ML20237G395

From kanterella
Jump to navigation Jump to search

Forwards Proposed Rev to DPC-NF-2010A, Nuclear Physics Methodology for Reload Methodology, for NRC Review.Rev Involves Change in Computer Codes Used to Generate cross- Sections.Fee Paid
ML20237G395
Person / Time
Site: Mcguire, Catawba, McGuire, 05000000
Issue date: 08/17/1987
From: Tucker H
DUKE POWER CO.
To:
NRC OFFICE OF ADMINISTRATION & RESOURCES MANAGEMENT (ARM)
References
TAC-66149, TAC-66150, NUDOCS 8708240073
Download: ML20237G395 (29)


Text

_ _-- . _ _ _ . _ _ _ _ - - _ _ _ - - _ _ _ . _ _ - _ - - _ _ - _ _ - _ _ - _ - - _

f.

.' Duxe POWER GOMPANY P.O. HOX 33189 '

CHARLOTrE, N.O. 28242 HALH. TUCKER TELEPHONE

' vms enesiossrr (704) 07H531 Mvos. nan anonvoru,n August 17, 1987 U.S. Nuclear Regulatory Commission Document Control Desk Washington, D.C. 20555

Subject:

McGuire Nuclear Station Docket Numbers 50-369, -370 Catawba Nuclear Station Docket Numbers 50-413, -414 Reload Design Methodology Topical Report Revision Gentlemen:

Attached for your review is a proposed revision to DPC-NF-2010A, " Nuclear Physics Methodology for Reload Methodology," 'which was approved by the Staff in March of 1985. The revision is. similar to one (DPC-NE-1002A, " Reload Design Methodology II)' approved in October,1985 for the Oconee Nuclear Station, involving a change in computer codes used to generate cross-sections.

Pursuant to 10CFR 170.21, attached is a check in the amount of $150.00 as an application fee.

Very truly yours, Hal B. Tucker W SAG /79/jge Attachment xc: Dr. J. Nelson Grace, Regional Administrator U.S. Nuclear Regulatory Commission - Region II 101~darietta' Street, Suite 2900 Atlanta, Georgia 30s23 Mr. W.T. Orders Mr. P A. Van Doorn NRC Resident Inspector NRC Resident Inspector McGuire Nuclear Station Catawba Nuclear Station s

.Mr. Darl Hood, Project Manager Dr. K.N. Jabbour, Project Manager U.S. Nuclear Regulatory Commission U.S. Nuclear Regulatory Commission \

Office of Nuclear Reactor Regulation Office of Nuclear Reactor Regulation I Washington, D.C. 20555 Washington, D.C. 20555 k

P ft.O (NfC W C='U Y N 0' O

l

, Document Control Desk-

' August 17, 1987 Page 2 l

l bxc: R.H. Clark L.H.-Flores J.H. Randles D.M. Rowan N.A. Rutherford R.O. Sharpe R.L. Gill MC-801.02 CM-801.02 (9) i i

l l

I l

I i

i

,x 12.0. PHYSICS TEST COMPARISONS AND NUCLEAR RELIABILITY FACTORS FOR CASMO METHODOLOGY 12.1. INTRODUCTION AND

SUMMARY

12.1.1. INTRODUCTION In Section 3.0 CASMO-2E/ DUKE was referenced for generation of cross section's for strong absorbers, such as rod cluster control assemblies and burnable poisons, and the baffle and reflector.

EPRI-CELL was used to generate all other cross sections. All EPRI-NODE-P results presented in Section 12.0 are based exclusively on CASMO-2E/ DUKE. CASMO-2E/ DUKE was also used to generate all inputs to 1 PDQ. The discussions of CASMO-2E/ DUKE in this report are applicable to all future versionzfand enhancements of CASMO which might be used by Duke Power Company. Hence, the lattice code is referred to simply as CASMO throughout this document. The use of an all-CASMO setup of EPRI-NODE-P has already been approved in NFS-1002A (Reference 3) for the Oconee plant. EPRI-NGDE-P has buen benchmarked against Catawba 1 Cycle 1 and parts of Catawba 1 Cycle 2 and Catawba 2 Cycle 1.

This benchmark is presented here for approval of the CASMO setup of l l EPRI-NODE-P for reload design of McGuire and Catawba.

The above benchmark study encompassed: deriv, *. ion of measured power distributions for the above cycles, simulations of the above cycles using EPRI-NODE-P, reactivity comparisons at HZP and MFP of the above cycles, and development of a statistical basis for estimating the calculational accuracy of the CASMO setup of EPRI-NODE-P.

12.1.2.

SUMMARY

Section 12.2 presents comparisons of calculated and measured core physics data. Calculated and measured powers were statistically combined in Section 12.3 to derive Statistically Combined Uncertainty Factors (SCUF) for EPRI-NODE-P in the same way as in the SER for DPC-NF-2010A. SCUFs of 1.053 for the radial powers and 1.050 for the peak axial powers were determined. These can be compared to the values based on the EPRI-CELL models of 1.048 and 1.074, respectively.

All best estimate reactivity predictions agreed well with measurements when biases of +68 ppmb were applied to all boron calculations and +4 pcm/ degree F to all ITC calculations. These biases are based on hist.rical data such as core follow and zero power physics tests. These biases are reviewed each cycle to reflect experience with model performance.

12.2. CORE PHYSICS AND REACTIVITY PARAMETERS All calculations were performed with EPRI-NODE-P. The methodology used in all calculations is documented in Sections 10.0 and 11.0.

All measurement techniques are currently those used at the station.

l 12-1 l

l L __-_ _

)

12.2.1. HZP REACTIVITY COMPARISONS i

This section presents comparisons of EPRI-NODE-P calculations cersus measurements for some key core physics parameters at HZP. These physics parameters include HZP critical boron concentrations, HZP i rod worths by boration/ dilution and rod swap, and HZP isotherma'l temperature coefficients.

The HZP measurements were taken at beginning-of-cycle (BOC) during Zero Power Physics testing.

i Table 12-1 shows a comparison of BOC predicted versus measured critical boron con:entrations. The predicted boron concentrations include a bias of 68 ppmb. The mean difference was 4.11 ppmb with a standard deviation of 2.74.

I Table 12-2 shows a comparison of predicted versus measured rod )

worths. These rod worths were obtained by the boration/ dilution 4 method. The mean difference ie 6.89 pcm with a standard deviation l of 24.7. The mean percent error is 2.17% with a standard deviation l 1

of 3.82.

Table 12-3 shows a comparison of predicted versus measured rod worths. These rod worths were obtained by rod swap. The mean difference is -10.06 pcm with a standard deviation of 30.33. The mean percent error is -0.46% with a standard deviation of 5.76. The methodology used in rod swap is documented in Reference 28. The Catawba 2 Cycle 1 rod swap predictions were calculated at a biased j boron concentration of 909 ppmb. The Catawba 1 Cycle 2 rod swap predictions were calculated at the NODE calculated reference bank in boron concentration.

Table 12-4 shows a comparison of predicted and measured ITCs. The predicted ITCs include a bias of +4.0 pcm/ degree F. The mean difference is 0.63 pcm/ degree F with a standard deviation of 1.44.

12.2.2. DEPLETION POWER DISTRIBUTIONS AND REACTIVITY COMPARISONS This section presents comparisons of EPRI-NODE-P calculations to measurements for some key core physics parameters at HFP. These physics parameters include typical depletion power distribution comptrisona and HFP critical boron concentrations. j l

Figures 12-1 through 12-7 show typical power distribution comparisons for Catawba 1 Cycles 1 and 2 and Catawba 2 Cycle 1.

Table 12-5 shows a comparison of predicted and measured HFP boron concentrations. The predictes boron concentrations include a bias of 68 ppmb. The mean difference was -7.1 ppmb with a standard {

I deviation of 24.6.

12-2

12.3. STATISTICAL COMBINED UNCERTAINTY FACTORS SCUFs were calculated using the same methodology as used in Reference 3. Using Catawba Unit 1, Cycle 1 and part of Cycle 2, and Unit 2 part of Cycle 1, the SCUFs for the assembly radial and l assembly peak nodal powers were found to be 1.053 and 1.050, respectively. These factors were calculated using the formulas given in the Safety Evaluation Report of the "McGuire and Catawba Nuclear Physics Methodology for Reload Design," DPC-NF-2010A. The calculations of these factors are shown in Tables 12-6 through 12-

~

15. A local pin uncertainty of .022 uas used. This is the same uncertainty used and approved in DPC-NE-1002A (Reference 3a).

i Tables 12-6 through 12-8 show the. state points that were used for l the calculations. They also show the measured and calculated axial  !'

offset for each state point.

Table 12-9 shows the results of the normal'.* test for assembly radial powers and assembly peak axial powers. The difference distribution of the assembly radial powers was nearly normal. The i difference distribution of the peak axial powers was normal.

Tables 12-10 and 12-11 show the difference means and standard deviations for assembly radial powers and assembly peak axial powers, respectively.

Tables 12-12 and 12-13 show the percent difference means and standard deviations for assembly radial powers and assembly peak axial powers.

Tables 12-14 and 12-15 show the calculation of SCUFs for assembly radial powers and assembly peak axial powers.

12.4. CONCLUSIONS A CASMO based EPRI-NODE-P model has been developed for Catawba that has shown good agreement with measured reactivity parameters.

Statistically combined uncertainty factors have also been developed that are consistent with the EPRI-CELL SCUFs. Therefore, based on these comparisons, the CASMO based EPRI-NODE-P model has been shown to be an acceptable methodology for reload design for McCuire and Catawba.

l 12-3 l

l 13.0. REFERENCES

1. Nuclear Associates International Corp., " Advanced Recycle Methodology Program System Documentation," CCM-3, (EPRI Confidential), September 1977.
2. Studsvik Energiteknik AB, "CASMO-2 A Fuel Assembly Burnup Program,"

Studsvik/NR-81/3, 1981. i

3. Duke Power Company, "Oconee Nuclear St'ation Reload Design Methodology,"

NFS-1001,-Rev. 4, June 1981.

3a. Duke Power Company, "Oconee Nuclear Station Reload Design Methodology II,"

DPC-NE-1002A, October 1985.

4. Bettis Atomic Power Laboratory, C. J. Pfeif fer, "PDQ-7 Feference Manual II," WAPD-TM-947(L), February 1971.
5. Rothleder, B. M., Fisher, J. R., "EPRI-NODE-P," EPRI-ARMP System j Documentation,'CCM-3, Part II, Chapter 14, September 1977.
6. Verbuk, P., Hoppe, N., "COMETHE-IIIJ A Computer for Predicting  !

Mechanical and Thermal Behaviour of a Fuel Pin," BN 7609.1, Belgonucleaire S. A., March 1977.

7. TACO 2 -

Fuel Pin Performance Analysis, BAW-10141-PA, Rev. 1, (Proprietary), Babcock & Wilcox, Lynchburg, Virginia, June 1983.

8. Cobb, W. R., Eich, W. J., Tivel, D. E., "EPRI-CELL Code Description,"

EPRI-ARMP System Documentation, CCM-3, Part II, Chapter 5, October 1978.

9. Edenius, M., Ekberg, K., Haggblom, H., "CASMO - THE DATA LIBRARY,"

Studsvik/K2-81/491, 1981.

10. Cobb, W. R., Tivel, D. E., "EPRI-CELL: GAM-THERMOS Library Descriptions," EPRI-ARMP System Documentation, CCM-3, Part II, Chapter i 2, April 1976.
11. Rothleder, B. M., Poetschat, G. R., "NUPUNCHER Code Description," EPRI-ARMP System Documentation, CCM-3, Part II, Chapter 8, October 1975.
12. Duke Power Company, "MULTIFIT User Documentation," (Proprietary),

February 1983.

13. Hebert, M. J., et al., " PROGRAM C-HA-R-T CASMO to HARMONY I hieset ~

Conversion Processor," YAEC-1313P, May 1982.-

14. Rothleder, B. M., et al., "PWR Core Modeling Procedures for Advanced Recycle Methodology Program," RP-976-1, August 1979.

13-1

r j

D

15. Rothleder, B. M., Poetschat, C. R., "EPRI-FIT Code Description," EPRI-ARMP System Documentation, CCM-3,'Part II, Chapter 10,.0ctober 14, 1975.
16. . Rothleder,u B. M., Poetschat,. G. R., "SUPERLINK-P Code Description,"

EPRI-ARMP System Documentation, CCM-3, Part II, Chapter 12, October 22,-  !

1975.

17. Smith, M. L., "PDQ7V2P7," (Proprietary), Virginia Electric and Power l Company, December 1977. ]

l 1 l

18. McGuire Nuclear' Station, Unit's 1 and 2, Final Safety Analysis Report, j l Docket Nos. 50-369, -370. .l
l
19. Catawba Nuclear Station, Units.1 and 2, Final Safety Analysis Report,

Docket Nos. 50-413, ~414,

20. Letter, W. O. Parker to H. R. Denton, "Oconee Reload Design Me'hodology c Topical Report," Question 3, Docket Nos. 50-269, -270, -287, November 13, 1980.

.21. Duke Power Company, " Administrative Policy Manual for Nuclear Stations,"

Revision 21, August 1, 1983.

i

27. Duke Power Company, "PDQEDIT User Documentation," (Proprietary), March {

1982.

I

23. Morita, T., et al., " Topical Report Power Distribution Control and Load )

Following Procedures," WCAP-8385 (Proprietary), Westinghouse Electric I Corporation, September 1974.

J

'24. Duke Power Company, " Computer Code Users Manual for the NODE Utility 1 Code.'(NUC) - Margins," Revision 2, (Proprietary), September 24, 1982.

25. U. B. Owen, " Factors for One-Sided Tolerance Limits and for Variables Sampling Plans," SCR-607, Sandia Corporation Monograph, March 1963.

a

26. Shanstrom, R. T., et al., " CORE Codes for Operating Reactor Evaluation,"

SNA1617 (Proprietary), Shanstrom Nuclear Associates, April 1982.

27. American National Standards Institute, Inc., " Assessment of the Assumption of Normality (Employing Individual Observed Values)," ANSI N15.15-1974, 1974.
28. Duke Power Company, " Rod Swap Methodology Report for Startup Physics Testing," DPC-NE-1003A, December 4, 1986.

I 13-2 l

l Table 12-1 CRITICAL BORON CONCENTRATIONS AT HOT ZERO POWER, BOC Critical Baron Conc. PPM Unit / Cycle Calculated

  • Measured Difference 975 975 I

-C1/C1 0 C1/C1 915 902 +13 C1/C1 820 810 +10 .

C1/C1 685 686 -1 C1/C1 500 508 -8 C1/C2 1402 1405 -3 C1/C2 1303 1273 +30 C2/C1 975 975 0 C2/C1 909 913 -4 Mean - -

4.11 Standard Deviation - -

2.74 Difference = Calculated - Measured

  • Includes a 68 ppmb bias.

j

s Table 12-2 ROD WORTHS BY BORATION/ DILUTION Banks Predicted Measured Difference Unit / Cycle Inserted Rod Worths (PCM) Rod Worths (PCM) (PCM)  % Error C1/C1 D 773 788 -15 -1.9

'C1/C1 0-C 1214 1203 11 0.9 C1/C1 D-B 1190 1171 19 1.6 C1/Cl D-A 572 548 24 4.4 C1/C1 0-A,SE 508 460 48 10.4 C1/C1 D-A,SE-SD 755 772 -17 -2.2 C1/C1 0-A,SE-SC 1098 1099 -1 -0.1 C2/C1 8 (Ref. Bank) 852 882 -30 -3.5 C1/C2 8 (Ref. Bank) 1041 1014 23 2.7 Mean - - -

6.89 2.17 Standard - - - 24.7 3.82 Deviation Total Worth 8003 7937 66 .8

% Error = Predicted - Measured Measured 1

)

mm_-a_ . - --m---- - - - - - - - - - - - - _ - - - - - - - - . . - _ , . . -

Table 12-3 ROD WORTHS BY R00 SWAP Predicted Inferred Unit / Cycle Bank Worth (PCH) Worth (PCM) Difference  % Error 1

C2/C1 D 772 794 -22 -2.7 C2/C1 C 790 849 -59 -7.5 C2/C1 A 249 250 -1 -0.5 C2/C1 SE 377 385 -8 -2.0 C2/C1 SD 497 525 -28 -5.6 C2/C1 SC 497 522 -25 ~5.1 C2/C1 SB 765 834 -69 -9.0 C2/C1 SA 674 706 -32 -4.8 C1/C2 D 477 426 51 12.0 C1/C2 B 723 716 7 1.0 C1/C2 A 421- 420 1 0.2 C1/C2 SE 417 438 -21 -4.8 l C1/C2 320 4.9 SD 305 15 C1/C2 SC 322 307 15 4.9 C1/C2 Sa 772 781 -9 -1.2 C1/C2 SA 350 326 24 7.4 Mean - - -

-10.06 -0.46 Standard - - - 30.33 5.76 Deviation C2/C1 )

Total Worth -

5473 5747 -274 -4.8 i C1/C2 Total Worth - 4843 4737 106 2.2 ,

i h

l Table 12-4 ISOTHERMAL TEMPERATURE COEFFICIENTS Banks Predicted Measured Difference ,

Unit / Cycle Inserted (PCM/ F)* (PCM/'F)* (C-M)  !

Cl/Cl ARO -1.38 -1.75 0.37 C1/Cl D -2.69 -2.77 0.08 C1/Cl D-C -9.02 -8.01 -1.01 C1/C2 ARO 4.63 1.71 2.92 C2/C1 ARO -1.04 -1.81 0.77 Mean - - -

0.63 Standard - - -

1.44 Deviation

  • These values include a bias of 4.0 pcm/oF. l

FIGURE 12-1 CATAWBA 1 CYCLE 1 - CASH 0 NODE VS. HEASURED RADIAL POWERS 36 EFPD 100 % POWER CONTROL BANX D AT 198 SWD H G F E D C B A

,
;
:;,aa;;;;;;;;;;;;;;;;;;;;;;;;, ::::::::::: ,,,;;;;;;;
  • 1.01
  • 1.14
  • 1.09
  • 1.23
  • 1.04
  • 1.04 * .90 * .85
  • 8
  • 1.02
  • 1.14
  • 1.12
  • 1.25
  • 1.07
  • 1.06 * .92 * .84 *
  • .98
  • 0.00 * -2.68 * -1.60 * -2.80 * -1.89 * -2.17
  • 1.19 *
  • 1.07
  • 1.24
  • 1.09
  • 1.17 * .96
  • 1.08 * .86
  • 9
  • 1.09
  • 1.24
  • 1.11
  • 1.18 * .98
  • 1.05 * .86 *
  • -1.83
  • 0.00 * -1.80 * .85 * -2.04
  • 2.86
  • 0.00 *
. ; : ;;;;;;;;;;, ;;;;;;;;;,;;;;;;;;;;;;;;;;;,,;;;;;;;;, ;,;;;;;;;;;,;,a
  • 1.10
  • 1.22
  • 1.02
  • 1.03 * .87 * .78
  • 10
  • 1.12
  • 1.22
  • 1.04
  • 1.03 * .88 * .77 *
  • -1.79
  • 0.00 * -1.92
  • 0.00 * -1.14
  • 1.30 *
,;;,;, ::::::::::::,;;. : ;,;, za;;;;;;;;;; ;, ::, ::
  • 1.05
  • 1.12 * .95 * .99 * .62
  • 11
  • 1.08
  • 1.11 * .96 * .98 * .61 *
  • -2.78 * .90 * -1.04
  • 1.02
  • 1.64 *
  • 1.24
  • 1.04 * .95
  • 12
  • 1.23 * .98 * .93 *
  • .81
  • 6.12
  • 2.15 *
  • .96 * .67
  • CASH 0-NODE 13 * .92 * .66
  • HEASURED
  • 4.35
  • 1.52 * % ERROR CASH 0-N0DE CORE AVERAGE 1.00 MEASURED CORE AVERAGE 1.00

$ ERROR CORE AVERAGE .02 CASH 0-N0DE MAXIMUM MAGNITUDE IS 1.24 AT ASSEMBLY F - 9 MEASURED MAXIMUM MAGNITUDE IS 1.25 AT ASSEMBLY E - 8 GERROR MAXIMUM MAGNITUDE IS 6.12 AT ASSEMBLY C - 12 PERCENT ERROR BETWEEN THE HAXIMUM VALUES IS .80 AVERAGE ABSOLUTE RELATIVE ERROR 1.59 PERCENT ROOT HEAN SQUARE OF THE RELATIVE ERROR 2.08 PERCENT ROOT HEAN SQUARE OF THE DIFFERENCE 2.06 PERCENT

FIGURE 12-2 CATAWBA 1 CYCLE 1 - CASH 0 N0DE VS. MEASURED RADIAL POWERS 156 EFPD 100 % POWER CONTROL BANK D AT 199 SWD 1

H G F E D C B A

  • .98
  • 1.13
  • 1.02'
  • 1.19
  • 1.01
  • 1.10 * .92 * .83
  • 8
  • 1.00
  • 1.12
  • 1.05
  • 1.17
  • 1.03
  • 1.08 * .93 * .84
  • 4
  • -2.00 * .89 * -2.86
  • 1.71 * -1.94
  • 1.85 * -1.08 *

-1.19 * )

f

  • 1.02
  • 1.19
  • 1.03
  • 1.17 * .98
  • 1.14 * .85
  • I 9
  • 1.04
  • 1.17
  • 1.05
  • 1.15 * .99
  • 1.12 * .85
  • l
  • -1.92
  • 1.71 * -1.90
  • 1.74 * -1.01
  • 1.79
  • 0.00
  • l
  • 1.03
  • 1.19
  • 1.01
  • 1.09 * .89 * .77
  • 10
  • 1.05
  • 1.17
  • 1.02
  • 1.07 * .90 * .77 *
  • -1.90
  • 1.71 * .98
  • 1.87 * -1.11
  • 0.00 *
  • 1.03
  • 1.15 * .97
  • 1.02 * .62
  • 11
  • 1.04
  • 1.13 * .98
  • 1.02 * .63 *
  • .96
  • 1.77 * -1.02
  • 0.00 * -1.59 *

)

  • 1.20
  • 1.09 * .93
  • 12
  • 1.19
  • 1.06 * .94 *
  • .84
  • 2.83 * -1.06
  • i
  • 1.01 * .67
  • CASMO-NODE 13
  • 1.02 * .68
  • MEASURED
  • .98 * -1.47 * % ERROR CASMO-NODE CORE AVERAGE 1.00 MEASURED CORE AVERAGE 1.00 ERROR CORE AVERAGE .09 I

CASMO-NODE MAXIMUM MAGNITUDE IS 1.20 AT ASSEMBLY D - 12 MEASURED MAXIMUM MAGNITUDE IS 1.19 AT ASSEMBLY D - 12 l ERROR MAXIMUM MAGNITUDE IS -2.86 AT ASSEMBLY F - 8 )

PERCENT ERROR BETWEEN THE MAXIMUM VALUES IS .84 AVERAGE ABSOLUTE RELATIVE ERROR 1.36 PERCENT ROOT MEAN SQUARE OF THE RELATIVE ERROR 1.54 PERCENT ROOT MEAN SQUARE OF THE DIFFERENCE lo61 PERCENT

FIGURE 12-3 CATAWBA 1 CYCLE 1 - CASH 0 NODE VS. MEASURED RADIAL POWERS 296 EFPD 100 % POWER . CONTROL BANK D AT 215 SWD H G F E D C B A

A;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;.;;;;;;;;;;;;
  • .97
  • 1.10 * .97
  • 1.12 * .98
  • 1.12 * .94 * .84
  • 8 * .95
  • 1.10 * .97
  • 1.13
  • 1.00
  • 1.15 * .96 * .86 *
  • 2.11
  • 0.00
  • 0.00 * .88 * -2.00 * -2.61 * -2 08 * -2.33 *
  • .97
  • 1.12 * .97
  • 1.14 * .99
  • 1.19 * .86
  • 9 * .97
  • 1.12 * .98
  • 1.15
  • 1.00
  • 1.15 * .85 *
  • 0.00
  • 0.00 * -1.02 * .87 * -1.00
  • 2.59
  • 1.18 *
&*****;;;;;;;;;;;;;;;;;;;;;;;;;;;k*e
  • .97
  • 1.13 * .99
  • 1.12 * .92 * .80
  • 10 * .98
  • 1.14
  • 1.00
  • 1.13 * .93 * .81 *
  • -1.02 * .88 * -1.00 * .88 * -1.08 * -1.23 *
  • 1.00
  • 1.15 * .99
  • 1.07 * .65
  • 11
  • 1.00
  • 1.16 * .99
  • 1.07 * .65 *
  • 0.00 * .86
  • 0.00
  • 0.00
  • 0.00 *
  • 1.19
  • 1.13 * .95
  • 12
  • 1.17
  • 1.11 * .93 *
  • 1.71
  • 1.80
  • 2.15 *
  • 1.06 * .69
  • CASH 0-NODE 13
  • 1.05 * .67
  • MEASURED
  • .95
  • 2.99 * % ERROR CASH 0-N0DE CORE AVERAGE 1.00 MEASURED CORE AVERAGE 1.00 ERROR CORE AVERAGE 11 CASH 0-N0DE MAXIMUM MAGNITUDE IS 1.19 AT ASSEMBLY B - 9 MEASURED MAXIMUM MAGNITUDE IS 1.17 AT ASSEMBLY D - 12 ERROR MAXIMUM MAGNITUDE IS 2.99 AT ASSEMBLY B - 13 PERCENT ERROR BETWEEN THE MAXIMUM VALUES IS 1.71 AVERAGE ABSOLUTE RELATIVE ERROR 1.10 PERCENT ROOT HEAN SQUARE OF THE REIATIVE ERROR 1.40 PERCENT ROOT MEAN SQUARE OF THE DIFFERENCE 1.38 PERCENT l

FIGURE 12-4 t

CATAWBA 1 CYCLE 2 - CASMO NODE VS. HEASURED RADIAL POWERS 51 EFPD 100 % POWER CONTROL BANK D AT 222 SWD H G F E D C B A

  • .86
  • 1.15
  • 1.14
  • 1.17 * .96
  • 1.13
  • 1.05 * '95 *'

8-* .83

  • 1.16
  • 1.12
  • 1.15 * .97
  • 1.12
  • 1.08 * .96' *
  • 3.61 * .86
  • 1.79
  • 1.74 * -1.03 * .89 * -2.78 * -1.04 *
  • 1.13
  • 1.16
  • 1.00
  • 1.17 * .95
  • 1.06 * . 91 '
  • 9
  • 1.12
  • 1.15
  • 1.01
  • 1.17 * .96
  • 1.08 * .92 *
  • .89 * .87 * .99
  • 0.00 * -1.04 * -1.85 * -1.09 *
  • 1.02
  • 1.29 * .99
  • 1.26
  • 1.06 * .83
  • 10
  • 1.02
  • 1.25 * .99
  • 1.22
  • 1.08 * .85 *
  • 0.00
  • 3.20
  • 0.00
  • 3.28 * -1.85 * -2.35 *
  • .97
  • 1.19 * .97
  • 1.09 * .39
  • 11 * .96
  • 1.16 * .97
  • 1.09 * .41 *
  • 1.04
  • 2.59
  • 0.00
  • 0.00 * -4.88 *
  • .93
  • 1.11 * .88
  • 12 * .93
  • 1.10 * .89 *
  • 0.00 * .91 * -1.12 *
  • 1.07 * .38
  • CASMO-NODE 13
  • 1.08 * .41
  • MEASURED
  • .93 * -7.32 * % ERROR CASH 0-N0DE CORE AVERAGE 1.00 MEASURED CORE AVERAGE 1.00 ERROR CORE AVERAGE .07 CASH 0-NODE MAXIMUM MAGNITUDE IS 1.29 AT ASSEMBLY E - 10 MEASURED MAXIMUM MAGNITUDE IS 1.25 AT ASSEMBLY E - 10 ERROR MAXIMUM MAGNITUDE IS -7.32 AT ASSEMBLY B - 13 PERCENT ERROR BETWEEN THE MAXIMUM VALUES IS 3.20 AVERAGE ABSOLUTE RELATIVE ERROR 1.67 PERCENT ROOT MEAN SQUARE OF THE RELATIVE ERROR 2.37 PERCENT ROOT MEAN SQUARE OF THE DIFFERENCE 1.88 PERCENT

7 - --- -__ l l

f FIGURE 12-5 L

e I

l l ' CATAWBA 1 CYCLE 2 - CASH 0 NODE VS. MEASURED RADIAL POWERS f 157 EFPD 100 % POWER CONTROL BANK D AT 212 SWD G F E D C B A H

1

,
A;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
  • .80
  • 1.06
  • 1.06
  • 1.12 * .94
  • 1.10
  • 1.03 * .93
  • 8 * .78
  • 1.08
  • 1.06
  • 1.13 * .95
  • 1.09
  • 1.03
  • 292 *
  • -1.85
  • 0.00 * .88 * -1.05 * .92
  • 0.00
  • 1.09
  • 2.56 *
  • 1.05
  • 1.10 * .98
  • 1.14 * .95
  • 1.04 * .91
  • 9
  • 1.04
  • 1.10 * .99
  • 1.15 * .95
  • 1.04 * .88 *
  • .96
  • 0.00 * -1.01 * .87
  • 0.00
  • 0.00
  • 3.41 *
  • 1.01
  • 1.30
  • 1.01
  • 1.28
  • 1.06 * .84
  • 10
  • 1.01
  • 1.30
  • 1.02
  • 1.26
  • 1.05 * .84 *
  • 0.00
  • 0.00 * .98
  • 1.59 * .95
  • 0.00 *
  • 1.02
  • 1.25
  • 1.01
  • 1.11 * .42
  • 11
  • 1.03
  • 1.27
  • 1.00
  • 1.11 * .43 *
  • .97 * -1.57
  • 1.00
  • 0.00 * -2.33 *
  • .96
  • 1.12 * .90
  • 12 * .96
  • 1.10 * .91 *
  • 0.00
  • 1.82 * -1.10 *

-;%;;. A;;;;;;;;;;;;;;;;;;;;;;;;;

  • 1.07 * .41
  • CASH 0-NODE 13
  • 1.07 * .43
  • HEASURED
  • 0.00 * -4.65 * % ERROR
e CASH 0-NODE CORE AVERAGE 1.00 MEASURED CORE AVERAGE 1.00 ERROR CORE AVERAGE .03 CASH 0-NODE MAXIMUM MAGNITUDE IS 1.30 AT ASSEMBLY E - 10 MEASURED MAXIMUM MAGNITUDE IS 1.30 AT ASSEMBLY E - 10 ERROR MAXIMUM MAGNITUDE IS -4.65 AT ASSEMBLY B - 13 PERCENT ERROR BETWEEN THE HAXIMUM VALUES IS 0.00 AVERAGE ABSOLUTE RELATIVE ERROR 1.06 PERCENT ROOT MEAN SQUARE OF THE RELATIVE ERROR 1.56 PERCENT ROOT MEAN SQUARE OF THE DIFFERENCE 1.25 PERCENT

f-e FIGURE 12-6 CATAWBA 2 CYCLE 1 - CASMO NODE VS. MEASURED RADIAL POWERS l

45 EFPD 100 % POWER CONTROL BANK D AT 210 SWD H G F E D C B A' l

1 m; ;. ., ; ; ;, ;. ;, ;, ;. ., ; ; ;, ;, ;, ;. - - ;, ;, ;, ;, ;, ;, ;, ;. :.-;, ;. :. ;. ;, ;, ;, ;, ;. ;. ;, ;. :. ;. :. - - - :. - - - - ;. - - -

  • 1.02
  • 1.14
  • 1.08
  • 1.22
  • 1.03
  • 1.04 * .89 * .84
  • 8 * ~1.04 *- 1.15
  • 1.11
  • 1.23
  • 1.06
  • 1.05 . * .93 * .85
  • e l '* -1.92 * .87 '* -2.70 * .81 * -2.83 * .95 * -4.30 * -1.18 *
  • 1.07
  • 1.24
  • 1.08
  • 1.17 * .96
  • 1.08 *l .86
  • 9
  • 1.09
  • 1.24
  • 1.10
  • 1.18 * .98
  • 1.05 * .86 *
  • -1.83
  • 0.00 * -1.82 * .85 * -2.04
  • 2.86
  • 0.00 *
  • 1.10
  • 1.22
  • 1.02
  • 1.03 * .87 * .77 *
10.
  • 1.11
  • 1.22
  • 1.04
  • 1.05 * .87 * .76 *
  • .90
  • 0.00 * -1.92 * -1.90
  • 0.00
  • 1.32 *
      • s-;,;, ;, ;. ;, ; ;, ;, ;. ;, ;, ;, ;. ;, ; ;, ;. ;, ;, ;, ;. ;, ;, ;, - - ;. ;. :. ;, ;, ;, ;. - - - - - ;. ;. ;, ; ;, ;. ;, - - - - ;. ;. ;, ;, ;.
  • 1.05
  • 1.13 * .95 * .99 * .62
  • 11
  • 1.07
  • 1.12 * .97 * .98 * .60 *
  • -1.87 * .89 * -2.06
  • 1.02
  • 3.33 *
  • 1.25
  • 1.05 * .94
  • 12
  • 1.24
  • 1.00 * .92 *
  • .81 f- 5.00
  • 2.17 *
  • .97 * .67
  • CASM0-NODE 13 * .93 * .65
  • MEASURED
  • 4.30
  • 3.08 * % ERROR CASH 0-NODE CORE AVERAGE 1.00 MEASURED CORE AVERAGE 1.00 ERROR CORE AVERAGE .05 CASMO-NODE MAXIMUlf MAGNITUDE IS 1.25 AT ASSEMBLY D - 12 MEASURED MAXIMUM MAGNITUDE IS 1.24 AT ASSEMBLY F - 9 ERROR MAXIMUM MAGNITUDE IS 5.00 AT ASSEMBLY C - 12 PERCENT ERROR BETWEEN THE MAXIMUM VALUES IS .81 AVERAGE ABSOLUTE RELATIVE ERROR 1.75 PERCENT ROOT MEAN SQUARE OF THE RELATIVE ERROR 2.18 PERCENT ROOT MEAN SQUARE OF THE DIFFERENCE 2.07 PERCENT

r- -l I

FIGURE 12-7 1

1 CATAWBA 2 CYCLE 1 - CASH 0 N0DE VS. MEASURED RADIAL POWERS 177 EFPD 100 % POWEk CONTROL BANK D AT 215 SWD H G F E D C B A

  • .98
  • 1.12
  • 1.00
  • 1.17
  • 1.00
  • 1.10 * .92 * .83
  • 8 * .99
  • 1.13
  • 1.03
  • 1.18
  • 1.02
  • 1.11 * .93 * .83 *
  • -1.01 * .88 * -2.91 * .85 * -1.96 * .90 * -1.08
  • 0.00 *
  • 1.00
  • 1.17
  • 1.01
  • 1.16 * .98
  • 1.15 * .85
  • 9
  • 1.01
  • 1.17
  • 1.03
  • 1.17
  • 1.00
  • 1.10 * .84 *
  • .99
  • 0.00 * -1.94 * .85 * -2.00
  • 4.55
  • 1.19 *
. ::::::: ::::::;;;;;;;;;;;;;4*****
  • 1.01
  • 1.17
  • 1.00
  • 1.09 * .90 * .77
  • 10
  • 1.03
  • 1.19
  • 1.03
  • 1.11 * .90 * .77 *
  • -1.94 * -1.68 * -2.91 * -1.80
  • 0.00
  • 0.00 *
  • 1.02
  • 1.16 * .98
  • 1.03 * .63
  • 11
  • 1.05
  • 1.17 * .99
  • 1.02 * .61 *
  • -2.86 * .85 * -1.01 * .98
  • 3.28 *
  • 1.22
  • 1.11 * .94
  • 12
  • 1.21
  • 1.07 * .92 *
  • .83
  • 3.74
  • 2.17 *
  • 1.03 * .68
  • CASMD-NODE 13 * .99 * .65
  • MEASURED
  • 4.04
  • 4.62 * % ERROR CASMO-N0DE CORE AVERAGE 1.00 MEASURED CORE AVERAGE 1.00 ERROR CORE AVERAGE .05 CASH 0-N0DE MAXIMUM MAGNITUDE IS 1.22 AT ASSEMBLY D - 12 MEASURED MAXIMUM MAGNITUDE IS 1.21 AT ASSEMBLY D - 12 ERROR MAXIMUM MAGNITUDE IS 4.62 AT ASSEMBLY B - 13 PERCENT ERROR BETWEEN THE MAXIMUM VALUES IS .83 AVEEAGE ABSOLUTE RELATIVE ERROR 1.80 PERCENT ROOT MEAN SQUARE OF THE RELATIVE ERROR 2.25 PERCENT ROOT MEAN SQUARE OF THE DIFFERENCE 2.16 PERCENT j

_ _ _ _ _ _ _ _ - - - - _ - - _ - - - - - - -- )

3; w l

,if6 p LTable-12-5 l .t>

[ [' . DEPLETION CRITICAL BORON CONCENTRATIONS c:

' Unit / Cycle; EFPD' Predicted (PPM)* Difference Measured (PPM)

C1/Cl -36 627 63) '

'C1/C1 52. 614 621 -7 1 ~C1/C1 80 590 Sfi5 5

.C1/C1 110 529 57.7 12

.C1/C1 156 444 - /,37 - 7 C1/C1' '180; 395 383 12 e C1/Cl .220 331 if 3 25 p ,

C1/C1' 266' 193 s!n 13

. -C1/C1 296 118 120 -2

[. ,

'C1/C1 ~310 117 72 45 C1/C2 27 840 876 -36

'C1/C2 5 11 761 809 -48 C1/C2: 77 671 712 -41 C1/C2 97 606 653 -47 L C1/C2- 126' 514 552 -38 C1/C2 . 157 415 445 -30 C2/Cl -45 621 626 -5

.C2/C1' 88 603 604 -1 C2/Cl 1100 551 575 -24 C2/C1 128 501 506 ,

C2/C1' '149 491 487 4 C2/C1; 177 402 394 8 y

Mean - - -

-7.1 Standard - - -

24.6 Deviation

  • These values include a bias of 68 ppm.

l-1 l

l 4

h-_____ ______________mm _

Table 12-6 CATAWBA UNIT 1 CYCLE 1 STATE POINTS Control Bank D Axial Offset Point # EFPD Power (%) Position (Steps) (Meas /Cale)(%)

1 36 100 200 -11.22/-10.51 2 52 100 200 -7.11/-8.19 3 80 9A 195 -3.90/-8.27 4 110 100 193 -6.92/-7.52 5 156 100 199 -4.34/-4.95 6 180 100 215 -1.24/-2.47 7 220 100 223 -1.04/-0.62 8 266 100 217 -2.23/-0.18 9 296 100 215 -2.16/-0.64 10 310 84 216 4.27/4.50

Table 12-7 CATAWBA UNIT 1 CYCLE 2 STATE POINTS

)

Control Bank D . Axial Offset Point # EFPD Power (%) Position (Steps) (Meas / Calc)(%)

1 27 100 214 4.26/1.40 2 51 100 222 1.48/ .98 3 77 100 209 -1.46/-4.06 4 97 100 211 -2.57/-4.23 5 126 100 211 -3.29/-4.77 6 157 100 212 -4.15/-4.76 i

Table 12-8 CATAWBA UNIT 2 CYCLE 1 STATE POINTS Control Bank D Axial Offset Point # EFPD Power (%) Position ~(Steps) (Meas / Calc)(%)

1 45 100 210 -7.39/-9.83 2 77 88 199 -4.78/-7.79 3 100 100 209 -4.51/-7.30 4 128 100 210 -4.72/-5.91 5 149 80 187 -3.89/-5.27 6 177 100 215 -3.66/-3.74

'4 Table 12-9 DIFFERENCE DISTRIB IION NORMALITY TESTS FOR C, M i 1.0 - 5% LEVEL OF SIGNIFICANCE ASSEMBLY RACIAL POWERS q Unit / Cycle N D'(P=.025) D' D'(P=.975) Remarks C1/Cl 168 602.8 595.2 622.3 Nearly Normal C1/C2 109 313.7 310.9 326.4' Nearly Normal C2/Cl 112 326.8 313.0 339.8 Nearly Normal All Combined 389 2138.7 2120.3 2183.6 Nearly Normal ASSEMBLY PEAK AXIAL POWERS Unit / Cycle N D'(P=.025) D' D'(P=.975) Remarks C1/C1 272 1246.8 1259.0 1279.0 Normal C1/C2 162 570.1 582.9 588.9 Normal C2/Cl 166 591.9 594.9 611.2 Normal All Combined 600 4106.0 4132.9 4176.0 Normal I r

l 1

1

I l

Table 12-10 DIFFERENCE MEANS AND STANDARD DEVIATIONS i FOR ASSEMBLY RADIAL POWERS (C, M 2. 1.0)  !

l l

Unit / Cycle N D S(D) ABS (D) S(ABS (D))

C1/Cl 168 .004 .020 .021 .013

.C1/C2 109 .004 .017 .013 .012 J C2/Cl 112 .008 .024 .017 .011  ;

All Combined 389 .003 .021 .017 .012  !

l i

i m

- - _ _ - - - _ _ . - - - _ _ - - _ . _ _ . _ .___2

4 Table 12-11 DIFFERENCE MEANS AND STANDARD DEVIATIONS FOR ASSEMBLY PEAK AXIAL POWERS (C, M A'1.0) ycle N E S(D) ABS (D) S(ABS (D))

C1/C1 272 .025 .032 .031 .025 C1/C2 162 .029 .036 .036 .029 C2/C1 166 .017 .038 .031 '.028 All Combined 600 .024 .035 .032 .027 tl

m

.. i j

' l i

Table 12 PERCENT DIFFERENCE MEANS (C, M 2.1.0)' - ASSEMBLY RADIAL POWERS Unit / Cycle Mean % Difference Mean Absolute % Difference C1/C1 .334 1.54 C1/C2 .303 '1.15 C2/C1 .696 1.95 All Combined .260 1.55 l

I Table 12-13 )

I PERCENT DIFFERENCE MEANS j (C, M 1 1.0) - ASSEMBLY PEAK AXIAL POWERS Unit / Cycle Mean % Difference Mean Absolute % Difference C1/Cl 1.99 2.47 C1/C2 2.35 2.91 C2/Cl 1.32 2.40 All Combined 1.90 2.57

s l*

c-Table 12-14 CASMO-N0DE ASSEMBLY RADIAL POWER FN t2 fI 1.111 5 -0.003 S(D) 0.021 N 389

  • K 1.780 FN AH

= 1.0 + (D/R) + [(.03) + (K

  • s(D) )2 + (.022)2) ,,

M FN = 1.0 + (.003/1.111) + [(.03)2 + (.034) + (.022)2)

FN LH

= 1.053

  • REFERENCE 25
    • Since 5 is negative 6 5 term is included because the model consistently underpredicts measured powers.

s p.=

Table 12-15 CASMO-NODE ASSEMBLY PEAK AXIAL POWER F R 1.274 5 0.024 S(D) 0.035 N 600

  • K 1.752 l
  1. = 1.0 + (5/R) + [(.03) + (K
  • S(D))2 + (.022)23 k ,*

F _

M F = 1.0 + [(.03)2 + (0.033)2 + (.022)2)h F = 1.050 0

  • Reference 25
    • Since 6 is positive the D/T4 term is not included because the model consistently overpredicts measured powers.

j i

l

,