included in the test s::pray:

1. Boric Acid 3. Cr.L!"c!:lE..ted. Water
2. Sodiu:!l Hydroxide 4. Sodiun Thiosulphate Tb.e possibility of' s:prayh1g tll che:i.ictls at t!:J..e same tine is now being investigated oy the testing labs. If a se~a=ate test is required, the utilities requiTing a. uniq:ue spray will oe notified of' the addit**' 'Jnal SPRAY HIS:ORY Ph f
  • 1 11.0..-..'- - - - - - - - - - - - - - - - - - - !

m*

z.4 l-.ou~ s 12.r:le 4.2.4 EL1GITY The in-coiltainr:lent humidity ranges net~,;eC.'!1 20~ a.na i*da%' relative ht!filicty. Al:.. testing wi.ll be pe-::::ir:::ed. u:tilizing 100% relative hmrd :iity.

The envelope radie.tion e!lvi...ronme!J.tal req_uire:ment for the contai~e...rit eq_Ld:--e!!t :.::::::.e=  :::..*:.:~:..=.e!:~ conditions J..s:

T.2 x-:y_o.7 Rads inte.g:-ate.d dose with.. at least

!J.. T l('G

i,,Q*S i..\-

OCn,,.,...,...;~::;-

'- ~ - - - o

,;;,,.,.;.,,'°"

-~ - - o th '-0 -T~l*r~-'-

.::> u hOUI"*

=-=.::!. 9 =::: 106 Rads occ~-ri:::!g du:::-ing the first T"".::e ._._*_-~.,., s::es:..::..c req_ui.re!!:.ents for al2- radiation e_"'CDosure i? gi"Tren 86-lll9C9l-OO

As discusse'i in sectio~ h.1.0, the radiation exposure required for will be added to t~e ~cci~ent radiation dose. _4.ll raaiation will Oe indi~ced. G:u=ing the -;:;es ....

-:-2G- 86-ll.."!..9092.-CO

4. 3 POST ACCID"'"lT CONDITION The VMS will be monitored in the :post accident enviror..me!'!t a:fter completion or all accident condition testing. T~e ~ost accident condition monitoring will be conducted for a neriod o:f 30 d.e.ys.

The post accident condition are:

Te:lp era.tu.re 165° F Cessure 5 PSI

~~__,; d.ity 100%

The ~cs; acciden~ c~n~ition radiation dose is spectfied in thA accident dose.

1119091-00

5.0 CONT?:.OL ~OOM EQUIPMENT The t~erature, :pres~e,and hu::iidity conditions in the control room are s::~i:'ied. ;;-=-1 1 -#--:::::; ~,.,., the operating range of all control rocr:i ""VMS

'E:.e=-e ~=*e ~een no accid.ent condition enviromnental reouire-Tn.e only ~,*-::::::::i.~=~  ::.::==.-:::.on that is sig:iii"icant is aging.

The (;-::::==--:::_:_ roe= =----* .:_-==ental cor:c. ::tions are giYe:::i. below. Tne range oft=.~ ?a="a::iete::-s .:.s 0 ~-ven e.s ~;-ell as the no1~al O:?ere.ting "t1a.J.."l1e.

Rele..:::_-re E:=.id.i ty 4c% 10 C~

., 4 Inte:;:-:?.ted. 3.ad..iatio::i (F-'8) 10.J up to 10 .

5.2.0 AG~G I'3ST

=::.=.:..LE...-:_~ -.  ::.=onolcg=.~~Y* tl:.e.. f'+/-rst te.s-t to Ce COI!C."U.Ct eG..

is to :put the semple cc::.~onent 3.:

its end-of-i 7 fe condition. Tne agir:.g test consis-t

=--=---*-- -----* - fi-,...5~ is an analytical calculation and envirom:!ental ei"fect s*

  • ,..-.. ...... -- The sec end nhase is a physical eging ' .I...
  • -------- ---~

-CeS*G r~

-1'1-o:::k.

~---

"": "'j

..... ~51..llt in deter:;nining expected l+/-=e of e~ch prog:c-22. to inspecL, or replace eq_ui:::-'""ent in 2.

.. -* s?, _! _1__ 1_ 0 0.0..l __ ,'.l rl_______ --~--

The physical accelerated aging test will produce a set of co~ponents in thel: ex:;iected end-of-life condition. This end-of-life condition will include the reco!:!!T..ended maintenance exd calioration.

36-lll909l-OO

6. 0 SSIS:-IIC TES'.::'I:!:IG The contai.noent and c~nt=ol room portions of the VMS equipment have distinctly di.££e~ent -~-"'"?.cteristics and seismic test requirements.

All seis.ni.c te.s=ing ~~_.:_: oe perfon:led w-it~ the equipment mounted in

'.::e equipment to be tested and mounting details are di.sc~se!i i!1 s~ ~ee.

All s.:: * - - *::: =es~-,-'::-"'--::::_ '.:le perfor:::!.ed to ;;:ieet the guidelines presented in 'P'~ S---:?.. 344-15-, .:r. .0.11 owners' sej swi.c requirements will be en-The v~-5 equipment in couta;~went ?rese::=s a problem in obtaining seismic infor-==.tion for the ?ipe mounted e~,.:.i~e!!= and the seis;;:iically restrained Since ci:.e se-.;S7il.;,.. requ-ir:nE:.t.s c::in,,ot be well defined, sine~beat The sine-beat ticn ~n specified as

~ ~~--.:::~===.:~ v=~~ _ =eview of several architect engineers' pipe-

~~~~ _,;.;..;_C::.=::::::. :;;.- ---' -  :::-equ.irements showed that 4. 5 g's is the maximum 7

=-::::: ~ ::-:..--:::e::- should ve:?:"ify the acceptibility of the proposed

_.::e followir..g testing requirements will be fol-s:.z._,_ C::e mounted on the testing table (shaker table)

...... ,::..;-,1~.._o configurations as

-"'~-- - .... -=:,. -~--e-L...-

86-lll90?l-OO

2. Test procedures shall be in accordance with IEEE std. 344-1975.
3. Single sine-beat testing shall be used to test all in-containment equipment.
4. The equipment signals shall be monitored before, during, and after the test, and any unusual characteristics will be noted.
5. A low level sine sweep resoc.ance search shall be performed in the frequency range of 1-35 Hz in each of the three principal directions of the specimen independently.
6. A s~~~1e frequency bi.a.._~ial vibration test shall be performed in fro-~ to back/ver-...ical plane with a 4.5 g input in each direction.

A test at eve"!:"'] resonance frequency of the comp*- nent and at every fre~'ency spaced at 1/3 octave intervals will be performed. This tes~ shall be repeated si:{ times.

7. Four tests as described in 6 above will be performed: first, with the inputs in phase; second, with one irlput 180° out of phase; thi~d with the equipment rotated 90° horizontally; fourth, with the equip-ment oriented as in test 3. One input. is to he induce<l 180° ou~ of phcse..
6. 2 CntTTROL ROOM SEIS:MIC T'ne ~~-s co~trol rcc:n equi:pment consist c= several different electronic corrq;:c::ents mounted. in 2. B&W su:p:plie*i cabi::et or in a customer su:p:plied f'or the VMS
.~::-~-Cate the large. *re:iety of :m.oUD.ting coni'i:gur::,.t tons.~

~,-'~ 1 be seismically "'.:.este".i individually. For syste!!!.s 2'..:.s-:o-::.er's r2.cks, it will be the customer's responsibility control room seismic lecrels at :rack do s~eci~ied levels. A progr~...:;: will be este.Dlished. -to -..teTify

.86-111 909.l-GO

the acceptability o!~ the components in 3&W supplied cabinets. This addition"' ?rogr2.!ll '"-i.2.2. ap:ply only to the utilities purchasing the B&'iv cabinets.

The f'.Jl.lo-..r::.ng testi::..5 ::'-,...Ocedures *,.,-i "11 oe .followed:

l.  ;:;,_.____ testing table (shaker table) sinulate nounting configurations as
2.  ::~--:: -:;*roe~:.:_-~ ~ ~e in e.ccc=~ce ~,.rith r~:.. ri std. 344-1975.

=-::-s~c,.,se. ~'='-- -~ - ::-eauireC. ::-es~cnse spectra TRS-R...-r:tS).

3-  ?.~ =at:.::= ::~.s-25) :::ietb.od. s.,_,::. 1 1 ce used r~or the q_ua.lincation

90SSible.

=-=.=. e..fL:er -crre ~~S-: a.:!d ~ny 1.:2::::.sual c~a:-acteristic.s s!J..all Oe noteC..

5. A 2.o-;; level si::..e reso:t!.a.::.ce sh"l l be in range direct ic:::s
o. O.J.. ... ne s"<=>l l be e.."X"ci ted s:ixmltaneously
7.  :::.-=:.-:_=--~ s~ c~ s-...:=jected to 3C-seca~d du.ration si:!rrulte..neous

--- ---~ s-::ac-=-:. one-third octave apart ave:-::

35 Ez.

f'igure 6. 2-1. T:'le vertical is given

..:::;..; _ _ = ::. __ --

- SSE and GBZ a=~ Doth defined .

-:e..=-= __. -- s:':lall be 2.n2.lyzed


..,._._,;. by a spect:ru::i. arlalyze::- at 1-5%

.-=-=::: -..._::_;:- -=:3E. 5% dam::ping_is snecified in 1~77 std.

1mlL'1.o~m daI::::ping.

  • 86-lh)109~L-00

lC. T!:le test sh.e.ll consist of fiire (5) OBE tests a::::d one (l) SSE test in each orientation of the equi:;JI:J.e~t.

-28 86-lll9091-00

- . . . . . . . . . ........... ,,.....,_..,.---- ., ... , :. -~-----e,..,.,,.,_, **-*- 1vr-.*t; .*--* ~"'-"*~*~*~*-*-l*':-.;{.**,~---* '!'-.'..';'[*--1;----~~:~~

i[~****-----:.:_~;_,;;;:;J---'.1;:-..::~:::J---'J;;:;;:j --**}:.;;~ ******----~ ---~~ --*--**~=~ **----~.~~-----*=---*~:*:-"~.----~---- ~*** ~f~z1o1 t11&-f ~2

.,_,*:* . ~~:L~;- 1 ~=-*_*iiJ.Xl t!]jltiil'.~ f~.w- *r\:' .

I 1

D '

v'iec1un"ec~ ~-~es1Jonsa ~pectra

!II' ,,..

Gic~ntrol Hoon1 Con1ponents - ~Jorlzont~I Direction FIGURE 6.2 .. .l.

1() ........ t). 0% DAMPING 1'.:t.At(ILl~.Jal...!q1~:t~i;H1;ruu~wU~}Ul~ ... ,..\'~~9.,f~~u~~IO ...,,..t>o~llCIO;~#ll~~l~JJIJ.\...........I..

SSE 8 -

5.0% DAMPING 6 -

o ... _____ L -

1

... J. _ _ L.__1._.1._ ,....1 "I 2 3 4 5 6 7 8 9 10 20 30 40 *50 60 70 809C Jill FREQUENCY (CPS)

........ 5.0% DAMPING tll 4.0 Ol J

ti H

.. 5.0% DAMPING tc

~

-J Ld u

u

<[

2.0 : - ------

0 ~--~~--.-1~~-.1..~--A.~~-.&.--4---.l--"--'--~--~~i..-----1~-.J.----....-.--i-__,_-.......v 0 2 3 4 5 i5 78910 20 30 40 50 60 70 80 90 100 I j FREQUENCY (CPS)

ac!
i cu..sto
::.er 1 s re*:;_.. -;-e::.e:::J.ts have been exa,.,,ined and r,rnrst case envelope cond.it:.*::::ns deri7ed.. _:.=..e e!l.Veloping test conditions a.re specified i..11 t .j e No addi-tiona.l ~5..:~s D..E.7e c=e::?. added to tb.e ~..:.tility supplied req_uirenents.

These :margins will be added.

to

l.  :':4.:i C). ~,~ 1 ~icat~on testing is conducted t~eature :rn.argin shall oe
2. P:--ess!Ze: +lQ ~erce~t of gauge 3.
4. vc:_-:.age: +10 ?e=ce:r:;.:t o:f rated ~"-::U-c..e 5.

/'

o. .Ti=.s--.: _;..l.O ~e=~e!:t c=- t~e perioC.. *~-= ~:!..::.e the eq_u.i::'~e::t is required

_ c_,_ o-,.,-:.ng 1

. :ia.s.is event T. ~--

=:=...~. _;:;,_,:=. . -

.... .;:).

  • t~~sient peak tel'.rr!Jerature

-:--*~"'

..... rt_t....;. ...... 7.0-1)

~=---~.: __ _

.. _ _ =.,.._, _ _ _ *

.e.dded e..cc e2.eratio!J. a=

86-lll909l-GO

l\ccident Conditior1 Test Environrrter1t I

i!

1:

L II.  !

i I i I 10 2 2 a 10 2 to 6 10 30

.Ii SECS MINS llHS SECS MHIS MINS 69 -~*

GO

- - -* - - *-* IHlS HRS

.........~_..............~............."""""""'--..-~

69 DAY DAYS I

I i

PSI PSI

['  !: i I* I I!

I; UJ 0:::

t I I 28 PS I I: VJ

(/)

I'I II II UJ I . 0::

a..

Ii i  ! ~ I I . .

~:

I .

i ,:

i '.

I I *'

o  : I I ~

0 10 2 2 0 10 15 4 30 I SECS MINS HRS MINS HRS DAYS DAYS I '. TEMPERATURE/PRESSURE LOGA DBE PROFILES I:

i; i :* Fi gu r o 7. 0-1 I ,.

! f

re

~l

8. 0 ?AIL1.JRE CRITIBIA/?AIL\J?..E AVO ITI."'..NCE
    • I]*

"l The o::ia:-a:c;ion of tte V<>i-:re ~fonitoring System will be checked during i and aft e.:- test The equi~ent will be considered faile~

~J if' at ~~y t+-e d.oes -,....,..;.. _..,.., :pe!"for::i. its intended task. The large VMS i ape!"at.;...,g  :::..a::-gi::.s e.__c-.,.- signif'ica:it si::-ia.l degradation to occur

] while t:'::.e  ::.~* "'te::  ::-,,,......,,--~ functional. 'Y.:'.le test will be conducted I

so e.:J.d~a.nce c~ be established for any 11 faile::. De re:placed and ccnrpletion.

Each c==c::r.ent of ~::.e '72*:!.S is oeing ex221ined 2X.d accessed a fail~e

. . ~

~es-cec. co::panent replacE=!n.ent in ca~= of a fa+/-l:=e.

Sho"Ul*i _ Cc::}:C~ent

  • ----*:.-.-~'"":

'be expected. to fail, B&W will reco:t!!!!le!'.ld

~ro7e t:-:=.e system r:~~.iability. If* possible,


; tested. as specified previously.

~--

-- - _..:::::::::;: =.::.d recc:::!:lended. 2odifications will be made 2.S

~. ~ ~

--::olems occur.

11

>J I

I 11,

_*:JJ 86-ll.19091-00 i-i

..".il . 9.0 SCHEDULE 1'u .1* The :milestone in the YalYe monitoring system test program and exnected i completion dates are provided oelow:

ll- .

o Tran.Sl!lit request for quote to testing-le.as Hay 5, 1980

~'

. o Receive ~uote from testing lab J\me 2, 1980 o Conple.te 3-&W rev-iew of quotes/select test lab June 20, 1980.

o Iss\le ::-eYision.:; to ::grog:ra.r:i. & cost Jm1e 20, 1980 o Rece~7e custo:::.~ aut2orization/is~~e purc~ase order July 1, 1980

~Tuly 1, 1980 00 .

o Rel~e of test :;il2.:l October l, 1980 Balar:ce of schedule depends on ....t.JeSvlng .... . la.0 se2..ected.

86-1119091-00

B&W Valve Honitoring Svstem Summary of G~ Radiation Dose In Containment Recuired bv Customers for Testing Post Accident Instantaneous LD-Year Dose Integrated Dose Dose Utili!:7 2.ads Rads Rads i 7

..!..

  • Arkansas ?ower &. T..; ::-=i~ 3 .3 X 10 -

i I

?°::"""'IT!p & Cable

!  :;_c x 10 -

9 I s:-=~sor I

i - )-

..:... . ,,. _, 0

_7 8* 6 I 2. Carol~~- ?7A>er £ r~~- -

6z 9 x 10 **

.., _,_ 10 4 2.0 6

.) . '7

- 2 x 10 **

I

/'

0 ...t 7 6 5

4. Cons~e:::::;~ ?owe"!: ~

"7 10 -l.. 3 -x ... 1 0 '*"'""' l.7Xl0 l

@ 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> I .) . Flo-.riC.a :?ow er & Li~~ 1 'I 10 8

TID 6

6. Jersey Central 5 x 10 8

i . General ?ublic Util. 2 x 10 I 3.

0

-'* Northe:::st TI--iJ ities

10. North.e.::::r St"~as ?C\;"e-~ ":l

_re--.5.5 "'"'

X l..1nb Set & Cab-::-

7C. x 10 1

8

'11 l I 10

12. Wisccr--_s-in ?c:b:i_j_c Serv:iJ::..:

-_-_2;__._:: 7

- 7.2 x 10 i.

---~-

  • *** -.=..,,' =

"."'22- 86-lll9091-00

ATTACHMENT D POST-ACCIDENT SAMPLING DESIGN INFOR.lvlATION

  • ATTACHMENT D TABLE OF CONTENTS I. Introduction 1 II. Design Basis 1 III. System Description 5 IV. Design Evaluation 12
v. Tests and Inspections 15 VI. Instrument Application ,-

Attachments Tab l - Design Input Requir~~ents: Document No. 5324-P-101 Tab 2 - North Anna Unit 1 & 2 Process Flow Diagrams, P&ID's, General Arrangement Drawings Tab 3 - Surry Unit 1 & 2 Process Flow Diagrams, P&ID's, General Arrangement Drawings Tab 4 - Liquid Sa~ple Panel, Containment Air Sample Panel, Chemical Analysis Panel, Functional Descriptions

  • I. Introduction The High Radiation Sample System (HR.SS) has been designed in respcnse to NUREG 0578 "TMI-2 Lessons Learned Task Force Status Report and Short-Term Recorrnnenda-tions" Section 2.1.8.a, entitled "Improved Post-Accident Sampling Capability."

This recorrnnendation states that timely information from reactor coolant and containment air samples can be important to reactor operators for their assess-ment of system conditions and can influence subsequent actions to maintain the facility in a safe condition. Following an accident, significant amounts of fission products may be present in the reactor coolant and containment air, creating abnormally high radiation levels throughout the facility. These high radiation levels may delay the obtaining of information from samples because people taking and analyzing the 3amples would be exposed to high levels of radiation. In addition, the abnormally high background radiation, high sam-ple radiation, and high levels of airborne contamination may render in-plant radiological spectrum analysis equipment inoperable during and after an accident.

II. Design Basis The High Radiation Sampling Systa~ (HRSS), as shown for ~orth Anna and Surry in the attached Process Flow Diagrams and P&IDs (Tabs 2 and 3) , is designed to obtain and analyze representative samples of reactor coola~t, containment atmosphere, and the containment sump in a timely fashion after the occurrence l

  • of an accident. Prompt sampling and analysis of reactor coolant and contain-ment atmosphere sample can provide information important to the efforts to assess and control the course of an accident. The system -provides the abil-ity to obtain grab samples from each reactor coolant hot leg, each reactor coolant cold leg, the RHR system, the CVCS mixed bed demineralizer effluent, the containment sump, and the containment atmosphere within one hour after the accident. The system has the capability to cool and depressurize samples at high temperature and high pressure to allow grab sampling and in-line chemical analysis.

The system also provides the means to re.~otely dilute reactor cooldnt and containment sump samples by a factor of 1,000 to reduce the personnel expo-sure levels which would otherwise be associated with post-accident conditions.

This initial dilution also reduces the exposure that would be associated with subsequent manual dilutions, if required.

The diluted and undiluted liquid grab samples and the containment air samples are put into specially designed transfer carts with integral shielding. Place-ment of the samples inside the shields can be accomplished with minimal operator exposure by virtue of the cart being designed to nest within sample panel and cart integral design. The transfer carts facilitate ease of sample rr.ovement to designated areas for isotopic or chemical analysis with low operator exposure.

A feature of the sampling syst~~ is the ability to strip reactor coolant of dissolved gases for grab sampling and analysis.

2

  • An in-line chel7lic2l c.n2.lys5.s p.::nel is includeJ to facj~li. tatc~ relnatc: mec:.su.r:c*-

posu..r:e to the o:;<:~rato::. Tbi.s. chemicaJ. ;mc,lysis panel bas the c2*,~.,*,:bili ty to as well as, con~airu0~nt hydrogen conc2ntration2. The capatility to measu~~

chloride in-J.ine at Surry is also provided. Chloride 2nalysis is not planred for North Anne: since it is a fresh w;_;ter s:i.te. E.::.ch p0.i:c:.rr*eter is either: in-dicated or recorded on a reraote control p2nel located in a sep&rate area of the st.::tion.

The Hl1SS sar:1pl*2 pancols \*1ill be located with'.cn e:d.st.ir-:.g sp.:H'.:'2 in au:*:-

lines, outside o[ containment, upstream of the existing saruple system The IIP.SS Syste.iTi Desig*n Input H.eqL:.ire1~~2nt DocLunent, 532(-r'-*i.Ol.r Revo 1 J..S attac!"led ..."anina

. . ' Tab 1. This dcctrment dc:scri.bcs crit~;ria for systerr-. equi.pm2nt and s'.:ation intc~rfc.ces .

  • 3
  • Sp:::cific d,::sign criteri.01 frc::1 follows:

~JUREG 0578 are addressed in this docu:n1=-11t c:s Design Inp~t Requircraent Refe~ance (Document No. 5324*--P*-101, Rev. l, ::_s~~; T~-----

l. E;;~diation f:::*:*posure liIL,it cf 3 rem Section l7.0 whole b:x3y and 18. 75 rce.m extremity at t = l hour after the accident
2. i\ccident source tem. basi.s (Reg. Section (.0 Guide 1.4)
3. Cor:sid2ru.tio;1 cf. operator exposure Scctioi1 17. O fro:n sources external to sa::cpli.:1g equip~nent
4.  ?.nalyses of boi:on anc. chlorid2 Section 13.0~ Chloride a~alysi~ at Sur.ry onlv routed to a new 1-5:\.SS \*!&Ste T2nk fro:n ;-:bei:-e the fluid can be pu:;i1.i_~'2d or " .

C!l.S-placed ',!i\.:h nitrog,.::n b2,ck to the contairi:7<<::nt su1;"tp. Con:12ction;:; arc provid~d to rcsirculate, purge, and drain non-accid*2r:t liquid swr:ple::; 1ri.2 norn:.::11 sc..:,\-

ple system flow pa i:bs for purposes of oper .:1tor traini.ng and pe:* iodic eqc:i p:r.en ':

testing.

The contninraent at.:nosphere saD.ple panel wi.11 have the capabili t".;7 to t.:lke sue-tion fro:-.1 w:i.t.hin the existir,g hydrogen monitor syst0>:*1. Motive 1.:...rc2 f:or t.he HRSS contair.rnent atmosphere sc.m~1le panel is provided by an integrc.l nit:::oge1:

eductor. The discharge of t.l:e containment at.'"riosphc:e p.3nel will b-2 routr.:!cl back to the contai.nment *;i:i. the existir~g hyc:*ogen monitor system pi.ping.

  • The FIRSS system and com:i;;onents are designated non-safety related and are considered Quality Group D, non-seismic, as defined in Regulatory Guide 1.26 with the exception of two syst~~ com:i;;onents. The first of these exceptions is the electrical isolation breakers which will allow manual tie-in to the station emergency bus in the event of failure of normal system power. The second safety related item is the North Anna component cooling water supply and return valves which will interface with an existing safety class 3 pip-ing system.

III. Svstem Descriotion

  • Representative :i;;ost-accident liquid and gas samples from either reactor unit will be routed to one common High Radiation Sample System.

received from the sources listed in Table III-1.

Samples will be The tie-in locations for all reactor coolant samples are outside ~,e contai~.ment ~'Pstream of ~~e existing sample system coolers. Since the existing reactor coolant sample lines are combined into common headers inside containment, one corrunon hot leg sample, and one corrcrnon cold leg sample, for each unit is routed to the new h"RSS liquid sample panel.

The motive force for all reactor coolant samples is primary system pressure.

A new environmentally qualified containment sump pump will be provided to obtain containment sump samples. The motive force for containment a~~osphere s~~ples will be a nitrogen eductor contained within the contain~ent air sample

  • panel.

5

The :mss for liquid samples is designed such that samples will be recircu-lated to purge incoming lines and ensure that the grab sa~ples are represen-tative. Five times the line volume will be purged during this operation. If the primary system is at operating pressure this recirculation liquid can be purged to the containment sump without intermediate collection and pumping by the HRSS waste tank and pump subsystem. For system test and operator train-ing, liquid samples can be recirculated via the normal sample pathways to the appropriate volume control tank or high level drain tank purge headers.

HRSS Subsvstem Descriotion The HRSS is comprised of five subsysta~s. These are:

1. Liquid Sample Panel and Ccolers
2. Containment At.~osphere Sample Panel
3. Ch~~ical Analysis Panel
4. Waste Tank and Pump S. Process Control Panel Licruid S2I!lole Panel and Coolers The Liquid Sample Panel (LSP) a~d Coolers _E:rform multiple functions. These are:
  • 1. Sample cooling to about 13S°F during the 1200:' during the grab sample mode rec~rculation mode and about 6
  • 2. Sample depressurization
3. Liquid degassing to obtain a representative dissolved gas sample
4. Liquid degassing to the extent necessary to allow in-line chemical anal-ysis downstream S. Provides undiluted liquid grab sample inside a shielding transfer cask
6. Provides diluted (1,000 to 1) liquid grab sample inside a shielded trans-fer cask
7. Provides diluted dissolved gas grab sample inside a shielded syringe
8. Provides integral shielding to minimize operator expcsure while working in front of the panel
9. Provides a ventilated cabinet, held below a~~ospheric pressure, to contain potential LSP subsystem leakage. Cabinet ventilation is connected to G~e auxiliary building HV?.C system.

The LSP is divided into three modules based upcn the pressure of the incoming liquid. The reactor coolant module will handle hot leg, cold leg, and RER samples. The demineralizer module will handle the Chemical Volume and Con-trol System mixed eed demineralizer effluent samples. The radwaste module will handle the contairuuent sump samples.

7

The LSP contains provisions for flushing with station primary grade water.

The flush water will be routed to the Waste Tank.

A detailed description of the LSP and coolers is located behind Tab 4 attached to this document.

Containment Air Sam~le Panel The Containment Air Sample Panel (CASP) performs the following functions:

1. Provides the motive force to obtain a representative grab sample of containment at.~osphere. A nitrogen eductor will be provided which is capable of operation when the containment pressure is either slightly negative or at the maximum post-accident pressure.
2. Provides four shielded sample bombs to obtain containment aG~osphere samples on a preprogranmied timer sequence.
3. Provides a motive force by a nitrogen eductor to celiver containment air sample flow to the Chemical Analysis Panel for a~~ospheric analysis to determine the hydrogen concentration.
4. Provides a means to purge and backflush containment air sample lines back to the affected containment.

8

  • 5. Provides an integrally shielded panel front to minimize p::ist-accident operator dose rates.
6. Provides a ventilated cabinet held l:elow atmospheric pressure to contain potential CASP system leakage. Cabinet ventilation is connected to the auxiliary building HVAC system.

A detailed description of the CP~P is located behind Tab 4 attached to t~is document.

Chemical Analvsis Panel

  • The Chemical Analysis Panel (CAP) performs the following functions:
1. Accept a preconditioned, ccoled, depressurized and degassed, liquid sample from the LSP for post-accident chemical analysis for boron, pH, dissolved hydrogen and dissolved oxygen, and hydrogen concentration in ~st-accident containment at.~osphere samples. (In addition it will orovide in-line chloride analysis of post-accident liquid samples for Surry.)
2. Provide remote readout of chemical analysis panel parameters on the remote ERSS Process Control Panel (FCP) .
3. Provide an integrally shielded panel f=ont to minimize ~st-accident operator dose rates.

9

  • 4. Provide a ventilated cabinet held below atmospheric pressure to contain potential CAP subsystem leakage. Cabinet ventilation is connected to the auxiliary building HVAC system.

Table III-2 lists the types of instrumentation to be used for determina-tion of post-accident chemical parameters. Instrumentation has been selected based upon the following criteria:

(1) the ability to measure accurately the full anticipated range of paraneters, (2) the ability to withstand high radiation fields, (3) the ability to reproduce results after calibration,

  • (4) the ability to measure chemical parameters with small sample volumes.

The CAP is designed with built-in instrument calibration equipment. Instrument cali::iration will be performed by station personnel on a periodic basis to maintain the CAP in a ready condition and to minimize instrument drift.

Waste Tank, Pumps, and Evacuatino Compressor The Waste Tank and Pumps collect and return system purge and flush liquids to containment. The Waste Tank and Pumps will be bypassed during those periods of line purging when primary syste~ pressure has sufficient ~otive force to return the purge volume directly to the containment without intermediate col-lection and pump-out. The liquid sa~ple purge return lines to the contain-ment for liquid sample purges will be routed to the contain~ent sump. The 10

  • Waste Tank is sized to hold the volume of liquid residue generated by the acquisition of two post-accident samples.

Two 100 percent capacity HRSS Waste Tank Pumps are provided to purge the tank contents back to the containment. A nitrogen.purge connection is provided to force the contents of the tank back to the containment in the event of pump failure, and also to maintain a nitrogen blanket in the Waste Tank to preclude accumulation of hydrogen.

The Waste Tank will be held under a slight vacuum at all times by an Evacuating Compressor and will be nitrogen blanketed. An Evacuating Compressor is pro-

  • vided to maintain the tank vacuum. A bleed-and-feed Evacuating Ccmpressor and nitrogen purge flow.

systa~ will control the The Evacuating Compressor dis-charges to the containment via the same flow path as the CASP containment return line.

Tables III-3, III-4, and III-5 provide design data information for the Waste Tank, the Waste Tank Pumps, and the Evacuating Compressor respctively.

Process Control Panel The Process Control Panel (PCP) performs the following functions:

1. Provides remote location in the Service Building in a low dose rate area
  • for operation of all HR.SS syst~~ remotely 09rated valves 11

~ith the

  • exception of the existing sample system containment isolation valves which will be operated from the main control room.
2. Provides space for Chemical Analysis Panel (CAP) instrument indicators and recorders.

The PCP will contain a complete system graphic display for the LSP, the CASP, the CAP, and the Waste Tank Pump, and Evacuating Compressor subsyste!il. A communication system will be provided between the sample panel area in the auxiliary building, the PCP in the Service Building, and the main control room *

  • IV. Desicn Evaluation The h"RSS system equipment is designated Quality Group D, non-seismic, as de-fined in Regulatory Guide 1.26. A static seismic analysis will be performed on system components to ensure that seismic failure will not damage existing station safety related equipment or the building structure.

HRSS electrical power supply will be from the normal buses; however, a manual tie-in to the station emergency bus will be provided in the event.of loss of normal power.

System air-operated valves which are required to operate in order to obtain the one-hour reactor coolant s~~ple are furnished with dedicated instrt.:!Tient 12

  • air accumulators so that the ability to open the valves remotely will be avail-able in the event the station instrument air system is temporarily inoperable.

System interlocks are provided throughout to perform the following basic functions:

1. To ensure samples obtained after an accident can only be returned to the affected contai~~ent. A similar philosophy is applied to system purge and flush fluids.
2. To ensure that post-accident sample fluid cannot inadvertently enter the existing sample system.

Permanent system connections to the station nitrogen system are provided along with a nitrogen bottle back-up system.

Redundant Waste Tank Plli~ps are provided to pump post-accident samples back to t.1-ie affected containment. Nitrogen can be used to empty the Waste Tank in the event of dual pump failure or loss of electric power.

System flush water is obtained from the station's primary grade water system.

Primary grade water connections to the system are quick disconnect type.

After each use of flush water, the system will be disconnected to ~inimize the possibility of primary grade water contamination by post-accident samples .

  • Each sample acquisition will be followed by a flush to keep background radi-ation levels to a minimum in accordance with the ALJ>...RA concept.

13

  • A shielding analysis has been performed to ensure ~~at operator exposure while obtaining and analyzing a post-accident sample will be less than 3 rem whole body and 18.75 rem to the extremities as recommended in NUREG 0578.

Operator exposure will be accumulated while entering and exiting the sample panel area, operating sample panel manual valves, positioning the grab sample into the shielded transfer carts, and performing additional manual sample dilutions, if required, for isotopic analysis. The major sources of operator exposure are from:

1. General auxiliary building background from components not associated with the HRSS sampling system .
  • 2. Direct radiation from samples lines which are routed behind the shielded HRSS Sa~ple and Analysis Panels.
3. Backscatter from the walls and roof ~ehind and above the shielded HRSS Sample and Analysis Panels.

The operator exposure from source (1) is limited by the stay time associated with sample panel manual operations and bv selecting entrance and exit routes to ~~e sa~ple room via the lowest dose rate paths.

The operator exposure from source (2) is limited by the integral shielding located in ~~e front of each of the system sample analysis panels (LSP, CAP, CASP) . This shielding will consist of up to six inches of lead shot poured i~to panel front sections.

  • The operator exposure from source (3) is limited by positioning the panel in an orientation such that the distance from the back of the panel to the nearest wall is maximized to the greatest extent practicable. The shielding analysis indicates for the locations selected at North Anna and Surry, addi-tional shield walls above the panels will not be required for this source.

For the worst case assumption of obtaining and analyzing a one-hour reactor coolant sample, the maximum operator exposure will be less than 2. 5 rem whole body and 15 rem to the extremities.

V. Test and Inspections The HRSS is designed to be used under post-accident conditions and will not be used regularly during power operation, cooldown, and/or shutdown. There-fore, the system will be tested and maintained on a regular schedule to en-s~re all system components are in ~~e ready condition. Station personnel will undergo regular training sessions to ensure good familiarity with the function and operation cf the system. The Chemical Analysis Panel Instru-mentation will be recalibrated and tested on a regular basis to ensure accuracy and readiness of the instruments.

VI. Instrument Annlication The Chemical A:-ial::!sis Panel (C.1\P) measured parameters will be indic2te*:J and recorded on the Remote Process Control Panel. Parameters to be measured are boron concentration, pH, dissol*:ed oxygen, chloride (for Surry), cissolved 1 -

_::i

  • hydrogen and containment air hydrogen concentration. Local flow and pres-sure indication will be on the face of the LSP, CASP, and CAP to enable the operator to manually align and adjust system flows.

The Process Control Panel will permit remote operation of all HRSS automatic valves including the existing inside containment sample system valves which are normally operated from a panel in the existing sample room.

Isotopic analysis of reactor coolant and containment atmosphere samples will be available within one hour of sample acquisition. The postulated activity concentration of post-accident samples is far in excess of the capabilities

  • of normal counting equipment and geometries.

required prior to analysis.

coolant samples.

Thus, sample dilution will be The LSP provides a 1,000 to 1 dilution of reactor However, depending upon the accident condition, additional final dilution can be accomplished in a shielded fume hood

  • The diluted sample can then be analyzed by existing laboratory counting equipment.

The LSP provides a shielded syringe sample of diluted reactor coolant gases which can also be further diluted, if necessary, in the adjacent shielded fume hcod. These sa~ples can then be analyzed in existing laboratory count- .

ing equipment.

The containment a~~osphere samples are collected in l ml shielded sample bombs

  • in the C~.SP. T~ese samples will be isotopically analyzed ty a Ge detector which measures through a one-fourth inch aperture in the sample vessel lead 16
  • shield. The 1 ml sample shield apertures will be designed to allow mea-surement in several orientations. Halides and noble gases can be analyzed together. Successive analyses of containment air samples collected on a known time sequence will enable the operator to determine the extent of the accident and the effectiveness of the containment spray system .
  • 17

Table III-1 HRSS Sample Points No. of Sample Points Sample Source For Each Reactor Reactor Coolant

a. Hot Leg 4 Locations*
b. Cold Leg 3 Locations*
c. RHR Loop 2 Locations*
d. eves Mixed Bed Demineralizer Outlet 1 Location Containment Sump 1 Location Containment Atmosphere 1 Location
  • One common header from outside the containment is routed to the HRSS. One sample inlet valve per header is enviro~Jnentally qualified to be ope~able after an accident.
  • Table III-2 Chemical Analysis Panel Instrumentation Instrument or Range of Parameter Method Measurement Reactor Coolant and Containment Sumo Boron Selective ion 200-2,000 ppm electrode Probe, Cole- 1-13 Parmer or equal Dissolved oxygen Probe, Yellow 1-20 ppm Springs Instrument Dissolved hydrogen Gas chromatograph, 10-2, 000 cc/kg Baseline or equal Chloride {Surry only) Ion chromatograph, 0-20 ppm Dionex or equal Containment A~~osohere Hydrogen Gas chromatograph, 0-10 percent Baseline or equal 19
  • Table III-3 HRSS Waste Tank Quantity per station 1 Capacity 17 gallons Material of construction Stainless steel Code ASME VIII Design pressure 150 psig Design ta~perature lSO°F 20

Table III-4 HRSS Waste Tank Pumps Quantity per station 2 Capacity 5 gpm Discharge head Later Material of construction Stainless steel Shaft seal Double, mechanical Motor horsepower Later 21

  • HRSS Table III-5 Evacuating Bellows Compressor Quantity per station 1 Capacity 2 scfm Discharge pressure (maximum) 40 psig Material of construction Stainless steel Motive device Reciprocating bellows Motor horsepower Later 22
  • De sigr. Input Requirements Tl\13 1 Documc:nt No. 5324*-P-101 Rev. 1

PLMH: North 1\nna 1Cr2'--,_S_u_r_r-'-y_JL_~r_2_______ Nus cor-nr.r-\CT r-.10:

CLIENT: Virginia ::kr.:tric rind P0'-'.'Cr Cornpanv V~A-'----------

LOC/\TIOfiJ: _1'.-\irwra!. \' -,: Surry__,____


*--!I SPECIFIC/', TION NO: 5324-P-IOI, lkv. l 1-----------------*

DESIGN INPUT REQUIREMENTS for HIGH R/-\DI/\ TlON SAMPLING SYSTEMS at Surry 1/2 N0t-th Anna 1/2 Nucle2.r Eledric Generating Stations G~ {;~~\ ~~::21 P~~ f~~r~ r-~*:d f\~ f*v

[;;JJ ~~:J Q.) tL~J. U~;;J Li~~ l~ J b l\LITHOr~

DESIGN INPUT REVISION PAGE REQUIREMENTS 5324--P-101 i of 25 TABLE OF CONTENTS Page 1.0 BASIC FUNCTIONS TO BE PERFORMED l 2.0 PERFORMANCE REQUIREMENTS 2 3.0 CODES, STANDARDS, AND REGULATORY REQUIREMENTS 4-4-.0 DESIGN CONDITIONS 9 5.0 DESIGN LOADS 11 6.0 INTERFACE REQUIREMENTS 12 7.0 MATERIAL REQUIREMENTS 13 8.0 MECHANICAL REQUIREMENTS 14-9.0 STRUCTURAL REQUIREMENTS 16 10.0 HYDRAULIC REQUIREMENTS 17 11.0 ELECTRICAL REQUIREMENTS 18 12.0 LAYOUT AND ARRANGEMENT REQUIREMENTS 19 13.0 OPERATIONAL REOUIREMENTS 20 14-.0 TEST REQUIREMENTS 21 15.0 ACCESSIBILITY, MAINTENANCE, REPAIR, AND INSERVICE INSPECTION REQUIREMENTS 22 16.0 TRANSPORTABILITY REQUIREMENTS 23 17.0 HANDLING, STORAGE, AND SHIPPING REQUIREMENTS 24-18.0 CHEMISTRY REQUIREMENTS 25

  • ED-33A (1/80)

DESIGN INPUT REVISION PAGE REQUIREMENTS 5324--P!Ol 1 ,....f ""

1.0 BASIC FUNCTIONS TO BE PERFORMED 1.1 The High Radiation Sampling System (HRSS) is to provide the capability to extract, analyze, and dispose of samples of reactor coolant, containment atmosphere, and containment sump under post-accident conditions. The HRSS is to allow the above sampling activities to be conducted under ALARA conditions and in conformance with the requirements of Section 2.1.8.a of NUREG-0578. The extracted sample(s) shall be adequately contained to allow for either in-situ analysis or for transport offsite to an independent laboratory. The system shall be capable of performing the analyses listed in Section 2.0. The system shall provide disposition of sample waste to an HRSS waste tank, plant radwaste, or by recycling the sample stream back to containment .

1.2 The system design will include provision of facilities for safely extracting the sam-ples. These facilities will be located within existing space at each station. These locations will be ventilated and cooled in a manner to make them habitable during normal and post-accident conditions. The new facility will be integrated with the existing facilities with minimum interference or impact.

1.3 Additionally, the HRSS equipment will be suitable for use during normal operation.

1.4- A Containment Air Sampling (CAS) system adjunct to the sampling capability will provide for sampling of the containment atmosphere during accident conditions .

  • ED-33A (1/80)

DESIGN INPUT 5324--PlOl REVISION l PAGE 2 of 25 REQUIREMENTS 2.0 PERFORMANCE REQUIREMENTS 2.1 In the post-accident state the HRSS shall be capable of extracting and analyzing the following samples within the times indicated:

Sample Source Analyze for Time After Accident Reactor Coolant Radionucli des* Extract and analyze (10 ci/cc to 10 curies/cc) sample within l hour a) Hot leg Boron except spectral (200-2000 ppm) b) Cold leg which is 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

c) RHR loop Total gas (oxygen & hydrogen) d) RC letdown pH (demn outlet) 0-14-)

Containment Atmosphere Radionuclides*, Within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> after Hydrogen accident and once per shift thereafter Containment Sump Same as reactor coolant Same as reactor coolant

  • Normal to TID-14-84 concentrations. Analyzers are not a part of NUS scope of supply.

ED-33A (1/80)

DESIGN INPUT REQUIREMENTS 5324--P-101 REVISION l PAGE 3 of 25 2.2 During normal operations the following additional grab sampling capability is to be provided:

RC-hot leg 2.3 The HRSS shall have the ability to sample the reactor coolant system, containment atmosphere, and sump water under the following conditions:

1. After containment isolation signal is initiated,
2. Potential for high airborne activities in vicinity where sample stations are
  • 3.

located, High radiation levels from sample lines, t+. High radiation levels from other equipment which may be post-accident sources, and

5. Normal and post-accident conditions (pressure and temperature) in the reactor coolant system and the containment atmosphere.

2.t+ The HRSS shall be capable of collecting and disposing of the samples by:

1. Storing in a waste holdup tank, and
2. Returning high level liquid waste to containment sump, or
3. Pumping liquid to the station liquid radwaste system, and t+. Recycling gaseous sample waste to containment.

ED-33A ( 1/80)

DESIGN INPUT 5324-P-101 PAGE 4 of 25 REVISION REQUIREMENTS 3.0 CODES, STANDARDS, AND REGULATORY RE0UIREMENTS The following codes, standards, and regulatory requirements shall be utilized, in defining the design of the HRSS system and associated buildings.

3.1 General 3.1.1 Code of Federal Regulations, Title 10, Part 50

a. General Design Criteria for Nuclear Power Plants, Appendix A, 1979.

b* Quality Assurance Criteria for Nuclear Power Plants, Appendix B, 1979.*

3.1.2 Nuclear Regulatory Commission Regulatory Guides

a. 1.4 Assumptions Used for Evaluating the Potential Radiological Consequences of a Loss-of-Coolant Accident for Pressurized Water Reactors, Rev.

2, 1974.

b. 1.7 Control of Combustible Gas Concentrations in Containment Following a Loss-of-Coolant Accident, Rev. 2, 1978.
c. 1.11 Instrument Lines Penetrating Primary Reactor Containment (Safety Guide 11) Supplement to Safety Guide 11, Backfitting Considerations, 1972.
d. 1.21 Measuring, Evaluating and Reporting Radioactivity in Solid Wastes and Releases of Radioactive Materials in Liquid and Gaseous Effluents from Light-Water-Cooled Nuclear Power Plants, Rev. 1, 1974.
  • To the extent defined by the Quality Assurance Plan.

ED-33A (1/80)

DESIGN INPUT PAGE REVISION REQUIREMENTS 5324--P-101 5 of 25

e. 1.26 Quality Group Classifications and Standards for Water-, Steam-, and Radioactive-Waste-Containing Components of Nuclear Power Plants, Rev. 3, 1976.
f. 1.52 Design, Testing and Maintenance Criteria for Post Accident Engineered-Safety-Feature Atmosphere Cleanup System Air Filtration and Adsorp-tion Units of Light Water-Cooled Nuclear Power Plants, Rev. 2, 1978.
g. 1. 97 Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant Conditions During and Following an Accident, Rev. 2, Proposed Draft Dec. 1, 1979 .
  • 3.2 h.

Structural commendations, 1979.

0578 TMI-2 Lessons Learned, Task Force Status Report and Short Term Re-3.2.1 American Concrete Institute (ACI)

a. 315 t\fanual of Standard Practice for Detailing Reinforced Concrete Struc-tures, 197 It.
b. 318 Building Code Requirements for Reinforced Concrete, 1971.

3.2.2 i\merican Institute of Steel Construction (1\ISC)

Specification for the Design, Fabrication, and Erection of Structurai Steel for Buildings, 1978 .

  • ED-33A (1/80)

DESIGN INPUT 5324--P-101 REVISION PAGE 6 of 25 REQUIREMENTS 3.2.3 American Welding Society (AWS)

D 1.1 Structural Welding Code, Rev. 2, 1977.

3.2.4- International Conference of Building Officials Uniform Building Code, 1979.

3.2.5 Applicable State and Local Codes.

3.2.6 VEPCO Standards .

  • 3.3 Mechanical 3.3.l Air Conditioning and Refrigeration Institute (ACRI) 4-10 Standard for Forced Circulation Air-Cooling and Air-Heating Coils, 1972.

3.3.2 Air Movement and Control Association (AMCA) - Formerly Air Moving and Condi-tion Association 210 Laboratory Methods of Testing Fans for Rating Purposes, 1974-.

3.3.3 American National Standards Institute (ANSI), the latest addenda of

a. B 16.5 Steel Pipe Flanges and Flanged Fittings, 1977.
b. Bl6.25Buttwelding Ends, 1979
c. B31.l Power Piping, 1977.

ED-33A (1/801

DESIGN INPUT REQUIREMENTS 5324 -P-lOl REVISION l PAGE 7 of 25

c. N509 Requirements for Nuclear Power Plant Air Cleaning Units and Compon-ents, 1976.
d. N510 Standard for Testing of Nuclear Air Cleaning Systems, 1975.

3.3.4 American Society of Mechanical Engineers (ASME), the latest addenda of Boiler and Pressure Vessel Code,

a.Section III Rules for Construction of Nuclear Power Plant Components, (for plant specific code year of record and applicable addenda) .
  • b.

c.

Section VIII 1979 Section IX Pressure Vessels, Divisions l & 2, 1977, Summer Addenda Welding and Brazing Qualifications, 1977, Summer Addenda 1979.

3.3.5 National Fire Protection Association (NFPA) 90A Standard for the Installation of Air Conditioning and Ventilating Sys-tems, 1978.

3.3.6 Sheet Metal and Air Conditioning Contractors National Association (SMACNA)

High Pressure Duct Construction Standards, 1975.

3.4 Electrical

  • 3.4.l American National Standards Institute (ANSI)

Cl National Electrical Code, 1978.

ED*33A (1/80)

DESIGN INPUT REVISION PAGE REQUIREMENTS 5324-P-101 8 of 25 3.4.2 Institute of Electrical and Electronic Engineers (IEEE)

a. 279 Criteria for Protection Systems for Nuclear Power Operating Systems, 1971.
b. 34-4 Recommended Practice for Seismic Oualification of Class lE Equipment for Nuclear Power Operating Stations, 1975.
c. 383 Standard for Type Test of Class lE Electrical Cables, Field Splices and Connections for Nuclear Power Operating Stations, 1974-.
d. 384 Standard Criteria for Independence of Class IE Equipment and Circuits, 1977.
e. 494- Standard Method for Identification of Documents Related to Class IE Equipment and Systems for Nuclear Power, 197lL.

Standards (b) thru (e) shall be implemented only on isolation alve ~chemes Note:

0 as required by process and on the isolation device from the ass 1 power source to the Non-Class lE distribution center.

ED-33A 11/801

DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION PAGE 9 of 25 4.0 DESIGN CONDITIONS 4.1 The following design conditions are applicable to both the North Anna and Surry sampling panels:

(1) Process Min Max Pressure: RC Sampling (later) 2485 psig Sump Sampling 75 psig Containment Atmosphere 60 psig Min Max Temperature: RC Sampling (later) 700°F

  • (2) In-containment ambient Pressure:

Sump Sampling Containment Atmosphere 9 psia to 60 psia 220°F 310°F

1.1. Temperature

310°F Rel. Humidity: 0-100%

gamma (later) Rads Radiation: Beta (later) Rads (3) Outside Containment Ambient Pressure: Atmospheric Temperature: 40-120°F Rel. Humidity: 0-100%

Radiation: l x 10 7 Rads (4) Design Life: 40 years ED-33A (1/80)

DESIGN INPUT 5324-P-101 REVISION PAGE 10 of 25 REQUIREMENTS 4.2 Existing sample lines shall be utilized to the greatest extent practicable with re-quired new sample lines being provided for containment sump, waste returns, and containment sampling. A new line is being installed by S&W which will tie the aux iliary building floor drain sump to the containment sump. This line will be used, if practicable, to route HRSS waste returns to the containment.

4.3 Piping and equipment need not be seismically supported except if required to prevent damage to safety-related equipment.

4.4 The sampling panel downstream of the pressure reducing valve shall be protected with relief capability to 75 psig max .

  • 4.5 The source term is as defined in Regulatory Guides 1.4 and 1.7 .

ED-33A (1/80)

DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION l PAGEU of 25 5.0 DESIGN LOADS 5.1 Mechanical and structural loads shall be in accordance with standard design prac-tices. Seismic loads need not be considered except where necessary to protect safety-related equipment.

5.2 The sample rooms will be analyzed to factor in the additional weight of the sampling panel and shielding .

ED-33A (1/80)

DESIGN INPUT 5324--P-101 REVISION l PAGE 12 of 25 REQUIREMENTS 6.0 INTERFACE REQUIREMENTS 6.1 Process The HRSS will interface with existing reactor coolant sampling system, containment atmosphere sampling and plant radwaste systems, containment floor drain systems, aux-iliary building heating and ventilation system, and auxiliary building floor drain system.

All plants will interface with cooling and demineralized water systems, station service and instrument air systems, ventilation exhaust systems, and inert gas systems.

6.2 Structural The existing sampling room will be utilized for the HRSS if structurally possible and room is available.

6.3 Mechanical HVAC and drain systems will interface with station facilities.

6.4- Electrical Power and lighting is to be drawn from existing nearby electrical supplies. Power supplies are to be available from the emergency buses or uninterruptible power supplies. Isolation devices will be supplied as required per IEEE-384- .

E0-33A (1/80)

DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION l PAG9_3 of 25 7 .0 MA TE RIAL REQUIREMENTS 7.1 Process compatibility and environmental conditions dictate process material selec-tion. Stainless steel 300 series is to be used to the greatest extent possible. Surface materials and/or finishes shall be such as to facilitate washdown and/or decontami-nation where applicable.

7.2 Teflon or other elastomer valve packings are acceptable provided the potential for radiation damage and its consequences are assessed as acceptable.

ED-33A (1/80)

DESIGN INPUT 5324-P-101 REVISION l PAGE 14 of 25 REQUIREMENTS 8.0 MECHANICAL REQUIREMENTS 8.1 To the extent practicable, a passive system should be provided for backup fluid transfer in lieu of redundant motorized pumps.

8.2 All pumps, fans, and compressors serving the HRSS shall be served by electric power from one of the emergency buses. The pumps, fans, and compressors will not be redundant.*

8.3 Piping and support shall be designed for normal process loads including thermal.

8.4 Isolation and throttling valves for sample lines shall be ball, gate or plug type designed to minimize restrictions and traps in the sample line. Valves not used for sample lines shall be gate or globe or as otherwise dictated by the process requirements.

8.5 Ventilation and air conditioning ductwork shall be galvanized sheetmetal constructed in accordance with the recommendations of SMACNA High Pressure Duct Construction.

8.6 Piping and ventilation ductwork shall be insulated depending upon the process tern perature for personnel protection, anti-sweat protection, or heat loss reduction.

The insulation shall be fire proof with a flame spread of 25 or less and a smoke developed rating of 25 or less.

8.7 Stainless steel, galvanized sheetmetal and non-ferrous alloy surfaces will not be painted. Other surfaces will be painted with inorganic base paints not susceptible to scaling or peeling.

ED-33A (1/801

DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION PAGE15 of 25 8.8 Filters for ventilation air for the HRSS sample rooms, if required, shall be of the type for nuclear plant service and shall be within the general requirements specified by Regulatory Guide 1.52 for items such as filter efficiency, charcoal selection, construction features, etc., except that the ventilation systems and filters are not engineered safety systems and the filters will not be redundant. The filters will be tested in place after installation with portable DOP generators and freon gas.

8.9 The design temperature for the sample rooms will be 50-l05°F and 100% RH max imum and post-accident and the ventilation rate will be based upon 20 CFM per person or the room leakage rate whichever is larger. Exhaust air from the room will be filtered through a charcoal HEPA filter assembly.

8.10 The hood exhaust will be routed to an existing station monitored release point.

8.11 The HRSS shall be classified as Quality Group D, as defined in NRC Regulatory Guide 1.26, from the sampling panels to the root valve located near the main process line. The root valve and piping upstream up to the connection on the main process line shall have the same classification as the process line except that process sample lines 3/4 inch NPS and less are not classified greater than Class B.

8.12 Pressure relief protection shall be provided for the HRSS panel. Relief discharge shall be controlled.

8.13 Hoods are to be provided to control leakage of radioactive gases from process equip ment unless leakproof components are selected.

8.14 The design of the HRSS and waste collection system shall consider the potential for dissolved hydrogen release into the system, and shall include, as a minimum, overpressure protection and capability to inert the HRSS waste tank.

ED-33A (1/80)

  • DESIGN INPUJ324--P-l0l REVISION l PAGE l6 of 25 REQUIREMENTS 9.0 STRUCTURAL REQUIREMENTS 9.1 Location and sizes of structural members shall be determined to support design loads except where shielding requirements dictate greater thickness or different location without jeopardizing the structural integrity.

9.2 Loads imposed by permanent and/or portable shielding must be factored into the structural design.

9.3 Effects on the auxiliary building structure of the HRSS panel toppling due to seismic motion shall be evaluated .

ED-33A ( 1 /80)

  • ENGINEERING DIVISION DESIGN INPUT 5324--P-101 REVISION l PAGE17 of 25 REQUIREMENTS 10.0 HYDRAULIC REQUIREMENTS 10.l Pipe sizing shall be such as to assure sufficient velocity to minimize plateout in the lines and assure representative samples. The Reynolds number is to be in the turbulent zone, i.e., 5000.

10.2 Pipe routing shall avoid deadlegs, low points, and other similar crud trap orienta-tions so as to minimize radiation effects.

10.3 Pipe sizing shall be such as to allow purge of the line prior to drawing sample.

Capability shall be to flush three line volumes within ten minutes .

  • 10.4- Containment sump sample line design must consider possible elevated sump temper-atures, debris in sump, chemical contaminants in sump, possible containment pres-surization, as well as negative (subatmospheric) pressure in containment.

10.5 Passive flow restrictors are to be evaluated to limit loss of reactor coolant in case of sample line break.

10.6 The analytical chemistry equipment requires a design flow of 200 ml/min source pressure 25 psi greater than the backpressure at the exit of the panel.

10.7 The sampling waste holdup tank shall be sized to hold waste from two samples before the contents are to be disposed of .

ED-33A (1/80)

DESIGN INPUT 5324-P-101 PAGE18 of 25 REVISION REQUIREMENTS 11.0 ELECTRICAL REQUIREMENTS

11. l Normal design practice(s) supplemented by VEPCO standards.

11.2 Power shall be provided from the emergency buses or uninterruptible power supplies.

Other non-essential loads shall be supplied from the plant auxiliary buses.

11.3 Intraplant communication system shall be provided in the sampling rooms .

ED-33A (1/80)

DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION PAGE19 of 25 12.0 LAYOUT AND ARRANGEMENT REQUIREMENT(S) 12.1 Layouts shall be optimized for efficient sampling and to implement ALARA require-ments. Layout shall consider floor load distribution.

12.2 The sample room should be arranged to provide access control between potentially contaminated areas and clean areas .

ED-33A (1/80)

DESIGN INPUT 532~-P-101 REVISION PAGE 20 of 25 REQUIREMENTS 13.0 OPERATIONAL REQUIREMENTS 13.l HRSS is to be used for post-accident sampling only with the exception of RC hot-leg sampling.

13.2 For post-accident condition in-line analyzers are to be provided for chemical analy-sis of the sample within one hour of the accident.

13.3 Method to contain spills while extracting a grab sample shall be provided.

ED-33A (1/80)

ENGINEERING DIVISION DESIGN INPUT REQUIREMENTS 5324--P-101 REVISION PAGE 21 of 25 14-.0 TEST REQUIREMENTS 14-.1 Immediately prior to use of the system for post-accident sampling the system shall be capable of being leak checked using air or nitrogen. The mechanical functioning of the remote grab sample vial handling system shall also be verifiable.

14-.2 Filter systems for the ventilation supply air and exhaust air from hoods will be tested in accordance with ANSI N510.

14.3 The system will be tested when installed and on a periodic basis thereafter. Station personnel training will serve as system checkout for many components .

ED-33A ( 1 /80)

DESIGN INPUT 5324--P-101 REVISION PAGE 22 of 25 REQUIREMENTS 15.0 ACCESSABILITY, MAINTENANCE, REPAIR, AND INSERVICE INSPECTION REQUIREMENTS 15.1 The HRSS shall be serviceable during the accident recovery phase. Flushing provi-sions shall be incorporated to reduce radiation levels at ALARA conditions. To facilitate this requirement, crud traps are to be particularly avoided.

15.2 The sample piping is to be routed near ceilings and areas to minimize personnel exposure. Where not practicable by routing local shielding is to be provided.

ED-33A ( 1 /80)

  • rn CORPORATION ENGINEERING DIVISION DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION PAGE 23 of 25 16.0 TRANSPORTABLILITY REQUIREMENTS 16.l Grab sample vial (liquid and gas) containers are to be designed for offsite shipment by commercially available DOT/NRC approved overpack. Remote handling for loading into shipping containers is to be provided .

ED-33A (1/801

DESIGN INPUT REQUIREMENTS 5324-P-101 REVISION l PAGE24of 25 17 .0 HANDLING, STORAGE, AND SHIPPING REQUIREMENTS 17.1 The HRSS shall provide for adequate shielding to meet ALARA considerations.

The design objective per sample is to limit personnel exposure to 100 mrem per sample whole body and 150 mrem per sample additional to extremeties from sampling operations exclusive of the surrounding background radlevels.

17 .2 The off site shipping cask handling radioactive samples shall be designed to limit dose rates to 100 mrem/hr contact and shall be compatible with DOT/NRC approved overpack.

17.3 If floor loading limitations dictate, the dose limits for the 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> sample of 17.1 are increased to l R per sample whole body exclusive of the surrounding radlevels.

Subsequent sample (8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />) at all stations shall be obtained within the 17.l dose limits.

17 .4 The total dose which is allowed by NUREG 0578 for sampling and analysis taken one hour after the accident is 3 rem whole body and 18 3/4 rem to the extremities.

At North Anna this limit is lowered to 2.5 Rem whole body and/or 15 rem to the extremities (l-OP-12.1, 1-23-80) .

ED-33A (1/80)

  • DESIGN INPUT 5324--P-101 REVISION l PAGE25 of 25 REQUIREMENTS 18.0 CHEMISTRY REQUIREMENTS 18.1 The material selection for this system shall consider compatibility with commercial decontamination solution which may be used when maintenance is required.

18.2 The following sump chemistry is to be considered in design:

Boron, 0-2000 ppm NaOH, 0-15,000 ppm ED-33A (1/80)

  • TAB 2 North Anna Units ~ & 2 High Radiation Sample System Drawings Process Flow Diagram Liquid Sampling 5324M3510 sh 1,2 Process Flow Diagram Containment Air Sampling 5324M3511 P &ID Liquid Sampling 5324M3500 sh 1 to 5 P &ID Containment Air Sampling 5324M3501 General Arrangement - Elevation 274'-0" 5324M3600 sh 1,2 General Arrangement - Elevation 244 '-6" 5324M3601sh1,2
  • T.ll.B 3 Surry Units 1 & 2 High Radiation Sample System Drawings Process Flow Diagram Liquid Sampling 5324M3010 sh 1,2 Process Flow Diagram Containment Air Sampling 5324M3011 P &ID Liquid Sampling 5324M3000 shs 1 to 5 P &ID Containment Air Sampling 5324M3001 General Arrangement - Elevation 2 7 '-6" 5324M3100 sh l, 2 General Arrangement - Elevation 2 '-0" 5324M3101

TAB 4 Surry and North Anna High Radiation Sample System Sample Pane 1 Description

1. Liquid Sample Panel (LSP) 152-11-001-lrl (5 pages)
a. Reactor Coolant Module 153-11-001-lrl (2 pages) 153-ll-002-lr3 (1 page) l 53-ll-003- lr3 (4 pages)
b. Demineralizer Reactor Coolant Module 154-11-001-lrl (1 page) 154-11-002- lrl (1 page) 154-11-003-lrl (2 pages)
c. Radwaste Module 155-11-001-lrl (1 page) 155-ll-002-lr4 (1 page) 155-ll-003-lr2 (3 pages)
d. HiRad Sample Cooler Rack 151-11-001-lrl (3 pages) 151-11-002-lrl (1 page) 151-11-003-lrl (2 pages)
2. Containment Air Sample Panel (GASP) 160-ll-001-lr2 (4 pages) 160-ll-002-lr5 (1 page) 160-ll-003-lr2 (1 page)

Pa~c 1 of 5

  • Sentry Equipment Corp. Date 3-12-80 Ck'd LE Rev __.....___

DRAWING NO. , 52*-11-001-1

-~-~--~~~-~~

DESCRIPTION & FUNCTION: LIOUID SAMPLING PANEL (LSP)

HRSS LIQUID SAMPLING SYSTEM 1

  • i1 REFERENCES p ~ ID  : 15 0-11-002- 3 Parts Identification: ref data for specific Operating Pr'Ocedures: ref data for spt7ci fi c

2.0 DESCRIPTION

2.1 The LSP includes the following Modules installed on a common panel-shield:

a) One (1) Reactor Coolant Sampling Module b) One (1) Demin R.C. Sampling Module c) One (1) Radwaste Sampling Module d) Carts, casks and other specialized equipment.

2.2 Panel-Shield & Base: The panel-shield consists of 7" of 11 Heavy Pak 11 0.03 11 diameter lead shot contained between two 1/2 11 steel plates. The panel-shield is pr'Ovided with 12 11 thick lead glass portholes for viewing bottle sampling.

Glass is SCHOTT type RS520.

The panel shield is supported by a integral steel base, adequately shielded for the radioactive fluid raceway and radiation backscatter. The panel base has a chamber for the entry of the remote operated cart/cask which captures samples of reactor coolant and radwaste water.

2.3 Component Mounting: Most tubing and components are mounted on the backside of the panel, within the plenum. Extension for va1ve stems penetrate the panel-shield via steel bushings. These bushings also serve a stay rods for the front and rear faces of the panel shield to contain the considerable weight of lead shot.

Flow indicators, pressure gauges and remote dial thermometers are mounted on the panel face and are routed over the panel top. Gauqes are connected to the sample lines via filled capillaries and diaphram seals.

2.4 Ventilation Ventilation control is provided by a plenum which encloses the space behind the panel shield. The plenum is to be maintained at a negative pressure of .25 wate\" gauge, so that 360 CFM of air infi1trates from the out-11 side of the Panel through its penetrations and into the plenum. ihus any gas leakage through valve stem packing and similar leak sources, is captured by the plenum and routed to a rad gas treating system. The bottom of the plenum is provided w1th a basin to catch any minor drips. The plenum has swing doors in rear for maintenance access. Plenum is 12ga stee1; basin is 16ga T304SS.

Lamps are installed in the plenum to light the bottle filling operations.

Rl Paqe 2 of 5 y

. Sentry Equipment Corp Dwg 152-11-001-1

~:'"\ r~> f( i1 r~1 t~ ffi-:*~ t~\~; t"\ ~:~}:

1

.~.,, \.: .!. ~ 1.J u qv1~ri *t t1'*: r.J..a :*

Fl*.;

~ u u~l6U1av *u £1 ~

2.5 Splash Box Open grab sample spigots and the non-accident Sample Bomb are located in a splash box to capture and contain any accidental liquid spill or release of gas. The box has a sink, a drain line to waste disposal and a ventilation hose connected to the panel plenum. The sliding doors of this box must be closed before the operator can reach the grab sample valve to draw a sample.

2.6 Valve Reach Rod During worse accident situation the valve extensions ~ the panel front face are operated* with one meter long reach-rods.

2.7 Jubinq Raceway Radio:ictive fluid lines are routed thru the panel base. and into the plenum space. After penetrating the plenum, the lines disperse to connect to their proper components.

2 .R Remotely Opel"'ated Cart/cask Remotely operated Cask-Carts. (ref Description-Function Data sheet 156-11-001-1) are provided to insert, elevate and remove the bottles which capture samples of diluted and undiluted reactor cbolant and radwaste water.

2.9 Valves, Tubinq & Joints Isolation valves are 1/4 11 Whitey globe or Nupro plug type. Plug valves are extensively used in the panel to pennit the operator to line up valves in a speedy, visual and logical manner. Throttling valves are 1/4 Whitey regulating globes. Sentry VREL is used i f pressure reduction is greater than 500 psi. These variable rod-in-capillary devices can be cleaned in place by a quick pull of their handle---to allow system pressure to blow the crud out.

Three and four-way ball switching valves are used in the certain of the sample capturing equipment.

TFE is not used in the purging and flushing lines handling reactor coolant.

Valve packing and seating, and thread sealing are*TFE in radwaste lines and for the other lines discharging to radwaste. TFE is used in these lines because: (a) TFE is the only practical seating material for the necessary valve designs, (b) TFE has the minimum sealing and packing leakage rate, and

{c) these TFE components have demonstrated a service life in a high radiation.

field equal to their mechanical service life.

Tubing is T304SS, l/4 11 00 by approximately .17 11 bore. Fluid velocity developed in this bore is optimum for*assurance of con.temporary sample and fol"' minim"fz1ng crud build-up in the lines. The filling needles have a o.. 047 bore, and are 11 protected by a 140 micron filter---cleanable in place by back-flushing.

Joints are Swagelok, Gryolok, threaded and silver solder brazed as best suited for particular components, for maximum joint tightness, for minimal fluid volume and for optimum maintenance.

2.10 Size and Weight (ref dwo 1$2-11-005-4) The dimentians of the Panel are 7 feet high x 4 feet deep x 8 feet wide. Weight is approximately 20000 lbs.

REFER TO PAGE 4 OF THIS SPECIFICATION FOR PERTINENT INSTALLATION orTAILS.

. I 31s UOCUt;:E:n IS THE PROPERTY OF SENT RY E(.'[J Ip iVl r. l -.,:*,

.... ' .J .

.. ('ORP

..,,,, \.

  • Oco1iomo"Woc, ~Vi"s :.; 3 06 0 zi~d is to be usad only ror the purpose

... 1 th~ ~~... e;~;11~nt ..-;iU1 ::;cntlt pur~uant lo whicii n 1s t t;rnished

  • I I

Sentry Equipment Corp. Dwg 152-11-001-1 Rl Pclge 3 of 5 r.*::.11~

'i "'~~~~~~~j'I

~- h ~ r ** ; ,', ~l ~~

< *~r~U:L~~'Vkr:

. I ' I I I \'

3,0 fix{ it* fi'.

  • FUNCTION; The Liquid Sampling Panel Modules captures samples for the followinq
  • types of tests; LSP ell so routes s.imples to CAP for gas & 1 iquid analysis:

(a) Gases stripped from pressurized reactor coolant for hydrogen and istopic analysis:

(b) Dissolved oxygen (reactor coolant); liquid sample.

(c) ph (reactor coolant); liquid s_ample.

(d) Chloride {reactor coolant)*; liquid sample.

(e) Specific conductivity (reactor.coolant); liquid sample.

{f) Boron {reactor coolant); liquid sample.

{g} Isotopic analysis (reactor coolant, sumps and various radwaste tanks).; liquid samples.

Refer to the detailed schematics, parts and procedures for the Modules of the Liquid Samol inq Panel and for CAP---in order to accomp1 ish these tasks.

4.0 ACTIVITIES & DOSE RATES 4.1 Worst Case Accident Activities Following activity levels are for one hour into accident, for a "no-line break" in a BWR.

(a) Reactor Coolant 15000 rem/hr/cc, contact.

3 (b) Noble & Halogen gases stripped from reactor coolant = 9900 rem/hr/cc, contact .

4.2 Radiation Fielrl@ 1 .0 Meter In Front of Panel During Sampling The radiation field at 1 .O meter in front of the panel varies with sampling actions, as follows:

(a} Purging mode = foo mrem/hr.,

(b) Depressurizing reactor coolant = 320 mrem/hr. .

(c) Capturing 15cc of diluted Reactor Coolant Off-Gas = 320 mRem/hr.

(d) Flowing Reactor Coolant Off-Gas to CAP "' 320 mRem/hr.

(e) Capturing 15cc reactor coolant= 400 mRem/hr.

(f) Capturing 90 cc diluted reactor coolant = 250 mRem/hr.

{g) Flowing Reactor Coolant Liquid to CAP = 250 mRem/hr.

4.3 Sampling Dose The panel shield and time of samolinQ results in a dose per sample which will not exceed 100 mrem at one meter distance.

5.0 LEAK RATE & TESTING CRITERIA

5. l Defination "High side" 3 upstream of pressur1l!liSro.acuo't~n:.!TMv.i;Jl~ PROPERTY OF C'f'.-'Lffl:f.i~>-' 'f'-,~n1 d":r.J"'r:NT co1~0 "Low side" *= downstream of pressU1"~. ~e~kB~~- 1 ?eV,1.~.~*-:-
  • F . '- L ...
  • uc, vV _., Ubo

. UL0tli.-1t/.IJ ..... ,J ...

~nd i!i to be us;;;ci oniy for the purpose

. " the a~. l!ei1i...nt *;1itl1 Sentry pursuant io whicil it is furnished.

~entry Cqu 1~men~ ~[* . Dwg. 152-11-001-1 Rl Paqe 4 of 5

'l

~~l

~

5. 2

~~ ii.:;;i**u

  • u*1J U rtl

'.,. '. :.;i

~nn~r\~~'

  • i . * ~1*'*1 1 l*l\. *~- ~'l*w

!".\/.. i r. r.: .1; 1

V *:

Maximum 1nd1viduaV~ eak rate o atmosphere shall be l x 1O-4 cc/sec for u-

.... each joint and component when interior cavities are pressurized with dry nitrogen as follows:

)~

  • .~~ ~

(a) High side @200 psig.

(b) Low side @ 20 psig.

The R-1 reservoir circuits are nqt tested with pressurized nitrogen, but shall show no visable leakage when filled with water at atmospheric pressure.

The 15 ml (BS-1) and 250 ml (DBS-1) are exempt from pressurized gas testing.

Leak testing material is Product 277NE (American Gas & Chemical Co) applied in accordance with the appliciable portions of AG & C Bubble Leak Testing Process Specification.

PRELIMINARY PG. 5 OF 5

-<:'(

(fl

~~~-l c

=o I- - I V) a:

.....J f.::J E

-o 0 ~

co cO

x::

V')

a:

~.

L I~ =c

-*,.._ J A

JOB NO. RC.

  • '.'.(I'
  • *J**'

I * * ,..

""*'*I

-:1 ** ' '

l:. 1n

....l !! .. p (J In' :.

r*.,* ;:TQL.ERANCES

  • .: SENTRY EQUIPMENT CORP .

. .,. ' ' . . \

  • i .. : .. * ~ '" * :* l ,., ... * .... *"' '. "' -

.' '~.1.*:' 1 r !.'. *'~n.

  • J ALL"o1M*s. UNL.ESS I:,

1  ;* *

~  ; ,* *

\*>> ...

.. /I

. , '/OTHERWISE SPECIFIED l.!IQUID SAMPLING PANEL

.l"RACTICINAL. +/-

HRSS LIQUID SAMPLING SYSTEM INCHt----x--.-:,.-,~~~-=-:--::-~~--,-.,.-~~~~~~

c.e:c1.u.1.  ::: INCH t-DA_T_E____.J;;..._ _o_.R_A_W_N_...;J~J'""S_ _

c_H_K_'D___,;;;~-s-c...,AJ...E  :~/.A.

\.:l~ .* .****.. :* **: .. *.~,L ~~~.i.iy *I.

.. '" .: ; .... ~ ... ~;~.:J ANGUL.AR +/-

DRAWJNG NO. 1s2-11-001-1 U/P INC. !SOM SOO*l*77 2 I 1 Pg. 5 Or 5

Page l of 2 4-15-80 Original Date 3-13-80 Ck 1 s LE Rev 1 Sentry DRAWING MO. 153-11-001-1 DESCRIPTION & FUNCTION: REACTOR COOLANT MODULE (N0.1)

HRSS Liquid Sampling Systnf

1.0 REFERENCES

SEJ.J/~yCUM,_~NT IS .THE PROPERTY OF

!!.QU lPlvIENT CO P & ID 153-11-002-1 .. ?conomowoc, iVis~ 53066 RP.

Parts Identification: l 53-11 -003-1 1.1~d IS to be used only for the u Operating Procedure : lli-11-004-1 ut the ag1eerne11t with Sentry P rposa lo which it is turnissed. pursuant

2.0 DESCRIPTION

& FUNCTION Mod 1 accepts (5) different samples of primary Reactor Coolant entering (only one @ a time) at maximum of 120°F and 2300 psig.

Maximum flowrates are: (a) 1900 cc/min during purging, and (b) 200 cc/min during sampling.

Module l has (6) separate capabilities as follows:

2.1 For routine, non-accident sampling, Module can capture a pressurized coolant sample in a 30 ml sample Flask. The flask is removable for transport to an on-site lab for hydrogen and isotopic analysis.

2.2 For routine, non-accident sampling, Module can capture a pressurized coolant as an open grab sample for measuring DO, Boron etc.

2.3 For accident, Module captures pressurized coolant in a 30 ml Flask and degasses it into a 300 ml evacuated Expansion Vessel. Pressurized Argon is bubbled through the bottom of the 30 ml flask to: (a) scavenge residual gases from the coolant, and (b) increase pressure to 1 psig. Additional Argon is added to the expansion vessel to: (a) force any liquid back into the 30 ml Flask, and (b) increase Expansion Vessel pressure to 10 psig. The pressurized stripped qas is routed to an evacuated line. This line connects the Module l'lith an evacuated chamber in Gas Chromatograph---for hydrogen determination. The chromatograph is located in the nearby Chemical Analysis Panel.

A .02 ml "bite" of the stripped gas ts captured in the Module 1 s Diluter Valve. This bite is piped into an evacuated 15 ml Serum Bottle. The Serum Bottle pressure fs boosted to 0 psig with Argon. Bottle is removed via grip tongs, placed in a shielded carrying case and transported to an on-site facility for isotopic analysis.

2.4 For accident, Module captures a sample of undiluted coolant in a 15 ml sealed bottle. The bottle is remotely lowered into a cask resting on a special cart.

The cart with cask is removed from the panel and transported to an offsite facility.

2.5 For accident~ Module captures 90 ml of 1000 to one diluted sample in a sealed bottle and lowers it into a cask on a cart. The cart is removed from the Pane!

and transported to an on-site lab for boron and isotopic analysis.

Sentry [quipn~nt Corp. Dwg. 153-11-001-1 R1 Dtd 4-15-80 Page 2 of 2

  • ~ ~n~~1~~mnA~"n'll5il~ ~

a*~@vg b~~U~tl UJJ~~*.

2.6 For accident, Module pipes a depressurized reactor coolant sample to a nearby on-line Chemical Analysis Panel to measure Conductivity., PH, Chloride and 00.

2.7 Module reduces samples pressure: (a) to 60 psig while sampling per para 2.6 and (b} to 20 psig whil sampling per paras 2.2, 2.4 and 2.5.

2.8 Module has power operated valves ta automatically stop either purge or sample flow in event of excess sample temperature.

2.9 Module flushing capabilities include:

(a) Flush liquid sample supply lines to HRSS Waste Tank (via owner's remote power oper~ted flush valves---located upstream of the Sample Cooler Rack).

(b) Flush liquid purge line to HRSS Waste Tank.

( c) Flush in-panel liquid sample lines to HRSS Waste Tank.

(d) Flush in-panel gas stripping lines/components to HRSS Waste Tank or equivalent.

(e) Flush fluids. may be demin water, nitrogen gas or appropriate decontaminating solutions.

TOP PRELIMINARY FlRC,DN <<>..: F-:,C;1t


~

1-1

~~---.

IPP-S-1!1

I:

,~ 3i 1-----4'--f::l<~J.-.;Cl..

Vt2 c

V1.3 V8:2.

Y5.2.

  • V1. '-l Y7 PC-3 V1~ c.yl\

.-====r-YR£ L- 2.

~

.t-*. .....:.

C.Vt.3 ,, .. *'

" 8 V18 y PRY-2.

I 3

?UNUM a..

a:

<.)

J""' -

DV1

_ D.B51 A

B/P INC. 180M 500-t-77 2 'BOTTOM 1

Page 1 of 4 5-27-80 Sentry Equipment Corp. Org1na1 Date 3-5-80 Chk'd LE Rev 3 DRAWING NO. 153-11-003-1 PARTS IDENTIFICATION: Reactor Cao*l ant Module NO .1 l .O VALVES, MANUAL RSS Liqui Samp ing Panel (ref. p & ID dwg no. 152-11-002-1 )

p~* r,=

~f

~ l::J R~f ~;* [fr**:

rr u  :) ,.

  • ~~lb ov( u~~. fi1lu* .

prx~. r V' f~*"", **

r.i\{:iJ l .1 TWO-WAY GLOBE VALVE, ISOLATION, SEVERE SERVICE. Whitey SS-3NB Series. Body and stem are T3l6SS. Stem tip ;s Stellite ball. Packing is Grafoil. Temp/press rating is 700°F/4110#. Connections are 1/4u Swagelok or 1/8" or 1/4" MPT or FPT as required.

Vl *l , Vl *2, Vl *3, Vl *4 & Vl *5.

V3 1 .2 TWO-WAY GLOBE VALVE, ISOLATION. Whitey SS-1VS4, Vee Stem. Body and stem are T3l6SS. Packing 1s TFE. Temp/press rating is l50°F/2955#. Connections are 1/4" Swagelok., l /8" or l /4" MPT or FPT as required.

V2; VS.l, 5.2; V6.l, 6.2 {angle); V8.l, V8.2.

1 .3 TWO-WAY BALL VALVE, ISOLATION. Whitey 554354-A. Angle type. T316SS body and stem; TFE packing. Temp/press rating 150°F/1000 psig.

V9 l .4 TWO-WAY PLUG VALVE? ISOLATION. Nupro P4T Series. Body and plug are T316SS.

Plug is TFE coated. 0-ring seals are Viton. Temp/press rating is 120°F/2600#.

Connections are 1/4" Swagelok, MPT or FPT as required.

V7 , Vl 0 , Vl 2 , Vl 3 , Vl 5 l .5 TWO-WAY GLOBE VALVE, REGULATING. Whitey SS-1R4, Regulating Stem. Body and stem are T316SS. Connections are l/4 11 Swagelok, 1/8 11 or 1/4" FPT as required.

Temp/press rating is 150°F/2955#.

V4.l & V4.2 Packing is Garlock 7020.

Vll, V14, V16, Vl7. Packing is TFE.

1 .6 THREE-WAY BALL VALVE, SWITCHING. Whitey SS-42X or SS-43X Series. Body and stem are T3l6SS. Packing is TFE. Temp/press rating is 150°F/1000#.

Connections are 1/8 11 or 1/4" Swagelok, MPT, FPT as required.

VlR, V22 1 .7 FOUR-WAY BALL VALVE, SWITCHING. Whitey SS-43Y Series. Body and stem are T316SS.

Packing is TFE. Temp/press rating is 150°F/1000#. Connections are 1/8" FPT.

Vl 9, V20

  • 1.8 DILUTER VALVE, LIQUID. Modified Whitey SS-43YHF2, 3-43-00125 ball ( .1.25 11 orifice*

equipped with a 30455 16 gauge needle (.065~ OD x 0.047" ID).

DVl (Sen.try P/N to fol low)

- AJ_. * ' "'- .&. L.n.*~ V l. 1: lYl !!.JJ.'/ 1 Oco nr.: 111 Wc:Jnc, VI is 5 3 0"60

.;nd is to oe usi;d only for the purpose

  • , the ab. r::c:lknt 1vit11 Sentry ~ursuant l.., U 1< lJ,
  • u whic11 it is f urn1sheu.

. Sentry Equipment Corp. Dwg. 153-11-003-1 R.3 :i-7.7-80 Pil!]C 2 of 'I 1

' *. " ri r-TJ ~* ~* t1 ~* n I, .:i 'I . f I'[\ ~* A**' ~) ':\\*~*

,l ..

\J \L:..,L:l
  • Li'/ Wd\ Ui w** :

l .9 DILUTER VALVE, GAS. Whitey SS-43YF2, 0.062 orifice. T316SS Body and ball; TFE packing. Temp/press rating 150°F/1000 psig. Connections 1/8" FPT.

DV2 l.10 PRESSURE REDUCER ELEMENT (VREL). Adjustable variable rod in capillary device to breakdown a large pressure differential. Cleanable in place without shutting off sample fl ow. Ro.d and capil 1ary are T303SS. Temp/pressure rating is 300°F/5000D. Connections are 1/4 11 Swagelok.

VREL-1. Packing is Grafoil. Sentry P/N (to follow).

VREL-2. Packing is TFE. *Sentry P/N (to follow).

2.0 VALVE, ISOLATION, AIR OPERATED (with solenoid air control valve). Whitey Severe Service Globe valve SS-3NBS4-95NC. Equipped with 3-way solenoid, NC ASCO #8320813, 120 VAC. Globe valve specifications same as para l .1 ~

AVl pl us SVl AV2 pl us SV2 1.0 BALL CHECK VALVE. Hoke 6133 Series, 2 ps1 cracking pressure. Body, ball and spring are T303SS. Seats are Viton. Temp/pressure rating is 350°F/3000#. Con-nections are 1/4" Swagelok.

CVl .1, 1.2, l .3; CV2;CV3;CV4;CV5 4.0 VALVE, PRESSURE RELIEF, LOW PRESSURE. Hoke 6133 Series.

Seats are Vi ton. Temp/pressure rating is 350°F/3000#. Connections are 1 /'I" Swagelok or 1/8" or 1/4" MPT or FPT as required. Material is T303SS.

PRV-1; PRV 25 psig cracking pressure.

PRV 2 psig cracking pressure.

5.0 VALVE, PRESSURE RELIEF, HIGH PRESSURE. Circle Seal Controls 559-T Series, 65 psi cracking pressure. Body, poppet and spring are T303SS. Seats are Viton. Temp/

pressure rating is 275°F/2001. Connections are 1/8" or 1/4" MPT or PFT as required.

PRV-2 6.0 NEEDLE BLOCK ASSEMBLY. Sentry P/N (to follow), T304SS Block with two (2) T304SS 16 gauge needles (.065 11 OD x .047" ID). Connections are 1/4 11 Swagelok or 1/8" or 1/4 11 MPTor PFT as required.

NB-l 7.0 CYLINDER GRADUATED. Corning 6383; 125cc Pyrex Separating Funnel with integral TFE stopcock.

Cl & V21 8.0 RESERVOIR ASSEMBLY. One assembly shared between RC & R'll Module. Sentry P/N glass, po1y~thylene or equal; 300cc; with Whitey 1RS6A stainless valve. ---

  • Rl & V23 rn1s..,...ooc:::,iENT IS THE .oROPERP 'JF 01

~!

SE_,,j,\:

Ucu f">'~

/\ /

Jnd 1s to ue u'"'*'

,,.,(.'"

the* .a*-"'.* **e*i*

Jt,;~

  • t

~., *~* 1l 1

,.., *l!t u*:..> 11.; '

,...1.* r ,,,,, ....

0illJ

v11~.'*1 1.*i!;
.1 1 ..

I

. u

'o* ..ll/e t

  • . ..)

i.11, .:ie1, ry pur5u;,;,t

(,Q' I

-. fJ ()

'- l).

~urncsa l~P to wh1cn 1t 1s i t.rr::sneu.

Sentry Equipment Ct>rp. Owg. 153-11-003-1 R 3 5-21-80 P~gc 3 of 4

~~rT:n R~ t1r~q l\. ~~.f u ~~tLtLLlLi.vuUu*~1r~u'i U

  • 9.0 EXPANSION VESSEL. Hoke 4L0300; 300 ml capacity; T304SS; service pressure is 400#~ Connect1ons are l/4M FPT.

EV-1 10.0 SAMPLE FLASK. Sentry P/N (below); 30cc capacity; T316SS. Temp/press rating is 150°F/3000#. Connections are 1/4" Swagelok or l/8 11 or 1/4" MPT or FPT as required.

  • SF1 .1 Sentry P/N (to follow)

SF1 .2 Sentry P/N (to follow) 11 .0 QUICK DISCONNECT COUPLING. Hanson ML-Hll-143 socket with ML-Hll-143 plug.

Material is T316SS; seals are V1ton. Connections are l/8 11 or 1/4" FPT as required.

Dl. 02.l & 02.2 12.0 FILTER~Nupro SS-4TF-140S; T316SS with SS strainer 140 micron. Tem.,/prP.ss rating 900°F/l000 psig.

FILT-1 13~0 OEGASIFIER. Sentry P/N


T303SS. Temp/pressure rating 200°F/200 psig.

DG-1 14.0 OVER TEMPERATURE PROTECTION SWITCH. United Electric 9214; F-7 with S.S. 6225-193 thennoweld. Temp/press rating 200°F/500 psig.

TS-1 160°F Setting TS-2 l20°F Setting 15.0 PRESSURE GAUGE. McDaniel ABM; 2.5 11 style PMLB, 1/4" MPT, T316SS internals, glycerine filled.

Gl : 0-5000 PSIG G2. l , 2 .2: 30 11 Hg-0-15 PSIG G3: 0-100 PSIG G4: 0-160 PSIG 16.0 DIAPHRAGM GAUGE PROTECTOR. Bellofram Corporation 12000-lONS-2. Process side mt1 is T316SS with V1ton d1aphagm. Temp/press rating is 400°F/2500#. Connections are l /4" FPT GS1.1, GSl .2, GSl.3 GS2.l, GS2.2 9 GS2.3 THIS DOCUMENT IS THE PROPERTY OF SENTRY EQUIPMENT CORP.

Oconnmownc, Vvis .'53065

<ind is to be usc:d u:1iy for the purpose vi the a~ieein..:nt *,,,ith Sentry pursu:rnt

~o whicn it is furnished.

Sentry Equipment Carp

  • Dwg. 153-11-003-1
  • 17.l FLOW INDICATOR. PURGE LINE. Dwyer differential pressure gauge, 4050 Capsuhelic.

range 0-50" WG. Interior surfaces are aluminum, diaphram is Buna-N. Temp/pressure rating ts 200°F/500#. *

  • FI-1 17 .2 FLOW ORIFICE, PURGE LINE. Sentry P/N_ _ _ _ _ _* T304SS. Temp/pressure rating is 200°F/SOOI.

OR-1 18.0 FLOW INDICATOR, SAMPLE LINE. Dwyer differential pressure gauge, 4050 Capsuhelic, range 0-50" WG. Interior surfaces are aluminum, diaphram is Buna-N. Temp/pressure rating is 200°F/500#.

FI-2 19.0 PLENUM SiATIC PRESSURE SENSOR SWITCH. Dwyer 1638-1, 15 amp, 120 VAC. Connections 1/8" FPT. Range 0.20 to 1.0" W.C.

PPS-1 _

20.0 PRESSURE CONTROLLER, GO Inc. pressure control valve. T316 diaphragm, TFE lined, Temp/pressure rating is 350°F/3000#. Connections 1/4" FPT.

PC-1 P/N 100690. Range 0-251. Setting 11 psig. Brass Body.

PC-2 P/N 100689. Range 0-10#. Setting l psig. Brass Body.

PC-3 P/N 100151

  • Range 0-25#. Setting 15 psig. T316 SS Body.

VACUUM PUMP. Air-Vac UV143H; aluminum, brass fitted; vacuum force of 29" Hg with 80 psig motive gas.

VT-1

  • -----*--**-----***--------*-**-*. **--------t

"'C Q.I N

. Ir 0  !...

+.I (lJ

.c VI u I 0

+J.- E 0 *0

'<:t" VI 0 c::

  • ::I

!.. IU o.c::

c::i VI

+J 0:

O:N Q..

I

. . . :::i

,_ C'l2:

,.... :::I

  • I . 0

+J

>..-OE rJ") ~ l""lO c.. +-' ra c.. Vl u

  • co

.-0.-'+-

.-+J 1 o .

!.. Q..

I Q..

n) ra I-,... .,,. VI

  • s..

..Ql,t')-J.-

.... - <1J

(.::l Vl 0 '°

  • c.

>.> u. cc * ....0 co l'c:I N E 3: 0 cc ta 0 I * *+J C N N

.  !... s...

NCIJN 00<.

.C:>M N

  • . \O<!:l
>C *
  • ~

co

.. c..'° ....'+-

,_ I

, I IJ")I c CJ'I

>C'I O'lO c::

+J N

N U

.. *~

l,t') VI

<.!J l.LJ

-J CO 0

  • N 1-co c.- ..

~~ ~~= ~~ ~ ~~§ I** *O:C.

.-LU .... L.L.J N~. <...::

IZ'fO**z LU-

~ ~

IX ,... U

= O'l.- N Q.l l-Vl

!... 0 l'c:I 0

<.!J C.c( I- C S... - I

<1J l.LJ

""'c:::::

I:

MU C.<:,U

'°s... CIC::::

Cl :::::


L

Paqe l of 7

~entry [qu1pmcnt Corp. DRAWING NO. 153-11-004-1 PRELIMINARY Original Date 5-21-80 Ck* d LE Rev O 5-21 -80 TillS Goe:;, ~; r IS THE Pr:OPE!HY i1F

~ATING PROCEDURES: REACTOR COOLANT MODULE I Sl!-f'.; '/ R. i' il.CJU li' LV!l~L\'f' CO kP.

  • Oconnmowoc, Wis. 53066

REFERENCES:

Description & Function: 153-11-001 <ind il) to be used only for the purpose

? & ID 153-11-002 of the agreement with Sentr1 pursuant Parts Identification 153-11-003 to which it is turnisbed.

-.. INDEX ... ......... .. ........................... " . .. I

.-----,..-----------------..;._------~*------* . . *-.. --... *--**------***------~I Page GENERAL INFORMATION & INSTRUCTIONS '

(

I Para 1.0 Mode 1: Preoperations For All Sampling l!

Para 2.0 Mode 2: Non accident: Capture Open Grab Sample .,

Para 3.0 Mode 3: Non accident: Capture Pressurized Coolant in Sample Fl ask SF1 .1 '

Para 4.0 Mode 4: Accident: Capture Pressurized Coolant; Degas Sample; Route Off \

Gas Sample to CAP Gas Chromatograph; Capture Diluted Gas Sample ,

in 013S2 for transport to Isotope Analysis Lab. !I Para 5.0 Mode 5: Accident: Capture Coolant Sample in BS1

, Para 6.0 Mode 6: Accident: Capture Diluted Coolant Sample in DBSl I

  • 1 Para 7.0 Mode 7: Accident: Route Coolant Sample to CAP On Line Liquid Analyzers._J
Para 8.0 Mode 8
Prepare Module for Future Sampling.

, , ----------*-- *------~. *-***- .. ---------*--*------*-----*--*-*-*

GENER/\L INFORMATION & INSTRUCTIONS A.Ooeration Modes

  • A .1 A.2 A.3 For routine, non accident sampling, Module has an open grab sampling Mode.

For routine, non accident sampling, Module has a mode to capture pressurized coolant in a removeab1 e 30cc Flask (SF1 .1).

For accident. Module has a mode to: (1) capture 30cc of pressurized coolant.

(2) degas sample and collect the Off-Gas in an expansion vessel, (3) boost pressure of Off-Gas to 10 psig with Argon, (4) tranfer Off-Gas to an adjacent CAP (Chemical Analysis Panel), to measure the Hydrogen content of Off-Gas,

. and (5) to capture 15cc of 15000 to one diluted Off-Gas in "DBS-2 11 , a 15cc sealed bottle---and transport it to an onsite facility for isotope analysis.

A.4 For accident, Module has mode to capture l Scc of undiluted coolant in "BSl ", a 15cc sealed bottle---and transport it to an offsite facility for analysis.

A.S For accident, Module has mode to capture 90cc of 1000 to one diluted coolant in 11 DBSl 11 , a 250 cc sealed bottle---and transport it to an onsite facility for analysis.

A.6 For accident, Module has mode to transport 200 ccm of coolant to the adjacent CAP 1 s on-line liquid analyzers. Coolant is filtered and degassed and at 60 psig.

B. As a safety measure, the module's non-accident 30cc Flask and spigot (for open grab sampling) are located in a usplash Box~ to capture and contain any accidental liquid spi 11 or gas rel ease of radioactive f1 uids. This box has: (a) a sink connected to a drain to waste and, (b) a ventilation base connected to the LSP ventilation

  • system. The operator must close the sliding door of the Splash Box before he can open: (a) the spigot valves to grab sample, or (b) capture sample in the 30cc Flask.

Sentry [qu1 pmcnt Corp. Dwg. 153-11-004-l RO Page 2 of 7 PRF.l IMHIARY

r. . hand powered vacuum pump is required ta cv~cuate "DOSl" prior to using it.

I\

Ref dwg 157-11-003-l, Item 5.

D. The transport and positioning of BSl & DBSl requires the use of a mobile CART/CASK (ref 156-11-004-1). *

  • E. I\ "Needle Flush Tool" (ref dwg 157-11-003-l, Item 4) is requ1red to complete the flushing mode for BS1.

F. An "Off-Gas Bottle Grip Tang" is required to manipulate and transport "OBS2".

(Ref dwg 157-11-003-1, Item 6)

G. Meter-long "Reach Rods" (ref dwg 157-11-003-1, Items 1,2 & 3) are required to manipulate valves during maximum accident dose situation.

H. Remoted, power-operated Valves 11 A11 are for isolation of sample supply lines. Valves 11 811 are for flushing of sample supply lines. Valves A & Bare operated ,from the PROCESS CONTROL PANEL.

I. From source to Module, the assumed Volume of each supply line and its components is 2280cc {equivalent to 250 feet of .245 inch bore 1 ine). Volume for 5 changes is 11400 cc. At flowrate of 1900 con, purging time is 6 minutes.

J. Diluted Off-Gas is transported from the Module ta the CAP's gas chromatograph by 25 feet by tubing l/8 11 00 x 11 bore volume for 2 changes is __cc. At Argon flowrate of __con, flushing time is _minutes.

Undiluted coolant is transported from the Module to the CAP's liquid analyzers via 25 feet of interconnecting tubing plus 15 feet of internal CAP Tubing.

1 .O Mode 1 : PREOPERATIONS FOR All SAMPLING MOOES 1 .1 All sample lines must be filled with demin water or Argon gas from previous flushing

  • Provide 120 VAC to SVl & SV2 to open air operated valves 1Wl & AV2.

P.osition remaining valves as follows:

DV2: Connect port l to 3.

OVl : Connect port 2 to 4.

Vl 8, V22 Connect port 1 to 2.

Vl 9, V20 Connect po rt l to 2.

All other valves closed, including Valves A &B.

1.2 Fill Reservoir Rl with demin water. Fill cylinder Cl with demin water. Close V23.

1 ,3 Securely tighten cap/septum of DBSl. Evacuate DBSl to 26" Hg VAC with hand operated vacuum pump. Observe pump gauge for 3 minutes to verify that bott1e is satisfactorily maintaining vacuum.

T~IS DOCUMENT IS THE PROPERTY OF 1.4 Securely tighten cap/septum of BSl. SENTRY EQUIPMENT CORP .

Oconomowoc, Wis. 53066 and is to be used only for the purpose of the agreement witb Sentry pursuant to wbicb it is furnished.

_Sentry Equipment Corp. Dwg. 153-11-004-1 IW Page 3 of 7 PP.fl IM TNf\RY l.5 Lo~d IlSl or DBSl 1nto CART/CASK. Position loaded CART/CASK under filling needles.

Elevate bottle onto needles.

1.6 Open Splash Box door. Insert Grab Sample Bottle near, but not directly under spigot from V6. Visually verify that Sample* Flask SFl .1 is properly installed and connected.

1.7 Verify that Gauge G4 reads minimum 75 psig to insure proper supply of Argon.

1.8 Inspect SBS2 to verify that its rubber septum is properly installed. Load OBS2 into the Off-Gas Bottle Grip Tong (OGBGT). Insert loaded OGBGT into the station.

Visually verify that the needle of DV2 penetrates the Septum of DBS2.

l .9 Prepare CAP to receive Samples from Module, per CAP procedures.

1.10 At PROCESS PANEL, determine that following lights for Sample Cooler Rack are ON and GREEN. This condition verifies that cooler are in satisfactory re.adiness for sampling. Cooler lights include:

(a) Sufficient cooling water flow.

(b) Sufficient cooling water pressure.

(c) Sufficiently low cooling water temperature.

2 .O Mode 2: NON ACCIDENT ONLY: CAPTURE OPEN GRAB SAMPLE: LINE RCl 2 .1 Step 1 : Purge To Secure Contemporary Sample At PROCESS CONTROL PANEL, open Valve A. At LSP, fully open Vl .1 and V3. Open VREL-1 until FI-1 reads __"\~G (1900 ccm). Purge 5 minutes to PURGE. Close V3.

2.2 ?tep 2: Pur9e Module Open v7 and V2. Open VREL-2 until FI-2 reads "WG (200 ccm), and G3 read~

20 psig maximum. Purge 1 minute to WASTE. --

2.3 Step 3: Draw Grab Sample Open Vl7 and flow sample to Splash Box for 2 seconds. Clase V17. Open Splash Box door to place Sample Bottle directly under Vl7 spigot and close door.

Open V17 and draw Sample and close V17. Close Vl .1.

2.4 Step 4: Flush Module Open v4 .1 unti 1 FI-2 reads "WG ( 200 ccm). Flush 3 minutes to WASTE. Open Vl 7 and flush 1 minute into the empty Splash Box. Close Vl 7. Close V2. Clase V7.

2.5 Step 5: Flush Purge Line Open V3 until FI-2 reads_"WG (200 ccm). Flush 3 minutes to PURGE. Close V3 ..

2.6 Steo 6: Flush Suoolv Line At PROCESS CONTROL PANEL, close Valve A and open Valve B. At LS?, open Vl .1 for 6 minutes. Close Vl .1. At PROCESS CONTROL PANEL close Valve 8.

3.0 Mode 3: NON ACCIDENT ONLY: CAPTURE PRESSURIZED COOLANT IN REMOVEABLE SAMPLf:

FLASK: LINE RC1

  • THIS DOCU1i.EilT IS THE PROPUTY SENTRY EQUIPMENT CORP.

Oconomo<Woc, Wis. 53066 and is to be used only ior the purpose

)f of tbe agreement 1*1ith Sentry pursuant to l'lbich it is furnished.

Sentry E~uipment Corp. Owq 153-11-004-1 RO Paae il of 7 PflF.LIMINARY 1HIS QOClli".E"~l :s Tiit l'_l<ll_l'_li* !! l>>I*;.

~*in"-iTk'{ i*:<Jllli'MJ*,Nl r.01...J

  • 3.1 _<itr>jl l: Pur9n To Secure Comtr.mporilry Sumplc w* :JJUU u4*

Pcrfonn the actions of para 2.1. ()co1tm1111woc, t:i. 'J Jnd i:; lu lie u~t.:J only (ur tho purpose 3.2 Step 2: Purge Module ot the agreement with Sentry pursuant Perfonn the actions of para 2 .2 t 0 'l'lhich \t is turnistled.

3.3 Step 3: Capture Pressurized Coolant in SF1 .1 Open VS.1, V6.l, V6.2 & VS.2. Close V7. Flow thru SF1.1 ta PURGE for one minute. Close V6.2 and V6.l. Close Vl.l, open V7. Close VS.2 and VS.1.

3.4 Step 4: Remove Sample Flask SFl .l Open Splash Box door. Uncouple 02.1 and 02.2 and remove SF1 .1 assembly for Splash Box. Couple backup SF1.1 assembly to 02.1 and 02.2. Close Splash Box door.

3.5 St_£E.._5: F1 ush Module Open VS.l, V6.l, V6.2 and VS.2. Close V7. Open V4 .1 until FI-2 reads "WG (200 ccm). Flush 3 minutes to HASTE. Close VS.2 and open V7 and flus~minute ta WASTE. Close VS.2 and V7.

3.6 Step 6: Flush Purae Line Perfonn the actions of para 2.5.

3.7 Step 7: Flush Supply Line Perform the actions of para 2.6.

4.0 Mode 4: CAPTURE PRESSURIZED SAMPLE AND DEGAS IT. DILUTE OFF-GAS & ROUTE IT TO

  • GAS CHROMATOGRAPH (in CAP). CAPTURE AND REMOVE A DILUTED SAMPLE OF OFF GAS IN OBS2. Line RCl.

CAUTION: Before starting Mode 4, insure that the CAP (Chemical Analysis Panel) is prepared to receive Off-Gas Sample from the RC Module. Ref CAP procedure 158- 11-004-1

  • 4 .1 ?tep 1: Evacuate DBS2 Verify that DV2 is rotated to connect port l ta 3. Verify that G4 reads 75 psig minimum. Open* V12. Open V13 until '12.2 rea<is 29" Hg vacuum. Close Vl'.l.

Observe G2.2 for 1 minute to verify that OBS2 is maintaining 29" Hg VAC. Rotate DV2 ta connect port 2 to 4.

4.2 Step 2: Evacuate EVl Verify that V9. V11, V15 & V4.2 are closed. Open '110 until G2.1 reads 29" Hg vacuum Clase VlO. Observe G2.l for 1 minute to verify that EVl & connected lines ;ire maintaining 29" Hg VAC. Close V12.

4.3 Step 3: Puroe To Secure Contemoorary Samo1 e Perform actions of para 2 .1.

4,4 Step 4: Purge Module Perform actions of para 2 .2.

4.5 Step 5: Capture Pressurized Coolant in SF1 .2 Open V8.1 and VS.2. Close V7. Flow thru SF1 .2 to PURGE for one minute. Open V7. Close VB.2 and V8.1

  • Sentry E~uipment Corp. Dwq. 153-11-004-1 RO f>tl <J0. ') 0 f 7 PP.FL IMINJ\RY 4.6 Step fi: F1ush Module

-Close Vl .1

  • Open V4 .1 until FI-2 reads WASTE. - - -"WG(200 ccm). Flush 2 minutes to 4.7 Step 7: Flush Purge Line Close V2. Open V3 until FI-1 reads "WG (200 ccm). Flush 3 minutes to PURGE.

Close V3. Close V4.l.

4 ,8 Step 8: Degas SFl .2 Slowly open V9 and observe that.G2.1 increases in pressure to 25 to 22" Hg VAC.

4. 9 _Step 9: Sea v enqe Off-Gas From SF1 . 2 Slowly open V16 until G2.1 reads approximately 1.0 psig. Close Vl6.

4.10 Step 10: Boost Pressure in EVl Slowly open Vll until G2.1 reads exactly 10 psig. Close Vll. Close V9.

~.11 Step 11: Route Diluted Off-Gas to \.AP Open Vl5 to permit Off-Gas to flow to the Gas Chromatograph in the CAP. Observe that G2.1 decreases in pressure to approximate 4 psig. Close V15.

4.12 Step 12: Capture Diluted Off-Gas In DBS2 Rotate DV2 to connect port 1 to 3. Observe that G2.2 reads approximately 28" Hg VAC. Slowly open V14 until G2.2 reads 0 psig. Close V14. Rotate DV2 to connect port 2 to 4. Remove DBS2 from the LSP, usinq Off-Gas Bottle Grip Tong. Insert DBS2 and Tong into shielded carry case for transport to counting facility .

  • 4.13 Steo 13:. Flush SFl .2 and EVl with Demin Water Ful1y open VREL-2. Open VB.l and V9. Open V4.2 until FI-2 reads Flush thru EVl and SFl .2 to WASTE for 2 minutes. Open VB.2 and close VB.1.

Flush to WASTE for 1 minute. Close V4.2.

4.14 5tep 14: Flush EVl with Argon Open Vll and flush EVl for one minute. Close Vll. Close V9. Close V8.2.

11

\.IG (200 cm)

Close VREL-2.

4.15 Step 15: Dry Out EVl Open V12. Open vla until G2.l reads 29" Hg 1/AC for 2 minutes. Close 1/10 anci Vl2.

4.16 Step 16: Flush Supply Line Al PROCESS CONTROL PANEL, c1ose Valve A and open Valve B. At LSP, open Vl .1 and V4 .1 . Flush for 6 minutes *. Close V4 .1 and Vl .1. At PROCESS CONTROL PA:lEL, close l/alve B.

5.0 Mode 5: CAPTURE BSl SAMPLE: Line RCl 5.1 Step 1: Load 8S1 into CART/CASK. Remove Needle* Flush Tool from LSP. Position CART/CASK. Elevate BSl onto needles of NBl.

5.2 Step 2: Purge To Secure Contemoorary Samole.

Perform actions of para 2.1.

5.3 Step 3: Puroe Module Perform actions of para 2.2.

TH l S 00C11 t 1E.," T I".:i -11:c.

1 .. ~ P.:?Qpco-v SENTR

., 1 v -,..~( . . . TT, . '-" I ' .

0

  • !t) 1 P :'*rI ENT r.o;::

Oconomowoc w,* ,. - ..,rJ....., , 4

~ d. ' "* O..; 6 v an, ....IS to be US13d Oil/'j ;'u,** *Lh.e ;iu;:--o~* '

01 u1e agreemc'lt ... ;r* I/~ s.bti lf,1

' ' , I 11 I l ." ,.,

-..jl""!

y(.

ro wn1cn ;ti~ f:.rni~~~_. 1 :Ju*~Uui.

Sentry Equipment Corp. Dwg 15~-11-004-1 RO Page 6 of 7 rnrt 1M INJiRY s.~ step 1: Fill ns1

  • 5.5
  • Rotate Vl 9 to connect port 1 to 4. Open VREL-2 until FI-2 reads Visually observe that BS1 fi11s completely. Flow additional 30 seconds. Rotate V19 to connect port 1 to 2. Close Vl .1.

Step 5: Flush Module, Preliminar,x Open V4.l until F2-1 reads "WG (200 ccm).

flushing, proceed with next step 6, (below).

Flush to WASTE for 2 minutes.

"WG (200 ccm) .

/Jhile 5.6 Step 6: Remove BS1 Operate CARf/CASK to remove BS1 from NBl needles; lower BSl into CASK and cover BSL with CASK lid. Remove CART/CASK from LSP. Install Needle Flush Tool in LSP to seal needles of NBl.

5.7 Step 7: Flush Module, Finallr Rotate Vl 9 to connect ports l to 4. Open VREL-2 until FI-1 reads 11 WG (200 ccm).

Visually observe that BSl fills completely. Flush to WASTE for 2 minutes. Rotate 1/19 to connect ports 1 to 2. Close V2.

5.8 Step 8: Flush Purge Line Perform actions of para 2.5.

5.9 Step 9: Flush Supplz Line Perform actions of para 2.6.

6.0 Mode 6: CAPTURE 0!3Sl SAMPLE: Line RCl 6.1 Step 1: Load evacuated DBSl into CART/CASK. Position CART/CASK. Elevate DBSl into needle of DV1.

6.2 Step 2: Purge To Secure Contemporary Samole.

Perform actions of para 2 .1.

6.3 Step 3: Purge Module Perform actions of para 2.2.

6.4 aotate '120 to connect port 1 to 4. Flow to WASTE for 30 seconds. Rotate DV1 to connect port l to 3. Close Vl .1. Slowly open '121 to permit the demin water in Cl to flow through DVl into DBSl. Visually verify that a stream of water is properly injecting into DBS1. Close V21 after precisely 90cc of demin water have exited from Cl. Rotate DVl to connect port 4 to 2.

6.5 Steo 5: Flush Module Open V4. l until F2-1 reads

  • 11 WG (200 ccm). Flush to WASTE one minute. Rotate V20 to connect port 1 to 2 andflUsh to WASTE an additional one minute. Close V2.

6.6 Steo 6: Flush Puroe Line Perform actions of para 2.5.

6.7 Step 7: Flush Supply Line Perform actions of para 2.6.

6.8 Steo 8: Remove nBS1

  • Operate CART/CASK to remove OBSl from DV1 needle, lower. .nBs.J jnto CASK & cover DBSl with CASK 1 id. Remove CART/CASK from LSP. r/

., l _.

T)*/

J.'\. L

~**

\ ,~

j u ,

TlflS uOt.;:1. t.*l IS T;;E ?i\U?E, TY !JF SEN Oconomuwoc, Wis. 5 3066 f ,J

"' J.

l'y*1"':'-.J~ l.*. . '!"

and is to be used onl1 fo; th.:: purpose of th~ agreement wit!J Sentr:1 pursu<Jnt J

('Q

') ~

.t.\. J.i...J to wb1ch it is furnisbed.

Sentry Equipment Coro. nwq. 1 53-11 -004-1 RO Paqe 7 of 7 rnEL IM INJ\RY

7. 0 Mo<lc 7: ROUTF. COOLANT SAMPLE iO CJ\P 1 s otl-LINE J\NJ\L YZERS CAUTION: Before starting Mode 7, insure that the CAP (Chemical Analysis Panel) is prepared to receive liquid Coolant Sample from the RC Module. Ref CAP procedure 158-11-004-1. _

THIS DOCUt-!1Efn IS THE PROPEdY OF

7. 1 Step 1: Purqe To Secure Contemporary Sample SENTRY EQUIPMENT COl~P.

Perfonn actions of para 2.1. Oconomowoc, Wis. 53066 and is to be used only for the purpose 7.2 Step 2: Purge ~~dule ot the agreement with Sentry pursuant Perform actions of para 2 .2. to wbich it is turnished.

7.3 Step 3: Route Liquid Sample to CAP Rotate V22 to connect port l to 3. As necessary open VREL-2 until FI-2 reads "WG {200 con). Continue to flow coolant to CAP until CAP's operator advises that hts Sampling Exercise is satisfactorily completed. Close Vl .1.

CAUTION: The maximum allowable time for flowing a coolant sample to CAP is 17 minutes. If this time is exceeded, the operator may exceed the target 100 mR dose rate for the CAP sampling mode.

7.4 Step 4: Terminate CAP Sampling Mode. Flush Module. Flush CAP.

CAUTION: LSP Operdtor advises, and secures concurrence from CAP Operator of intent to tenninate CAP sampling Mode and to commence module and CAP flushing.

Open V4.1 until FI-2 reads 11 WG (200 ccm). Flush 3 minutes to CAP, thru CAP, thence to PURGE. Close V2. Rotate V22 to connect port 1 to 2.

7,5 Step 5: Flush Purge Line Perform act ions of para 2 .5.

7.n Step 6: Flush Supply Line Perform actions of para 2.6.

n. 0 Mode 8: PREPARE MODULE FOR FUTURE SAMPLING Manipulate valves and equipment to conditions as required by para 1 .o.

9 .O SAMPLING FROM THE OTHER FOUR (4) LINES ARE MADE IN ACCORDANCES WITH PARAS- 1 .O THRU 8.0---BY MAKING CORRESPONDING VALVE AND EQUIPMENT MANIPULATIONS.

Page l of 1 5-8-80 Sentry Equipment Corp. Original Date 3-13-80 Ck 1 d LE Rev l

~-

DRAWING NO. l 54- 1l -001 - l (O"ESCRIPTION & FUNCTION: DEMIN REACTOR COOLANT MODULE!

HRSS Liquid Sampling System , .. \S 1.*£ Pl'OPEf{T'f UF THIS OOCti: .* £t** 1 1. " ...1 ,

~E*~ r1 RY EC~U L;J i'll ;.,I'1 f C~ R i .

1.0 REFERENCES

o01  !~ *.r * '""06o P & IO 154-11-002-1 Oconm1w.-...voc, h *S J.:l

  • Parts Identification: 154-11-003-1 and is to be ust:J unl1 \~r tile purpu:u.

Operating Procedure : T54-1 l-004-l a1 tile a1r,i eement *,*1ith ~entry pursuant to wllicn it iz turnisaed.

2.0 DESCRIPTION

& FUNCTION 2.1 Mod 2 accepts (3) different samples of Reactor Coolant, from clean-up demins, entering (only one @ a time) at maximum of 120°F and 1250 psig.

2.2 Maximum flowrates are: (a) 1900 cc/min during purging, and (b)SOO cc/min during sampling.

2.3 For routine, non-accident sampling, Module can capture depressurized coolant as an open grab sample for routine analysis.

2.4 Module reduces samples pressure to 25 psig.

2.5 Module flushing capabilities include:

(a) Flush liquid sample supply lines to HRSS Waste Tank (via owner 1 s remote power operated flush valves--located upstream of the Sample Cooler Rack).

(b) Flush in-panel liquid sample lines to HRSS Waste Tank.

(c) Flush fluids may be demin water, nitrogen gas or appropriate decontuminatin~

solutions.

PRELIMINARY 3.L S'V M c

E 0

I-I-

0 CD 8

A JOB NO. RC.

TOU:RANCES SENTRY EQUIPMENT CORP.

AL..L. OIM'S. UN.U:SS HRSS LIQµID SAMPLING PANEL OTHERWISE SPEClll"IED OEMIN REACTOR COOLANT MODULE FRACTIONAL +/- INCH 1----..,,,-.,........,,....,,,---..,.,....,..,.,--------,,,------l ci::ci MAL  ::!: INCH ~DA_T_E__.;:;.3_-~--'8~0'-D_R_A_w_N_.;.:W..;;:.J.:..:.N__c_H_K_'D--:L:.;;E'--_s__,cALE ~I I A ANGUL.AR +/- DRAWING NO. 154-11-002-1 1

ISSUE 1 U/P INC, l130M 500*1*77 2 1

. r / * *I ;*;*' 1***'. r* * * ., ....

    • .. I
  • I J / l . ::*  :

11

' \

~*,

I . ) ~'.\, ..;

ra<Je l of?

t . *' .j' I ':,: I 11,*:' .\I. r*.: 'I ".I! 1:

" 1* 'I I'.j 'I .)*;

Llt .....1.~.;;::l..-.~.1~

1.

.j
    • t 1 *' ,, ... ; , " " " .,.

I , 1 , 11 *

[ I \ ..

I, \

  • ,.,,, . l r*.1 Fquipment Corp. Ori<Jina1 nate 3/6/80 C:hk'<l Lr Rev l DRAWING NO. 154-11-003-1

'"* ii ~J ,~. I .. :. : *..

l .0 VALVES. MANUAL 1. i llit; :1 .....

,;, i. i :-*:. *. \i./:.t 1.1 TWO-WAY GLOBE VALVE. ISOLATION. Hhitey SS-1VS4. V~ewt~~:~~;.;,;13~'dy:*~~d stem are T316SS. Packing is Garlock 7020. Temp/press rating is 150°F/2955#. Connections are 1/4 Swagelok. 1/R" or 1/4" MPT or FPT as required.

Vl . 1 , Vl . 2, V1 *3 l .? THO-WJ\Y GLOl3E VALVE, REGULATING. Whitey SS-1R4, Regulating Stem. Eady and stem are T316SS. Connections are 1/4" Swagelok, 1/8" or 1/4" MPT or FPT as required.

Temp/press rating is 150°F/2955U.

V?.1, V2.?., V2.3. Packing is TFE.

V3. Packing is Garlock 7020.

1.3 !11\LL CHECK VALVE. Hoke 6133 Series, 15 psi crackinq pressure. 13ody, bal1 and spring are T303SS. Seats are Viton. Temp/pressure rating is 350°F/3000#. Con-nections are 1/4" Swagelok.

CV1 . 1

  • 1 . 2, 1 . ~.

CV2.l, 2.2, 2.3.

l .4 PRESSURE REDUCER ELEMENT (VREL). Sentry P/N (to follow) is an adjustable variable rod in capillary device to breakdown a large pressure differential with-out seat/plunger wire drawing. Cleanable in place without shutting off samrle flow. Rod anrl capillary are T303SS. Temp/pressure ratin~ is 100°F/5000#.

Connections are 1/4" Swagelok. Packing is Grafoil.

VREL-1.1, 1.2 & 1.3 2.0 QUICK nISCONNECT COUPLING. Hanson ML-Hll-143 socket plug ML-Hll-143 plug.

Material is T316SS; seals are Viton. Connections are 1/8" or 1/4" FPT as required.

rn .

.r-ntry l.quipmcnt Corp. Ow~. No. 154-11-001-1 S/fl./P.O rn u-LlLJ~a r1:nr1~[\~-~f~ ~~*)\~r P;i r:ie 2 of ?

~~;, [LuG.JUJ!.i -.J*i*\\ u 1

  • I FLOW INOICJ\TOR. Dwyer 4050 CapsuheTic, ranl)e '"0-::i ... ~?,. Interior surfaces arc uluminum, cliaphrum is [3una-N. Temp/pressure rating is 200°F/500#.

FI-1

.2 FLOW ORIFICE. Sentry P/N (to follow). Wetted material is T304. Temp/pressure rating is 200°F/200#.

OR-1

.-1 .n nl J\PllR/\r.M r./\llt.F PROTECTOI~

  • Bellofram Corporation 12000-lOMS-?. Proce~s side mt1 is T316SS with Viton diaphram. Temp/press rating is 400°F/2500#.

GSl.l, GS1.2

. '\

n

'~

.:'l

,.. - .... 'r>

. "'\. "'

c:'4' ol) ~

,, \U

  • *:/)

..::.J~

  • *= ..c:

~ -~

~

~= ~

  • 1' ......

1= ..,

~:.;;,-

co .L:ll

-=~, ('*"

E 0:

....0 .. "'O

"'O QJ VI QJ .._,

S.. ON M <UE *1 9Q(JJ >  :::w.-,

~.~ U g_o:: I

,..- ,..: i t.n -o *

  • r ClJClJ VI Cl):..-!

g'E ,.... ~~t2 I

~ ~~~~~I
J VI VI I- Ill 0 S..:

QJ

~

0:::

, "'O _.._,EVI n~:: ~.,,.s~~

<i....iio.. QJ I

  • ~1 .._, VI
  • w-

"'1"

I n::l 0 l
> w > 0 Vl:

-:11w 0

-
01 c::.**1S..c..
Q.(X),

c: **1 CJ c::.

cw

"'O

      • j<l.l<lJ u 1 Vl

.._ co11--l<lJ I :U,.J CT. o 0.~ -

c..::.I"' t..L.J

c. .... 0 ,....

0... I LW--' LW

~:r-!C U")i _J  ::i

"' 0 Ol U E

=I> c 1 c::::

U N c.. E E UC:::::

Q) t'C I- V'1 I

I I

L-L ...... *--* ... ___ ***-- **-** ____ J.. ... _.................... .

'.;enLry lquipmcnt Corp.

ORAWINf. NO. l~~-ll-00~-l l'HLLIMIM/\RY Ori~inal Date S-lG-80 Ck'd LE r~cv 0 5-16-r.o nrrr>AT rr1r. rno~_E_~,~~~~--~--~-~-~~Miri_~~~-~-A.:c_T.g~~~~~ooLA~.I-~P.~ I 111 !-> lJ 0 (; ll 1v.I:. i'I I i !~ I ii !: I' I\(J I' Eii I Y ur SENTJ<Y HJllii'iVli ;NT (;()J-.!p. 1 Description & Function: 154-11-001-l Oconomu*ivoc, Wis. 53066 P & ID 154-11-002-1 Jnd is lo Ul! 11:;i:d 1111ly i11r lilt! µurµu1;u Part Identification 154-11-003-1 of tlle agreement with Sentry purs\lant GENERAL INSTRUCTIONS to wblcll it i:; f urnisl1cli.

This module is for routine, non accident grab sampling ONLY~ As a safety measure. the spiqots are located in a "Splash Rox" to capture and contain any accidental liquid spill or gas release of radioactive fluids. This box has: (a) a sink connected to a drain to waste and, (b) a ventilation hose connected to the LSP ventilation system. The operator must close the sliding door of the Splash Box before he can open the spigot valves to draw a sample.

Remoted, power-operated Valves "A" are for isolation of sample supply lines: Valves "B" are for flushing of sample supply. Valves A & B are operated from the PROCESS CONTROL PANEL.

From source to Module, the assumed Volume of each supply line and its components is 2280cc (equivalent to 250 feet of .245 inch bore line). Volume for 5 times chan0e is ll400cc. At flowrate of l900ccm purging time is 6 minutes.

l . n Mode l

  • PREOPERATIONS
  • 1.1 l .?

J\11 valves must be closed.

previous flushing.

All sample lines must be filled 1"1ith demin water from Open Splash Rox door; insert Grab Sample Bottle near, but not directly under spigots.

l .1 At PROCESS PANEL, determine that following 1 ights for Sample Cool er Rack are ON anrl ~REEN. This condition verifies that cooler are in satisfactory readine~~

for sampling. Cooler lights include:

(a) Sufficient coolinq water flow.

(b) Sufficient cooling water pressure.

(c) Sufficiently low cooling water temperature.

2.n Mode 2:CAPTURE OPEN GRAB SAMPLE: LINE DMl 2.1 Step 1: Purge To Secure Contemporary Sample At PROCESS CONTROL PANEL, open remote Valve A. At LSP, orien Vl .1. Open VR.::L-1 .i until FI-l reads __"WG (corresponding to 1900 ccm). Purge 6 minutes to '.IASiE.

2.2 Step 2: Draw Grab Samole Throttle VREL-1.l until FI-1 reads "1.-IG, (corresponding to 500 ccm). Open V2.l and flow sample to Splash Box drainfor 10 seconds. Close V2.l. Open Splash Rox door; position Grab Sam~e Bottle under V2.1 spigot; close door. Open V2.l and draw Grab Sample. Close V2.l. Open Splash door; remove Grab Sample 3ottle; Close Splash Box door .

nwfJ /11 SI\ 00'1- l RO  !'.i 'J" ? (),. ;'

l'Rrl !MHIJ\RY

i.*1 ',Lr?f> J: rlusll Module Close Vl .1. Open V3 until FI-1 reads "WG (correspondinf) to SOO r.cm). rl11sh to HASTE for 2 minutes. Open '12.l and-ffush spigot line into Splash Box drain for l O seconds. Close V2. l . Close VREL-1
  • l
  • 2.,, -~4: F1 ush Supply Line At PROCESS CONTROL PANEL, close Valve A and open Valve B. At LSP, open Vl .1 and flush throuqh Valve B for 3 minutes. Close Vl .1. Close V3. At PROCESS CONTROL PANEL close Valve B.

2.5 CAPTURE OPEN GRAB SAMPLE: LINES DMZ & DM3 Make corresponding valve manipulations in accordance with the steps of paras 2 .1.

2.2, 2.3 and 2.4.

1.0 t~ode J: rREPAP.E MODULE FOR FUT!JRE SAMPLHlG close all valves.

1--*---*-**--* -------*---*----****-*--*-***- ........ *- ..

i II

.~HIS. ~~C:JMDT IS THE PfWPERTY OF

";°:.*I

('...N l 1-<. Y ECiU' "-

I fJ. *\1* J,;...., *r , '-" ., -*

L. \.

1

'- \_..' I *'\.. l -

0 Ci; IZ ri /IL IJ '(;) () ,_; 1,.!,l ;,. *;* ~){)'-)_.°., * .._

~ ...... * *

  • i v
  • nd j<'

u 1-Q '*.

t

' r,....

u~ :J~'=u I ., .. !, . . '

u111y r 1Jr l;i:.; Ji.WJJ:.i" v

or tu e i.l gr ee:n er; r vw ~ ,~ ,, ~ ;,,, .. ,,-,.. ,-,1r*

  • _.
  • J.\. . . ' r-l!
  • l.U VU1l1.I J j.Jul *.l'i.J~j

, ***--*---*-*------------***------**--*---*---------------**-*-----*.to. *~bic:-i it. i~* iurrH55eti.- * --

Page l of l 4-2 3-80 r,P.nt.ry rciuipment Corp. Ori9ina1 Date J-13-r.n Ck'd u: Rev l DRAWING NO. 155-11-001-1 DESCRIPTION & FUNCTION: RADWASTE MODULE (NO. 4)

HRSS Liquid Sampling System THIS oocur.!t::~:: :s Tii[ l'!~OPE:nY UF 1 . 0 REFERENCES SFNTJ~V

,J j 1'*, 1* *{

1 ,*:*,

  • I

, ,I. . ! .'...! ~

, ... t, ,J J\'

P p, ID 155-11-002-1: Ol:,u:c *:;: .. :. : " * .. ifl;,.,

Parts I<lentification: 155-11-003-1

.. r1G 1:, lu l,l: l.v::~* '*.i :1 : :: i.i;t: µUllJL,!,,;

Operating Procedure : l 55-11-004-1

  • . the <J,;.*;L.:l ... ! ':!*:; *;,;;1t.y  ;;111;;:J.;l:i 2.0 OESCRIPTION & FUNCTION 1u wtmr1 1l i~ 1:ii11::i;1..:d.

2.1 Mod 4 accepts:

(a) Two (2) different samples of (liquid)sump water entering at maximum of l20°r and 150 psig.

(b) Eight (B) different samples of radwaste water entering at maximum of 120°F and 150 psig.

2.2 Only one source can be sampled at a time.

2.~ Maximum flowrates are : (a) 1900 cc/min during recirculatinq mode, anrl (b) 200 cc/min during sampling.

2.1 For routine, non-accident sampling, Module can capture depressurized sample as an open qrab sample for routine analysis.

? .5 For accident, Module captures a sample of undiluted sample *in a l 5ml sealed bottle. The bottle is remotely lowered into a cask resting on J special cJrt.

The cart with cask is removed from the panel and transported to an o ff-s i tc faci 1 ity.

2.6 For accident~ Module captures 90 ml of 1000-to-one diluted sample in .i se.i1cd

. hottle and lowers it into a cask on il cart. Thi! cart is removed from the Panel and transported to ~non-site lab for isotopic and other ana1ysis.

  • 2.7 Module reduces samples pressure to 20 psig.

?. .q Module has power operated valves to automatically stop sample flow in event of excessive sample temperature.

2.9 Module flushing capabilities include:

(a) Flush liquid sample supply lines ta HRSS Waste Tank or to source.

(h) Flush recirc lines to source.

(c) Flush in-panel liquid sample lines to HRSS Waste Tank.

(d) Flush fluids may be dernin water, nitrogen gas or appropriate decontar.:inating so 1utions.

0 Vl LU

...J,.....
  • 0~NN..,.. "°'

V'l N VI

..._,. I " ' C.

> "d" ~

w ~o C:r-~N

c:

z RE Vi fl 1 - - ' - - - - - - - 1

~

.ioDcD TCi-~}S*I, SV-1 l .
  • -----"-->*~--- ~-. --:-.: :-_ - i

~ ;r:~o~ ~~-:~ ~. \3 8 I l'

  • -::t..:n;, T::.IJ OG $
~ : :* - .- r T ::~
  • I I/ I.:'.;, I
j 3]5=8-=80 L :

P.oo REr10TE.'..' I

soLATIO"".;kuSH f\) IRLV5. I

-i 5-21-AD U:-

C~s;~iq~D R1ToC1 I f::..DDED R1 1V1D

> 0 "'1 I

z ci fl1 n >

ll v I.?> I c ~ Q

~ > Ci  ;: I

n r z R 'v ?.6

> \2.3 c..v2.~ I r

It ll It y 1.4 c.* I. l 0'2.4 itc..v1.11 '/J

~-1--_,_ _ _ __ ,_ _ _ ~rx:;  !><1---f'--J~I----------..l-----z___;.~~-,~~~*  :~ ::::' I z z R F -I- \2.4 V2.9 - - i: ~ .:; ~ ~ .'j~ I :-

--,J= -

n n x x VI.':> l Ii 0 I5

. CV2.5 V2..5

,. V ~

vc.10 ..... L.IC>

J J,' C\ I. IC

  • ~

V I. I 0 g~ ~ c* .-j 5 I

=. ....*

-4~

~

c m 0m * ::=

0  ::0 :r: L. .....+----'------'------'i'-.}---*";:o..."...---t---; :i..'1--- ' 1 - - - - - - - - - - L - - - - - - - , , - , ..~ -*:

o
I> >  ;:o

.... -.1..:.:

7 I

)>

-l (11 CJ Vl

Ii: Vl mz --

PR\/- I c.r.

~

~

I I

):>.

I.Ill

--t >--<

l"T1 *-=>

z

.... 0

  • i-

~.

2: c:

C'i 3: ,_.

00 ;a ..... -

2 0

C)

C: VI

~~

-< V CY 1.12.

  • ..-..r

-0 m t.n

-!:~

02 0 U1 I

c_ G')

.s:. -u c "

~:x> """"'

_. 0 I

() ,,,

z lJ

~ :uC) 0 I r N /\ z I

0 r

rn 7

rr ..... L. - 3 D* I - _J _

-I

(/)

() () il.\

I> ']

Ui

(/)

r Jl1 0 2.

~-

if* -*

c AJ ._.  ;:i.

~

L ~- r (11

__c

> 11 . /

~

L~ ~, ..~

c-'.*

l~

i:::"1-*c-::

,._ I

\':=.1*-vc.-

  • -~

,.-.c:::

l(*~-c~:-;;;

.. L-(J/.. . . . . I

_, 1-'\

o, ;
:.~..-c)

)"C'

- ~-er,*

_ .... ,,

  • D D >"  ;
~

m ()

r* .* .... : * .. : Pa~e l of .1 I .

[,. I "

~i  ; t \~.I *~ I

~~ntry f~uirment Corp. Original Date 3/6/80 Chk'd LE RP.V  ?

5-27 -BO DRAWING NO. 155-11-003-1 fr'.iS ii(li*..... ~  : r*  : *.~ .1::r;~1f.::T'(  :.1;-*

~*ARTS IDENTIFICATION: Radwaste Module (NO .4) ~-; ;*:; .... * ::

HRSS Liquid Sampling Panel ... , . .

(ref. P & ID dw no. 155-11-003-1 ) ci"," * ** "* * .. ,:: ;,::'_,.'1 g  ; *~(j 1 l(J l*r. ii' " ' .. *' * '" 'Jl'rfl[J'."'*

t,.. I *) I \.., ~* , , '1 'I .' * ,J, , ,, v I .! j-1 0 ,11.*

11 1111e l1:.:.r: ::l: !,; '.,i*i: ~.: :~i:'/ r1q;:::J;J,;1:

l .0 I/ALVES. MANUAL 0 1 iu wliit;,, it /:. l ~i li.~l,..:J.

l .1 TWO-WJ\Y PLUG VALVE, ISOLATION. Nupro P4T- Series. Body and plug arc TJ16~S. Plug is TFE coated. 0-rinq seals are Viton. Temp/press ratinq is 120°F/2600#. Con-nections are 1/4" Swage1ok, MPT or FPT as required.

Vl.l, 1.2, 1.3, l.4, 1.5, l.6, 1.7, 1.8, l.9, 1.10.

V2.l, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10.

l .2 TWO-WAY GLOBE VALVE, REGULATING. Whitey SS-1R4, Regulating Stem. Body and stem are T316SS. Connections are 1/4" Swagelok, 1/8" or 1/4" MPT or FPT as required.

Temp/press rating is 150°F/2955#. Packing is TFE.

V3 V4 V5 THREE-WAY BALL VALVE, SWITCHING. Whitey SS-42X or SS-43X Series. Body and stem are T316SS. Packing is TFE. Temp/press rating is 150°F/2500#. Connections are 1/8" or 1/4" Swagelok, MPT, FPT as required.

vs l .4 FOllR-WAY !3ALL VALVE, SWITCHING. Whitey SS-43Y Series. Rody and stem c3re ill t1SS.

Packing is TFE. Temp/press rating is 150°F/1000#. Connections are 1/8" FPT.

Vl & V8 1.5 DILUTER VALVE. Sentry P/M (to fol low) is a modified Hhitey SS-43YHF2, with 1-43-n0125 equipped with a 304SS 16 gauge needle (.055" od x 0.047" id) assembly on 6 oclock port.

DVl.

1.6 BALL CHEC:< VALVE. Hoke 6133 Series. 2 psi cracking pressure. !Jody, ball and spring are T303SS. Seats are Viton. Temp/pressure rating is 350°F/3000#. Con-nections are 1/4" Swagelok.

CVl *1 , 1 . 2 , 1

  • 3, 1 . 4 , 1
  • 5, 1
  • 5, 1 . 7 , l
  • 8, 1 . 9 , 1 . 1 0, 1 . 11 & 1 . l 2 .

CV2. l , 2. 2, 2. 3, 2. 4, 2. 5, 2. 5, 2. 7, 2. 8, 2. 9 & 2 . l 0.

CV3.

( flel et~d)

l'uqe ('.of *1 r?

~-0-i'.()

'//\Liff, a re Vi ton. Tem ri/ pres~. u rr.

r.1tinri rRV-1 25 psi9 cracking prcssur~

~Jl Nrrn1r 11UKK f\SSrMP.l.Y. Sentry P/N (to follow). T104SS P.lock with two(?) T201\'.:.'.:. JC 9auqe needles ( .065" od x .047" id).

M!3-l

  • ., l CYLINDER GRADUATED. Corning 6383; 125cc Pyrex Separatinq Funnel with TFE stop cock.

Sentry P/N (to follow), glass or equal; 300 cc capacity; with dust cover.

Cl ,9, V<J

'*.:~ RF.SERVOIR f\SSEM!3LY. (One shared between RC & RW Modules) Sentry P/N glass or equal; 100cc; with Whitey lRS6A stainless Valve.

Rl & Vl 0 r.n OllI\.K 11ISCONNECT COUPLING. Hanson ML-Hll-143 socket pluq ML-Hll-1~1 plug. Material is TJlhSS; seals are Viton. Connections are 1/8 11 or 1/4" FPT as required.

Dl

!.il FILTER. Nupro SS-4TF-140S. Temp/pressure rating 900°F/1000 psig.

FILT-1 f)*

  • o TI.J0-1:/J\Y ISOLATION VALVE, POWER OPERATED. Skinner Solenoid valve R2HOx2Pi; T301SS hod'f Jnrl stem; Viton seating material. Temp/pressure rating is l80°F/1250#.

SV-1 ri .n nvrn TEMrERJ\TURE PROTECTION SH ITCH.

TS-1: 120°F Setting.

111.n PRESSURE GAUGE, REMOTE. McDaniel ABM; 2.5" style PMLB, 1/4" MPT, TJ16SS internals, glycerine filled.

Fl : 0- 1 00 PS I il.O OIAPHRAGM GAUGE PROTECTOR. Bellofram 12000-10-NS-2; T316SS; Viton diaphraqm. Fi11 is silicone fluid. Temp/pressure rating is 150°F/1000#. Connections are 1/4" FPT.

GS-1, GS2.l, c;s2.2.

1?.0 FLOW INOTCATOR (differential pressure gauge), LOW PRESSURE. Dwyer Series 4000 Capsuhelic, range (to fo1low). Interior surfaces are aluminum, diaphrar.i is Buna-N.

Temp/pressure rating is 200°F/500#.

FI-1 nm, 0 0 CIH.1'GIT r,7'1Jr1>~1 1$ Tii E Pfi 0 p rn T':' l) F

,.- . .,~.,., ~..--

S l..J '.i\. A

'}'

l..r\.~l i :- :Yj. l.1.,1" 1 l ..... ()Rr.J.

1 Oco :toi:: I) 1:..* <; c. i;/ is. 5 3 () 6 (j

<ind is trJ L0 !JS1:t.'. ori1y for the pur~Js,:

o1 the JGreen:::nt wit:1 Sentry ~uiS:!Jfit to wbich it ;~ f urr:ished.

Sl"nt.ry F<iuipment lorp. Page 3 of J P?

S-;> /-:~r1

  • l RfVISIONS
- ,- \ 4-22-80 \ LE
Para 2.0: deleted entirely. Para 3.0: deleted words "Low Pressure" and chanried PRV-2 to PRV-1. Para 7.0: Changed Filter from Sentry P/N to Mupro SS-4TF-140S.
Para 9.0: deleted TG-1. Para 11.0: Changed Ashcroft P/N to Bellofram 12000-lONS-2.

_A?~~~---?~~e. . 3~-- -*---***-*----------*--***-*- --------*--*-*** __ ..... ******-***********.

?. S-?l-RO LE Para 5. 0 ~ renumbered 5 .1 ; changed Rl to Cl . Added para 5. 2 for Reservoir P.1 with valve VlO

  • TH IS 0 0 CI ii!. EiH ;S THC: Pf( OP[;~ T Y ,j F SE1\1*;*

1)

J.\. l 1..J .i..~l

.. ,.,r , . - ..

,-c**r;f 1*i ,,_,'~r ~~\j \_,, \.,,' i\ lJ.

Ocniw1;-u;'"..*:oc. \,Vis. 5.)IJri, 2nrl 1s lo Ll! u::.t;~ uri:y ror U1e ;.:~c.:.>:;

of the ag1eemr:11t with Sentry pu.:.ua11t lo which it is furnished.

PiHJ~ l of I\

  • '.,entry [quipmcnt Corp.

OR/\WIN~ NO. l'i~-11-nn~-l PRELIMIN/\RY Ori<Jinal 0.1t.e 'i-l'l-P.O O:'.cl 1.r Rc~v ri 5-1 9-1\0-

  • I 0 PERATING PRO CEDUR~ ~-'-~ _flil DW~T~30 D_lJ_L E THIS OOC!li\Ei;;* ::; 'fHF. l'l(Qf'Ef!T'f fJF

~EN"!l<.Y UJUll'Mi~NT CUH.P.

REFERENCES:

Description & Function: 155-11-001 -1 Ocomm111wnc:, \Vis. 5J()t)(,

r & IO l 55- 11 -002-1 .:nu 1s to bu useJ only 1or the purpose Part Identification 1 55-11-003-1 ul the agreement with Sentry purst1an1 to wbich it *1s f urn1shed.

i,ENER/\L INFORMATION & INSTRUCTIONS

/\. Module has an open l)rab sampl inq mode for routine, non-accident samrl inlJ. Module has two (2) modes for accident sampling': (a) capturing lScc of undiluted sample in "RSl", a 15cc sealed bottle, and (b) capturing 90 cc of 1000 to one diluted sample in "OBSl", c1 250cc sealed bottle.

n. As a safety measure, the modules spigots (for open grab sampling) are located in "Splash r.ox" to capture and contain any accidental liquid. spill or gas release of radioactive fluids. This box has: (a) a sink connected to a drain to waste and, (b) a ventilation base connected to the LSP ventilation system. The operator must close a sliding door of the Splash Box before he can open the spigot valves to draw a sample.
  • C. I\ hand powered vacuum pump is required to evacuate "DBSl" (ref dwg 157-11-003-1, Item 5) prior to using it for sampling.

O. The transport and positioning of BS1 & DBSl requires the use of a mobile CART/CASK (ref procedure 156-11-004-1) .

r.. "tlee<Jle rlush Tool" (ref dwg 157-11-003-1, Item 4) is required to complete the fl us hi nq mode for BSl

  • F. Meter-lonci "Reach Rods" (ref dwq 157-11-003-1, Items 1,2 ?,J) are rP.ciuired to manipulate valves during maximum accident dose situation.

G. Remoted, power-operated Valves "A" are for isolation of samrlc supply lines. Vulves

"!"!.are for f1ushin1J of sample supply lines. Valves A?, r. are oricrutcd from the PROCESS CONTROL PANEL.

H. From source to Module, the assumed volume of each supply line and its components is 2280cc (equivalent to 250 feet of .245 inch bore line). Volume for 5 changes is ll~OOcc. At flowrate of 1900 ccm, purging time is 6 minutes.

l .0 Mode 1: PREOPERATIONS FOR ALL SAMPLING MODES 1.1 Provide 120 VAC to open SVl. Position Valve DVl to connect port 4 to 2. Position V7 and VS to connect port 1 to 2. Position VS to connect port 1 to 3. All other valves must be closed. All sample lines must be filled with demin water from previous flushing.

1.2 Fill Reservoir R1 with demin water. Fill cylinder Cl with demin *~1ater. C1ose Vl 0.

l .1 Securely tighten cap/septum of OBS1. Evacuate DBS1 to 26" Hg VAC with hand operated vacuum pump. Observe pump gauge for 1 minutes to verify that bottle is satisfactorily maintaining vacuum.

Sentry F.quipment Coro. nwci. 155-11-004-1 RO Pa CJ" ? of I\

I lllS liUCll; .. I ,*;I ;:; I Iii. l'lilil'I .; I y 111 l'f{l l. lMlN/\HY

~;[.;j\J 'i' I~'\' i*:<,il Iii',~./:*:;"*: ( :r) /,* J>.

U<:o111nil1J'l~)llC, w* i~ . .'; .iiJ(Jb and 1s lo lie used 011ly 101 ll11.: µurµu~u

  • l . I\

1.5 l .6 Securely tighten cap/septum of !3Sl. nf the agreement with Seulry pursuant lo wbich it i3 I urnJ!lRerJ Load ~Sl or DBSl into CART/CASK. Position loaded CART/CASrCunder fill inQ needles.

Elevate bottle onto needles.

Open Splash Box door. Insert Grab Sample Bottle near. but not directly under spigot from V6.

1.7 At PROC:F.SS PANEL. determine that followinci li'lhts for Samplf' Cooler Rack are ON ~ GREEN. This condition verifies that coolers are in satisfactory readiness for samplinl"). Cooler liQhts include:

(a) Sufficient cooling water flow.

(b) Sufficient cooling water pressure.

(c) Sufficiently low cooling water temperature.

2.0 Mode 2: CAPTURE OPEN GRAB SAMPLE: LINE RH3 2 .1 Step 1: Recirculate to Secure Contem~orary Sample ;At PROCESS CONTROL PANEL, Open Valve A. At LSP. fully open Vl. for 6 minutes. Close Vl .5.

2.? .s tr~p ? : Purrie Madu le Fully open V2.5. Slowly open V4 until FI-1 reads "HG (2()() ccm) and Gl reads 20 psig maximum. Purge l minute to WASTE.

2.1 ~tep 3: NON ACCIDENT ONLY: Draw Grab Sample Open V6 and flow sample to Splash Box for 2 seconds. Close V6. Open Splash P.ox door and place sample bottle direct1y under V6 spigot and close door. Open 1/6 and rlraw sample and close V6. Close V2.5. Open Splash Box door and remove sample bottle and close door.

2.4 ~-~ 4: Flush Module;At PROCESS CONTROL PANEL, close Valve A. At LSP, open V3 until FI-1 reads __"WG (200 ccm). Flush ta WASTE for 2 minutes. Close 'II\.

2.5 Step 5: Flush Recirc Line. Open Vl .5 for 6 minutes. Close Vl .5.

2.6 Step n: Flush Supply Line;At PROCESS CONTROL PANEL, open Valve B for 6 minutes.

Close Valve B. At LSP close V3.

2.7 Non Accident Grab Samples From The Other Nine (9) Lines Make corresponding valve and equipment manipulations for the other nine sample lines in accordance with paras 2.1 thru 2.6.

3.0 Mode 3: CAPTURE BS1 SAMPLE: LINE RW 3 3.1 Step l: Load BS1 into CART/CASK. Remove Needle Flush Tool from LSP. Position CART/CASK. Elevate BSl onto need1es of NBl.

3.2 Step 2: Recirculate To Secure Contemporary Samole;At PROCESS CONTROL PMEL, Open Valve A. At LSP, fully open Vl .5 for 6 minutes. Close Vl .5.

3.3 -~~ 3: Purge Module Fully open V2.5. Slowly open V4 until FI-1 reads 11

\~G (200 ccm) and Gl reods 20 psig maximum. Purge 1 minute to WASTE.

_Sentry Equipment Dwq. 155-11-004-1 RO PMJ<' 1 () f '1 l'l<t" l IM I rl/\HY l.'1 <itr>r> il: Fill P.~l "Rotate V7 to connect port l to 4. Open V4 until FI-1 reads "Wr; (200 ccm).

Visually observe that RSl fills completely

  • Flow additiona-C-30 seconds. Rotate V7 to connect port 1 to 2. Close V2.5.

3.5 Step 5: Flush Module. Preliminary_

li.t PROCESS CONTROL PANEL. close Valve A. At LSP open V3 until FI-1 Reads "WG (200 ccm). Flush to WASTE for 2 minutes. While flushing. proceed with next step 6, (below).

1.G Step F,: Remove !3Sl Operate CART/CASK to remove RSl from NRl needles; lower P.Sl into C/\SK and cover

!3Sl with CASK lid. Remove CART/CASK from LSP. Install Needle Flush Tool in LSP to seal needles of NRl.

1.7 Step 7: Flush Module, Finally

  • Rotate v7 to connect ports 1 to 4. Open V4 until FI-1 reads "HG (200 ccm).

Visually observe that !151 fills completely. Flush to WASTE for l minutes. Rotate V7 to connect ports 1 to 2. Close V4.

3.8 Steo 8: Flush Recirc Line Open V1.5 for 6 minutes. Close Vl.5.

3.CJ Step 9: Flush Supply Line;At PROCESS CONTROL PANEL, open Valve rl for 6 minutes.

Close Valve B. At LSP close V3.

3.10 BSl Sampling From The Other Nine (9) Lines Make corresponding valve and equipment manipulations for sam~inq the other nine lines in accordance with paras 3.1 thru 3.9.

4.0 Mode 4: CAPTURE DBSl SAMPLE: LINE RW3 4.1 Step l: Load evacuated 013Sl into CART/CASK. Position CART/CJ\SK. Elevate OP.Sl into needle of nv1.

4 .? Step ? : Recirculate To ~cure Contcmpor.2.!:Y. Sampl c ;At PROCESS l.ONTROL PANEL, Open Valve A. At LSP, fully open Vl .5 for 6 minutes. Close Vl .5.

4.3 Step 3: Purqe Module Fully open V2.5. Slo\'1ly open V4 until FI-1 reads "HG ( 200 ccm) and Gl reads 20 psig maximum. Purge 1 minute to WASTE.

4.4 Steo4

Fill DV1

~otate V8 to connect port 1 to 4. Flow to WASTE for 30 seconds. Rotate OVl to connect port 1 to 3. Close V2.5. Slowly open V9 to permit the demin \'later in Cl to flow through V9, and DVl into DBSl. Visually verify that a stream of water is properly injecting into DBS1. Close V9 after precisely 90 cc of demin water have exited from Cl. Rotate DVl to connect port 4 to 2.

4.5 Step 5: Flush Module At PROCESS CONTROL PANEL, close Valve A. At LSP open V3 until FI-1 reads "',.IG

( 200 ccm). Flush to WASTE one minute. Rotate VS to connect port l to 2 ariCl

'C'J!'E~l flush to WASTE an additional one minute. Close V4.

.* '. .) *~.1 ,T IS .THE PROPERTY OP

... . n

  • t*.A.J( ll P 1W /T,NT CORP .

. * * " 1u*mu'll.'(IC, Wis. 53066

..; ~" ut! used unly for the purpo~

* :,;: J~.ri:~ment with Seatij Rur~nt

'"' *:t:'.; it i.s fi.:rn1~he:J. *

  • Sentry F.~uipment Coro. Dwq 155-11-004-1 J>HELlMlNARY llllS llOCllMHll IS l!IF 1'HOl 1 F!;!Y llf

~ENT l\'. Y I *A~(! I 1' i\I I< i'i T C 0 I<. L-'.

Strp ri: rlu~h Recirc Line Ocon"uw*1voc, W i:;. :;J06f1 II

  • fi
  • -Open Vl .5 for 6 minutes. Close Vl .5. <.ind is to be used only ior tilt! µurpoaa ul lbe agre11111c11l wilb St:nlry µur suaut 4.7 Step 7: Fl us_~--~.!:!Jl.21.Y_.!:_ine to wblcb it Is furnished.

At PROCESS CONTROL PANEL, open Valve B for 6 minutes. Close Valve B.

At LSP close V3.

4.8 Step R: Remove OBSl Operate CART/CASK to remove DBSl from DVl needle, lower OflSl into CASK and cover nRSl with CASK lid. Remove CART/CASK from LSP.

4.9 nBSl Sample From the Other Nine (9) Lines Make corresponding valves and equipment manipulations for sampling the other nine lines in accordances with paras 4.1 thru 4.8.

5 .0 Mode -5: PREPARE MODULE FOR FUTURE SAMPLING Manipulate valves to positions as required by para l .1.

____.j..---*-----****--*--*---------** *-***-**** ... ----*-' -----******** -*. -*****. *--....... -. h*-********

I

Page I of z Sen try Equ i pmcnt DRAWING NO. 151-11-001-1 PRELIMINARY Ori~inal Date 3-20-80 Ck'd RRH Rev DESCRIPTION ~ FUNCTION: SAMPLE COOLER RACK HRSS Sampling System nns DOCUMENT IS THE PROPERTY OF l .O REFERENCES SENTRY EQUIPMt*:NT CORP.

Description & Function: 151-11 -001 _, Oco11omowoc, Wis 53066 P & IO 151-11-002-1 and is to be used only for the purpose Parts Identification 151-11'."'003-l of th~ a~ieement with Sentry pursuant Operating Procedures 1 51 004-1 io which 1t is furnished.

?..O DESCRIPTION

?..l The Sample Cooler Rack includes 10 coolers mounted on a* welded steel frame.

The frame is designed to bolt to a vertical wall.

2.2 Five (5) coolers (SCl series) are provided for the Reactor Coolant .Module.

2.3 Five (5) coolers (SC2 series) are provided for the Radwaste and Demin Modules (2 for Radwaste and 3 for Demin). The BTUH requirement for SC2 coolers is less than the requirement for SCl coolers. Therefore the SC2 coolers re~uire less heat transfer surface and less cooling water GPM.

2.4 The HRSS System is designed for only one source to be sampled at a time.

Therefore: (a) the five SC1 coolers are connected in series on the cooling water, and (b) the five SC2 coolers are connected in series on the cooling water side.

2. 5 Safeguards Each bank of five coolers is provided with the following:

(a) Cooling water over-temperature switch.

(b) Cooling water under-pressure switch.

(c) Cooling water low flow switch.

(d) Cooling water relief valve sized to relieve a full bore flow from a broken sample coil *

(e) Cooling water isolation valves for the inlet and discharge for each bank.

(f) Each sample line is provided with an inlet isolation valve for maintenance purposes. These valves must be open for normal operation.

2.6 Service life The sample cooler coil has a fatigue life of greater than 40,000 instantaneous temperature and pressure step changes from ambient to a design reactor coolant sample conditions and then back to ambient. Because these step changes actually occur gradually, a conservative fatigue life is estimated to sub-stantially exceed the service life. Considering a11 factors, Sentry recommends replacing the SCl series coolers every twenty years.

Failure of coolers in SCl type service is not rare. Sentry knows of no con-firmed failures in SC2 type service. Failures caused by tube side conditions are usually because of throttling up stream of the cooler instead of down stream. Failures attributable to the shell side are usually caused by localized boiling of the cooling water and the resulting corrosion, cavitation and vibration. Special antivibration devices are used in the coolers, but the solution is to: (a) maintain the highest possible static pressure in the cooling water circuit , (b) do not throttle the inlet cooling water line, and (c) maintain flaw rate close to the design condition. The sample coolers are designed for 400 PSI to encourage the user to maintain the highest possible cooling water system pressure.

Sentry Equipment Corp. Dwg 151-11-001-1 Rl Page ?. of 2 rr.rL IM Hll\RY

?.7 noscR,1tc

  • ?..8 When handling one sample of Reactor Coolant (worse case) the dose rate at a meter distance from the active cooler is 300 mR/h. ThP. residual dose (after complete flushing) from the cooler rack is estimated to be 5 R/h @ one cm.

Servicing A flanged cooler design is used to allow the cooler shell to be removed without disturbing the sample connections. A tube side hydro test can be perfonned with the shells removed (recommended yearly when in continuous use). The estimated time to repair/replace a worse case failure is one hour.

The installer should make provisions in the cooling water system to completely flush out decontamination 1 n the event of tube leakage.

3.0 PERFORMl\NCE nURING PURGING (nominal 1900 ccm flowratc) 1.1 SAMPLE SIDE (tubeside) SCl Type SCl Type SCl Type SC2 Type (a) Phase Steam Steam Water Hater (b) Flowrate~ ccm 1900 1000 1900 1900 (c) Velocity ft/sec 6.1 6.0

( d) Source Reactor Reactor Reactor Sump/Drywel 1 (e) Type Reactor PWR PWR B~JR P\*IR/BWR

( f) °F to Cooler 700F 700F 580F 340F

( g) °F from Cool er 132F 102F 103F l15F (h) °F from Pressure Reducer 137F 107F 107F 11 FiF

( i) PS I G to Coo 1er 2300 2300 1 565 1 50 (j) PSI, Sample Pressure Drop 20 20 13 3.2 COOLING WATER (Shellside)

(a) Fl owrate, GPM 10 10 10 7 (b) °F to Cooler 95F 95F 95F 95F (c) °F from Cooler 146F 121 F 111 F (d) PSIG Static, Maximum 400 400 400 400 (e) PSI, Rack Press. Drop 30 30 30 30 (Header-to-Header) 3.3 OVERALL (a.) BTUH Transferred 252000 128600 57000 (b) Fouling Factor .001 .001 .001 (c) Design Resistance Overall .0021 .0021 .0021 (d) LM & D °F l80F 112 86 3.4 Required total cooling water flow is 17 GPM and 30 psi pressure loss---

inlet to outlet header.

4.0 PERFORMANCE DURING SAMPLING (nomina 1 200 ccm fl owrate)

At 200 ccm,sa~ples leave coolers about 1°F hotter than the entering cooling

'Nater---and r1 se in temperature as they pass through pressure reducing valves.

With para 3 .2 c~ol i ng water. the maximum sample ~ne:r~G:IJr~~ 1q§sfn~%i:.wf :.r~1ovF pressure reduction valves are: SJ~i*;'(R.Y EQUli)iVIJL*..,7 CORP.

Reactor Coolant Module: Oco;;:.:uw-:J<;c, 1N is :J 3066

  • 1 01 °F Demi n Module 99°F ~nd is to be us.~~ u;1iy for the purpose Radwaste f.!;0dul e 96°F 1;: the ac; ..:1;11u:r 11i1il Sentiy pursu<rnt
a whic:i it is furnished.

PRELIMINARY i...---------- ".;l .:nt

    • ~i~Ll~{ ~3L~ ~nt700J~~~~~~~~~~~~~~~~~~~-~-~~

,.L£ Wdb L ~.LnO ~"J ~-~ I

.1 I c I

I I

I I

I I u.:.

I~

I-~

E I

.GOH :)Cl O.L S ?(:! _...1.---_J'_ _ _ _ __ I 3J~nos_J__£________ I 1* .

. Q OW :)Ci Ol \-\ ~ C:! ---1-11,--M-------- -----L..=::::::::.....::-_!!.2-_ __J I 3J~l/OS _J__£________ ----.------~----. I

'QQl,..J  :>Ci OJ. ct. :121~1-I- - - - - - ----1C::::::.....~gj__ __J I I

I

i:

Jl c

c::

.A JOB NO. RC.

SENTRY EQUIPMENT CORP.

SAMPLE COOLER RACK HRSS LIQUID SAMPLING SYSTEM ISSUE 1 U/P. INC:. 160"4 500*1-77 2 1

rage 1 or c.

Sentry Equipment Corp.

llRAW ING NO. l 51-11 -OOJ-1 PRELIMINARY '.i-1 S-P.O Original Date 3/8/RO Ck'd LE Rl

  • PARTS l .O InErlTIFICATION:

VALVE, MANUAL, ISOLATION Sample Cooler Rack HRSS Liquid Sampling System*

THIS OOC!i" E,; I !S fl.:E PIIOPE!i TY Of 01!,1-. *, i<. / J.~(.,!(J i "'NJ i~1\ T CO RP.

Oco1umwwoc, Wis 5 .3066 (ref. P & ID dwg no. 151-11-002-1 )and is to be use:d only for the purpose nt the ll(!iccrnent with Sentry pursuant to wbich it is f urnislled.

1 .1 TWO-WAY ANGLE BALL VALVE, COOLING WATER INLET. McCannaseal; carbon steel TFE packing. Temp/press rating is* 310°F/400 #. Connections 3/4" IPS SW.

Vl .1 & V1 .2 1.2 TWO-W/\Y ANGLE GLOBE VALVE, COOLING WATER OUTLET. Marsh 1936 FFG, T316SS; TFE packing; 6000# WOG.

V2 .1: 3/4" FPT V2 . 2 : 1 /2" FPT 1.1 TWO-WJ\Y ANGLE GLOBE VALVE, SAMPLE INLET. Whitey SS-3NBSW4T; T316SS; 1/4" tube socket weld. Tempipressure rating is 700°F/4110#. Grafoil packing.

V3.l, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9 & 3.10.

2.0 SAMPLE COOLER (Sample-to-cooling water heat exchanger). Sentry P/N (below).

Tubeside (Sample side) is continuous helical tube, 1/4" od x .030 wall x T316SS.

Shell side (cooling waterside) water wetted surface is T304SS or equilvalent .

  • Shell is flanged to remove to inspect/clean tubeside (without disconnecting sample lines). Temp/press ratings are (a) TUBESIOE: 700°F/2500#, (b) SHELLSIDE 650°F/400#. ASME Section VIII Code Stamped.

SCl .1, 1.2, 1.3, 1.4, 1.5 : Sentry P/N TLFH-4222 SC2.1, 2.2, 2.3, 2.4, 2.5 : Sentry P/N TSFH-4222 3.0 COOLING WATER OVER TEMPERATURE PROTECTION SWITCH. United Electric Controls C54-9135- l 03; range 0-225F, l SA. Control 1oca ted in T304SS well . Temp/press r.atinq 250°F/1000#.

TS-1 Setting=plant water temperature, plus 55°F TS-2 Setting=plant water temperature, plus 30°F.

4.0 COOLING WATER OVER PRESSURE PROTECTION SWITCH. United Electric Control J6- 9632-364 Wet"ted surface is T347SS. Temp/press rating is 250°F/500#. Range 0 to 500#.

PS-1 & PS-2 Set per plant pressure. Ref 151-11-001-1, para 2.6.

5.0 COOLING WATER INADEQUATE FLOW PROTECTION SWITCH (paddle type) W.E. Anderson.

V6EPB-S-S-4D to actuate @4 GPM and deactuate @2 GPM. Switch rating is Sa @

125/250 VAC. Wetted surface is T303/304SS. Temp/press rating is 220°F/1000#.

FS-1 & FS-2 6.0 COOLING \~ATER PIPE/FITIINGS. Sch 80 T304SS; 1 1/4" SW. Parker 4-HW-SS/12-12 CB2 tube unions. Other SS fittings---as required *

  • 7.0 COOLING WATER PRESS RELIEF VALVE. Consolidated 1975C. Wetted surfaces T300 series stainless; 1/2 FPT. Temp/press ratin~ 400°F/2000#.

~ & ?;r Setting

....; t ", '/ ~ : ""*** !-.) >*:. J * ,....,

i: * ' i } I'*

I 400 psig .

v r: *,;;, i.,c,._;. '*f - IC -1 '

~ *T ,- ., * ** " ,) -* f P: oPE ., n .

1 ! 1, r*1 . ; ~ , r *. ; J

... J ~ :. ~ ~: * *, ~ *

(1 ' -- .. ' ' . -. ' '. \ j c. r-1 .

_,L(.),*~*J/,l1J:_**1t: \*** .. ~-. ,.* -

-~*

c:,,L b

  • - t*u be us~~

, . 1.,

o*.: .. r*,,. t

,)Jl_1t;/*

"' th -- '"J "* i;e p11ip0Ja

.,, e ag;eeni.:nr \';ith Sen tr RE\/ISIOllS io which it is fornished. ' Y pursua.r;.t -;:) Vl

---r*-----------1-r--------------  ::=:::

IT1 I

t.>
l

.-+

1 5-15-80 LE I *  ;

3: '<

CHANGES: Para 1.1: From Whitey to*------* .....

z ni McCannaseal valves. Para 1.2: From Powell >

0 c:

.!)

to Marsh valves. Para 1.3: From Edwards -< .....

to Wh1tey valves. Para 4.0: From P/N 11 9575-670 to 9632-364.

  • Para 6.0: From .75 to l
  • 25".

Anos: Para 1.0.

?

..:l l.11 I

I 0

w I

0 I "1 I
.n I
0

{  ::>

I I

I I ....,

i ..:i i  :",)

I N

I 0 j ~

N

Page l of

.Sen try Eriui pment Corp.

rnr:LIMINARY DRAW ING NO. l 51 -1 l -004-l Original Date 5-29-80 Ck'd LE Rev O 5-30-80

  • .1------------------~

. Ol'FR "TI~rr. pnocEn11nF.s* Sfl..Ml'LF. ".001.E'n R"CK THIS DOCU.

  • E*. f IS T11"E S/*'11.1*;*1**~*
  • 1*-C2Uli'Mli,t.f

.* PROPEi:TY OF

. '" I', I\ , I\... ** I\ I\ ' .~*. \. i CORP HRSS Sampling System f!connmowoc, wis. 5306 (j *

<rnd is to ~e used only for the purpose REFERENCES nescription & Function: 1 51-11-001-1 of th~ a~re~ment with Sentry pursuant P ?c ID 151-11-002-1 to which 1t 1s furnished.

Parts Identification 1 51 003-1 Operating Procedures 1 51-11-004-1

Po<JC 1 of I\

Dte '1-iJ-1:0

\Pntry Fqui~ncnt Corp. Orginal Date 3-11-AO Ck'd LF flr>v 2 DRAWING NO. lfin-11-nnl-l DESCRIPTION & FUNCTION: CASP (Containment Air Sampling Panel)

HRSS SAMPLING SYSTEM TRIS OOC\Jt;:ENT IS THI: PROPERTY ilf 1 . '1 REFERENCE r & m 160-11 :.002-1 SF.NT RY j;'.r: :u { r~ M rn,:T en i'. p

() (. \) i l / ; * ; * * * *'. * ' :I;" 1 ~: * *1 :; {) ,*:, I 1 Parts Identification: 1 60-11 -003-1 ~nd i;, to ;J~  ?;: . . : . .. , *'/  ;;,: li:'! piirµu~~!

nperatinq Procedures: 16()-11-00tl-1 d\ the J& .... .;i: ... :i* .. !Li~ ..,J1:liy µursuant

'tO Y..hlC11 it i::. 1>.iii:~llt;Ll.

2.n rESCRIPTION 2.1 Panel-Shielci 9i Rase: The panel-shield consists of 3" steel. The panel shield is supported by a intc~ral steel base, which provides adequate shfelding for the radioactive piping raceway and radiation backscatter. The panel base has connections to attach the remote operated cart/casks which capture samples of containment air.

?..2 Ventilation Ventilation control is provided by a plenum which encloseci the space behind the panel shield. The plenum is to be maintained at a ne<)ative pressure of .25" water gauge, so that 160 CFM of air infiltrates from the out-side of the Panel through its penetrations and into the plenum. Thus any gas leakage through '/alve stem packing and similar leak sources, is captured by the plenum and routed to a rad gas treating system. The bottom of the plenum is provided with a basin to catch any minor drips. The plenum ha$ a removable panel in its rear for maintenance access. Plenum is l2ga steel; basin is 16CJJ T304SS. Plenum has a pressure switch to alarm@ lack of negative pressure.

2.3 Component Mounting Tubing and components are mounted on the backside of the panel within its plenum.

?..4 Measures To Prevent Iodine Plate-Out Special measures are employed to prevent particle ts Iodine plate-out in the 0.17" bore inlet line to the cask containing SFl. Special measures include:

(a) Thermostatically controlled electric heating cord to maintain the line surface temperature at 200°F---to prevent steam condensation.

(b) Minimum 1 .7" radius line bends (10 times diameter). _

( c) Plug valves to avoid abrupt <lirection changes, or expansions/contractions.

2.5 Motive Force The Panel is equipped with a nitrogen-operated vacuum pump 1-1hich induces 0.2 cfm flow of air from the containment to the Panel, and through the Sample Casks. The 2.0 cfm exhaust from the vacuum pump is.discharged to containment via a nominal 0 .43" bore tube.

2.6 Remotely Operated Cart/Cask Remotely operated Cask-Carts (ref Description-Funct1on Data sheet 162-11-001-1) are provided to insert, couple, uncouple and remove the casks which capture samples of containment a1r. Cart/Casks are transported to an on-site facility. SF2.l, .2, .3 are counted (in place within the casks) by a hand held detector (ORTEC Intrinsic Germanium shie1ded

  • detector, or equal). The contents of SFl Flask are transferred into a standard holder (containing a particulate filter and silver zeolite cartridge) for radioiodine measurement by a Ge(Li) detector. The empty flask is subsequentl removed from its cask for residual counting~

s~ntry Fquipment ~orp. raqr? of *1 4-29-80

'?.7 Valv_es,__I~bin~ .9w ,1oints Three manual pluq valves are provirlcd for maintenance isolation. Isolation and switching volves for operation are power operated. controlled from the Panels remoterl control station (ref.

Description-Function Data Sheet 161-11-001-1 for details).

'\signal from the Panel flow monitor is routed to an indicator in the Panel's remote Control station.

,.,')

  • ./)

Ci

,,, Power operated pluq valves are used in two (2) locations: (a) upstream of

~

="

...1.. V? the SFl Flask -t:o prevent Iodine plate out. and (b) on the

-, vacuum pump exhaust to avoid "choking" the pump. The remainin<J power orerated

  • "l.. L-'.:l..

valves are globe type.

I)  ::-..,

  • ~ ~

.. tJJ

.-: *"/) Valve packing, seating, and thread sealing are TFE. TFE is used because:

-. J.':

  • . '.:;: .r:.;;

~ (a) TFF. is the only practical seating material for the necessary valve desi~ns,

  • .:~  : -~ (b) TFE has the minimum sealing and packing leakage rate, and (c) thes.e TFE.
  • I '

' ~=:-1 components have demonstrated a service life in a high radiation fie1d equal to

    • ~
  • . , .--c:* -

their mechanical service life.

  • I* ~;; -~

' I '.') *'=

1

, l,H1

(.'Q  :~

Sample tubinq is T304SS. 1/4 11 OD by approximately .17 11 bore. Vacuum exhaust

  • - ...c u*

~

"*- tubing is l/2"00 x approximately .43" bore. Fluid velocity developed in a .17"

~-- --0 .......  ;;:

bore is optimum for assurance of contemporary sample and minimizing plate-

'" out in the 1 ines. The .43 bore exhaust velocity is low enough to not "choke" the vacuum pump. Material is T304SS.

,Joints are Swagelok, Gryolok, threaded and silver solder brazed as best

  • 2.8 suited for particular components, for maximum joint tightness, for minimal fluid volume and for optimum maintenance.

Size and Wei of the Panel and approximately ertinent installation details) The dimensions 7" deep x 3 6" wide. ~*/eight is 1, t1 FllNCTHlN 3.1. General When the routine Containment Air Monitoring System is* isolated in Jn accident CASP is operated to capture grab samples. CASP induces .2 cfm (minimum~ containment air from a source over a pressure range of 0.5 (negative) to 60 psig and over a temperature range of 50 to 310°F; the air mass flow & cfm varies with pressure and temperature. CASP's auxiliary equipment includes four (4) mobile s.hield casks each containing a sample vessel of approximate1y 5 ml c~pacity. All casks have integral, manual isolation valves.

1.2 Operations (a) During initial installation the four (4) carts are positioned and coupled to companion quick disconnect fittings on the CASP.

(b) Appropriate valves are remotely manipulated to purge supply and discharge lines using the 110 psig nitrogen motive gas. CASP 1 s flow monitor svstem indicates flowrate forward or backward.

(c) Appropriate valves are manipulated to capture a sample in the desired cas~.

The time interv,~1 bet\'1een samples and the time of flow for a given sa11ip1 inCJ exercise are controlled by adjustable timers in CASP's remote control panel .

Sentry Equipment Corp.

Dwg. 160-11-001-1 rr'IA,. 2~

)\ \ ,1 r1:-i 1 1 **

,.,~l)-1,11 p\aq~1~,'~f ~-2<J-no I L' ,\(

,./ I! '.l 11

\

I' I:

11 ' '

i

I' I ' I, \.

hu u'*\\IL:....;i l.:.::.l I l*U:* :J*1. ::1 ilJ .. ILJ' !1-~

1 u ' u ...J u \.1 :..I ..... *

'1.1

( d) After a sample is drawn and isolated by power operated valves, other v~lvr.s are manipulated to pur~e radioactive gases with CASP's 110 psig nitroqen motive gas.

{e) After purginq the lines, the operator manually: (l) closes the cask's isolation valves with a one meter long reach rod and (2) manipulates the cask's cart to uncouple the quick disconnect couplings, and (3) transports the cart/cask to an on-site facility for isotopic analysis.

( f) Backup cart/casks are positioned and coupled to the CASP for next sampling exercise. *

( g) !Jsed sample vessels are decontaminated or replaced to prepare casks for 11ext use.

4.n ACTIVITY~ nosE RATES

4. l Worst Case Accident Activity For a "line break" RWR, 5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> into accident, the containment air hctivity level is 300 rem/hr/cc, contact.

4.2 Radiation Field @ 1 .O Meter in Front of Panel @ 5 Hours Into Accident is 225 mrem/hr. Dose rate for casks is 100 mrem/hr @one meter.

4.1 Ooerator dose while manipulating the cask's isolation valve (with one meter long reach rod) will not exceed 100 mrem per sampling exercise.

After a subsequent power operated valve manipulation to purrie the quick

  • 5.0 disconnect coupling with nitrogen, the CASP's radiation field closely approaches the room ambient.

LEAK RATE ~ TESTING CRITERIA Maximum individual 1 eak to atmosphere shall be 1 x l o- 4 cc/sec for each joint and component when interior cavities are pressurized with dry nitrogen at 90 psig.

Leak testinq material is Product 277NE (American rias ?, Chemical C:o) ilf"lpl ied in accordance with the appliciable portions of AG & C Bubble Leak Testing Process Specification *

  • THIS DOCU/11E:-iT iS THE 2ROPU;T\' :if SENTI?.':/ l:~t.~(!;i:-1'lli*~t:*1*

Ocon::in::*1*"*'*. '* i Jnd is to be .:~ .!.; \:,;.~'

i the ab*.~:...

if1r

. ... **::~ . ._,

l°.':J;..:;)_

., :. .")0.'1.,

t: ..~ ~.;~~,;SG

,J * *.* :J1.::.t

~(J Y;hiC. ii'** .. :,~ ....;;.

~ (\

..j

~

4.1

~

~*

V) I

~

04...1~

\:( .LS'nl;:;JHX :;> ~l'-:J I NOi.i(;.17(.iC'/3/A ~

~j~ 2 ~nN~7d

. '4.1*0.:: ~ -'O~o*

C:>*

  • tl. u a *o*o..

o.o G73CH.S NO\.ltj!O{:JCi G~>

r-3Dl 30 IS .LNOC!.:i Ill

.J

.1) 0 0 I

I 0 0 I

I 1-'.\

b I

0 0

.111'

'-u I

.\:

I

~

() I 0 0 l I)

I

~'( ..j

~.) lu

'-')

.r: *:*\. .

a:

.I,,*'°'

.o..

O* O*o

~Poe; a*Oo.

  • i:::::>.. * *"

a_,

]'--

. . '*. :. ,* . * .

  • i I\'- ,. :\ '...' 1 Lr, I I 1; r

.' ..-. ;.*' .. '*'. ' .r:****- ... ,..) J*~..,,) '4J

  • *. \.. . * * . I \ '\ .\ -J SENTRY EQUIPMENT CORP.

CASP (Containment Air Sampling Panel)

          • *' :\. .. i:: :.* HRSS SAMPLING SYSTEM DATE3-14-8C0RAWN JJS CHK'D LE SCALE::/!,

DRAWING NO. 160-11-001-~ ISSUE 2.

c:


1

'1l z

(l REVISE'D )i-.;iER-a; "FRCc L\1'.Jc$.

0

!: DCLETE r'.OD TS-1 HC-~

Gil I

"' c. :?>-c 0

0 ,BO JJ 5

-.., !=lDD

~

DHETC OR ..DPT, FD'\, 5 SY '.S (.

I c:v 1, .

Re: 1'.JUM DER V;;i1IU$

Yro.LVfiS ~ fLt.sK~

I I\)

3 4-2.-BO LE RELOCl'\TE. FoR I

I ,

I C:RSKS Li y-J5-BO RuD S'll l,1 ~' IPPS-1 I ~: I DE.LETE TS*).UJC-l CofiRcCT DESCRll'-

T10IJ DI'" StRVJC[

I I 5 ~-2 9-BD Lt

~~,i;~~ .SFi 10 1~1

,~~

5cc E.CHANC::,:'.:

I I FC-1 TO FM-~.

r-1

oo PPS-1 _J I oo ~
r
(/) L --7 ,;I- / ./

f D1.~~ -"' ./

f Dl.8~

4- _J

~~

~fll n :;:o

0- (/)

mm 0

D1. 1 f Di.'2~ Di.5 Dl7 tf) 1t:()

(/\ (/)

......... ..J

~ lT1 z~

Y1 "

-n 0

z

-i z

~

z 0 ' ' ~

l9" =:It

<eJ Q C\ 0 :x:-

..... ;o '-,.., (J 0 :z

-< Ci:: z"'

~ :u

}>

(Tl 1-- <>> ~ ~*

0 z ~~- >

0 :E z -i m (j ()

lt c:.

c..,

p.

...... D ..__

~~ ('J I-

-0

x
>

0

7' I -*

-~---'

o c..... ~ ~~

a:::

~

i..

rT1 r-(/)

P :r:: ~- (L .SF "1 SF 2..1 SF ?...c SF 2.3 -;-~
...:.: 3:

I

.::> {)

3:

-0 1J ~ )

-... ~-

' fr z CART CC.ART CART  ::.

I r

z ~ ;u a:

~ 0 i'

(.),.:.;,

( CART I-

..,-, :u I

_, 0 Cl m0 ~

~

t.J..

( (j'  ;;

rn "U

,0.
z z u OuJ ex. ll)

A.JOT£:

SF 1 THRU 5F 2..3 FH-'.E 5Rl1PLC: FLH'5XS > t: l1CH LOC~1?ED

-I ~ µ_ <::i

\*/l1'Hl/0 Fl SHlclDLUG CA5K. CRSl<S ARE P6Sll"J6fJcD ~

fT1 Ul r

0 IX 0:: 0::

{)

TRA.USP()J<JED 5Y 5PECJRLl Y DESIGIJ~P CARTS.

1*

~\..'I er: a:_,,_,_

0 R'=

iii r

-F.

. )L:..,,.._ -

/~ ~ I l - \....U

/'\ /\ } - )

~ ~I

.1 Pl

u

\Jl ):. 1J

()

rn BOTTOM

Page l of 2 Ote 4-29-80 Oriqinal Date 3-7-80 Chk'd LE Rev 1 DRAWING NO. lfi0-11-001-1

]--~ART5 rnF.N_TIFICATION: CASP {Containment Air Sam lin Panel t ~ nOCIJMf.ilT IS THE P!?OPERTY 0F HRSS--Sampling System .,; .J'/'i~l' i~(JlJJPlvlENT CORP.

(ref. P & ID dwg no. 160-11-002-1 ) Oni*,.; *1;1. ""!:.* :.*.;;, i/v' ~~. S 3 06 6

!Ill i~ \O ~'U 1JZ~;J tdy [01 the µurpo::m 1.0 VALVE. MANUAL *.. \~c "'*' .:.;.1~y.1t  ;:1U1 :lcutry µ:u:;uaflt 1.1 TIIO-WAY PLUG VALVE, ISOLATION. Nupro P4T Series. itlo~~~~~~hhfdgi~ofg-T316SS.

Plug is TFE coated. 0-ring seals are Viton. Temp/press rating is 400°F/1000#.

Connections are 1/4" Swagelok, MPT or FPT as required.

Vl , V2 1 .2 TWO-WAY nALL VALVE, ISOLATION. Whitey SS-45 Series. Body and stem are T316SS.

Packing is TFE. Temp/press rating is 150°F/2500#. Connections are Swagelok 1/2",

or 1/2" FPT as required.

V3.

2.n VALVE, POWER OPERATED

2. l ~AO-WAY BALL VALVE, AIR OPERATED, ISOLATION. 11lhitey operator MS-133SR, go 0 rotation, spring return. Whitey SS-4558 ball valve, body and stem T316SS; packing TFE. Temp/press rating 150°F/2500#. Operator air connections 1/R" FPT.

Valve connections are 1/2" Swagelok.

AV-2 2 .2 TI/0-WAY PLUG VALVE, AIR OPERATED. ISOLATION. Whitey opera tor MS-131 SR, goo rotation, spring return. NUPRO P4T Series plug valve (per para 1 .1) with a flexible coupling.

AV-1

2. 3 TI/0-WAY GLOBE VALVE, ELECTRIC SOLENOID, ISOLATION. Skinner; norma 11 y closed; V52DB1100; orifice diameter is .13", 120 VAC. Valve body and stem are T303SS; seating is Viton. Temp/press rating is 310°F/1000#. Connections are 1/3" FPT.

Maximum operating pressure differenttal is 100 psi.

SVl .2. SV2.1, 2.2. SV3.l, 3.2. SV4.l, 4.2, SV5. SV6. SV7. SV8. SV9. SVlO.

2.4 THREE WAY GLOBE VALVE, ELECTRIC SOLENOID, ISOLATION & BLEED. ASCO normally closed, exhaust to atmosphere;8320 813. Pressure rating is 300 psig. 120 VAC.

SVl 1. SVl 2.

3.0 0UICK DISCONNECT COUPLING. Hanson ML-Hll-143 socket plug ML-Hll-143 plug. Ma teri a1 is T316SS; seals are Viton. Connections are 1/A" or 1/4" FPT as required .

01 . 1 ' 1 . 2

  • 1 . 3. l *4. 1 . 5. 1 . 6' 1 . 7 & 1 *8

Dwg. 160-11-003-1 RJ Paqe 2 of

'1-?.'l-HO 4.n FLECTRIC HEATING CORO. Cole-Palmer 3122-12 heating cord, NiChrome wire encased in fihcrqlass sheath; approximately 12 lineal feet; 28H watts; 120 VAC.

Cord wrapped around l /4" OD tube on l /2" centers. Or equal .

Not included (to be furnished and insta11ed by owner as part of the total line heat tracing).

5.0 THERMAL SWITCH, SURFACE MOUNTED. Fenwall 30002-0; adjustable 50-600°F temp range; 10 amp rating; stainless stee-1 case. Or equal.

Not included {to be furnished an*d installed by owner as part of the total line heat tracing).

  • 6.0 FLOW MONITOR & SWITCH. Fluid Components Inc 1".odel FR78-4. Set point 0.2 ACFM.

\~etted surface is T316SS. Temp/press rating is 3l0°F/500 psig.

FM-1 7 .0 EnllCTOR, NITROGEN OPERATED. Air-Vac Engineering Company AVR-093H. Rated @

minimum .2 cfm sample flow and 23" Hg vacuum force when supplied with 1 .0 cfm of nitrogen @110 psig. Material is T303SS. Vacuum and air supply 1/8" FPT/MPT.

Exhaust is 1/8" FPT increased to nominal .43" bore exhaust tube. Supply 1 ine to CASP not to exceed 3 psi @ .2 cfm. Sample exhaust line from CASP not to exceed 1 . 5 ps i @ l

  • 2 sc fm.

EV-1 8.0 CHECK VALVE. Circle Seal 532-T-2M or 2?-3. Cracking pressure 3 psig. Wetted surface T303SS; elastomer V1ton. Temp/press rating is 310°F/100 psig. End connection 1/4" M or FPT.

CV-1 9.0 PLENUM STATIC PRESSURE SENSOR SWITCH. Dwyer 1638-1, 15 amp, 120 I/AC. Connections 1/8" FPT. Range 0.20 to 1.0" W.C.

PPS-1 a

0 I ,....

-I ~

CJ Cl u

V) N U")

u tC I i::

0. I CJ - I 0 c:o ~

C"")

V)

N 0

c.n V')I~

c: . ..c ow V')

> c...

<lJ z

Pa<Je l of 2

  • Sentry Equipment Corp.

OPERATING PROCEDURES:

DRAWING NO.

Orginal Date 4-28-80 CASP (Containment Air Sampling Panel)

HRSS SAMPLING SYSTEM l fi0-11 -004-1 Ck'd ~~

LE Rev Date 4-28-80 0~~-

REFERENCES THIS OOCl!r: Fr**1 1~: fl!E l'l<fif'U: I'( Of Oescription & Function: 160-11-001-1 0ENT~ t' i*~!~iJ l ;*;Wl*~i'IT CORP.

P ?. IO 160-11-002-1 O<:on*1ll1IJ'W1>1:, vV is. :; .")()(,(,

Parts Identification 160-11 -003-1 and is to be used oniy 1or tile purµose Operatinq Procedures 160-11-004-1 ol the agret!menl with Sentry µursu;rnt to which it is f urnishe!.1.

GENERAL BACKGROUND INFORMATION Typically a nuclear plant has an in-being "CAMS'~ (Containment Air Monitoring System) which functions far routine use. As a post accident measure, this CAMS will be modified so that its GGD (gross gamma detector) generates a signal to (a) isolate the CAMS routine "r>It;" and (b) divert the containment air sample flowpath to the "CASP".

~uring the post accident duration, th~ CAMS shall remain electrically powered, but no containment air shall flow through its "PIG". However it is desirable to design the system so that the operator can move to the CAM gas chromatoqraph station and manually override the isolation valves to take a reading in that instrument---during accident.

1.0 Mode 1: Preoperation Verify that (thennostatically contro11ed) electric heating cord is "on" and maintaining tube surface temperature@ 200°F. Verify manual valves Vl, V2, V3 are open. Verify all power operated valves are closed.

2.0 Made 2: Backflow Nitrooen through CASP to purge GGD (gross aamma detector) so as to qet a true background reading for the GGO.

Open SVlO, SV8, SV9, SVS. Increase Nitrogen pressure until "CASP Flow" 1 ight verifies a minimum flowrate of 0.2 acfm of containment air through FM-1 (note:

Nitrogen pressure regulator and flow signal light are located in CASP remoted control panel). Maintain flowrate for 2 minutes. Record true radiation background @ GGD.

3.0 Mode 3: Capture Containment Air Samele in SF 2.1 Close SVS, SV8, SV9. Open SVll (to open AV2). Open SV2.1, SV2.2, SV6, SV7.

Increase Nitrogen pressure until "CASP Flow" 1 ight verifies a minimum flowrate 0.2 acfm of* containment air through FM-1. Maintain flowrate for 2 minutes to secure a contemporary sample. Close SV2.2 and (after 15 second time delay) close SV.t.I. Maintain Nitrogen flowrate for minimum of 2 additional minutes.

4.0 Mode 4: Flush CASP & Sample Suoply lii es with Nitrogen.

While maintaining Nitrogen flowrate, close SV11 (to close AV2). Close SV!1, SV7.

Open sva, SV9. After 15 second time delay, open SVS. After 15 additional seconds, close SVS.

Sentry E~uipment Corp. Dwg.160-11-004-1 Page 2 of 2 RO

'i . () MorlP. S: rlu!;h SF2. l 11ne with N1 tro')cn.

  • 5.0 While mclintain1ng N1trogcn flowrate. manually close inlet & o.utlet valves, and open bypass valve of SF2.1---using one meter long reach rod. Remotely oren SV2.l and SV2.2. Maintain Nitrogen flowrate for minimum 15 seconds.

Mode 6: Complete SF2.l Sampling exercise and secure the CASP.

Close all open power operated valves; SV12 (to close AVl), SV2.l, SV2.2, SV6, SV7, SVlO, SVll (to close AV2). .

7.0 Mode 7: Uncouple SF2.l and Transport to On-site Lab For Isotopic Analysis Note: SF2.1 is contained within a cask to shield radiation. The cask is equipped with wheels and a one meter long towing handle.

Uncouple SF2.l from CASP (procedure Dwg 162-11-004-1 ), and tow to onsite lab.

Couple new, empty SF2.l to CASP.

A.O, 9.0, 10.0 Modes 8,9 & 10. Capturing Samples in SFl, SF2.2 & SF2.3.

Samples are captured in these Sample Fl asks in a similar manner as for SF2 .1 by making their corresponding manipulations, in general accord \'lith paras 3.0, 4.0, 5.0 and 6,0 and 7.0.

11.0 CAUTION: Only SFl and its supply lines shall be used to capture sample for Particulate & Iodine counting. Thi5 flask and lines are designed to prevent

SF2.l, 2.2 & 2.3 are designed to capture samples for counting of Noble gases only.

THIS DOCiJlliEi*;T /S THE ?f:l(Jto:>r .. T*t . _

S£11.f'T"R"' ., c .. tl/-

I' l'i, 1 i~(!UlPMJ*'.:' _.1J.\ 1

~ ~_...

"'0;:'.,7-..

l\.l. ........

0. conmnowoc,. vVi**... .)..,),U.'6**1)
.n~ is to be used u1ily for the ~uipose

~t Lhe <lg_re~ment *r.-1th Sentry pursu;rnt 10 wb1ch 1t 1s furnished.

  • ATTACHMENT E POST-ACCIDENT RADIATION WASTE CONNECTION TIE-IN DESIGN INFORMATION

ATTACHMENT E

  • POST ACCIDENT RADIATION WASTE CONNECTIONS We have completed our investigation of the modifications required to interface with an external radioactive waste processing system at North Anna.

vestigation is still in progress for Surry.

The in-The external radioactive waste processing system would be state of the art technology at the time of a postulated accident and would be used to remove and process radioactive gases and fluids from the plant during the Recovery Phase. Attached are preliminary drawings showing proposed system connections to permit this interface. These modifications will be made at this time to minimize the personnel exposure and spread of contamination associated with installation after an accident.

The ability to vent the containment to the atmosphere already exists. Future technological advances may develop viable alternatives to controlled contain-ment venting. Therefore, we plan the addition of connections at the discharge of the containment atmosphere purge blowers and the containment return lines from the hydrogen recombiner which could interface with an external process system as shown in Figure 2A. This would permit the removal of ra_dioactive gases from the containment and the addition of clean makeup air.

The system ptesently being used to process the radioactive fluid after the accident at Three Mile Island is the EPICOR II system. The proposed liquid connections are designed on the basis of this system. The actual external process system would be designed based on the extent of the accident and the state of the art technology.

A containment sump sample pump is being added for the post accident sampling system (not a NUREG 0578 requirement). This pump will be used in conjunction with a new connection in the drain system. This will provide the ability to pump highly radioactive fluid from the floor of the containment through the connections shown on Figures 4A and B to the external process system.

In addition, connections are being evaluated to allow the processing of highly radioactive post-accident fluids that might be stored in the boron recovery tanks or the high and low level waste tanks (Figures lA, lB and 3A).

The area south of the reactor containments would provide sufficient laydown area for an external process system. To reduce the amount of shielding required, the interface connection lines will run through the existing pipe tunnel in the fuel building and terminate in the waste disposal building area .

ATTACMENT F HYDROGEN RECOMBINER GAS COOLER OUTLET MODIFICATION DESIGN INFORMATION

  • ~

ATTACHMENT F HYDROGEN RECOMBINER GAS COOLER OUTLET MODIFICATIONS (NORTH ANNA ONLY)

A modification is proposed to add discharge ductwork to the hydrogen recom-biner and revise the hydrogen recombiner vault and Auxiliary Building Ventilation system to prevent the potential of having an unmonitored release of radioactivity from the hydrogen recombiner to the atmosphere following an accident, should the sealed recombiner system leak.

Modifications to the hydrogen recombiner ventilation, hydrogen recombiner vault, and Auxiliary Building Ventilation systems will be made to comply with the requirements of NUREG 0578, Section 2.1.8.b, by eliminating the hydrogen recombiner vault as a potential effluent release point of unmonitored radio-activity. Attached is a sketch showing the basic recombiner vault arrangement after modification. The exit doorways and ceiling vent will be sealed.

Suction air for the hydrogen recombiner heat exchanger will be taken from the 259 ft. elevation of the Auxiliary Building through holes in the floor in the recombiner vault to seismically supported ducts that terminate near the ceiling of the vault. The air discharging from the recombiner heat exchanger will be ducted via a seismically supported system to the Auxiliary Building Central Area Exhaust system in the 259 ft. elevation of the Auxiliary Building.

Seismically supported fire dampers, rated for 112 hour0.0013 days <br />0.0311 hours <br />1.851852e-4 weeks <br />4.2616e-5 months <br /> service, will be in-stalled in the suction and discharge penetrations between the recombiner vault and the Auxiliary Building. Air flow balancing of the Auxiliary Building Central Air Exhaust system will be performed to verify that the required accident flow rates are not affected. The air will then discharge through a ventilation vent stack which is monitored for radiation rel~ase. To accom-plish this modification, the hydrogen recombiner control cabinet will be relocated to an adjacent area which will provide missile protection and adequate shielding of radiation for personnel operating the recombiner. The control cabinet will be hard wired with interconnecting wiring to the recom-biner. Reach rods will be added to enable operation of the required manual valves and volume dampers.

Much of this modification can be accomplished without an outage (cut suction and discharge penetrations, install fire dampers, install discharge due ts, and install missile protection). However, installation of the block walls for I

the plenum, hard wiring the recombiners, installation of the containment pene-

.1 tration valves, along with installation of the hydrogen analyzers requires taking the hydrogen recombiner and/ or hydrogen analyzers out of service.

North Anna Technical Specification 3/4. 6. 4. 2 requires two separate and inde-pendent containment hydrogen systems (shared with Units 1 and 2) to be operable. This modification will require both uni ts to be in (<lodes 3, 4, 5 or 6 or an exemption to technical specifications during construction.

  • ~