ML20117M802
ML20117M802 | |
Person / Time | |
---|---|
Site: | Catawba |
Issue date: | 07/31/1995 |
From: | Sill B DUKE POWER CO. |
To: | |
Shared Package | |
ML20117M776 | List: |
References | |
NUDOCS 9609180102 | |
Download: ML20117M802 (53) | |
Text
. _
1 4
i AT%CrfHDJT3 i
! t' a
l CATAWBA NUCLEAR STATION 1
STANDBY NUCLEAR SERVICE
! WATER POND ANALYSIS i
Ben L. Sill
. July,1995 k
4 a
9609100102 960910 PDR ADOCK 05000413 P PDR
i 4
i r
CATAWBA NUCLEAR STATION -
i-STANDBY NUCLEAR SERVICE WATER POND (SNSWP) ANALYSIS Ben L. Sill, Ph.D.*
j Alumni Distinguished Professor Clemson University, Clemson, SC l June,19'95 i
2 INTRODUCTION The purpose of this analysis and report is to assess the adequacy of the computer model
- currently employed by Duke Power Company in the analysis of a loss of coolant accident
- (LOCA) at the Catawba Nuclear Station. This is done by examining how the pond j - pedormed in a recent physical test as well as by critiquing Duke Power Company's
[
calculations and computer model. The combination of the computer model results with
] the physical test results provide ample evidence to assess de pedormance of the Catawba :
i- 1 SNSWP during a LOCA.
I f HISTORY l- Following meetings with Duke Power personnel, the list of questions below were drafted !
j - 1 to summarize the primay topics ofinterest. These are: :
l
- a. Is the information contained in the Ryan and Harleman (ref.1) reference with i regard to the analysis of cooling ponds, Froude number criteria, etc., applicable to i
the Catawba SNSWP7 i b. What is the applicability of- (i) a stratified model, (ii) a plug-flow model, (iii) a completely mixed model, or (iv) a " deep draft pond" model to the pond?
4.
I c. What is the upper limit (for Froude number) for which stratification will exist?
i j
i-
f
- d. During an actual LOCA, will the Catawba SNSWP remain stratified as the .j current computer model predicts? ;
- e. Is Duke's present withdrawal calculation acceptable?
l '
- f. Should a mixing routine be added at the discharge point to incorporate some initial mixing?
g.'Is the current model representative, or should a different model be used?
PHYSICAL TEST
- After initial discussions of the computer modeling effort at the Catawba' SNSWP, it was i learned that due to the SNSWP being aligned for cooling during a unit outage and )
1 associated RN valve work, it would be possible to conduct a prototype test in the pond. ;
i The use of the SNSWP as' a cooling reservoir during the time period allowed the j l
opportunity to perform physical testing to examine cooling effectiveness and stratification !
effects. This test would utilize approximately the same temperature rises (AT) as an actual -l l
LOCA,'with a somewhat smaller flow rate. ,In order to obtain the maximum information i
from this test, an all day meeting was held with Duke personnel, both at the Environmental l Laboratory and with station personnel at the Catawba SNSWP field site. It was decided l that in addition to monitoring the thermal plume and flow rates in the pond, a dye tracer would be added to the discharge to gather data on plume movement and stratification.
The dye is a conservative tracer, unlike the temperature which decreases due to surface
. losses, so that both methods have advantages.
2
The results of the Catawba SNSWP Physical Testing conducted during February,1995 have been reported and analyzed by Duke Power in reference 2. The analysis here will refer to various parts of this report, including figure numbers and tables.
ANALYSIS To facilitate the analysis of the SNSWP, the questions above will be addressed one at a time, with the same letter designation.
- a. Applicability of the Ryan and Harleman study (ref.1).
This work was completed by Pat Ryan in 1973, but is still one of the most comprehensive studies of cooling ponds and their behavior. It is built on Keith Stolzenbach's work (at M.I.T.) and the work of others which occurred in the 1960's and early '70's. This period was the height ofinterest in thermal discharges. Of the 149 items in the bibliography given in reference 1, more than 100 were dated during this period. ,
i Although the bulk of cooling pond research occurred in the 1960's and 1970's, carefully conducted studies are as valid now as they were then. It is these studies I
which have helped to successfully answer questions such as: "When will the entire surface of a cooling pond be effective in the cooling process?", or "What are the l l
conditions necessary for the formation of a cold water wedge?"
l I
e
/
y 3
1 l
l Over the twenty plus years which have elapsed since the publication of reference 1, many individual predictions have demonstrated the validity of the concepts l
embodied in the report. There is no reason to believe that the Ryan and Harleman !
study which serves are the basis for the Duke Power analysis of the Catawba ,
SNSWP willlead to erroneous predictions.
- b. What is the applicability of (i) a stratified model, (ii) a plug flow model, (iii) completely ;
mixed model, and (iv)" deep draft pond model" for this situation?
The physical test results (ref. 2) for both the dye tracer and for the temperature '
measurements indicate that the pond is stratified (see Figures 2, 5, 8, and 9, ref. 2).
Froude number calculations for conditions during the physical test verify that the pond should be stratified. Froude number calculations performed by Duke for a j LOCA also verify that the pond should be stratified.
Si'nce the pond is stratified, it is not possible to analyze it using a computer model based solely on plug flow ideas. It is also inappropriate to analyze the pond using l a continuous stirred reactor (or completely mixed) approach and these will not be discussed further. The model used must include the ability to handle the fact that the pond is stratified. ;
I e
4 ,
.i Three options for a computer model of the Catawba SNSWP are:
i) Present Duke model with horizontal layers i
i Heat Flux Out
! I Q* '
- !.p - _
i 1 - -
- o _._ __
- j. ~ - - - -- -_ --
Q, _ _ _
1 --
T i
ii) Deen cond model as dimiswd in ref 1 (a 2 laver moden.
Heat Flux Out a
Q l j 0
- g Im ---> ----s> D Qo__,,,,, I
\g T
0 jL $
(D -1)Q 0 i A i
5 i
and finally, iii) Fully three dimensional finite element model.
An advantage of the " horizontal layer" model over the deep pond model is that it provides much more venical detail. This detail is imponant when analyzing a lake which is not ofgreat depth, and yet is still definitely stratified. The Duke model utilizes 20 layers over a maximum depth of 31 feet, giving adequate vertical definition of temperature and density distributions.
l An advantage of the " deep pond" model is that it should apparently give a better analysis of the surface heat loss than the horizontal layer model. Upon closer examination however, this difference is not important. For the deep pond model, the temperature rise at the fanhest reach of the pond is AT% g = AT, exp(-KA, /pC,Q) (1) ,
This is the temperature of the water which would work its way toward the intake and be withdrawn as cooling water since it is the least buoyant.
For the current Duke model, which will be called the " layer" model, the temperature of the top layer, after cooling for a time ti is, AT, = AT, exp
-Kt' (2) ;
pC,d , i By comparing these two expressions, it is seen that AT ' KA , Q t,
% g = exp -1 -
(3) .
AT , pC,Q d A, ,,
. Now the temperature rise in each model will be the same if the argument in the f
exponent is zero, or if
\
6 l
d A
t, = (4)
Q I
The way in which ti si computed in the layer model is by determining the time required to fill the surface layer. This is the same as the time represented by equation (4). Consequently, the layer model produces the same temperature as j l
that in the deep pond model proposed by Ryan and Harleman, but the layer model )
provides much better detail of the vertical temperature structure in the pond since it is composed of many layers rather than just two as in the deep pond model.
Another reason to support the use of the layer model is that it provides a reasonably realistic description of the transport of fluid downward in the water
- column. The warm water rises to the surface, spreads over the pond surface, i
cools, ands then slowly is drawn downward by the discharge located in the deepest i
portion of the pond. The fact that this vertical movement occurs was verified by examining the movement of the dye during the physical test. As an example, both Figures 8 and 9 (reference 2) show that the maximum dye concentration moves downward in the water column over time. The layer model allows this movement to be tracked in a similar manner.
A fully three dimensional model can provide more detail than either of the above two models. However, for the Catawba SNSWP, the thermal structure varies
{ venically, but very little horizontally so that the need for such detail is minimal.
This was demonstrated by the February 1995, dye and temperature study, and by 7
l i
~
calculations of the appropriate Froude numbers at intake, discharge, and surface locations. For these reasons, a three dimensional model is not warranted.
Furthermore, the use of a three dimensional model requires many more input parameters than does a model such as the layer model. For example, for the layer model, only surface heat exchange coefficients and dilution factors are required, and these are easily computed or measured. However, for a three dimensional-model, at least three and up to six or more values of diffusivity are required for near field and far field conditions. There is substantial uncertainty in the values of these parameters so that calibration of the model requires much field data,'some of which could not be easily obtained without the occurrence of an actual LOCA. It is better to utilize a model such as the layer model which includes the most important features of the pond performance, and yet requires very few " free" coefficients.
As a final comment about these models, the term " deep drift pond" modelis not commonly used. A search of the Ryan and Harleman report (ref.1) was I
conducted and this term was not found. As a result, it may be that the NRC means something other than a deep pond model (as presented in ref.1) when they refer to a " deep draft pond" model in their review'of the Catawba SNSWP. If this is the case, any differences can be addressed after details of a " deep draft pond" model are communicated.
i l
8 i
1 i
i i
i
- c. What is the upper limit of Froude number for which stratification will exist?
One of the premier fluid mechanics journals is the Journal of Fluid Mechanics. In 1959, Ellison and Turner published a paper in this Journal titled, Turbulent '
Entrainment in Stratified Flows (ref. 3), which helps to address this question.
Their expc aental study of a two layer flow indicated that no mixing occurred I (i.e. the mixing entrainment coefficient was zero) for values of the Richardson number above 0.83. This translates into a Froude number of1.1, with the characteristic length, the thickness of the upper layer. Their tests also concluded ;
i that the entrainment coefficient is reduced to 5% of the non-stratified value at I
Froude numbers below about 2.
There are many other references which indicate that little or no mixing occurs for Froude numbers below a value of 1 (see comments in ref.1). Investigators such as Lofquist (ref. 4), Lean and Whillock (ref. 5), and Ellison and Turner mentioned above show that mixing is quite small when Fr < 1, even when the Reynolds l
number is above the critical value (i.e. in the turbulent range).
I The often quoted criteria is Fr = 0.7 for a cold water wedge to form. It is important to remember that this value was established for the movement of a heated discharge through a narrow channel (ref.1) in which the discharge covered the entire width. For this situation, when the Froude number is less than 0.7, the discharge will lift from the bottom and move forward on top of a cooler, lower 9
layer (generally termed a cold water wedge). When a heated efDuent is discharged into an open pond (eg, the Catawba SNSWP) without the restricting sides of a l l
channel, it is free to spread laterally to some extent, and the bottom of the I l
discharge rises from the pond bottom more easily than ifit were confined in a I channel. Thus for the Catawba SNSWP discharge geometry, a criteria of 0.7 is overly restrictive when evaluating plume behavior, and the discharge would be l
expected to rise to the surface for even larger values of the Froude number..
~ d. During an actual LOCA, will the Catawba SNSWP remain stratified as the current layer '
computer modelindicates?
When a LOCA occurred, the pond hypolimnetic water would be withdrawn and -
. after heat addition, the water would be discharged in the shallow ends of the lake, which after rising to the surface would begin to cool. As a result, in the early hours following a LOCA, the pond would certainly remain stratified. As stated j earlier, this is shown by: 1) Physical testing results (both from the dye and temperature tracers,2) Calculations of the Froude number and comparison with accepted criteria, 3) Results of the Duke layer model mns, and 4) The pond geometry with a " deep" intake and a " surface" discharge which physically )
separates the warm discharge from the cool intake, at least initially.
As time passes following the LOCA, the pond may destratify, depending on the heat rejection, the flow rates, the heat loss, and initial mixing that occurs in the ,
vicinity of the discharge. In fact, the computer simulation indicates that for a
}
10
-\
)
portion of the time following an accident, the pond is destratified. It should be remembered that as the pond begins to heat up after receiving the heated
- discharge, leading ultimately to an increase in intake temperature, the AT through the heat exchangers remains approximately constant so long as the heat load remains constant. This means that even as the overall pond temperature rises, the
- density differences which preserve the stratification tend to be maintained (both intake and discharge temperatures rise the same amount). Consequently, this i
effect tends to cause the pond to remain stratified longer than it would otherwise.
- e. Is Duke's present withdrawal calculation acceptable?
Thermal discharges and stratified flows are often associated with industrial
- facilities such as power plants which utilize the pond water (through an intake) add
~l heat, and discharge it to a pond. As a result, the performance ofintakes have been 1 studied extensively, particularly with respect to their ability to withdraw cool water - q from the hypolimnion without withdrawing warmer epilimnetic water. One of the classic studies of this situation was by Harleman at M.I.T. and Elder at T.V.A (ref.
6). Duke has utilized the criteria developed in this study as the basis for their i withdrawal performance. There are no indications that this criteria is unsatisfactoy so it is anticipated that the intake should perform as designed.
i Using a range ofinitial conditions, equilibrium withdrawal thicknesses computed using reference 6 can vay from about 6 feet to 12 feet. The fact that the surface I1
plume is located approximately 20 feet above the top of the intake indicates that the intake should perform well.
- f. Should a mixing routine be added at the discharge point to incorporate some initial mixing?
The amount ofinitial mixing that occurs can be determined from the physical test conducted in February of this year. There are several ways to do this, the most appropriate being those which utilize measurements which include dilution, and those which necessitate the fewest assumptions. ,
The most appropriate estimation of mixing is through the use of temperature measurements. By using measurements at the discharge, on the surface at a downstream location, and the intake temperature, the dilution can be determined directly. The basis for this is as follows:
- Energy conservation gives PQ6a C,(T,,-T.r)+PQ r C,(T -T,.c) = PQw C,(Tm - T,.r ) (5)
- The total flow rate in the plume after mixing is Qu =Q6.cn+Q. (6)
- Defining the dilution D, in the same manner as ref.1,
""+ *"
D:: "' = d" -
+1 @
Q6.ca Qdisch duch
- The above three equations (5,6, and 7) can be combined to yield D= d"** ~"'"
Tm (8)
-T.
12
The value ofTe from the results of the physical test is 49.5 'F at the pond surface, above the intake location. This however, is not the proper value to use, 1
since a simple calculation shows that the temperature will fall by between 4 and 5 F due to surface cooling between the discharge point, and station I where Te was measured. Thus the proper value to use is 53.5 to 54.5 F. Based on the physical test results, the other temperatures to be used in equation (8) are, hypolimnetic temperature: 43 'F discharge temperature: 60,65,59,62 *F 4 avg. discharge temperature: 61.5 "F l
These temperatures give a range of values for D of 1.61 to 1.76.
A second way in which the dilution can be determined is to use an expression in ref.1 (egn 6.37), which was established through numerous tests. This equation is,
. . v, D = 1.4 ](1 + Fr,2,) -
(9)
.b.
The ratio of h/b is the aspect ratio of the discharge, or the height to width ratio.
Note that since it is raised to a small power, changes in the aspect ratio are not too important. Additionally, if the Froude number of the discharge is small, change:
will not greatly affect the value of the dilution. Using an aspect ratio of 5 ft to 40 l
ft, and a discharge Froude number of 0.7, gives a value for D of 1.02. If the Froude number were changed to 1, and the aspect ratio were doubled, the value of D would change from 1.02 to 1.41. It certainly seems reasonable, based on the i
e 13 ,
i
physical test results and on the equation recommended by Ryan and Harleman, that a value for D of 8 would be conservative.
One way in which to put dilution into a computer model is to add a near field mixing algorithm. This allows the dilution to be computed as a function of !
distance from the discharge (largest at the discharge point, and dropping to a very small value as the distance increases. For this to be effective, detail regarding the ,
near field geomety would need to be included. Since the SNSWP discharges are in the shallow portions of the pond, the water available for mixing comes from near the surface (five feet depth or ?:ss). A simpler way in which to incorporate the effects of mixing is to use a two two stage pond ~model as suggested in reference 1 for situations in which the pond shape confines eddies generated by the inflow. This model combines a small" fully mixed area" followed by a " plug flow" analysis.
For the Duke " layer" model, this algorithm or one similar could be incorporated to include the effects of pond geomety and mixing on the discharge. It is not readily obvious that this change needs to be incorporated. Several simple calculations show the following:
- 1. Let Case A be where the surface layer is filled, allowed to cool as described earlier, and then mixed with the second layer below. Let Case B be where the 14-
surface layer is filled, mixed with the layer below, and the layer of double thickness l is allowed to cool. The resulting temperature in these two cases is nearly the same for a wide variation in initial conditions.
- 2. Let Case C be where the surface layer is filled, mixed with 80% of the second -
layer, and then allowed to cool. This thickened layer is then mixed with the remaining 20% of the lower layer. The temperature resulting in Case C is almost exactly the same as that obtained in Case B above.
- 3. Using the Two Stage model of reference 1 mentioned above, the temperatures obtained for a straightforward plug flow analysis for the surface layer (which the Duke layer model effectively uses) and a two stage model in which 5 acres are assumed to be fully mixed (thus incorporating mixing), are essentially identical.
These different ways oflooking at the initial dilution suggest that for the situation at the Catawba SNSWP, results will not be substantially different from the present Duke results. Detailed calculations with the type of modifications suggested, would quantify the effect of mixing in the vicinity of the outfall.
l l1 We can also use the presence of dilution to determine an extreme upper limit on the rate at which hypolimnetic water is used. Although Froude number calculations and the.results of the physical test indicate that the pond will remain 15 j
l!
stratified, at least for the first portion of the period following a LOCA, we might assume that the water for dilution comes from the bottom of the pond and thus l increases the rate at which the hypolimnion is depleted. This is not possible due to the fact that the outfall is in shallow water, but making such an assumption would give an extreme lower bound on the time until we expect to see any substantial change in intake temperature. The time required to circulate the entire pond with no mixing is, V
t,(days)= g (acre- ft) 0.5 (10)
Q(cfs)
The pond volume is 434 acre-ft, and the discharge flow is 102.5 cfs for the first 4 .
~ hours and 51.25 thereafter. Using a conservative " average" flow of 60 cfs with the above volume, gives a recirculation time of 3.6 days, or about 87 hours0.00101 days <br />0.0242 hours <br />1.438492e-4 weeks <br />3.31035e-5 months <br />. If there is initial mixing, and assuming that all the water used for mixing comes from i
, the pond bottom, the expression becomes, :
1 l
i
'0.5" t,(days)= ~Vu (acre- ft)' -
- . Q(cfs) ,.D.
If a conservative dilution of 1.8 is assumed, the recirculation time would be 2 days.
! 1 Consequently, even with a conservative (large) value ofinitial mixing included, the j time to recirculate the entire pond volume would be 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br />, or nearly 4 times the I minimum of 12.5 hours5.787037e-5 days <br />0.00139 hours <br />8.267196e-6 weeks <br />1.9025e-6 months <br /> for the "no increase in temperature" requirement of the Catawba FSAR.
j '
16 1
o i=
i A second question which arises concerning mixing in the vicinity of the discharge .
__ is whether the values obtained from the physical test would be valid in an actual 1-4 . .
- LOCA when the flow rates were higher. This question can be answered easily by
- resorting to standard analyses for the mixing of two dimensional turbulentjets.
I 1-As a turbulent discharge moves away from the discharge point, it mixes with I - ambient fluid in what is termed the "near field" when shear stresses are generated by the velocity of the discharge. The flow rate in such a discharge is thus a i
combination of the original discharge fluid and that which is entrained from the surrounding water. Since entrainment occurs continuously as the discharge moves along,' the flow rate continues to increase for some distance as a result of this
~
mixing. For a two dimensionaljet, the flow rate in thejet as a function of distance
' downstream is given by, Qu=Qw 1+c , (11)
< as where bo is the initial half width of the discharge. At some distance downstream, the mixing effectively ceases.= This distance is dependent on the initial size of the discharge, so that the term in brackets in equation (11) remains approximately constant, and the total flow rate at the end of shear induced mixing is approximately proportional to the discharge flow rate. Consequently, the ratio of 17
l the total flow rate to the initial flow rate does not depend on the initial flow rate.
This means that the ratio Qw to Q4;,4 is constant, say k, or -
l 1
b =k=D (12)
Qu We thus conclude that the value ofD established during the physical test at the Catawba SNSWP is valid for the reduced flow rate of the test, and can also be used to represent initial dilution for the higher flow rates of an actual LOCA simulation.
Thus, in answering this question regarding mixing of the discharge with ambient fluid, I would recommend including this mixing in the Duke layer model. This must be done in a manner which is sensitive to the limitations placed by the outfall geometry.
CONCLUSIONS From all the evidence available, including computer modeling, a prototype physical test, and computations ofimportant parameters governing pond performance, the !
l Catawba SNSWP should perform as required in the handling of a LOCA. Specific conclusions are listed below:
- 1. The computer model employed in the analysis is adequate to analyze pond L
i i l performance. It provides the capability of a stratified pond, and variable heat ;
i loading. The cooling time utilized for the upper layer yields the same temperature l l
18 l
l
a l
i as that obtained when using a two layer, deep pond model. The layers in the Duke ;
l model are mixed appropriately to prevent unstable situations.' Examination of a j
\
previous sensitivity analysis of this model has shown that the results change very j
little with the number oflayers for total of 20 layers or more.
- 2. The physical test clearly indicated that the pond would stratify upon the initiation of a thermal discharge. The test included two adverse situations: a) a prevailing wind which opposed the movement of the surface layer to the long arm l
- of the lake, and b) heated discharge from the short arm (or near) discharge point j only. Despite these two conditions, the pond performed as predicted. Analysis of-
- l. the physical test data indicates that there is some mixing in the vicinity of the outfall. This mixing did not affect the movement of the plume to the surface or its movement over the entire surface of the pond for cooling. To be more realistic, 1 '
1 l_ the Duke layer model should be modified to include some initial _ mixing of the j discharge. l i
i
- 3. Review of the criteria contained in ref.1, along with the results from other .;
studies, indicate that the approach Duke Power has used is consistent with good -
!. practice and should be representative of actual conditions which might occur ;
. i during a LOCA. This is particularly true when it is realized that the modeling {
- 1. conditions utilized conservative assumptions at every turn.
i ,
i 19 i
- - -- -. - - . . - .. .~-. - - ..~.- .. . . -
i
[ NOMENCLATURE j i
A,- . total pond area .
)
,. b initial discharge dimension (horizontal) - i c ~ constant in mixing equation (approximately 0.2)
C, specific heat of water ,
- d. depth D dilution Fr - Froude number
(~ - h. initial discharge dimension (vertical)
L K surface heat exchange coefficient t time i
.Q volumetric flow rate V volume x distance from outfall l AT temperature difference (from equilibrium temperature) i p mass density of water l
i REFERENCES 1.Ryan, P.J., and D.R.F. Harleman, An Analytical and Experimental Study of
[ Transient Cooling Pond Behavior, rpt.161, Dept. of Civil Engineering, M.LT., .
L Cambridge, Mass., January,1973.
- 2. Catawba Standby Nuclear Service Water Pond Physical Testing Conducted ' l During February,1995, Duke Power Co., Environmental Engineering Report.
( :
l 3. Ellison, T.H., and J.S. Turner, Turbulent Entrainment in Stratified Flows, J. !
j Fluid Mech., v.6, pan 3, Oct.,1959.
l ' 4. Lofquist, K., Flow and Stress Near the Interface Between Stratified Liquids, !
The Physics ofFluids, v.3, no.2, March-April,1960. !
- 5. Lean, G.H. and A.Z. Whillock, The Behavior of a Warm Water Layer Flowing L over Still Water, IAHR, lith Congress, Leningrad,1965. ;
I
- 6. Harleman, D.R.F. and R.A. Elder, Withdrawal from Two Layer Stratified Flows,
. Proc. ASCE, HY 4, v. 91, July,1965.
^
l l
6 I
i~
i 7
. i i
20 l
i ATTACHMENT 4
AthC(D W T 4 4EmAot.mtcAL ZATA W. CATAeBA- VS CHAc67tg upgr DATE- ! TIME l CNS T(F) l CNS Td (F) !CLT T (F) (CLTTdew(M! ;
950630! 1001 70.9 1 70.2 1 68: 67) !
950630l 200 70.3 69.6 1 69 68! ,,
300 70.0 950_63_0j 69.1 68 68! ! !
950630 400 70.0 68.9 67- 67 l 950630 500 69.6 950630 600 69.1 68.9 68.5 68 69 68 68 J
l ! '
9506301 700 69.1 68.9 70 68 l 950630 800l 69.4 69.3 71 I '[- 1 68l 950630! 900l 69.8 69.3 73 68i ! I '
950630) 1000 70.7 69.1 75 6 81 i 950630j 1100 71.6 69.3 75 69) !
950630! 1200! 72.7 69.1 78 68' 950630i 1300! 75.7 69.1 81 67
~ 950630] 1400! 78.4 68.9 80) 67 ! j 950630 1500 80.4 68.2 BOI 66' l 950630 1600 79.9 68.7 79' 69l j 950630, 1700 79.3 69.4 79 701 950630i 1800 79.2 69.8 79 68 9506301 1900 79.7 70.0 78 69 950630l 2000 79.0 70.3 77 69 950630; 2100. 78.3 71.6 76 70 950630i 2200l 77.2 72.9 75 71 l 950630l 2300l 75.6 73.0 74 71 950630l 2400: 74.5 72.7 73 71 i@ 100) 74.1 70.7 73 70 f507011 200j 73.6 70.3 71 69 ~
950701! 300l 72.7 70.2 71 69 ~
950701i 4001 71.1 69.4 70' 69 950701i 500l 70.3 68.7 69 68 Ji 950701i 600: 70.0 68.4 70 68
[950701 700; 69.8 68.2 71 68 i
_950701 800l 69.8 68.2 l 72 69 l 950701' 9001 70.7 68.5 1 74 69 950701I 1000i 72.9 l 69.1 [ 77 68
_ 950701! 11001 75.7 { 69.3 ! 78 68 9_50701! 1200 76.8 i 68.4 79 68 950_701! 1300 77.9 i 67.3 80 67
_950701] 1400l 78.4 l 68.5 { 81 68 _
_950701: 1500) 79.7 69.3 83 67 i
_9507011 1600! 81.5 68.2 84 66 ;
950701! 17001 82.0 68.5 I 69 66. i 950701j 1800i 75.0 67.8 69 68
_ 9_5070'il 190]0 68.9 67.6 69 68
_950701' 2000l 69.3 ! 67.6 69 68 950701 2100 70.2 i 68.5 70 68 950701 2200 69.3 68.7 69 67 9507011 2300; 68.9 68.5 681 68 950701! 2400! 68.0 : 68.0 681 68 ;
_950702l 1005 67.5 l 67.5 l 67l 67 l 950702l 200! 66.9 I 66.9 i 671 671 I Page 1
l l
4 DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T(F) !CLT Tdow(F)l {
950702 300 66.7 66.7 66 66!
950702 400 66.9' 66.6 66 66j i 950702 500 66.7 66.4 66 66 !
950702 600 66.4 66.0 66 65 l
. 950702 700 67.3 66.2 681 65 l 950702 800 67.6 66.6 70 65 4
950702 900 70.2 66.6 74 63 950702 1000 72.3 64.6 75 64 950702 1100 73.9 64.6 79 63 950702 1200 76.1 62.8 79 62 950702 _
1300 77.7 59.4 80 63
_ 950702J 1400 79.0 61.0 82 63 j 950702' 1500 80.6 62.6 82 63 950702 1600 81.9 64.0 ~83 63 950702 1700 82.2 64.9 82 63 950702 1800 83.5 65.8 81 63 950702 1900 82.0 66.4 81 64 950702 2000 80.8 67.1 81 64 950702 2100 79.7 68.0 76 66 950702 2200 79.2 67.8 76 66 950702 2300 78.3 68.2 76 66 950702 2400 77.2 68.0 71 68 950703! 100 75.6 69.1 70 69 950703) 200 75.7 68.7 69 69 950703! 300! 73.8 70.0 69 68 950703! 400! 71.8 70.2 68 68^
950703! 500 70.9 69.6 68 67 950703j 600 70.5 69.3 67 67 i 950703! 700 70.2 69.3 69 68 950703! 800 70.7 69.6 72 70 I 950703] 900 72.0 70.2 74 68
_950703l 1000l 72.9 70.3 76 69 950703! 1100! 74.3 70.2 78 69 9507031 1200! 78.1 i 70.3 80 70 950703l 1300j_
80.1 70.3 81 69 950703, 1400l 81.3 69.8 82 68
_950703i 1500! 82.8 69.6 84 68 950703l 1600 83.8 68.7 84 68 950703l 1700 84.4 I 67.3 84. 67 950703l 1800 84.7 65.8 84 66
__9507031 1900 84.6 66.2 81 691 950703l 20001 81.0 68.7 77 69 950703! 2100! 75.7 65.8 74 65 950703! 22001 75.0 67.3 75 65 950703l 2300; 73.6 68.5 71 66 950703i 2400! 72.7 68.9 721 67 950704! 100! 72.7 69.1 l- 71~ 66 950704! 200! 72.7 !
69.1 i 70 67 950704! 300l 72.1 69.3 70 67 950704! 4001 70.9 69.8 69. 68 Page 2
DATE- l TIME l CNS T(F) l CNS Td (F) !CLT T(F) !CLT Tdow(F)l l I 950704 500l 69.6 I 69.6 68 68l l l
950704 600l 68.9 68.9 68! 68 l l 950704 700 68.9 68.9 69 69 t !
950704 800 68.9 68.9 70 69 950704 900 69.3 69.3 71 66 950704 1000 -70.2 70.0 73 69 950704 1100- 71.2 70.7 75 70 950704 1200 74.1 71.1 79 69 950704 1300 77.4- 70.2 79 69 950704 1400 79.9 70.0 81 69 )
950704 1500 81.5 ~ 69.8 84 69 '
950704 1600 82.6 69.1 82 67 j 950704 1700 83.3 69.8- 82) 67 !
950704 1800 82.4 70.3 83 69 [
950704 1900 83.1 70.7 81 67 950704 2000! 82.6 70.9 78 69 -
950704 2100 81.1 71.6 77 70 950704 2200- 79.2 73.8 76 70 950704 2300 79.0 73.6 75 70 950704 2400 78.3 72.0 75 71 4 950705 100 76.6 73.9 73 71 950705 200 75.9 73.4 73 71 i 950705 300 75.4 73.6 72 71 l 950705 400 74.7 72.7 72 70 I 950705 500 ;
73.8 73.2 71 70 l
950705) 600! 73.0 72.5 71 69 l
_ 9_50705i 700! 72.1 71.6 74 70 950705l 800 72.7 72.1 77 71 l 950705l 900 74.5 72.9 81 70 l 950705i 1000 75.7 73.0 85 68 1 9507051 1100 3 81.7 69.8 85 69i 950705 1200! 84.2 69.3 87 69 i
_ 9_50705, 1300i 86.0 69.4 88 69 950705! 1400! 87.1 69.3 88 70 950705! 1500! 88.3 69.1 89 70'
_ 950_705 1600! 89.2 68.4 90; 69 950705. 1700i 89.6 67.3 89! 69 950705' 18001 89.8 68.5 88 71
_950705 1900) 88.7 69.8 87 69
-950705_ 2000! 88.2 70.7 851 71 950705l' 2100! 84.9 73.8 82I 72 ,
_950705) 2200 82.2 75.2 81l 72 l 950705! 2300 81.1 74.1 80! 73 950705! 2400l 79.9 74.3 78j 73 950706: 1001 79.3 73.2 78! 72 950706I 206i 78.6 73.0 i 77l 72 j i
950706 3001 77.5 73.4 I 76I 72 950706 400i 76.8 72.7 i 75 72 950706 500! 76.6 72.9 75 72 950706 600I 76.5 72.9 75 72 Page 3
DATE- ITIME I CNS T(F) l CNS Td (F) ICLT T(F) lCLT Tdow(F)l i i 950706 700 -75.9 73.2 75! 73 '
950706 800 75.9 73.4 78~ 73 I 950706 900 77.9 73.8 81 74 950706 1000 80.6 73.9 84 74 950706 1100 83.3 73.9 87 72 950706 1200 86.2 72.9 87 71 950706 1300 86.7 72.1 87 71 950706 1400 86.9 71.4 88 72 950706 1500 86.7 70.9 88 69 ~
950706 1600 88.2 69.6 90 64 !
950706 1700 88.5 67.5 88 68 950706 1800 87.6 68.9 87 69 950706 1900 87.4 68.5 83 69 950706 2000 85.1 71.1 80 69 950706 2100 81.7 70.7 78 68 950706 2200 79.7 70.3 77 69 950706 2300 78.4 70.2 73 66 950706 2400 77.2 68.2 72 66 950707 100 75.7 68.5 71 67 950707 20 ') 73.8 69.6 70 67
_950707 300 71.8 69.4 69 66 950707 400 70.3 68.2 68 66 950707 500 69.4 67.6 67 66 950707 600- bS.9 67.1 68 66 950707' 700 68.5 67.6 68 67 950707 800! 69.6 68.7 69 67 950707 900l 70.9 68.5 72 68 950707 1000l 71.2 68.9- 74 69 950707 1100l 72.0 69.1 76 69 950707 120j0 74.5 69.4 80 69
_ 9507071 1300' 77.7 69.3 86 68 EP07j 1400 80.6 67.5 86 68 950707l 1500 82.9 67.5 85 66 950707i 1600; 84.7 67.5 86 66 950707i 1700l 85.8 66.6 84 65 950707 1800i 85.8 66.0 85 64 950707 1900 85.3 66.6 83 65
_9507071 2000 84.0 68.5 82 65 950707j 2100 82.0 69.3 77 68 950707! 2200 81.1 69.4 77 68 950707! 2300i 79.2 i 70.5~ 76 68 950707} 2400) 77.4 69.1 76 68 950708 100 75.6 66.7 73 67 950708 200 73.4 67.3 72 64 950708 300 72.7 66.9 71 63 950708 400 72.3 66.2 70 59 950708 500, 70.3 65.3 70 59 950708) 600l 69.4 64.0 69! 60 950708i 700l 68.7 03.5 71 60 9507081 800! 69.8 64.0 74 60 Page 4
DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F)l { {
950708l 900 72.7 65.1 i 74l 60l 9507081 1000 75.2 63.0 l 80! 601 950708 1100 78.1 59.9 I 81 56 ;
950708 1200 79.5 57.7 83 57 l 950708, 1300 80.1 59.4 84 59 9507081 1400 82.2 60.6 84 60 950708 1500 83.1 60.6 85 62 950708 1600 84.0 61.9 85 60 950708 1700 84.2 60.6 85 57 l 950708 1800 84.6 59.9 84 57 950708 1900 84.6 60.3 83 56 950708 2000 83.8 57.6 80 58 950708l 2100 80.8 63.1 78 59 950708l 2200 75.9 69.3 76 60 950708 2300 75.2 65.5 76 60,
_950708 2400 73.6 65.3 73 61 950709 100 72.1 65.7 72 59 950709 200 71.1 64.0 72 56 950709 300 71.4 62.8 70 54 950709 400J 70.3 62.1 68 54 950709 500 71.4 59.0 67 55 950709 600 71.2 56.5 66 55 -
950709j 700 , 69.4 57.7 68 56 9507091 800 68.4 57.6 71 57 950709' 900 70.2 57.0 73 59 950709 1000 72.7 58.6 77 58 950709l 1100 75.0 59.0 78 58
_950709l 1200I 77.2 59.7 81 60 9507091 1300l 78.4 60.8 82 61 950709i 1400i 80.2 62.1 82 62 9507091 1500! 82.0 63.1 83 63 950709i 1600) 82.9 63.1 84 63 9507091 1700! 83.8 64.4 83 64 950709l 1800l 83.1 64.6 81 62
-950709! 1900! 82.9 64.9 ! 811 65 950709i 2000j 82.4 65.1 ! 77l 66
__9_50709: 2100! 81.3 i 65.3 76J 65 2200! 79.2 67.3 74 66
_ 950709! !
950709 2300l 77.7 67.6 75 66
[950709 24001 76.3 67.5 73 66 950710) 100l 75.6 67.8 72! 66 950710l 200l 74.8 67.3 72i 66 _
950710! 300! 74.5 67.8 72i 66 950710l 400I 74.5 67.6 70l 66 950710 500l 72.9 68.0 68' 65 950710 600 70.5 68.4 69 65 9507102 700 69.3 67.8 70 66 950710! 800. 68.7 67.3 74 67 95071% 900 72.3 I 67.6 78I 68 9507101 1000. 74.3 I 68.2 811 69 Pay 5
i DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F)l l l 950710i 1100 77.0 68.4 85l 691 !
)
950710! 1200 79.7 66.7 86' 67 950710i 1300 82.8 66.6 85 66 -
950710l 1400 85.3 64.6 - 87 65 950710l 1500 87.3 64.8 89 67 i
._950710l 1600 88.2 63.3 90 67 l l 950710 1700 89.1 63.0 88 67 l 950710 1800 88.7 63.7 87 66 l 950710 1900 88.2 63.5 84 68 950710 2000 86.4- 64.6 82 68 950710 2100 83.3 71.6 80 68 950710 2200 82.2 69.8 80 68 950710 2300 81.5 70.0 78 68 950710 2400 79.2 71.4 77 70 950711 1001 78.1 71.6 76 71 950711 200 77.5 72.1 75 71 950711 300 76.5 72.1 74 71 950711 400 75.7 71.8 73 71
_950711 500 74.7 71.6 73 71 950711 600 74.1 71.4 74 71 950711 700 73.8 71.2 75 71 950711 800 = 75.2 70.9 78 70 950711 900 76.6 70.9 82 69 950711 1000 79.2 70.9 83 68 950711 1100 82.0- 69.6 87 66 950711 1200 84.7 68.7 89 65 950711 1300! 85.8 67.8 89 67 950711 1400! 87.4 66.9 89 65
_950711 1500! 88.5 64.9 90 64 950711 1600j 89.6 65.5 89 63 950713 1700! 89.8 62.8 90 61
~550711l 1800l 89.2 61.9 90 63
-9507111 1900l 89.1 62.2 87 61 !
[956711! 2000' 88.0 64.2 82 65 l' 950711j 2100 86.0 65.3 l 82 66 950711! 2200 83.7- 67.5 79 66 9507111 2300 81.3 68.2 78 67' 950711l' 2400 79.0 71.4 77 68 350712i 100 77.4 70.9 75 70 950712! 200 76.3 70.9 74 71 9507121 300 74.3 71.1 73 70 i 950712I 400 73.8 71.4 75 70
-9507121 500 72.9 71.2 73 70 950712 600 72.9 70.3 74 69 950712 700 72.9 70.3 75 70 950712 800 73.6' 70.3 79 71 9507121 900 76.1 70.9 84 71 1950712! 1000i 79.3 i 71.2 871 70 950712 1100 82.8 71.6 89) 65 950712 1200 85.3 67.6 90i 65 Page 6
DATE- l TIME l CNS T(F) l CNS Td (F) !CLT T(F) ICLT Tdow(F)l l 950712 13001 86.9 66.7 92 661 i 950712 1400 88.3 66.7 89 67 i 950712 1500 88.3 67.1 91 68 i 950712 1600 87.6 68.0 90 67 950712 1700 87.4 67.1 89 66 950712 1800 87.6 66.6 88 66 950712 1900 87.3 66.6 86 65 950712 2000 85.5 66.9 82 64 950712 2100 83.8 66.9 81 65 950712 2200 82.9 - 66.9 79 66 950712 2300 80.1 68.2 78 68 I
_950712 2400 78.1 69.4 76 68 -l 950713- 100 76.3 70.7 74 68 l 950713 200 75.0 71.1 73 68 l 950713 300 74.1 71.1 72 68 l l 950713 400 73.6 70.5 72 68 950713l 500, 73.2 70.2 71 68 950713 600 71.6 69.3 71 68 950713 700 71.1 68.7 73 69 950713 800 72.3 69.3 77 69 950713 900 75.6 71.1 81 69 950713! 1000 77.5 71.1 83 69 950713l 11001 79.0 70.7 86 67 i 950713i 1200! 81.5 70.5 88 68 950713} 1300l 84.6 69.8 88 67 l 950713l 14001 85.6 68.0 90 66 950713! 1500l 87.1 65.8 89 65 950713' 1600 i 87.4 65.8 89 64
[950713 1700 87.4 65.7 88 64 950713, 1800; 87.1 63.7 87 64 ,
950713l 1900! 86.9 64.0 84 67 l 950713i 2000: 85.3 67.5 81 66 950713l 2100l 83.5 67.3 78 66 950713! 2200i 82.0 66.9 78! 67 I
95071 f 2300l 79.3 i 68.2 76 67 950713 2400! 77.4 69.8 74 67 950714 100! 75.9 70.7 73 66 950714, 2001 73.8 69.4 71 66
]S0714! 30]0 73.0 67.5 71 66 950714! 400l 72.3 68.7 l 71 66 950714 500l 70.5 69.1 1 70! 65 950714 600 69.6 68.7 69! 65 950714 700 69.6 69.1 70' 67 950714 800 69.8 69.4 74 69 ;
_950714 900 73.4 70.3 791 70 950714j 1000. 77.7 71.6 82j 68
_950714l 11001 80.4 71.1 84l 67
_9507141 1200j 82.9 68.2 87! 65 950714! 13001 -83.3 67.1 87l 64 950714i 14001 85.6 64.2 90: 64 Page 7
DATE- l TIME l CNS T(F) l CNS Td (F) ICLT T (F) ICLT Tdow(F) { ! !
950714 1500 88.0 ! 60.6 l 92! '
64l l _
950714 1600 89.6 63.7 91 64! l l ,
950714 1700 89.8 66.0 91 63l l l 950714 1800 89.4 66.0 90 631 l l
950714 1900. 89.6 63.0 .
87 63 ! !
950714 2000 88.5 65.7 l 83 65 j l
950714 2100 85.5 69.1 81 67 !
950714. 2200 82.2 72.7 79 68 ! :
950714 950714 2300 2400 80.6 78.4 l
l 72.9 73.6 77 76 70 71 I l j I 9507151 100 76.6 73.0 75 71 l 950715i 200 75.0 73.2 74 71 950715 300 73.9 72.5 73 71 i 950715 400 73.8 73.0 73 71 950715 500 73.2 73.0 73 71 950715 600 72.7 72.7 71 71 _
950715 700 72.5 72.5 74 72 950715 800 73.0 72.7 77 73 -
950715 900 74.7 73.2 82 73 950715 1000 77.9 73.8 84 73 950715a 1100 81.3 73.6 86 73 950715 1200 84.0 72.9 89 70 950715 1300i 85.6 72.5 90 70 950715! 1400 87.8 70.5 89 70 1 950715l 1500 88.7 70.3 93 71 950715! 1600 90.7 70.0 91 69 950715l 1700 91.6 70.0 92 70 950715! 1800l 92.1 ! 70.2 90 701 9507151- 1900! 91.6 ! 69.6 89 69j ,
950715! 2000! 90.7 68.0 87 69l I l 950715! 2100! 87.8 71.4 85 71 950715i 2200 I 84.2 75.6 82; 71 950715! 2300l 81.5 77.9 81i 71 950715l 240]0 80.2 75.4 79 71 950716' 100! 79.5 ! 73.8 78 71 950716! 200! 79.0 73.0 77 71 950716 300( 77.4 73.8 76 71 _
950716, 4001 77.0 72.5 75 71 950716! 500l 76.1 72.0 74 71 950716i 600) 75.4 72.7 74 71 950716: 700I 74.1 72.7 76 73 950716 800! 74.3 72.1 80; 72 -
950716 900j 76.5 73.0 85 73
_950716f 1000l 80.2 73.9 88 72 950716i 1100! 85.1 73.8 901 71!
950716l 1200l 87.1 73.6 92 70 i 950716l 1300l 88.9 i 71.6 ! 94 72 950716' 1400! 90.3 70.9 92j 71 950716 1500l 92.5 71.6 i 78l 72 !
950716 1600i 93.4 72.3 i 78i 69 l !
Page 8
1 1
} 950716j 1700 88.5 l 71.8 73! 70 !
- 950716 1800 77.9 73.0 73i 71 l 950716 1900 75.0 72.3 72~ 72
! 950716 2000 74.8 72.1 73 72 950716 2100 73.2 72.9 72 72
- 950716 2200 72.7 72.7 72 71 i
950716 2300 73.0 73.0 72 71 j 950716 2400 72.0 72.0 71 70
- 950717 100 71.6 71.6 71 -
70
- ~'
950717 200 71.6 71.6 71 70
, 950717 300 71.8 71.8 71 70 i 950717 400 72.1 72.1 71 70
- 950717 500 71.8 71.8 71 70 -
l 950717 600 70.7 71.2 70 70
! 950717 700 70.3 71.4 70 69
! 950717 800 70.5 73 71
- 950717 900 79 71 950717 1000 81 71 i 950717 1100 85 71
} 950717 1200 87 70
- 950717 1300 87 71
) 9507171 1400 91 68 j 950717!- 1500 87.8 68.4 89 70 4
_950717 1600 89.2 68.4 90 71 950717 1700 89.6 68.5 90 70 950717- 1800 89.2 70.0 89 69 950717 1900 89.2 69.8 87 70 950717 2000 88.0 70.5 85 71 950717! 2100 85.5 72.7 83 71 950717[ 2200l 84.4 1 71.4 82 71 950717 2300l 82.2 74.7 81 73 950717 24001 80.4 74.5 79 73 950718! 100I 78.8 73.8 78 73 950718! 200} 78.1 73.4 76 73 950718' 300 77.5 73.8 76 73 950718 400 76.5 73.2 75 72
_ 9_50718, 500' 75.2 72.5 75 71 950718! 600 74.5 72.5 74 71 950718! 700 ;
74.3 72.7 75 72 l 950718! 800! 74.3 72.0 79 71
_ 950718i 900] 77.7 71.4 82 70 950718 1000) 80.6 70.2 85 71 950718 1100 82.8 70.7 88 72 950718 1200 84.7 70.3 87 73
_950718 1300 86.7 70.2 87 71
_ 9_50718 1400 88.0 70.2 90 68 950718 1500 88.9 I 69.3 89 68 950718! 1600 89.8 68.9 89 69 950718T 1700 89.8 69.1 90 70 i 950718! 1800 90.1 1 68.7 90 68 l
Page 9 1
l l
. DATE- l TIME I CNS T(F) l CNS Td (F) lCLT T (F) ICLT Tdew(F)l ! I 9507181 1900! 90.1 1 68.7 I 88; 671 i i 950718 2000 89.2 70.3 83! 72 i '
l 950718 2100 84.4 74.1 80} 72 j l 950718 2200 80.1 73.8 78 72 l 950718f 2300 77.7 73.0 76 72J __
l 950718} 2400 76.6 71.8 76 70' i 950719i 100 75.0 70.7 751 70 i 950719! 200 73.8 70.2 74l 70 i ~
4 950719l 300 73.6 70.7 73! 70 I i
]
~
950719! 400 73.4 70.3 72' 69' [
950719 500 72.7 70.5 73 70 I 950719 600 72.1 70.2 74 65 j 950719L_, 700 72.7 70.2 74 65 I -
950719i 800 73.8 69.4 77 65 1 950719l 900 77.7 67.8 81 63 950719 1000 79.9 67.5 84 62 950719 11001 82.9 63.3 85 61 950719 1200 85.1 61.3 l 87 62 950719 1300 85.6 61.5 88 63 950719 1400 87.1 63.3 90 63 350719l 1500 87.8 63.5 88 62 950719] 1600- 87.8 64.8 89 63 l 950719j 1703 87.3 66.0 88 66 950719l 1800j 87.4 66.6 86 66 950719j 1900' 87.4 67.6 86 67 I 950719l 2000 86.5 67.8 82; 67
, 950719! 2100j 84.7 68.2 80l 67' i 950719l 2200j 81.9 70.9 78] 67 950719i 2300! 80.8 70.3 77i 68
_ 950719l 2400j 80.1 69.3 76j 67 950720; 100' 79.9 68.5 i 76! 67 950720! 200 78.4 69.3 j 75l 68 9507201 300l 77.5 70.0 l 75J 67
- _950720; 400 76.5 70.3 I 74 67 950720! 500 75.7 70.0 i 73 67 4
950720! 600l 75.2 l 70.9 73I 68 950720! 700i 74.3 71.4 74I 69 950720I 800! 74.7 71.6 I 76! 70 950720 900! 76.5 73.6 i 79I 73 950720! 1000i 79.9 74.5 I 80! 74 950720! 1100l 81.1 74.8 l 77 73 950720! 1200 76.1 73.2 l 75 72 950720) 1300 73.6 73.4 ! 77 72 '
950720 1400 77.0 74.1 i 82 73 950720: 1500; 81.7 75.0 86 73 950720l 1600) 84.9 76.1 88 73 950720J 1700j 85.3 76.6 86 4 731 950720: 1800! 84.6 ! 76.3 y 85! 75 _
19_50720j 1900l 81.0 i 78.1 ! 83 74
. 950720; 2000! 80.2 l 77.9 i 81 74 Page 10 a
1 DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F)l 950720 2100 79.0 75.9 80' 74 950720 2200 77.9 75.7 78 73 950720 2300 77.0 75.0 77 73 950720 -2400 76.5 - 74.7 76 73
- 950721 100 77.0 73.8 77 73 950721 200 76.8 74.3 77 74 950721 300 77.0 75.2 77 74 950721 400 76.1 74.8 76 73 950721 500 75.7 74.1 75 72 950721 -600 75.6 73.2' 75 72 950721 700 74.8 73.2 75 73 950721 800 75.6 73.9 78 74 i 950721 900 77.7 74.8 80 74 l
950721 1000 79.5 75.4 82 76 950721 1100 80.8 75.6 86 76 q l950721 '1200 -83.3 75.9 86 75 i 950721 1300 84.9 75.7 88 74 !
950721 1400 87.6 75.9 90 72 950721 1500 89.2 73.8 91 71 950721 1600 90.7 72.5 88 72 I 950721 1700 91.4 71.6- 77 71 950721 1800 87.3 71.8 81 73 950721 1900 82.4 71.1 78 73
_ 950721 2000 82.0 73.2 74 73 ;
_950721 2100 79.9 74.5 75 74 950721 2200 77.2 74.3 75 74 950721 2300 76.5 74.7 74 73
~~950721 2400 76.8 75.0 74 73 i 950722 100 76.1 74.8 73 73 I 950722l -200 75.6 74.8 73 73 j 950722' 300 75.4 75.2 73 73 l 950722 400 74.7 74.7 73 72 950722 500! 73.8- 73.8 74 73
_,950722i 6001 73.4 73.4 73 73 9507221 7001 73.6 73.6 74 73 i 950722- 800 73.2 73.2 74 73
__950722 -
900 73.8 73.8 -79 74 950722 1000 75.9 73.9 82 74 950722 1100 80.6 73.4 87 73 950722 1200 83.7 71.1 87 70 950722} 1300 86.0 69.8 89 69 ~
950722l- 1400 87.8 69.4 89 68 950722l 1500 88.7 68.4 90 68 950722~ -1600 '89.2 68.5 90 - 68
_ 950_722 1700 89.8 68.4 90 67 5
_ 9_0722 1800 90.0 69.1 88 67 950722! 1900 89.4 70.2 87 68 950722 2000 88.2 70.9 86 70 950722 2100 86.5 73.4 84 72 9507221 2200 84.9 75.2 74 72 Page 11 t
q DATE- ITIME I CNS T(F)l CNS Td (F) lCLT T(F) lCLT Tdow(F) 9:50722 2300 82.8 76.8 75! 72 950722 2400 81.9 74.7 75j 73 !
- 950723 100 79.5 74.3 75 73 950723 200 77.2 73.4 74 72 950723 300 75.9 73.0 73 72 950723 400 74.7 72.5 73 71
-950723 500 73.8 72.0 72 71 l 950723 600 72.9 71.4 73 71 950723 700 72.3' 71.2 74 72 950723 800 73.0 71.2 77 72 I 950723 900 77.2 71.6 81 72 950723 1000 81.1 72.0 85 72 950723 1100 84.6 72.0 88 71 950723 1200 86.5 72.7 90j 72 950723 1300 88.7 73.2 92' 72 950723 1400 90.5 73.2 92 72 950723 1500 92.1 72.9 93 71 950723 1600 92.8 72.3 93 72 950723 1700 93.0 71.4 93 70 950723 1800 93.0 72.0 82 68 950723l 1900 90.0 73.2 83 68 950723l 2000 86.2 71.6 82 69 950723' 2100 84.0 71.4 81 72 I 950723 2200 81.9 73.9 79 71 950723 2300 78.6 73.6 77 72
_950723 2400i 76.1 74.7 77 72 950724_ 1001 74.7 72.9 74 72 950724i 200l 74.5 72.5 73 71 950724l 300l 74.7 73.4 73 72 950724] 4001 74.7 73.2 73 71 950724! 500 73.4 72.7 72 71 950724l 600, 73.0 72.3 71 71
.950724! 700! 72.3 72.0 73 72
_950724l 800l 72.3 72.0 75 73 950724i 900l 79 74 9507246 1000) 79.2 73.0 84 74
-9507241 1100j 82.0 73.4 87 74 950724! 1200l 85.3 73.4 90 73 .
~950724 1300* 88.9 71.6 92 72 i 950724 1400 90.9 71.6 92 72 950724 1500 92.1 71.6 93 69
_950724l 1600i 93.2 70.0 94 68 9507241 1700! 94.5 66.4 94 62 950724! 1800) 94.8- 64.2 93 64
_950724T 1900l 94.1 65.8 91 65 _
950724 2000i. :92.7 68.5 83 68
__950724 2100l 90.7 67.8 82j 67 950724 2200i 86.5 69.4 811 68 950724 2300l 84.2 72.1 80 69 9507241 2400i 82.0 71.8 78 71 Page 12
. . . . . _ _ _ . __. . . . _ . ~ . . . . _ . _ ._ __ _
i I
DATE- iTIME l CNS T(h l CNS Td (F) lCLT T (F) ICLT Tdew(F)l j 950725 100 80.2 71.4 78 711 1 i 950725 200 78.4 71.4 76 70l l
- 950725 300 77.4 71.4 75 70' !
950725 -400 76.6 72.1 74 70 950725 500 75.6 72.9 74 70 950725 600 74.8 72.5 73 70 950725 700 73.0 71.8 74 71 1 950725 800 73.2 71.2 78 71 950725 900 76.3 72.0 83 73 950725 1000 79.3 72.5 86 72 _
950725 1100 82.6 72.9 89 70 950725 1200 86.5 72.3 91 68 950725( 1300 89.2 70.9 93 68 950725 1400 91.4 69.4 95 66 950725 1500 93.0 68.7 93 66 950725 1600 93.9 68.2 94 68 950725 1700 94.5 64.8 94 69 950725 1800 94.5 65.5 93 67 950725 1900 94.1 68.4 91 67 l 950725 2000 92.5 70.0 87 70 {
950725 2100 89.8 70.7 86 73 950725 2200 87.1 72.7 84 73 950725 2300 84.7 72.1 82 71 950725 2400l 82.8 70.9 82 68 950726 100! 81.5 69.8 80 69 950726 200) 79.9 70.3 75 70 )
950726l 300! 78.4 71.1 74 70 950726i 400 77.9 71.1 73 69 950726l 500 77.4 72.7 73 69 l 950726i 600 76.3 73.2 72 70 ;
950726i 700l 75.4 73.0 74 70 !
950726l 800l 75.4 72.7 76 71 950726l 900j 76.6 72.1 80 73 950726: 1000i 78.4 72.3 84 73 950726! 1100 81.9 72.7 89 70
_950726[ 1200 85.8 72.0 91 70 950726l 1300, 87.6 71.2 91 70
_950726! 1400l 90.1 68.5 ,
90 69 950726! 1500! 91.2 68.2 92 69 950726' 1600l 91.2 67.8 93l 68 950726 1700i 91.8 68.4 1 93! 68
-950726l 18005 91.9 68.2 90! 67
_950726l 1900l 91.0 68.7 85l 70
_9_50726l 2000! 84.9 71.8 76i 69l
_950726l 2100! 81.5 70.9 78l 70 950726! _2200j 81.1 69.1 J 78i 71
[T50726I ' 23001 79.5 68.5 1 7ff 70 950726 2400l 77.0 70.2 l 76 69 950727 100l 75.6 70.2 75 68 950727 200i 75.2 69.3 74 691 Page 13
__..._m.._. .- _ _ _ _ . _ _ _ _ , _ _ . _ . . _ _ _ _ . _ _ _ _ . _ . _ . . _ _ _ . _ _ _ _ _ _ .
3 i
1 l DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F)l l l 950727 300 74.5 69.4 73 68 950727 400 73.8 69.1 73 68
- i. 950727 500 73.6 69.4 72 69 950727 600 73.6 69.8 72 69 1 950727 700 72.9 69.4 - 73 69 j 950727 800 73.2 69.4 76 70 j j 950727 900 75.4 69.6 77 70 t 950727 1000 76.6 70.0 78 71 i 950727 1100 78.6 69.8 80 69 l j -950727 1200 79.7 68.9 82 69 '
j 950727 1300 80.4- 70.2 86 72 2
950727 1400 84.0 71.1 87 72
- 950727 1500 87.8 69.6 88 71 )
i 950727 1600 86.9 70.5 76 71
! 950727 1700 82.9 71.4 79 75 l l 950727 1800 81.5 71.1 71 69 l 950727 1900 80.4 72.3 73 72 i i 950727 2000 78.1 71.8 73 72 !
{' 950727 2100 77.4 71.1 73 72 j 950727 2200 76.8 71.1 74 72 ;
- 950727 ~2300 76.3 71.1 73 72 l 950727 2400 75.9 71.1 73 70 I 950728 100 75.6 70.0 73 71 950728- 200 74.5 70.3 73 71 1 950728 300 74.1 70.7 73 71 l 950728 400 74.1 71.4 73 71 i 950728 500 74.3 72.1 73 71
! 950728 600 74.5 72.5 73 72 l 950728 700 74.1 72.9 73 72 950728 800 74.5 73.2 75 73 i 950728! 900 76.6 73.4 79 73 1 950728! 1000! 79.7 72.9 82 72 l 950728j 11001 81.7 71.2 84 70
! 950728l 1200' 82.4 69.8 80 70
} 950728l 1300 78.1 72.3 80 69 9507281 1400 78.8 .73.0 83? 69 950728 1500 84.4 70.3 83 70 l 950728 1600 86.4 70.5 85 71 i 950728I 1700 83.3 71.6 73 72 1 950728i 1800 73.9 72.7 74 71
! 950728! 1900 73.4 72.0 74 72 950728 2000 73.8 72.1 74 72 i 950728 2100 74.7 71.8 74 72
! 950728 2200 74.3 72.3 73 72 8 950728 2300 75.0 72.9 73 72 i 950728' 2400 75.0 72.7 - 73 72
! 950729 100 75.0 73.2 73 72 3 950729 200 75.0 72.5 73 71 j 950729 300 74.1 71.6 72 71 950729 400 73.6 71.4 72 70
! Page 14 5
. - . + - - -
m w 7 - - - ,r- -
-.. . . - . - - - - . - . - . . . . . . . . ~. . . . - . . . - . _ _ . . - ~ _ -_.
DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F) !
950729 500 73.2 71.2 70i 69 l l I 950729 600 72.3 71.4 70l- 69 l l
950729 700 72.1 ~ - 71.2 72i 71 800 72.1 71.4 f
_950729 76 72 950729 900 74.1 72.5 80 73 l l
950729 -1000 76.1 73.0 82 72 950729 1100 78.4 72.7 83 71 }
950729 1200 82.2 71.1 85 70 950729 1300 83.7 69.4 85 69 950729 1400 86.4 - 68.9 88 68 950729 1500 87.8 68.4 90 69 950729 1600 88.2 68.0 89 68 950729 1700 88.2 68.0 89 67 )
950729 1800 88.2 67.3 90 67 950729 1900 87.8 68.4 87 70 950729 2000 84.9 70.2 83 69 950729 2100 82.6 71.8 80 71 950729 2200 80.2 71.1 78 70 950729 2300 78.6 -71.1 77 71 950729 2400 77.4 71.6 76 71 950730 100 75.7 71.6 -75 70 950730 200 74.5 70.7 74 70
)1 950730 300 73.2 70.3 74 68 950730 400 73.0 69.6 75 68 950730 500 73.2 70.0 72 68
'950730 600 72.5 70.9 71 69 950730, 700 72.1 69.8 74 -
70 950730! 800 72.9 69.4 80 71 950730I 900 76.3 69.3 84 69 950730! 1000 80.2 68.0 85 68 950736 1100 82.0 68.4 -88 68 950730 1200 85.1 68.4 90 68 950730 1300i 87.1 67.5 90 68 950730J 1400l 88.9 67.8 91 68
-950730! 1500!- 90.1 67.3 92 69 950730! 1600L 90.9 66.0 92 66 950730l 1700 91.6 65.5 92 66 950730! 1800 91.8 66.6 90 69
.950730i 1900 91.0 69.1 87 70 950730 2000 88.3 70.9 84 70 950730 2100 85.3 70.9 83 70 950730! 2200 82.9 73.2 81 70 950730) 2300 81.5 73.4 80 70 I 950730i 2400 80.1 71.2 79 71 I 9507311 100 78.1 71.4 77 71 950731 200 - 78.3 69.6 76 70 '
950731 300 76.6 70.2 t 76 70 l 950731 400 75.4 70.2 l 75 69 1
)
9507311 500!- 74.3 70.3 74 70
! l )
950731i 600)' 73.9 I 71.2 1 74 70 Page 15 I
)
b DATE- l TIME l CNS T(F) l CNS Td (F) ICLT T (F) lCLT Tdow(F) !
950731 700 73.9 71.2 76! 71 950731 800 74.5 71.4 79l 72 950731 900 75.9 71.2 82 73 950731 1000 78.6 71.4 84 73 950731 1100 83.8 71.6 87 72 950731 1200 84.7 72.0 89 72 950731 1300 82.8 71.6 87 72 950731 1400 79.0 71.4 88 70 950731 1500 83.5 72.5 82 71 ;
950731 1600 85.3 72.0 74 67 950731 1700 81.1 71.2 73 70
-950731 1800 77.4 70.5 70 68 950731 1900 68.9 68.2 71 69 950731 2000 68.5 68.0 71 69 950731 2100 69.4 68.0 70 69 950731 2200 71.1 68.9 70 69 950731 2300 71.2 69.4 70 68 950731 2400 70.3 68.7 70 68 i 950801 100 72.0 69.1 70 69 j 950801 200 71.1- 69.1 71 69 i 950801 300 71.2 69.4 70 69
{ 950801 400 71.2 69.4 71 69
+
950801 -
500 71.8 69.6 71 69
- 950801 600 72.5 69.4 70 69
- 950801 700 72.0 70.0 71 69
{ 950801 800 71.2 69.8 76 71 j
{
^
950801l 900 73.4 70.9 80 70 !
950801' 1000 76.6 70.2 84 70 1
950801 1100 79.2 69.6 84 71
$ 950801 1200 82.4 70.3 88 70
! 950801 1300 83.8 70.5 86 69
! 950801 1400 85.8 1 70.5 87 70
! 950801! 1500 86.9 70.0 91 69 950801t 1600 87.8 69.6 88 70 950801" 1700 88.2 69.4' 81 72 )
950801 1800 87.3 69.3 86 73 I 950801 1900 87.3 69.6 84 73 950801 2000 86.4 68.0 82 71 950801 2100 84.2 68.2 79 70 950801 2200 81.7 69.6 78 69 950801 2300 79.7 70.3 77 69 950801 2400 78.4 71.1 76 -69 950802 100 77.2 71.6 75 70 l
'950802 L -200 76.6 72.0 73 70 950802} ' 300 75.6 73.6 731 69 950802i 400 74.7 72.7 72 69 950802 500 74.1 71.8 72 70 950802 600! 73.0 71.4 71 70 950802 700! 73.2 71.4 74 71 950802 800! 73.8 71.2 79 72 Page 16
DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) fCLT Tdow(F)l l 9508021 900; 75.6 1 71.6 I 80l 70l l
_9_50802l 1000 78.8 70.2 i 82l 69) I i 9508021 1100 80.4 68.2 83 69l i j 950802 1200 82.2 67.5 86 67' 950802 1300 84.4 68.4 88 67 950802 1400 81.9 68.5 88l 68 950802 1500 86.7 66.4 90 67 950002 1600 87.6 64.2 87 67 950802 1700 87.6 65.7 85 68 950802 1800 85.8 68.9 85 69 '
950802 1900 83.8 70.7 79 70 950802 2000 78.4 70.5 79 70 950802 2100 79.3 69.8 78 70 950802 2200 77.4 71.4 78 68 950802 2300 76.5 72.0 76 69 950802 2400 76.3 70.9 76 70 950803 100 76.1 70.7 75 70 950803 200 75.6 70.7 74 70 950803 300 75.4 70.9 74 71 950803 400 75.9 72.1 73 70 950803 500 75.6 72.0 73 70 950803 600 75.0 72.3 72 71 .
950803 700 73.4 71.4 74 71 950803 800 74.1 72.0 78 73 9508031 900 75.4 72.5 79 72 9508037 1000 -77.7 73.4 81 72 950803 1100 80.4 73.4 84 71 950803 1200! 82.4 72.7 86 71 950803_ 1300l 81.1 72.3 78 72 950803! 1400f 79.9 71.2 80 74 950803!^ 1500) 77.9 70.9 73 71
_950803 1600 72.3 69.8 74 72 950803 1700 73.2 70.5 75 72 950803! 1800 74.3 70.9 75 71
_95080_3] 1900} 75.0 71.4 76 72
-950803! 20001 75.4 71.6 74 71 950803: 2100i 75.2 72.5 1 74 72
~ 95 6863] 2200! 75.6 j 72.1 731 72 950803 2300 75.4 72.3 73 71 950803 2400 75.4 - 72.7 72 70 950804 100l 74.5 ~
72.3 72 70 950804 200! 74.1 71.8 72 70 950804 300} 74.8 71.2 72 70 9508041 400' 74.1 70.9 71[ 69 950804
~
500 73.9 70.7 i 71j 69
~550804 600 73.4 7 71.1 l 70l 70
_950804 700j 73.0 l 71.2 l 73l 72 950804 800! 73.4 72.1 ! 76: 73 950804 900j 75.2 73.2 79 73 9508041 1000! 76.8 73.6 82 72 Page 17
DATE- l TIME I CNS T(F) l CNS Td (F) ICLT T (F) ICLT Tdow(F)l I i
950804 1100 79.0 '
73.6 i 83 71 950804 1200 81.1 72.5 I 84 71 950804 1300 83.1 71.4 87 70
_950804 1400 84.6 70.7 87 69 950804 1500 85.8 70.7 88 70 950804 1600 86.9 70.7 89 69 950804 1700 88.0 70.3 89 69 _
950804 1800 88.3 70.2 88 69 950804 1900 87.6 71.1 85 70 950804 2000 80.6 73.4 78 74 950804 2100 77.2 73.9 77 72 950804 2200. 76.5 73.8 76 72 950804 2300 76.8 73.0 75 72 950804 2400 75.9 74.7 75 72 950805 100 75.4 74.7 75 73 :
950805 200 75.0 74.3 74 73 950805 300 74.5 73.8 74 72 950805 400 73.8 72.7 74 72 950805 500 73.2 72.5 73 73 950805 600 73.0 72.9 74 72 950805 700 73.4 73.0 74 72 950805 800 73.9 72.9 75 71 950805 900 74.3 73.0 75 72 950805 1000 75.2 73.4 78 73 950805 1100 76.3 73.2 80 72 950805 1200 78.8 72.5 84 71
_950805 1300 82.4 70.9 85 71
_ 950805 1400 84.7 70.0 87 70 950805 1500 85.6 69.8 87 69
_950805 1600 86.0 70.0 86 70 950805 1700 86.4 70.2 86- 69 950805 1800! 87.3 69.1 86 69 950805- 19001 87.3 68.4 84 70 I
~
950805i 2000 85.5 69.4 81 69 l 950805$ 2100 82.8 69.4- I 79l 69 ,
950805 2200 81.1 69.4 l 79l 69 l 950805 2300 79.9 69.4 ! 781 69 l 950805 2400 78.8 69.6 77 69 950806 100 77.7 70.0 78 70
_9508061 200 77.7 70.5 77{ 70 ,
950806) 300 ;
77.4 71.1 75} 70 950806, 400! 76.5 1 71.4 75! 71 950806i 500 76.3 I 71.4 75i 70 950806 600 75.7 71.2 7 51 70 950806 700 75.4 70.9 76 70 950806 800 75.6 70.9 77 70 95U8061 900 77.2 70.5 79 69 950805I 1000l 79.2 70.3 82 70 950806 1100l 81.1 70.2 83 71 950806 12001 82.9 70.7 85 72 Page 18
DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) !CLT Tdew(F)l l !
950806 1300 84.4 71.4 86! 72i 1 950806 1400 85.1 71.8 88) 72 i 950806 1500- 82.6 75.2 88' 72 l ~
950806 1600 86.4 72.7 89 71 !
950806 1700 87.3 71.2 88 71 i 950806 1800 86.0 72.7 87 71 1 9508061 1900l 86.7 73.8 85l 72 950806 2000} 85.5 73.2 83' 72 950806 2100) 82.9 74.1 81 72 950806 2200 81.3 73.6 81 72 j
__950806 2300 79.3 73.2 801 69 9508061 2400 79.7 73.4 79 69 950807 100 79.3 71.6 78 69 l 950807 200 79.5 69.6 781 67 950807 300j 78.6 69.6 77 67 950807 400l 78.3 70.3 75 67 950807 500 76.8 71.1 74 68 )
950807 600 77.4 69.4 73 68 950807 700 76.3 68.9 74 68 ;
950807 800 75.7 68.7 77 69 '
950807 900 75.6 69.3 79 68 i 950807 1000 77.2 68.5 80 69 9508071 1100 78.8 68.2 78 68 950807! 1200! 79.5 67.8 80 69 9508071 1300) 80.4 67.8 831 70 950807' 14001 81.3 68.0 81l 70 950807 1500i 80.8 68.2 82I 69 950807 1600 81.3 68.0 83j 69 950807 1700 80.4 69.1 821 67 9508074 1800, 80.1 68.0 78l 67
__950807.! 1900j 80.2 67.3 77 65 950807I 2000l 79.2 66.4 75 65 950807l 2100l 78.6 66.2 74 64 950807i 2200j 76.8 65.5 73! 64 950807! 2300) 75.4 64.6 72} 64
_950807l 2400l 74.5 i 64.0 711 64 9508081 100i 73.9 l 64.0 71 64 950808l 200; 73.0 [ 64.4 71 64 950808! 300! 72.3 64.6 i 70! 64 950808i 400: 71.6 64.4 70 64 950808! 500 71.4 64.0 69 64 950808! 600 71.1 64.0 69 64 950808' 700 70.5 64.0 69 64 950808] 800 69.8 l 63.7 70 63 950808; 900! 69.4 } 63.7 731 62 950808l 1000l 70.3 i 63.0 73~ 60,
_950808i 1100l 71.4 l 61.2 73 601 9508081 1200! 72.1 8 60.3 75 61 1 950808! 1300 72.7 I 59.9 i 77I 601 ~
9508087 1400 74.3 l 59.4 l 77l 60 I Page 19
DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F)l l 950808! 1500 75.4 59.9 I 76- 61 !
950808l 1600 76.1 60.3 77 62 i !
950808 1700 76 3- 61.2 75 60 l 950808 1800 76.5 61.9 75 60 950808 1900 76.1 62.1 73 61 950808 2000 75.7 61.3 72 61 950808 2100 75.0 61.0 71 61 950808 2200 73.4 62.2 70 61 950808 2300 72.5 61.9 69 61 950808 2400 72.0 62.1 68 62 950809 100 71.6 62.1 68 61 950809 200 70.2 62.2 67 62 950809 300 69.3 62.1 66 62 !
950809 400 68.9 62.8 65 62 I 950809 500 68.0 63.0 65 62 950809 600 67.6 62.6 65 62 950809 700 67.3 62.4 66 62 950809 800 67.3 62.4 67 62 950809 900 67.5 S3.0 70 64 950809 1000! 69.1 63.5 73 65 950809 1100 71.1 64.4 76 64 950809 1200 73.6 64.8 75 65 950809 1300 76.3 64.0 78 65 950809 1400 77.0 64.0 79 63 950809 1500 78.4 64.0 78 64 950809 1600 80.2 63.5 81 64 9508093 1700, 80.2 63.7 79 65 950809I 1800 80.4 63.9 79 65 950809l 1900 79.7 64.8 78 65 9508091 2000 79.3 65.5 75 66 950809l 2100l 78.6 66.0 74, 66
_950809l 22001 77.4 66.4 74l 66 9508091 2300 76.6 66.7 721 66 950809! 2400; 75.2 66.9 71 66 950810j 100I 74.8 66.7 71 66
~50810!
9 200i 72.7 67.1 70 66 950810I 300! 69.8 66.9 69 66 950810! 400' 70.0 67.5 68 66 950810l 500 70.2 67.5 6T8 66 950810!- 600 69.3 67.1 68 66 950810l 700, 69.6 67.3 69 66 950810! 8001 68.0 66.2 731 67 7 50810! 900i 70.0 67.1 74! 67 950810l 1000 73.4 68.0 76 67 950810l 1100 75.7 66.7 78 66 950810} 1200 77.4 65.8 82 65 950810I 1300 79.3 65.7 83 65 950810l 1400 80.6 65.1 ,
84 63 950810) 1500 82.8 64.6 I 84 62 950810i 1600i 84.2 64.0 i 85 65 i Page 20
DATE- l TIME l CNS T(F) l CNS Td (F) !CLT T(F) lCLT Tdow(F) l
- 950810l 1700! 85.1 63.9 84! 65 i 950810l 1800! 85.3 62.8 82! 65 ! i 950810! 1900i 84.6 63.5 81i 66, l 950810 2000 83.7 65.5 80i 67l l 950810' 2100 81.7 67.1 78i 68! !
950810 2200 79.3 ,
67.8 77 68i !
950810 2300 77.5 68.2 76 68! i
. 950810 2400 75.4 68.9 75 69 l 950811 100 74.3 69.1 74 69 l 950811 200 74.1 69.6 731 69 !
950811 300 74.1 70.2 1 71 68 l l I 3 950811 400 74.5 69.6 71 68 i
- 950811 500' 73.9 ! 69.8 70 68 950811 600 71.6 I 69.4 70 68
- 950811 700 70.2 69.1 70 68 950811 800 70.3 69.4 73 69 j 950811 900 72.7 70.2 75 69 950811 1000 73.8 70.0 79 69 950811 1100 76.1 69.8 81 68 950811 1200 80.1 68.4 82 69 950811 1300 81.5 68.4 84 68 950811 1400 83.5 68.5 85 68 950811 1500 84.7 69.3 87 68 950811 1600 86.0 68.0 87 68 9508111 17001 87.1 _
67.3 88 67 950811l 1800l 86.9 l 68.0 85 65 950811! 1900! 86.9 ! 68.0 84 66l 950811i 2000 86.2 68.7 81 67 -
950811 b 2100 84.6 69.1 79 67
__950811i 22001 82.8 69.3 79 67 950811l 2300l 80.2 70.5 77 68
~ 5' ' 11 !
9 O8 2400l 78.1 72.7 73 69 95081._2[ 100l 76.3 72.7 74 68 950812: 200! 73.6 71.2 75 70 9 '50812i
~~~ 300i 73.6 70.7 73 69 9505T21 400! 72.9 70.7 71! 68 950812: 500) 73.4 70.3 72i 69
~~950812i 600i 72.9 71.1 71 68
__950812{ 700l 72.9 71.8 74 71 950812! 800 72.3 71.4 77 71
_950812I 900 75.0 71.6 , 81l 71 950812l 1000 79.9 71.6 i 83! 71 950812l 1100 83.5 71.8 j 86! 71 950812[ 1200 85.5 71.1 89l 69 950812 13001 87.1 l 70.9 90j 66
_950812 1400j 90.0 I 68.7 4 92l 67
_ 950812, 1500j 91.6 ! 68.2 l 93J 67 950812! 1600! 92.5 66.6 I 93! 67 950812I 1700! 92.3 67.3 i 93! 66 950812! 1800! 93.2 68.2 i 92! 67 Page 21
l l
i DATE- ITIME l CNS T(F) l CNS Td (F) lCLT T(F) lCLT Tdow(F)l l 950812 1900 92.5 68.7 90) 66 l l 950812 0000 89.8 70.9 86l 70 i 950812 '2100 86.7 71.6 85 70 950812 2200 84.7 71.6 950812 83 70- )
2300 83.3 70.9 82 70 950812 2400 80.1 72.7 82 69 l 950813 -100 79.0- 72.1 80 70 950813 200 78.6 70.5 79 70 950813 300 78.6 70.7 78 71 950813 400 79.2 70.2 78 70 950813 500 76.8 70.7 77 70 j 950813 600 76.3 71.1 76 70 !
i 950813 700 75.6 71.2 77 71 ;
l- 950813 800 75.4 71.1 79 71 I 2
950813 900 78.4 71.4 84 72 950813, 1000 82.6
! 72.1 87 71 )
- 950813 1100 85.8 72.9 89 70
! 950813 1200 88.7 71.2 91 68 d
950813 1300 90.9 69.4 92 69 j 950813 1400 92.8 69.6 92 69
- 950813 1500 93.6 70.7 93 67
- 950813 1600 93.9 71.4 94 68
) 950813 1700 94.6 71.4 94 68 )
i 950813 1800 94.5 72.3 93 S8 ll 950813 1900 92.7 74.1 91 68 l 950813 2000 90.5 '75.0 87 71 1 950813 2100 87.3 75.6 85 73 l _950813_ 2200 85.3 75.4 85 71 l 950813! 2300 83.7 75.2 84 71
- j. 950813i 2400 81.7 75.0 82 71 l 950814 100} 80.1 74.5 80 72 j 950814 200! 79.0 73.9 80 72 1 950814 300 78.8 73.8 79 72 )
[ 950814 400 78.1 73.4 78 71 l l- 950814l 500 77.5 73.2 78 72 !
950814' 600 77.2 73.2 77- 72 950814 700 76.5 ~
73.2 77 73 950814} 800 76.5 73.4 82 74 950814! 900 79.5 74.3 87l 73 950814 1000 81.3 75.0 _91i 72 )
950814 1100 93 71 950814i 1200 91.2 71.6 93 71 !
950814 1300 92.3 69.8 95 68 950814 1400 95.0 66.0 96 67
-950814' 1500 95.9 66.0 96 63 950814 1600 95.5 66.0 96 63 950814 1700 96.3 65.8 96; 66
_950814 1800 96.6 65.7 941 68
_950814 1900 95.9 64.9 92 69 950814 2000 94.1 66.9 90 70 Page 22 ,
1 DATE- ITIME l CNS T(F) ! CNS Td (F) lCLT T (F) lCLT Tdow(F)l l l
,_950814l 2100 90.0 70.3 88 71 1 950814 2200 87.8 73.4 87 71 950814 2300 86.0 73.0 84 72 950814 2400 84.9 73.9 83 72 950815 100 81.9 75.0 81 72 l 950815 200 81.7 75.6 80 72 { -
950815 300 81.1 72.1 79 73 ! .
950815 400 79.5 72.7 781 73 l l 950815 500 78.3 74.1 771 73 i !
950815 600 77.9 74.5 76! 73 l 950815 700 . 77.4 74.7 78 74 i 950815 800 77.2 74.3 80 75 950815 900 78.4 74.7 84 76 950815 1000 80.6 75.4 88 76 l 950815 1100 83.5 75.6 91 75 950815 1200 86.2 75.0 91 74 950815 1300 88.5 74.7 92 73 !
950815 1400 90.3 73.8 94 73 950815 1500 92.8 72.1 88 74 l 950815 1600 88.2 71.6 80 76 i 950815 1700 87.1 71.6 81 73 950815 1800 83.5 74.7 84 74 l 950815 1900 84.4 74.7 85 73 950815 2000l 84.0 74.1 82 75 I 950815 2100j 82.8 75.0 82 74 l 950815 2200] 82.9 74.8 81 74 950815 2300l 82.4 75.7 81 73
-950815 2400j 81.1 76.6 79 73 950816 100j 80.8 76.8 79 -73 950816; 200! 79.2 76.8 79 73 950816l 300l 78.1 75.4 77 73 950816i 400l 77.5 75.4 77 73 9508161 500!- 78.3 75.0 76 73 9508161 600} 78.1 74.1 75 72 950816i 700* 76.3 73.6 77 73 950816 800 76.3 73.6 78 74 S50816 900 77.7 73.8 81 74 950816 1000 80.6 74.1 84 73 950816 1100 82.9 73.2 86 73
_9_50816; 1200 85.1 73.4 88 73 950816i 1300 86.9 72.9 90! 73 950816l 1400 88.7 72.7 91 73 950816 1500 89.6 72.5 92 72 950816 1600 90.9 72.3 93 72
_950816 1700l 92.1 72.0 92 72
_ 95_0816 1800l 92.3 71.4 _
91 68
_950816 1900l 91.8 71.6 89 68 950816! 2000' 90.7 72.0 , 86 69
_950816l 2100 88.3 72.5 i 86 68 i 9508161 2200 85.8 73.8 7 84 68 I Page 23
l I
DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F)l l l 950816l 2300 83.3 74.7 83l 68l ! i 950816 2400 82.2 74.3 80l 69 i 950817, 100 80.6 74.5 80 68 j 950817 200 78.8 72.1 79 70 l 950817 300 78.3 71.8 78 70 950817 400 78.3 71.4 77 71 i 950817 500 77.2 72.1 76 71 950817 600 76.3 72.3 75 71
_ 950817 700 75.6 72.0 76 71 950817 800 74.8 72.3 80 71
_950817 900 78.3 72.3 84 71 950817 1000 82.8 71.2 87 71 950817 1100 85.6 70.5 89 70 950817 1200 88.5 69.6 90 70 0 950817 1300 90.1 70.5 92 71 )
950817 1400 92.3 69.1 93 70 j 950817 1500 93.6 68.2 94 70 l 950817 1600 94.5 68.2 95 70 l 950817 1700 94.5 68.5 94 70 i 950817 1800 94.3 69.4 93 69 !
950817 1900 93.4 70.5 92 69 950817 2000 91.8 71.1 90 72 950817 2100 89.8 72.5 87 73 1 950817 2200 87.4 74.5 86 73 i 950817 2300 85.8 74.8 85 73 950817 2400 82.9 76.3 84 73 -
950818 -100 81.5 75.4 82 74 950818 200 80.2 74.7 81 74 950818 300 79.9 73.8 79 74 9508181 400 79.9 73.0 79 74 9508181 5001 79.5 73.4 78 73 l 950818l 600! 79.2 73.0 78 73 !
-9508181 700) 78.6 73.0 - 78 71 950818' 800l 78.6 72.3 80 72 ,
950818 900' 80.1 72.3 83 73 l 950818! 1000 82.0 73.0 87 73 950818I 1100 84.4 73.9 91 73 950818 1200 86.7 74.3 94 73 950818 1300 89.8 73.8 93 72 950818l 1400f 92.7 71.8 94 69
_950818l 1500 94.3 68.4 95 69 l j 950818' 1600 95.4 67.1 96 65 i _950818 1700, 95.2 69.3 95 67
- 950818 1800) 95.4 68.7 91 70 j 950818 1900j 93.2 70.2 86 70
- 95081g 2000l 88.2 71.6 75 70
! 950818 2100! 86.4 72.1 73 73 l 950818 2200l 76.1 73.4 73 72
- 950818 2300! 73.8 73 71 j 950818 2400I 73.2 1 72 71 e
i Page 24 I 4
5
, -. . , . - .. . .- , . - ~ = . = .
i DATE- l TIME I CNS T(F) I CNS Td (F) ICLT T (F)' lCLT Tdow(F) l f l
- 950819 100 73.4 72 71 i '
l 950819 200 73.0 72 71 l 950819 300 72.3 72 72 I 950819 400 72.7 72 72 ~
$. 950819 500 73.2 72 71 f 950819 600 73.8 72 71
?
950819 700 72.1 ,
72 72 4
950819 800 72.5 ~ 75 72
- 950819 900 73.8 75 72 I
950819 1000 74.8 75 72 950819 1100 76.5 77 73 l
[ 950819 1200 77.4 81 73 l 950819 1300 79.0 80 72
- 950819 1400 80.4 79 72 950819 1500 79.3 82 71
!- 950819 1600 80.6 82 71 ;
}: 950819 1700 81.0 81 71 j
- -950819 1800 81.3 82 69 l 950819 1900 81.0 79 68 I 950819 2000 79.9 78 67 950819 2100 79.3 77 68 950819 2200 79.3 75 69 950819 2300 78.4 75 71 ;
950819 2400 77.5 75 70 i 950620 100 76.6 75 70 j 950820 200 76.8 75 70 l 950820! 300, 75.9 74 70 .!
950820 4001 74.5 74 68 950820 500 73.9 73 67 i
-950820 600 73.9 71 64 i 950820l 700 73.8 71 65 l 950820I 800 72.5 71 65 i 950820 900 72.0 73 63 1 950820 1000 72.1 73 63 !
950820 1100 73.2 74 6 37 950820, 1200 75.4- 74 63 i 950820i 1300 75.7 791 64 950820 1400 77.4 83 66 950820I 1500 78.1 82 65 l 950820 1600 79.7 A3 66 l 950820 -1700 81.0 82 66 9508201- 1800. 81.3 81 66 950820) 1900 81.1 79 67 950820 2000 80.4 78 67 950820 2100 79.0 77 67 ;
950820l 2200 77.9 76 68 950820i 2300 77.5 76. 67 950820!- 2400 77.2 77 66 950821 100 76.1- 76 68 950821 200 76.3 t 74 68 Page 25
1 DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F)l l l 950821 300 75.9 75l 68 T 950821 400 75.7 75 67 950821 500 74.8 74 68 950821 600 74.5 74 69 950821 700 74.1 74 69 950821 800 73.9 74 71 950821 900 73.9 77 70 950821 1000 75.6 79 71 950821 1100 80 71 950821 1200 82 70 950821 1300 85 71 950821 1400 82.8 - 84 70
_950821 1500 83.1 85 70 950821 1600 82.8 85 71 950821 1700 83.5 84 70 l 950821 1800 84.2 83 69 950821 1900 82.4 80 68 950821 2000 80.6 78 69 950821 2100 79.2 78 69 3
- 950821 2200 77.0 76 69 l j 950821 2300 75.6 76 70 950821 2400 74.5 74 70 950822 100 74.1 73 70 4 950822 200 74.1 74 71 i 950822 300 73.2 73 71 950822 400 72.9 73 71 4
950822 500 73.2 73 71 950822; 600 _ 72.1 72 71 l
950822l 700 71.4 73 71
! 950822 800 71.6 76 72 i 950822 900 73.8 78 72 I 950822 1000 77.2 83 72 I I l 950822 1100 79.7 86 70
- 950822 1200l 82.6 88 69 l 950822 1300 84.4 89 68
! 950822 1400 86.5 - 90 69 I 950822i 1500 87.8 90 66 ;
I 950822 1600 88.5 89 64 !
950822 1700 88.5 90 65 _
I l 950822 1800 89.1 88 66 j
- 950822 1900 88.5 86 68 '
950822 2000 87.6 84 68
{ 950822 2100 84.9 81 69 j
{ 950822! -2200 83.1 80 69
- 950822j 2300 80.6 80 70 1
950822 2400 78.6 77l 70 1 950823 100 77.9 78l 70 l 950823! 200 78.8 ! 75 70 1 I 950823 300 76.5 l 73 70 950823 400 75.0 i 73 69 i
- Page 26 4
- ye--r -
y e w
I DATE- l TIME I CNS T(F) l CNS Td (F) ICLT T(F) lCLT Tdow(F)l l 950823 500 75.4 73 69 l
_ 950823 600 75.4 72 68 950823 700 74.8 72 66 950823 800 74.3 73 63 950823 900 74.5 75 63 950823 1000 75.4 77 63 950823 1100 77.2 80 65 950823 1200 79.0- 83 66
-950823 1300 80.6 871 67 950823 1400 83.7 86l 66 ;
950823 1500 84.2 881 67 '
950823 1600 84.9 86 67
'950823 1700 84.9 85 68 )
950823 1800 84.9 82 68 950823 1900 84.7 79 69
-950823 2000 82.4 79 69 950823 2100 79.9 77 69 i 9508231 2200 77.9 76 70 950823 2300' 76.8 75 70 950823 2400 76.1 74 70 950824 100 74.8 74 70 l 950824 200 74.1 73 70 {
950824 300 73.6 73 70 l 950824 400 73.2 73 69 l 950824 500: 73.0 72 70 I
_950824 600! 72.7 72 69 950824 700! 72.9 73 69 950824 8001 72.9 74 71 950824 900J 73.8 78 70 950824 10001 75.2 81 70 950824, 1100 77.2 84 69 9508241 1200 79.5 87 69 950824 1300: 81.3 88 67 950824 1400i 82.9 l 80 67 l
__9_50824 1500 ,I 79.0 78 71
_950824 1600 74.5 l 83 68
_ 950824 1700 76.3 83 68 950824- 1800 78.1 82 68 950824 1900 78.3 81 69 ,
950824 2000 74.1 78 69 950824 2100 73.8 77 69 950824I _2200 1 73.2 77 70 950824j 2300j 73.6 76 70
~950824l 2400: 74.1 74 70 950825! 1003 74.5 73 70 950825 2_00 72.9 1 73 70
_950825 000 73.0 ! l 72 70 950825 400 73.0 ! 72 70 950825 500l 73.0 71 69 950825 600! 73.6 71 70.
- Page 27
i DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F) l 950825 700- 73.4
~
i 75 71 .
950825 -
800 73.6 77 71 950825 900 -74.8 81 70 950825 1000 77.0 '84 69 950825 1100 79.5 84 68 95082_5_ 1200 81.5 86 68 950825 1300 83.3 88 67 950825 1400 85.6 88 66 950825 1500 86.9 90 67 950825 1600 87.4 89 68 950825 1700 86.4 87 70 950825 1800 82.9 82 70 950825 1900 79.7 79 70 950825 2000 78.6 78 70 950825 2100 77.7 78 71 950825 _ 2200 77.4 77 72 ;
950825 2300 77.7 76 72 950825 2400 77.0 77 72 950826 100 76.8 76 72 950826 200 76.8 75 72 I 950826 300 76.5 74 72 950826 -400 75.6 73 71 950826 500 74.7 73 -73 950826 600 74.1 72 72 I 950826 700 74.1 72 71 ;
'950826 800 73.9 73 70
'950826 900 73.2 73 71 950826 1000 72.7 73 72 950826 1100 72.9 73 72 i 950826 1200 73.2 74 71 950826 1300 73.6 74 71 950826 1400 73.6 74 72 l 950826 1500, 73.6 75 72 950826 1600 74.1 74 72 950826 1700 74.5 74 72 950826I 1800- 73.9 74 72 950826T 1900 74.1 73 72 950826 2000 74.8 73 72 950826 2100 75.0 73 72 950826 2200 74.5 73 72 i 950826 2300 74.5 72 71 950826 2400 73.8 72 72 l 950827_ 100i 73.8 72 71 950827' 200' 73.4 71 71 950827 300 73.0 71 71 950'827 400 73.0 71 70 950827 500 72.5 71 70 950827 600 71.6 72 70 950827 700 72.9 j 73 72 950827 800 73.4 i 73 72 Page 28 -
1 I
l l
DATE- l TIME l CNS T(F) ! CNS Td (F*. ICLT T (F) !CLT Tdow(F)l
~ l 9508271 900 73.0 73 69i I 950827 1000 73.8 76 74 I
. 950827 1100 75.2 7 77 74 950827 1200 76.5 80 79 )
950827 1300 76.3 77 76 i 950827 1400 73.9 76 75 i
)
j 950827 1500 72.7 74 73 j 950827 1600 73.4 73 72 i 950827 1700 73.2 74 72 950827 18001 73.0 74 72
- 950827 1900 74.1 74 71
_950827 2000 73.6 i 74 70l !
_950827 2100 73.2 73 70 1 950827 2200 73.0 73 70 !
^ -
i 950827 2300 72.9 74 70 I 950827 2400 72.3 73 72 -
950828 100 72.3 72 71 i 950828 200 72.3 73 70 I 950828 300 72.7 72 70 I 950828 4001 72.5 72 69 ,
- 950828 500 72.1 72 70 l
4 950828 600 72.3 72 70 -
950828, 700 72.7 72 70 _
950826' 800 73.2 73 69
- _950828l 9001 74 1 75 68
+
950828! 1000! 74.5 77 68 l :
950828l 1100l 75.4 80 70 950828! 1200 76.6 80 68 -
j 950828 1300 79.0 ; 81 69 l 950828 1400 80.8 j 841 70 950828 15001 81.0 841 69 I
]50828! 1600l 82.0 82' 67 i 950828. 1700; 82.8 83 69 950828! 1800! 82.2 7 G2l 681 82.4 80; 67 f _ 950828i 1900l 1 .
f 950828: 2000:
~
81.3 ! ! 77i 67
! 950828i 2100! 79.9 i ; 76l 67 950828! 2200l 77.4 i i 75i 68 1
- 950828; 2300) 75.6 i i 74! 67i j
950828l 2400i 74.7 i I 74j 66}_
9508291 100; 75.4 ! 66l 4
73l 950829! 200i 75.2 '
i 70l 68!
950829; 300j 73.6 l l 70l 66! __
950829f 400(
500; 71.1 ] _!_ 69l 661 ._
950829j 70.2 { l 69l 66! J 950829i 600; 69.8 ! l 681 66! !
950829t 700! 69.4 l' 69! 66! 1
~ P5829}
9 800! 70.5 i 75} 65l j _
9508291 900! 71.2 1 77! 66l !
950829i 1000; 73.2 I i 79! 66! ) I Page 29
- . . - . . - - ., . _ - ~ _ . . . - -.- . _ . ..
1-DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F)l l l r 950829) 1100 75.7 82! 66! !
950829i 1200 77.7 83l 69I 950829 1300 79.9 85 68 4
_950829 1400 81.9 86 69 j 950829 1500 83.7 l 86 67 l 1
. 950829 1600 84.9 83 69 I 950829l 1700 86.2 87 67 950829 1800 86.5 84 69 i 950829 1900 86.2 84 67 .
950829 2000 84.4 1 83 68 950829 2100 80.6 82 68
_950829 2200 77.5 78 70 950829 2300 75.7 77 70
. 950829 '2400 75.0 76 69 95J830 100 74.7 76 69
! 950830 200 75.6 75 69 l 950830 300 74.7 74j 69
- 950830 400 74.3 74 70 1
950830 500 72.5 73 69
, 95083C' 600 71.2 72 69 ,
- 950830i 700 71.1 73 69 '
950830 800 70.9 78 71 l 950830 900 72.3 81 70 950830 1000 75.9 83 68
,1 950830! 1100 79.0 86 68 .
i 950830! 1200 81.5 86 67 !
$ 950830i 1300 83.3 87 67 l I 95C830! 1400 83.5 84 67 950830i 1500l 83.7 84 68
,- 950830l 1600j 84.2- 84 68 l 950830j 1700 84.6 85 69 i 950830i 1800 84.7 83 69 950830I 1900i 83.8 i 80; 69 I
_950830i 2000I 82.0 80I 68 950830l 2100 80.4 77 64 950830! 2200i 79.2 79 73 950830l 2300} 78.1 78 72 950830j 2400j 77.0 78 71 950831! 100l 76.1 77 70 950831i 200l 75.7 76 71 9508311 300l 76.1 76 71
_950831l 400! 75.2 l 74l 72 950831; 500 74.5 1 73! 71 9508311 600 73.9 73 70 -
950831i 700l 72.9 74 69 l 950831l 800) 72.5 75: 69 950831l 90j0 73.6 .
, 77! 69 950831! 1000 75.9 { { 79! 66 9508311 1100 79.0 i . 811 63 -
950831! 1200 81.3 i 83 I 64l Page 30
1 DATE- l TIME l CNS T(F) l CNS Td (F) lCLT T (F) lCLT Tdow(F)l l 950831 13001 82.6 841 651 i 950831 1400I 83.7- 85I 66I ; !
950831 15001 84.2 84' 66 1 950831 1600 84.4 84 66 950831 1700 84.6 831 67 950831 1800 84.0 82i 67 i 950831 1900 82.6 79 67 950831 2000 80.8 77 67 950831 2100 78.6 76 67 950831 2200 77.0 75 68
, 950831_ 2300 75.7 74 68 .
950831 2400 75.0 950901 100 74.5 73 73 68] l J 67l l !
950901 200 73.6 72 67 ! !
950901 300 72.9 71 67 l i 950901 400 72.3 70 671 950901 500 72.1 69 66 950901 600 71.6 70 67 950901 700 71.1 70! 67 950901 800 70.3 72 69 1 950901 900j 71.6 76 68 1 950901 1000l 74.5 79 69 )
950901 1100l 77.7 81 71 {
950901 12001 79.5 33 71 ^
950901. 1300! 82.2 86 72 950901{ 14001 84.6 87' 71 '
950901! 1500 86.0 88 70
~950901! 1600 86.7 86 70 950901! 1700 86.5 77 64 950901i 1800! 8" 8 70: 69 950901I 1900; 74.3 ~ 68
, 73]
950901! 2000! 73.8 l i 711 68
~~56601:
9 210( 72.9 I !
71l 69 950901i 2200 70.5 ! 70 68l I 950901l 2300 70.3 70l; 68 '
i i i l
Page 31
_