ML20117M782
| ML20117M782 | |
| Person / Time | |
|---|---|
| Site: | Catawba |
| Issue date: | 08/08/1983 |
| From: | Edmunds R, Mccabe W, Youk D DUKE POWER CO. |
| To: | |
| Shared Package | |
| ML20117M776 | List: |
| References | |
| CNC-1150.01-, CNC-1150.01--1, CNC-1150.01-00, CNC-1150.01-00-0001, NUDOCS 9609180095 | |
| Download: ML20117M782 (96) | |
Text
{{#Wiki_filter:A1TACHME63T.i_ FOR INFORMATION ONLY-~ ~ ORM % o,o m o7..,, F 101.1 REVISION 13 CERTIFICATION OF ENGINEERING CALCULATION li( STATION AND UNIT NUMBER. ColswI /Vuelcor SabL /AA / /*2 TITLE OF CALCULATION CALCULATION NUMBER CA/C - /Ko. C/ - OC - coo / ORIGINALLY CONSISTING OF: PAGES THROUGH TOTAL ATTACHMENTS TOTAL MICROFICHE ATTACHMENTS TOTAL VOLUMES TYPE I CALCULATION / ANALYSIS YES O NO O TYPE I REVIEW FREQUENCY THESE ENGINEERING CALCULATIONS COVER QA CONDITION ITEMS. IN ACCORDANCE WITH ESTABLISHED PROCEDURES, THE QUALITY HAS BEEN ASSURED AND l CERTIFY THAT THE ABOVE CALCULATION HAS BEEN ORIGINATED, CHECKED OR APPROVED AS NOTED BELOW: ORIGINATED BY \\ DATE CHECKED BY DATE APPROVED BY DATE ISSUED TO TECHNICAL SERVICES DIVISION DATE RECEIVED BY TECHNICAL SERVICES DIVISION DATE MICROFICHE ATTACHMENT LIST: O Yes O No SEE FORM 101.4 R V-CALCULATION PAGES(VOL) ATTACHMENTS (VOL) VOLUMES ORIG CHKD APPR O E REVISED DELETED ADDED REVISED DELETED ADDED DELETED ADDED DATE DATE DATE E 1'37/- FC MAW W k 3 7. 2 p n N, 8-2-P/ 84-7/ g-7 49 gj W W WU i d ct tt-za u g, I Z-9 -93 l$ 2e Qt, Ih*fD /W ki - hig MG 61-63 [10 8-g .,o.c. < AJLR l-59 A.Q.t ci c3 ,u E. ' ' " s-os45 she/r '4w t,.y o f-9r I l 9609180095 960910 PDR ADOCK 05000413 I PDR i P v 3p-g 7 37g-
- ORINFORMATION OffLY u l., u u
. n,.. - u u o e. I J
fNC liso'01-00000 CERTIFICATION OF ENGINEERING CALCULATION Station and Unit Number Catawba Nuclear Station, Units 1 & 2 Title of Calculation Standby Nuclear Service Water Pond - Thermal Analysis During One Unit LOCA and One Unit Shutdown. (Tota l " Rew r i te) s Calculation Number CNC-1150.01-1 Originally consisting of Pages I through 60 i These Engineering Calculations cover QA CONDITION 1 items. In accordance with established procedures, the quality has been assured and I certify that the above CN calculation has been performed, checked or approved as noted below: O Performed by b)$a Llv.c. / / Kr_"ak Date 2-i - St / Checked by hd $ h& Date 2 -/9-8/ 3!4/P/ Approved by [ S~ /b Date an Issued to General Services Division ) /f/ ate Received by General Services Division .d. M 7/@/[d Date { // c#C 4evision/ Addenda Log: c3 9' C i Performed ChecKea Approvec Issue ,/ g~ i O Pages Pages Pages By By By Da/ y ec'o No. R evi > = :: Deleted Added Date Date Date Data r. 1 0 ALL I-60 -99N 1k2637 32b.37b b .[ 2 2 ' N'll-1.1, f l i 3 !~ ///X !!!3$l;: \\ j2gg6 l M_ f f ! f f k.37^~'35bf*2Ed/' / /[ l
- 1;////
!N 32t:/ /l/i/ i /M g!M /t !N 33 s f f l y 'i UNE # 59/5d " " N""' " -ac7 m UNE #
- M77 r,,1 u,,f,,
ennrn RY M - ennrn av/ro #F
Fen 1012 W1 4 mots 4tRe q Fie/nahMimi No, C 9C - il 5 0,01 0M t d REVISION DOCUMENTATION SHEET w m Frequency Redslon Descripbon Number Changed Yes/No b No Complete rewr:4e of cc,l t.1,J; o s, Pu r po s e wa s 4 o e.-: q 4Le v ef feck 64 igrecs,,, 4Le CW 5 5 95w f elesa k.'. l.w f f rom e 6 *10 M m s l le 511 (4 msl and to lscl)< 4Le effeds of clona es ; arem -valome curse, kt led s, flow rales an) vers 4 cas e mefeerology. e
- w I
O e \\ W I 1 e o h Y
Ferm 101.2 Revision o g 26164 0202) Calculat. ion No CNC-01150.01-y-0001 REVISION DOCUMENTATION SHEET 4 N REVISION NUMBER REVISION DESCRIPTION 1 Complete re-write of original calculation. Methodology remained the same. 1 2 Adjustment to heat input curves (Figure G) and area volume curves (Figure 7). Calculation was rerun for adjustments. Shim //iM3 WN 9ll7l83. '/ / 1 3 Modified computer program (Figures 1 and 2) and input dataset m format (Figures 9 and 11) to specify initial pond thermal stratification and print input dataset as a part of the model output. Methodology .O was not changed. Calculation was rerun to verify output using the S modified CLIST, model code and input data (Figures 10 and 12). Added calculation to identify pond elevations which supoly adequate coolina water to meet FSAR requirements for LOCA. [NG [/#/1b T cf. [39 r / _-yi-e, 4 D e ~,,, ~ / ,ed 7e~c/ s ec c A~,.. ~ L L, ,2,;. ,~ _i $l SW
- 'n rdYsA.
e,st rr e'e n
- ?
es, m e*r er , r r.S se e / $. ! le ?/ 5
- J~.
New e, b/is.ab in k b s,- lea/ i Q .,,,J L.,. A-,a4, C .,A c~4 -, m,a/' 4 4, / ed f L / h.,A R,. Z x 7x d 8 n Ct e Wd' 8-C-9/ 6 'N P F p e Pa o ti c. R E.>$ E w O O P-C'J P'/ 4 i~ 4 d_scm 3F97 372 ,:=c._ o c.
- m c.e n a n c, u,
c,,.,,, c, c,,.,..,.. 9 9 .g,.
l CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: $/25/95, Page 1 of 59 Revision 6 l l Standby Nuclear Service Water Pond - Thermal Analysis During One Unit LOCA and One Unit Shutdown. (TotalRewrite) I l STATEMENT OF PROBLEM l The Standby Nuclear Service Water System at Catawba Nuclear Station is designed to provide emergency cooling water during a one-unit Loss of Coolant Accident (LOCA) plus a one-unit cooldown. This water is supplied by the Standby Nuclear Service Water ] Pond-(SNSWP). The SNSWP was formed by impounding a cove of Lake Wylie, immediately north of the plant area. During normal operation, Lake Wylie is the source of nuclear service water and also dissipates the waste heat from the discharge. l I This calculation determines the plant intake temperature from the SNSWP during the cooldown procedure. The nuclear service water system is designed to operate properly I within a specific temperature range. This calculation verifies that the SNSWP intake water is within that range, and that there is a sufficient quantity of water to supply the plant for 30 days. l 1 1 0 5 L
CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date:- 5/25/95, Page 2 of 59 Revision 6 PURPOSE OF REVISION t The purpose of this revision (6) is to examine the effect of a proposed change to the Catawba Technical Specifications on the SNSWP temperature limit. This ch'ange includes: Changing the Technical Specification SNSWP elevation limit from 570 ft msl to 571 ft msl. (As a result, the pond thermal analysis was run with area-volume values to reflect the more stringent elevation requirement.) Additionally, this revision includes the effects of changes to the area-volume cmve, heat loads, flowrates, and worst-case meteorology. QA CONDITION These calculations are QA condition 1 because the RN System is designed to operate properly with a specific temperature range. FSAR REFERENCES This calculation is referenced in the Catawba Nuclear Station Final Safety Analysis Report, Section 9.2.5, Ultimate Heat Sink. M
CNCol150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95, Page 3 of 59 Revision 6 DESIGN METHOD Analvtical Model Descriotion An in-house analytical model was used to determine the warmest plant intake temperature from the Catawba SNSWP during the 30-day cooldown following a one-unit LOCA. The model treats the Catawba SNSWP as a series of stacked horizontal layers of water. Operation of the pond is simulated by removing the bottom slice, adding heat to it and then placing it on top of the stack where it is permitted to cool. Cooling takes place only in the surface layer and at a rate proportional to the water temperature excess above the equilibrium temperature. The heat transfer is simulated by the following equation from Edinger and Geyer (1965): dT K(T-E) T p CJ where: T= water temperature K = heat exchange coefficient E = equilibrium temperature p = water density C = specific heat d = depth of the upper slice of water i = length of time cooling takes place 4 I e Y l
CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: $/25/95, Page 4 of 59 Revision 6 Equations used in Simulation - The following equations are used in the computer simulation to determine the surface ' temperature after cooling: The unit volume (V,) is calculated with the volume of the SNSWP (V) and the number of 2 layers (L) using: a ) i V, = V 1 The length of time for surface cooling (t,) is calculated with the unit volume (V,) and the flowrate (G) using: 'V t' = 2-G i The discharge temperature (Ts,) is calculated usmg: T,= G +AT s where: T,., = temperature of SNSWP intake AT= QC,p H = heat load (BTU / hour) G = flowrate (ft'/hr) C = specific heat at constant pressure (BTU /lbm F) y 3 p = 62.4 lbm/ ft The heat loss (Tu)is calculated using: Kt, T = ( T,, - E)e #' y where: E= equilibrium temperature ( F) K = heat transfer coefficient ( F) h = depth of cooling layer (top layer), (ft) e
4 CNC 1150.01-00 0001 ' Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95, Page 5 of 59 i Revision 6. 3 The heat loss to the atmosphere (Tu,) is calculated using: i T, = T -[E + T } u u u Thus, the surface temperature (Tg,) after cooling (and just before the layer is dropped - l down to the 2nd layer in the simulation) is using: T = Tu - Tu, e I The following equations from Ryan and Harleman (1973) and Sill (1976) are used to calculate evaporation during the simulation: -f(U,)(e, - e,) A 3 W,2 = ,f1/hr (Ryan and Harleman, Eq. 2.16) g f(U )= 22.4(AO,)k + 14U (Ryan and Harleman, Eq. 2.35) 2 2 U2 = wind speed (mph) measured at 2 m height AO. = T, - T,,,,, virtual temperature difference, (Ryan and Harleman, Eq. 2.30 b) T, = (T' + 460) v rtual temperature difference of a thin vapor layer in contact with 1 1 0.378e' 760 water surface, (Ryan and Harleman, Eq. 2.31 a) T, = (T,, + 460) 0.378e, virtual air temperature, (Ryan and Harleman, Eq. 2.31 b) 760 e a
l 3 CNC-Il50.01-00 0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95, Page 6 of 59 Revision 6 l i 1 17.62 j e, = 25.4e' , saturated vapor pressure at T, mm Hg, (Sill, Eq. 20) r, ** 3 I e, = 25.4e(in2 # **) water vapor pressure, mm Hg, (Sill, Eq. 21) d i T,= dry bulb temperature, 'F T, = water temperature, F T,= dew point temperature, F i 2 A = effective cooling area, ft l 24 = 24 hours / day ] p = density of water,62.4 lb/ft' l H, = heat of vaporization of water,1030 BTU /lb, (Ryan and Harleman) 1 i i l 4 1 i e
CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95, Page 7 of 59 Revision 6 Procram Operation After cooling of the surface layer, each of the stacked horizontal layers of water is shifted down one layer, retaining their previously defined temperatures. A check is then made for density instabilities which are averaged out, if necessary. This procedure is repeated over the 30-day simulation. The following figures are included to provide additional 4 information about the computer program: Figure Number Title 1 Program listing 2 Flow chart of the model 3 List of program variables 4 Input v.uiables 5 Output variables 4 The program accepts the inputs (described in the next section, "Model Inputs") as specified by the user in the input dataset, then models the thermal and evaporative response of the SNSWP to the heat load from the one-unit LOCA and associated one-unit 4 cooldown. 1 i e Q i
CNC-1150.01-00-0001 Originatedby: R.E. Baker Checked by: T. K. Ziegler Date: 5/25/95,Page 8 of 59 Revision 6 ' MODEL INPUTS The Catawba SNSWP model simulation uses the following inputs: . Area-Volume Curve Values Initial Pond Temperature (Isothermal) e Flowrates l Heat Loads Worst-Case Meteorology e. i; In order to bound the potential scenarios, a computer model analysis was performed to j take into account the worst case observed conditions occurring simultaneously. Area-Volume Curve . Values. for the SNSWP Area-Volume Curve (which are used in the input file) are l described in CNC 1150.04-00-0009 (see Attachment A). A SNSWP volume of 434 ac-A i i is used for the 30-day simulation. ) i ) f t ' i - e y i i
CNC-1150.0100-0001 1 Originatedby: R.E. Baker Checked by: T. K. Ziegler j Date: 5/25/95, Page 9 of 59 i Revision 6 l This volume was determined by removing the cumulative evaporation, seepage, and J system leakage losses which result at the end of the 6th day of an initial model run at the start of the simulation. This initial mn (see Attachment A, Model Run with Initial ' Elevation of 571 ft msl) used a starting elevation of 571 ft mst (proposed Technical SpeciScation limit) along with the updated input values described previously in this - section. This is a conservative approach because the peak temperature occurs on the 5th day of the simulation. The losses at the end of the 6th day are as follows:
- Evaporation losses of 11.7'ac-ft (see value in Attachment A model run, page A10)
Seepage losses of 0.36 ac-ft (see Attachment A) System losses of 1.31 ac-fi (from ioss values of 225,000 gallons for first 5 hours and an additional loss of 1.01 E6 gallons total loss occurring over the 30-day period at a steady rate (see Attachment B) Total of 6-day losses = 13.37 ac-ft (Use value of13.5)- Using the total volume (447.5 ac-ft) from the starting elevation of the initial mn presented in Attachment A, the initial cooling volume can be determined (447.5 - 13.5 = 434 ac-ft). From linear interpolation, (see Attachment A) the associated surface area is 37.9 acres with an elevation of 570.64 ft msl. Thus, the first two volume values in the data input file are 434 and 396.1 ac-ft, respectively. t 0 h [ 4 8 a (
) CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler i Date: 5/25/95, Page 10 of 59 Revision 6 Initial Pond Temperature (Isothermal) The SNSWP temperature values do not inr'.ude the 2.13 F instmment inaccuracy correction for the permanent temperature mcritoring system. The limiting value of SNSWP temperature which allows compliance with the nuclear service water intake temperature requirements of the Catawba FSAR was determined by . varying the initial temperature for different model mns (30-day simulations). The FSAR requirements are: no increase in intake temperature above 92 F over the first 12.5 hours following a e one-unit LOCA, and no intake temperature over 97.6 F during the 30-day one-unit cooldown period e following a one-unit LOCA. Stratification conditions often exist in the SNSWP during the critical summer months (June, July, August). However, the temperature inputs in these model runs (see Figures 6 j and 7) conservatively assume isothermal conditions in the SNSWP at the start of the j simulation. 1 Flowrates Two sets of flow rates described in CNC-1223.24-00-0041, " Design Basis Heat Load and i Flow Demands on SNSWP" are used in the simulations (see Attachment B). 1 s Flowrate Set Flowrate (gpm) for first 4 hours of Flowrate (gpm) for hours 5_- 720 of simulation simulation. Low 38,000 19,000 High 46,000 23,000 l ~ t-
. -. - ~. ~. - .... _ - - -... ~. -.. i 4 1 CNC-1150.01-00-0001 i Originatedby: R.E. Baker j Chackad by: T. K. Ziegler Date: 5/25/95, Page 11 of 59 . Revision 6 - Heat Loads + i The heat loads calculated in CNC-1223.24-00-0041, " Design Basis Heat Load and Flow 5 Demands on SNSWP" are used in the simulations (see table in Attachment B). l 4 The computer program (see Figures 1 and 2) reads 52 heat load values directly from the ' input data sets (see Figures 6 and 7). These values are assigned as follows: l l Hours 1 - 29 One value is read for each hour.
- Hours 30 - 190 One value is read for each 10-h'our period. This value is then assigned to each of the 10 hours in the period.
f Hours 200 - 720 One value is read for each 100-hour period. This value is then assigned to each of the 100 hours in the period. Worst-Case Meteorology The meteorological inputs to the Catawba SNSWP computer model consist of dry bulb temperature, dew point temperature, wind speed, heat transfer coefficient (computed) and the equilibrium temperature (computed). As suggested in Regulatory Guide 1.27, Revision 2, the worst-case meteorology was determined based on the critical (5-day) cooling period (see description of review process in Attachment C).. As a result of the meteorological review, the 30-day period from 6/23/52 - 7/22/52 (with 6/23/52 - 6/27/52 being the worst 5-day period) is used as an input to the model (see Figure C2). l e 8 l.'
k CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95,Page 12 of 59 Revision 6 WATER SUPPLY The full pond elevation for the SNSWP is 572 feet msl and the minimum level for the pond is 571 feet msl. The water supply in the SNSWP may be decreased due to: ) evaporation e seepage system losses. e The drainage basin for the SNSWP has an area of approximately 410 acres. Run-off and groundwater flow from the basin are the sources of water for the pond. A typical drainage 2 basin yield for this area is 1 cfs/mi, which for the SNSWP basin equates to 0.6 cfs. Average lake evaporation for this area is about 41 inches / year, which for a pond area of j 40.6 acres (Area at elevation 572 ms!), is about 0.2 cfs. If needed, makeup water to the 1 pond can be provided by aligning the nuclear service water discharge to the SNSWP, During a 30-day LOCA period, there would be increased water loss from the pond by forced evaporation due to elevated surface temperatures. Evaporation is calculated for each iteration time step of the computer simulation. The cumulative evaporation through that time step is then printed. Seepage from the SNSWP is analyzed in CNC-Il50.01-00-0004, " Standby Nuclear Service Water Pond-Seepage Loss Analysis"(see Attachment A). The worst-case loss at the end of six days is 15,547 ff. An additional 10.75 ff/ day is lost through seepage through the SNSWP dam embankment. A 6-day seepage total of 15,612 ff (0.36 ac-ft) results from these values. 1 t-
CNC-1150.01-00-0001 Originatedby: R.E. Baker Checked by: T.K.Ziegler Date: 5/25/95, Page 13 of 59 Revision 6 The system losses are determined in CNC-1223.24-00-0041 (see Attachment B) are as follows: ) 225,000 gallons for first 5 hours e 1.01 E6 gallons total loss occurring at a steady rate over the 30-day period e A inventory loss value of 13.5 ac-ft is applied at the start of the simulation by subtracting j this volume from the available area and volume at 571 ft msl (see Input section describing i Area-Volume values and Attachment A). i 4 i i f 5 d 4 1 4 ,e k-
CNC-1150.01-00-0001 Origmated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95, Page 14 of 59 Revision 6 SNSWP HYDRAULICS The Catawba SNSWP is designed to prevent short circuiting of the heated water, and to effectively utilize the full pond surface for cooling. The plant intake is located at the bottom of the pond and the discharge at the surface The nacked layer concept assumes warm water surface layers cannot be pulled into the intake. Harleman and Elder (1965) analyzed the potential for pulling an upper, warm buoyant layer of water down into a submerged intake (see Attachment D). If a computed withdrawal depth (H) is less than the depth from the warm water interface to the intake (D), then less than 5% of the intake will be pulled down from the surface layer. H = 3 (Q / B)* 1 1 E where: . H = computed depth of water above lowest point ofintake opening, feet G = intake flow, cfs B = width ofintake opening, feet 2 g'= g Ad/d, ft/sec 2 g = acceleration of gravity, 32.17 ft/sec d = density of bottom water layer, slug /ft' Ad = density difference between surface and bottom water layers, slug /ft* i l
1 1 CNC-Il50.0100-0001 Originated by: R. E. Baker Checkedby: T.K.Ziegler Date: 5/25/95, Page 15 of 59 Revision 6 Assuming a surface heated layer temperature of 95*F and a temperature difference between the intake and surface layers of 8'F: d= 1.932 slug /ft', from Weast,1973 Ad = 0.003 slug /ft', from Weast,1973 g'=.05. Using B=28 ft (see Figure 8, and Figure D1 in Attachment D) and g'with the flowrates from the high flow conditions (see Model Inputs, Flowrates section), the following withdrawal depths can be calculated. Q H Hours ofSimulation Flowrate Computed (cfs) WithdrawalDepth (ft) 0-4 102.50 9.7-5-720 51.25 6.1 The minimum depth of the SNSWP surface (570.64 ft msl) to the intake structure opening (542.5 ft mst) is 28.14 feet. Thus, significant recirculation of the heated surface layer will not occur until the depth of the heated layer exceeds 18.5 feet. Therefore, a stacked layer model analysis is appropriate for the simulation. 4 0 e h* .--w
i CNC=1150.01-00 0001 Origmated by: R. E. Baker Checkedby: T.K.Ziegler Date: 5/25/95,Page 16 of 59 i Revision 6 i To ensure maximum pond efficiency in dissipating waste heat, it is important to minimize mixing of the discharged heated plume as it spreads over the SNSWP surface. The densimetric Froude number F(calculated using the following equation), which represents i the ratio ofinenial forces to buoyant forces, is used to determine the extent of mixing in the SNSWP. i F= i M i h gd where: ' F= densimetric Froude number, dimensionless i V= mean velocity, ft/sec L h = depth of the heated layer, feet When F< 1: buoyant forces are larger than inenial forces vertical mixing of the heated plume is minimized (Ryan and Harleman,1973) e heated plume will remain on the pond surface. e i There are two discharge structures located at opposite ends of the SNSWP cach of which conveys a portion of the discharge flow. l { 1 l 3 i O t. l I
CNC-1150.01-00-0001 Originatedby: R.E. Baker Char *arl by: T. K. Ziegler Date: 5/25/95,Page 17 of 59 Revision 6 Assuming a 15 degree (from the venical) discharge angle, a plume 65 ft wide and 4 ft deep results 100 ft downstream from the discharge structure. At these conditions, and assuming the previously discussed temperature difference of 8'F between layers, the densimetric Froude number is 0.66 for the high flow conditions during the first 4 hours of the simulation. A conservative estimate of 75% of the flow (102.5 cfs) going out the short-arm discharge is made in this calculation (see Attachment E for additional information). Thus, mixing will be minimized except in the immediate vicinity of the discharge structures and pond stratification will be preserved. The Catawba SNSWP is a stratified pond, and as mentioned previously, has a bottom intake, surface discharge configuration with minimal discharge mixing. Ryan and Harleman (1973) have shown a pond designed in this manner will effectively utilize the total pond surface area in dissipating heat to the atmosphere regardless of pond shape. Physical testing performed during February '1994 verified strattfication conditions exist in ] the SNSWP with an associated complete surface spread of the heated layer. l -In-summary, model assumptions of no direct recirculation of the heated plume and utilization of the total lake surface area and volume are valid for the Catawba SNSWP application and have been supponed by physical testing and theoretical analysis. o 0 d.
CNC-1150.01-00-0001 Originated by: R. E. Baker Checkedby: T.K.Ziegler Date: 5/25/95, Page 18 of 59 Revision 6 VERIFICATION OF SUFFICIENT COOLING WATER IN FIRST 12.5 HOURS j An analysis was completed to determine the pond elevation which provides sufficient cooling water to meet the FSAR-required condition of no temperature rise above 92 F at the nuclear service water intake in the first 12.5 hr following a one-unit LOCA, and to ) ensure that the 768 ft mst elevation is adequate to monitor the SNSWP temperature. Inputs High-flow conditions (from Attachment B) 46,000 gpm (Hours 0-4) e 23,000 gpm (Hours 5-720) + Total Volume of SNSWP Circulated during first 12.5 hours of simulation [46,000 gpm * (60 min /hr) * (4 hr)] + [23,000 gpm * (60 min /hr) * (12.5 - 4 hr)) 22.8 MG (70 ac-ft) + Maximum withdrawal height (from SNSWP Hydraulics section using the first four hours of simulation high-flow conditions). 9.7 ft Area-Volume Curve values are shown in Attachment A. I l i l
CNC-1150.01-00-0001 Originated by: R. E. Baker Checkedby: T.K.Ziegler Date: $/25/95, Page 19 of 59 Revision 6 Analysis i The quantity of 92 F cooling water required in the first 12.5 hours of the simulation, 22.8 MG (70 ac-ft), is provided between pond elevation 542.5 and approximately 557 ft msl (determined from Attachment A - SNSWP Volume Cuive). The highest elevation from which water could be entrained was calculated as 542.5 + 9.7 = 552.2 ft mst in the previous section, "SNSWP Hydraulics". The 22.8 MG (70 ac-ft) circulated during the first 12.5 hours of the simulation will displace (approximately) the top 2 ft (571 to 569 ft ms!) of the SNSWP. The significant difference in elevation between the lower depth of the heated layer (569 ft .j msl) and the availability of water at 92 F at all elevations below 557 ft mst ensures that no water in excess of 92 F will be withdrawn during the first 12.5 hours following a one-unit LOCA. Additionally, the probe elevation of 568 ft MSL is high enough to ensure an adequate supply of" cool" water (< 92*F) fduring the first 12.5 hours of the accident.. e t i
CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95, Page 20 of 59 Revision 6 RESULTS The effect of the proposed change to the Catawba Technical Speci6 cations (SNSWP elevation limit increase from 570 ft mst to 571 ft ms!) was examined with a set of computer simulations. The pond thermal analysis was run with area-volume values (corrected for cumulative inventory losses occurring at the simulated peak temperature) to reflect the more stringent elevation requirement. Additionally, the runs include the effects of recent changes to the area-volume curve, heat loads, flowrates, and assumed worst-case meteorology. i Maximum pond intake temperatures resulted (shown in the following table) from the computer simulations. See Figures 6 and 7 for the inputs and results of the computer simulations. Flowrate Set Initial SNSWP Maximum SNSWP Intake Temperature ("F.) Temperature ( F) Low (38,000 gpm for hours 0-4 and 19,000 91.5 96.87 gpm for hours 5-720) High (46,000 gpm for hours 0-4 and 23,000 91.5 97.52 gpm for hours 5-720) The high flow case results in a temperature maximum of 97.52*F at 10 '.6 hours (5th day) while the low flow case results in a temperature maximum of 96.87'F at 130.3 hours (6th day). Both cases (high and low flow) maintain temperatures of 91.5*r at the SNSWP for the first 12.5 hours of the simulation. ,Y t i
l CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95,Page 21 of 59 Revision 6 CONCLUSION This calculation simulates operation of the Catawba SNSWP during a one-unit LOCA and subsequent 30-day one-unit cooldown with extreme meteorology and conservative assumptions regarding SNSWP heat content when the LOCA occurs. Based on this 1 computer analysis, the maximum SNSWP intake temperatures were ' determined to be below 97.6'F for an initial SNSWP temperature of 91.5'F. Additionally, there are no SNSWP intake temperatures greater than 91.5 F during the first 12.5 hours of the simulated accidents. The pond analysis was conducted utilizing updated values for: Area-Volume Curve Values Heat Loads . Flowrates Worst-Case Meteorology. An initial SNSWP temperature of 91.5 F results in a peak of 97.52 F on days 5 and 6 of 1 the high flow simulation. Therefore, the SNSWP is operable for initial SNSWP temperatures up to 91.5 F with a SNSWP elevation of 571 ft msl. e
CNC-1150.0100-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95, Page 22 of 59 Revision 6 REFERENCES l CNC-1150.01-00-0004, Standby Nuclear Service Water Pond - Seepage Loss Analysis, Revision 0. i I CNC-1150.04-00-0009, Area and Volume of Standby Nuclear Service Water Pond, Revision 3. i CNC-1223.24-00-0041, Design Basis Heat Load and Flow Demands on SNSWP, Revision 0. i. 0 4 COM-0203.C6-17-0147, NWSMET: Surface Meteorological Observations and Hydrothermal Program. ,i j Edinger, J. E., and J. C. Geyer, " Heat Exchange in the Environment" Electric Power j Research Institute Research Project RP-49, The Johns Hopkins University, Baltimore, ] Maryland, June 1965. Harleman, D. R. F., and R. A. Elder, " Withdrawal from Two Layer Stratified Flows," Proc. ASCE, HY4, Volume 91, July 1965. Ryan, R. J., and D. R. F. Harleman, "An Analytical and Experimental Study of Transient Cooling Pond Behavior," Ralph M. Parson Laboratory, Department of Civil Engineering,. Report No.161, Massachusetts Institute of Technology, Cambridge, Massachusetts, 4 January 1973. 1 1 1 1 p
CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95,Page 23 of 59 Revision 6 Sill, B.L., " Heat Transfer and Evaporation from Open Water Bodies," Duke Power Company, Charlotte, North Carolina, August,1976. U.S. Nuclear Regulatory Commission, Regulatory Guide 1.27, Revision 2, Januay,1976 Weast, R.., Handbook of Chemistry and Physics. Chemical Rubber Company Press, Cleveland, Ohio,1973. 1 I e r i
wu osurat vu vuus PROC 0 /M /MCLISTNAME: CNFEHEAT /Massssssssssssssssssmasassazzasssssssmasassammassssussamassmassammassu /* JOB DESCRIPTION M M_.............__...__.. fMDETAILS : THIS CLIST DOES THE FOLLOWING: M /* 1) PROMPTS FOR INPUT DATASET HAME M /* 2) ALLOCATES INPUT AND OUTPUT DATASETS M /* 3) INTERACTIVELY EXECUTES PROGRAM M /M 4) BROWSES OUTPUT DATASET /M 5) ALLOWS USER TO PRINT REPORT M /* 6) ALLOWS USER TO SAVE REPORT M /M 7) ALLOWS USER TO RE-EXECUTE THE PROGRAM M /* ADDITIONAL DOCUMENTATION : M /* CAN BE VIEWED /0BTAINED BY EXECUTING THE TSO COMMAND M /M PCABENCH F(4) M /* CR CODE = NFE DOCUMENTATION TYPE = S VOLUME NUMBER = 055 /MPARMS: NONE /M M /MVARIABLES: /M M /* NAME TYPE DESCRIPTION N fM.______...___........_______.___...__.....__....__..................M /N M /M 85YSISPF CHAR ACTIVE => ISPF SESSION ACTIVE M /M NOT ACTIVE => ISPF SESSION NOT ACTIVE * /M______.. .______.......__.._____.._____.....______..........__......M i /* M I/MBUILTIN SUBROUTINES: NONE M /M M /M.........______...........______...____...___......_____ ______.....M /MEXTERNAL
REFERENCES:
NONE M /M M /Mammam as sm am m a s ssssssssssssssss sssa mas sssanssamssussmammassamm assasas M /* HISTORY OF CHANGES M' /M.________..._____.....__....._____............_..........__.. .____.M i /MREQUEST # l DATE l DESCRIPTION l PROGRAMMERM /M...____.____ .______________..._M /* 13951921 1 03/08/89 l INITIAL PROGRAMMING lW.D. CONWAYM /Ma ss= sm u s ss azz as s ssssssssss ss ss s s ss sum ssmussssssssssss ssssss s sss sssss M /M FILE DESCRIPTIONS M jM._......_____.__..............._______....__-_ .__.--...____......._M /MDDNAME I/O DATASET NAME DESCRIPTIONS M /M....___._______._..._...... _____..__.__.................__.....____M /M NO FILES M /M a s s s a m m a s s a s s a s s e s s m as s a s s s s s s s a m m m a s s a m as a s s e s smu s s s ss s s s s s s s s s s s s s M /M CONTROL N0 LIST NOMSG NOSYMLIST NOCONLIST NOFLUSH /MCONTROL LIST MSG SYMLIST CONLIST NOFLUSH /M- /MMMMMMMMMMMM*MMMMMMMMMMMMMMMMM*M*MMMMMMMMMMMMMMMMMMMM*MMMMMMMMMMMMMMMM /M IF ISPF SESSION NOT ACTIVE INVOKE ISPF AND EXECUTE DIALOG M /M ELSE CONTINUE TO DIALOG M (MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M ~ IF SSYSISPF NE ACTIVE THEN + ISPF CMD(%CNFEHEAT) ELSE CNFEHT2 CNC-1150.0100-0001 M KND E gure 1. Catawba' SNSWP Model' CLIST and Pk.1 Program Listing. Originated by: R. E. Baker Checked by: T. K. Ziegler Date:5h5/95,Pagehof f'! Revision 6
w ' nI / /nu m m u n un un unnuw w ww ww ww w wwwxm uxwwwwwwww wwww wwwwwwwwwuxxxxxxxxxxxwwxxxxx /N EXIT CODE OF 4 NECESSARY FOR ISPF x } /wwwwwwwwwwwwwwwwwwwxuwwwwwwunwwxuwxxxxxxxxx*wnux*wwwwwwwwwwwwwxxxxxxxx /M XIT CODE (4) 4 + i 4 1 k e t 1. \\ \\ Figure 1 (Continued) s I CNC-1150.01-00-0001 ) 39y~/ 362 ~ Originted by: R. E. Baker .,4" Checked by: T. K. Ziegler i '~ l' ' [ Date:5A795, Pagerof 5et I Revision 6
4 PROC 0- PGMLIB(CERT) /0 /MCLISTNAMEs.CNFEHT2 /Ma ssa nssss sssssss ssss sssss sssssss ss ss sssss ss sssssssssssssssss ssssssssM - ./M_ JOB DESCRIPTION M j. <M__...........__............................__..........__.....__.___M J/MDETAILS :.THIS CLIST DOES THE FOLLOWING: M { /M 1): PROMPTS.FOR INPUT DATASET NAME M /M 2) ALLOCATES INPUT AND 0UTPUT DATASETS M /M 3) INTERACTIVELY EXECUTES PROGRAM M i /M'4). BROWSES OUTPUT DATASET' M /M 5) ALLOWS USER TO PRINT REPORT '/M 6) ALLOWS USER TO SAVE REPORT .M i /N 7) ALLOWS USER TO RE-EXECUTE lTHE PROGRAM M /M....___........ ........M 3 /MADDITIONAL DOCUMENTATION : M /M CAN BE VIEWED /DBTAINED BY EXECUTING THE TSO COMMAND M- ~/N-PCABENCH F(4) M '/M. CR CODE ='HFE-DOCUMENTATION TYPE a S VOLUME NUMBER = 055 M /M._...........___..__. ......__...__.........______......M /MPARMS: M i ./M NAME TYPE DESCRIPTION M I- /M'8PGMLIB CHAR CERT'=> PROGRAM RUN FROM CERTIFIED M /K. LIBRARY -M-I /N ACPT s> PROGRAM RUN FROM ACCEPTANCE M /M -LIBRARY M j. /M.................. ._.........__................__M /MVARIABLES: M 1 -M /M \\ j /M NAME TYPE-DESCRIPTION N /M_____......._............... ....._____....__.....M /M M. l /N 8LASTCC NUM RETURN CODE FROM LAST EXECUTED STATE-' M l /M' MENT M j /M 8 CHECK NUM SAVED RETURN CODE N i /M SI HUM LOOP COUNTER M ?. /M M. q /N-8ANS' CHAR Y m) USER WANTS TO PRINT /SAVE OUTPUT M i /M N s> USER DOES NOT M I /M 8ANS CHAR Y s> USER WANTS TO RE-EXECUTE PROGRAM' M /M N => USER DOES NOT M /M 8 DEST CHAR USER SUPPLIED PRINTER NAME FOR OUTPUT M t l /M 8 MEMBER. CHAR MEMBER CREATED IN HEATTRAN. SAVED WHEN N /N USER DESIRES TO SAVE REPORT M /N 8NAME-CHAR INPUT DATASET NAME M /M 80K' CHAR FLAG USED TO CHECK VALID PRINTER NAMES M !~ /N SPGMLIB CHAR STEPLIB/ LOAD LIBRARY USED M /M CERT => DK061. CERT. LOAD <- DEFAULT M I /M' -ACPT => DK061.ACPT. LOAD M /M..........._-......___......_..__........_____..........______-_.M 'M M / /MBUILTIN SUBROUTINES: M /M NAME TYPE DESCRIPTION M /N SSTR(A) CHAR. RETURNS CHARACTER REPRESENTATION OF A M ./M-M i /M.................____ ..............................................M /MEXTERNAL
REFERENCES:
/M NAME -TYPE DESCRIPTION CNC-Il50.0100 0001 ISP. EXEC - INVOKES ISPF DIALOG FUNCTIONS Originated by: R. E. Baker )FF (M BRobfE - Ii ISPF BROWSE h Checked by: T. K. Ziegler r/M 3 Date:5fW95, Page;,.ofc c. f,^ Figure 1 '(Conhinned) Rmrision 6
/usassanssuuss ssammassamassesam u unusan z aussumesssssssssssssssssoasuses M /u HISTORY OF CHANGES M /u----------------.---------....-...----------.-------------.--------* -l/ZREQUEST # l. DATE 1 DESCRIPTION l PROGRAMMERM /u---------------------.-------------.------.---- --------------------* u 139S1921 1 03/08/89 l INITIAL PROGRAMMING lW.D. CONWAYM /H a m a s s a s s a m m a s a m m a s s a m a s s m a s s a n = = = = = s s = = = = = = = = = = = = = = = = = = = = = = = = = = = s a m M /H FILE DESCRIPTIONS M fg------..---.-----------------------.-.-..------.--------........----M /UDDNAME II/01 DATASET NAME DESCRIPTIONS M fn....--.....-------.------.------------------------------------------M /n CARDIN l I l ?????????????????????????????? l USER INPUT TO M /M_ l l l PROGRAM RUN07067 M fM--------..----.----.._.----------------..---------------....----.---* /M PRINTER l 0 i TSOID.HEATTRAN.0UTPUT l REPORT / ANALYSIS FROMM /* l l l PROGRAM RUN07067 M /M------- /* l 0 18TSOID.HEATTRAN. SAVED (& MEMBER) l PREVIOUS REPORTS / M /M l l l ANALYSIS FROM M /M l l l PROGRAM RUN07067 M /M a m a s a m m a s s a m m a s s ua m ma s s a n a m m a a m m m m a s a m a z z a s s a n s ama m as a s s m a s s s a m a s s a m M /MCONTROL LIST MSG SYMLIST CONLIST NOFLUSH N0 PROMPT CONTROL N0 LIST NOMSG NOSYMLIST NOCONLIST NOFLUSH N0 PROMPT /M /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M CHECK EXISTANCE OF HEATTRAN. SAVED k /* IF DOES NOT EXIST CREATE IT M /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M ALLOC DA(HEATTRAN. SAVED) SHR IF SLASTCC -= 0 THEN + DO ATTR XXX RECFM(V B A) LRECL(125) BLKSIZE(129) DSORGCPO) ALLOC DA(HEATTRAN. SAVED) HEW USING(XXX) CATALOG SPACE (1,1) + CYLINDERS DIR(5) FREE ATTR(XXX) IF 8LASTCC -= 0 THEN + DD WRITE WRITE CANNOT ALLOCATE HEATTRAN. SAVED ON YOUR ID WRITE PLEASE CALL SUPPORT PROGRAMMER EXIT END END Figure 1 (Continued) CNC 1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler 1 Date.5r:/95, Page;rof51 ' t- ~ ( aO y Redsion 6 1
un <- e. s v. v e g,,o.- u u v, /0 /xxxxx**x*Mxxxxxxxxx*x*MMxxxxxMxxxMxx*MMwxxxMMMMxxxxxxunxxxMxxxu*xxxxxx /M CHECK EXISTANCE OF HEATTRAN.0UTPUT M /* IF DOES NOT EXIST CREATE IT /MuxxxMwxxxxxwwwxxxxxx*wuxxxxxxxMxxxxxMxw*MxxxxxxxxxxxxxxumMxxxxxxxxxxx /x ALLOC DA(HEATTRAN.0UTPUT) SHR IF SLASTCC -= 0 THEN + DO ATTR XXX RECFM(V B A) LRECL(125) BLKSIZE(129) DSORG(PS) ALLOC DA(HEATTRAN.0UTPUT) NEW USING(XXX) CATALOG SPACE (1,1) + CYLINDERS FREE ATTR(XXX) IF SLASTCC -= 0 THEN + DO WRITE WRITE CANNOT ALLOCATE OUTPUT DATASET ON YOUR ID WRITE PLEASE CALL SUPPORT PROGRAMMER EXIT END /M /MMMMMMMMMMMMMMuwwwwwMMMMMMMMMMxxxxxuMMMMMMMMMMMMMMMMMMMMMMMMMxxxxux*MM /M ALLOCATE PROGRAM FILES /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMr.MMMMM /M TOP: + FREE FCCARDIN, PRINTER) FREE DA(HEATTRAN. DATA) ALLOC F(PRINTER) DA(HEATTRAN.0UTPUT) SHR /M /MMF%riMMMMMdMMMxWNxNMMMMMMMMxxMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMxxwMMM /N PROMPT FOR INPUT DATASET NAME M /MMMMMMxMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M l SET SI = 0 ENTER: + SET SI r SI + 1 WRITE WRITE ENTER NAME OF INPUT DATASET /x /xxxxxxxMMMMMxwMMMM***xMxx*x*wMMMMMMMMMMMMMMMMMMMMumMMMMMMMMMMxxxxMMxxx /* CHECK INPUT DATASET EXISTANCE M /* IF DOES NOT EXIST FORCE REENTRY OF NAME N l /Mx x xx x x xxx x xxxxx xx x xxxxx M uxx xxx MM MM u xxxxx xxx x xw wMM M MMxxx*M MMM MM ux xxx x x -l /M l READ 8NAME WRITE ESTR(8HAME) /*
- / M M M M M M x x x x x x x M w M x w M u x x x x x x x x x x
- M x x x M M M M x x x x x x x x x N M M M M M M M MM M M M M M M x x x x
- M
/M CHECK ON ID w /xxxxxxMMMMMMMxxuwMwuxxxMuxxxxxxxxxxxMxxxmMwwuxMuxumuxxxxxmmxxxxxxxxxxM /K ALLOC F(CARDIN) DA(8HAME) SHR SET SCHECK = SLASTCC Figure 1_(Continued) CNC Il50.01404001 c;;; ;- Originated by: R. E. Baker Checked by: T. K. Ziegler e Date:5/W95,Page,9f 57 Revidon 6
/M /MMMMMMMM0000*MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M IF NOT ON ID CHECK QUALIFIED NAME M } /MMMMMMMMMMMMMMMMMMMMMMMMMMMM*MMMMMMMMMMMMMMMMMM*MMMMMMMMMMMMMMMMMMMMMM /* ) IF 8 CHECK -= 0 88 81 < 3 THEN + DO ALLOC F(CARDIN) DA('8NAME') SHR SET SCHECK = SLASTCC IF 8 CHECK -= 0 88 8I < 3 THEN + DO j WRITE ) WRITE INPUT DATASET DOES NOT EXIST GOTO ENTER END ) END IF 8 CHECK -= 0 88 8I = 3 THEN + i DO WRITE WRITE INPUT DATASET DOES NOT EXIST WRITE PLEASE CREATE INPUT DATASET AN TRY AGAIN EXIT END /M /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M EXECUTE PROGRAM FROM SPECIFIED LIBRARY M /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M CALL '8PGMLIB' '/8NAME' FREE F(PRINTER,CARDIN) /M 4 /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M VIEW OUTPUT DATASET M l l /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M ISPEXEC BROWSE DATASET(HEATTRAN.0UTPUT) /* 1 4 J J Figure 1 (Continued) CNC 1150.01-00-0001 Originated by: R. E. Baker 4 7:;;;7 ~ e Checked by: T. K. Ziegler Date:5/2/95, Pagellof t ] Revision 6
/u u n n u nnu unn x manununnannunnunununnunnnnuun5nununnun unuunnnn nunn ununsu nn /u QUERY FOR DESIRE TO PRINT REPORT, DESTINATION x /uxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx /u PRINT: + WRITE WRITENR DO YOU WANT TO PRINT OUTPUT (Y/N)? READ SANS IF SANS = 85TR(Y) THEN + DO OPTION: + WRITE WRITE PRINTER OPTIONS (DEFAULT CHURCH) WRITE DESENGl READ 8 DEST IF 8 DEST = &STR() THEN + RP HEATTRAN.0UTPUT DEST (CHURCH) ELSE + DO SET 80K = SSTR(N) IF SSTR(8 DEST) = 8STR(DESENG1) THEN + SET 80K = &STR(Y) IF 8STR(& DEST) = SSTR(COMSER1)THEN + 1 SET 80K = SSTR(Y) IF 85TRC& DEST) = SSTR(COMSER3)THEN + SET 80K = SSTR(Y) IF 80K = SSTR(Y) THEN + RP HEATTRAN.0UTPUT DESTCSSTR(& DEST)) ELSE + DO WRITE WRITE INVALID PRINTER NAME SUPPLIED GOTO OPTION END END END l i ELSE + DO IF 8ANS -= 85TR(N) THEN + DO WRITE j WRITE CORRECT ANSWERS ARE Y (YES) OR H (NO) GOTO PRINT END END i i Figure 1 (Continued) 1 CNC-1150.01-00-0001 Originated by: R. E. Baker jppg 33 Checked by: T. K. Ziegler Date:5r/195,Page,;cof 51 v Redsion 6
CNL ll:) O, of - oo -- Ooof /0 /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /M QUERY FOR DESIRE TO SAVE REPORT M }/MMMMMMMMMMMMMMMMMMMMMMMMM*MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /* SAVE: + WRITE WRITENR DO YOU WANT TO SAVE DUTPUT(Y/N)? READ SANS IF 8ANS = SSTR(Y) THEN + DO SET 8I = 0 RECOPY: + SET 8I = 8I + 1 WRITE WRITENR ENTER MEMBER NAME FOR HEATTRAN. SAVED READ SMEMBER COPY HEATTRAN.0UTPUT HEATTRAN. SAVED (8STR(8 MEMBER)) NON SET SCHECK = SLASTCC IF 8 CHECK'-= 0 88 81 = 1 THEN + DO WRITE WRITE COPY WAS UNSUCCESSFUL, TRY AGAIN, PLEASE GOTO RECDPY END IF SCHECK -= 0 && SI = 2 THEN + DO WRITE WRITE COPY WAS UNSUCCESSFUL, PLEASE CALL SUPPORT PROGRAMMER END END ELSE + DO IF SANS -= SSTR(N) THEN + DO WRITE WRITE CORRECT ANSWERS ARE Y (YES) OR N (NO) GOTO SAVE END END /M /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /N QUERY FOR DESIRE TO RUN PROGRAM AGAIN N /MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM /* RUN: + WRITE WRITENR DO YOU WANT TO RUN PROGRAM AGAIN(Y/N)? READ 8ANS IF SANS = 85TR(Y) THEN GOTO TOP ELSE + DO IF 8ANS -= 85TR(N) THEN + DO WRITE WRITE CORRECT ANSWERS ARE Y (YES) OR N (NO) GOTO RUN 1 END CNC-1150.01-004)001 i ENDg Originated by: R. E. Baker ,,.,e
- 7#END Figure 1 (Continued)"'
Checked by: T. K. Ziegler Date:5/7/95.PagePof 9 ' 5 Rmdsion 6
<_su u <
- sv. vg vu vuug
/u NAMES.RUN07067 TITLE: HEATTRAN n/ /*****************************************************************
- l l*
- l REQUIRED DOCUMENTATION CHECK OFF LIST l*
- l l*
- l______________________________________________________________l*
- l ICOMPLETED l DATE l*
- l l
BY: l COMPLETED:l*
- l______________________________________________________________l*
- l PROJECT LEADER APPROVAL l
l l* 3
- l__________________________.___________________________________l*
J
- l SYSTEM DESCRIPTION I
l l*
- l______________________________________________________________l*
j
- l RECORD INFORMATION l
l l*
- l______________________________________________________________l*
- l FILE DESCRIPTION l JLJORDAN l 10/07/83 l*
- l______________________________________________________________l*
- l CONTINGENCY RECOVERY INFORMATION l
l lu
- l______________________________________________________________l*
- l HISTORY OF CHANGES l JLJORDAN I 10/07/83 l*
i
- l______________________________________________________________l*
- l PROGRAM DESCRIPTION l
l l*
- l______________________________________________________________l*
j 1
- l PROGRAM LISTING l JLJORDAN I 10/07/83 l*
- /-
/**************************************************************** 3 I I 3 l l HISTORY OF CHANGES I l l l________________________________________________________________l l REQUEST # l DATE I DESCRIPTION l PROGRAMMER l l________________________________________________________________l l 423549 110/83 l ORIG - INITIAL LOAD l JORDAN l l l l TO CERTIFICATION AND l l l l l ACCEPTANCE LIBRARY l l l________________________________________________________________l l 13951921 1 03/90 l REVISE ALGORITHM TO ACCEPT l W. D. COWAY l l l l TEMPERATURE PROFILE VALUES l l l l l FROM INPUT FILE INSTEAD OF l l l l l CALCULATING AVERAGE TEMP. l l l l l PRINT INPUT AND PROFILE IN l l l l l SAME REPORT AS ANALYSIS. I l l***************************************uw***********************/ /**************************************************************** I l l SYSTEM DESCRIPTION l l l 'l****************************************************************l l
SUMMARY
l l l l REV, MOD, LEVEL
- ORIG l
l REV-DATE
- 11-12-81 l
l SPONSOR
- D H MEACHAN l
l DIV-SECTION
- CENV l
l QA COND
- 1 CNC-Il50.01-00 0001
~] O O 7 i S,1GS,.T E H U SE D
- I Originated by: R. E. Bak.
l 'VERIF METH A, Figure 1.(Continued) Checked by: T. K. Ziegk Date:$rJ/95, Page:;of; Revision 6
LNG l './ U * ' U t UU-U O Of .I DUKE CALC FILE : C-16.17-15 1 l STATUS
- A l
t l l )*****************************************************************/ /**************************************************************** s I I l l CATAWBA SNSWP THERMAL ANALYSIS PROGRAM, REVISED 3/1990 l 1 I i i THIS PROGRAM CALCULATES SNSWP TEMPERATURES IN RESPONSE TO A l l ONE-UNIT LOCA AND AN ACCOMPANYING ONE-UNIT NORMAL SHUTDOWN. l l I I i 4 l THE TECHNICAL BASIS FOR THE CALCULATION IS PRESENTED IN 1 i l CATAWBA NS CALCULATION NO. CNS-1150.01-00-0001. l l l 1 THIS PROGRAM WAS REVISED IN MARCH 1990 TO INCORPORATE THE l 2. l FOLLOWING CHANGES: l l
- 1) THE INITIAL POND TEMPERATURE PROFILE IS READ FROM-THE l
i INPUT DATASET, RATHER THAN CALCULATED AS A UNIFORM l { l PROFILE FROM INPUT EQUILIBRIUM TEMPERATURES IN l l METEORLOGICAL DATA. l I
- 2) OUTPUT FORMAT WAS MODIFIED AS TO TITLES, ETC.
l 1 l
- 3) OUTPUT FORMAT WAS MODIFIED TO INCLUDE A PRINTOUT OF THE l
j l INPUT DATASET AND THE INITIAL POND THERMAL PROFILE. l l
- 4) CALUCLATING PROCEDURES IN THE PROGRAM WERE NOT MODIFIED. l l
I
- /
RUN7067: PROC (INDSN) OPTIONS (MAIN); ~ DCL_ INDSN CHAR (100) VAR; DCL CARDIN FILE STREAM INPUT; 1 DCL PRINTER FILE PRINT; OPEN FILE (CARDIN); OPEN FILE (PRINTER) PAGESIZE (55) LINESIZE(120); j DCL~CDATE CHAR (20); %DCL TIME ENTRY; % TIME: PROC RETURNS (CHAR); DCL COMPILETIME BUILTIN; RETURN ('llCOMPILETIMEll'); %END TIME; CDATE = TIME; % DEACTIVATE TIME; DCL (EXP, ABS) BUILTIN; DCL (DATE, TIME) BUILTIN; DCL SYSDATE CHAR (6); DCL SYSTIME CHAR (9); ~DCL PLANT CHAR (8); DCL TITLE CHAR (32); DCL V8 DEC(6); DCL K1 DEC(6); DCL (I,J,K,INDEX) FIXED BIN (15); DCL (S1,T1,L1,K2) FIXED BIN (15); DCL PAGE FIXED DEC(3,0) INIT (0); CNC-1150.01-00-0001 DCL B FIXED BIN (15) INIT(0); Originated by: R. E. Bakef DCL J1 FIXED BIN (15) INIT(0); Checked by: T. K. Zagler DCL K4 FIXED BIN (15) INIT(0); Date:SM/95,Page3)f G DCL J3 FIXED BIN (15) INIT(0); Revision 6 DCL L2 FIXED BIN (15) INIT(0); DCL K9 FIXED BIN (15) INIT(0); DCL S (40,2) DEC(12)- INIT((80)0); 3997 DC590.0W DEC(12)'; Figure 1 (Continued)
m _ - - - ~l -( N (_ //. ' O
- O ( ' 90 - f)O Of f
l DCL'T'(720,5) DEC(12)- INITC(3600)0);= DCL 19. .DEC(12) INIT(0); j 5 DCL T2 DEC(12) INIT(0); DCL-H3 DEC(12) INIT(0); DCL A-(30)- ' DEC(12);' ) i DCL E (30)- DEC(12); I-DCL P (30) DEC(12); -DCL.L (100,2) DEC(12) INIT((20030); j DCL W-(30) DEC(12); 'DCL Y (30) DEC(12); 'DCL Y1 DEC(12) INIT(0); j- .DCL V1 DEC(12) INIT(0); DCL V2 DEC(12) INIT(0); DCL S2 DEC(12) INIT(0); DCL T5 DEC(12) INIT(0); i DCL T3 DEC(12) IMIT(0); DCL X' DEC(12) INIT(0);' ) DCL-T7~ DEC(12)' INIT(0); i DCL P3 DEC(12) INIT(0);- ] j DCL P2 DEC(12) INIT(0); ) DCL T6 DEC(12) INIT(0);. l DCL P1 DEC(12) INIT(0); DCL T4 DEC(12) INIT(0); DCL V9 DEC(12) INIT(0); ~ * }- DCL EOF _CARDIN BIT (1) INIT('O'B); DCL PRT_HDRS' BIT'(1) INIT('O'B); DCL LINE CHAR (80); ON ERROR BEGIN; g ON ERROR.STOP; l PUT FILE (PRINTER) SKIP DATA; END; i-ON ENDFILE (CARDIN) EOF _CARDIN = 'I'B; ON ENDPAGE(PRINTER) BEGIN; } PAGE=PAGE+1; . I F ~ ~ P R T,,,H D R S T H E N D0; j' PAGE.= PAGE - 1; j GOTO NOPRT; i 4 j END; PUT FILE (PRINTER) i EDIT (PLANT, TITLE,'PAGE ,PAGE, { ' TIME REAL DISC HEAT COOL UN MIXED INTAKE, EVAP E K', s TEMP', f ' TIME' TEMP LOSS DOWN ~ MIX TEMP TEMP AC-FT','TCFH') (P AGE,X(25), A( 9), A(32),X(6), A(5),F(3,0 ), SKIP (2),X(4),A(66),A(6), 3 j SKIP,X(10),A(52),X(10),A(4)); PUT' FILE (PRINTER) SKIP (2); l .NOPRT: END;./* ON ENDPAGE(PRINTER) */ { PUT FILE (PRINTER) SKIP EDIT ('THIS' PROGRAM (RUN07067) WAS LAST CHANGED ON: CDATE) (A,A); PUT FILE (PRINTER) EDIT (' PROGRAM NAME','REV-MODEL, LEVEL /',' SPONSOR: 'QA', j .' SYSTEM','VER1F.',' DUKE',' STATUS') 4 ( COL ( 2 ), A, CO L ( 2 2 ), A, CO L ( 4 2 ), A, COL ( 6 5 ), A, CO L ( 7 3 ), A, CO L ( 84 ), A,CNC-!!$0.01004001 f3pp7 - ]pp(i( 95 ), A, CO L (.10 9 ), A ) ; g Figure 1 (Continued) c %r*arl by: T. K. Ziegl,l f l. Date:5M/95,Page?W ; ./ Revision 6 j
-.~ L N (_ //.3 0, U( < u u - u u o j l PUT FILE (PRINTER) . EDIT ('REV DATE',' DES ENG. DEPT','COND','USED','METH',' CALC') (COL (25),A, COL (42),A, COL (64),A, COL (74),A, COL (84),A, COL (95),A); ) ) PUT FILE (PRINTER) EDIT ('ENG SUPP DIVN',' CODE',' FILE') (COL (42),A, COL (84),A,00L(95),A); PUT FILE (PRINTER) J EDIT ('HEATTRAN RUN07067',' REVISED ','ENV ENG GROUP ', ' 1 '., ' I ', 'A','C-6.17-15','A') l (COL (2),A, COL (23),A, COL (42),A, COL (65),A, COL (75),A, COL (85),A, 1 COL (94),A, COL (111),A); i PUT-FILE (PRINTER) i EDIT ('04-1990') (COL (23),A); i GET FILE (CARDIN) i EDIT (PLANT, TITLE,T1,L1,K2,S1) (X(2),A(8), SKIP,X(2),A(32), 3 (SKIP,X(1),F(4)), SKIP (2),X(1),F(4)); 'SYSDATE = DATE; j. SYSTIME = TIME; i PUT FILE (PRINTER) SKIP (10) EDIT C'THIS IS A SNSWP THERMAL ANALYSIS FOR , PLANT, j 'DATE: ',SYSDATE,' TIME: ',SYSTIME, 'RUN ON IBM /MVS-TSOPRDB') (X(10),A(38),A(8), SKIP, j X(10),A(7),A(6),A(10),A(9), SKIP, j X(10),A(22)); 4 CLOSE FILE (CARDIN); J OPEN FILE (CARDIN); i 3 GET FILE (CARDIN7 SKIP EDIT CLINE) (A(80)); l I DO WHILE~(~ EOF _CARDIN); i PUT-FILE (PRINTER) PAGE EDIT (' INPUT DATASET: ',1NDSN) (X(10),A,A); PUT FILE (PRINTER) SKIP (2); 1 1 TO 55 WHILE (~ EOF _CARDIN); DO I = PUT FILE (PRINTER) SKIP LIST (LINE); GET FILE (CARDIN) SKIP EDIT CLINE) (A(803); _END; l END; L CLOSE FILE (CARDIN); i PRT_HDRS = '1'B; j 4 EOF _CARDIN = 'O'B; OPEN FILE (CARDIN); GET FILE (CARDIN) SKIP (11) /* READ PAST LINES */ L 3T((S(I,1) DO I=1 TO S1)) ; /* ALREADY PROCESSED */ 4 - DO I=1.T0 S1; SCI,1)=S(I,1)*43.56; i END; GET FILE (CARDIN) LIST ((SCI,2)-DO I=1 TO SI)) } SKIP (4); GET FILE (CARDIN) SKIP (4) EDIT (INDEX, FLOW) i (X(1),F(4),X(1),F(7,2)); i DO I=1 TO INDEX; CNC-Il50.01-00-0001 ! j-T(I,5)= FLOW; Originated by: R. E. Ba END. DO WHILE(INDEX<T1); Checked by: T. K. Zieg Date:5AW5, PageKor i j GET FILE (CARDIN) Whion 6 j EDIT (INDEX, FLOW) 392 (SKIP,X(1),F(4),X(1),F(7,2J); Figure 1 (Continued) ) 3ppy' IF INDEX<!'THEN SIGNAL ERROR;'
(NL t i.;> C. ut - v o - vu oj DO Io1 TO INDEX; T(I,5)= FLOW; END; END; -IF PLANT =' CHEROKEE' THEN CALL CHK(T); ELSE IF PLANT =' CATAWBA' THEN CALL CAT (T); ELSE SIGNAL ERROR; K=0; DO I=1 TO T1; K=K+1; T(I,5)=16.0256*T(I,4)/T(1,3); IF K>=K2 THEN K=0; END; Yl=0; GET FILE (CARDIN) SKIPC4); GET FILE (CARDIN) LIST (CA(J),P(J),W(J),YCJ),E(J) DO J=1 TO 30)); DO I=1 TO 30; Yl=Y1+E(I); i END; SIGNAL ENDPAGE(PRINTER); Vl=SCSI,1)/L1; L(1,1)=0; V2=03 S2=0; I J1=1; I K=1; DO I=2 TO L1; g K=K+1; 1' V2=V2+V1; DO J=J1 TO S1; IF V2<S(J,1) THEN GO TO G04; END; G04: IF J>S1 THEN J=J-1; J1=J; IF J~=1 THEN S2=S(J-1,1); L(I,1)=J-1+(V2-S2)/CS(J,1)-S2); IF K>=K2 THEN K=0; END; K=0; J1=1; DO I=1 TO L1; K=K+1; DO J=J1 TO S1; IF L(I,1)<J THEN GO TO G05; END; G05: IF J>S1 THEN J=J-1; L(I,2)=S(J,2); J1=J; IF K>=K2 THEN K=0; END; V9=0.0; H3=S1-L(L1,1); T5=0; K4=1; i K=0; J3=1; CNC-i a50.0100-0001 DO I=1 TO T1; Originated by: R. E. Brker 'p'ny7-39y TS>(I.5).THEN GO,TO DONE; Figure 1 (Continued Checked by: T. K. Ziegler K=K+1i 'Date:$/e'5/95, Page3(pf $1 b' Revision 6
<*su o u t - v u - tj o og !~ G03: T2 = V 1/ T ( I,3 ) ; T5=T5+T27 T3=L(1,2)+T(I,5); L2=L1-1; DO J=1 TO L2; L(J,2)=L(J+1,2); END; s -J=J-1; X=X+T2; IF X>24'THEN D0; 'J3=J3+1; j X=X-24; IF J3>30 THEN J3=30;
- END, K1=YCJ3)/24; T 9 =.( T3-E ( J 3 ) )
- EXP ( -K 1
- T2/ ( 62. 4
- H 3 ) ) ;
T4=T3-(E(J3)+T9)I jl IF T4<=0 THEN D0; V8=0; GO TO G01; l END; Pl=25.4NEXP(17.62-9500/(P(J3)+460)); T6= C A(J3)+460 ) /(1. -0.378MP1/760 )-46 0 ; ) P2=T3-T4/2; P3=25.4*EXP(17.62-9500/(P2+460)); ~ T7= C P2+460 3 /(1-0. 378mP3/760)-460 ; V8 = ( 2 2. 4
- ABS C T6-T7) *
- 0. 33 3+ 14 *W C J 3) ) M ( P3-P 1) M C S C S 1,1) -S C SI-1,1) ) ;
l V8 = V8
- 10 00 / ( 62. 4
- 10 50
- 4 356 0
- 24 ) ;
V8=V8mT2; i LCLl,2)=T3-T4; ~ G01: V9=V9+V8; LCL1,2)=T3-T4; v. IF LCL1,2)>L(L1-1,2).THEN GO TO G02; DD.J=L1 TO 1 BY -1; l IF J=1 THEN B=J; ELSE B=J-1; IF L(J,2)>L(B,2) THEN GO TO G02; L(B,2)=(L(J,2)*(L1+1-J)+L(B,2))/CL1+2-J); i DO K9=J TO L1; 3 L(K9,2)=L(B,2); i END; END; j IF J<=0 THEN J=1; lG02: IF K=K4 THEN l' PUT FILE (PRINTER) EDI T C I, T5, T3, T4, L ( L 1,2 ), J, L ( J,2), L ( 1,2), V9, E ( J 3), Y C J 3), T ( I,5 ) ) (COLUMN (1),X(4),F(4),X(1),F(6,1),X(1),F(6,2),X(1),F(5,2), 1-X(1),F(7,2),X(1),F(3),X(1),F(7,2),X(1),F(6,2), XC1),F(6,2),X(1),F(3),X(1),F(4),X(1),F(4)); K=0; j IF TS<I.5'THEN GO TO G03; j DONE: END; 1-CLOSE FILE (CARDIN); j' CLOSE FILE (PRINTER); j: Figure 1 (Continued) j Originated by: R. E. Baker CNC-1150.01-00-0001 .s p 3997 ay4 ' ' !'..i U v c 5.. t-N M by T. K @, OG C'- Date:5SO95,Page?of ?. Revision 6
Call //56. ot - ob - ooof CATS PROC (T);- DCL T(*,*) DEC FLOAT (12); l GET-FILE (CARDIN) LISTC(T(I,4) 'D0 I=1 TO 4)) SKIP (4); DO I=5 TO 19; T(I,4)=527*I**-0.2332; END; DO I=20 TO 170; j T(1,4)=527*I**-0.2695; 1 END; DO: I=171 TO 720; T(I,4)=1197*I**-0.4995; END; END CAT; CHK: PROC (T); DCL T(*,*) DEC FLOAT (12); 1 GET FILE (CARDIN) i LISTC(T(I,4) DO I=1 TO 10)) I SKIP (4); DO I=11 TO 27; l T(I,4)=600*I**.22 + 245; l END; DO I=28 TO 120; j g TCI,4)=650*I**.22 + 157; l-END; l DO I=121 TO 720; TCI,4)=800*I*.*-'.22 + 68; END; l END CHK;- l END RUN7067; l Figure 1 (Continued) l ' CNC-Il50.01-00-0001 l Originated by: R. E. Baker l 3997 + Checked by: T. K. ziegier c", i Date:5M/95.Pagewof C 9 Revision 6 l
CN 1150 01-00 0001 i e -I C A rAWBA N U CC. EAR S rATI ON i l S NSWP - Moclel Flow Chari-I M o net INeuT s -Enput number of ver4ica.1 sfagas, Si nurnbar of hours of inpuf, TI numbes-of un?f volvene layers, LI ovfput checla. spo.cIn3 k2 i s+a.gc volumes, S(1,b iay v huperstave$ j' plo.nf flows /hr:, T(I,3)'. r(r,2.) r hed rej'ec.4cci /hc., T(1,4) g I f) 'DEbOCE AT y K=0 c. m 4 l For I= 1 To T I __I I g = g.y t' \\ 4 0... T(I,5)= (tooo/G2 A'-) A i-(IM/ r(h,3) calc.ula.4 e. cr ?, O t.. O YRS IS y._ k(K' - c No k:o IMC.Xk I O b CNC-1150.01-00 0001 Originated by: R. E. Baker ,,,,.. Figu.r.e 2. Catawba SNSWP Model Flow Chart
- y-r 2 ~.>
a Checked by: T. K. Ziegler n 5 Date:Sr/195,Page.mf & Revision 6
O 9NC 1150' 01-00 0001 y, = 0 -n ,r, pvi rndeorglogled Jdo. Fo n J : 1 To S o r<c.m.4 A(,J), P(J), w(J), y(4), E(J) y i : y t + E(a) F_ quil gcium 4ernp. l Next J I /;/ n'/
- **I
..c I_ 1 1 Fd o Si ' ' ' " I '. ' ' F" ' " k'. c.1 ~ ~ ~ ' ' ' ~ / f, d = / % a v =.3 - 3. !."c.- L... 3' _ yy, / / 4. / / ,/\\/,N,/ b \\=onm Unir Vouu ms LAyE_G.s_- Vi = S(Si,1)/LI '"'C: L(i,1)-o sc+ boNm of Ictg2e i o.+ o C+. 2 L. vz=o
- tn s2.o c.
Ji= 1 K:1 ~ i r, 3 FoR I: 2. To L.! c,,,,, k= K 4-t v2.= v2 + v i C c O C pop a:g,70 g; Finds nea cest whole sfo.3a. et yes is V2 < S(J,1 yhg boMom bwnda, of voluma'1. no i i l N ex+ J { 7 l ~ l (JirJ l I 9:4d: s*4 unit volume. I *s less 6on volums, o.4-Singe (, JI p No 9inds nca.resh whole 0*-3C. 0C\\0 ^' y ISE SUe) 4hc boHom bound ar y of volumg t., l L(r,y :J -1 +(V2 -S2)/(S (J,1)-S7) "S"S03 b " '", son "o'+ OASc. V to n a arcs 4 Set.4:s 9 l / { N ext I l r l CNC.1150.0100 0001 .97 39'T Originated by: R. E. Baker Checked by: T. K. Ziegler Figure 2 (continued) Date:5/J' /95,Pagea of $1 i Revision 6
o ._ =. c - wi CINC 1150-01-00 0001 ro a z = i To g ku g I a 1,yors ) For-J =J l +o SM s b es 3 '6 y.t c L(I,1)<J ~. ItJeic4 J L(I,2.) = S(J 2.) YCmp, of ike unik Volume Cgunk5 ihe tensp, oh Oc J i= J closest dage nbc %e boffom bowndary of b unit volume.. yes is K4k j._. ..o !N l g=ol t:. -w s N1 W FL ow I.TER AT 'o to vq: o y H 3 3 S t - L (L i,i) 3ep& f %e. +op tagec, s vs=o K4= + g=o ,c J3:1
- o P&nk --
t-o } por z= i To T I yes IS rs > (n-o.s) _\\ v= k+ L 1 uo Tz = vi/ r(r,3) ima r equ'i,ed fw Clow %Q e9 I una vi ume, Ts : Ts + Tz T3"'(t.4+T(I,5) disciutr3e. + cmp. from pland. . L2 = u -, O For J:1 To LZ SC 5 fCmP. ofecc$ Icyer lo %e -femp, L(J,2) : L(d + l. ~2) of %e ince above R. I n p N E)(k d 5 I y L A 1 ) CNC-Il50.01-00 000) Originated by: R. E. Baker U Checked by: T. K. Ziegler Figure 2 (c'ob INued) Date:5r 995, Page1 of ? ~,' Revision 6
?n6 1 1 5 0 0 1 - 0 0 glo o i A cc.ous r r:oR f )(uMyd S v R.TA
- i yu is C.o o t in s i
424 g No J3 J3+1 A, l X = x-2 A Kl Y(JB)/29-T9 = (T 3 - s (J3)).+ EXP(- Kl4T2/$2.4W H 3)) T4: TS - (E(J3) + T9) 4 ) is 74)o V8=oj y N u: ~. ve <. V'),. 4 Pt = 2s.4 *exP(n.62 -9 S 00/( P(J3) + 460)) l Wakec va.por pectrurc l T6 = (A(J3)+ 46o)/(I. - o.37 8
- PI /76o)-4GD V4"'d 'I" IC'hf-j P2 = T3 - Tzt/z 4*P of rf
""Scyra.cc,{ctucr Su g T PB = zs.4 *EXP(t7.62 -99ocs/(P2. + 4603 Sakuca.f ec( va p or pecscare, <& wakar T7" (PZ + 9-Go)/(,.lio - o.37 8
- P3/760)- 4 6o su cFa.cc. +cm p.
VB = (21.4 *AB s(76-T7)** o. 333 + i4 g w(3 3)) ~ O
- (P3 -Pi) * (s ( SI,1) - S ( si - gji))
C C C VB : VS
- t ooo/(61. 4 4 loso,9 43 56 o.+2+)
" e""(d'. d"" * * = ve = va
- ra.
+op ayer L ( Li' Z) = T3 -T'F V Surfece 4emp. a%c coo (ing. yq yq 4 yg, Tdn( CVapordton L (LI 2) : ~i~ 3 - T'9- ' 6""F"I-"4""8*" .A Cooling J L Ob' CNC-Il50.01-00-0001 Originated by: R. E. Baker F1gure 2 (continued) Checked by: T. K. Ziegler Date:5f/d95.Pagehof j' Revision 6
bMG 1130*U1-uv vvv2 I.M T ABn.i r y iS
- 5 L(u,2)> L (t.1 -I* 2~D"
'0 u* "P" ' I"'J er ~ e / victo-m e r % n 4 V,u / Io.y> bdcv iF? 1 imo Foa JS U To l STE P-\\ Y is4he. upper (he<- 3 'b
- c war macMan &
L(J,2)> L(J-t,2 te3er bdu ii.? va.: j (4 *J l L ( J -1, d ' (t.(J,2)* (LI 4 i-J] + L(J-t,2) ALi 4 2.-J) E' d " "* " J bn. se m<.u:ed mi ~ Fo R K 'l = J T o L i Set all4 ems.of L ( ket,2.) = L (J -l,5.) i 9'" to ch'2t r-aver age. s, 4tm p. 'N N e_ d m L. J g n o Ne.xf-d No 0
- ,8 k
- M' I k
\\ g. y Yes Pr< w T... K= o O O s:- C T 54I ,5 ye5 m v E No q N e.x 4 3. ' g EN1)} O C CNC-1150.01-00 0001 F.:gure 2 (cont.anued) Originated by: R. E. Baker Checked by: T. K. Ziegler Date:5/F195, Page'4%f $C) Revision 6 i
CNC-1150.0100-0001 Originatedby: R.E. Baker Checked by: T. K. Ziegler Date: 5/25/95,Pagei9of 59 Revision 6 - Figure 3. List of Program Variables A(J) Daily air temperature l E(J) Equilibrium temperature K2 Output check spacing K4 A counter, determines how often to print L1 Number of unit volume layers in the pond L2 Number of unit volume layers minus one L(1,1) Floor depth of each unit volume, from the bottom up L(I,2) - Temperature of each unit volume layer P(J) Daily dew point temperature S1 Number of vertical stages in pond, in feet S2 Total volume to nearest stage below I unit layers ) S(I,1) Total volume of pond at each foot of elevation from bottom - S(I,2) Initial temperature of pond at each stage Tl Number of hours ofinput .T2 Time increment for one unit volume to pass through plant T3 Discharge _ temperature from plant T4 Heat loss to atmosphere I T5 Total time elapsed T9 Heat loss equation T(I,1) Equilibrium temperature T(I,2) Exchange coefficient T(1,3) Flow through plant T(I,4) Heat input to pond from the plant T(I,5) Calculated AT for plant discharge V1 Volume of a unit volume layer V2 Volume of pond, up to but not including layer 1. W(J) Daily wind speed Y(J) Daily surface heat exchange coefEcient c, c "h c C
CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95,Page45of 59 Revision 6 Figure 4 Input Variables l ) SI: S1 is the depth in feet available for use in the SNSWP. The full pond elevation of the SNSWP is 572 feet mean sea level (ms!). The pond elevation is set at 570.64 ft mst for the LOCA analysis due to losses (see Model Inputs section). The intake for the nuclear service water system is at elevation 540 feet mst (see Figure 6). This gives a total usable depth of greater than 30 feet for the SNSWP. Tl: Tl is the number of hours of input and analysis for the LOCA period. From Regulatory Guide 1.27, Revision 2,720 hours (30 days) is used. LI: L1 is the number of unit volume layers. From engineering judgment, 20 unit volume layers are used. The number oflayers selected has only a very slight impact on the calculated temperatures, ~unless a very small number is used, which will have a i much greater impact, K2: K2 is the output check spacing. The number used does not influence the model results at all. K2 is assumed equal to 20. S(I,1): S(I,1) is the volume of the pond at each foot of elevation. The numbers are from the area volume curve (see Attachment A). S(I,2): S(I,2) is the initial temperature of pond in degrees F. T(1,3): T(1,3) is the flow rate from the SNSWP to the plant for hours 1 through 4 and hours 5 through 720 (See Input Section, Reference CNC-1223.24-0041).
CNC-1150.01-00-0001 Originatedby: R.E. Baker Checked by: T. K. Ziegler Date: 5/25/95,PageWoof59 Revision 6 Figure 4 (Input Variables, continued) TU.4): T(I,4) is the heat rejected to the SNSWP from the plant. AQ) A(J) is the daily air temperature, 'F, for the 30-day LOCA period. E(D: P(J) is the daily dew point temperature, F, for the 30-day LOCA period. W(Jh W(J) is the daily wind speed measured at 2m height, mph, for the 30-day LOCA period. FA E(J) is the daily equilibrium temperature, 'F, for the 30-day LOCA period. XQ): Y(J) is the daily heat exchange coefficient for the 30-day LOCA period, Btu /ft / day / F. 2 I 4 o 9 f 0 g 4
CNC-1150.0100-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95, Page4'7of 59 Revision 6 Figure 5. Model Output Variables limc: I, Iteration number, approximate time since beginning of LOCA. Real Time: T5, time in hours from start of LOCA. Discharge Temocrature: T3, discharge temperature from the plant to the pond. It equals the intake temperature plus the plant AT, F. Heat Loss: T4, heat lost to the atmosphere from the top layer, 'F. Cool Down: L(LI,2), the surface layer temperature after cooling to the atmosphere and mixing due to water densities, F. Un Mix: J, number (from bottom) of the deepest mixed layer. Mixed Temo: L(J,2), average temperature of the mixed region, F. The mixed layers are set equal to this temperature. l Intake Temp: L(1,2), intake temperature of the plant, *F. The temperature of unit layer number 1. ) Evan Ac-Ft: V9, total evaporation from the pond up to time period I, Acre-feet. E: E(J3), equilibrium temperature at time I, *F. K: Y(J3), exchange coefficient at time I, Btu /(ft' day F). Flow TCFH: T(I,3), flow rate into the plant at time I, thousands of cubic feet / hour. I c 0
T DATASET: CHAYLI8ts.D'.TA CATApSA PLANT -MORST HEAT TRANSFER-TITLE 720 T1:
- OF HOURS IteUT 20 11:
- OF UNIT VUltME LAYERS to K2:
SUTPUT CHECK SPACING I C ~~ 31 S1:
- OF YERTICAL STAGES (FT)
C c SII,1): VoltME IN PtNI AT EACH STAGE tACFT) g S 0 0 0 0 0 1 1 2 6 10 16 23 32 41 N 53 d6 79 92 113 133 154 176 200 224 251 279 310 341 g74396.1434 p C SII,23: INITIAL TEPFERATURE AT EACH STAGE IF) C 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 r"~ 91.5 91.5 91.5 91.5 91.5 91.5 91.5 a E C LOOPING VALUES APS PLANT FLOMS FOR TII,3) 81000eCU. FT/Itt ) C ~ 4 304.8 720 152.4 S C C-TII,13: IleUT HEAT IPSTU/HR) C C 117.4 171.7 182.9 188.2 147.9 262.9 258.5 253.9 229.9 245.9 242.1 238.2 234.2 231.4 227.8 224.2 222.0 219.1 216.0 214.1 211.8 211.8 211.8 211.8 rw 195.0 195.0 195.0 195.0 195.0 186.8 177.9 167.2 o 159.3 159.3 151.0 151.0 142.0 142.0 142.0 142.0 ) It2.0 142.0 142.0 128.5 128.5 128.5 85.5 77.1 s" 69.8 63.9 59.6 59.6 C -+- C AlJ) PtJ) MtJ) YtJ) EtJ) C 2 f 1 72 2 17t> 90 y 85 71 2 106 93 89 78 2 184 92 89 72 2 189 94 "3 91 71 2 198 95 ) 83 72 5 197 85 o 79 71 1 142 81 u 83 71 3 166 86 e 72 61 5 154 73 73 58 1 166 82 75 60 2 163 86 77 62 4 187 84 yg 78 63 4 167 80 72 66 3 135 77 C 73 69 3 133 76 3 77 70 2 157 86 O{Q 77 63 4 159 80
- R 8 93. O 5' M E 5 i
= y o. g
- 3 q* 5
- ap z,.
2H' EF[Fg 3 E D' 8 3Gu~ 4{
4 Figure 6 CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date:5/-//95, Page dof ^i Revision 6 e 2 a.I t. C 3 R8883523382 R 4
- 525.:33.:28*
n- ~... -~~ NM-WMMMMMMMMM i 23:33 02:23:2
- 2RR2 2885833
_._m._. CATAleA -MORST HEAT TRAN5FE2-PA. TIE henL DISC HEAT. CtML LM MIME 0 INTAKE EVAP E' K TEM TIE TEM L55S OtBed MIX TEM TEff' AC-FT TCFM i 1 3.1 97.67 3.52 94.15 19 91.50 91.50 0.16. 90 170 305 i 4 6.2 101.40 5.23 96.16 19 '94.15 91.50 0.35 - 90 170 305 7 12.4 118.64 20.30 98.39 19 96.16 91.50 1.02 90 170 152 13 18.6 116.13 18.49 98.01 19 98.01 91.50 1.64 90 1 70 152 to 24.8 114.01 15.54 .98.47-19 90.01 91.50 2.23 93 186 152 26 3:t.0 112.01 14.06 98.21 19 98.21 91.50 2.78 93 186 152 32 3P.2 111.14 13.42 98.05 18 98.05 91.50 3.32 ' 93 186 152 38 41.4 111.14 13.42 97.98. 15 97.98 91.50 3.85 93 186 152 44 49.6 110.21 13.40 97.82 14 97.82 91.50 4.35 92 184 152 51 E5.8 109.08 12.57 97.65 13 97.65 91.50 4.83 92 184 152 57 62.0 109.08 12.57 97.63 12 97.53 91.50 5.30 92 184 152 1 . 63 68.2 108.25 11.96 97.40 11 97.40 91.50 5.76 92 184 152 69 74.4 108.25 10.62 97.63 19 97.40 91.50 6.23 94 189 152 - 75 80.6 100.25 10.62 97.63. 19 97.63 91.50 6.69 94-189 152 i 82 86.8 107.38 9.97 97.56 IS-97.56 91.50 7.13 94 189 152 L SS 93.0 107.38 9.97 97.52 17 97.52 91.50 7.58 94 189 152 94 99.2 107.38 9.42 97.96 19 97.52 91.50 8.03 95 198 152- 'i 100 105.4 106.43 8.70 97.84 19 97.84 91.50 8.47 95 198 152 106 111.6 106.43 S.70 97.81 18 97.81 91.50 8.91 95 198 152 113 117.4 106.43 S.70 97.79 17 97.79 94.15 9.35 95 198 152 119 124.0 109.08 18.19 97.16 2 97.14 96.16 9.95 85 197 152 125 130.3 111.09 19.82 96.87 1 96.87 96.87-10.56 85 197 152 l 131 136.5 111.80 20.35 96.60 1 96.60 96.60 11.21 85 197 152 i 137 142.7 111.53 20.15 96.33 1 96.33 96.33 11.85.85 197 152 144 148.9 111.27 19.43 96.11 1 96.11 96.11 12.39 81 142 152 150 155.1 111.04 19.29 95.89 1 95.89 95.89 12.92 31 142 152 l 156 161.3 110.82 19.15 95.68 1 95.68 95.68 13.45 81 142 152 162 167.5 110.61 19.01 95.48 1 95.48 95.48 13.98' 81 142 152 ) + 168 173.7 110.41 17.06 95.37 1 95.37 95.37 14.51 86 166 152 175 179.9 108.88 16.00 95.25 1 95.25 95.25 15.01 86 166 152 181 186.1 108.76 15.91 95.13 1 95.13 95.13 15.51 86 166 152 187 192.3 108.64 23.94 94.61 1 94.61 94.61 16.16 73 154 152 193~ 198.5 108.12 23.59 ' 94.10 1 94.10 94.10 16.00 73 154 152 199 -204.7 107.61 13.25 93.61 1 93.61 93.61 17.42 73 154 152 t 206 210.9 102.61 19.89 93.07 1 93.07 93.07 17.94 73 154 152 alt E17.1 102.06 14.02 92.82 1 92.82 92.82 18.44 82 166 152 + 218 223.3 101.81 13.85 92.58 1 92.58 92.58<18.93 82 166 152 l t4 229.5 101.57 13.68 92.34 1 92.34 92.34 19.42 82 166 152 it{s0 235.7 101.33 13.51 92.11 1 92.11 92.11 19.91 82 166 ISE t 237 241.9 101.11 10.46 92.06 1 92.04 92.04 20.34 86 -163 152 243 248.1 101.03 10.41 91.97 1 91.97 91.97 20.77. 86 163 152 249 254.5 100.96 10.36 91.90 1 91.90 91.90 21.21.86 163 152-255 260.5 100.89 10.31 91.84 1 91.84 91.84 21.64 86.163 152 262 266.7 100.83 12.48 91.66 1 91.66 91.66 22.13 84 187 152 i 268 272.9 100.65 12.35 91.49 1 91.49 91.49 22.63 84 187 152 i 274 279.1 100.48 12.22 -91.33 1 91.33 91.33 23.12 04 187 152 . 200 285.3 100.32 12.10 91.18 1 91.18 91.18 23.60 84 187.152 286 291.5 200.17 14.14 90.92 1 90.92 90.92 24.04 80 167 152 293 297.7 99.91 13.96 90.67 1 90.67 90.67 24.48 80 167 162 299 303.9 99.66 13.79 90.43 1 90.43 90.43 24.92 80 167 152 P3 C7 (1 C) (1 91 QE:P 2. 25 dF G R 8 9. f) c 5' h0 "I E 2-8 b Y
- y... g g
-o -3 ~ ?# ha ra b ff,ji y S sEFE[ l
___m ..m _____.m.._.. C.*.TAfeA -MORST MEAT TRANSFEA-PA' TIM 'REAL DISC HEAT-CGIL tM MIXED INTAKE EVAP E K TEW TIM ' TEM LOSS ' DS00 MIX TEW TEN AC-FT TCFM 305 310.1 98.54 13.00 90.19-1 90.19 90.19 25.33 80 167 152 '311 316.3 98.29 13.27 89.93 1 89.93 89.93 25.68 77 135 152 317 322.5 98.04 13.11 89.68 1 89.64 89.68 26.02 77 135 152 324 328.7 97.79 12.96 89.44 1 89.44 89.44 26.36 77 135 152 350 334.9 97.54 12.81 89.20 1 89.20 89.20 26.70 77 135 152 ' 336 341.1 97.31 11.95 89.01 1 89.01 89.01 27.01 78 133 152 342 347.3 97.12 11.81 88.82 1 88.82 88.82 27.31 78 133 152 348 353.5 96.93 11.78 88.64 1 88.64 88.64 27.62 78 -133 152 355 359.7 96.75 11.59 88.47 1 88.47 88.47 27.92 78 133 152 361 365.9 96.58 7.18 89.40 19 08.47 88.47 28.20 86 157 152 367 372.1 96.58 7.18 89.40 19 89.40 88.47 28.48 e6 157 152 373 378.3 96.58 7.18 89.40 18 -89.40 88.47 28.76 M 157 152 379 3M. 6 96.58 11.33 88.45 1 88.45 88.45 29.10 80 159 152 386 -390.8 96.56 11.31 88.29 1 88.29 -88.29 29.44 80 159' 152 392 397.0 96.40 11.20 88.13 1 e4.13 88.13 29.77 30 159 152 398 403.2 96.24 11.10 87.98 1 87.98 87.98 30.10 80 159 152 404 409.4 95.32 11.21 87.79 1 87.79 87.79 30.45'77 131 152 ~ C10 415.6 95.13 11.10 87.60 1 87.60 87.60 30.78'77 131 152 417 421.8 94.94 10.99 47.42 1 87.42 87.42 31.12 77 131 152 =423 428.8 94.76 10.87 87.24 1 87.24 87.24 31.45 77 131 152 ' Ct9 434.2 94.54 9.83 87.12 1 87.12 87.12 31.80 30 155 152 435 440.4 94.44 9.75 87.00 1 87.00 87.00 32.15 80 155 152-441 446.6 94.34 9.67 86.88 1 86.08 86.38 32.50 80 155 152 448 452.8 94.22 9.59 86.77 1 86.77 86.77 32.M 30 155 152 <54 459.0 94.11 4.09 90.02 19 86.77 86.77 33.11 88 153 152 440 465.2 94.11 4.09 90.02 19 90.02 86.77 33.38 88 153 152 446 471.4 94.11 4.09 90.02 18 90.02 86.77 33.65 38 153 152 .,.472 477.6 94.11 4.09 90.02 19 90.02 86.77 33.92 as 153 152 ' 479 443.8 94.11 6.67 89.50 16 89.50 86.77 34.20 M 149 152 485 490.0 94.11 6.67 89.16 15 89.16 86.77 34.48 -34 149 152 491 496.2 94.11 6.67 88.91 14 88.91 86.77 34.76 M 149 152 C97 502.4 94.11-6.67 88.73 II 88.73 86.77 35.03 M 149 152 503 544.6 93.49 6.01 88.59 12 88.59 86.77 35.32 85 170 152 510 514.8 93.49 6.01 88.48 11 88.48 86.77 35.61 85 178 152 516 521.0 93.49 6.01 08.39 10 88.39 86.77 35.89 85 170 152 522 527.2 93.49 6.01 88.31 9 88.31 86.77.36.18 85 170 152 Ett 533.4 93.49 8.24 -80.00 8 88.08 86.77 36.44 81 149 152 454 539.6 93.49 8.24 87.88 7 87.88 86.77 36.69 81 149 152 541 545.8 93.49 8.24 '87.70 6 87.70 06.77 36.95.81 149 152 547 552.0 93.49 7.10 87.62 5 87.62 86.77 37.16-St III 152 r 553 558.2 93.49 7.10 87.55 4 87.55 86.77 37.37 82 133 15g 559 564.4 93.49 7.10 87.44 3 87.48 86.77 37.58 82 133. 152 565 570.6 93.49 7.10 87.45 2 87.45 86.77 37.79 et III 152 572 576.8 93.49 6.48 87.40 i 87.40 87.40 38.05 M 159 152 578 583.0 94.12 6.92 87.39 1 87.39 87.39 38.31 M 159 152 586 Se9.2 94.11 6.91 87.38 1 87.38 er.38 38.58 M 159 15e l n90 595.4 94.10 6.91 87.38 1 87.38 87.38 34.M M 159 152 596 601.6 94.09 6.32 .87.78 19 87.38 - 87.38 39.18 85 164 152 I 603 607.8 93.64 4.00 87.71 19 87.71 87.38 39.35 85 164 152 609 614.0 93.64 6.00 37.69 18 87.69 87.38 39.61 85 164 152 yanoo -: a "2Z oo Q E =% 0. O -o5 c $5EES 3 i E$gE5 .- s e mH* b I NFs.m $ m o ? -a if E[ 4 em we.un.m. m--
- ____a_ _. _ _. _ _ _. _ _ _ _ _ _ _ _ _ -
a . 2.m .2.-.... m..
. _ ~... t CATADSA -NINtST HEAT TRANSFER-PA, TIE DISC HEAT' CIRL UN IGNED INTAKE EVAP E K TEM TIfE TEW LOSS DG84 MIX TEW TEW AC-FT TCFM 615 620.2 93.64 6.00 87.67 17 87.67 87.38 39.86 85 164 152 621 626.4 93.64 6.59 87.55 16 97.55 87.38 40.09 84 159 152 627 632.6 93.64 6.59 87.47 15 87.47 87.38 40.31 84 159 152 634 638.9 93.64 6.59 87.41 14 87.41 87.38 40.54 84 159 152 . 640 645.1 93.64 6.59 87.37 1 87.37 87.37 40.77 84 159 152 646 651.3 95.M 4.81 88.83 19 87.37 87.37 41.03 87 178 152-652 657.5 93.64 4.81 88.83 19 88.83 87.37 41.29 87 178 152 658 663.7 93.64 4.81 88.83 18 88.83 87.37 41.56 87 178 152 665 669.9 93.64 4.81 88.83 19 88.83 87.37 41.82 87 178 152 671 676.1 93.64 0.48 93.16 11 88.83 87.37 42.08 93 190 152 677 682.3 93.64 0.48 93.16 19 93.16 87.37 42.33 93 190 152 683 688.5 93. M 0.48 93.16 18 93.16 87.37 42.59 93 190 152 689 694.7 93.64 0.48 93.16 19 93.16 87.37 42.85 93 190 152 696 700.9 93.64
- 2. M 92.71 16 92.71 87.37 43.12 90 194 152 702 707.1 93.64 2.M 92.41 15 92.41 87.37 43.39 90 194 152 i
708 713.3 93.64 2.M 92.19 14 92.19 87.37 43.67 90 194 152 l 714 719.5 93.64 2.M 92.03 13 92.03 87.37 43.94 90 194 152 720 725.7 93.64 2.74 91.90 12 91.90 87.37 44.21 90 194 152. l t k ' 4 MCOOO
- 1 8 =. 2 65-9 a = 9. O c
- - a 5' 50
- g. -
5sg5.5 ~e b.#E r e <5aFNcb <,g en o N ~~ ? O n< % w .n >'Q ~
i T DATASET: CNAY1STS.D!.TA CATASSA PLANT -NERST HEAT TRANSFER-TITLE 720 T1: 8 SF MOURS I W UT to L1 8 SF LMIT VOLLDE LAYERS 20 Kt: SUTPUT CHECK SPACING C 31 S1: 8 SF VERTICAL STAGES IFT) C C SII,1): VOLL2E IN PtDe AT EACM STAGE E ACFT) C 7 O O O O O 1 1 2 6 10 16 23 32 41 53 66 79 92 113 133 154 176 200 224 251 279 310 341 (b 374 396.1 434 i C J C Silet): INITIAL TENERATURE AT EACM STAGE E F) C 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 C LelFING VALUES AND PLANT FLEDES FINt TII,3) i1000aCU.FT/ hit) C 7 4 369.0 720 184.5 C M C TII,1): IW UT HEAT tieTU/HR) C117.4 171.7 182.9 188.2 147.9 262.9 258.5 253.9 C 249.9 245.9 242.1 238.2 234.2 231.4 227.8 224.2 iii:i !?!:1 !!!:: !?t:1 !?i:: !!!:: ill: !!):: O 159.3 159.3 151.0 151.0 142.0 142.0 142.0 142.0 112.0 142.0 142.0 128.5 128.5 128.5 85.5 77.1 h. -69.0 63.9 59.6 59.6 c .I C AtJ) PtJ) NfJ) YtJ) EtJ) o C 3 (1 72 2 178 90 e 85 71 2 186 93 89 79 t 184 92 } 89 72 2 189 94 91 71 2 198 95 (3 72 5 197 85 79 71 3 142 81 7_ 83 71 3 166 86 72 61 5 154 73 73 58 3 166 82 75 60 1 163 86 S 77 C2 4187 84 C 78 63 4 167 80 7 72 66 3 135 77 73 69 3 133 78 77 78 2 157 86 77 68 4 159 80 MCO O QE& .Z C;'.9 R s R " %. O g.' 5UfEE T '^ E -;F.H " S6 %.7 P $ $.,.a to - U 8 (n U- $ na2
i l Figure 7 CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T.K.Ziegler Date:5/i'/95, Page :br P Revision 6 4 7 i i I i i 4 j l 1
- i 4
d w t Y 8 1 4 y a u. 6. R8883538382*R -e--.. .g-egg 02:20% 2 20-- NM-NMMNMMMMMM 14 4 h 22RRR:2385882
-~,---..n_---. c .-.~. - - -_. _ - - -.- - _. ---.~.-_n~.~.----- -.- -=- _..-_._. CATASSA -MENtST HEAT TRANSFER-PJ TIM uL OISC HEAT CSOL LM MXED INTAKE EVAP E K TEM i TIM TEW LSSS' OtDei M X TEW TEW AC-FT TCFM l 1 ~ 2.6 96.60 2.63 93.97 -19 91.50 91.50 0.12 90 170 369 4 5.1 99.67 3.85 95.82 19 93.97 91.50 0.27 90 170 369 6 10.2 114.34 15.52 98.81 19 95.82 91.50 0.77 90 170 c185 11 15.4 112.53 14.37 98.49 19 98.49 91.50 1.24 90 170 185 16 20.5 110.97 13.38 98.19 18 98.19 91.50 1.68 90 170- 185 El 25.6 109.90 11.34 98.56 19 98.19 91.50 2.12 93 186 185-27 30.7 108.44 10.36 98.32 19 98.32 91.50 2.53 93 186 185 32 35.9 107.73 9.88 98.18 15 98.18 91.50 2.93 93 186 185 37 '41.0 107.73 9.88 98.13 14 98.13 91.50 3.33 93 186 185 c.t 46.1 106.95-9.36 98.06. 13 98.06 91.50 3.72 93 186 185 97.94 -12.97.94 91.50 4.09 92 1M 185 47 51.2 106.95 9.97. 97.81 11 97.81 91.50 4.45 92 1M 385 52 56.4 106.02 9.35 57 61.5 106.02 9.35-97.71 le 97.71 91.50 4.81 92 IM 185 i 62 66.6 105.34 8.09 97.60 9 97.60 91.50 5.16 92 1M 185 ~' 68 71.7 105.34 8.89 97.52 8 -97.52 91.5C 5.51 92 1M 185 l 73 76.8 105.34 7.67 - 97.66 -19 97.52 91.50 5.06 M 189 185 78 82.0 105.34 7.67 97.66 19 97.66 91.50 6.21 94 189 185 83 87.1 104.62 7.18 97.59 18 97.59 91.50 6.55 94 189 185 r 88 92.2 104.62 7.18 97.55 17 97.55 91.50 6.88 94 189 185 53 97.3 104.62 6.67 97.95 19-97.55 93.97 7.23 95 198 185 98 102.5 107.09 8.38 98.70 19 97.95 95.82 7.61 95 198 185 103 107.6 108.16 9.13 99.03 19 98.70 97.52-8.00 95 198 -185 109 112.7 109.85 10.30 99.55 19 99.03 97.52 8.43 95 198 185 114 117.8 109.85 10.30 99.55 19 99.55 97.52 8.85 95 198 185 119 125.0 109.85 17.19 97.91 15 97.91 97.52 9.38 85 197 185 124 128.1 109.85 17.19 97.40 1 97.40 97.40 9.90 85 197 185 ' 129 133.2 109.73 17.11 97.16 1 97.16 97.16 10.42 85 -197 185 134 138.3 109.49 16.94 96.93 1 96.93 96.93 10.93 85 197 185 139 143.5 109.26 16.78 96.70 1 96.70 96.70 11.45 85 197 185 t . 144 148.6 109.04 16.04 96.52 1 96.52 96.52 11.08 81 142 185 150 153.7 108.85 15.93 96.34 1 96.34 96.34 12.31 81 142 185 r '155 158.8 108.67 15.83 96.16 1 96.16 96.16 12.73 81 142 185 I -165 169.1 108.33 14.05 95.91 1 95.91 95.91 13.58 86 166 185 ' t 160 163.9 108.50 15.73 96.00 1 96.00 96.00 13.15 81 142 185 i 170 174.2 107.07 13.26 95.00 1 95.80 95.80 13.98 86 166 185 t '175 179.3 104.97 13.19 95.70 1 95.70 95.70 14.39 86 166 185 ISO 184.4 106.06 13.13 95.61 1 95.61 95.61 14.79 86 166 185 185 149.6 106.77 13.06 95.51 1 95.51 95.51 15.19 86 166 185 191 194.7 106.67 20.25 95.06 1 95.06 95.06 15.72 73 154 185 l 196 199.8 106.22 19.98 94.61 1 94.61 94.61 16.24 73 154.185 201 204.9 102.04 17.47 94.11 1 94.11 94.11 16.69 73 154 105-206 210.1 101.54 17.17 93.63 1 93.63 93.63 17.13 73 154 '185 til 215.2 101.05 16.87 93.15 1 93.15 93.15 17.56 73 154 185 216 220.3 100.58 11.69 92.94 1 92.94 92.94 17.96 82 166 185 221 225.4 100.37 11.55 92.73 1 92.73 92.75 18.36 82 166 185 226 230.5 100.16 11.42 92.53 1 91.53 92.53 18.76 82 166 185 232 235.7 99.96 11.30 92.34 1 92.34 92.34 19.16 82 166 185 237 240.8 99.77 8.57 92.28 1 92.28 92.28 19.51 86 367 185 242 245.9 99.71 8.53 92.23 1 92.23 92.25 19.86 86 les 185 247 251.0 99.65 8.50 92.17 1 92.17 92.17 20.21 86 163.185 WCOOO N QE~1Z 6 E U. O c a cr E kkb 5 i E$eaa 4 .q. 7.i " E 5o.M n o T 6 %Pg ?> [ G - u-Q w 2% i m __,_________m_______.__.__ ,,_~,, y
.. ~..- CATAleA -905RST MEAT TRANSFER-PL TIM REAL OISC NEAT' CtRR. LM MIME 0 INTAKE EVAP E K TEN TIM TEN LUSS 0908 MIX TEN TEM AC-FT TCFM 252 256.2 99.60 '8.46 92.12 1 92.12 92.12 20.55 86 163 185 ' 257 261.3 99.55 S.43 92.07 1 92.07 92.07 20.90 86 163 185 262 266.4 99.50 10.43 91.92 1 91.92 91.92 21.30 84 187 185 247 271.5 99.35 10.33 91.78 1 91.78 91.78 21.70 84 ' 187 185 273 276.7 99.20 10.23 91.64 1 91.64 91.64 22.10 84 187 185 278 281.8 99.06 10.13 91.50 1 91.50 91.50 22.50 84 187 185 283 286.9 99.93 10.04 91.37 1 91.37 91.37 22.89 84 187 185 288 292.0 98.80 11.87 91.15 1 91.15 91.15 23.25 80 167 185 - 293 297.2 98.57 11.73 90.93 1 90.93 90.93 23.61 80 167 185 298 302.3 98.36 11.59 90.72 1 90.72 90.72 23.96 80 167 185 303 307.4 97.42 11.00 .90.51 1 90.51 90.51 24.30 80 167 185 308 312.5 97.21 11.19 90.29 1 90.29 90.29 24.59 77 135 185 314 317.6 96.98 11.06 90.07 1 90.07 90.07 24.87 77 135 185 319 322.8 96.76 10.94 89.85 1 89.85 89.85 25.15 77 135 185 5 .> 324 327.9 96.55 10.82 89.65 1 89.65 89.65 25.43 77 135 185 329 333.0 96.35 10.71 89.45 1 89.45 89.45 25.71 77 135 185 334 338.1 96.14 9.95 49.29 1 89.29 89.29 25.96 78 133 185 339 343.3 95.98 9.06 89.13 1 89.13 89.13 26.21 78 133 185 f 344 348.4 95.82 9.77 88.97 1 88.97 88.97 26.45 78 133 185 t 349 353.5 95.67 9.69' 88.82 1 88.82 88.82 26.70 78 133 185 355 358.6 95.52 9.61 88.68 1 88.68 88.68 26.94 78 133 185 ~ .360 363.8 95.38 5.71 89.67 19 88.68 88.68 -27.17 86 157 185 i 365 368.9 95.38 5.71 89.67 19 89.67 88.68. 27.39 86 157 185 '370 374.0 95.38 5.71 89.67 18 89.67 88.68 27.62 86 157 185 375 379.1 95.38 5.71 89.67 19 89.67 88.68 27.84 86 157 185 380 384.2 95.38 9.43 88.92 16 88.92 88.68 28.12 80 159 185 385 189.4 95.38 9.43 88.60 1 88.60 88.60 28.39 80 159 145 390 394.5 95.30 9.38 88.47 1 88.47 88.47 28.66 80 159 185 395 399.6 95.17 9.30 88.34 1 88.34 88.34 28.94 80 159 185 401 404.7 94.40 4.83 88.20 1 88.20 PS.to 29.20 80 159 185 i 406 409.9 94.26 9.37 88.03 1 80.03 88.03 29.48 77 131 185 411 415.0 94.10 9.28 47.87 1 87.47 87.87 29.76 77 131 185 C16 420.1 93.94 9.19 87.72 1 87.72 87.72 30.03 77 131 185 421 425.2 93.78 9.11 87.57 1 87.57 87.57 30.30 77 131 185 . 426 430.4 93.63 9.03 87.42 1 87.42 87.42 30.58 77 131 185 i C31 435.5 93.4e 8.14 87.31 1 87.31 87.31 30.86 80 155 ISS C36 440.6 93.38 S.08 87.21 1 87.21 87.21 31.14 80 155 185 i 9442 445.7 93.28 S.02 87.11 1 87.11 87.11 31.42 80 155 185 447 450.9 93.18 7.96 87.02 1 87.02 87.02 31.70 80 155 185 C52 456.0 93.08 7.90 36.93 1 86.93 86.93 31.98 80 155 185 457 461.1 92.99 2.99 90.00 19 86.93 86.93.32.20 SS 153 185 462 466.2 92.99 2.99 90.00 19 90.00 86.93 32.41 SS 153 185 467 471.3 92.99 2.99 90.00 18 90.00 86.93 32.63 88 153 ISS 472 476.5 92.99 2.99 90.00 19 90.00 86.93 32.84 88 153 185 G77 481.6 92.99 5.30 89.54 16 49.54 86.93 33.07 84 149 145 1 483 446.7 92.99 5.30 89.23 15 89.23 86.93 33.29 84 149 185 488 491.8 92.99 5.30 89.01 14 89.01 86.93 33.51 84 149 185 G93 497.0 92.99 5.30 88.85 13 88.85 86.93 33.73 84 149 185 i 498 502.1 92.99 5.30 88.72 12 88.72 86.93 33.96 84 149 185 503 507.2 92.48 4.77 88.62 11 88.62 86.93 34.19 85 170 185 ,oCOOO
- 11 e
aZ oc y :e :8 % O Ei cr " X s - w a .,g
- ? H ~ ~ 6 y
EF F8 i s Mo i Sy.E t:53 ,??., n% l l 1 i =
...._m_.__...___ ._.m .._. _ _... ~ m CATAleA -McRST HEAT TRANSFER-PA 'TIPE meal OISC NEAT. CtM L LM MIXE0 INTAKE EVAP E K TEW TITE TEM - LtBS DtSO4 MIX TEM TEN AC-FT TCFM SOS 512.3 92.48 4.77 88.53 10 88.53 86.93 34.42 SS 170 185 513 517.5 92.48 4.77 88.47 9 88.47 86.93 34.64 85 170 185 518 522.6 92.48 4.77 88.41 8 88.41 86.93 34.87 85 170 185 524 527.7 92.48 4.77 88.36 7 88.36 86.93 35.10 85 170 185 529 '532.8 92.48 6.77 88.18 6 88.18 86.93 35.31 81 149 185 534 537.9 92.48 6.77 88.01 5 88.03 86.93 35.52 81 149 185 539 543.1 92.48' 6.77 87.89 4 87.89 86.93 35.73 81 149 185 544 548.2 92.48 6.77 87.77 3 87.77 86.93 35.94 81 149 185 549 553.3 92.48 5.74 87.71 2 87.71 86.93 36.11 St 133 185 L 554 558.4 92.48 5.74 87.67-1 87.67 87.67 36.28 82 - III 185 . 559 543.6 93.22 6.15 87.64 1 87.64 87.64 36.45 St 133 ISS 565 568.7 93.19 6.13 87.61 1 87.61 87.61 36.63 82 133 185 3 570 573.8 93.16 6.12 87.58 1 87.58 87.58 36.81 82 133 185 ' 575 578.9 93.13 5.60 87.58 1 87.58 87.58 37.02 84 159 185 500 584.1 93.13 5.60 87.57 1 87.57 87.57 37.23 M 159 185 l 585 589.2 93.12 5.60 87.57 1 87.57 St.57 37.44 84 159 185 590 594.3 93.12 5.59 87.57 1 87.57 87.57 37.65 M 159 165 595 599.4 93.12 5.59 87.57 1 87.57 87.57 37.87 84 159 185 600 604.6 92.74 4.84 87.91 19 87.57 87.57 38.07 85 164 185 606 609.7 92.74 4.M 87.91 19 87.91.87.57 38.27 85 164 ISS 611' 614.8 92.74 4.84 87.91 IS 87.91 87.57 38.48 SS 164 185 616 619.9 92.74
- 4. M 87.91 19 87.91 87.57 38.68 85 164 185
. l 621 625.0 92.74 5.36 87.80 16 87.80 87.57 38.86 84 159 185 626 630.2 92.74 5.36 87.73 15 87.73 87.57 39.05 84 159 185 - L l 631 635.3 92.74 5.36 87.68 14 87.68 87.57 39.23 84 159 185 636 648.4 92.74 5.36 87.64 13 87.64 87.57 39.41 M ' 159 185 641 M5.5 92.74 5.36 87.61 12 87.61 87.57 39.59 M 159 185 l 647 650.7 92.74 3.76 88.98 19 87.61 87.57-39.81 87 178 ISS t 652 655.8 92.74 3.76 88.98 19 88.98 87.57 40.02 87 178 185 657 660.9 92.74 3.76 88.98 18 88.98 87.57 40.23 87 178 ISS 662 666.0 92.74 3.76 88.98 19 88.98 87.57 40.44 SF 178 185 i a 667 671.2 92.74 3.76 88.98 19 88.98 87.57 40.65 87 178 185 672 676.3 92.74 -0.17 92.92 19 88.98 87.57 40.65 93 190 185 677 681.4 92.74 -0.17 92.92 19 92.92 87.57 40.65 93 190 185 642 686.5 92.74 -0.17 92.92 18 92.92 87.57 40.65 93 190 185 688 691.6 92.74 -0.17 92.92 19 92.92 87.57 40.65 93 190 185 693 696.8 92.74 1.88 92.51 16 92.51 87.57 40.86 90 194 185 099 701.9 92.74 1.88 92.25 15 92.23 87.61 41.08 90 194 185' 7 03 707.0 92.79 1.92 92.04 14 92.04 87.61 41.30 90 194 185 708 712.1 92.79 1.92 91.89 13 91.89 87.61 41.51 90 194 185 i 713 717.3 92.79 1.92 91.78 12 91.78 87.61 41.73 90 194 ISS 718 722.4 92.79 1.91 91.69 11 91.69 87.61 41.95 90 194 185
- n a n o o m
t QEF 6 l
- n 8 e. Z
.o c 9'WEEi-8 i i o $. g R $ v.. eo 5;pFo M' s P $? gS i T_. if W
e 1 362 / __0_0 0 0 i.< sr.u., e.t. ,, 0 i. r; O O 6 u- ~~ . - ~ l. SERE'CE mitR PPES-- + s i Tc qa. gs s u.:n. s..e rca + 2 a~ ri v15tt SWECTCh F 1-* \\ i e l i 3 - -- --- j& g--t - - A '_ _f. .d g /., E_~ : C. ~ ii. l I I w I- ,.. f.o _.. I ' N TRASH RACn5 b .....P e ;fL 540 i + i g,7-- m-i ~ ~~- d' ' $NSW @ NSW W t i. f '7- 0* SE'TIONAL PL AN NS W -. :NSW INTAME STAND 9Y NUF' rap grqvCE C TU,~,. t A _ _. VAT ION ~ WATER INTAKE STRUCTURE
- O 2-d!' 5 TAN 3Sf N./.LCAR
~s .c S e h 3 5tsevict wa ts Picts - scea Q a,* - - - r - - i - - CONCRttt 5;. As Fon l l adiS5lLE PROTECTION] \\ g i y.e 'Yi M p . g. 37 __ 5 eccava-w kIl t _.-.y r r.-- - i O w -. l W W -; to tes ,.._-_____..l t -- 4 I j ef'staNose wcetan _ __,g_-- 5tfW.E WATER Pf( -- 3 gar-
- g t
g Q u
- o e n o n gR8%o O
E F :2. Z
- F 5 M 8. g.
i_._.__.. O
- D.T. 8 g
= .o m. eo Q q '<. ~Q u- %.N M -_.. 9.:C' h,M,m_ ~* E 4 PL AN ELEVATO4 4c I _STANDE!Y NLr~ E AA_ SERVICE WATE A DSCHAAGE 5. R.XTURE Figure 8 CatawbaSNSWPIntakeandDischargeStructurds
CNC-1150.01-00-0001 Originated by: R. E. Baker Checked by: T. K. Ziegler Date: 5/25/95, PageBof 59 - Revision 6 ' LIST OF ATTACHMENTS - A Area-Volume Information i i B Heat Loads and Flowrate.; C Worst-Case Meterology i D Withdrawl Depth i 1 E Flow-Split Testing l }- i. 4 4 l I I i i l i f 3 i 4 j 1 4 j h l 7 n
J i ' Attachment A - Area-Volume Information t This attachment includes information regarding the area-volume values for the Catawba SNSWP simulation. The area-volume values are from CNC 1150.04-00-0009 and the seepage values are from CNC-1150.01-00 0004 i Item Page Number j Area-Volume values for elevation 542 - 571.3 ft msl A3-A4 Area-Volume values for elevation 570 - 590 ft msl A5 i SNSWP Area Curve A6 i SNSWP Volume Curve A7 l Model Run with Initial Elevation of 571 ft msl A8-Al2 Seepage information A13-A14 i The initial volume shown in this run (447.5 ac-ft) at elevation ~ 571 ft mst is used with the } total 6-day losses (use 13.5 ac-ft) determined from: l 4 Evaporation losses of 11.7 acre-ft (see page A10) 4 Seepage losses of 0.36 acre-ft (see page A14) + 4 System losses of 1.31 acre-ft (see Attachment B) e to determine the area-volume values used for the top two layers as shown below: Elevation (ft msl) Area (ac) Volume (ac-ft) 571 39.0 447.5 570 35.95 410.0 447.5 - 13.5 = 434 ac-ft Al
447.5 - 434 = 0.36 - 447.5.-410-571 - 0.36*(571 - 570) = 570.64 ft msl 39.0 - 0.36*(39.0 - 35.95) = 37.90 The initial values at the start of the simulation are assumed to be: Elevation (ft msi) Area (ac) Volume (ac-ft) 570.64 37.90 434.0 The volume of the second layer is determined as follows: 434.0 - 37.9 = 396.1 The volumes of the top two layers and the volumes for elevations 569-540 (from A3-A4) are used in the input sets for the two model simulations presented in Figures 7 and 8. 'b Q v
l swear to C'Ar4w g4 Nt4 C L. ST-A T i o t4 (AN tTS I k 2. Pti E N o. R s v, t (wt ti ro. 0 4 -0 0-0 009 T rata DBy Nut.L. SERV. ware (
- PouD, A R E A/VoLu mE BY*
WGA 11fL1f54 C E. J A. I:* /f 7/9Y 111111 UNG0NTRO _L 4 i sii;;k eLev se4 -e4 ~ (($$ (Fr) (ACRES) A*A EA (FT) (Ac.Frj V01.. i j COPY ("M
- m :
c,1 3 1,623'7(1 38.6r !!!!!!j 3 7.3 o I. 3 98.*1 9 rs. 96 S 10 i'v6r' 291 3r.9 T ) 3 r. t l 1 3r.Il 909.9 7 l 761 1,992,354 '34.2.7 33.% 1 73.96 711.36 56% 1,4-21,441 3 2.67 30.1 15-1 61.1 5-39( to rb6 I, 1 16,2% 7 li.30 22.40r i 2 8. gor 179. '+r r(T 1, l %, T 31 17.5l zb QS-1 1 6. 6S r 1rl. 0't 769-I, s 7,2.43 27.8% 2.4.3rs' 1 4 %.7 i z z9.3 r t 62. ii1363 2.2.23 2.f. 3 3 r 2. 92.67 177.64 Tbo 864'1%I t i. % i aq 377 Z 34.7i (32.9 7 rs8 134,113 16.% 7 13.3 2. 2. ?o.6% s 2, z 6 776 799 635' 13. ~7 1 i s. o 2. I 13.o 2. 6T 62. TT f 539,6 %. 1 1.1 7 t it.9 7 1 11, 4 1 r2.6 0 ets %9' 1% t o. 67 9.19 2 l %. 2. % 4I. I 3 75'2. '331,97% 1,41 c.5 4 5 2 (3.o ; 22.27 a 5 70 132 6 LI s.46 1 9 IS 2. %'. 3 4 9.76 [%% l17,780 ~ 1.T T 2.[S SCC NExr PAGC F O A. COM TIN u ATr ord. te tR Q ";g e %g 7,4f dC S C,,a j k3 Q> , 93 oge u,,, e ,-e s s, ave n uur., q ref vede';!. G N ' kJ6 4 8 l3l95~ / c gt z ac, z ot tx r t senere-cs raare3 oc. <c + A3
Sneer II I. CATA NGA M tA c t. STAT f ord unit 5 k 2. F t LE No. 3 c ((E v. I CNC f t W. 04- 0 0 - ooo t Acts A/votumc fPANDBy Nuct. 5sav, wArER PoM D 3 hY I U 0A I2 [21\\ W CA
- bWf, l&{t7(*14 Qe.c %1 v
!.!!.!Il A Blii t'e v, ace 4 44eA 4 vo. osern vo t. cum E!Ees (FT 2) (AcetES) ANGA (Fr) (AC Fr)
- voL, lI!hhh
(^*) (Ac Fr) 4 888 T 46 B (gio3 o,q r j !Rf!!;! o.ter r o. 2.r s-o.zyr rst a 2,cr o.o 6 l i 1p E'% A 34, oo 7 0.7 % o.rsr i o.rs r t.nr rvrA n,u r o.s i 03I t 0.7l o,rv 799 3,39 3 c.11
- 0. t 2.
2. o.14 o.29 ( 59 2. 1,'36 % o,o 3 4 i .wr Tuar rm ec
- ra acaec.r eu
'/cLu "5 i "RPolCC d LY, C C.C t,T T A '.,"/.T.N 7 0 REV 2 DELETE SENTEtJces mAfty.ED o uT- \\[ sy: w as i 2 as c g ;.8% i f3 t w 1 UNCONTROLLED C0?Y e 1-i
Catawba Nuclear Station, Unit 1 and 2 CNC-1150.04-00-0009 l l @5 v v 11gM~pnll n U8 NULL 1U Area and Volume of Standby Nuclear Service Water Pond Sheet 16 ev 3 By: ~AW f$f Date: ll/sn hf 00?f Checked: ' (M M M', t l#r-Date M24 /M y c leu 9.4 Standby Nuclear Service Water Pond, El 570 through 590 Areas and Volumes C43 Area Avg. Area Depth Vol. Cum Vol. EL (Acres) (Acres) (FT) (Ac-Ft) (Ac-Ft) 570 35.95 409.97 37.48 1 37.48 571 39 447.45 39.8 1 39.8 572 40.6 487.25 45.8 2 91.6 574 51 578.85 54 2 108 576 57 686.85 60 2 120 578 63 806.85 66 2 132 580 69 938.85 72 2 144 582 75 1,082.85 78 2 156 584 81 1,238.85 84 2 168 4 586 87 1,406.85 90 2 180 588 93 1,586.85 96 2 192 590 99 1,778.85 9.5 l Revised SNSW POND Area and Volume curves have been generated based ca the December 1994 survey (Revision 1) and the information contained in Sec. tion 9.4. These revised curves are provided on Sheets 17 and 18. I 10.0 Conclusions i I Tiie current SNSW POND areas (at the various elevations) and cumulative volumes (below specified Pond surface elevations) are as provided on Sheets 10,11 and 16. The current SNSW POND area and volume curves are provided on Sheets 17 and 18. \\ + i i A5 1
NSW POND AREA CURVE 100 j f . f 80 7 70 j @ 60 6 5 50 7 0 'z' O $ 40 / j /", x s t'* s g .s 10 f 0 -'~~~ 544 546 548 550 552 554 556 558 560 562 564 566 568 570 572 574 576 578 580 582 584 586 588 590 NSW POND ELEVATION, FEET Caoa Naciene S am t C.NC - n \\60. o n 000 9 UNCONTROLLED c na vos on e. Arc-a <of Spa,,,f 6 y s gua teu, Seis:e A Fe - % / GU? nn S h ee.1-17 (des. 3 ,? By.M y/w/w cs,eele): Y W IN r } ;4
. -. ~... NSW POND VOLUME CURVE 1800 v' 1 1600 ws' v' 1400 r. r. 1200 g. 9-e S1000 f 3> ui e ! 800 d' 1 1 e-a f . ~>i- . s.. 0 544 546 548 550 552 554 556 558 560 562 564 566 568 570 572 574 576 578 580 582 584 586 588 590 NSW POND ELEVATION, FEET Catasbw Mvolew S+afio, UNCONTROLL cac-uso. e -oo -oco,
- ves ad we oe stanctfy avatew se~.te as, Act COPY Sheef I 8' I?ed 3 s; Y y N &
V/tof9f C4ccled v)hV \\W 0
DATASET: CNERETE. DATA CATASSA PLANT -NORST HEAT TRANSFER-TITLE 720 T1: 8 SF HOURS IN 20 L1r s GF 18 TIT VER.tSE LAYERS 20 K2: SUTPUT CHECK SPACING C N 31 S1: 8 0F VERTICAL STAGES (FT) + C + C SII,11: VoltSE IN PtDS AT EACH STAGE t ACFT) C 9 ^ N 0 0 0 0 1 1 2 6 10 16 23 32 41 7 53 4 79 92 113 133 154 176 200 224 251 279 310 341 374 408.5 447.5 g C C SEI,21: INITIAL TEt9ERATURE AT EACH STAGE (F) T1.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 G1.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5 P $1.5 11.5 91.5 91.5 91.5 91.5 91.5 C. C~ Letl PING VALUES Ape PLANT FLEDES FOR TII,3) (1000eCU.FT/HR) C? 4 369.0 } 720 184.5 C TtI,11: It@UT HEAT IPSTWHR) L C 117.6 171.7 182.9 188.2 147.9 262.9 258.5 253.9 249.9 245.9 242.1 238.2 234.2 231.4 227.8 224.2 222.0 219.1 216.0 214.1 211.8 211.8 211.8 211.8 N 195.0 195.0 195.0 195.0 195.0 186.8 177.9 167.2 C 15).3 159.3 151.0 151.0 142.0 142.0 142.0 142.0 7 142.0 142.0 142.0 128.5 128.5 128.5 85.5 77.1 69.8 63.9 59.6 59.6 C C AtJ) PtJ) MtJ) YtJ) EtJ) E. C81 72 2 170'90 [ 85 71 3,186 93 T 89 70 2 184 92 M 72 2 189 94 g $1 71 2 198 95 f3 72 5 197 85 3, 79 71 3 142 81 +- f3 71 3 lu 86 f 72 61 5 154 73 73 58 3 1 H 82 75 60 2 163 86 m 77 C2 4 187 84 to 78 63 0 167 80 72 M 3135 77 73 69 3 133 78 h 77 70 2 157 86 77 68 4 159 80 y n w t + 4-3 co
DATASETs CNEMETE. DATA 72 55 2 131 77 74 60 3 155 80 77 63 1 153 88 77 (5 2 149 M 78 68 3 170 85 75 69 3 149 81 78 71 2 133 82 80 70 3 159 M 80 71 3 164 85 83 72 3 159 84 86 69 3 178 87 SS 67 2 190 95 LT 78 3 194 90 e i '3 T D
CATABSA -94RST HEAT TRANSFER-pas TIM REAL DISC HE AT
- CtRR.
128 MNED INTAKE EVAP' E K Tfp TIM TEM LGBS DEDet MX TEM TEM AC-FT TCFit 1 2.6 96.60 2.69 93.91 19 91.50 91.50 0.13" 90 170 369 4 5.3 99.67 3.94 95.74 19 93.91 91.50 0.29 90 170 369 6 10.6 114.34 15.78 98.56 19 95.74 91.50 0.82 90 170 185 12 15.8 112.19 14.39 98.18 19 98.18 91.50 1.30 90' 170 185 17 21.1 110.78 13.48 97.09 le 97.89 91.50 1.77 90 170 - 185 22 26.4 109.90 11.51 98.38 19 97.89 91.50 2.23 93 186 185 27 31.7 108.44 10.52 98.15 19 98.15 91.50 2.H 93 186 185 33 37.0 107.73 10.03 98.00 18 98.00 91.50 3.08 93 186 185 38 42.3 107.75 10.05 97.92 17 97.92 91.50 3.51 93 186 185 C3 47.5 106.95 9.51 97.85 13 97.85 91.50 3.92 93 186 185 C9 52.8 106.95 10.13 97.74 12 97.74 91.50 4.31 92 184 185 54 58.1 106.02 9.50' 97.61 11 97.61 91.50 4.69 92 184 185 59 63.4 106.92 9.50 97.52 10 97.52 91.50 5.07 92 184 185 - 64 68.7 105.34 9.05 97.41 9 97.41 91.50 5.44 92 184 185 .70 74.0 105.34 7.79 97.55 19 97.41 91.50 5.81 94 189 - 185 75 79.2 105.34 7.79 97.55 19 97.55 91.50 6.18 94 189 185 80 86.5 104.62 7.29 97.47 18 97.47 91.50 6.53 94 189 185 06 89.8 104.62 7.29 97.% 17 97.43 91.50 6.09 94 189 185 %1 95.1 104.62 7.29 Si SJ 4 97.41 91.50 7.25 94 189 185 96 100.4 104.62 6.77 97.46 19 97.41 93.91 7.61 95 198 185 101 105.7 106.25 7.92 98.33 19 97.85 21 L 4.00 95 198 185 107-110.9 106.07 9.29 98.87 19 98.33 3 S.42 95 198 185 4 112 116.2 109.75 10.34 99.37 19 98.87 9 8.86 '95 198 185 117 121.5 109.75 17.34 97.40 1 97.48 97.40 9.41 85 197 185 123 126.8 109.75 17.37 97.15 1 97.15 97.15 9.96 35 197 185 128 132.1 109.48 17.19 96.90 1 96.98 96.90 10.50 85 197 185 ItHti:HikP.-It:ft-us I ut-us-!!:!Hf-10-l= g)" EJJ OL k 153 137.3 109.24 17.02 96.67 1 96.67 96.67 11.04 SE 197 185 14 'l 6c5 i 1*i9 153.2 108.59 16.06 96.07 1 96.07 96.07 12.47 81 142 185 154 158.5 108.40 15.96 95.88 1 95.88 95.08 12.91 81 142 185 'l d e t feled io m ko be} evofet*h*cn vcg*f *k p d o { Q L h'[ 159 163.8 108.22 15.85 95.71 1 95.71 95.71 13.35 81 142 185 1"5 169.0 100.04 14.10 95.62 1 95.62 95.62 13.79 86 166 185 170 174.3 106.78 13.29 95.51 1 95.51 95.51 14.21 86 166 185 175 179.6 106.68 13.22 95.41 1 95.41 95.41 74.63 86 lu 185 1?1 I M.9 106.57 13.16 95.31 1 95.31 95.31 15.05 86 lu 185 186 Iw. 2 106.47 15.09 95.21 1 95.21 95.21 15.47 86 lu 185 1M 195.5 106.34 20.43 94.75 1 94.75 94.75 16.02 73 154 185 g 4 L) - l 9 "), ( O 9 (1/ 196 200.7 105.91 29.14 94.30 1 94.39 94.30 16.56 73 154 185 T 5 202 206.0 101.75 17.58 93.79 1 93.79 93.79 17.05 73 154 185 I' 207 211.3 101.22 17.27 95.30 1 95.30 95.30 17.44 73 154 185 i Li 1.9 ** I O 6 212 216.6 100.73 11.98 95.07 1 95.07 95.07 17.91 82 1H 185 218 221.9 100.50 11.43 92.85 1 92.85 92.85 18.34 82 lu les 223 227.2 100.28 11.69
- 92. M 1
92.64 92.64 18.76 St 1H 185 233 237.7 99.86 11.42 92.23 1 92.25 92.23 19.59 82 IM 185 Q 1l* Q 4 0.7 69 ( 110 ~J - !g.g y } tre 232.4 100.07 11.56 92.43 1 92.43 92.43 19.18 82 lu les 239 243.0
- 99. H 4.65 92.17 1
92.17 92.17 19.96 86 163 185 244 248.3 99.60 S.61 92.11 1 92.11 92.11 20.33 86 163 ISS 249 255.6 99.54 S.57 92.06 1 92.06 92.06 20.70 86 163 185 255 258.9 99.48 S.53 92.00 1 92.00 92.00 21.06 86 165 185 M IIM QC-kk r> O
-. -. - -. ~. . Cf.TADSA -MENtST HEAT TRAN5FE2-PAE TIPE SEAL DISC NE*T, CtRR. Let MIMED INTAKE EVAP E K TEM i TTM TEM LIISS ettet MEX TEM TEM AC-FT TCFM 260 2(4.1 99.43 10.54 91.85 1 91.85 91.85 21.49 84 187 189 t'5 26 ').4 99.27 10.44 91.7e 1 91.70 91.70 21.91 84 187 ISS f 270 274.7 99.12 10.33 91.55 1 91.55 91.55 22.33 84 187 185 276 280.0 98.98 10.23 91.41 1 91.41 91.41.22.74 84 187 185 21 285.3 98.M 10.14 91.27 1 91.27 91.27 23.16 84 187 185 286. 290.5 98.70 12.80 91.05 1 91.05 91.05 23.54 80 167 185 292 295.8 98.47 11.06 90.82 1 90.82 90.82 23.91 30 167 185 297 '301.1 98.25 11.71 98.61 1 90.61 90.61 24.28 80 167 185 302 306.4 97.31 11.11 90.39 1 90.39 90.39 24.64 80 167 185 307 311.7 97.09 10.97 98.18 1 90.18 90.18 24.99'80 167 185 p 313 317.0 96.s7 11.21 89.95 1 89.95 89.95 25.29 77 135 les l 318 322.2 96.65 11.08 89.73 1 89.73 89.73 25.58 77 135 185 323 327.5 96.43 10.96 89.52 1 89.52 89.52 25.88 77 135 185 i 329 332.8. 96.21 10.M 89.31 1 89.31 89.31 26.16 77 135 185 334 338.1 96.01 10.06 89.14 1 39.14 89.14 26.43 78 133 ISS L 339 343.4 95.M 9.96 88.98 1 88.98 88.98 26.69 78 133 145 - 344 348.7 95.68 9.87 88.82 1 88.82 88.82 26.95 78 133 185 ^ 350 353.9 95.52 9.78 88.67 1 88.67 88.67 27.29 78 133 185 6 355 359.2 95.36 9.79 88.52 1 88.52 88.52 27.46 78 133 185 .L .360 364.5 95.21 5.79 89.51 19 88.52 88.52 27.69 86 157 les 3366 369.8 95.21 5.7e 89.51 19 89.51 88.52 27.93 e6 157 185 2 371 375.1 95.21 5.70 89.51-18 89.51 e8.52 28.16 86 157 185 376 300.4. 95.21-5.79 89.51 19 89.51 88.52 28.40 86 157 ISS i 381 305.6 95.21 9.49 88.75 16 88.75 48.52 28.69 80 159 185 387 390.9 95.21 9.49 88.44 1 88.44 88.44 28.97 80 159 185 392 396.2 95.13 9.44 88.38 1 88.30 88.30 29.26 80 159 185 357 401.5 95.00 9.35 88.17 1 88.17 88.17 29.54 80 159 185 402 486.8 94.23 8.88 88.02 1 88.02 88.02 29.82 80 159 185 408 412.0 94.09 9.45 87.86 1 87.06 87.86 30.11 77 131 les i 413 417.3 93.92 9.36 87.69 1 87.69 87.69 30.40 77 131 185 CIS 422.6 93.75 9.27 87.53 1 87.51 87.53 30.69 77 131 185 l 424 427.9 93.59 9.18 87.37 1 87.37 87.37 30.98 77 131 185 r 429 433.2 93.44 S.26 87.27 1 87.27 87.27 31.28 80 155 185 i t C34 438.5 93.33 S.19 87.16 1-87.16 87.16 31.57 80 155 185-C39 443.7 93.22 8.12 87.06 1 87.06 87.06 31.87 40 155 185 445 449.0 93.12 S.06 86.96 1 86.96 86.96 32.17 80 155 185 C50 454.3 93.et 8.00 86.86 1 e6.06 e6.86 32.46 80 155 185 f 55 459.6 92.92 3.00 49.92 19 e6.46 86.e6 32.69 et 153 185 L 431 464.9 92.92 3.0e 39.92 19 89.92 e6.e6 32.91 et 153 185 466 470.2 92.92 3.00 89.92 le 89.92 86.86 33.14 as 153 185 471 475.4 92.92 3.00 89.92 19 89.92 86.06 33.37 et 153 185 G76 40s.7 92.92 5.35 89.45 16 89.45 86.06 33.60 84 149 185 482 486.0 92.92 5.35 89.14 15 39.14 e6.86 33.M e4 149 185 l 487 491.3 92.92 5.35 88.91 14 88.91 86.M 34.87 84 149 185 C92 496.6 92.92 5.35 88.75 13 88.75 86.86 34.31 e4 149 185 l 498 501.9 92.92 5.35 88.61 12 88.61 86.06 34.54 84 149 185 503 507.1 92.41 4.88 88.51 11 88.51 86.86 34.78 85 170 185 508 512.4 92.41 4.00 88.43 10 88.43 e6.06 35.02 85 170 185 513 517.7 92.41 4.00 88.36 9 88.36 e6.86 35.27 85 170 185 519 523.0 92.41 4.80 88.30 8 88.30 86.86 35.51 85 170 185 i i ~
i CATAteA -MENtST HEAT TRANSFE2-PAG i TIM REAL DISC NEAT. CSR. tM MDtED INTAKE EVAP E K TEM TIM TEM LEISS 013 00 MIX TEM TEM AC-FT TCFM 524 528.3 92.41 6.84 88.11 7 88.11 86.86 35.73 81 149 185 529 533.6 92.41 6.M 87.94 6 87.94 86.86 35.95 81 149 185 535 538.8 92.41 6.M 87.79 5 87.79 86.86 36.17 81 149 185 540 544.1 92.41 6.M
- 37. M 4
87.66 M.86 36.39 81 149 ISS 545 549.4 92.41 6.M 87.54 3 87.54 86.86 36.61 81 149 185 550 554.7 92.41 5.81 87.49 2 87.49 86.86 36.78 82 133 185 556 Me.0 92.41 5.81 87.45 1 87.45 87.45 36.96 82 133 185 561 565.2 93.00 6.14 87.42 1 87.42 87.42 37.15 82 III 185 SM 570.5 92.97 6.13 47.39 1 87.39 87.39 37.33 82 133 185 572 575.8 92.94 6.11 47.36 1 87.36 87.36 37.51 82 133 ISS - tt77 581.1 92.91 5.56 47.36 1 87.36 87.36 37.73 84 159 185 i 582 586.4 92.91 5.56 87.36 1 87.36 47.M 37.96 M 159 185 587 591.7 92.91 5.56 87.36 1 87.36 87.36 38.18 M 159 les 593 596.9 92.91 5.56 87.36 1 87.36
- 87. M 38.40 M 159 185 i
L 598 602.2 92.91 5.82 87.89 19 47.36 47.36 34.62 85 164 185 603 607.5 92.54 4.79 87.82 19 87.82 87.36 38.83 85 164 185 i t 609 612.8 92.54 4.79 47.08 18 87.30 87.36 39.04 85 164 185 614 618.1 92.54 4.79 87.78 17 87.78
- 87. M 39.25 85 164 185 i
619 623.4 92.54 4.79 87.78 16 87.78 87. M 39.47 85 lu les 624 628.6 92.54 5.33 - 47.68 15 87.68 87.M 39.66 M 159 185 i ese 633.9 92.54 5.33 87.62 14 87.62 87.36 39.85 84 159 185 _. 635 639.2 92.54 5.33 87.56 13 47.56 87.36 40.04 84 159 185 -M0 M4. 5 92.54 5.33 87.53 12 87.53 87.36 40.23 84 159 185 645 649.8 92.54 3.68 88.85 19 87.53 87.36 40.45 87 178 185 651 655.1 92.54 3.68 88.85 19 88.85 47.36 40.67 87 178 185 656 660.3 92.54 3.64 88.85 18 88.85 87.36 40.89 87 178 185 i M1 M5.6 92.54 3.68 88.85 19 88.e5 87.36 41.11 87 178 185 - M7 670.9 92.54 3.64 88.85 19 88.85 87.36 41.33 87 178 185 672 676.2 92.54 -S.32 92.86 19 88.85 87.36 41.33 93 190 185 677 681.5 92.54 -0.32 92.06 19 92.86 87.36 41.33 93 190 185 682 686.7 92.54 -0.32 92.06 18 92.06 87.36 41.33 93 190 185 688 692.0 92.54 -0.32 92.86 19 92.86 87.36 41.33 93 190 185 F.3 697.3 92.54 1.77 92.44 16 92.44 87.36 41.56 90 194 185 698 702.6 92.54 1.77 92.16 15 92.16 87.53 41.78 90 194 185 704 707.9 92.70 1.88 91.97 14 91.97 87.55 42.01 90 194 185 709 713.2 92.70 1.88 91.83 13 91.83 87.53 42.24 90 194 185 i 714 718.4 92.70 1.88 91.71 12 91.71 87.53 42.47 90 194 185 y 723.7 92.70 1.88 91.62 11 91.62 87.53 42.70 90 194 185 i i i l ~P
i CNC-1150.01-00-0004 OriginatId by: MM* Checked by:"*7/229-/f- # j Date: 9/1/94, Page 6 of 9 ")etermine Daily and Total 30 Day Loss to Groundwater Recharge - WORST CASE l In-situ silty sand (saprolite) i-WORST CASE: k = 150 ftlyr: 5 End SNSW Storage GWT H q Perimeter Day's New Pond of Pond El Cap Ekv Loss Elev Day (ft) f ac ft) (ft1 Ift1 [cuft/d/ft) (ft) (cuft1 (ft) j 0 571.000 497.27-571.00 571.000 j 1 571.000 497.25 570.95 0.05 0.061 12,356 751 571.000 2 570.999 497.22 570.90 0.10 0.121 12,356 1,496 570.999 m waa (,-he, i 3 570.997 497.17 570.85 0.15 0.181 12,356 2,234 570.997 ' %: 4 570.996 497.10 570.80 0.19 0.240 12,355 2,966 570.996 ggg 5 570.994 497.01 570.75 0.24 0.299 12,354 3,691 570.994 e 7 570.988 ~ 496.79 ^ 570.70 0.29 0.357 12,354 4,409 j 570.991 6 570.991 496.91 ~3T 0.415 12,353 5,121 57'Oll88 ~ 570.65 0 8 570.985 496.66 570.61 0.38 0.472 12,351 5,827 570.985 9 570.981 496.51 570.56 0.43 0.528 12,350 6,527 570.981 10 570.977 496.34 570.51 0.47 0.585 12,348 7,220 570.977 11 570.972 496.16 570.46 0.52 0.640 12,347 7,906 570 972 12 570.967 495.97 570.41 0.56 0.696 12,345 8,587 570.967 13 570.962 495.75 570.36 0.61 0.750 12,343 9,261 570.962 14 570.956 495.53 570.31 0.65 0.805 12,341 9,929 570.956 4' 15 570.950 495.28 570.26 0.70 0.858 12,338 10,590 570.950 16 570.944 495.02 570.21 0.74 0.912 12,336 11,246 570.944 17 570.937 494.75 570.16 0.78 0.964 12,333 11,895 570.937 i 18 570.930 494.46 570.11 0.82 1.017 12,331 12,539 570.930 19 570.922 494.16 570.06 0.87 1.069 12,328 13,176 570.922 20 570.914 493.84 570.01 0.91 1.120 12,325 13,807 570.914 i 21 570.906 493.51 569.96 0.95 1.171 12,321 14,433 570.906 i 22 570.898 493.17 569.92 0.99 1.222 12,318 15,052 570.898 23 570.889 492.81 569.87 1.03 1.272 12,315 15,665 570.889 i 24 570.879 492.43 569.82 1.07 1.322 12,311 16,273 570.879 j 25 570.870-492.05 569.77 1.11 1.371 12,307 16,874 570.870 l 26 570.860 491.65 569.72 1.15 1.420 12,303 17,470 570.860 27 570.849 491.23 569.67 1.19 1.468 12,299 18,060 570.849 28 570.839 490.80 569.62 1.23 1.516 12,295 18,645 570.839 ] l 29 '570.827 490.36 569.57 1.27 1.564 12,291 19,224 570.827 l 30 570.816 489.91 569.52 1.31 1.611 12,286 19,797 570.816 g Qc 0 h. WORST CASE Total' Drop in SNSW Pond Surface Elev = 0.184 ft Cumulative Loss from the SNSW Pond = 320,670 cu ft 7.36 ac ft l 1 l k i. AG
CNC-1150.01-00-0004 Originattd by: M6Y' ?- Chick:Id by: NE 9-ep-# Date: 9/1/94, Page 8 of 9 Seepage Losses Through the SNSWP Dam Embankment Over the 30 Day Period: Since these losses are expected to be negligible, fluctuations in the SNSW Pond surface clevations will be ignored. Fe< I,f e On\\3 Seepage through the embankment is given as: q = ks (cu ft/ day /ft of embankment length) where: k - permeability s = directrix = sqrt( H 2 + L*2 ) - L (see Page 8) j H = Elev Head Difference L = Graphical horizontal distance from and of blanket drain to intersection of phrestic surface straight line segment with pond j surface elevation i 1 Using: k'= 2 .ftlyr for the Compacted Silty Sand (Saprolite) H= 21 ft (571 - 550) L= 168 ft (see Page 8) Then: s= 1.31 ft 0.0072 cu ft/ day /ft of embankment length q = Assuming an effective embankment lenght 1500 ft = 4 0.75 cuh Total Daily Seepage = i Total 30 Day Seepage through the dam embankment = 322.4 cu ft j 0.007 acft Tol e.! b,p c. ) e loss Jcdd6( ti,t r w 4 (olloas) = 1(Lii.5 W = o.3r..,.a w u A14
Attachment B - Heat Loads, System Losses, and Heat Loads This attachment includes infonnation with regard to calculation inputs for: Item Page Number Flowrates B2 System Losses B2 Heat Loads B3 This information is taken from CNC-1223.24-00-0041, " Design Basis Heat Load and Flow Demands on SNSWP." B1
zG CATAWl4A NU(1 EAR STATION l' NITS l&2 .t/16M5 CN('-122.1.24 00-004) DESloN 14Asts HEAT LOAD AND Flow DEMANDS ON SNSWP wNP CONCI,USIONS De conclusions of this calculation form the inputs to the SNSWP %ermal Analysis Model. CNC-1150.01410-0001. De rate at which heat is rejected to the SNSWP is determined on a component by component basis in the body of the calculation. De results are tabulated in Appendix A in a format convenient to be used as inputs to the thermal analysis referenced above.
- s. %
,, Two cases should be considered in the SNSWP thermal analysis. The "High Flow" case should consider the flow to be 46,000 gpm for the first four hours of the event and 23.000 gpm thereafter. De " Low Flow" case should consider the flow to be 38,000 gpm for the first four hours of the event and 19.000 gpm thereafter. By evaluating the highest and lowest expected Design Basis Event tiowrates, it is assumed that the analysis is valid for the full range of flowrates. System. and therefore SNSWP. inventory losses total 1.24 E6 gallons. CA makeup accounts for 0.225 E6 gallons over the first 5 hours of the event. The remaining 1.01 E6 gallons is due to ruel pool boil off at a constant rate of 23.4 gpm over the 30 day event. Onh I 9 c %3 ' l 1 l Y \\ t-B2
1 ('ATAWi4A Nirl. EAR NTATioN l' NITS t&2 '4 W ('N('.l :.i.24.un-1Wl41 DESITIN 14 Asis llEAT Lt IAD ANI) Fl.oW DEMANDS ON NNSWl' Wh? Rate of Heat Rejection to SNSWP for Desin;n Basis LOCA/ Shutdown fci I' 'l lirs after LOCA LOCA Shutdown Shutdown TOTAL LOCA ND/NS Auxiliaries ND Auxiliaries heat rejected (litu/hr) (litu/hr) (Btu /hr) (Btu /hr) (lltu/hr) i 23.615 E6 40.983 E6 2.966E6 (NV) 49.876 E6 117.440 E6 2 77.831 40.983 2.966E6 (NV) 49.M76 171.656 3 M9.065 40.983 2.966E6 (NV) 49.876 182.890 i 4 94.360 40.9M3 2.966E6 (NV) 49.876 188.185 5 96.M92 20.6MO 2.966E6 (NV) 27.380 147.91 M 6 97.92M 20.6MO II6.899 27.3M0 262.MM7 7 97.853 20.6MO II2.582 27.3M0 258.495 8 97.243 20.680 108.858 27.3M0 253.MMM i 9 96.121 20.680 105.702 27.380 249.M83 10 94.747 20.680 103.127 27.380 245.934 11 93.305 20.6MO 100.725 27.380 242.090 12 91.604 20.6MO 98.543 27.3M0 238.207 13 M9.422 20.6MO 96.6M i - 27.380 234.163 14 MM.364 20.6MO 94.996 27.380 231.420 15 M6.362 20.6MO 93.364 27.380 227.7M6 16 M4.244 20.6MU 91.864 27.380 224.16M 17 M3.397 20.6M0 90.541 27.3M0 221.99M 18 M t.782 20.680 89.225 27.380 219.067 19 79.966 20.680 88.002 27.380 216.028 20 79.l(X) 20.680 86.916 27.380 214.076 21 77.M49 20.680 85.899 27.380 211.808 25 75.127 20.6MO 71.780 27.380 194.967 30 71.061 20.680 67.646 27.380 1M6.767 40 66.15 M 20.6M0 63.645 27.380 177.863 50 60.990' 20.6MO 5M.128 27.380 167.17M 60 56.9M7 20.6MO 54.294 27.380 159.341 M0 52.9M1 20.6MO 49.9M5 27.380 151.026 100 4M.536 20.6M0 45.423 27.380 142.019 168 (7 days) 41.247 20.680 39.226 27.380 128.533 l 4 200 35.725 4.680 33.705 11.380 85.490 i i 300 31.292 4.680 29.757 11.380 77.109 400 2M.231 4.680 25.465 11.380 69.756 l 500 25.I29 4.6MO 22.687 11.380 63.876 j 600 22.M97 4.6MO 20.664 11.380 59.621 720-21.537 4.680 i M.940 l1.380 56.537 )- The " TOTAL heat rejected (Bru/hr)" is the hourly rate of heat rejection for every hour in the j interval. For example. at I hour after LOCA, the rate of heat rejection is 116.168 E6 Btu /hr for the l interval (t = 0 to I hr) for a total of i 16.168 E6 Bru for the interval. At 400 hours after LOCA. the rate of heat rejection is 69.756 E6 Blu/hr for the interval (t = 301 to 400 hrs) for a total of 6975.6 l Bm. i-1
Attachment C. - Worst Case Meteorology The meteorological inputs to the Catawba SNSWP computer model consist of dry bulb temperature, dew point temperature, wind speed, heat transfer coefficient (computed) and the equilibrium temperature-(computed). As suggested. in~' Regulatory Guide 1.27, Revision 2, meteorology for the worst cooling period is used. The regulatory guide states in part,'"The meteorological conditions considered in the design of the sink should be selected with respect to the controlling parameters and critical time periods unique to the specific design of the sink" Forty-four years (January 1949 - December 1993) of daily average meteorological data ' from Charlotte, North Carolina Airport were scanned by computer. (using-'Microsoft Excel) to identify'the design' basis periods. Meteorological data from Charlotte is considered representative of the Catawba site because it is located only 13 miles east of the site. The weather programs (which will be) described in COM-0203.C6-17-0147, "NWSMET: Surface Meteoroingical Observations and Hydrothermal Program" were used to generate the computed meteorological data (heat transfer coefficient _and equilibrium temperature). The " worst heat transfer" condition is defined as the period in which the equilibrium temperature is the highest. Equilibrium temperature is defined as the water surface temperature at which heat flux into the surface would equal heat flux out.' Therefore, the historical period with the highest equilibrium temperature will define the period in which the least amount of heat will be lost from a thermal discharge'and in which critical return temperature from the SNSWP would occur. The Ryan Heated equilibrium temperature (T.) weather data generated for_ the years 1949-1993 was loaded into an Excel . spreadsheet. The rolling 30,6,5,4,3, and 2-day averages (as well as the 1 day values) of. the Ryan Heated T., values were reviewed and the data with the' highest equilibrium temperatures were extracted. The resulting data is shown in Table C1. The table shows the extracted data meeting the conditions of greatest values for each of the average lengths. Cl..-
Table C1 - Equilibrium Temperature Scan i Length of Rolling Average::Perimh y(days); Date one two three four five six thirty 520622 86.0 87.9 89.5 90.2 9 91.5 84.5 520623 89.7 91.2 91.5 92.1 9 1.4 84.7 520624 92.7 92.5 92.8 93.4 91.7 89.9 84.6 520625 92.2 92.9 93.6 91.4 89.3 88.7 84.5 520626 93.6 94.3 91 2 88.6 88.0 85.5 84.1 520627 95.0 90.0 86.9 86.6 83.8 83.5 83.8 930630 84.7 86.1 85.5 86.5 86.8 87.0 86.2 930701 87.5 85.9 87.0 87.4 87.4 87.7 86.1 i l The data shown in Table Cl was used to determine the first day of the 30-day period as described in Reg. Guide 1.27. The " critical time period unique to the specific design of the sink" is 5 days because the SNSWP intake temperature reaches its peak on the 5th day of the simulation. The maximum 5-day average period begins on 6/23/52. This 30-day period is used because of the 5-day peak timing. Although the 30-day period beginning 6/23/52 is not the worst 30-day time period (which begins 6/30/93), this 30-day period (6/23/52) does represent the most conservative meterological data during the critical time period for the specific design (including the heat rejection and flow rate characteristics) of the Catawba SNSWP. The data for the 30-day simulation period is shown in Table C2 "30-Day Worst Case Meteorolo!, C2
Ttbla C2 - W:rst C sa MItirology 2m Height Heat Transfer Dry Bulb Windspeed Coefficient Equilibrium Day Date (* F) Dew Point (*F) (mph) BTU / ft2 day (*F) Temperature ('F) 1 520623 81 72 2 170 90 2 520624 85 71 2 186 93 3 520625 89 70 2 184 92 4 520626 89 72 2 189 94 5 520627 91 71 2 198 95 6 520628 83 72 5 197 85 7 520629 79 71 3 142 81 8 520630 83 71 3 166 86 9 520701 72 61 5 154 73 10 520702 73 58 3 166 82 11 520703 75 60 2 163 86 12 520704 77 62 4 187 84 13 520705 78 63 4 167 80 i 14 520706 72 66 3 135 77 15 520707 73 69 3 133 78 16 520708 77 70 2 157 86 17 520709 77 68 4 159 80 18 520710 72 55 2 131 77 3 19 520711 74 60 3 155 80 20 520712 77 63 1 153 88 21 520713 77 65 2 149 84 22 520714 78 68 3 170 85 23 520715 76 69 3 149 81 24 520716 78 71 2 133 82 25 520717 80 70 3 159 84 26 520718 80 71 3 164 85 4 27 520719 83 72 3 159 84 28 520720 86 69 3 178 87 29 520721 88 69 2 190 93 30 520722 87 70 3 194 90 Page C3
A We k n e,,4-D. W: W ben w l D e.p W be ,/ cas suswe c.<s c. ru'" ' f,.-u~m <- o',~,,m m n. ot 3 , r fe ,N / h V b a,,,.,,,, o< i<<<< &u o P, h P,. ./y emovais e a,,,,~, v 9 r r srae,ne --icar., - r a ( s,) R = (1-s r'){d - H) (%) P = (f-A v)(d-h) ('b/ft) c z => (r-s r) (d-a) + H (<-s r) (d-h) V' h. + V V Zy sor ve m H: (_f-6Y) (d-H) " ( f -b f) (d-h) g, f u i. z1 aue rin y our: H= 'Y .- k N __ s a se n';,r k _o , se k g + \\ h r r u, zj [ =,R' d'N [ + avh , v, 2 y ? O= ofH + sr k y,
- V v
z 'H [Y) = h[L"
- v, '
- /
H = h + Vc ' ' " " " " ' " ' * ' ' "' Q = V^ v ' 2 A (Bh) 2)IdY) OE INf*4K[ wt O 1"H ves rirvre fox v: H= h +- D zy- (br) r-g
sotvc fox a: l (H-h ) = b z> M) OR Q*= Zy [' 8*h H - h) 50A A C/VfN VA/.V[ of //, TNd" MAN /MVM E$## AAYA ' 0374/Affb BY O/Fff4fNr tA YsNC Q wor 4 Aff/*ECr To h Aab seuA r,"e ro eeno. Cousr- (h * (u -Q) O =
- - { h * (H-k)}
0 = ConsrANT-j .d. ( d h \\ y k '. k 'J) o = [H2h - 3 h* ) o =
- ~
(N076 h
- hs = Cha r! M L DEPTH DCPr~M(hs):
$?f vl~ /04 CRo r/ CAL H 2 A= %* N*.b h, OR b f =
- CR t YtCAL DEPTH z
3 (Qe) f/A/O C2/ricA L bo scnAdCE GY f VA L UA T/MC ABovd E44!. Ar fe : s.' - z, ($r) s'(juf(n - $ n) a ' GT7D 8- ( a)'T4 u) s' =, (v) s'(;u)' Solv 6 FOR CR / T~t CA L INT ERFA CE WE/CH7" /] l N = B Z ~l 3 T-Q JM I.c p l#f) J D2
Y } '[J, Nev;+h. I a 5 HY 4 43gg July,1965 HY 4 oMnal of be ' (Col. 2 of Tables 1 and 2); HYDRAULICS DIVISION ,, 3,,io.,,, Proceedings of the American Society of Civil Engineers 4 WITHDRAWAL FROM TWO-LAYER STRATIFIED FIDWS l By Donald R. F. Harleman,1 M. ASCE, and Rex A. Elder,2 F. ASCE i 1 INTRODUCTION 4 During the past decade, the Tennessee Valley Authority (TVA) has built several intake structures designed to withdraw cold water from the lower i levels of thermally stratified rivers and reservoirs. The cold water is used to supply condenser wsiter for industrial cool'ing water systems. During the j summer months, the primary flows in the Tennessee Valley system are con-trolled by releases from upstream storage dams through low level turbine intakes. Under certain conditions, the cold water discharged by the turbines may form a gravity underflow in the downstream rivers and reservoirs that may be from 10' to 1S' F. colder than the overlying surf ac e water.3,4,5 Withdrawal of the colder bottom waters from such stratified conditions re-quires special intake structures that prevent the warmer top water from being pulled into the pumps. Inthe absence of the stratification caused by reservoir releases,a thermal stratification will generally be developed in the vicinity of a steam power plant by the heat input caused by the return of the hot condenser water to the river. Part of the heated water flows upstream by virtue of its lesser density Note.-Discussion open until December 1,1965.To extendthe closingdate one month, a written request must be filed with the Executive Secretary. ASCE. This paper is part of the copyrighted Journal of the Hydraulics Division. Proceedings of the American Society of Civil Engineers. Vol. 91. No. HY4, July,1965. 1 Prof. of Civ. Engrg., Hydrodynamics Lab., Massachusetts Inst. of Tech.. Cambridge, Mass. 2 Dir., Engrg Lab., Div. of Water Control Planning. T. V. A., Norris Tenn. 3 Fry. A. S. Churchill, M. A., and Elder R. A., "Significant Effects of Density Currents in TVA's Integrated Reservoir and River System," Proceedings. Minnesota Internatl. Hydr. Convention. September,1953, p. 335. 4 Elder, R. A., and Dougherty, G. B., " Thermal Density Underflow Diversion. Kingstor Steam Plant,' Journal of the Hydraulics Division, ASCE, Vol. 84. No. HY2, Paper No. 1583. April,1958. 5 Elder, R. A. " Thermal Density Underflow Design and Experience," Proceedings, 7th Hydr. Conf., Iowa inst. of Hydr. Research. Iowa City. Iowa.1958. 43 .s e L3;
~* e
- SI' RATIFIED FLOW
' is recirculated through the power plant unless the intake structura 45 7 ned to prevent such recirculation.6 egligible and a point just upstream from the skimmer wal ae intake structures are inthe form of submerged sluice gates with fin _ stumed that only the lower layer fluid is in motion and f rictis ng it is d . st ream-openings and are known as " skimmer walls." The skimmer w alls have also ne curvature effects are negligible. Using the not a t ion of Fig.1(c)* the pergy is been used on lock filling intakes in cases where navigation locks separate ,e regions of fresh water and salt water. In this manner, salt water which in-se trudes into the fresh water basin during lock operations may be removed by [y - Aq [d - h ) (=I~0) 2 "I T' 7
- Y V._.
using the denser salt water for lock filling. A summary of various types of +h y r ,y,2g
- *,(g) selective withdrawal structures and their characteristics has been given by y
3, a which y denotes the specific weight of the more dense lower layer fluid Ilarleman.7 r. The water inthe intake channel downstream from a skimmer wallis homo-2d Ay represents the difference in specific weights of the two fluids.
- h h,
geneous and, ideally, has a temperature equal to that of ti e lower layer of cold water in the river or reservoir. The colder water flows th. ough the open-ing at the bottom of the skimmer wall by virtue of a head differential across Q " 8 *** Q the wall caused by the intake pumps. The problem is to determine, fora given j k intake geometry, the maximum colder water discharge that can im withdrawn .'l) without inducing appreciable withdrawal from the upper layer cf warm water. k (skimmer Wan N A basic experimentaland analyticalinvestigation of this problemwas conduct-h f!tw d
- e ed at the Hydrodynamics Laboratory of the Department of Civil Engineering h -l p%,2) atthe Massachusetts Instituteof Technology forthe case of a one-dimensional,
( gg - (8) plane skimmer wall. An experimental study of two-dimensional (radial flow) ", n","Channet h[ / skimmer walls was conducted at the TVA Engineering Laboratory, Norris, 8 Tenn. This paper presents the results from both studies and supersedes an earlier paper 8 describing t% preliminary s t udie s on the one-dimensional D work. 19) (A) .f The experimental and theoret; cal results are for a two-layer system hav. (g) PLAN VIEW OF PLANE ing a discrete interface across which the temperature and, hence, the specific SKIMMER WALL INTAKE PL A N Vl( W Of R ADI A L weight of the water changes abruptly. For results thatare reproductible inthe SMIMMER WALL INTAME IIO laboratory, a sharp interface is desirable. It is recognized that in the field SNmmer wall such a well-defined Interface does not usually occur. Ilowever, an equivalent interface may be assumed to exist at the depth at which the vertical gradient s of temperature or density is a maximum. y-Ay hic 10) 1+ Notation -The letter symbols adopted for use in this paper are defined latufan $. mM^ where they first appear and listed alphabetically in the Appendix. } R f. 1'x ) ) G SE(b JN h _.d$, ') M lis C. ~ TifEORETICAL CONSIDERATIONS k y[ 5 \\
- ~ 7 D
(C) The two types of skimmer wall intake structures to be considered are h w ifPIC AL SECTION X-X shown in Figs.1(a) and 1(b). In the plane skimmer wall, Fig.1(a), the flow 'C
- I approaches the wall unidirectionally, whereas inthe radial wall, Fig.1(b), the direction of flow is radial. The one-dimensional energy equation is written FIG. l.-SKIMMEft WALI.
.ean between a point well upstream from the wall where the flow velocities are l Expanding and simplifying, 6 Harleman, D. R. F., and Garrison, J. M.,"The Effectof Intake Design on Condonser (gg) i Water Recirculation,' Technical Report No. 56 flydrodynamics Lab., Massachusetts 2 i Inst. of Tech., Cambridge. Mass., August,1962. h =I+- .............J2) T Harleman, D. R. F., "Strattfled Flow," Section 26. Ilandbook of Fluid Dynamics, r Ay 2g I edf ted by Streeter, McGraw-Hill Book Co., Inc., New York, N. Y.,1961. a Harleman, D. R. F., Gooch, R. S., and Ippen. A. T.,
- Submerged Slutce Control of For a given interface elevation, hr, in the riveror reservoir the maximum Stratified Flow." Journal of the Hydraulles Division. ASCE, Vol. 84. No. HY2, Proc.
Il0[ flow in that larate that can occur in the lower layer isthat which correspo k Paper 1584, April,1958. ca yer. The total rate of flow through the skimmer walldepends 1 L I F ummuned i \\
4f STRATIFIED FLOW NY 4 . ace Eq. 6 reduces to the familiar critical discharge equation for free July,1965 flow in a rectangular channel when the specific weight of the upper laye 46 f ti l rossthe only onthe wall opening andthe water surface elevationdif eren a acskimmer wall. Hence, if the t rate of is zero, hence ay = y and ay/y = 1. For a given channel width and value of Ay, the critical discharge of the ltaneous the lower layer,there must be a drawdown of the interf ace and a simu lower layer depends only on the height of the inter tically in Inflow from the upper layer fluid. This condition is shown schema both The condittor.s for critical flow in the lower layer are obtained for j discharge defined by Eq. 6.llowever, the drawdown of the interface and sim Fig.2. the plane and radial skimmer walls in the subsequent sections. layer. upper layer may develop t:efore critical flow is reache } ggain neglecting friction andcurvature effects,the limiting condi g j is termed incipient drawdog is given by Eq. 2 with b = y, thus V U s=- 2 h, = b + g................. D) vd r 2gY / g q The flow rate for incipient drawdown is .............m Q = v, B b.... Interface ] d v v v x, s A sN a / e
- hence, Q"2
-...........- m f y) q\\'\\ N\\ bg%;,j h \\N N' s d i n + 2, a_7,3 Q% N MkWNGWW Solving Eq. 9 for Qd and dividing the result by Eq. 6 gives the following O Y 8, yq for the plane skimmer wall: or f 4.- 1) Ih GH r F10. 2.-D15 CHARGE OF BOTH (JPPER AND LOWER FLUID TitROU e ~I d b .........( 10) h l, - = 2.6 / eJ Q g SKIMMER WAI,L Pfene Skimmer Walf.-Using the notation of Figs.1(a) and 1(c), the mean c r % j, f b uc, A imud dis 2<. -
- Ar For values of hr/b between 1 and 3/2, Eq.10 gives the m a
vslocity in the lower layer is Ldtg-charge (Q ) which can be obtained from the lower layer fluid wibr/ b = 3/ 2, g) y= 1.................... down and simultaneous discharge from the upper layer. Whe d i=16 Qd/Qc = 1. Therefore, with br/b> 3/2, the critical flow in the'It,=o B7 discharge to f he critical Substituting for v in Eq. 2 and solving for the discharge, is the limiting condition. The ratio of the drawdown discharge is shown in Fig. 3 as a function of h /b. Radial S 2 OI B y (h - y).............. 14) r Q =2g r y 8 For a given value of hr,the maximum flow ratets obtained by differentiat. velocity in the lower layer at any radius, r, is q
- * * * ' * *II I) ing Q with respect to y and equating to zero. The critical depth obtained in v=2s6 j
y ry this manner is ................... 15) y =g Substituting for v in Eq. 2 and solving for the discharge, h ....(12) and from Eq. 4, the critical discharge is Q=2 r y [2 g (h - y)....... .............. 16) Q= (g h l L
'9 STRATIFIED FLOW HY 4 1 48 July,1965 m;ntil results wire, therefore, rcquired to determine the magnitude os ' Setting the derivative of Eq.' 12 with respect to y equal to zero, gives the effects. critical depth, 2
- **
- I EXPERIMENTAL EQUIPMENT AND PROCEDURE y *3 r
e The experiments on the plane skimmer wall were carried out in the MIT The critical discharge at the skimmer wall is found from Eq.12 with r = r Hydrodynamics Laboratory,9 n the glass-walled flume shown in Fig. 4. The w i (r:t.dius of the wall) and y = ye = 2/3 hr, or E -h .........('O hc) r
- 360 w
.Thu7, Eq.14 for the radial skimmer wall is identical with the critical dis-4 6 u l*- 6* h %l7 4.S* - 7 ( I.0 / / ',/ Poet Geges
- 7 Pont Gage N
3 8*- O* I I ~' g *- 6* 'I - Qd IE ~ Eiim EU*:*'.u:a';:=: ~. w' :~ '.: ": :. 0.5 st..,,,nu d : Qc
- p. :1::w*nqm%~ ~. 9.::::...=.!!:.\\,,g}.m.:.p.nl....]d ;';@;;.,..
Anym. s.s.:.n...m'., -:: ::,,. .g: ~ ..:::c.:?.,. cr o s'-o* .....s:; .1... a r. ':2 ti G
- M IT "~''
= 0 h %L 4 = 0 0.5 I l.5 2 2.5 3 "M9-
- ~
venter.-tube 4 Ek hr th 'I b '////// / /// / ///// // / / / / // / /.. ////////////// FIO. 3.-RATIO OF DRAWDOWN DISCHARGE TO CRITICAL DISCIIARGE AS 410. 4.-EXPERIMENTAL EQtf!PMENT A FUNCTION OF h /b r a predetermined height. Fresh water of the same temperature as the salt ch;rge equation for the plane wall if B is interpreted as the perimeter of the water was then introduced slowly onto a baffle floating on the reservoir sur-wLit. Hence, for the radial wall, face. To avoid mixing the two layers, a filling time of approximately 2 hr was required. Salt and fresh water,*rather than hot and cold water,"were used to w.............. obtain the desired difference in specific weight, in order to avoid transient ...(15) B = (360 r conditions resulting from heat transfer in the laboratory equipment, E.nd the previous relations may be used for the radial wall as well as the plane The schematic diagram of the experimental equipment used in the tests at the TVA Engineering Laboratory on the radial wall is shown in Fig. 5. willFrictional effects, nonuniform velocity distributions, and flow curvatures Harleman. D. R. F., and Goda, Y., ' Control Structures in Stratified Flows.* Techni-may be expected to modify the results of the elementary analysis. Experi-9 cal Report No. 54, Ilydrodynamics lab., Massachusetts Inst. of Tech., Cambridge, Mass., June,1962. 1 l
1 { ? J 51 STRATIFIED FLOW HY 4 50 July,1985 The filling process was similar to that described previously; again san and fresh water were used. [ in either experiment, flow was begun beneath the wall by opening the dis-charge valve on the circulating pump. The interface upstream f rom the wall O / was thus depressed in accordance with Eq. 2. It was expected that the dis-charge could be increased in small increments until the point of incipient ca4 n 14 3 drawdown of the upper layer was observed. However, it was found to be ex-tremely difficult to determine the discharge at the point of incipient draw-down. C r it e r i a were developed, therefore, which allowed the a e e u r a t e m . : ::!h! Z :::::::::: 1, determination of the discharge at which a slight withdrawal from the upper layer commenced, i.e., what was determined was a discharge just in excess of the incipient drawdown discharge. For any given flow g a For the plane skimmer wall tests, it was found that: hM rate, as long as there was no withdrawal from the upper layer, the interface 8 elevation in the reservoir, hr, remained constant with time. As the discharge i
- -:::= l q
l =>L - :::::::r increased, there was a tendency for the formation of a wedge of intermediate b density fluid upstream from the wall. This wedge tended to obscure the visual [ indication of incipient drawdown of the upper layer. The wedge was removed by increasing the discharge beyond the point of incipien T
- E taneous withdrawal from both upper and lower layers occurred. The inter-y
/ scTup facial height, hr, inthe reservoir immediately started to rise,and the density difference decreased slightly asa result of the entrainment of the upperlayer. D'" l P 'fht )--eb g O g An example of the change in interface elevation asa function of time, after i I the increase of discharge necessary to cause drawdown, is shown in Fig. 6. g N l N Note that, while the new discharge was held constant, the rate of interfacial \\ \\ ^ 5 rise wasa continuously decreasing function of time. Usingthe foregoing rela-b T..e n...r. The d I s c h a r g e at incipient Bef f'* $[ ~' tionships, the following criterion was adopted: Interfee. drawdown, Qd, was defined as that discharge at which not more thar 1% or erIa.In.$,, 2% of the total flow under the skimmer wall comes from the upper layer Oi c.rcutahon Pwmp Or weie. ua. PLAN water upstream of the watt. Hence, .........(16) g rf.g;.., Q = 0.02 Q or 0.01 Qd f d @ tre.n wsMr Sop's f s the horizontal area is the discharge from the tapper layer, if A i @ Frein we,., te m In which Qg of the reservoir and skimmer wall approach channel, then
- " *"Yf' D
~d dh j g Ms Q, = A, x.................... < l v i r pq p l Eq.17 relates thedischarge from the upperlayer tothe time rate of change e a l of br, which can be accurately measured. Therefore, from Eqs.16 and 17 for
- d U.__,
r Z b,Y [;;;;;;tE!:::: : :::: [h l the 2% case, Mh4dW WMW!dWEp d ....(18) ,, =,, b For example, in Fig.6, if Q = 8.4 cuin. per see and because Ag=400 sqin. d t g = 0.00042 in. per see or 0.025 in, per min f SECTION A-A dh MO. 5.-SCHEMATTC DIAGRAM OF EXPEMMENTAL TEST EQtHPMENT f i JI ik l. in ~_
l 53 STRATIFIED Ff.J# 52 July.1965 fly 4 as three photographs for two types of plane skimmer walls indicating ct, (1) prior to drawdown, (2) at incipient drawdown, and (3) with flow from both From the computed slope,the value of h canbe determined graphically as r shown in Fig. 6 (hr = 2.63 in.). The interfacial height on the basis of a 1%with-upper and lower layers passing under the wall. The type l drtwal from the upper layer is also shown (hr = 2.75 in.). In both cases, the method of defining incipient dr aw down gave consistent and reproduciole the wall at the same elevation as the bottom of the intake channel. j reeults. The foregoing method was not feasible for the TVA experiments on the rtdial walls, because of the much larger volume of lower layer water and TABLE 1.-DRAWDOWN DISC!9 GE the consequent difficulty of accurately measuring interiae e changes as a =-- function of time. It was, therefore, decided to measure the salinity concen-trction in the intake piping system as a means of determining the amount of 1% Drawdown Condition 2% Drawdown condition 'I" Interface Relative Relative Drawdown Density Inter-Relative dI8-height. height. discharge, dis-differ-face height. charge.
- 3. 0
- charge, ence,
- height, N0*
y h d hr. In F 9. In cu g h. I" r In.per inches b Q inchs Y Q d r e e y see 2.8 (a) Plane Sidmmer Wall (b = 1.5 in.) elt% mthdre.et 11-1 3.2 0.0031 2.04 1.36 0.41 2.03 1.36 0.42 y it-2 5.2 0.0031 2.18 1.45 0.61 2.16 1.44 0.62 2.6 N
- 2 63."
11-3 7.0 0.0031 2.55 1.70 0.66 2.41 1.61 0.71 11-4 10.2 0.0030 2.87 1.H 2.M W W y, g 11-5 12.1 0.00 6 ~ 3.22 2.15 0.82 3.14 2.10 0.84_ i ' CM. h el 24 mthdrewel Run No.12-1 "s
- ig-6 16 3 -
4.00 3 I'.'.9 3 2.62 0.82 3.72 2.48 0.89 ) l 11-8 31.7 0.00f ~ W ', 3.24 0.85 4.65 3.10 0.90 .( 11-7 23.0 0.Dt9 'i.% 3 j 4.10 0.83 5.83 3.89 0.90 ~ [ 0.02 5.a/** 12-1 84 0.0029 _t 2.75 1.84 0.73 2.63 1.75 0.78 dh 12-2 13.5 0.0029 3.60 1.40 0.18 ._ 3.40 2.26 0.85_ 12-3 19.7 0.0029_, 4.51 .01 0.81 4.36 2.91 0.85 c 2.2 Plane %nmer Wall 12-4 27.3 0.0028 5.68 3.79 0.82 5.4 F. 3.55 0.87 5.14 0.77 7.20 4.80 0.8 5__ j#, 12-5 40.1 0.0027 ~
- d 1.26 0.44 1.83 1.23 0.46 F
12-6 2.6 0.0023 L52 0.M 2M W N 12-7 5.8 , 0.0023 2.28 I I I I i f 2.0 0 5 10 15 20 25 (14 Radial Sidmmer Wall l Time Otter increoss of Discharge (min) 290 119.2 0.0078 0.597 1.09 0.35 291 283.4 0.0073 0.598 1.09 0.85 293 336.9 0.0076 0.679 1.36 0.83 294 438.9 0.0071 0.690 1.38 1.08 j MG. 6.-RISING INTERFACE AFTER INCREASE OF DISCllARGE l 295 425.1 0.0074 0.705 1.57 0.995 296 480.3 0.0010 0.712 1.58 1.14 297 369.7 0.0069 0.'. 35 1.83 0.84 flow from the upper layer. A glass conductivity probe developed at the MIT Ilydrodynamics Laboratoryl0 was inserted in the piping system downstream from the radial wall. The discharge was increased slowly causing the inter-4eh 0 2 4 300 460.3 0.0060 0.759 3.04 1.12 face height, hr, to slowly decrease until the computed change in salinity con-centration caused by a 2% drawdown of the upper layer was observed. 301 480.3 0.0055 0.771 3.85 1.14 302 480.3 0.0039 0.787 5.27 1.32 EXPERIMENTAL RESULTS the lower layer flow became critical atthe step regardless of the downstream location of the wall, it was apparent that there was no advantage in the type 11 Table 1 gives a summary of the experimental data for the plane and radial wallin comparison with the type I wall. llence, an excavation of the intake walls for both 1% and 2% drawdown conditions. Fig. 7 shows a sequence of channel bottom below that of the river bed cannot be justi!!ed. The type II to Itarleman. D. R. F.. Hoopes. J. A McDougall. D.. and Ocults. D. A. "Saltatty Effects on Velocity Distributions in an Ideallred Estuary.E Technical Repo'rt No. 50 wall may,in certain positions, interfere with the nappe of the underflow and Hi rodynamics IAb., Massachusetts Inst. of Tech., Cambridge, Mass.. January.1962. d
r 54 July,1965 IIY 4 gy 4 STRATIFIED FLOW 55 parent advantage In using openings where h /b> 2.5 because this would '*dI*I "*II r at nci nt aw n d ons The experimental data for the plane and radial ski result in greater energy dissipation across the skimmer wall. Fig.10, for the radial skimmer wall, shows a better agreement with the
- "~
pared with Eq.10 in Figs. 9 and 10, respectively, f E theory. The optimum opening is close to the value of 1.5 predicted by Fq.10. mental results are in accord with the analytical relationsh The 2% drawdown discharge is approximately 10% greater than the calculated although the numerical results are modified by f ric t t o a and curva ure critical flow rate. The agreement for the radial wall is attributed to the fact that,asa result of the radial nature of the flow, the velocities decrease more rapidly and curvature effects are reduced, and also to the fact that the lleyn-Type I Type H olds numbers for the flows in the radial wall tests were considerably larger P!!!Il!?J u (o) prior to drowdown Iw y+ (b) I n ci pient drowdown 71G. 8.-INCIP!ENT DRAWDOWN CONDITIONS DEMONSTRATED IN LABORATORY MODEL TEST (c) Flow from both layers F10. 7.~tNCREASING DISCHARGE (JNDER SKIMMER WALL than those for the plane wall tests. llence, the viscous effects were less im-l portant for the radial wall tests. effects neglected inthe theoretical investigation. Fig.9 for the plane skimmer CONCLUSIONS wall, shows the cottm'im v=1==&/b apsroximately 2.5 rather than 1.5. If hr/b is less than 2.5, drawdown tends to occur before critical flow is The maximum discha rge from the lower Ia ye r without simultaneous reached in the lower layer. The maximum flow of the lower layer never ex- ,g withdrawal from the upper layer correspo ceeded 90% aline of the critical flow computed from Eq. 6. There is no ap-I +1
.i STRATIFIED FLOW IIY 4 In ~ July,1965 For a pla ne skimmer wall.l Fig. l(a)] s us 56 the lower laye r at the wall. n.o THEORY - fq.(i0) discharge, A ...(6) j .r. g Q,g g h N ' o.6 - [ deperds only on the width of the wall D, the d!!ference in specific weight be-tween the upper and lower layers of water and the elevation of the interf ace, hr. In the reservoir or river. In order to develop the maxi [e ,n,- ae - O{ ing, h / b, should equal 2.5. Tor a radlal slflffiliiE wall [ Fig.1(b)], the same discha Oc y r In this case, oj Plies, provided B lli lhterpreted as the perimeter of the wall. [ ^ % the ratto hr/b may be reduced to 1.5. u tws-iayer straT!IIc'afWn exislTali proposed site,then physical measure-h r The ment of the stratified river or reservoir is required to establish hr. "~ m, my
- 2 r-Legend:
specific weight difference, Ay, is determined from measurements of the o 2% Drawdown underflow temperature at the skimmer wall site and from the expected sur-l ~ face layer temperature after construction of the wall. The discharge, Qc, I % Drawdown is generally specified by the condenser water requirements of the therm 0 8 2 3 4 5 e / power plant. The skimmer wall opening, b, is deter hr 7 o direct!I rom E
- 6*
FIG. 9.-PLANE SKIMMER WALL--RATIO OF DRAWDOWN DISCHARGE If the stratification is self-induced, i.e., by upstream movement of warm f 9 ll water from the condenser water outlet, the construction of a skimmer wa / t -y QdTO CRITICAL DISCHARGE Qe is an effective method or preventing recirculation and reducing the condenser i water temperature at the intake. In the case of existing plants with rec rcu-o and Ay for lation problems, site measurements may be used to determine hr '2 k-design of a skimmer wall as outlined previously. The de sign of skimmer 7,[' d "~ ~~ walls for the prevention of recirculation in new thermal plants mu 4 yq. o -{'y onpredicted values of hr 7 in both MIT abd TVA laboratories. I ,p-oe I ACKNOWLEDGMENTS The writers wish to acknowledge the contributions of Y. Goda, Research 2 ~ $ oe l-- Assistant in the MIT Hydrodynamics Laboratory, and J. Garrison, Research Oc D' b Engineer inthe TVA Engineering Laboratory,who conducted the experim N l Engi-work. The advice and guidance of Arthur T. Ippen, Professor of Civi I l~~ ~ m I neering at MIT, is also sincerely appreciated. o2 ._ Legend: I o 2% Drawdown -
- 1 % Drawdown -
APPENDIX.-NOTATION l l l o 2 a s T The following symbols have been adopted for use in this paper: l FIG.10.-RADIAL SKIMMER WALL-RATIO OF DRAWDOWN Ag = horizontal area of the reservoir and skimmer wall approach ch DISCHARGE Q TO CRITICAL DISCHARGE Q B = plane skimmer wallwidth; C d l u
_..._ m I r July,1965 SQ July.1965 HY4 ~ b = skimmer wall opening fielght; e d = total depth of water at skimmer wall; doud of the g = acceleration of grarity; hr = lower layer interface depth in river or reservoir HYDRAULICS DIVISION Q = discharge of lower layer; Proceedings of the American Society of Civil Engineers Qc = critical discharge of louer layer; ' " ? ' discharg rom the up r la r* = r = radius; ENVIRONMENTAL EFFECTS OF FLOOD PLAIN REGULATI rw = skimmer wall radius; velocity of lower layer; V = 2 'd = velocity of lower layer at incipient drawdown; Eugene W. Weber.I F. ASCE, and Walter G. Sutton y = approach depth of lower layer; Ye = critical depth of lower layer; 7 = 8pecific weight of the more dense lower layer fluid-4 = difference in specific weights of the two fluids; and 9 = angular opening of radial skimmer wall. INTRODUCTION Flood plain regulation has been called a *New Approach to Local Flood problems."3 In recent years many engineershavebegunto realize that struc-tural flood control measures are not the only answe of the flood plain through flood plain regulations is becoming ra.:ognized as an important environmental control measure but deserves even more atten-tion by all concerned including engineers, planners, governmental agencies. g and affected individuals. Floods affect man's environment significantly: Rey 2 health; they threaten his property-his home his business, or his place of employment. Neither flood plain regulations nor other flood damage preven-tion measures are likely to eliminate these threats completely because man ,g is powerfully attracted to use of the flood plain. Ilowever, they certainly can reduce them and they should be given increasing considerat the flood plain. These include acquisition of flood plain
- by public agencies for uses that will serve the public need and which will not suffer or cause I
increased damages. Recreation areas are a prime example. *Open spaces
- f are becoming more appreciated as they become more scarce. Use of the flood plain for public parking is generally acceptable.
Tax policies, loan and finance practices flood hazard information dis-semination, warning signs. and other measures can also be used to help man use the flood plain wisely and safely. Note.-Discussionopen until Decemter 1.1965. To extend the closing date one month t a written request must be flied with the Executive Secretary. ASCE. This paper is par of the copyrighted Journal of the HydrauHes Dirlslon. Proceedings of the American S clety of Civil Engineers. Vol. 91. No. HY4. July,1965.1 Deputy Dir. of Ci 2 Chf.. Flood plains Sec.. Planning Dir., Cir. Works. Office. Chf. of Engrs.. (f. S. Army. Washington. D. C. Dept. of the Army. Washington, D. C.3 Voget. H. D.. "New Approach to local Floo Division. ASCE. Vol. 86. No. HY1. Proc. Paper 2336, January,1960, pp. 53-61. 59 h I
Fro 3 TEG6779 --PRDC Data End tico 05/25/95 13:08:00 1 TJs REB 7382 --PRDC i ces AHR4631 --PRDC WNP3375 --PRDC SWB9911 --PRDC i OW-5eM Ter ;,h-Frcm: Tom Gaye CNS MSE/ BOP CNO3SE / 831-5702 bubject: RN DISCHARGE FLOW SPLIT TESTS Richard, here is a summary of.the tests performed so far: B Train.(PT/0/A/4400/08J, RN.B Train Discharge Flow Split Test) -p;rformed 4/13/95 -Long leg flow 6569 GPM (27.6%), Short Leg 17,269 GPM (72.4%), 23,838 GPM total A Train (PT/0/A/4400/08I, RN A Train Discharge Flow Split Test) -performed 4/20/95 & aborted -performed 5/18/95 w/annubar -Long leg flow 7740 GPM (31.9%), Short Leg 16,505 GPM (68.1%), 24,245 GPM total Thanks, Tom l t i i ii '.I'.'
i ATTACHMENT 2 i i ,}}