ML20197C854
ML20197C854 | |
Person / Time | |
---|---|
Site: | Vogtle |
Issue date: | 11/10/1978 |
From: | GEORGIA POWER CO. |
To: | |
Shared Package | |
ML20197C815 | List: |
References | |
NUDOCS 7811210226 | |
Download: ML20197C854 (39) | |
Text
/~~~ .
l l
e ALVIN W. VOGTLE NUCLEAR PLANT 1
GEORGIA POWER COMPANY l BECHTEL JOB 9510-001 i
l l
REPORT ON " GROUND RESPONSE ANALYSES" i COVERING " SENSITIVITY STUDY" 1
I Requested by the NUCLEAR REGULATORY COMMISSION i
1 l
1 Submitted By BECHTEL POWER CORPORATION )
1 l
l l
l l
NOVEMBER 10, 1978 l l
1 7 811210 ;L264 l
.w . - _.
O ALVIN W. VOGTLE NUCLEAR PLANT REPORT ON " GROUND RESPONSE ANALYSES" COVERING " SENSITIVITY STUDY" REQUESTED BY THE NRC 1
l l
PRELUDE l
The contents of the enclosed report were first presented to the staff of the Nuclear Regulatory Commission on July 12, 1978 in NRC's office at l Bethesda, Maryland. The report was accepted by i the NRC's staff with comments. The staff's comments have been incorporated in the report enclosed.
1
.,r ., l i
e ( 4
- ~
l
. 1 1
Report to Bechtel Corporation on Ground Response Analyses l 1
- Vogtle N.P.S.
by l H. Bolton Seed l
- 1. Introduction i I
I In accordance with your request a series of ground response studies l l
have been performed to determine the computed variation of ground motion l l
with depth at the site of the Vogtle N.P.S. The analyses were made for l
1 two conditions: (
l (1) A series of 7 analyses were made in which recorded rock motions l l
were used to establish bedrock motions, which were then propa-l qated upward through the site soils from the underlying bedrock. l l
( 2) A series of 8 analyses were made in which recorded motions on soil deposits with generally similar characteristics to those at the Vogtle site were deconvolved through the soil profile.
The computed responses from the two procedures were compared with each other and with the results of the seismic motions proposed for use in the design of the plant. In all cases, the ground surface motions were scaled to a peak ground surface acceleration of 0.2g to facilitate the comparisons outlined above.
- 2. Soil Profile The soil profile at the site of the Vogtle N.P.S. is shown in Fig. 1.
After excavation and backfilling to plant grado, the soils will consist of t
( l)
, , 2 i
1 about 100 f t of sand, underlain by about 65 f t of marl and then further e sand extending down to very large depths. The actual depth of bedrock i
- is not known but for the purposes of this study it was considered to be at about 600 ft below the ground surface and to have a shear wave velocity
- of about 3000 fps. Test data have shown that the shear wave velocity in the lower sands achieves a value of 1800 fps at a depth of 200 to 300 ft.
4 and assuming that the nature of the sand remains the same, these results would indicate that it would be likely to increase to a value of about I
- 2600 fps at a depth of 600 ft due to the increase in overburden pressure alone. On this basis a depth to rock of about 600 ft was considered I I
reasonable. Increases in depth of one or two hundred feet above the l l selected value would have very little influence on the results of the
! i 1
analyses in the upper few hundred feet of the deposit. l Soil properties assigned to the various layers shown in Fig. I were 5 those previously established by tests for the various layers and used in i
l previous Vogtle Project reports.
i
. 3. Ground Motions For the purposes of the analyses, eight accelerograms recorded on deep soil sites similar to the Vogtle site were chosen for deconvolution l
studies. These motions were also chosen because the peak ground accelera-tions were reasonably close to the SSE acceleration of 0.29 selected for the Vogtle site. The eight records selected for these studies are listed
- as Analyses D-1 to D-8 in Table 1. They include records from the
! El Centro site in the El Centro earthquakes of 1934 and 1941, records from the Athenaeum site at the California Institute of Technology and the i
pn.
1
(
, s 3 IIoliday Inn site on Orion Blvd. in the San Fernando earthquake of 1971, two records recorded at the Olympia Highway Laboratory in different earthquakes, and records f rom Ferndale and Humboldt Bay. Details of I
the recording stations and the particular earthquakes producing the 4 records are given in Table 1. In all cases the record selected was scaled to have a peak acceleration of 0.2g and used as a surface control motion for a deconvolution analysis on the basis of vertical shear wave
. propagation. Spectra for the ground surface motions obtained in this way are shown in Figs. 2 to 9.
The other seven analyses were made using seven different recorded i
rock motions to determine base rock excitation and the resulting response of the deposit due to upward wave propagation. For this purpose the rock motions were considered to develop at an outcrop close to the site, the motions were then used to determine the motions at the base of the 600 ft soil deposit, and the motions throughout the deposit were computed for these conditions. The computer program SHAKE was used for all analyses.
The rock metions used for these studies were selected f rom three different earthquakes and are listed as analyses U-l to U-7 in Table 2.
They include records from the Temblor Station and San Luis Obispo in the Parkfield earthquake of 1966, three records from the C.I.T. Seismological Laboratory, Lake Hughes Station No. 4, and Griffith Park in the San Fernando earthquake of 1971, a record from the Taf t Station in the Kern County, California earthquake of 1952, and a record from the Castaic Station in the i
San Fernando earthquake of 1971.
The original records from these stations were initially scaled to a peak rock acceleration of 0.2g and the resulting ground surface motions
( ,
s $ 4 computed at representative levels throughout the soil profile. Values of peak ground surface accelerations obtained in this way ranged from 0.20g to 0.28g. The computed motions were therefore scaled proportionally to Produce a peak ground surface acceleration of 0.2g. The low scaling factors used in this latter operation were not considered to have any significant influence on the results which might have been obtained if repeated trials using dif ferent levels of input rock accelerations had been used until each analysis had produced a computed peak ground surface acceleration of 0.2g.
l
! Response spectra for the scaled rock motions (producing 0.2g peak acceleration at the ground surface as described above) are shown in I Figs. 10 to 16. It was recognized that two of the motions used (the Taft and Castaic records) were not truly rock records but they were recorded on
- shallow depths of stiff soil and have essentially the same characteristics I
of rock records. It was also thought that these two records might simulate motions in the base rock if the actual depth of the soil profile were some-what deeper than the value of 600 ft used in the analyses.
Variation of Peak Ground Acceleration with Depth The computed variations of peak ground acceleration with depth deter-mined by the 8 deconvolution analyses described above are shown in Table 3 and those for the upward wave propagation analyses from rock in Table 4. As described above, all analyses were adjusted to produce a peak ground surface acceleration of 0.29 , prov' ding a consistent basis for comparison. The results show some variations of peak acceleration with depth within the soil profile but overall no major differences. A comparison of the mean values
( )
, 5 determined by the deconvolution analyses with those determined by the upward wave propagation analyses is shown in Fig. 24. Again it may be seen that the variations of mean peak acceleration with depth for the two separate studies are generally similar.
Comparisons of Ground Surface Motions with those Developed at 76 ft Depth For each of the 15 analyses, comparisons of the response spectrum for the ground surface motions with that for the computed motions at a depth of 76 ft in the soil profile (the foundation level for the contain-ment building) are shown in Figs. 2 to 9 and 17 to 23. Figs. 2 to 9 show the results of the deconvolution studies while Figs. 17 to 23 show the results of the upward propagation studies. It is readily apparent that all of the analyses show a substantial reduction in the intensity of shaking developed at a depth of 76 f t and that the reduction is generally comparable for each of the analyses.
To provide a collective basis for assessing the significance of these results, computations were made to determine the mean plus 1 standard deviation spectral shape for the suite of motions determined by the 8 deconvolution analyses and separately for the 7 upward wave propaga-tion analyses for (1) the ground surface motions, ( 2) the motions computed for a depth of 40 ft below the ground surface and (3) the motions computed for a depth of 76 ft below the ground surface. The results of these studies are shown in Figs. 25 and 26. It may be noted that the spectra for the ground surface motions are reasonably uniform ever the period range from about 0.2 to 0.5 second but the spectra for the motions at depths of 40 and 76 ft contain significant valleys at periods of about 0.18 and 0.3 seconds in both cases. This reflects the influence of wave propagation effects at the ground surface.
( l
- 6 It is interesting to note that the mean + lo spectrum for the suite of 8 scaled ground surface motions and the 7 computed ground surface motions determined in this sensitivity study are reasonably similar to j that specified by Regulatory Guide 1.60, as evidenced by the comparison in j Fig. 27. However both spectra are somewhat lower than the Regulatory
- Guide 1.60 spectra for frequencies higher than about 5 Hz. reflecting the 1
filtering effects of high frequencies which tends to occur in deep soil deposits.
As a result the use of the Regulatory Guide 1.60 spectrum as a design i
basis may be considered conservative in such ecses. Finally, as shown by l
the comparative spectra in Fig. 28, the mean + la spectrum determined for f
the two groups of computed motions at 76 f t depth in this r talytical study (i.e. 8 deconvolution analyses of suitably scaled ground surface motion records and 7 ground response analyses using suitably scaled rock notions) are very similar in shape to each other and to the computed spectrum at 76 ft depth obtained in previous design studies for the Vogtle plant obtained by deconvolution of an artificial accelerogram representative of the Regulatory Guide 1.60 spectrum.
Conclusion The good agreement between the results of the ground motion sensitiv-ity studies described above and the results obtained by deconvolution of the Regulatory Guide 1.60 spectrum supports the use of the latter spectrum and motions obtained by deconvolution of it for the design of the Vogtle plant. On this basis it seems reasonable to conclude that the reismic design procedures previously proposed by Bechtel for the design of the Vogtle plant provide a suitability conservative basis for design.
,a.., . .. .-
s
. I t t
l Table 1. RecordG_Used for Deconvolution Analyses Analysis No. Recording Station Earthquake D-1 C.I.T. Athenaeum San Fernando, 1971 D-2 El Centro El Centro, 1934 D-3 El Centro El Centro, 1940 D-4 Holiday Inn (Orion Blvd.) San Fernando, 1971 D-5 Humboldt Bay Ferndale, 1975 D-6 Ferndale City Hall Ferndale, 1954 D-7 Olympia Highway Lab. Olympia, 1949 j 1
D-8 Olympia Highway Lab. Pacific N.W., 1965 ;
l l
l l
Table 2. Records Used for Upward Wave Propagation Analyses l
Analysis No. Recording Station Earthquake U-l Temblor Parkfield, 1966 U-2 C.I.T. Seismological Lab. San Fernando, 1971 U-3 Lake Hughes, No. 4 San Fernando, 1971 U-4 Griffith Park San Fernando, 1971 U-5 San Luis Obispo Parkfield, 1966 U-6 Taft Kern County, 1952 U-7 Castaic San Fernando, 1971
, . .n. .,. -. . .~.~ . _ .... ~ , we, -
( +
1 i
Table 3. Computed Variations of Peak Accelerations (g) with Degth from Deconvolution Analyses Analysis No.
Depth (f t) D-1 D-2 0-3 D-4 D-5 D-6 D-7 D-8 Average 0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 ;
10 0.18 0.18 0.19 0.19 0.20 0.19 0.18 0.17 0.18 20 0.15 0.15 0.19 0.18 0.19 0.19 0.16 0.13 0.17 30 0.15 0.14 0.18 0.17 0.18 0.18 0.15 0.12 0.16 40 0.14 0.12 0.16 0.16 0.19 0.18 0.13 0.11 0.15 51 0.12 0.11 0.15 0.15 0.16 0.17 0.13 0.10 0.14 62 0.10 0.09 0.13 0.14 0.14 0.16 0.12 0.10 0.12 76 0.09 0.09 0.12 0.13 0.12 0.15 0.11 0.11 0.12 92 0.10 0.09 0.13 0.13 0.10 0.14 0.10 0.11 0.13 110 0.10 0.09 0.14 0.12 0.09 0.14 0.08 0.10 0.11 120 0,10 0.09 0.14 0.11 0.08 0.14 0.08 0.10 0.11 140 0.09 0.09 0.13 0.10 0.08 0.13 0.08 0.09 0.10 162 0.10 0.08 0.13 0.10 0.09 0.10 0.07 0.10 0.10 267 0.13 0.15 0.13 0.10 0.10 0.10 0.10 0.09 0.11 600 0.18 0.32 0.52 0.25 0.13 0.17 0.14 0.13 b
i
[
3 \
Table 4. Computed Variations of Peak Accelerations (g) with Depth from Upward Wave Propagation Analyses f
t Analysis No.
Depth (f t) U-1 0-2 U-3 U-4 U-5 U-6 U-7 Average t
0 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 ,
i 10 0.19 0.19 0.18 0.19 0.18 0.19 0.18 0.19 .
i 1
20 0.16 0.18 0.16 0.18 0.17 0.17 0.15 0.17 i l
30 0.14 0.17 0.12 0.17 0.16 0.16 0.12 0.15 '
1 I
I 40 0.11 0.15 0.10 0.15 0.15 0.14 0.10 0.13 51 0.07 0.13 0.11 0.13 0.14 0.13 0.08 0.11 l
, i 62 0.06 0.11 0.12 0.11 i 0.13 0.12 0.07 0.10 j l l l l
76 0.07 0.09 0.14 0.09 ! 0.11 0.11 0.06 0.10 l
92 0.08 0.10 0.14 I 0.09 0.09 0.11 0.06 0.10 l
110 0.08 0.10 0.14 0.09 0.11 0.11 0.06 0.10 120 0.08 0.10 0.13 0.10 0.11 0.16 0.07 0.11 140 0.09 0.09 0.11 0.10 0.11 0.16 0.07 0.12 ,
1 162 0.09 0.10 0.09 J.09 0.11 0.11 0.09 0.09 l 1
267 0.11 0.10 0.11 0.10 0.13 0.11 0.10 0.11 600 0.12 0.12 0.13 0.13 0.13 0.13 0.09 0.12 j i
- _ _ - _ _ - _ - - - - - - - i
4
..- [
( ,
1
, 1 O._ O Sand 10 0 -
Mori 200 -
300 -
S "d i
.c E a>
I O 400 - l 500 -
Sand 600 -
/////////////////////////////////////////////
Rock vs = 3000 fps 1
700 -
l L
l Fig. 1
. . _ - _ - _ - - - _ _ _ _ . - . _ - - - - _ _ _ _ _ -.---_-___--____--..-----.a__
4.A24 m - .a 2 a 4 =me, u
% M
. 1
- N es o .
T
=*4 m
I-
/.
. N U
( ~
o ~
W . O L n
- Ee w
~~ _
. a
% o um a
z f, .
ow<
/ .
m* 'E
,.,===*#p U e K
% . U N r ')
% m
- " ) .
V
.,, ) o a:. m
- oe C~ a
~U
[
. .mu wA
~
5 n. m E
- W
/ u<
I- m*
z i
{ %
~ *wE L
t H D
- a m
.
- W I ]
w gD . m j s . i w . i N U
< z l .
w >= l er. 4. a @
3 w l 64 m I
~
i i i i ,
)
I
- I g I g . ~
\
\ l
\
~
. . . . . . . . I. i l O
O O- 0 O O o M N M W e e e e e e 889 p'S 0- N0[1VHil333V lVH133df i
..x
gg na a * >A,& % -aa w .= -rJ La m, n- +r y + A 4
j + a f
- b 5
- e4 e
t .
! N a
4 1
l=
)
- . ~
1 s
d 5 E
~
/ o 4
(
= o
- - - n
/ <
- . o n
I
- (,s g
- 'g .
. e M E ow E Ch.
M
. / g U
n
- ) . WN e
~
1,
\y p
vs C
+
[% % i 0
g og <*
= -
a 1
(%~~_ % ~
- u
%W u
% U S l
! N v ;
N
- i i
- i i
i = C l l s p /s . I ' '
' o m
% . me y u E 5
i ^ \ .
~
w e ,
o s
i' .
4 Z j b H \4 et 4. = m -
D %8 \
W D ) i
. 1 y
. i g i i, I
i :
I - ~
\ l
\
i
\
i ~
i a e a n a i s 1 n' g j o o
- l
, o o e - e .o n e o e . .
M aus S - N0f1V831333V 7VH133d5 1
e t we O U
=
7 L.
. N O
/ E
/
/ . O
,/ ~
- t
% 4.
- o d .
/ m ec Y- .
O kJ E L f . c
~% v ,a-N . v~
) '
o c ,
=
_l ~
oe x z
/
% oHj
- n, . w
~u E 44 g WA y a w s N --
U
_ ') m
\ z o
S r~ .
.o t '
e O sn
} =
- Q u ( . E
~ N "
w i }
N Y= -
-w 06 a.
\ - e 3 hJ [
1 no o
' l -
1 g I \
l l . ~
l i
I t a t A e a 1 a I a l O
O O O O O O .
A N #1 e e e , ,
o e WS 94 NOI1V831333Y 7VH133di t
i
, e
t 4
I t
, a
. O LA s
O and CL.
. e
" l i
- N
/
I
( "
sN ze O ~s
's = O b CF)
/ =e Em
/ ~
,s# ,
e z
4% N . M E 4 g ou z
. m * ' cc O U f o -
w j . WN f M e
s .
g N < m
% Q% g C
~ u
& z C,s u 2 W z
~% "4 Mo- = %
\ u u
4 l
Q
~
- h "
m
- k O M v o
~_> -
a . m W k W I 5 .
La t 4 2. \ .
% H tm A - e D si M Q .
~
I I -
l I
I - N I
I I
a e a a e a e a Ia N t
O O O O O O O =
m N F1 2 m e e e e e
.N9 H 3 - N0!1V8313))V lVH133di
b s
% M a Q @
e .
,4 k
e N
4
/ u z
/ e
~
- 1
/ c ~*
/ ~
x
(
/ a"
/ ~ %
m
, - . g
/
- E A
- o
. m
\ v
% e Li N V
l
,) .
g 1
% oa N
% oHp
~ u EW k.i . N um
\ r h W O c w "
s z
( '
' et t 1 O w
. M u i 4 T . Cf.
m I -
< m 6 >=
en 6 . m D W l t/t O j l -
I ;
l I
I ~
l .
l l I I
8 8 I i a e 1 e Ie N l
O O O o o e ~ . .O .
e e , , ,
M H i
S - NOI1V83133JV lV8133di
y_ ,,. -,- - - - , - - , - - - - - - - , - - - - - - - - - - - - - - - - - - - - - - - - - - - , , _ - - - ----.
- 1 e
, O b e **
A k
f w
E
- e, o
E C
I = O L v
/ . ~ E sn
(
- C
<m N
) *
(' . m =
ou.
"3 N --- % . c E 4 E
\
N u . .,
f = UN J
/ ,
N ,
L N i .
)
/
- o = r>
O &
" O y J . ~ = u um o
' ^J N
\.s \
$ o< z E
l D a O
[ /
O N 'W m
2 h
( . cc W t N .
U 4 Z W W ar. L ,
m D M l M Q l I
I -
I 1 l I
l l . ~
l i
I l
~
i i e i i a i i lj ,
t
{
O O o w o
+
~
e
.O
.o ,
M due 0 - NOI1V831333V 1Vd133df
p .-- . .. _ _ _ .
. , - . . - - - . ... -- -- . ~ . - - - .-..
'{.*
N 5 O
- CO
- d k
m
- N O
E
~
o '
/ . O
~ E
/ .
4 a
/
% . o w-
/ a M E O VV
a.
[ *- %
/
- o O .=
en
. U N
,#j w n 1 4
\ J
( 4 O m w s%, O H3 1
_4 ~ uE N_~_~ _ _ 7 . ~E V V A 4 1
/ n. m - i Y L
( WE l u >
%~~y zJ l f - G O H
- % l A
m
- N o
. - y w . E P. }g a u \ .
- 4. E w H f on m. *
- D kJ l M Q 1 i
i -
1 l
I I l 1 . ~
i I
i l
t t t i e A a 1 l a l O O O O m ~ O. O. e a . . . .
M 89 3
NOI1Vd3 73 3 3 V lVd133d5
,s., .
& 0F ' W^ g h
Q
- p
=od k
e O
E
~
f O j . O C
y ~ -
( xw
. o e
) ~
m
/ .-
(
.
- x oa w D
c' 5 *
- aE A W to O 2-s# . U N
,Y V C
/' i <
/ i J
~
- s> ca cr. E C H 3
% j N - y I i u% U c,"s%
um <
a m-4 l
l l
[ ~ - -. ~ ,
WJ C mp
- """"""~ Z J
- % , Q O I N 6 A !
% O m j
[ %
. - a w ( 2
.- s .
i
\ .
w i N u
z.
%. m . -
D W l LA O i l -
I i
I*
1
- N l
l I
I
~
t i i a a a t i
, 1 l C
O O O O O C m N 01 W m e e e e a M Gee 0 - NOI1Vd373J3V lV8133d5 1
1 l
a., . -- + - ---- - .
e . . . . . , . --
l l
l j
s s ) 1
{
- O o l
- = M f' 1 l 9 g l k
l 1
i M
i i
l I
. w U l z.
O
. O A-em C
- o W
~ (D
. M E .
o %)
. m Eb O
o U . kJ
- WN ,
m b I M g
<E Q cc <
cp 4
" U Cr.
. w& kJ g VA A w O
"J E.
v z W O
, 1 A O M
- - w
. a b -
o C .
U = w O
es W
9
= N N
1 e n ' I I E a y g O
O o O o a O =
W M g n e , ,
" 50 N0f1VU31333V 1V61J3df c =v ,
(
s * $
O c.4
~
e e U'
es b
E I
e .,
6 O ~m A
- O -
== E
<a O g
. E M E
. z O V g b W
. e O ,
U e l
. V N ,
M ,
i )
i i O C
- a. g C H
- U g
. w E- V .
V1 g n- u g Z
U h.J
.5 C p
, t A O M
. en y J E E o -
y
=
4-=
o E .
N LS
= m o
SL 4
- N N
g
' ' ' I i a a e ,
D O O o O o o ,,
M w e 9 m
- e MS S - N0flV8313]JV 7V8133df
( /
n
- a ~
en Iii.e
- i u
i
. u i
u z
, , n. n ce 4
- o C
. Q
. maz ow<
- oOz a.e W z a
. wN 6 m
t
- I w ame ,
er .
m uO
< - ~""* a
- a. wn w$
wz '
z ow I O- U
~
a w <
- - w .;
4 O . E r . j O
E .
= 1 u - m O
m I
l i
l 1
l
. u u
a a a e i a a a e t O
o .= o . o
-m u e n I
i i
0 N0!1Vd37333Y 1Vd133di ;
1 I
i- ,
L '1 . - _ e-- - - . . ..e
-, , . . . . ~.
l l t
t # l
,)
(+
l 4 L I
.e N l- . O -
4 l
H l
l 1
1 m
1 a N i o~
E P*
= 01 O g
= O E
< Q Q-
. o E
um E Q U E l zA W
- o o U e
. WN
- m M I
( 3
, <O Q g C Q H M
= u
, y EWW W 4 E A M <
A EJ mE
- 7. &
, oa g A b O M b
- "* W <
. = =
o
>=
c C
- u y = M Q
es a
4 e
= N N
a e a a a a a a l O
O O O O' O O W H M le M e 4 e * *
- e. 04 0 --N0(1Vd37333V 7Vd133df
wn, , . ~ = . - . - .,
+
( i
' ' .4 4
. O e4
- . e
.a CLe
. N O@
Z@
m (n
. O ' -"'
.e E
< o
. o .)
kJ
, e M CE 6 Q 4) M
'
- E O 4 OC.
u e w
. hJ N m 3 l r i to xV O CL Q ).- O
-um
, y Of. kJ V
=
la.J A 4 M 1D O
u w V E *
, O D
. t 'J O M
- kJ E g
o . m<
~ v O
E .
~d e
LJ O
tt
. N N
a i a e a 1 i e a 4 O
O O O O O O .
m W #1 W ft e e e e e me .4 0
N0!1Vd3733JV 1VH133df
w ..:.
(
, s
- m O e4
.en L
. w
. ~
u E
. O n.
- c o
N
. V1
, M E 01 ou -
- az a.
u . w
. UN E V 3 1 o i u oa z oHE
- uw
. , auw W Q.
- a. vs H u.
u<
v1 &
z
- o i
g = i O w e
o . e 4
~
1 9 .
o r .
i w ;
u . m ,
O
=
I l
l 1
1 1
l 1
. ~
I l i
l N 1 1
O O O O o o e ~ ,, . n l
0 - N 011 V d 3 'l 3 J 3 V lVH133d5
> l
,, w m n7------ .r.. ga,a, ,e-, . 4 , . . . . . - - --4 - m.-----. m - . . ~ - --& .~~
t u
, . f-0 ,
s
' ee g
s O @
- .e e4 l ,
e r O
' ,4 4 k i
4 4
Y 3
i )
i ,
L ~
f a
J P
E m
a a o L ens - E
- o r.,
. O W
Q U c
. m E % C O E s
WN
. g
^ %
I
! 4J L
m w. .
O Y V .
~ U \
. N N W U l uL 4 M 4
C U u M
I
- u <
ao O e
4 O M
. m y an N
o .
b O
C .
U y a @
Q th m
. N N
a a a e i a s a i 9 O
O O O O O O .
@ N @ 4 6
.s e e e e
. W4 0
Nativ831333Y iv8133di
p g. v.+,. + a wsa.w-.- s --+ - ,~ . w. , , -- - - - - - . - - - - - - - - - _ _ _ - ,_
.4 (d +>
- o n
- ~
8
.s b
+
+
. ~
U E
=
( . o
- t h <
j - a w
( -
) . m 1 ow-0 '
- - . w O 'O y#,s's .
U WN e
y y
L
/ '
I M
e# ~ . a ;
L%
~m o cr. g<
O &
- == U.
% . u " U o
%=% % """
d4 g 4 m C ~ys a Ut g
- m
%=g E
( -
e o
.- 1 o m u
I
. \ . =
I .
w (J
. i
\ =
4 E t te- 4--
t L l "
- D mJ
~
I i
I '
l I !
I 1
- 1 I . ~ i I
l i
I
~
s a a a a a a a la 4 O
O O O O O O "
- m. ~ m W M
. . e e *
- se 8'G S
NOI1Vd3733]V 1VH133df
.... . . . . . . ~ . . . . .. .. - .. .. .- - . - . . . . - . . - - .. .. -
- , (
.[
r a ce s .en r
. i f.
. m 1
i
'i 4
. ~ ,
o c
/ *n #1 O
. o S -
/ .
- C 7
f 5Ez
) .
c*
- . mm*
Q w"
/ . m zt o
"*"" / O .
. w~
/ w M g
- % % e
~ ' . a o
os= s<
--~'~~ -u m
~s
~VA
= v ,_,
_*] '"U
) w m r.
.r'~ u i
\' $
' "w '
r I
\
' a m
. . w < '
~
N . CE u
w , } .
< z I .
mw E b l " M
= w W m i
I I -
I l l l l
I l . ~
l l
I
' - - . . . , , .,' ~
t o o o o o !
a ~ o
= ,
d - . . .
0 -
N011V831333y.IVd133df
-~-
f r s-a 4 ac T-- A--* 4 - - - - ,--- #- h - CE-#h,i s.a4
. .a D h m e4
- e a A N
i / ,
j '
a i
J Y
U x
/ s.
f
/ . D, A N E #1
- 4. "*
j -
o
- Q
,# e C1
, A N
,)
ow<
- m aE A E
/ 1
( u . W
, . u~A
(" #.- -% %
- i t
u
% (
e.ase #
, = **** , - - Q cr. **
O & =
p W U Q g"' , u Qf- V E
==~~% '
- WA
% A uE
% O
%* W e "'" "s uE
.*3 E
,, Q U p # . t ' M s % o u 4.
N - a wr a N . tz h
w . /
%, s \ .
- r g as e- - ' e D W l wt - Q l I -
I i
I I
I l . ~
l i
I i ~
t i e a i a e ,_ e l i g C O O r:p o e ~ O. . ,,
o e . . ,
WG Wet 0
- N0!1VB37333Y lV8133df
, s 5
$ ' g
Y
. a
. (' t 4,
- o. a
. n
.en
, L 1
- . m I
e i l
, . 1 J
. u 1
. u -
/ m~
e
- a. ~
( .- - t
<o 4 ) . e no s
- r -
1 > m = z Q W E E g V
(~-,s -
e o u .
uu m
u m'
. 1
}
- i s*** l 3 r -
< o
\~s- am o oe u e_
N
-u w
m
. .mu W a. E N
\
mu< a.
\ w
\ w n zH
\ - o~
i c. ' 1 r T a ww :
- - - v< l
. I . a cr. 4 n u l .
w i i u \ . ,
< z ,
% W l - e
= m a u l w a ~
I i I l g
I I I i l 1 j . ~ l 1 l l l l I
~
i a i a a a a a lt i o
o o o o a o -
n ~ c . n
~ ~
1
! 2 N0(1VB31333Y lVH133dV l
4 s
}'
1.50 SURFACE
,_7g ,
DEPTH - 76 rT q u
l z
Q
< 90 -
oc s.s2 d e /\
I\
~
~ r m I\
< l \ l\
l\\
_, .so -
f \ \f \ /\ ,/
LJ
\
r
\
- I
- \
w a
1I \
m l J f
\ n 50 -
j~ (fx ts'
,s
' * * ' ' ' ' ' ' ' ' ' = ' '
0 ' ' ' ' a ' ' - -
10~2 2 5 10~8 2 5 10 0 2 5 10 8
PERIOD - SECONDS RESPONSE SPECTRA - 2. PER. DAMPING SAN LUIS ODISPD 561W PARKfIELD 1966 Fig. 21
. >b -
, t c .
est q
- S\ N es4 b
/ o z
l se
/ . O =
t
/ <
/ . a
,====*#
- n LA N .
N M u. at C C -a
- . g Z 4
== O b U H
"",W . ON z e
_,,,,, M ::3
\ l O
- % ,_~% l O
,,, N
/ G x 2.
q"w o & u.
- =O in.1 is . . = uu um
) A wH h u<
C-m V &
% z
\ .
O e
r i "
O M
' t
" " W g . E h
o , l .
o ) .
4 I m >- 1 IE L [ " @
3 W M O I
i l
I i
I I ~
l .
l I
i
~
- - . . . . . . I.
O o o o O o
O m D N e g
" 9 80 0 - N0[1V831333V lVd133di
_. - __ . . . _ . . . . . . - . - - ..m.. .. _.._ _ ... . ... _ _
h a
~ . .
i 1 -
. i t
m I !
i' i
i' 2.50 f
SURFACE DUh - 76 FT m 1.20 -
a
~
E O
<. .s0 - l\
cm
- 11 w
g1 a g;
< l I t
.s0 - t i 1
< \\ /\ I a
I \l \ I\
'- \\
~
l1 I l 11 \
a ul \/ \
~ n Iy xl v
\
.s0 -
I\) \
/ \
_ s_,
+
~
- - - - = = = = -
0 - . . . . . . . . .
10-2 2 5 10~I Z 5 10 0 Z 5 30 I FERIOD - SECONDS RESPONSE SPECTRA - 2. PER. DANPINC CASTAIC 5. FERNANDO 1971 Fig. 23 2
& n -- - - - - - - - - - - -
(
e PE AK ACCELER ATION - G O O.04 0.08 0.12 0.16 0.20 0 j , ,, , ,,,
D E CONVOLU TION -
UPWARO PROPAGATION
/
's >
100 -
(
,s'
/
/
I I
H I u t I t y 200 - 1 I
O I
<! I T I O
\
D t O
J W
CD fa. 300 -
W Q
l 400 -
l i
l l
500 VARIATION OF MEAN PEAK ACCELERATION WITH DEPTH OF DECONVOLUTION AND UPWARD PROPAGATION AMLYSES i
Fig. 24
- --_-----__.m.__m_________.m _ _ _ , _ _ _ _ _ _
t
- 1. 2 ,
SPECTRA FOR 2% DAMPING DECONVOLUTION I.O -
ME A N + I cr S UR FACE
M E A N + l a 4 0
- B ELOW GRADE m O ^
ME AN + t & 76' BELOW GRADE 0.8 Z 'sv ,m k#
O_
l-4
. [N t
n\#\ \
/
E r r t w '
' 'i [ 's J - 0.6 - i '.;~\
w I f . i O f '
- t O i A
/ / :p.
a , '
'I, '-\
a /
^/ -ia E f s_. O.4 -
e ::
/ .
O i td / :*~ ;* %.,J.rg .
- a. l v tn / .
l . \ t
,./ .-
i, :
e '
0.2 ----. _..__ / \__l i
.g O 8 I I I I I I l ' 8 I
- I t t i l l l I I I I I I I O.OI O.02 0.05 0.1 0.2 0.5 1 2 5 10 PERIOD - SECONDS I' i r: . 25
- a 4
1.2 i
UPWARD PROPAGATION
---ME AN + 1 cr SURFACE l.O - ...----- ME AN + t cr 46 BELOW GRADE p m
MEAN + 1 cr 76' BELOW GRADE , l1 s og g It lg it I O It Il l t I t il l t
I tIi lt 8
s t i z O.8 - , s,,8 , ,
9 , . y i F- g I
<[ g 8
Pg l T I, I \ l W I ,.gl
> \
1 1 :
W O.6 -
f i;V ',\
O I I : * : ,\
O 8' : ; : *
.1 4 I g/ : : : *1 J #
I i ii 4 i : 5
[ t
' ~
/ '\A
~~ g 9-- 0.4 - ' -
O '
,- : 3, tts y :
k / -
w i :
t I
r :: : .
me. p\
t~ x 0.2 ------~~~~__s
- : y
/
I , e I t I I
' i I f I I I I I O ' ' ' ' ' ' 5 10 0.5 2 0.O: 0.02 0.05 0.1 0.2 PE RIOD - SECONDS Fig. 26
g_, a. a ,ss .. - -
o -- ,
~.- ,
1.2 ME AN + la SPECTR A
R.G. l.6 0 SPE CT RU M SURFACE SPECTRUM -
I.O -
(UPWARD PROPAGATION)
SURFACE SPECTRUM ,
(D ECONVOLUTION) o .
e*
1
~-
Z. O.8 - -
b . . . , , . ~~g
' \
,/
w #
4 ! f
-g E !a
- 1 g til : i f g
.J i I i ,
w O.6 -
/ f y o :
O : 1 4 : s
- g *-
4 T :
ll /
V.'\.t 1
H O.4 -
l / -
O *:
W * .*.' A O. .E f ~ :/ \
(n : ' .r
.s l
.~ , .
i
,. ', / *}\ -
O.2 - - - - - \'. .
0 t t t t t tre e 1 e 1 et i e e e I 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 PERIOD -SECONDS Fig. 27
7
\ .
I.2 s ME AN + I cr SPECTR A 76 BELOW GRADE I.O -
DEC O NVO LUTI O N (Sensitivity study) i UPWARD PROPAGATION (Sensitivity study) ,3
DECONVOLUTION OF REG. GUIDE SPECTRUM (Previous Bechtel onolysis)
W O.B -
Z E'
s
<I tr O.6 -
W
_J w
O -
O .
O .4 -
j l \
l,I \
] \
O.2
!; L/j g/
.i .Q\,
j-s.ff
\
_____.__--/~' -
O I I I I I I i 18 I I I I I II li i e i I ti O.OI O.02 0.05 0.1 0.2 0.5 1 2 5 10 PERIOD -SECONDS Fig. 28 i