ML20086F471
ML20086F471 | |
Person / Time | |
---|---|
Site: | Catawba |
Issue date: | 06/30/1995 |
From: | WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML20086F462 | List: |
References | |
NUDOCS 9507130134 | |
Download: ML20086F471 (92) | |
Text
. . . . . . . - . - _ _ . _ - _
a 'b l l
1 I
l CATAWBA UNIT 1 1995 INTERIM PLUGGING CRITERIA 90 DAY REPORT
~
l JUNE 1995 l
i 1
I l
Westinghouse Nuclear Energy Systems l
l l
l
.'8 .: . ;
.- , .., - l'.,
. - . y, . ,
.. ,.s t
,,,t.- ', , ' , . . . .
2 i., ; -e.
y
,,.'..'y ,. ... :. . . . . * ..';'. *
- s j*." s
'p .a .,,-l .,'s. .. ..
.s 'e' . ?. '.
e .. . :. ' \, ..
- .s,. .;..'. **'. ! Q.. . . e ' ~ ' ' f,; ' . . J 'r;* .N..,., .. . ) ; i. ., . . ,i, ,;;,. ,. , ' #. * . l. . . l.Y *
'} . : 4
- ; . . . ,',. ' . .,. ,'.n .%.'; ,,'
'.l. : . , . ..' G, ,,
..',t . ; , , - ..,.3..
,.',,g.,,,'%.:.,
. ,,,4* . .4 * ' . , ;3. . '
' . ., ~y .: . . ,
Y;. . . : .-, ,:*.,e..,,*.,,...,,,.',,:..o.,,.
. : , 's
,,,....y y ;:p f.. . , ;,. ; .. ,.) i.. .- ., _ .
, - ., , . ,y, ,3."..-, , %; 'n . , y f, .7,' y , ..,L>.*
. s*.ea :-
< . .l.. . . .; :? s. .
, . .,./ 7 .
.,.;*,."j.w,;...,',,
- g. , , -. .p r... s4 .,., n . ." . ^
s.. .. j. , . , , ,
... . d.. , j. . .* . *
.a . , .a.. -s. g ..g.g.5,,..,,..,,,,,,,a.,, ,-
-(... , , , . . .
c.
e .,.* .. ....,.c,..,..,t* .
.>4.. . ., . . - .. ) ,. < Q' / ;, ,
. s. , . . ..* ? -
,... r/ -
- . , , - - . ;a .
, , , . s
..i,.,i1.',...: 1==, <,e 1.'.- g
. .'. '. ..W
.$ 's .f.
., . ,- . .' 1,.' . . i. . -
'l ; . 2#:,b. .'c.j;./. :l;l;.
, . . ' .: . ~ . . .: . ,.+ i ...:;: ..: v. ;'.,. .. .,O4. ,; sil. . , V.; .. . ..
l3 i.4 . v. .,. S.:.:. 4 ;. /,:'.1 , ;" : 3.y *. , .< G.' .:; . s p,'",P,; . v;p :g, N. ,'::g.
.' ,lf,..
- . . .;A;.' 'p, . ..i' .M,b.M, .. Q ; , . %
., ,':,..' , . . . , s-
.g ::
, e .
- s. .p :... , ., .. . . . ,
- ,'T . . s ;.;
- ',;s. .
. .. .";, ;',' ; 7, . 1 * '. , f " .. . ;. .. ". .f ' v .,y.,,. 1
^
r, ,
. :,. ; t .F. i.
l,'. , .
- e. .; . , '
.,, , :'.C :',: ',c; pl..
. t * . ;%b.,; . ;*\.kt3. y ,.:. ;;; ',l %.-'. ' ,l " g. ,p',, %q.'J ?,3f.f ,.
- F "..: . .; .. '.'.. , . . ' -:. . . '
.; % .'.. ..;.l: ',.. :t. l ,1, :.:',...'.4*.....'.....
. .. .... ,s l..'. ., '. _ *j :;. . . . q . . ,, 7.
,* ' ' .~: t. ;. :.. '.
.: ,,...........,...."v'..,
- y y
' y. . f ::.' '. .; ., . ?~-,.'...;....
- S. .;.. ' 4. d' .,,;
- e. :" ..,, . 4.. ' : . }, l:p,.,'..t.:.- .. :: ',
s i . . ,. . .; .
, : i . . . . ' <.;,,;. :. .:., ,V < :.;
,z. .*,; . a.y- b
- . . - .. . . . :. ........:.,,,:k.,.
. . :,, . %. . .x , . , ., - .. < .
.. . ; . , .;:.sc... :. ..
y , *. . .y,.., ..q.'..'..'..,.
...., ,c. s . .
. ,.: u.
g s. %. , .j ~.v ..v,9 , ,.: - o
. R'.c. - ls,,, e .t s. ;< r :a. :
o
. . . . ." y,'
1,
[. h, , .. :, h ; . .l~ <.
I ',+ ',' ). y .c
. (;-f- [: *. 'y ] '. ?' $.
i- , .;..:j,;;L i ' '..' .,'.
. . .?
.; ,:a z:[.'.f..g.g'a
' 'g\ g*
u T*
- . y f$y(h ,
..g ;;y. ;,',.',,[%.
^,,,':',l 5
- j. ..' \ . . l;;;v:;'.o.,! .,,.'
Q,~ ~*.yl-[g
. -fl'.A_.
':,',;.h.',.)
- l,.
- j .
- q. :y';'y,._+
?'t-
%; .'y.
s f';;;;;,
i .{ . ;._ ,;r 5[.f<.'.. ,'. hj.7. ,
, k d,I;,",.D C; '
',I
. . . :. .y .: . [ :;
,o ,. ' , '.;..;
- s-[n' ,. " . ;
1 .. s. ..,. . . ' l4l
, ,' *p; .b .;, , g '. , ', ;. , ' { ,',,,* .l.' . :*n,,'.~
n
~
,l.";
,,'i*(.,, .
,,} is..lQ .,z,.~^
.t- , . , ..\- m.
p . , ; , . .
- slg ;f. s,',' ., *
,e -
. ' :; , ' ; < . : . ' , , '(';
n.. .s 'a,. :,s q * . -
- 4l. " . . n '. ':. c . ',, .
f, . .' ' ' , ': ., .l; . 4. ..' 1 ' ' ,'j. .., ,. ':> ;.l}: .:. . .Q.yleW.Y.,.*',,i'\:,
' ,c + '
- .s f,'. s.Q. i:. W : '; .
Yb f . );.. ~ l .i l:_ % : - * ). .':: 's" b5 ,.:l. .h" ' l.. , .: '; ' . , ;. [ ,:
.%'o. g ^:'. . p Q' ,' ' '. ';p..(;; *f.'%l l';. ' .q ' f J L.:' . ;,f. > ;
j .: . ' k:'l , . ~ . ' y,,,J.',
- - l
,,;. 7: :l:' J' .y; ;.i (l'.l:.,yl',,,,!'C.y . r-
, Q(('
i:W. ' U: : : i... .y. c ; . %'.!e:g:,.y ' . . :.L':
- i 'h " ' .; *)B.l' ,lh:::;,^f.p ,;[. t
,f.'.,y )y." J. :' ',.
y, . .f .
- 9 '\;' ;.',
- .4l..
- s ., s "..f.,<,',. s. ..n;.c
- h. ' . -l..,.: .:..Tl: : .: .y :: :l . .. ;%-
, /s ,.,. ..., . . .' , .4....,
' ,~ '. p, ',.i ., :. .
. , y(.;. , , ;, I.,J.,,: p , w .r :
. . . . qt.. ..w. . .s.c ,a,.. . ,. g..s . 5. ,. .g . . ;
. ..,..,.';,,.,;.,.,,.s ...e - * . 3.. .,,.f c., . g. . :..3* : 's? , .-
. !,. ., c . , ..
.,,v. ,.
. . ~ ,
,,',v.i
. . .. . .. . . .' ..4 d e., a . 4. . , . .. .j t- .& +
- 3 ..
j . . p .c, , f .y .
c.' g.., .Vl ,:. .. .
. . .l...,,r, . .. >* e: ,. : '.
p
.i:- . ,f . ,9. p ;, .g ,l, .<. , i., e.,
^
. . . , ., l:.c . , i, . .;. ..
- _,e*J," ..1 'g. . g. t.Q.:'.. ,.,,.
h.g; "-" . ,. y < A. - - .a.. . .-
.f;.,:;? .g- e .;4(1.,, . : m, . ., ,: ... ..c.. ,... y; ~c.' ..:...
y . . ' .
- 1.p: ,44* ,, . *.
. . ./ ; . <' * ';* %, s..s ,o ;.p .p;l ' %*.4% M $'. <s v, 1 ? ,. . o .L'** ' -
e- ...;,.,..a. , . t.- .
. ., * .c a . :e.s .,-M . . . . . .: 4 y, .I, , r.l.,o . . . u .- .b.,
m .sQ.vs ', . <...j ;.. . .a.
.3 s, . se at>
.. ... ~, a., ..:; . . p. % . .,y 4 s; . yN..s.t.s,
,. .',n* o%,ey
- ::1.
I
, j. :.* .p;, . . . .. - e..9 g t
, . . :. v. .. n: , , ; ' . . ',,3,, . ~. . . :. '. :.s.. .. . , m
. .;, ,, ;,2y , . 8.
. . ,l -
'.b,; s. ,f.b.:5.l, ($.e.,n *
'.l. ,;&e .., E,ik.n., , :s,}* : l:s. N.;e*:.'S i.Q.. %".l.,'W;&. ,y.,c f.\y . -v.,... ;. :* ; ., % e. - .f,,,Y .. ..f o'.f;t . , . :.:f
' . ,_j. '.".
? ,;"} .l .'lll t.l5 ','
f,
.. ',K. 1 l. f.?.
- l,.. . ': 2. &
- n.i,;.*L .:n f.:-l** ';. I' . * : .:s % :~ \ } yl.'g.,.s
. . '..y :% l; '.g:
'. - Y;
- Q ','T>l;,:%:..,Q '. : '.j'.y p
f 6: ".,. .' ' '.*
s
. .:W :: ; .'.,a, !,:.. . 9 .. ' ll,<
/,., . :s -
l, - l;. .;/. ,'; :
. '. . ; $ . . ' I
' .\ :
- i. . , e .D? - :Yl ' , ' :.'.:
. l .l. ' ..
. ..: .f: .?,&..
_ _ , ' :; 'l:' g .#Q-l*,,l.2. . ?of 9A: w 6 .! ' ' .' y s, > +':. . v,, .,.;' .l, {lep..c...y ds , *
~.a,,:
- * ;l;.;'. ...;
- {lj. ,',',! ':q'. .9..,j'.l; . vlx:. m\ ^'e#'. %'. .'y..>
.A.'::,l:..:a l : ?.
- s, E?.f. . ,k. ;,* .' ?. ",l.
- ,,l , k :let'.QR ** l, .,' ,. , %,s. y' ,'i&, ,. .'. .,.,$. , ,, .%* :..l i .... .'.*y:':, ,' il,,,'. ,}l. h. ' l ' ; ,, ., ,c,n.. . - ' .
- . . '. : t .:, .L ..
,. x., s. r.
Y f. * ,.. . . . ' . '
- e. ' 1,
- * . .. v y f .
.';..v ;..: .o .?., $>.
.,- Q, l .;, ' h'* '0 ' s!f *'. '..i
-.l,.. "> '; : I-'.','- . ' - ' * *.
-.V '.,y ; *4,k)$\.lp,:e? 'n,"."- . 'v.;*. .i".- . :? l
. ,,'; '.' .; .:.::. ., . ' .; . )' . K . : : 't
< . .:. jp s. . scc.
y /... . ,j }: ' e "n. .'Y'l+.,.:,,,
<. . *. b m
- v. *s . r. .: " -
,A.. n,l,,..' ., ? ' *;) .?' ; *A,,s.
- ,.n.f.*.';.
%h ,,. l;.Q',r;,p.'. 1f,i. , .z . -
. < "; ' : . ". ' :9,' =' . .
.. ;..'.,.4.,
. .,. u '.t.0 p? ..*.c:.'.. %. .- .t c
- ? ,; .!'
t
'i ,.; bh:3.'. 9:.:v.1.g;,ll. .i .!,.p
- i. Q
- ' . ,'.?..z.'ls.
. '. ,~'Y:';... Yh'{)
f i !?.f ;}, &.yl,)..& n s-lk:hN M .[.,V;\' k . f:
. . ;. - ' . .' ? , ;" ;, , : d. ; - . .' . ..l . ,2 v .' ' . f ;, % '
.r..,... . .
. s:,
, f.. .i. Aj.
- ,h'~, ( . f' *'.' ;.hll . y. l%g, '.,.
M. p,W:,, .&'. .f . i ..y .Y.; Ybp r' ..<l*,?p....g . ',a h_Y. :'k'._1
' ' . . ,i r , - .
4:
..' ': ', :' . , ,...l' 'a).9, . .'. 2 s., -.. q% l;;;.:'. 9'3 . 3.s p.n.'sr .-#% .' , w. 5J::Q.1% .c ,,'.:.e Tt.g.
O. .':. g~ sp:V.. tw. s .s < iy.
u ; %.' %.. .t <.
s _.
- 'l 1
- i. - .. l .* : se
- h ' .m
^.' :;, ';,Cop :. n re, . :o.a qQQ 2..' J .-i::..* ,, ..m . .. '3.. .-:.... ,' ' .
, h. 'f-
- .;? ' : ff;:. . .? : : f ' k' ?'.Nh,)
) '.. ' :_ Q.;;:. - l;, g .: f,fl's.h,h}. -
- l f' ;,'
. . 4 uq 4 ,,';.
.yh.Jt.:(r 0 , .
y)) %} f,\[% ".
$Y. & . , ' . , . ' ,r;}
ff
'l.',. Wn k.. ,..eo nf *' y.,9 :, ,
- J .60 .!v .g.M n hQ). ,'*(f,y,.' c *..i ,;v':.r, n
,1'} Qa: c:? d ,f/; 9 i. -;,;" . . ' ..a; .' .
.* . : :*. '., . :. V.
.. .'.', ,.1 g.;.-J,., * 'a)9. . " .;",;>:g.'; vT' 5,', 5"{p
'.,i,migy'
,.".,:b, ',/M.* 's
,.1 x '/:f.",
- 'a <
[g.. ' ty;%f5 . " gg ..~k (, ' .s; p ' . ' .p
^ ,.
+. 6 1 y , g, ,;ff",h.g gef., . * ; "' ,,, T* *, T.J.j...*v; 9
- n. #,
- e, u , .
4 q *, . . Y ,. ','f i ., i;,1. . pp,.. '
, . 'v , f.- +',
.s
- , . b. '
s' :t
~
- l. .
.h' : ' ,.'
'y l .:I 'Ji d ,C C#.f' 5..Q .l'5h'1.-,
- ';, , . l.h 2[., 'e, . t",'..&s$.9[ e .'i: 'k'2h: Mi# . . . ' O.'ib;l r. 7 /*.Q' ., . : f,
.s
-:l,. s .
- l * .f. y , ;. i.S .. l.. .
s
~G , vr. . o
@.m.- .,Q> '.W W. rp, ::d
. l4. . &s. rt,T r
- j s%n, f g.y}4lb.,1, f,.)i'.,:. : [gg?
.: f fe.'.
,',i"'d/ ;j :':.,[&
Q.g. ',&, . ?. :' ~;,"h*
ta. @..,..e, %. - l;! . : : ,.,....../..
- lf l:.,%. ; ,T : :.s. ..l ,..{..
,L. is:* (s ..h,d;h .
9 ,:*.;.y s r %r~. .. a
- . e. b
. t . 7 . ,; ,, 4. . : '. -l.
s..j
- .n. " ,l ::, . , :. s
,,. n .. .. ? . . . > g W .:?, ., . sf. Lip .v.Jf.,,% ,. , 'a>.:s . ,,. n.. . ;: . : p*: . . :p f,'s n .~. - . a . V,. . - ~ ;s;;)
s._.. ..* ...;. . ,1 ,y .g
'. l} Ql,i . . . : '.:.u.a..'.'*
_'.'_n. l .: .'. \ % ; i. . . .
q':s, ', ygp,- _s:y.,e, ,.:a .y.G g :spl.l.h'.g! .;+ . .4 Q: ,':,.N
- , 1. llt ' ' . . . , ?. :: .4s s . ,;s.,,. l l . . ; . ' . .. : . . _. ~
yl..;::.:,, .i'* .r..z.
. $ -. .s e,:;:s:y . ..c;,)q& .gl, ... '.;
i
. . , . . . , . . :' .- ."....'a,.,._..*
' : . ;." . .,:q" . ,: _ Y. Ue .,,n%, +. . s_',;.[*
.- ,. . . , .~#4 ..I..l~ V,. -t. .: .?. : n . '. .. g_ :
y o'. : x. 0,,.~..
e ,. .,./.a.; ;A. il'* .. r .'
': C -Q:: r..s l 4 l b ? tp' L. . :J'.?. , %'s; * :' V s ': . :*"or...
. 9.m .. .. . - < < . , . . ',. yd . ;. ".:n n%.: .. .
- 1. ; ..,l.n:] '. - e..
. .:. .~ .\ g ;~'_.~.:, > ; o .,n _: z . ..c.
',e.?
. n.2.,:..&y ,.
- .;, y n ' l. . .
- s ... .l .e . . q ' ';
- s. ;..
, R, v. r.. y ; :, ,. .,'. :;1:,,.g 6. yp .: '. ,W;;.. ..l.,.
..~....;. .
n . , ' c.4. ,,; ':.. y .; q ,
,1 y z v3. \ ,? .:,,.n .j,h.: .p'. , n< :'f.-lC. '.:'f', ' p;y.n . , f. :;;;,.. . .v *,.)) y.. : .l'_
q -s , . c f.. i s' ; .':.'l';,:.
-l'
- . z. ;,, ('. ,,, :* ::,a, -'
, =
- /.g .L-l., ./.
- .' r y__ .,T. % ., ',:v
.s. fs I' o :
s.
G .' : .s .. b.
. . Lg* . ,p . . ,, .
>: . , i ~ . - @ .., p ,
33.,. 's,d,.%.e _m,.1. - 9yT i . ..f,. . . ,' . .;
. .s .- .,.,,.r:
e
.. .g s .m : : :. , : . g .. ; , . . . . :.c s:s ..;~ ? ':.,
'... .w.,...y.,n. ~ ;~ ;. , d- . '. .r ,..."';.
- . . s.,4
$ .,, . . .4.;.;.,e.,c.
,.: .a ,<t. . . < ,
.. . , , . . . - /. . . t
, , g .. a . 4 t4 r a'>
uI", e e..
- ..gi. u. <e:*a.
y g, .,'84;
- ... s " (.i T '.'om%...
- %.:2.
5 t,' .d. . g . &'.' c 8. 1 . .i...'*'.-. '. . N::
t :
.J.a*#' .' ....i
- k p:l} $,5.. l gf.* El %l:'.T. ' ;[ s1.'.'
.. ' " .S. 4 ..
,.v,(...'..'
.Yy i' Q. *
.:. ..)
s' g. -W.,..~..4, ii .
s' i ,,..Y % ':y 'l.{ -V.g .".":-,g .'.4 y.- E Cl ?'V T p i ,L 2 ~' o . . .Jf.o*
- < . e s s 'l p.ly , %..
Q; " l%.,,", g: p, . ."' ,";4 l ' . , ' * .,.-
. ' ( ,s,. *(' 5lSI.. \ . ] M' , ' d. . ;. .,i ,". .b
([ , h,, .' .,a'' S- } ([,T.[O .. . o : . b p[ Mj . ' ,'.l".#
.( , . 5, .r,;
i !. '
.n ..; , j ,- q%y .r- ,;*..., % ,.,. , , sf.y . - : ,,6: ' , )G, :> *';' nTf' . '.h.:e,.}'. ..,3. 'ty ,,,3 1,,//.. . . , . , . h 7,,','.
g . .% .../.2.D'..',.*
% .'./. .l,' j 4it. ;..
. r:, , . :. w.', -
'r .
.i?...... '*.nf' r. . /(' ,,'q:. c . ..L. gl'.w;: . .y M. I, .u ... .h. 5 ,e'.1,,.,i,'.
' s 8 .
- .. . . .:p9.i.'s... ;.,h,' . y z. .g,.> .- y ]..pW... .,1 i . . ..s f.m.. ..P", -"r.a .:: -'.,, :a'.'.'
.. i.n.'; ' p.Q,./ d.. f. n '[ . . :Mi,( . .'ti;.ne..'.,,n.. s.. ' ., ., .h.. . .; . n).J.
e G .h; . 9.,;;(. . .=+,,.':u y: . . '. = .
l,.
.n..',.
1: %. .s3 . y k. r,:q..l,m. . . e .. ..
w.
ju. ;;y. < * ? v* ./: ,/v.o .':Q ft.. .'Y,,r - . n.y a .g:. .".-
'..s .-..yv /. .p. .,.p,.i .,, fJ,,; 4... .4:
A .
4 . :. . , -
a .
e,....... . ,; .p . .G. . . .*e.gs .,e.M. '.,. h. ., ~; Ae . , .. .a. . '..i....,,.q..
e.,,* .
,g< . e.g.g. . .:t,po y'f. e5 e4.. .ps. :
,y .g 6. ,y,y
- . y
- r ; . ". . % : . ' . :.,:;- , . os,1 . :y :,. .".5, . 7, , . " 9 .
fli.."..:h.', /. .~ .. .:ll;;.:x s ,h,, * . . .'[ .q. f..:* 3,...* :.y, if{:f;.. . . y ,s..
.. _. ,, ., . ., s
,. .....s._...
, . , , . -..;.~,. .
j,' gy ,,. -
{, h.b,' ,, ,'rf ,
- i. Y: ',
f**'1 ,j$,.h .'0'I' . j. ' ."l-l '
. .' l' .
, {.
k .'. yhf .'1 .f' ' '. '.:l'.
$. k * '
- . L .: * . . b,
' ' .{..f { [.
?,, c i S. Y. ' . h'. .fa ,$.3./; 'E d.M [k ( ", - '
" f N,. l- e*,f #...
- ,ta . % s o&
- %,\. . .,"i
. u e, <
,.: n if .':!%' , .3"9, "'. th.tY : , ::}l . Of) ,,
t,.A. {*it ,d;.$(.',.lel'
%' '. f : h.lf:.' .
,, ' ". , '.$.#.b e . J: 4 ..*. ~. . * .2,),? ,/#-N' M' d ':' . [* , ;.". [M.1
. : ;5.c. v. : f:Q ,l.2..' e, ,
i:,- l A. ' :.;:.
- .....r : ....s- t ::..p y 6 .
.4 .. r 'sv 0. ,#t.':.
n p6 m v.*..mte . . ;b,pb.:. .:f. y9,;:.M. v. . n. , ,: ,,- . :\. . * . a. ,*g* . :. .': . s.: s.e <1.;s,a ... ' :.; : ..s,, ,*.... - . .-
. . . . . ,r. ,$. ;;p(W.%'%. ... .-o %:.v; . .y.. ,.:gy, ,g.*~.,-
. ..; . . .. ,e. . :,y .,'p .I. . , ....,.....e%
9*f y!y .l *e.r..; ':. . . , .., .
r- ..,y'. .. : .. .. ..
f.l;;:t :. s. . ~ . . m . - l. ,: 1*... :. a,. . .
.;y S.-; .,: . .
s%m f s. . Wap%:':.
- . .' Y ,c. .. %:,6,.; .% .
b b t'%g,y. .
f.*?. T'N w:.;%@jyv. n;,4 y:m' as>,~ . ,b.61 y ;?:a.n.s. *r.J , ' ':.Q4 4'
- V . . . lh .. . '.'.. '.. *-k%y n . , q' :.. . .
~
.; .. 2 .
- - f.s. T.h,.:.'O 3',{ .p.elfp.$$,,. , ~;. , f. M,p,{'s't GWf y;,?j;Y ?..?&. n::f .&y :$k , e.4l,n.
- . p)
- ,, g.N,
- Y.'
.. g,, .N.;kl.
- y. e . , 3 .y. :. 5 ,M.
- .N.W .a'd
- .. N.
&:'.,. 4
- ..\ ' ,*Wl' '. ? . . ~ . ' Y u . s. - . '"."
L.i .
. . ,. ..v..- .,. . .:]: Tj:' z, ;D.l.i.)'a N. lg .1. :L ' :. '..Vt
,: wc 4, .
~L,j-. : a..;?
'f'.,h,;
f . .h{1h:f f. b}: .(: . '. l{. ,f.N'l.
- .f . ;'.1
- ;&y , fl?..:i: y. :: . .
h h;f f>l. ;&l4\
s .i .y .- v .v .,~.a - .. , *.
..Q V faQ.h.- ,;ty -Vr,f. ;._ 4 R :,l:$2,G:h. .&, f.fj;;h. % V,.:; f,.(:l
}. lly':s lc . . ' , . .
4
,; . r ..
5
- . . +3. . q . .. . . r.
- .c: y w.., .%;. .. :.l '. ,, . , .
Q.l:q f. , .;' ?_sf. . .
. .Yq,. - p-
,-} .
k' ':. y g.Y.,. . . *h:+ y py;q Y .Y. fy i' '
.f* O Y ~' J, .f. . . .. .:.
/ . <. ,
, ff,. '
, .i y ,:.l l< /*. -
.. Y f . ' ., ./ . , :. . L ~. ..
's . q ,'. i.i [.,:n. . ;(,,;;; y;.. .y,':l,). ;;glQ L., Q 'y.:',.l;fQ :.. .!.,,,, ':d.*l: *g_'.1 _
. $, [ U,. . , ,. g_=' l'.@t
. (.,:;D. 'l_.'c"g,. 3. .
- y. .~ ; ', :;y ':::. l:, --
.\.b. e.<t;5w , ki &.,s A Y
'..: r
< . . . Ybe .. , - ?
p .
.~ .
. . . k $wh h p, . - . . . . :, vk.:h:. . %. .(n
.&.'! ' ff f-e kh.Y. .
h ,
@ fY k' ;
Q..$W{ef ^xsh }QQ*'t r$Q.$:Q &l.gy
-- Yh 9"07130134 950707 PLR ADOCK 05000413 43 g < ld7:jf.8 s- -
P wPDRw w.w m w8:x T@d.G i
i TA W .T. w. ,
% V#Aa h M'/g$d k%@%y Wl
~ x %$M
.lQ;.pg:.syw.w.m:w
.m, .
. . m av f
.s m# 'i ap *be&
O i
P CATAWBA UNIT 1 1995 INTERIM PLUGGING CRITERIA 90 DAY REPORT JUNE 1995 ,
l I
WESTINGHOUSE ELECTRIC CORPORATION ENERGY SYSTEMS BUSINESS UNIT NUCLEAR SERVICES DIVISION P.O. BOX 355 PITTSBURGII, PENNSYLVANIA 15230 l
l l
l l
SAAPCNDCP95\DCP90 DAY.12 i 06/304 5. 15:21 l
l l
)
l CATAWBA UNIT . I !
1995 INTERIM PLUGGING CRITERIA 90 DAY REPORT l JUNE 1995 i l
i TABLE OF CONTENTS 1.0 Introduction 1
2.0 Summary and Conclusions
' 3.0 EOC-8 Inspection Results and Voltage Growth Rates 3.1 EOC 8 Inspection Results -
3.2 Voltage Growth Rates 3.3 Probability of Prior Cycle Detection 3.4 Assessment of RPC Confirmation Rates 3.3 NDE Uncertainties 4.0 Comparison of 0.630" to 0.010" Diameter ECT Probe 5.0 Data Base Applied for IPC Correlations 6.0 SLB Analysis Methods 7.0 Bobbin Voltage Distributions 7.1 Probability Of Detection (POD) 7.2 Calculation of Voltage Distributions 7.3 Comparison of Predicted and Actual EOC-8 Voltage Distributions 7.4 Predicted EOC-9 Voltage Distributions 8.0 Tube Leak Rate and Burst Probabilities 8.1 Comparison of Predicted and Actual EOC-8 Tube Leak Rate and Probability of Burst (PoB) for EOC-8 8.2 Predicted Leak Rate and Tube Burst Probability for EOC-9 9.0 Comparison of POPCD for X Inspections, Y Plants with EPRI POD
, 10.0 References j
SAAPC\DCP95\DCP90 DAY.12 ii 06/30/95, 15:21
.4 CATAWBA UNIT 1 1995 INTERIM PLUGGING CRITERIA 90 DAY REPORT
1.0 INTRODUCTION
1 This report provides the Catawba Unit 1 steam generator tube Eddy Current Test l (ECT) bobbin voltage distribution summary, together with Steam Line Break (SLB) leak rate and tube burst probability analysis results, in support of the implementation of a 1.0 volt Interim Plugging Criteria (IPC) at End Of Cycle 8 (EOC-
- 8) according to NRC guidelines, and the qualification basis of the 0.630" probe used !
for the inspection. Calculations ofleak rates and probability of tube burst (PoB) are I reported, based on actual EOC-8 bobbin voltage distributions. Also provided are l projections of ECT voltage distributions, leak rates and burst probabilities for Cycle 9 operation. The methodology used in these evaluations is in accordance with previously published Westinghouse reports (Reference 10.1).
The application of the Interim Plugging Criteria (IPC) at Catawba Unit 1 involves l 100% Eddy Current Test (ECT) of the tube bundle and plugging of >1.0 volt ;
indications which are confirmed by Rotating Pancake Coil (RPC). Plugging of >2.7 volt bobbin indications is performed regardless of RPC inspection results. The IPC requirements for 3/4 inch tubes necessitate 0.610" diameter bobbin probes. The inspection was performed principally with 0.630" diameter bobbin probes. Based on I comparison of bobbin voltages for a sample ofindications inspected with both 0.610" and 0.630" diameter probes, a conservative factor was developed to adjust the 0.630" probe volts to equivalent 0.610" probe volts. Calculations of predicted SG tube leak rate and probability of burst during a postulated SLB for both the 0.630" probe and the 610 equivalent (upper, one sided 95% confidence bound) are within regulatory requirements.
1 S \APC\DCP95\DCP90D AY.l. : 11 06/30/95. 15:21
i 2.0
SUMMARY
AND CONCLUSIONS SLB leak rate and tube burst probability analyses were performed for the actual EOC 8 ECT bobbin voltage distributions and are predicted for EOC-9. SG C was found to be the limiting SG at EOC 8 voltage and is projected to be the limiting SG for Cycle 9. The calculations demonstrate that IPC performance at EOC-9 will satisfy NRC criteria for allowable leakage and burst probability.
For the actual EOC-8 bobbin voltage distribution, the SLB leak rate is calculated to be 0.30 gpm and the burst probability is 2.84 E 03 for SG C, lower than the Catawba Unit 1 Tech Spec allowable SLB leakage limit of 17.5 gpm and the NRC reporting guideline of 10 for the tube burst probability (Reference 10.2).
A total of 3879 indications were found in the EOC-8 inspection of which 376 were RPC inspected and 73 were confirmed as flaws by the RPC inspection. The RPC confirmed indications included 62 above 1.0 volt (630 probe). SG C had 1802 bobbin indications, of which 91 were above 1.0 volt and 29 of these were confirmed by RPC 1 inspection.
The EOC-8 tube inspection was performed with a 0.630" diameter bobbin probe (630 probe) in all hot and cold leg TSPs where IPC was applied. To allow evaluation compatible with the IPC database, the inspection results were converted to equivalent 0.610" probe (610 probo) data, on the basis of test and analysis of the two probe sizes; a previous analysis of the suitability of the conversion of 630 probe data to 610 probe equivalence has been previously submitted to the NRC. Further review of this initial analysis confirms that the use of the 630 probes, in conjunction with adjustments (1.25 factor at 95% confidence) developed for the conversion of 630 voltages to 610 voltages, is appropriate. The results of Monte Carlo SLB analyses for the limiting SG C at EOC 0, applying SG C growth rates, for the 630 probe and its 610 equivalent (adjusted 630 values) are tabulated below:
Probe 630 610 Equivalent 630 Voltage Adjustment Factor 1.0 1.25 l No of indications 1922 1922 l Maximum voltage 4.9 6.3 PoB 1.4 E 03 5.7 E 03 Leakage, gpm 0.16 0.57 i These results show the conservatism on SLB leakage and burst of applying the 1.25 factor, based on 95% confidence, to the 630 voltages. The average adjustment factor is only 1.08 and application of the adjustment as a distribution would result in significantly smaller differences. The uncertainty analysis of test data from 0.630" and 0.610" probes, obtained from a blind examination by analyst and expert teams, SAAPC\DCP95NDCP90 DAY.12 2-1 06/30/95, 15:50
4 dependent POD. This conclusion is further supported by the comparisons in Section 7 between projected and actual EOC-8 voltage distributions. The POPCD for the most recent five inspections strongly supports the EPRI POD, without further adjustments for new indications, as an acceptable POD.
The 1995 RPC confirmation rate for 1993 RPC NDD indications left in service at BOC-8 was only 7.1% with a maximum of 22.2% in SG A (2 of only 9 prior NDD indications). For the prior inspection, the RPC confirmation rate for RPC indications left in service at BOC-7 was 11.1%. Individual SGs varied up to about 20%. Based on these results, it is recommended that future Catawba 1 IPC applications be based on including only 25% of the RPC NDD indications in the BOC voltage distribution used for EOC projections and leak / burst analyses.
l l
)
l l
l SMPC\DCP95\DCP90 DAY.12 2-3 os e ss,issa
2.0
SUMMARY
AND CONCLUSIONS SLB leak rate and tube burst probability analyses were performed for the actual EOC 8 ECT bobbin voltage distributions and are predicted for EOC-9. SG C was found to be the limiting SG at EOC-8 voltage and is projected to be the limiting SG for Cycle 9. The calculations demonstrate that IPC performance at EOC-9 will satisfy NRC criteria for allowable leakage and burst probability.
For the actual EOC 8 bobbin voltage distribution, the SLB leak rate is calculated to ,
be 0.30 gpm and the burst probability is 2.84 E 03 for SG C, lower than the Catawba l
Unit 1 Tech Spec allowable SLB leakage limit of 17.5 gym and the NRC reporting guideline of 10~8 for the tube burst probability (Reference 10.2).
A total of 3879 indications were found in the EOC-8 inspection of which 376 were RPC inspected and 73 were confirmed as flaws by the RPC inspection. The RPC confirmed indications included 62 above 1.0 volt (630 probe). SG C had 1302 bobbin l indications, of which 91 were above 1.0 volt and 29 of these were confirmed by RPC inspection.
The EOC-8 tube inspection was performed with a 0.030" diameter bobbin probe (630 probe) in all hot and cold leg TSPs where IPC was applied. To allow evaluation compatible with the IPC database, the inspection results were converted to equivalent 0.610" probe (610 probe) data, on the basis of test and analysis of the two probe sizes; a previous analysis of the suitability of the conversion of 630 probe data to 610 probe equivalence has been previously submitted to the NRC. Further review of this initial analysis confirms that the use of the 630 probes, in conjunction with adjustments (1.25 factor at 95% confidence) developed for the conversion of 630 voltages to 610 voltages, is appropriate. The results of Monte Carlo SLB analyses for the limiting SG C at EOC-9, applying SG C growth rates, for the 630 probe and its 610 equivalent (adjusted 630 values) are tabulated below:
Probe 630 G10 Equivalent 630 Voltage Adjustment Factor 1.0 1.25 No of indications 1922 1922 Maximum voltage 4.9 6.3 PoB 1.4 E 03 5.7 E 03 Leakage, gym 0.16 0.57 These results show the conservatism on SLB leakage and burst of applying the 1.25 factor, based on 95% confidence, to the 630 voltages. The average adjustment factor is only 1.08 and application of the adjustment as a distribution would result in significantly smaller differences. The uncertainty analysis of test data from 0.030" and 0.610" probes, obtained from a blind examination by analyst and expert teams, SAAPC\DCP95\DC190 DAY.12 21 06/30S 5. 15:50 j
concluded that the use of the 630 probe versus the 610 probe would not be expected to contribute to a significant difference in the performance of the SGs during normal operation or a postulated SLB event relative to the total expected leak rate from TSP ODSCC indications or the probability of burst / overpressure of such indications.
For the reference EOC 9 SLB leak and burst analyses, a conservative growth distribution was applied that combined the larger growth values in SG C with the higher average growth in SG A. Based on these analyses for the limiting SG C, the SLB leak rate is projected to be 0.9 gym and the burst probability is projected to be 9.5 E-03. These results show that the IPC requirement on allowable leakage (17.5 gpm) and the NRC guideline of 1.0 E-02 for the burst probability are satisfied at EOC-9.
To assist development of a voltage dependent probability of detection (POD) to more accurately project bobbin indication distributions for IPC analyses, analyses were performed for the probability of prior cycle detection (POPCD) which includes indications that were missed during the previous inspection, indications below the detectability threshold of the previous inspection, and new indications appearing since the previous inspection. POPCD was evaluated at EOC-8 for the EOC-7 inspection based on indications RPC confirmed plus not RPC inspected at EOC 8 in 1995. The inclusion ofindications not RPC inspected leads to a lower bound POD assessment, since it can be expected that many of these low voltage (< 1.0 volt) indications would not be confirmed by RPC. A POD assessment based on RPC confirmed indications is appropriate for IPC applications since only indications detected by both bobbin and RPC probes would have potentially contributed to significant leakage and burst probability over the prior operating cycle. This is based on the database for POD versus maximum depth from pulled tube examinations that show that both bobbin and RPC PODS approach unity at > 90% depth. The Catawba 1 POPCD for the EOC 7 inspection strongly supports a voltage dependent POD substantially higher than the NRC uniform POD value of 0.6, and approaches unity above about 1.2 volts. The Catawba-1 POPCD is higher than the EPRI ,
proposed POD obtained by independent review of field indications for 3/4 inch diameter tubing. The POPCD obtained at EOC-8 for the EOC-7 inspection is
, significantly higher than that obtained at EOC-7 for the EOC-6 inspection. The l latter POPCD is lower than the EPRI POD below 2 volts and approaches unity at 2 volts. These results indicate a progressive improvement in POD at Catawba-1.
POPCD evaluations for nine inspections in seven plants, including the last two Catawba-1 inspections, have been evaluated and are compared in this report.
Comparisons of the combined POPCD evaluation for all nine inspections with that for the five inspections performed since 1992 also show the overallimprovement in l POD since 1992. The POPCD for the five inspections since 1992 is in excellent l ngreement with the EPRI POD. It is concluded that the POD applied for IPC leak l and burst projections needs to be upgraded from the POD = 0.6 to a voltage 1
1 S AAPCN DCP95\DCP90 DAY.12 22 06/30/95, 18 48
l dependent POD. This conclusion is further supported by the comparisons in Section 7 between projected and actual EOC 8 voltage distributions. The POPCD for the most recent five inspections strongly supports the EPRI POD, without further adjustments for new indications, as an acceptable POD.
The 1995 RPC confirmation rate for 1993 RPC NDD indications left in service at BOC-8 was only 7.1% with a maximum of 22.2% in SG A (2 of only 9 prior NDD indications). For the prior inspection, the RPC confirmation rate for RPC indications left in service at BOC 7 was 11.1%. Individual SGs varied up to about 20%. Based on these results, it is recommended that future Catawba-1 IPC applications be based on including only 25% of the RPC NDD indications in the BOC voltage distribution used for EOC projections and leak / burst analyses. 1 i
i i
l 4
i I
I s:\APc\DCP95\DcP90 DAY.12 2-3 ovaw95.1s.3s C _ - - . - . - - . . _ . . . _ - . _ _ -
3.0 EOC-8 INSPECTION RESULTS AND VOLTAGE GROWTH RATES 3.1 EOC-8 INSPECTION RESULTS In accordance with the IPC guidance provided by the NRC draft generic letter (Reference 10.2), the End Of Cycle 8 inspection of the Catawba Unit I steam generators (SG) consisted of a complete,100% Eddy Current Test (ECT) bobbin probe ,
fulllength examination of all TSP intersections in the tube bundles of the four SGs.
A 0.630 inch diameter probe was used for all hot and cold leg TSPs where IPC was applied; the resulting data was conservatively converted to that equivalent to a 610 probe, on the basis of test and analysis of the two probe sizes, to allow evaluation compatible with the IPC database; this is discussed in Section 4. Subsequently, RPC .
examination was performed for all bobbin indications with amplitudes >0.8V (630 probe). RPC confirmed indications >0.8V (630 probe) bobbin volt were plugged.
To indicate whether discussion of bobbin voltage in this report pertains to the 630 probe or the 610 probe equivalent, all of the tables and figures are annotated as to which is applicable.
A summary of ECT indication statistics for all four steam generators is shown on Table 3-1, which tabulates the number of field bobbin indications for the 630 probe, the number of these field bobbin indications that were RPC inspected, the number of RPC confirmed indications, and the number ofplugged indications. The indications that remain active for the cycle 9 operation is the difference between the observed and the plugged. Overall, the combined data for all four steam generators of Catawba Unit 1 shows that:
Out of a total of 3879 indications identified during the inspection, a total of 3462 indications were returned to service for Cycle 9.
Of the 3879 indications, a total of 376 were RPC inspected.
Of the 376 RPC inspected, a total of 73 were RPC confirmed.
A total of 417 indications were removed from service. Any RPC confirmed but not removed from service indications have bobbin amplitudes of 5 0.8 volt (630 probe).
Review of Table 3-1 indicates that steam generator C has more total as well as higher amplitude EOC-8 indications (a quantity of 1302, with 91 indications >1.0 volt,630 probe) than SG A, B or D, thereby it potentially will be the limiting SG at EOC-9.
s wcxncisssocn.0 dan 3-I waoss. is 2:
Table 3-2 presents the EOC-8 bobbin indication population distribution for both the 630 probe size as well as for the equivalent 610 probe. The correlation Veio ,,a = 1.25 V 3o ,,.
applies to the two probe sizes, as explained in Section 4. All of the calculations and analyses in this report were performed in terms of equivalent 610 probe.
Figures 3-1(a and b) show the actual bobbin voltage distribution determined from the EOC-8 ECT inspection for both probe sizes; note that SG C predominates above 0.4 V (630 probe) or above 0.5 V (610 probe). The largest bobbin indication found in the
- EOC-8 inspection was 4.6 volts based on the 630 probe and 5.7 volts as conservatively l adjusted to the equivalent 610 probe. Figures 3-2 show the population distribution of those EOC-8 indications which were plugged and taken out of service; a majority of these repairs were performed for SG C. Figures 3-3 show the indications which are being returned to service for Cycle 9. (A set of figures is provided for each probe size, where appropriate.)
The distribution of EOC-8 indications as a function of support plate elevation, summarized in Table 3-3 and shown on Figure 3-4, shows the predisposition of ODSCC to occur in the first few hot leg TSPs (2891 of 3851 indications occurred in the first three TSPs), although the mechanism does extend to higher TSPs. There are no bobbin indications reported in the cold leg. This distribution indicates the predominant temperature dependence of ODSCC at Catawba Unit 1, similar to that observed at other plants.
3.2 VOLTAGE GROWTH RATES Growth statistics for the Catawba Unit 1 steam generators, shown on Table 3-4, provide a comparison of the last four operating cycles (1990-1991,1991-1992,1992 -
1993, and 1993-1995); these data indicate that Cycle 8 growth rate on the average exceeds that of the three previous operating cycles and is used herein as the basis for Cycle 9 bobbin population prediction. (The guidance of the NRC draft generic letter ,
recommends that the more conservative growth distribution from the last two cycles !
be used for projecting EOC distributions.) For Cycle 9 operation, voltage growth rates are developed from the FebruaryMarch 1995 inspection data and a reevaluation of the same indications from the previous (1993) inspection ECT signals.
Average growth rates in each SG for cycle 8 (1993 - 1995) are shown in Table 3-5.
The average growth rates vary between 14.7% and 88.2% per EFPY, between SGs, with an overall average of 39% per EFPY. The average growth for indications > 0.75 volt is 16.8% per EFPY and for indications < 0.75 volt is 44.2% per EFPY. SG D has the highest average voltage at BOC-8 whereas SG A has the largest average voltage SAAPC\DCl45\DCP90 DAY.3 3-2 0s/30/93, is 2i
growth during Cycle 8. (SG A growth is higher than the other three SG because of its lower BOC 8 bobbin voltage record relative to the other SGs.) Table 3-6 shows the cumulative probability distribution function of each SG during Cycle 8. For conservatism, a worst case hybrid growth distribution is defined on Table 3 6, which envelopes the actual EOC-8 distribution with the simultaneous limitations of SG A (highest average growth) and of SG C (highest growth increment of 4.6 volts during l
Cycle 8). This hybrid growth was imposed on all four steam generators, to provide a j
I conservative basis for predicting EOC-9 performance.
3.3 PROBABILITY OF PRIOR CYCLE DETECTION (POPCD)
The inspection results at EOC 8 permit an evaluation of the probability of detection at the prior EOC-7 inspection. For APC/IPC applications, the important indications are those that could significantly contribute to EOC leakage or burst probability.
These significant indications can be expected to be detected by bobbin and confirmed by RPC inspection. Thus the population ofinterest for APC POD assessments is the EOC RPC confirmed indications that were detected or not detected at the prior inspection. The probability of prior cycle detection (POPCD) can then be defined as:
EOC-8 RPC Ccnfirmed and Detected at EOC-7 +
' EOC-7 RPC Confirmed and Plugged at EOC-7 POPCD(EOC-7) =
Numerator + New EOC 8 RPC Confirmed Indications (i.e., not detected at EOC-7)
POPCD is evaluated at the 1993 EOC-7 voltage values (from 1995 reevaluation for growth rate) since it is a EOC-7 POPCD assessment. The indications at EOC-7 that were RPC confirmed and plugged are included as it can be expected that these indications would also have been detected and confirmed at EOC-8. It is also appropriate to include the plugged tubes for APC applications since POD adjustments to define the BOC distribution are applied prior to reduction of the EOC indication distribution for plugged tubes.
l It should be noted that the above POPCD definition includes all new EOC-8 indications not reported in the EOC-7 inspection. The new indications include EOC-7 indications present at detectable levels but not reported, indications present at EOC-7 below detectable levels and indications that initiated during Cycle 8. Thus, this definition, by including newly initiated indications, differs from the traditional POD definition. Since the newly initiated indications are appropriate for APC applications, POPCD is an acceptable definition and eliminates the need to adjust the traditional POD for new indications.
1 s urexDem\DCNDAu 3-3 oma ism
The above definition for POPCD would be entirely appropriate if all EOC-8 indications were RPC inspected. Since all EOC-8 bobbin indications were not RPC inspected, a lower bound POPCD estimate can be made by assuming that all bobbin indications not RPC inspected would have been RPC confirmed. 'This definition is applied only for the 1995 EOC-8 indications not RPC inspected since inclusion for the EOC 7 inspection could increase POPCD by including indications on a tube plugged for non-ODSCC causes. This lower bound POPCD can be obtained by replacing the EOC-8 RPC confirmed by RPC confirmed plus not RPC inspected in the above definition of POPCD. Inclusion of the indications not RPC inspected in POPCD primarily influences detectability below one volt since indications > 1.0 volt which are not plugged for other causes are RPC inspected at Catawba 1. For this report, both POPCD definitions are evaluated for Catawba-1.
The POPCD evaluation for the 1993 EOC-7 inspection data is summarized in Table 3-7 and shown in Figure 3 5. Figure 3-5 shows POPCD evaluated for RPC confirmed plus not RPC inspected indications and the EPRI POD developed by analyses of field indications for 3/4 inch diameter tubing in Model D SGs. As shown in Table 3-7, the use of only RPC confirmed indications for POPCD leads to an unrealistically high POD below 1.0 volt due to the fact that most of the new indications in 1995 were below 1.0 volt and were not RPC inspected. Thus the lower bound POPCD based on RPC confirmed plus not RPC inspected is a more appropriate POD assessment. It is seen that the Catawba-1 POPCD is higher than the EPRI POD. Above 1.2 volts, POPCD is 1.0 while the EPRI POD equals 1.0 at 3.0 volts. However, there are only eight Catawba-1 indications above 1.2 volts.
The POPCD was also calculated using 1993 EOC-7 data to evaluate POPCD at the 1992 EOC-6 inspection. The IPC at Catawba-1 was initially implemented at EOC-6 l after a large number ofindications at TSP intersections were found in the inspection.
l IPC eddy current data analysis guidelines were not used until the end of the l inspection. The POPCD evaluation fer the 1992 EOC-6 inspection is summarized in l Table 3-8 and shown in Figure 3-6. For this case, the lower bound POPCD based on l RPC confirmed plus not tested is below the EPRI POD curve while POPCD based on I only RPC confirmed is closer to the EPRI POD. The POPCD results for the EOC-G and EOC-7 inspections indicate a significant improvement in detectability as the IPC became fully implemented with inspection guidelines at EOC-7.
In summary, the Catawba 1 EOC-7 POPCD strongly supports a voltage dependent POD substantially higher than the NRC POD = 0.6 above about 0.5 volt and approaching unity above 2 volts. The Catawba-1 POPCD is higher than the EPRI proposed POD. It is concluded that the POD applied for IPC leak and burst projections needs to be upgraded from the POD = 0.6 to a voltage dependent POD.
This conclusion is further supported by the comparisons in Section 7 between projected and actual EOC-8 voltage distributione.
s wcsocimoc!%DAu 3-4 waon is n
3.4 ASSESSMENT OF RPC CONFIRMATION RATES This section tracks the 1993 EOC-7 indications left in service at BOC-8 relative to RPC inspection results in 1995 at EOC-8. The composite results for all SGs are given in Table 3 9. For 1993 bobbin indications left in service, the indications are tracked relative to 1993 RPC confirmed,1993 RPC NDD,1993 bobbin indications not RPC inspected and 1993 bobbin indications with no indication found in 1995. Also included are new 1995 indications. The table shows, for each category ofindications, the number of%dications RPC inspected and RPC confirmed in 1995 as well as the percentage of RPC confirmed indications.
The 1995 RPC confirmation rate for 1993 RPC NDD indications left in service was 7.1% averaged over all SGs with a w.ximum of 22.2% (2 of only 9 NDDs left in service). Out of 1131993 RPC NDD indications left in service and RPC inspected in 1935, eight of the indications were confirmed as flaws by RPC in 1995. For the Catawba 1 Cycle 7 inspection, the confirmation rate for RPC NDD indications left in service at BOC-7 was 11.1% for all SGs and 20.7% for SG C (Reference 10.4). For successive IPC inspections at other plants, the confirmation rate for RPC NDD indications left in service was typically < 25%. It can be noted that the NRC draft generic letter requires that all RPC NDD indications left in service be included in the SLB leak and burst analyses. This is clearly conservative for Catawba-1 for which the last two cycles show 11% and 7% of the RPC NDD indications confirmed at the next inspection. These results support weighting RPC indications left in service by a factor of 0.20 to 0.25 to define the BOC distribution for Catawba-1 IPC evaluations.
For the new indications in 1995, the overall 31.9% RPC confirmation is higher than that found (15.2%) for all 1993 bobbin indications left in service and the 20.2%
confirmation found for bobbin indications not previously RPC inspected. The RPC confirmation rate for new indications in 1993 at EOC-7 was 12.8% for all SGs and 20.6% for SG C.
As shown in Table 3-9, there were 43t'7 bobbin indications reported in '93 that were l not called in '95. This is due to the mry conservative data analysis criteria applied in '93 as also noted in the Cycle 7 IPC assessment of Reference 10.5. Since the '93 inspection, the bobbin guidelines were revised based on the prior Catawba-1 and industry experience including lessons learned from the EPRI POD evaluation. It is judged that the '95 results eliminated a large number offalse calls which has resulted in fewer negative growth rates and higher average growth since the false calls often result in zero or negative growth.
s umacisssocimonAY.s 3-5 omoss. ic 2
l .
3.5 NDE UNCERTAINTIES The NDE uncertainties applied for the Cycle 9 voltage projections in this report are documented in References 10.2 and 10.3. The probe wear uncertainty has a standard deviation of 7.0% about a mean of zero and has a cutoff at 15% based on implementation of the probe wear standard. The analyst variability uncertainty has a standard deviation of 10.3% about a mean of zero with no cutoff. These NDE ,
uncertainty distributions are included in the Monte Carlo analyses used to predict the EOC-9 voltage distributions.
O
/
l SAAPC\DCP95\DCI50 DAY.3 3-G OGG0/95,16.21 l
l l
Table 3 - 1 Catawba Unit 1 -Steam Generator IPC Summary of Inspection and Repair at EOC-8 0.830" Probe Data Steam Generator A Steam Generster B Steam Generator C Steam Generator D Combined Data wane.
am O we mapomme mac e--
==.e-.
me, sees
- me eues.
essenesse we are comew.e me,mese
- =es see m meeses.
m me,essee we
==
me, seed meee===
messens mac mapasse we e-a mec==. r=s seeem are are mesones meemmens tuossed -- me,eeed 0 10 2 0 0 0 0 0 0 0 0 1 0 0 4 0 0 0 7 0 0 0 0 20 40 t O $ 74 4 0 S TS 0 0 4 110 2 0 3 298 7 0 17 0 30 114 3 0 2 202 3 0 S 205 2 0 19 241 2 0 8 F63 to 0 33 0 40 102 2 0 1 ITS F 0 217 1 1 0 18 254 4 0 to Fes 14 0 30 0 50 FC 2 0 F 155 3 0 9 229 2 0 34 198 0 0 8 642 7 e $8 0 00 61 0 0 4 98 3 0 4 169 0 0 19 162 2 0 9 490 S 0 36 0 70 39 1 1 1 98 1 0 133 1 2 0 9 91 31 1 S 330 35 2 16 0 80 29 3 0 2 23 1 0 2 Se 2 1 20 62 19 0 9 211 25 1 33 0 00 14 13 0 2 19 16 0 3 $4 24 1 38 42 34 1 11 129 SF 2 54 1 00 7 7 1 2 14 13 1 3 39 18 1 23 16 13 3 6 76 $1 8 34 1 10 to to e S 12 4 1 8 27 14 7 21
- it 12 9 F $7 44 13 39 1 20 8 $ 3 0 4 3 0 1 27 20 9 M ' 1 30 1 1 1 0 2 2 0 to 10 0 4 8 47 36 14 2I 0 12 6 1 8 S S 1 1 20 13 3 9 1 40 2 2 1 1 3 2 0 8 4 1 2 6 3 2 1 2 TO 10 4 10 1 50 2 2 2 0 2 2' 1 1 2 2 0 1 2 2 2 2 8 8 5 4 tm 0 0 0 0 0 0 0 0 $ 6 4 4 3 3 3 3 e e T F 1 FO 3 3 3 0 0 0 0 0 3 2 1 2 2 2 2 2 4 F 8 4 1 90 0 0 0 t t t 1 1 0 0 0 0 0 0 0 0 1 1 1 2 1 00 t 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 2 2 2 1 2 00 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 1 0 0 1 2 20 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 1 1 t t 2 40 0 0 0 0 0 0 0 0 t 1 1 1 1 1 1 1 2 2 2 2 2 80 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 1 0 1 2 FO O O O O O O O O t t 1 1 0 0 0 0 1 1 1 1 4 00 0 0 0 0 0 0 0 0 t t t 1 0 0 0 0 1 1 1 1 Tasse 501 S6 17 33 882 99 4 43 1302 100 32 240 1214 142 20 93 3879 3FS T3 417
> 1V 25 24 15 7 24 18 3 10 91 58 29 44 SS 35 15 24 164 135 62 108
- 2FV O O O O O O O O 2 2 2 2 0 0 0 0 2 2 2 2
e Table 3 2 Catawba Unit-11995 EOC-8 Measured Bobbin Amptitude Distributions Steam Generator A Steam Generator B Steam Generator C Steam Generator D Detta 630 Probe 610 Eqtivalent 630 Probe 610 Equivalent 630 Probe 610 Equivalent 630 Probe 610 Equivalent VORagt M nopened M Repared M Repened M Repowed M Reposed M Repared M Repaired M Repe red (hn Satem Tches Dottan Tubes Bohtun Tubes Bottun Tubes 8atem Tubes Botwnn Tubes Botem Tubes Bobean Tubes and omy and omy and omy and ony ind ony and orwy ind ony ind ony 0 10 2 0 1 0 0 0 0 0 1 0 1 0 4 0 1 0 0 20 40 1 10 1 74 5 20 3 75 4 28 2 110 3 54 2 0 30 114 3 67 1 202 5 124 3 206 18 126 7 241 8 156 5 0 40 102 3 104 3 175 1 168 4 217 18 173 16 254 10 198 6 0 50 70 4 76 2 155 9 139 1 229 34 171 15 188 8 200 8 0 60 61 1 56 4 98 4 124 6 169 19 185 25 162 9 164 5 0 70 38 3 48 1 68 1 86 7 133 9 130 19 91 5 115 8 0 80 28 1 48 2 33 2 80 1 88 20 130 10 62 9 110 6 0 90 14 1 28 1 19 3 36 0 54 38 101 9 42 11 66 3 1 00 7 1 17 1 14 3 28 2 39 23 73 18 16 6 48 9 1 10 to 4 10 1 12 6 15 2 27 21 50 34 18 7 36 8 1 20 6 4 8 0 4 1 14 2 27 16 23 17 ~U 6 20 8 1 30 1 1 4 2 2 0 9 5 12 8 32 19 5 1 16 6 1 40 2 1 9 3 3 1 8 3 8 6 16 13 3 2 5 2 1 M) 2 2 6 4 2 1 3 1 2 1 26 15 2 2 9 6 1M 0 0 0 0 0 0 1 0 5 4 8 6 3 3 5 1 1 70 3 2 2 2 0 0 2 1 3 2 8 6 2 2 3 2 1 80 0 0 3 2 1 1 2 0 0 0 5 2 0 0 1 1 1 W) 1 1 0 0 0 0 2 1 1 1 2 2 0 0 1 1 2 00 0 0 0 0 0 0 0 0 1 1 4 3 0 0 3 3 2 10 0 0 2 1 0 0 0 0 0 0 2 2 0 0 2 2 2 20 0 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 2 30 0 0 1 1 0 0 1 1 0 0 0 0 0 0 0 0 2 40 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 2 50 0 0 0 0 0 7 0 0 1 1 1 1 0 0 0 0 2 70 0 0 0 0 0 0' O O 1 1 1 1 0 0 0 0 32 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 3 10 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 3 X) 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 4M 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 5 70 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 Total 501 33 501 33 862 43 862 43 1302 248 1302 248 1214 93 1214 93
> IV 25 15 46 17 24 10 57 16 91 65 184 126 44 24 102 41
- 27 0 l 0 0 0 0 0 0 0 1 1 4 4 0 0 1 1 3-8
.m me. . - .
l l11 .l 1 ll1 lllllllllIlll Em
'w
- n 5
7 3
0 4
2 9
3 5
2 7
4 2 2
6 3
1 6
6 2
6 8
1 2
2 9
4 A" G U g e
" 0 6 1 1 3 4 5
' a 7 6 5 5 4 4 5
' na 0 0 0 0 0 0 0 A' v e
M s "" ge o
p 9 0 6 6 6 1 8 i "ta 2 7 9 2 4 2 4 m "N 3 5 1 2 1 1 1 C
o M*V r
b e
mW _ 0 9
8 2
0 4 0 8
6 3
5 9
2 0 7 1
5 u 7 3 2 2 6 8 1 1 3 N
'e
'm 5
0 1
8 0
0 3
0 0 0 5
0 0
5 0
6 0
0 1
1 0
A" G
'8 .
_
- v 2 7 16 0
5 8
4 8
3 1
4 7
4
'A
' 0 0 0 0 0 0 0 A' ^J D
G S
" e
- g "a 1 4 0 6 6 0 9 9 0 5 2 8 9 8 i* t o 2 2 1 1 0 0 0 M*V r
e 0 b 7 7 6 0 3 nd w
1 3
0 3 2 9 2 1
1 1
1 5 6 1 2
1 N
e gn 9 n a 8 r w 7 0 7 6 3 3 o e or 2 3 1 1 1 1 9 5
it 0 0 0 0 0 0 AvG 1
u 0 bt r n i
t k e g ge 4 8 is a a a 4 8 5 4 6 7 4 3
C Dv e v a r
o 7
0 7
0 5
0 5
0 4
0 4
0 7
3 Ol iu E iaq Av 0 3 xE 1
A 0 me u g 5 3 it o3n1 C ms me 9
2 0
7 8
9 5
2 1
0 3
9 2 5
leni G a o 3 5 1 1 1 0 bUait n S Mv 0 a
T ai cs bwing d e r a
t e 3 taCl aC o b
m 2
9 3
1 7
3 5
2 4 8 1
7 9
3 5 8 9 2
u CSD VR N 1
1 OA e P gn S a r w 9 1 5 5 4 4 3 T e or 0 1 2 0
1 0
1 0
1 0
1 0
1 0
AvG e ge g
a a S 0 6 7 1 5 1 E
e r
v e n C 8
0 4
0 0 4
0 4 4 0
5 0
B Av G
S me u g ma d n 1
2 4
7 8
2 1
4 6
7 3
8 1
9 ea 2 1 1 1 0 0 0 Mv r
e b 7 5 5 7 4 2 6 6 m 3 3 6 0 5 u 2 2 1 1 4 4 2 8 N
e gm a 9 0 7 7 4 9 9 ra e
2 0
3 0
2 0
2 0
3 0
1 0
2 0
AvG e
g ge a n 1 6
9 5
6 7 5
0 3 5 ee r
v Av 0 0 5
0 0 5
0 4
0 8
0 A
G S
me u g .
mn 1 1
0 1
1 7
6 2
6 4
1 2
8 4 r mA 2 2 1 2 1 1 1 3 MaV 2
4
,s s
2
%- 3 9 5 1 1 6 7 2 e<
2 2 6 5 4 2 9 3 1 1 $ 4 >
1-
.e 1
- s e l t x
b - aea H 2 H
3 H
4 H
S H
G H
7 H
8 ta o w T
u6R T ge D C
l Ill llllll l i \lll li ll ll l
f y
p e
r e
9 3
4 7 4 1 8- 2 p
h t
w l% l l ll o
r e G c l
% cy 2 8 8 8- 4 r 4 4 1 2 1 e
p ll l l ll i
) y e
g p f 6 6 6 6 1
_ a e 1 1 1 0 0
_ lt I 0 0 0 0-o V 0 V A
) ) )
0 5
)
2 1 1 a l 3 l 9 l 9 ll 6 t y 9
' 9 '
a 9 9 9
- t nd f p
o 2 2 2 o 'o t o e t 2 2 2 t 5 t 8 lero e 3 5
6 5
6 5
6 2 9 1 8 0
C at 9 9 0 Oirva V lc 9
7 7 7
'( 0 '
(
9
_ y ( 0 0 0 (
E qn ue A C 1 1 1 7
5E e e 6 5 9 gl 8 e l e
l e
ll 49 inGm 1 (
a r A V l e
c 8 8 7 l
c y 6 l
c y
l c
y 31 ya r e e y C 0 1
1 v l C
1 1 1 C 0 C l
e t- t ot e A yc 0 0 0 0- 0 0 bi nisS C Ta UHl A l
l l l ll aht f e b w eo o s
wot a r i V t 2 7 4 8 5 aGs o e g 4 3 9 7 5 4
7 Cep 0 0 gm a
a e
r 0 0 0 0 lt o v oC A V
g e ll l l ll a f s r
e on v r o 1 3 9 1 ei 8 6 A b a t
5 8
2 5 2 2 9 4 9 2 mic ud 3 3 3 8 6 1 N n I e
g e
g e
g e
g n n n n a a a a R R R R e
g e
g e
g e
g M 5 P a 7 a a a 2 lt lt lt lt 2 o < o o o 4 V C 5 V V V 5 9
e r O 7 e r e r
e r
/
5 2
t i
B =. it t i
it
/
8 n > n n n 4-E V V E E E 3 e
lb a
T S I L
A H
T W
O a R c* C G i l l l,l
l Table 3 - 5 Catawba Unit - 1 1995 EOC-8 Average Voltage Growth All Voltages in 610 Probe or Equivalent Number of Average AV % Growth Indications Average V see AV/ cycle Cycle efpy AVlefpy % per cycle % per efpy Composite of All Steam Generators Ent:re Voltage Range 3851 0.42 0.18 1.077 0.16 41.95 39.0 V BOC < .75 3523 0.37 0.18 1.077 0.16 47.57 44.2 V>=.75 328 0.94 0.17 1.077 0.16 18.06 16.8 Steam Generator A Entire Voltage Range 492 0.29 0.27 1.077 0.26 94.9 88.2 Vsoe < .75 482 0.28 0.27 1.077 0.25 97.1 90.2 V soe 2 .75 10 0.85 0.52 1.077 0.48 61.3 57.0 cc b
Steam Generator B Entire Voltage Range 856 0.37 0.17 1.077 0.16 46.5 43.2 Vsoc < .75 811 0.34 0.17 1.077 0.16 50.5 46.9 V soe 2 .75 45 0.90 0.17 1.077 0.16 19.0 17.7 j Steam Generator C Entire Voltage Range 1293 0.43 0.23 1.077 0.22 53.5 49.7 Vsac < .75 1192 0.39 0.22 1.077 0.20 55.6 51.6 Vsoe2.75 101 0.96 0.42 1.077 0.39 43.8 40.7 Steam Generator D Entire Voltage Range 1210 0.49 0.08 1.077 0.07 15.8 14.7 Veoe < .75 1038 0.42 0.09 1.077 0.08 21.7 20.1 V soe 2 .75 172 0.94 0.00 1.077 0.00 0.12 0 GROkVTH XLSTable 3-56/25/954 22 PM
Table 3 - 6 Catawba Unit ! 1995 Signal Growth Statistics for Cycle 8 on EFPY Basis Equivalent 610 Voltage Steam Generator A Steam Genermor B Steam Generator C Steam Generator D Combined Hybrid
- No. obs CPDF No. obs CPDF No. obs CPDF No. obs CPDF No. obs CPDF No. obs CPDF
-2.00 0 0 0 0 1 0.0008 0 0 1 0 0003 0 0
-1.00 0 0 0 0 1 0 0015 0 0 1 0 0005 0 0
-090 0 0 0 0 1 0.0023 0 0 1 0 0008 0 0
-0 80 0 0 0 0 0 0.0023 1 0 0008 1 0 0010 0 0
-0.70 0 0 0 0 0 0 0023 4 0 0041 4 0 0021 0 0 0 60 0 0 0 0 1 0.0031 1 0 0050 2 0 0026 0 0 0 50 0 0 0 0 0 0 0031 9 0.0124 9 0.0049 0 0
-0 40 0 0 3 0 0035 0 0 0031 17 0.0264 20 0.0101 0 0
-030 1 0 0020 4 0 0082 3 0.0054 23 0.0455 31 0.0182 1 0.0020 0.20 2 0 0061 6 0 0152 7 0.0108 41 0 0793 56 0 0327 2 0.0061
-010 5 0 0163 22 0 0409 29 0 0333 81 0.1463 137 0 0683 5 0.0162 0 00 26 0 0691 88 0.1437 92 0.1044 216 0 3248 422 0.1778 26 0.0687 0 10 84 0 2398 225 0 4065 271 0.3140 320 0.5893 900 0 4115 84 0.2384 0 20 112 0 4675 229 06741 312 0 5553 241 0 7884 894 06436 112 0 4646 0.30 105 0 6809 126 0 8213 239 0.7401 124 0 8909 594 0.7978 105 0 6768 0 40 57 0 7967 66 0 8984 142 08500 68 0 9471 333 0 8842 57 0.7919 0.50 37 0 8720 43 0 9486 83 0 9142 29 0 9711 192 0.9341 37 0 8067 0 60 29 0 9309 18 0 9696 40 0 9451 17 09851 104 0.9611 29 0 9253 0.70 17 0 9654_ 8 0 9790 20 0 9606 7 09909 52 0.9146 17 0.9596 0 80 6 0 9776 9 0 9895 20 0 9760 2 0.9926 37 0 9842 6 0.9717 0.90 6 0 9898 6 0 9965 11 0 9845 3 0 9950 26 0.9909 6 0.9838 1 00 2 0 9939 2 0 9988 3 0.9869 2 0.9967 9 0.9933 2 0.9879 1.10 0 0 9939 1 1 7 09923 0 0 9967 8 09953 0 0.9879 1.20 1 0 9959 0 3 0.9946 3 0 9992 7 09971 1 0.9899 1.30 1 09980 0 1 09954 0 0 9992 2 09977 1 0.9919 l 1.40 0 0 9980 0 1 0.9961 0 0 9992 1 09979 0 0.9919 1.50 0 0 9980 0 1 0 9969 0 0 9992 1 0.9982 0 0 9919 1.60 0 0 9980 0 0 0 9969 1 1 1 09984 0 0.9919 1.70 1 1 0 1 0.9977 0 2 09990 1 0.9939 2.10 0 0 1 0.9985 0 1 09995 1 0.9960 2 60 0 0 1 09992 0 1 09997 1 0.9980 4 60 0 0 1 1 0 1 1 1 L
Total Obs 492 856 i??3 1210 3851 495 8 Steam Generator A esta plus three mdcatons we largest growtn m Smem Generator C 3 - 12 j o.- c - n~
Table 3 - 7 Catawba Unit - 1 1995 EOC-8 Evaluation for Probability of Prior Cycle Detection (EOC-7)
Composite of All Steam Generator Data l
l New Indications 1995 Bobbin, Field Catlin 1993 1993 Bobbin POPCD 1995 RPC 1995 RPC RPC j l
Voltage 1995 Confemed 1995 Confirrned 1993 RPC Confirmed Bin RPC plus not RPC plus not Confirmed Confirmed Plus M Confirmed Inspected Confirmed inspected and Plugged Inspected Frac. Count Frac. Count
> 0-02 0 236 0 358 0 -
0.60 ofo 358/594 0.2 - 0.4 24 458 9 1240 2 0.31 11 /35 0.73 1242/1700 04-06 1 139 4 771 4 0.89 8/9 0.85 775/914 0.6 -0 .8 0 34 8 244 8 1 16/16 0.88 252/286 Y 08-1.0 3 4 15 77 16 0.91 31 / 34 0.96 93/97
- a 1.0-12 2 3 3 6 124 0.98 127/129 0.98 130/133 1.2 - 1.4 0 0 0 1 79 1 79/79 1 80/80 1.4 - 1.6 0 0 2 3 24 1 26/26 1 27/27 1.6 - 1.8 0 0 1 1 9 1 10/10 1 10/10 1.8 - 2.0 0 0 0 0 2 1 212 1 2/2 2.0 - 2.5 0 0 0 0 2 1 2/2 1 2/2 2.5-30 0 0 1 1 3 1 4/4 1 4/4 30-4.0 0 0 0 0 1 1 1/1 1 1/1 40-55 0 0 0 0 1 1 1/1 1 1/1 TOTAL 30 874 43 2702 275 Total > 1V DCPPOPCo XLWlALLSG POPCD TABL SUMISr27195f9 34 AM
v e Table 3 -8 Catanba Unit - 1 1993 EOC-7 Evaluation for Probabilty of Prior Cycle Detection (EOC-6)
Composite of All Steam Generator data ,
New Indications 1993 Bobbin, Field Call in 1992 1992 Bobbin POPCD 1993 Volts 1992 Volts 1992 Vetts 1993 RPC 1993 RPC RPC Voltage 1993 Confirmed 1993 Confirmed 1992 RPC Confirmed Bin RPC plus not RPC plus not Confirmed Confirmed Plus Not Confirmed Inspected Confirmed Inspected and Plugged Inspected Frac. Count Frac. Count
>0-02 2 40 0 37 0 - 012 0.48 37/77 a
O2-04 14 526 4 305 1 0.26 5119 0.37 306 /832 5 0.4-06 14 1481 17 788 5 0.61 22136 0.35 79312274 06-0.8 22 1530 30 851 9 0.64 39161 0.36 86012390 08-1.0 21 554 69 469 59 0.86 128/149 0.49 528/1082
~ ~ ~ ~ ~ '
~ ~
1.0 - 1.2 36 40 59 69 43 O.74 102/138 0.74 1121152 1.2 - 1.4 12 14 19 20 17 0.75 36148 0.73 37I51 1.4 - 1.6 1 3 6 8 3 0.90 9110 0.79 11 /14 l 1.6 - 1.8 1 2 0 0 7 0.88 7/8 0.78 7 I9'
- 1. 8 - 2.0 1 1 1 1 2 0.75 3/4 0.75 3/4 2.0 - 2,6 0 0 0 0 2 1 212 1 212 l
2.6-36 0 0 0 0 2 1 2/2 1 2/2 l
TOTAL 124 4191 205 2548 150
> 1V 51 60 85 98 76 POO91 SUM KLSICOM8 POPCD-TABL-SUM 16 tit 99$4 03 PM
lllI, lIl Il i liI 1l ij)l1j l l ijI l !
d t
n e e5Cm c9 r 9 Pi f 2
5
- 0 1
8
- 0 2
6 4
3 6
0 0
8 7
3 3 -
4 7
9 5
2 5
0 0
1 7
2 0 -
9 1
4 9
_ e1 R n 3 1 1 5 6 4 1 1 2 3 1 P o
_ C d
e la5Cm t 9 o9 Pi r T1 Rn f
0 1 0 0 0 1
- 1 1
1 3
3 1 8 2 4 - 9 2
2 6
3 4 1 8 4 3 - 0 3
3 7
o s C n
io t d c e e
p la5Ctc 1 3 1 5 2 3 8 6 s a e t 9 P e o9 9 0 8 6 2 - 0 5 4 2
1 9 1 5 4
5 4 - 3 4 3 8 1 1 6 - 4 9 7 Inta g T1 Rp s 1 1 1 2 1 1 3 a n 8Dt- l i
r o CoV Ot a e n E r eb no d no la5iibt 5 4 5 1 9 9 b ca t 9 0 4 7 8 0 9 6 4 8 8 4 4 0 1 5 8 7 1- n e r o9 oi 8 3 8 2 -
8 9 6 3 6 5 7 -
4 8 9 4 4 3 - 3 8 9i7t aG Pn T1 Bd n 2 4 2 3 1 1 2 5 2 9 3 n - i I 3 UCamb baOe b
le Et o SB n b no a wml " la3i i Tt aol 0 8 4 3 8 t
o9 b c a 9 bt 7 4 7 8 7 7 0 4 6 4 0 7 2 0 1 9 5
7 8
7 2
afrA3 T1 oi 7
6 3 8 4 2 2
9 3
7 6
5 5
6 5 7 1
4
- 5 5 7 3 4 4 5 2 3 3 -
3 Cao 6t f
0 Bd n 4 7 a e I e
Dint g s o a PCod p e
t lo Rms f oa v
in oC s
B 5 9 b b
9 is 1 d d o
ly s n e b a n i t c M te c 3 e
A n ka rt o
d, p s
n
- 5 9
W .
3, s
e p
9
'n c V l D it n s 9 L n D n J.
D i
n
- n o 0
h 1 t s
e w t
D o n o D o b s.
o D o h n d 1 c C N N t o b o i n ic e C N N to v e ic C N N t o o e s
o i
i.
r v C C P C B s a v C C C B s n C t
C C B s a t
a t
e P P 5 n c lto r
e P P P 5 n 5 e P P P 5 n ic b R R S R o L.
l a R io d S R 9 S R R o d 9 n V R 9 R 9 is a n u 9 n 9 b 9 b in 3 3 3 1 ta I 3 3 3 a :
1 L 1
3 3 3 9 I q 9 9 9 m 5 0 i 9 9 9 1
5 1 ic 5 t E
t fe 9 o d 9 n 9 o ic d 9 n t 9 9 9 9 o 9 h 9 9 1 N n 9 1 e 9 9 N 9 i fe 9 9 N d n 9 p r L 1 1 I 1 n t 1 1 1
m L 1 1 1
s o n - - -
5 N a n 5 1
s e n I
5 1
n n
a b
t 9
9 A h t b - - - - 9 9
8 A g b - - - - 9 9
N A io h o 1 f o r t
o 1 f a t o 1 f t t B e D o lt B o a 3
w m t w m o w ic s 9 e u a 3 e u V 3 e m s
e 9 N S e r
9 9 N S l l
9 9 N Su d n
1 1 L G A 1
I
-o c
e
=
m
.] o c
m
=
=
lllI Iilll
Figure 3 - Ia Catawba Unit -1 1995 EOC-8 Distributions of Actual Bobbin Voltage - 630 Probe Data 300 250 - - - - - - - - - - -
E S/G A
,,, 200 - -- --- - - -
5 O S/G B
=
5
- s 3 150 - - - - - -
-. - -- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - O S/G C T
~ ,
- t j -
m S/G D 2: 100- , c 5 k
i ,
50 - l 0 - : : : : : : : : : : ;"'I: lA: : N;- ~ ; - :- - l -: -: - -: -: -
88 o o 88 o o 88 o o 88 o o 888888888 o - - - - - - - -
88888888
--n n n n n n Bobbin Voltage ECVDsSTJLSFug 3-1a6/25/95 4 49 PM
Figure 3 - Ib Catawba Unit- 1 1995 EOC-8 Distributions of Bobbin Voltage - 610 Equivalent 200 180 - ---- - 2 - -- - - - - - - - - - - - - - - -
160 - -
a S/G A 140 - - - - -
O !
= 120 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
.E ,
OS/G C ca 1
=
g 100 - - - - - - - - - - -- - - - - - - - - - - --- - - - ~ ~ ~ - - ~ ~ - ~
4 s.
E S/G D 80 - - - - -- - - - - - - - - - - - - - -
i 60 - -- - -- - - - - - - - - -- - ----
40 - -
20 - - - - - - ---- - - - - - - - - - -
0 - - - - " - Lb = E E A * = ~ -- - - - - - - - -
$8 8$$$8@ 88888$$ %8N8$$88$$@ 8 58 8 o o o o o o o o o -- - - - - - - - - n n n n n n n m m m m Bobbin Voltage ECVD1ST.XLSFig3-1b6/2595 6.38 PM
Figure 3 - 2a Catawba Unit - 1 1995 EOC-8 Bobbin Voltage Distributions for Repaired Tubes 630 Probe Data 40 35 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
E S/G A 30 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
0 S/G B E
.o 25 - - -- - * - - - - - - - - --- - - - - -
li OS/G C 2 -
w I
. 20 - - - - - - - - - - - - - - - - - - - - - - - -- - --
- T -
E S/G D m g - -
.c l
15 - - - -- -- - - -- - - - - - - - - - ----
z 10 - - -- - - - - -
5- - - -- - - - - - -- -- -- - - - - - - - --- - - - - -
0 : : :E l l : : : : :E I; ; ; ; ; n ;E n : M; n ; m; M ; M; M o
o o
k o
o k
o ko k k
k k
m n
o o
n
,e Bobbin Voltage ECVDIST.XLSFig 3-2a 6/25/95 4 51 PM
-- ~.-__.______--_x.-___.-___-__
Figure 3 - 2b Catawba Unit - 1 1995 EOC-8 Bobbin Voltage Distributions for Repaired Tubes Equivalent 610 Voltage 35 30- ---
m S/G A 25 - --
B S/G B -
E o
3_, 20 - - -- - .-- _._ _ -_.
O S/G C m
3 co o W S/G D u
g y 15 - -- - _ -- - _ _
E a
Z 10 - -- - -- _ - - - - _ _ _ _ _
i 1
5- - - - - - - - _ - - -- - _ _ _
0 .
.I
.E
.I
, ,. I. ,
.,! I,. I I,, ,. E .E
. R . n n . n . II n ., n .
! $$$$$$$$$$$$$$$$$8$$$$$$k$$$
o o o o o o o - - - - - - - - - - n n n n n n n m m m m Bobbin Voltage l
ECVDfST XLSFig 3-2b8/2555 6.39 PM
, Figure 3 -3a Catawba Unit- 1 1995 EOC-8 j Bobbin Voltage Distributions for Tubes Returned to Service 630 Probe Data 250 200 - - - - - - -
~
s S/G A D S/G B 150 - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - ~~~~ ~
O S/G C ca ?
5 E S/G D o t: :
j 100 - -- -
50 - - - - - - - -- -- - - - - - - - - -
l .
g 0 - "' ' ' ' ' ' ' ' ' ' ' ' d"' - ' ---
o o o o o o o o o o o o o o o o o a 6 6 6 6 6 6 6 6 a a J J J J J J l Bobbin Voltage l
l ECVD'ST XLSFig3-3a6/25/95 4 52 PM
__ _ _ _ _ _ _ _ m ,
Figure 3 - 3b Catawba Unit - 1 1995 EOC-8 Bobbin Voltage Distributions for Tubes Returned to Service Equivalent 610 Voltage 200 180 - - - - - - - - - -
l 160 - - - - -
140 - - -- - - - - ~ ~ ~ ~ ~ ~ ~
/G B E
120 - - - -- ----- ~~~
\
~]
m O S/G C Y f 100 - -- - - - - -
E S/G D b
j 80 - - - - - - - -
2 60 - - - - - - -
40 - -- - - - - - - --- -
20 - - - - - - --
0 -: : : : ; : : : : : : : lb - ': A: ^:" : - l :-
8 8 8 8 8 8 8 8 8 8 8 8 8 4 8 8 8 8 8 8 8 8 o o o o o o o o o - - - - - - - - - - m m n Bobbin Voltage ECVDISTJLSF43-3tA75/95 4 52 PM
Figure 3 - 4 Catawba Unit - 1 1995 EOC-8 ODSCC Axial Distributions j 400 350 --- - - - -- - - ----- -- -
300 - - - -
m S/G A g a S/G B
.2 250 - - - - - - - ---- - - - - - -
.i .
o s/G c w E S/G D E .5 j 150 100 - - - -
0 i i -
i - i i U h I $ 5 k I Tube Support Plate GROWTH.XLSFg?-46/25/95 4 03 PM
Figure 3 - 5 Catawba Unit- 1 1995 EOC-8 Evaluation for POPCD at EOC-7 1.0 - - - - - - -
- 1 - -
,.,.-------u------- ~
0.9 -- -- - - - - - - - -
y e' - -- -- -
I
.s
.s' 0.8 - - - - - - -- - -
,a' -- --
/
s~
0.7 - - - - --
y e---- - - - - - - - - - - - - - - - - -
g .-
= .-
t 0.6 w - - - - - ' -- - ----- - - - - - - - - - - - - - -
t .'
O .'
"e o,5
/ : RPC Confirmed Plus _ _ .
d f No; Inspected C3 f
'h y 0.4 - - -- - j---
C' 2 ---- EPRI POD m .f 0.3 - - - - - - - - - - - - - - -
0.2 - - - - - - - - - - - - -- - -- -- - --- - --
0.1 -- - - - - -
0.0 : : :
0 0.5 1 1.5 2 2.5 Bobbin Amplitude ocepo=co xtwsttsc-eoeco_ct=q6G4/95R53 PM
_ _ - - - _ _ _ _ _ - _ _ _ _ _ _ _ - _ _ - _ - - _ - _ _ . _. _.- _ _ _ _ - - - _ . . . . - . . . . = -_
Figure 3 - 6 Catawba Unit - 1 1993 EOC-7 Evaluation for POPCD at EOC-6 1.0 = =
,. ~
0.9 ~
/ x- - x .
x- - -x ,/ t *- l i I/ 3 g 0.8 I 4 1
%i i ,i
,f' l O.7
/
./ I a s
,o p - -x O.6 -* X j Y]f e I C t' Y 0'5 #1
'H' p 8-U /I - u - RPC Confirmed a
. =
- I a i to a 04 . I
' I --e-RPC Confirmed Plus Not inspected
~A l 0.3 /
g x- - -x
EPRI POD O.2 0.1 l l 0.0 l l l l l 0.5 1.5 2 2.5 3 3.5 4 0 1 Bobbin Amplitude POD 91 SUM XLSiPOPCD ChartJ6/16/95l4 03 PM
~ -- m , ~ - - e , ,,
4.0 COMPARISON OF 0.630" TO 0.610" DIAMETER ECT PROBES
4.1 Background
Duke Power Company used a 0.630" diameter bobbin coil eddy current probe (630 probe) in lieu of the standard 0.610" diameter probe (610 probe) for the inspection of SG tubes at the Catawba nuclear station. The rationale for this is based on the expected enhanced detection capability of the 630 probe relative to finding small free span indications, References 10.6 and 10.7. From a qualitative comparison of the probes, it would also be expected that, relative to the 610 probe:
- 1) The 630 probe would be more sensitive to degradation, perhaps resulting in an increased probability of detection,
- 2) The 630 probe would be less sensitive to the masking effects of extraneous signals on the degradation, and
- 3) Analysis of the signals from the 630 probe would result in a more accurate sizing ofindications due to clearer transitions.
The Reference 10.6 letter transmitted preliminary results obtained from a comparison of 630 to 610 probe voltage differences for five (5) ASME standards used for the calibration of eddy current probes, Table 4.1, and for a small sample of field data from SG "C" at the McGuire 2 nuclear station, Table 4.2.
Based on thirty one (31) pulls of each of the standards, the ratio of the 630 probe volts to the 610 probe volts was found to be 1.01 with a standard deviation ofless than 0.02. Hence, relative to the standards, it may be concluded that there is no l significant difference between the probes.' The evaluation of data from the McGuire 2 field sample indicated a larger difference between the readings obtained from each of the probes. The 610 probe volts were found to be 93% of the 630 probe volts on average with a standard deviation of 15%. The 630 probe volts as a function of 610 probe volts for the McGuire data is plotted on Figure 4.1. The difference in probe readings as a function of the 610 probe volts is plotted on Figure 4.2.
l Since the results of the preliminary comparisons were favorable, it was decided to l proceed with the comparison of the probes based on a larger sample of data from the )
ongoing Catawba 1 inspection. Reference 10.7 also described the data collection and
{
evaluation plan to be used, along with criteria to be employed for the use of the results of the 630 probe inspection data. The elements of the data collection plan for collating the sample data were as follows:
' Since the ratio was greater than 1.0 for four of the standards, and 1.0 for the rernaining standard, it could be suspected that there is a real difference, but that it is not significant.
S \APC\DCP95\DCP90 DAY 4 4-1 06/3095. 16 46
6
- 1) Fifty (50) indications with 630 probe amplitudes in the range of 0.60 volt to 0.79 volt (referred to as source bin 1).
- 2) Fifty (50) indications with 630 probe amplitudes in the range of 0.80 volt to 0.99 volt (referred to as source bin 2).
- 3) Allindications with 630 probe amphtudes greater than or equal to 1.0 volt (referred to as source bin 3).
The criteria developed for the use of the 630 probe field data were delineated in Reference 10.7 as:
- 1) If the mean difference between the probes was 0.05 volt with a standard deviation of less than or equal to 10% the 630 probe data would be used directly for Interim Plugging Criteria (IPC) purposes.
- 2) If the ratio of the 610 probe to 630 probe volts was less than 1.1 at a 90%
confidence level, with an attendant small standard deviation, the volts obtained from the 630 probe would be adjusted by the average ratio adjusted to a 90% confidence level.
- 3) If neither of the previous criteria are met, the 630 probe voltages would be adjusted by the ratio of the probes output at a 90% confidence level, and all indications with adjusted voltages greater than 1.0 volt would be inspected by a motorized rotating pancake coil (MRPC) probe. This is the same as reducing the 630 probe criteria for performing MRPC.
A discussion of the initial results from the evaluation of the resulting data was held with representatives (R. Martin, E. Murphy, and K. Karwoski) of the United States Nuclear Regulatory Commission (NRC) on March 8,1995. A complete se, of the data, Reference 10.8, was transmitted to the NRC prior to that discussion. Duke Power Company committed to provide a summary report on the collection of the data and the initial data analysis prior to the restart of the Catawba 1 plant, and to investigate the use of additional analytical techniques, e.g., Monte Carlo simulation, for further implications of the results relative to the application of the IPC.
Reference 10.7 was transmitted from Duke Power to the NRC to meet that commitment. The initial data analysis is contained in this report, along with the rationale for establishing a 630 probe amplitude of 0.8 volt as the criteria for inspecting an indication with a MRPC probe.
The Safety Evaluation Report (SER), Reference 10.9, noted that the following commit-ments were made in Reference 10.7:
- 1) Perform a more detailed assessment of the data, and S \APC\DCP95\DCP90 DAY 4 4-2 06/30SS, 16-46
1 0
- 2) Assess the non destructive examination error associated with the use of the 0.630" diameter probe.
I The purpose of the assessment is to estimate the impact of the use of the 0.630" i diameter probe on the tube integrity analyses, i.e., the conditional probability of burst )
(PoB) and the conditionalleak rate calculations.
4.2 Data Analysis i
The data analysis document in this section is divided into two subsections, a summary of the initial analysis and findings as transmitted to the NRC via Reference 10.7, and additional data analysis in response to the commitments documented in the SER, Reference 10.9.
4.2.1 DATA USED FOR THE INITIAL ANALYSIS (References 10.7 and 10.8)
Each of the indications in the data samples, or bins, were reinspected using new 610 and 630 probes. The results of the inspection were analyzed by independent eddy current (EC) analyst inspection teams. The team using the 610 probe was independent and isolated from the team evaluating the results from the 630 probe.
The results of the reinspection / analysis were then categorized into analysis bins using the same limits as above for the source bins, according to the voltage from the 610 ,
probe. An additional bin, referred to as analysis bin 0, for indications with a 610 l probe amplitude ofless than or equal to 0.59V was created to accommodate the data l obtained. A comparison of the results obtained from each of the probe sizes for each 1 indication in each bin was then performed. The data obtained and the graphical analysis of the data for bins 1 through 3 was transmitted to the NRC via Reference 10.8. Only the bin 3 data was used in the analysis discussed in Reference 10.7.
Accordingly, the bin 0 through bin 2 data is not included in this report. Inclusion of that data would also be considered to be inappropriate since it is not germane to the effect of using the 630 probe in lieu of the 610 probe to disposition indications relative to the implementation of the IPC for Catawba 1.
4.2.1.1 Discussion of Analysis Results In contrast to the results of from the preliminary study of the ASME standards and McGuire data, little correlation was evident between the probes in bins 0 through 2.
However, strong correlation was found between the probe voltages for bin 3. The data is provided in Table 4.3. As noted in the previous section, relative to the application of IPC, bin 3 with 610 probe voltages greater than 1.0V is the most I meaningful, j i
The final segregation of data resulted in a total of eighty-three (83) data pairs in bin
- 3. A comparison of the probe voltages is illustrated on Figure 4.3. The index of l determination (the square of the correlation coefficient) of the correlation of the 630 volts to the 610 volts was found to be 95.2%. Hence the data indicate that the 630 l S.\Al'C\DCI55\DCISODAY.4 4-3 0s/30/95.18.4c v - -- , - -,a. - - - . --- . - , - - - - - - . - - - m,- m-- ---1,
probe volts are strongly correlated to the 610 probe volts. The average ratio of the 610 probe volts to the 630 probe volts was 1.13 with a standard deviation of 0.09.
The average difference of the 610 probe volts from the 630 probe volts was 0.16V with a standard deviation of 0.13V. The index of determination of the ratio of the probe readings, see Figure 4.4 for a plot of this data, to the 610 voltage was found to be 3.2%. As expected from early considerations and previous experience, the ratio of the readings is likely independent of the probe voltage. The index of determination of the difference in the probe readings, see Figure 4.5, to the 610 voltage was found to be 35.6% While the difference in readings may appear to exhibit a low correlation, the opposite is the case. The correlation coeficient is 0.60, which is significant at level
>P9.9% for the data sample size of 83. This is consistent with the ratio of the probe amplitudes exhibiting no correlation, i.e., for a constant ratio of volts the difference in voltage readings must increase with voltage.
In summary, neither criterion 1) nor criterion 2) as delineated above were met.
Hence, per the discussion in the reference letter, the 90% confidence limit on the ratio of the 610 probe voltage to the 630 probe voltage was applied to the 630 probe amplitude to determine the voltage level to trigger inspection of an indication using MRPC.
4.2.1.2 Determination of Criterion for MRPC Inspection The distribution of the ratio of the probe amplitudes is illustrated on Figure 4.6.
Based on non-parametric statistics, the 90% confidence bound for a 95% portion of the population is given by the 81" ordered value. This actually gives a lower 92%
confidence on the ratio of the 630 probe volts to the 610 probe volts of 0.8. Since the IPC is based on a 610 bobbin coil probe voltage of greater than 1.0 volt as a trigger to perform a MRPC inspection of the indication, the appropriate trigger using the 630 bobbin coil probe was set at 0.8 volt. Relative to the Catawba 1 IPC, MRPC confirmation of bobbin indications of greater than 0.8 volt implied confirmation of indications greater than 1.0 volt had a 610 probe been used. In addition, since the ratio is independent of amplitude, the 2.7 volts limit for repair of an indication regardless of MRPC confirmation (which was originally developed for use based on data from inspections performed with 0.610" diameter bobbin probes) was adjusted to 2.2 volts for indications detected using the 0.630" diameter bobbin probes.
It is specifically noted that the use of the factor of 1.25 (1.0/0.8) to adjust 630 probe volts to 610 probe volts is considered to be an upper bound on the probe-to-probe variation for indications above 0.8 volt by the 630 probe, since that value also includes a variance contribution from eddy current analyst uncertainty.
4.2.2 ADDmONAL DATA ANALYSIS Additional analysis of the data was performed per the commitments documented in i
the SER, Reference 10.9. The purpose of the additional analysis was to determine l S \APc\DCP95\DCP90 DAY.4 4-4 OG/30S$.16.46
if the initial findings as delineated in Section 4.2.1.2 of this report were valid, and to casess the non-destructive examination error associated with the use of the 630 probe. ;
Since the implementation of the IPC is inherently dependent on the confirmation of !
indications utilizing a MRPC probe, the data were filtered to include only confirmed indications. A total of sixty-two (62) indications from the test data were RPC confirmed to be ODSCC indications. These data are listed in Table 4.5.
4.2.2.1 Comparison of the Probes l
The initial evaluation of the data paralleled that reported previously for the entire .
data set, i.e., the difference in the volts reported for the 610 probe, V 3o , and the 630 i probe, V,3o, and the ratio of the volts reported for the 610 probe to that reported for the 630 probe were calculated. In addition, the index of determination of the 630 .
probe volts to the 610 probe volts, the difference in reported volts to the 630 probe volts, and the 610/630 volts ratio to the 630 probe volts was calculated. For the j confirmed indications, the index of determination was 94.5% for the correlation of 630 ,
probe volts to 610 probe volts. The other two indices were 34.7% (significant at a level >99% for 60 degrees of freedom) and 12.7% respectively. These results support earlier judgements that the ratio was independent of voltage and that the difference would be dependent on the voltage. The average ratio was found to be 1.08 with a ,
standard deviation of 0.12. The median, skew and normalized kurtosis of the ratio i were found to be 1.08, 0.23, and -0.26 respectively. Considering all of these .
indicators, the distribution is symmetrical and the peakedness is nearly normal. i Thus, an upper one-sided 95% confidence bound on the ratio would be 1.27. This is i considered to be in agreement with the value of 1.25 determined from the initial ;
evaluation of the data. I Since a strong correlation of the 610 probe volts to the 630 probe volts was indicated, linear regression analyses of the data were performed by considering an equation of ,
the form for the relationship of Voi, to V 30, Veio = bo+ b V,3a 3
4 b, V,$o . @D Three regression analyses were performed, including all constants, excluding b, , and excluding both bo and b2. The inclusion of the second order term resulted in no significant improvement in the fit and the p value for b, was quite high, implying a satisfactory fit from a first order model. The inclusion of the constant (intercept) resulted in a marginal improvement to the fit. The p-value for b owas less than 1%,
so, it was decided to retain the constant term in the analysis, even though this results l
[
l sAAPC\DCP95\DCP90 DAY.4 4-5 osooms.18:48 )
in an extrapolation to a predicted negative value of 0.1 volt from the 610 probe for 0.0 volt from the 630 probe. Thus, the final form of the regression equation was, Veio = bo + bi Vsso . (4.2)
A summary of the regression results is provided in Table 4.6. A plot of the analysis data, the fitted regression curve and the upper one-sided 95% prediction curve is provided on Figure 4.8. For the same data, a plot of the 610 to 630 probe volts ratio as a function of 630 probe volts is shown on Figure 4.9, and a plot of the 610 probe minus C30 probe volts as a function of 630 probe volts is shown on Figure 4.10. The ratio plot indicates that the volts ratio is a weak function of the 630 probe amplitude, while the difference plot indicates that the voltage difference is a stronger function of the amplituu '. Since the regression analysis indicated a strong linear correlation, independence of the voltage ratio and dependence of the voltage difference is implied.
To complete the regression analysis, a plot of the regression residuals versus the predicted 610 probe volts is provided on Figure 4.11. A normal probability plot of the regression residuals is provided on Figure 4.12. Examination of these plots indicates that the variance of the residuals is approximately constant and the residuals are approximately normally distributed. In summary, the data do not contradict the inherent assumptions implied in performing the regression analysis.
From the regression results, a 95% one sided upper prediction bound of 1.0 volt for Veio for a V 30 value of 0.8 volt. The corresponding V eio value for a V,3o value of 2.2 volts is 2.7 volts. These results verify the conclusions of the initial analysis of the data that a factor of1.25 could conservatively be used to estimate the 610 probe volts from the 630 probe volts. Although the use of the prediction bounds from the regression equation does not include an explicit treatment of the uncertainties in the parameters of the regression equation, experience from the IPC leak rate analyses indicates that the potential error introduced at a 95% confidence level would not be such as to significantly change the conclusions.
Of the sixty-two indications that were RPC confirmed, only seven had a 610 probe to i 630 probe ratio that exceeded 1.25. A line representing a 1.25 multiplying factor on the 630 probe volts is also illustrated on Figure 4.8. It can be seen that the seven ,
data points do not lie significantly above this line and are within a 630 probe l amplitude range from about i volt to 1.95 volts. For these seven data points, the average ratio of the 610 to 630 probe volts was 1.27 with a standard deviation of 0.015 and a maximum of 1.30.
The not effect of the use of the 630 probe on the predicted total leak rate and the probability of burst during a postulated SLB event could be quantitatively estimated using Monte Carlo techniques. However, this is not considered to be necessary based on an inspection of the data depicted on Figure 4.8. All of the 630 probe voltages were increased by 25% to provide estimated 610 probe voltages for the prediction S \APC\DCP95\DCP90DAL4 4-6 OW30S5,16 46 l
l
analyses. Since this adjustment has been shown to be valid at a 95% confidence level, the total SG leak rate and the PoB would be expected to be overestimated relative to the values that would have resulted had the inspection of the SGs been carried out using only a 610 probe. The possibility that the adjustment factor should be larger than 1.25 is not supported by the additional analysis of the data. Hence, it is concluded that the use of the 630 probe in conjunction with the adjustment factor of 1.25 in lieu of the 610 probe would not be expected to result in significant underestimation of either the total projected leak rate or the PoB.
4.2.2.2 Comparison of Monte Carlo Results To evaluate the effect of the adjustment factor on the predicted SG totalleak rate and the probability of burst during a postulated SLB event, two Monte Carlo simulations
- were performed using the methodology described in Reference 10.1. The simulations l were identical except that the input BOC distribution ofindications and the growth rates were based on the unadjusted and adjusted 630 probe volts respectively. The distributions used for these calculations were based on the evaluation of the Catawba 1 SG "C" bobbin indications and growth data. The maximum predicted !
voltage at the EOC 9 were 6.3 volts for the adjusted case and 4.9 volts for the I unadjusted case. The 95% confidence bounds on the total leak rate during a l postulated SLB event were calculated to be 0.57 and 0.16 gpm respectively (based on 100,000 simulations of the entire SG). Thus, the voltage adjustment results in an i approximate tripling of the predicted leak rate. Relative to the allowable total leak i rate during a postulated SLB event at Catawba 1, the leak rates and the change in I leak rate are not significant. The change in the calculated upper one sided 95%
confidence bound probability of burst of a single tube was similar to that of the total leak rate, yielding 0.0057 and 0.0014 respectively. For the unadjusted BOC input distribution, the simulation resulted in no occurrences of multiple tube ruptures. For l the adjusted BOC distribution the simulation resulted in a calculated upper one sided i 95% confidence bound of 5.310'8 based on a simulated PoB of two indications of I 1.3 10'5. For both cases the PoB is less than the limiting value speci6ed in Reference 10.2. It is noted that the observed difference between the predicted leak rates and the predicted PoBs would be expected to be significantly reduced if the Monte Carlo calculations included a simulation of the adjustment ratio, e.g., ~N(1.08,0,12), as applied to the BOC volts, and to the calculation of the growth rates, instead of applying a constant uptmr one-sided 95% confidence bound on the ratio, i.e.,1.25, for both the determination of the growth rate and the BOC voltage distribution. If such a simulation was performed, it is judged that it would yield predicted leak rates and PoBs on the order of 10 to 30% greater than the values obtained using the unadjusted 630 probe amplitudes. This is because the average adjustment to the 630 probe amplitude would be about 1.08 with about one half of the adjustments beingless than i this value and one half being greater than this value.
i SAAPC\DCP95\DCP90 DAY,4 4-7 06c0S5,16:46 j
4.2.2.3 Assessment of NDE Uncertainty The NRC initially expressed concerns that the data transmitted via Reference 10.8 implied a relatively large analyst team to analyst team uncertainty. Hence, the second commitment documented in the SER. An effort was made to perform a more meaningful study by selecting 49 more indications at random to analyze. For this study the indications were divided in two groups and analyzed by two NDE teams.
The first team, Team 1, evaluated the first 25 indications using the 610 probe and the other 24 indications using the 630 probe. Team 2 analyzed the first 25 indications using the 630 probe and the other 24 indications using the 610 probe. The rationale, at the time, for not letting both teams evaluate all of the indications with both probes was to ensure that all of the data was from a so called blind examination.
Comparisons were made between the probes and analyst teams, and between the analyst teams and the expert's results. The initialimplications from the evaluation ,
were similar to those in the data of Reference 10.8. A reexamination of the data revealed that only 5 of the first 25 and 6 of the last 24 indications were RPC confirmed. In addition, most of the amplitudes were significantly less than 1 volt.
In order to try to get significant information from the test program, further analysis was restricted to only those indications that were RPC confirmed. A summary of the data is listed in Table 4.7. A plot of the G10 probe volts versus the 630 probe volts is illustrated on Figure 4.13. A comparison of the Team estimated voltages to those from the expert analyst is illustrated on Figure 4.14. In both of these cases a reasonable correlation is shown with the exception of two data pairs, which were overestimated by the team using the 630 probe. Finally, a comparison of the 610 probe to 630 probe voltages based on the expert evaluation of the voltages is shown on Figure 4.15. The probe to probe scatter is similar to that of all of the data, i.e.,
compares to the data shown on Figure 4.8.
Because of the small sample size, no attempt is made here to assess the significance of the NDE analyst uncertainty associated with this test data. Team 2 significantly over called, relative to the expert determination, two indications with the 630 probe.
These two data points dominate the statistics when the teams are compared to the expert using all of the 630 probe readings. Team I significantly under called, relative to the expert determination, one ir.dication using the 610 probe. This value dominates the statistics when the teams are compared to the expert using all of the GIO probe data. Without the dominant values, the average difference between the teams' readings and the expert was 0.5% with a standard deviation of 3.7% (using the combined data for both probes). Overall, there does not appear to be any significant associated analyst variability to invalidate the use of the 630 probe data for the IPC analysis.
I S \APCNDCP95\DCP90DAL 4 48 06/30/95, 16:46
4.3 Conclusions Based on the evaluation of the data discussed in Section 4.2.2, the following conclusions may be made relative to the use of the 630 probe for the eddy current examination of the Catawba 1 tubes at the TSP elevations for the disposition of ODSCC indications:
- 1) The results of the initial analysis of the data that the use of the 630 probes in conjunction with the criteria delineated in Section 4.2.1.2 is appropriate.
The use of the 630 probe (in conjunction with the data supported adjust-ment factor) instead of the 610 probe would not be expected to contribute to a significant difference in the performance of the SGs during normal operation or a postulated SLB event relative to the total expected leak rate from TSP ODSCC indications or the probability of burst / overpressure of such indications. In fact, the use of the adjusted 630 probe measurements instead of actual 610 probe measurements would be expected to result in overestimates of the totalleak rate and the PoB during a postulated SLB event at the end of cycle 9.
- 2) The nondestructive examination error associated with the use of the 630 probe appears to be significant if the entire database, which includes a large number ofindications which had amplitudes ofless than 1 volt (liv both probes) and which were not RPC confirmed, is considered. If the database is restricted to RPC confirmed indications, the average error between two teams of analysts was found to be ~7%. When compared to an expert determination of the true voltages that should have been reported, the NDE error is lessened. Due to the small sample size, it would not be appropriate to conclude that a systematic error is present which could significantly affect the outcome of analyses performed to estimate the end !
of cycle total leak rate in a SG or the PoB during a postulated SLB event. !
The outcome of the analysis of the Catawba 1 data would not be considered to be generically applit31e relative to the analyst error. The conclusion of the analysis is based on a limited data sample. An attempt to strictly comply with the NRC's desire that absolute blind testing be achieved by not allowing analysts to examine the same indications with the different probes made the evaluation more complex, and may have resulted in the estimate of the difference between the two probes including analyst differences in addition to any real differences. In a study involving a large number ofindications, it would seem extremely unlikely that the ECT analysis of any single indication using the 630 probe would be biased by the analyst having previously evaluated the indication using the 610 probe, i.e., it is unlikely that the l analyst would recognize and remember the indications from the first examination when performing the second examination.
1 SAAPc\DCP95\DcP90 DAY.4 4-9 06/30/95. 16 46
4.1 - 1 Table 4.1: Voltage Comparison Data for 0.610" vs. 0.630" Diameter ECT Probes Relative to ASME Standards.
100% Throt@msa 80% Throughws2 00% ThroughwaR Grotp # 0.610
- 0.630 - 610/630 40% Throt,-$=.0 (4) 20% Thru-war Hote's 0.610
- O.630
- 610/630 0.610 - 0.630* 610/630 0.610 - 0.630
- Probe Probe Ratio Probe Probe Ratio 610/630 0.610
- 0.630
- 610/630 Probe Probe Ratio Probe Probe Ratio 2 4.39 425 1.03 Probe Probe Ratio 4.20 4.09 1.03 3.33 3.44 0.97 3 427 2.10 2.15 0.98 2.74 2.73 1.00 4.43 0.96 4.27 4.43 0.96 3.35 3.45 0.97 2.10 2.14 0.98 2.77 4 4.37 4.33 1.01 4.13 424 2.76 1.00 0.97 3.37 3.32 1.02 2.11 2.16 5 4.19 4 40 0.95 4.17 0.98 2.76 2.73 1.01 4.24 0.98 3.38 3.43 0.99 2.12 2.14 6 421 4 40 0.96 0.99 2.74 2.73 1.00 4.06 420 0.97 3.37 3.47 0 97 7 4 25 2.12 2.14 0.99 2.73 2.75 0.99 427 1.00 4.19 422 0.99 3.36 3.46 0.97 2.11 2.13 0.99 2.71 8 4.31 4.32 1.00 420 4.16 2.76 0.96 1.01 3.35 3.45 0 97 2.09 9 4.36 422 2.17 0.96 2 69 2.76 0.97 1.03 4.18 421 0.99 3.41 3.39 1.01 2.12 2.16 0.98 2.73 to 4.31 4.31 1.00 4.05 4.17 0.97 2.75 0.99 3.32 3.42 0.97 2.12 2.16 0.98 11 4.35 4.40 0.99 4.14 4.09 2.70 2.75 0.98 1.01 3.32 3.36 0.99 2.10 46 4.36 4.29 2.15 0.98 2.77 2.77 1.00 1.02 4.09 4.08 1.00 3.33 3.40 47 0.98 2.10 2.14 0.98 423 425 1.00 4.19 423 2.73 _ 2.75 0.99 0.99 3.36 3.43 0.98 2.12 2.13 48 427 4.43 0 96 1.00 2.73 2.76 0.99 4.06 4.14 0.98 3.37 3.41 0.99 49 4.32 2.11 2.14 0.99 2.75 425 1.02 4.14 428 0.97 2.76 1.00 328 3.40 0.96 2.11 2.15 0.98 50 4 40 4.36 1.01 4.22 423 2.72 2.73 1.00 1.00 3.34 3.43 0.97 2.11 2.14 51 4.32 4.44 0.97 0.99 2.74 2.76 0.99 4.22 4.28 0.99 3.38 3.44 0.98 A 52 2.11 2.14 0.99 2.74 4.36 4.43 0.98 4.07 4.16 0.98 2.75 1.00
- 3.33 3.44 0.97 2.12 2.13 1.00 53 4.34 4.46 0.97 4.10 4.22 2.73 2.78 0.98 0.97 3.38 3.38 1.00 2.13 2.15
$ 54 4.44 4.44 1.00 4.08 4.21 0.97 3.34 3.41 3.98 2.12 2.14 0.99 0.99 2.77 2.73 2.76 1.00 55 4.33 4.40 0.98 4.11 4.12 2.76 0.99 1.00 3.35 3.38 0.99 2.12 87 4.43 4.37 2.15 0.99 2.72 _ 2.77 0.98 1.01 4.23 4.14 1.02 3.41 3.46 0.99 88 4.39 2.11 2.16 0.98 2.74 2.76 428 1.03 420 4.17 1.01 3.40 0.99 3.36 1.01 2.11 2.15 0.98 2.74 89 4.39 4.41 1.00 4.06 424 2.75 1.00 0.96 3.43 3.40 1.01 2.11 90 4.41 426 1.04 421 4.13 1.02 3.39 3.38 1.00 2.12 2.15 0.98 2.75 lI 1.00 91 4.34 4.38 2.14 0.99 2.75 2.7C 1.00 0.99 4.07 4.22 0.96 3.38 3.39 94 1.00 2.11 2.17 0.97 2.72 4.34 4.41 0.98 4.18 4.10 1.02 2.75 0.99 3.36 3.43 0.98 2.12 2.16 0.98 96 J 26 4.36 0.98 4.19 2.72 2.75 0.99 4.18 1.00 3.42 3.43 1.00 2.12 97 4.41 4.38 2.19 0.97 2.71 2.77 0.98 1.01 4.17 4.09 1.02 3.36 3.45 0.97 98 4.40 2.11 2.16 0.98 2.71 2.78 0.97 4.37 1.01 4.07 4.28 0.95 3.34 3.42 0.98 2.12 2.17 0.98 2.73 99 4.42 4.26 1.04 4.18 4.20 1.00 2.77 0.99 3.35 3.35 1.00 2.11 2.16 0.98 100 4.27 4.39 0.97 4.10 2.73 2.76 0.99 423 0.97 3.35 3.47 0.97 2.10 2.16 1.00 0.97 2.72 2.76 0.99 Averace Average 0.99 Aversic, 0.98 Avaisrc,-
0.98 Average 0.99 Std. Dev. 0.02 Std. Dev 0.02 Std. Dev. 0.01 Grand Average (All Teste) Std. Dev. 0.01 Std. Dev. 0.01 0.99 Grand Std. Dev. (All Tests) 0.02 Both probes were .,v....lized to 2.75 Volts on Mix 1. a 550/130 kHz differential rrdx. The probes were normalized using t
he first Cal Std acquired and the voltage rneasurements for the additional standard puns were rnade without re-normalizing.
Ivetosso rtsismaan,e prM: em45. 7 M PM
Tablo 4.2: McGuire Unit 2, SG "C" Voltage Comparison of 0.810" vs. 0.630" Probe for Hot Leg Tube Support Plate (HL TSP) indications 1 I TUBE #
UnaquM UnaquM AquatM AWM 6W630 610 - 630 TSP #
V.610 V.630 V.610 V.630 Volts Ratio Diffeie.ae I R36C095 3 0.23 0.19 0.19 0.19 1.02 0.00 R30CO25 5 G.34 0.34 0.28 0.33 0.84 -0.05 R08C096 4 0.39 0.34 0.32 0.33 0.97
-0.01 R09C012 2 0.44 0.52 0.36 0.51 0.71 -0.15 R09C088 2 0.46 0.53 0.38 0.52 0.73 -0.14 R38C088 2 0.46 0.45 0.38 0.44 0.86 -0.06 R08C109 4 0.50 0.52 0.41 0.51 0.81 -0.10 R49C055 5 0.60 0.74 0.50 0.72 0.68 -0.23 R11C007 4 0.64 0.52 0.53 0.51 1.04 0.02 R06C017 6 0.67 0.44 0.55 0.43 1.28 0.12 R48C088 6 0.73 0.60 0.60 0.59 1.03 0.02 R07C053 3 0.88 0.82 0.73 0.80 0.91 -0.08 R40C096 5 1.01 0.85 0.83 0.83 1.00 0.00 R31C093 2 1.12 0.96 0.92 0.94 0.98 -0.01 R45C087 3 1.17 0.96 0.97 0.94 1.03 0.03 R36C067 3 1.42 1.31 1.17 1.28 0.91 -0.11 Indices of Determination Count 16 16 630 V to 610 V 91.1 % Average 0.93 -0.05 Volts Ratio to 610 Volts 7.05 % St Dev 0.15 0.08 i Volts Ratio to 630 Volts 0.05 % Variance 0.02 0.01 i Volts Diff. to 610 Volts 1.4% Max 1.28 0.12 i Volts Diff. to 630 Volts 3.3% Min 0.68 -0.23 !
l l l Median 0.94 -0.03 I I I I Transfer Standard Adjustment Probe Cal Std Setup Avg to Ref h4 Ref. 50416 2.75 V #N/A #N/A i 610 50446 2.75 V 2.27 V 82.5 %
630 50418 2.75 V 2.69 V 97.8 %
i l i Note: The data was normalized according to the 'McGuire Unit 2 Analysis Guidelines",2.75 volts on P1(550/130 kHz differential mix) on the four(4) 20% FBH's. All the indications measured and compared were based on the analysis results as reported during the McGuire Unit 2 RFO.
tvetoesonsj ucour. 4 ~ II RFK: W11/95. 7:36 PM
4.3 - 1 Table 4.3: Comparison of 0.630" Probe to 0.610" Probe Bin 3. V610 >= 1.0 Volts Source Analysis RPC 610 630 630 61 m 6N Bin Bin M Rw Col TSP IND Offset Offset Field V 610 Volts 630 Volts Delta Ratio 3 3 C 6 12 2 SAI -0.04 -0.02 1.05 1.22 1.03 0.19 1.184 3 3 C 6 22 2 0.06 0.02 1.10 1.39 123 0.16 1.130 3 3 C 6 49 3 SAI -0.08 -0.04 1.16 1.32 1.18 0.14 1.119 3 3 C 6 51 3 mal 0.00 0.03 1.01 1.27 1.07 020 1.187
-3 3 C 6 63 3 0.03 0.01 1.12 1.35 1.11 0.24 1.216 3 3 C 6 64 3 -0.06 -0.06 1.06 1.14 1.06 0.08 1.075 3 3 C 6 67 4 0.03 -0.01 1.13 128 1.06 0.22 1208 3 3 C 6 69 2 0.11 0.10 2.40 2.91 2.42 0.49 1202 3 3 C 6 76 4 0.10 0.08 1.58 1.79 1.62 0.17 1.105 3 3 C 6 94 3 0.00 0.01 4.56 4.78 4.43 0.35 1.079 3 3 C 7 18 2 0.05 0.05 1.19 1.29 1.17 0.11 1.094 3 3 C 7 42 3 mal 0.09 0.13 1.30 1.37 121 0.16 1.132 3 3 C 7 79 3 -0.02 0.00 121 1.34 1.30 0.04 1.031 3 3 C 7 84 2 -0.09 0.00 1.00 1.16 1.11 0.05 1.045 3 3 C 7 84 3 0.19 0.14 1.10 1.27 1.07 020 1.187 3 3 C 7 85 2 0.10 0.09 1.10 1.17 1.03 0.14 1.136
~3 3 C 7 93 3 0.07 0.03 123 1.34 120 0.14 1.117 3 3 C 8 104 3 sal 0.00 0.02 1.09 1.32 1.05 027 1257 3 3 C 8 105 2 sal 0.02 0.03 1.04 1.15 0.98 0.17 1.173 3 3 C 9 18 2 0.11 0.12 124 1 22 1.08 0.14 1.130 3 3 C 9 28 2 mal 0.02 0.05 1.34 1.58 125 0.33 1264 3 3 C 9 79 2 MAI 0.13 0.13 1.90 1.97 1.87 0.10 1.053 3 3 C 9 80 3 sal 0.04 0.08 129 1.41 1.24 0.17 1.137 3 3 C 9 80 2 MAI 0.15 _ _0.11 1.03 1.17 1.00 0.17 1.170 3 3 C 10 76 3 0.05 0.05 1.38 1.35 129 0.06 1.047 3 3 C 11 9 3 MAI 0.02 -0.06 1.17 1.28 120 0.08 1.067 3 3 C 11 10 2 mal 0.09 0.11 2.13 2.46 1.95 0.51 1262 3 3 C 11 11 3 sal 0.00 0.13 1.19 1.75 1.38 0.37 1268 3 3 C 11 17 3 mal 0 05 0.05 1.13 1.27 1.12 0.15 1.134 3 3 C 11 69 2 MAI 0.07 0.07 1.59 1.72 1.39 0.33 1237 3 3 C 12 12 2 sal 0.07 0.15 1.33 1.59 1.36 023 1.189 3 3 C 12 13 2 MAI O 02 -0.02 127 1.46 1.32 0.14 1.106 3 3 C 12 40 2 sal 0.04 0.09 2.63 3.17 2.67 0.50 1.187 3 3 C 12 51 3 0.09 0.05 120 1.05 1.04 0.01 1.010 3 3 C 12 72 2 SAI 0.12 0.12 125 1.18 1.09 0.09 1.083 3 3 C 12 108 3 0.00 0.00 121 1.36 1.17 0.19 1.162 3 3 C 12 113 3 mal 0.05 0.00 1.34 1.54 1.36 0.18 1.132 3 3 C 17 22 3 SAI 0.00 0.13 1.01 1.46 1.40 0.06 1.043 3 3 C 17 22 2 0.11 0.08 1.47 1.76 1.55 0.21 1.135 3 3 C 17 52 3 sal -0.02 -0.07 1.08 1.27 122 0.05 1.041 3 3 C 18 24 3 SAI 0.11 0.02 123 1.41 1.12 0.29 1.259 3 3 C 18 56 2 0.12 0.05 1.41 1.64 1.57 0.07 1.045 3 3 C 19 26 3 0.00 0.02 1.00 1.19 0.95 0.24 1.253 3 3 C 20 6 3 sal 0 02 0.02 1.60 1.60 1.41 0.19 1.135 3 3 C 20 18 2 SAI 0.09 0.11 1.10 1.30 1.01 029 1287 3 3 C 22 14 3 sal 0.07 0.08 1.61 1.79 1.58 0.21 1.133 3 3 C 22 22 2 sal 0.16 0.30 1.95 2.18 2.00 0.18 1.090 3 3 C 23 7 3 0.14 0.04 1.70 1.83 1.60 0.23 1.144 3 3 C 26 18 3 -0.18 0.06 2.46 2.93 2.44 0.49 1201 3 3 C 30 23 3 SAI -0.05 -0.02 1.17 1.34 1.18 0.16 1.136 3 3 C 32 58 3 0.07 0.07 1.01 1.09 0.96 0.13 1.135 3 3 C 34 18 3 0.19 0.06 1.02 1.27 1 22 0.05 1.041 3 3 C 38 70 3 0.05 0.05 1.32 1.41 1.33 0.08 1.060 3 3 C 39 68 3 0.16 0.16 1.15 1.34 1.13 0.21 1.186 3 3 C 42 70 2 0.16 0.16 1.18 120 1.05 0.15 1.143 3 3 C 42 87 3 0.09 0.09 1.38 1.69 1.44 0.25 1.174 3 3 C 43 46 3 0.09 0.08 1.15 1.36 1.37 -0.01 0.993 l 3 3 C 43 73 3 0 07 0 07 1.39 2.39 2.18 0.21 1.096 Iv. = ns w 4 - 12 manwa m
4.3 2 Table 4.3: Comparison of 0.630" Probe to 0.610" Probe
_ Bin 3, V610 >= 1.0 Volts Source Army.;;
SG Row Col C 610 630 630 Bin Ben TSP 61 6 61 6 !
IND Offset Offset Field V 610 Volts 630 Volts M Rabo l 3 3 C 43 83 3 0.09 0.09 1.16 1.35 1.14 021 3 3 C 45 71 3 1.184 l 0.09 0.09 129 1.52 129 023 3 3 C 45 71 2 1.178 0.14 0.12 1.53 1.89 1.32 0.57 3 3 C 48 80 3 1.432 0.02 0.02 1.13 129 0.96 0.33 3 3 C 49 73 2 1.344 0.05 0.05 1.13 1.06 0.99 0.07 3 3 0 6 7 1.071 3 mal 0.14 0.15 1.07 1.08 1.06 3 3 D 6 0.02 1.019 69 3 SA) -0.08 0.06 1.57 1.64 3 3 D 1.53 0.11 1.072 7 5 2 mal 0.00 0.08 1.02 1.03 0.99 0.04 1.040__
2 3 0 7 24 3 0.10 020 0.96 1.09 1.08 0.01 3 3 D 7 52 2 1.000 0.58 0.15 1.11 1.39 1.38 0.01 2 3 0 8 18 2 1.007 0.10 020 0.87 1.12 1.03 0.00 1.087 3 3 0 8 27 2 0.06 0.07 1.34 1.43 1.42 0.01 3 3 D 6 59 1.007 3 SA) 0.12 0.06 1.63 1.77 3 3 1.52 0.25 1.164 D 9 6 3 0.08 0.13 1.01 1.05 1.04 0.01 1.010 3 3 0 10 5 2 MA) 0.10 0.05 1.09 3 1.12 1.06 0.06 1.067 3 D 11 63 3 0.18 0.17 123 1.33 1.30 0.03 3 3 D 12 64 3 1.023 SA) 0.12 0.05 1.58 1.62 1.87 2 3 0 13 0.05 0.970 60 3 0.03 0.08 0.J1 1.32 3 3 1.16 0.16 1.138 D 14 48 2 sal 0 07 0.10 1.01 1.01 1.06 0.04 0.962 3 3 0 14 92 2 0.00 0.02 1.17 1.33 1.13 020 1.177 3 3 D 14 103 2 0.06 0.12 1.03 1.12 1.04 0.08 1.077 1 3 D 29 2C 2 0.10 -0.10 0.73 1.12 1.01 0.11 1.109 3 3 D 30 26 2 0.04 0.04 121 1.17 1.23 -0.06 0.951 3 3 D 32 66 2 sal 0.14 0.12 1.64 1.31 1.37 0.06 3 3 D 45 78 0.956 2 SAI -0.06 0.10 1.16 1.27 0.98 0.29 1.296 I
hw$sx of C1... ^e. Count 83 83 83 83 83 630V to sau V 91.09 % Aw.v. 1.33 V 1.50 V 1.33 V 0.16 V 112.5 %
610V to 630FV 90.62 % St Dev 0.49 V 0.55 V 0.49 V 0.13 V 9.2%
630V to 610V 9521% Vanence 0.244 0.306 0236 0.018 0.000 i Delta V to 610V 35.63 % Max 4.56 V 4.78 V 4.43 V 0.57 V 1.432 Rabo to 610V 3.24% Mm 0.73 V 1.01 V 0.95 V i -0.06 V 0.951 Medan 1.19 V 1.34 V 120 V 0.16 V 1.132 i
Show 4.03 3.44 T Kurtosas 22.51 3.85 0.06 0.51 15.76 20.33 1.05 0.54 4 - 13 Mtes30 ELSIse a y pw m p,5. 7 ie PM
4.4 - 1 i
Table 4.4: Comparison of 0.630" Probe to 0.610" Probe Expert Evaluation Soyce Anaysm SG Row Col TSP 30 P6M630 Bin Bin P630 P610 i IND Delta Ratio 3 3 D 6 7 3 1.05 1.08 0.03 1.03 2 2 D 6 47 3 0.94 0.92 -0.02 0.98 ;
2 1 D 6 55 2 0.39 0.69 0.30 1.77 )
3 3 D 6 69 3 1.49 1.65 0.16 1.11 !
3 3 D 7 5 2 0.99 1.02 0.03 1.03 1 1 D 7 22 4 0.62 0.66 0.04 1.06 2 1 D 7 23 3 0.76 0.73 -0.03 0.96 1 2 D 7 24 5 0.56 0.55 -0.01 0.98 l 1 1 D 7 24 2 0.95 1.02 0.07 1.07 2 3 D 7 24 3 0.95 1.02 0.07 1.07 1 2 D 7 31 3 0.93 0.88 -0.05 0.95 2 2 D 7 35 2 0.86 0.92 0.06 1.07 1 0 D 7 36 4 0.65 0.57 -0.08 0.88 3 3 D 7 52 2 1.12 1.17 0.05 1.04 3 2 D 7 80 3 0.91 0.93 0.02 1.02 1 2 D 7 86 2 0.81 0.78 -0.03 0.96 1 2 D 7 89 3 0.83 0.92 0.09 1.11 1 0 D 8 11 2 022 0.27 0.05 1.23 2 3 D 8 18 2 0.78 0.76 -0.02 0.97 3 3 D 8 27 2 0.32 0.34 l 0.02 1.06 2 2 D 8 35 2 0.90 0.87 -0.03 0.97 1 0 D 8 46 2 0.63 0.58 -0.05 0.92 1 2 D 8 48 2 0.82 0.88 0.06 1.07 3 2 D 8 57 2 1.01 1.06 0.05 1.05 3 3 D 8 59 3 1.50 1.76 0.26 1.17 3 3 D 9 6 3 0.36 0.32 -0.04 0.89 3 1 D 9 16 3 0.63 0.68 0.05 1.08 3 1 D 9 16 2 0.39 0.46 0.07 1.18 1 2 D 9 17 3 0.84 0.80 -0.04 0.95 l 1 0 D 9 22 3 0.57 0.51 -0.06 0.89 1 0 D 9 22 4 0.66 0.65 -0.01 0.98 2 0 D 9 22 2 0.66 0.66 0.00 1.00 3 0 D 9 69 4 0.46 0.48 0.02 1.04 3 0 D 9 100 2 0.48 0.28 -020 0.58 2 1 D 10 3 3 0.90 0.82 -0.08 0.91 3 3 D 10 5 2 1.06 1.12 0.06 1.06 2 0 D 10 38 2 0.37 0.48 0.11 1.30 2 2 D 10 101 3 0.83 0.86 0.03 1.04 2 0 0 10 102 2 1.04 1.15 0.11 131 ,
2 2 D 10 113 2 0.65 0.77 0.12 , , ,
1 0 D 11 40 6 0.53 0.52 -0.01 0.98 1 1 D 11 44 3 0.66 0.67 0.01 1.02 2 2 D 11 63 4 1.30 1.29 -0.01 0.99 3 3 D 11 63 3 1.30 1.29 -0.01 0.99 2 1 D 11 88 3 0.67 0.75 0.08 1.12 1 1 D 12 39 2 0.65 0.63 -0.02 0.97 1 1 D 12 39 4 0.35 0.34 -0.01 0.97 1 1 D 12 59 3 0.69 0.65 -0.04 0.94 tvetocaa ns;Pato rcao 4 - 14 nnt enin 7.14 PW
4.4 - 2 l Table 4.4: Comparison of 0.630" Probe to 0.610" Probe Expert Evaluation '
Source Analysis Bin Bin SG Row Col TSP P630 P610 P610-P630 P610/P630 IND DeRa Ratio 3 3 D 12 64 3 1.63 1.64 0.01 1.01 1 1 D 12 68 3 0.59 0.59 0.00 1.00 1 2 D 12 68 5 0.59 0.59 0.00 1.00 1 0 D 12 101 2 0.43 0.48 0.05 1.12 2 2 D 12 105 2 0.87 0.84 -0.03 0.97 2 3 D 13 60 3 0.87 1.02 0.15 1.17 1 0 D 13 65 4 0.36 0.34 -0.02 0.94 1 1 D 13 65 3 0.36 0.34 0.02 0.94 2 2 D 13 88 3 0.80 0.80 0.00 1.00 3 3 D 14 48 2 1.04 1.01 -0.03 0.97 2 1 D 14 49 2 0.84 0.77 0.07 0.92 2 2 D 14 63 2 0.96 0.93 0.03 0.97 3 3 D 14 92 2 1.13 1.33 0.20 1.18 3 3 D 14 103 2 0.85 0.92 0.07 1.08 2 2 D 14 106 2 0.88 0.81 -0.07 0.92 2 0 D 15 59 4 0.47 0.44 -0.03 0.94 !
2 0 D 15 68 2 0.75 0.71 '
-0.04 0.95 2 1 D 15 69 3 0.71 0.72 0.01 1.01 1 0 D 16 46 4 0.42 0.43 i
0.01 1.02 2 0 D 16 60 2 0.58 0.63 0.05 1.09 ;
2 2 D 16 67 2 0.94 0.91 -0.03 0.97 l 2 2 D 16 94 3 0.81 0.86 0.05 1.06 2 0 D 16 97 2 0.39 0.33 -0.06 0.85 2 2 D 17 40 4 0.76 0.90 0.14 1.18 1 1 D 17 56 3 0.51 0.55 0.04 3 1.08 2 D 18 102 2 1.00 1.03 0.03 1.03 !
2 2 D 19 26 2 0.87 0.95 0.08 1.09 1 1 D 21 5 2 0.61 0.59 0.02 0.97 '
1 1 D 22 36 4 0.62 0.60 0.02 0.97 1 1 D 22 50 3 0.81 0.94 0.13 1.16 2 2 D 22 51 2 0.42 0.35 -0.07 0.83 3 1 D 22 89 2 0.92 0.85 0.07 0.92 2 1 D 23 104 3 0.71 0.75 0.04 1.06 3 2 D 24 106 2 0.80 0.75 -0.05 0.94 3 2 D 25 106 2 0.99 0.91 -0.08 0.92 2 2 D 26 64 2 0.88 0.88 0.00 1.00 1 1 D 27 11 2 0.69 0.68 -0.01 0.99 1 1 D 27 45 4 0.68 0.71 0.03 1.04 1 2 D 29 15 3 0.57 0.65 0.08 1.14 1 3 D 29 26 2 0.71 0.78 0.01 1.01 2 2 D 29 29 2 0.81 0.87 0.06 1.07 2 2 D 29 93 2 0.83 0.85 0.02 1.02 2 2 D 29 94 2 0.96 0.95 -0.01 0.99 3 3 D 30 26 2 1.23 1.17 -0.06 0.95 1 1 D 30 48 4 0.81 0.80 -0.01 0.99 2 2 D 30 104 2 0.90 0.98 0.08 1.09 1 0 D 32 54 4 0.32 0.32 0.00 1.00 3 3 D 32 66 2 1.34 1.40 0.06 1.04 rveioco asiesso esso 4 - 15 ancsm
- 7.14ru
ed 4.4 - 3 Table 4.4: Comparison of 0.630" Probe to 0.610" Probe Expert Evaluation Source Analysis RPC P610-P630 P610/P630 Bin Bin SG Row Col TSP IND Deha Rado 2 2 D 35 16 2 0.84 0.83 -0.01 0.99 1 1 D 38 56 7 0.63 0.72 0.09 1.14 1 1 D 39 39 4 0.33 0.38 0.05 1.15 1 1 D 39 53 7 0.52 0.64 0.12 1.23 2 0 D 42 41 3 0.55 0.52 -0.03 0.95 1 1 D 43 22 2 1.13 1.21 0.08 1.07 3 2 D 43 25 2 1.02 0.89 -0.13 - 0.87 1 1 D 43 50 3 0.00 0.00 0.00 1.00
_ 3 3 D 45 78 2 1.15 1.25 0.10 1.09 1 1 D 49 59 2 0.23 0.26 0.03 1.13 1 1 D 49 69 3 0.75 0.71 -0.04 0.95 Index of Determination Count 107 107 630V to 610_V 94.54 % Average 0.019 1.027 Delta V to 610V 14.12 % St Dev 0.073 0.121 Ratio to 610V 2.83 % Variance 0.005 0.015 Max 0.300 1.769 Min -0.200 0.583 Median 0.010 1.006 Skew 0.830 1.905 Kurtosis 2.636 13.731 l
4-16
[V610630JLS) P610.P630 RFK: 6/11/95. 7:14 PM
Table 4.5: Comparison of 0.630" Probe to 0.610" Probe RPC Confirmed Indications - All Bins Source Bin Analysis Bin SG Row Col TSP 610 630 00 Test 630 Test MM 6IM RPC IND Offset Offset Volts Vo!ts Delta Rate 3 3 C 6 12 2 SAI -0.04 -0.02 1.22 1.03 0.19 1.184 3 3 C 6 49 3 sal -0.06 -0.04 1.32 1.18 0.14 1.119 3 3 C 6 51 3 MAI 0.00 0.03 1.27 1.07 0.20 1.187 3 3 C 7 3 MAI 0.09
_ 42 0.13 1.37 1.21 0.16 1.132 3 3 C 8 104 3 SAI 0.00 0.02 1.32 1.05 0.27 1.257 3 3 C 8 105 2 SAI 0.02 0.03 1.15 0.98 0.17 1.173 3 3 C 9 28 2 MAI 0.02 0.05 1.58 1.25 , 0.33 1.264 3 3 C 9 79 2 MAI 0.13 0.13 1.97 1.87 0.10 1.053 3 3 C 9 80 3 sal 0.04 0.08 1.41 1.24 0.17 3 3 C 9 80 2 MAI 0.15 1.137_
0.11 1.17 1.00 0.17 1.170 3 3 C 11 9 3 MAI 0.02 -0.06 1.28 1.20 0.06 1.067 3 3 C 11 10 2 MAI 0.09 i 0.11 2.46 1.95 0.51 1.262 3 3 C 11 11 3 SAI 0.00 0.13 1.75 1.38 0.37 1.268 3 3 C 11 17 3 MAI 0.05 0.05 1.27 1.12 0.15 1.134
, 3 3 C 11 69 2 MAI 0.07 0.07 1.72 1.39 0.33 1.237
. 3 3 C 12 12 2 SAI 0.07 0.15 1.59 1.36 0.23 1.169 3 3 3 C 12 13 2 MAI 0.02 -0.02 1.46 1.32 0.14 1.106 3 3 C 12 40 2 0.04 sal 0.09 3.17 2.67 0.50 1.187 3 3 C 12 72 2 sal 0.12 0.12 1.18 1.09 0.09 1.083 3 3 C 12 113 3 MAI 0.05 0.00 1.54 1.36 0.18 1.132 3 3 C 17 22 3 SAI 0.00 0.13 1.46 1.40 0.06 1.043 3 3 C 17 52 3 sal -0.02 -0.07 1.27 1.22 0.05 1.041 3 3 C 18 24 3 SAI 0.11 0.02 1.41 1.12 0.29 1.259 3 3 C 20 6 3 SAI 0.02 0.02 1.60 1.41 0.19 1.135 3 3 C 20 18 2 SAI 0.09 0.11 1.30 1.01 0.29 1.287 3 3 C 22 14 3 SAI 0.07 0.08 1.79 1.58 0.21 1.133 3 3 C 22 22 2 SAI 0.16 0.30 2.18 2.00 0.18 1.090 3 3 C 30 23 3 SAI -0.05 -0.02 1.34 1.18 0.16 1.136 3 3 D 6 7 3 mal 0.14 0.15 1.08 1.06 0.02 1.019 2 2 D 6 47 3 sal 0.17 0.15 0.91 0.94 -0.03 0.968 3 3 D 6 69 3 SAI -0.00 -0.06 1.64 1.53 0.11 1.072 3 3 D 7 5 2 MAI 0.00 0.08 1.03 0.99 0.04 1.040 1 1 D 7 22 4 NRI 0.05 0.05 0.62 0.68 -0.06 0.912 2 1 D 7 23 3 SAI 0.08 0.08 0.77 0.76 0.01 1.013 1 1 0 7 24 2 sal -0.03 0.08 0.79 0.96 -0.17 0.823 1 0 D 8 46 2 NOl 0.07 0.08 0.54 0.48 0.06 1.125 tvetoeso xun nec cw 4.5 - 1 nm anm 7.u pu
Table 4.5: Comparison of 0.630" Probe to 0.610" Probe RPC Confirmed Indications - All Bins Source Bin Analysis Bin SG Row Col TSP **
RPC IND Offset Offset Volts Volts Delta RatN) 1 2 D 8 48 2 NOI 0.05 -0.08 0.88 0.81 0.07 1.086 3 3 D 8 59 3 SAI 0.12 0.06 1.77 1.52 0.25 1.164 3 0 D 9 69 4 VOL 0.15 0.08 0.52 0.46 0.06 1.130 3 3 D 10 5 2 MAI 0.10 0.05 1.12 1.06 0.06 1.057 1 1 D 12 59 3 SAI 0.03 0.05 0.66 0.69 3 3
-0.03 0.957 D 12 64 3 SAI 0.12 0.05 1.62 1.67 -0.05 0.970 1 2 D 12 68 5 SAI 0.03 0.05 0.82 0.80 0.02 1.025 1 1 D 12 68 3 MAI 0.21 0.21 0.75 0.66 0.09 1.136 1 0 D 12 101 2 SAI 0.05 -0.05 0.49 0.60 -0.11 0.817 2 2 D 12 105 2 sal 0.05 0.05 0.85 0.87 -0.02 0.977 3 3 D 14 48 2 SAI 0.07 0.10 1.01 1.05 -0.04 0.962 2 2 D 14 106 2 sal 0.05 0.05 0.83 0.88 -0.05 0.943 2 1 D 15 69 3 SAI 0.03 0.03 0.68 0.71 -0.03 0.958 2 0 D 16 97 2 MAI -0.01 -0.03 0.32 0.36 -0.04 0.889 3 2 D 18 102 2 MAI 0.02 0.00 0.99 1.00 -0.01 0.990 I 2 2 D 19 26 2 SAI 0.02 0.08 0.94 0.86 0.08
- 1.093
- 1 1 D 21 5 2 SAI 0.24 0.21 0.78 0.73 0.05 1.068 3 1 D 22 89 2 sal 0.02 -0.04 0.76 0.92 -0.16 0.826 1 1 D 27 11 2 SAI 0.05 0.05 0.74 0.69 2 0.05 1.072 2 D 29 29 2 SAI 0.04 0.03 0.87 0.83 0.04 1.048 2 2 D 29 93 2 SAI 0.05 0.10 0.85 0.83 0.02 1.024 2 2 D 29 94 2 MAI -0.03 -0.05 0.97 0.96 0.01 1.010 2 2 0 30 104 2 MAI 0.08 0.13 0.99 0.90 0.09 1.100 3 3 D 32 66 2 SAI 0.14 0.12 1.31 1.37 -0.06 0.956 3 2 D 43 25 2 SAI 0.06 0.08 0.91 1.02 -0.11 0.892 3 3 D 45 78 2 SAI -0.06 -0.10 1.27 0.98 0.29 1.296 Index of Determination Count 62 62 630V to 610V 94.50 % Average 0.10 V 1.078 Delta V to 630V 34.67% St Dev 0.14 V 0.116 Ratio to 630V 12.66 % Variance 0.0207 0.0135 Max 0.51 V 1.30 Min -0.17 V 0.82 Median 0.08 V 1.08 Skew 0.654 -0.226 Kurtosis 0.569 -0.261 tvsiosso nst nec cone 4.5 - 2 nnt ensa 7.34 PM
1 4 .
4 1
Table 4.6: Regression of 610 on 630 Volts b.1 1.2133- -0.1323 b.0 SE.b1 0.0378 0.0442 SE.bO .
r^2 94.5 % 0.1172 SE.y u F 1030.04304 60 DoF 14.1500 0.8242 SS. reg SS.res o F. Prob 1.7546E-39 9.6120 SS.630 P1.Value 1.7546E-39 0.0040 P0.Value '
N 62 1.0161 1 + 1/N var.630 0.1576 1.1011 mu.630 s
[V610630.XLS] RPC. Cont RFK: 6/11/95,6:58 PM
Table 4.7: Test Matrix for Estimating Analyst Bias in the Comparison of the 0.630" Probe to the 0.610" Probe (RPC Confirmed Indications)
Subject Indication Amplitude (Volts)
Probe Tub 88 Team 1 Team 2 Expert 1 0.93 0.98 2 0.92 0.92 3 0.76 0.73 4 0.85 0.84 0.610 inch 5 0.86 4 85 Diameter Bobbin 6 0.30 0.33 Probe 7 0.96 0.95 8 0.83 0.81 9 0.78 0.72 10 0.75 0.95 11 0.85 0.87 1 0.92 0.90 2 0.93 0.94 3 0.73 0.76 4 0.86 0.87 0.630 inch 5 0.82 0.83 Diameter Bobbin 6 0.64 0.39 Probe 7 0.96 0.96 8 0.88 0.88 9 0.71 0.71 10 1.07 0.87 11 0.86 0.81 I
l S.\APC\DCP95\DCP90 DAY.4 4 20 06/19/95. 27.87 l
l
Figure 4.1: Comparison of 0.630" to 0.610" Diameter Probe Voltage Readings 1.4
..d ..
1.2 -
... ~ .-
1.0 .
3 o ..- .-
\
> 0.8
~~ '
= !
.g n
a .. - ..
th
~ " .
o 0.6 .. ~ , .. -
co .-
w -
o ma a . .....-
\
- g. -
..- a 0.4 1 .... - -.. -
l n.- .- .
.. - i
...= .-
0.2 .. - .
i 1
3 0.0 1
i 1
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 l
l 0.610" Probe Volts u________ _ _ _ _ _ _ _ _ _ _ - - - - _ _ _ _ . - - - _ _ . - }
t Figure 4.2: Comparison of 0.630" to 0.610" Diameter Probes, i
Probe Voltage Differences 0.15 l =
0.10 0.05 m I B 0.00 "
a:
"o co
-0.05 -
- a
' E a o
= -0.10 "
o a e-4 e
-0.15 "'
-0.20 _ _ _ . __ - - - _ . _ _ _ __ _ _ _ .
m
-0.25
! 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.610" Probe Volts
[V610630.XLS] 610_630 nm. an m m ma
Figure 4.3: 610 Probe Test & 630 Probe Field vs 630 Probe Test Volts Bin 3,1.0 V <= 610 Test Volts 5.0 ad /
4.5 - +
o 610 Probe Test Volts ,-
/ ,..-'
~~
= 4.0 --
+ 630 Probe Field Volts .. / .. -
5
/ -.. .-
Ideal Correlation _ . ...
3.5 - - - -- -- Ideal 110% .
/ .
y ..
/ _,..
~
3.0 -
0 w
...-* / ....
b2.5 "
, y ..af ... *' ~
w 2 . .f '/ ...
- ga 2.0 -
w o *
$ 15 g ,q 's q .v ' .,.
2 Pt
'o -a '
1.0
_, g. 4"+
0.5 0.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 630 Probe Test Volts WS3*'"mSI Ba 3 5 nneenu9s.7 m u
I l
l l
Figure 4.4: Comparison of Bin 3 630 to 610 Probe Volts Ratio of 610 to 630 Volts vs. 610 Volts i
2.0 i
Eo 3 1.5 o
.8 2 o o _
a %_ n a JI n i
2 1
S &$2 +
o'p j o a
0o t'o 8
ao o" o e
0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 610 Probe Test Volts
[V630 BIN 3.XLS] Bn3. Rat RFK: 6/11/95. 722 PM
Figure 4.5: Comparison of Bin 3 630 to 610 Probe Volts 610 Volts Minus 630 Volts 0.6 o
0.5 -
m -
3
'8
> 0.4
.8 o P
o o e
[ o g 0.3 ao o c.o o
. Se 3 o ao o
- , '5 "
0.2 a
o fg *o o O o
- M 0.1 o * &* o oo o
- G *v e 8
00 **
o o o
-0.1 1.0 1.5 2.0 2.5 3.0 3.5 l
4.0 4.5 5.0 l
610 Probe Test Volts I
[V6300lN3.XLSg Bin 3 Del _ _ _ - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - --
Figure 4.6: Distribution of the Ratio of 610 to 630 Probe Volts Bin 3,610 Amplitude > 1.0V 25 ____--- 100 %
ma Frequency ,
Cumulative Fraction ,
' 90 % j
--- Gamma Distribution '
)
20 80% 8 fu g
a 70 % h
- 8 h15 -
o
' 60% %
a t /(gig^"
s 50% g a
7 g _
iiii [
g g 10 _
40% N N
k -
5
-30% j 5- h 20% o 10 %
0 I I I I I I I I I I 0%
0.93 0.98 1.03 1.08 1.13 1.18 1.23 1.28 1.33 1.38 1.43 ,
Mid-Bin Ratio of 610 to 630 Probe Volts NYSMIIll YI @$ Ng$ MS j
O O
Figure 4.7: Comparison of 630 Probe to 610 Probe Volts Expert Analyst Comparison 1.8 4
... /
1.6 '
/ ..
/ _,.
. ... - / _.
. .l '_/' . . -
Y *.*
,0 ,
a .. , ..
~
o . _.i n _.
Q _
.g'/ ._.. **
8 ;.
,--Qf.'
u 0 ~8 -
a g ,%-W .' * *~
k4 g "
. ,gM. *'
0.6
_.. ge :~*
- .g.'
- g;s 0.2 W 0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 630 Probe Voltage
[V610630 XLS] P610vs630 FIFK:6/11FM 7(n PM
Figure 4.8: 610 Probe vs. 630 Probe Amplitude RPC Confirmed Indications 3.5 *
/ / .-
/ / ' ...
o Test Data -
/
/
o/
/
3.0 -- Predicted 610V / / .-
_. / / ...
i ---- 95% Prediction / / .-
I
/ / -.-
Ideal Correlation / / ..-
2.5 -- 1.25
- Ideal p f ...-
3 / / .-
5 / / .-
> /
/
/
/
. a 2.0 o _.-
! g / /
9 / ./ .-
1 e f Y .-
-Q _f J O 6 1.5 # # -
m ,/ s q.-
E o f dr
- Mo V' o -
- scw_. -
10 ^ I AX l
<r ovr'-;
,91 jpqi '_
.7qF 0"
.-7 A' A
0.5
,, '.y/.,.
X#
,A /
.. J*/
O.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 630 Probe Test Volts -
[V610630.XLS] R610v630 RFK:6/1&95.1011 AM
Figure 4.9: 610 to 630 Probe Volts Ratio vs. 630 Probe Volts RPC Confirmed Indications 1.5 1.4 1.3 . ,
o e
- n 1 .2 g ,,
y g . .g "
g 1.1 * * ..: ,
o a., , . o ,
h1.0 * *
- =
3 . , .
$ 0.9 . .
- 2 b S 0.8 e
0.7 0.6 0.5 0.00 0.50 1.00 1.50 2.00 2.50 3.00 630 Probe Test Volts
[V610630.XLS] Rato630 RFK: 6/11/95. 6-48 PM
Figure 4.10: Difference Volts vs. 630 Probe Amplitude RPC Confirmed Indications 0.60 _
0.50
- 0.40 3 .
o
.g 0.30 ., ,
o e d: -
@ 0.20 .: ,
. . =>
co o
c * :: e A
8 0.10 . , ,
., + , -
o = < * = .
^
G i
~
0.00 ,
. en . .
- = *
-0.10 ,, .
=.
-0.20 0.00 0.50 1.00 1.50 2.00 2.50 3.00
~
630 Probe Test Volts
[V610630.XLS] R61M RFK: 6/11/95,6:47 PM
O Figure 4.11: Residual 610 Probe Volts vs. Predicted 610 Volts RPC Confirmed Indications Analysis 0.30
! 0.20 - **
- 0.10 - g g*
- h e e a
- 0.00 -
, *.... *l- ,,
. 1 . . *
- 5 s ** e 2? E .
N . *
-0.10 - . . +. .
-0.20 *
-0.30 0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 Predicted 610 Probe Volts
[V610630 XLS] Res Scat necy. emu e ., m. __ _
Figure 4.12: Residual 610 Probe Volts vs. Normal Deviates RPC Confirmed Indications Analysis 0.30 ; ; ,
. Analysis Data ,
- - - Normal Distribution -
0.20 . '
e 3 *< ,
e ,
e ..
j 0.10 ,;.'. **
m ..
o ,
$ 0.00
~
'm
/
t m
=
a .
f c
.g -0.10 ...
f,* e -
b ,
M o
'e
-0.20 ,--
1 , *. .
t 1 ,
l e,'
j -0.30 l -2.500 -2.000 -1.500 -1.000 -0.500 0.000 0.500 1.000 1.500 2.000 2.500 l Normal Deviates (Z) l
,, ,,. . nr o v. e , n.,, r , . , , ~ , . . . . - - - . , . .
Figure 4.13: Comparison of 630 Probe to 610 Probe Volts Unadjusted Teams 1 & 2, RPC Confirmed Indications 1.4 .
l l
o Team I w/630, Team 2 w/610 1.2 . Team I w/610, Team 2 w/630 -
Ideal Correlation '
. . ~~ .-
Ideal 10 % .- ..
~~
1.0 . .
B o .-
@ 0.8 ',o *
, ... e r
sa o .-
, u '
w n.
o 0.6 w
~ .. -
w 0.4 0.2 .-* .
0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 630 Probe Volts ISOR 630V XLS] TIT 7 NoA4 RFK: 6/11/95,6 38 PM
1 l Figure 4.14: Comparison of Analyst Team to Expert Voltages l
630 Probe, Analyst Bias Test Matrix. RPC Confirmed 1.4 Analysis Team 1
! o '
1.2 _
e Analysis Team 2 -
Ideal Correlation l *
- .g --- - Ideal 10% e ,..-
~
- :s .- .-
!
- 1.0 - ~
- cu .-
i e ..... e te co 0.8 -
.~ .-
! 2 ..-
a .. -
f ..- ,.. -*
s a e ..- ..~
.~
0.6 ea a e p.,
.m ...-
m ... - -
- ;;;>, 0.4 ,. -
O.2 .- -
0.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 iA Expert Analyst Voltage Amplitude i ISOR 630V.XLS] TysEx 630 i RFK 6/11FM R4f1PM
Figure 4.15: Comparison of 610 Probe to 630 Probe Voltages Expert Analyst, Analyst Bias Test Matrix, RPC Confirmed 1.4 o Test Case 1 1.2 - e Test Case 2
[ .-
~'
Ideal Correlation . ~~
- - - Ideal *10% ,.. ~ [ ,,.. ~~
3 so
-,.... 7..... -
...- a ....
L, o'
y ... l' ..-
s 0.6 -' '
a _.- __
0.4
) .
0.2 '. '
O.0 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Indication Voltage Using 630 Probe
$.0 DATA BASE APPLIED FOR IPC CORRELATIONS The database used for the IPC correlations that are applied in the analyses of this report are consistent with the NRC SER prepared for the 1995 Catawba-1 inspection as documented in Reference 10.9. Model Boiler specimen 598-1 is excluded from the database based on application of EPRI data exclusion criterion for very high voltage indications and concurrence by the NRC. Braidwood I and Byron 1 pulled tube indications R16C42, TSP 5 (0.28 volt) and R2007, TSP 7 (0.38 volt), respectively, are excluded from the correlation based on EPRI data exclusion criterion 2a accepted by the NRC. Criterion 2a excludes indications with burst pressures high on the voltage correlation if the maximum crack depth is s 60% and there are s 2 remaining uncorroded ligaments. Plant S pulled tube indication R28C41 is included in the leak rate correlation at a SLB leak rate of 2496 1ph consistent with NRC l recommendations. Accordingly, this database is in compliance with NRC guidelines for application ofleak rate vs voltage correlations and for removal of data outliers in the 3/4 inch tubing burst and leak rate correlations and is referred to as the NRC database, in contrast with the EPRI database which excludes Model Boiler test point 598-3 and sets R28C41 leakage at 12.51ph.
I I
1 S.\APC\DC195\DC190 DAY.5-9 5-1 ossoms, itis
6.0 SLB ANALYSIS METHODS Monte Carlo analyses are used to calculate projected voltage distributions and to calculate the SLB leak rates and tube burst probabilities for both actual and projected voltage distributions. The Monte Carlo analyses account for parameter uncertainty and the methodology complies with the Catawba Unit 1 SER and is described in References 10.3,10.4 and 10.5, and is also documented in the Westinghouse generic methods report, Reference 10.1. The latter report includes ,
updates for consistency with the NRC draft generic letter and represents the specific methods applied for the leak and burst analyses in this report.
Monte Carlo analyses include POD adjustments, voltage growth and NDE uncertainties in the projected analyses while only NDE uncertainties are included '
in the tube leak and burst analyses for the actual voltage distribution. Based on the 3/4" diameter tubing database, the NRC requirement that the p value obtained from the regression analysis be less than or equal to 5% to apply the SLB leak rate versus voltage correlation is satisfied and the correlation is applied for the leak rate analyses of this report.
l l
l l
S.NAPC\DC195\DCP90 DAY.5-9 0*1 06/30S5, it13
7.0 BOBBIN VOLTAGE DISTRIBUTIONS 7.'1 PROBABILITY OF DETECTION (POD)
The number of indications assumed in the analysis to predict tube leak rate and burst probability is obtained by adjusting the number of indications reported, to account for measurement uncertainty and birth of new indications over the projection period. This is accomplished by using a Probability of Detection (POD) factor. The calculation of projected bobbin voltage frequency distribution is based on a net total number ofindications returned to service, dermed as:
N.
N """""d d'd""*d' raars= POD ~
where:
Nra ars = Number of bobbin indications being returned to service for the next cycle N, = Number of bobbin indications (in tubes in service) reported in the current inspection.
POD = Probability of Detection N,,,,,a = Number of N, which are repaired (plugged) after the last cycle Na, goy,a = Number ofindications which are deplugged after the last cycle and are returned to service in accordance with IPC applicability.
The draft NRC generic letter (Reference 10.2) requires the application of a POD = 0.6 to derme the BOC distribution for the EOC voltage projections, unless an alternate POD is approved by the NRC. A POD = 1.0 represents the ideal situation where all indications are detected; a voltage-dependent POD can provide a more accurate prediction of voltage distributions consistent with APC/IPC experience. There were no deplugged tubes returned to service at BOC 9.
7.2 CALCULATION OF VOLTAGE DISTRIBUTIONS The overall growth rate as a composite sum of all four SGs for the previous two operating periods of Catawba Unit 1, represented by the cumulative probability distribution functions on Figure 7-1, confirm the discussion in Section 3.2 that the 1993 - 1995 operation (Cycle 8) growth rates exceed those of the 1992 - 1993 (Cycle 1
- 7) operation and are used to predict the EOC-9 bobbin voltage distributions.
The growth rate distributions for each of the Catawba Unit 1 steam generators during Cycle 8 are shown on Figure 7-2. Overall, the growth in SG A appears l predominant, confirming the average voltage growth statistics on Table 3 5. I However, SG C has the largest growth rates in the tail of the distribution (See Table l
, 3-6) which is important for the leakage rate and burst probability analyses. To I conservatively predict the IPC voltage for EOC-9, the growth projections are based l l
S \Al'C\DCl45\DCI90 DAY SS 7-1 OM OS5,1113
on rates determined for a hybrid distribution, defined in Section 3.2, with growth characteristics which envelope the growth data developed from the EOC-8 ECT inspections. This hybrid growth rate is used in the projection calculations for all steam generators during Cycle 9.
The operating periods used in the voltage projection calculations are: Cycle 8 = 393.2 EFPD and Cycle 9 = 438.9 EFPD.
7.3 COMPARISON OF PREDICTED AND ACTUAL EOC-8 VOLTAGE DISTRIBUTIONS The methodology used in the projection of bobbin voltage frequency indications is described in References 10.3 and 10.4 and is essentially the same as that reported in Reference 10.5 for the Cycle 8 prediction. Those analyses reported the predicted EOC-8 bobbin voltage distributions in SG C, based on the BOC-8 conditions and I cycle 7 growth rates. The actual EOC-8 bobbin voltage distributions (630 probe I voltages adjusted by the conservative 1.25 factor) and the corresponding predictions, summarized on Table 7-1 and shown on Figure 7-3, provide a comparison of three different detection uncertainty factors represented by:
POD = 0.6, in accordance with the NRC direction of Reference 10.5, l POD = New Indication Method (NIM), which includes provision for undetected l indications based on new indications found in the inspection as well as l
a fraction (conservatively 25%) of the RPC NDF indications assumed to develop to confirmed flaws.
I POD = 1.0, a nominal value with no uncertainty considered. j l
l As shown on Figure 7-3, all of the three methods conservatively over-predicted the bobbin voltage population distribution, particularly below ~1.5 volts. The maximum adjusted actual voltage (630 probe = 4.6 volts) of 5.7 volts compares well with the projected values of 5.7, 5.2 and 5.1 for the above three methods. A voltage-based POD would provide a more accurate prediction for IPC/APC performance.
7.4 PREDICTED EOC-9 VOLTAGE DISTRIBUTIONS l
Using the methodology previously described, analyses were performed to predict the l performance of the Catawba Unit 1 steam generators at EOC 9, based on the BOC-9 conditions summarized in Table 3-1 and the Cycle 8 hybrid growth distribution summarized in Table 3 6. This distribution is conservative for SG A and C, since it 1 envelopes both, and is even more conservative for SG B and D. The IPC voltage distribution projected for Cycle 9 is summarized on Table 7-2 for POD = 0.6, for the EPRI POD and for POD = 1.0, which is the order of assumed decreasing detection uncertainty. As anticipated, the limiting steam generator is SG C with 1922 indications predicted for POD = 0.6 These results are shown on Figures 7-4a to 7-4d.
S NAPC\DCP95\DCP90 DAY.5-9 7-2 OMOS5. W3 i
o C
~ Table 7-1. Catawba 1 SG-C: Comparison of Actual and Predicted EOC-8 Bobbin Voltage Predicted Volts Actual (610 Probe) POD = 0.6 POD = NIM POD =1.0 0.1 1 0.2 14 8 8 28 0.3 67 37 39 126 179 105 173 O.4 104 0.5 338 252 198 171 0.6 507 439 293 185 0.7 620 544 356 130 0.8 644 555 365 130 i 0.9 543 451 304 101 ,
l 1 412 316 226 73 l 1.1 294 195 156 50 1.2 191 106 96 23 1.3 122 55 58 32 1.4 76 28 34 16 1.5 44 15 19 26 l 1.6 28 9 12 8 1.7 18 6 7 8 1.8 10 4 5 5 1.9 8 2 3 2 1 2 4 2 2 4 2.1 4 2 1 2 1 2.2 3 1 1 1 l
2.3 1 1 0 2.4 1 1 1 l
2.5 1 1 1 2.7 1 1 2.9 1 3 1 1 3.1 1 3.3 1 3.4 1 3.6 1 4.2 1 1 4.5 1 4.6 1 3 4.8 0.7 1 5 0.7 5.1 1 0.3 5.2 0.3 5.3 0.7 5.7 0.3 1
[L_ Totals i 4136 1 3076 1 2292 1 1302 _Jl ucocr mmn nns 7-3
Table 7-2 (Pege 1 of 2)
Catawba Urut 1 Prodcted EOC 9 Bobbm Voltage (610 Probe)
S/G A 5/G B EOC-8 Measured EOC-9 EOC-8 Measured EOC-9
~
M Plug 9ed M Plugged Volt Bobbm Tubes POD POD POD Bobbm Tubes POD POD POD Bm ) Inds Or@ 06 EPRI 1.0 inds OrW 06 EPRI 1.0 01 1 0 0.3 05 0.2 0 0 0.1 0.1 0.0 0.2 10 1 2.9 53 1.7 20 3 5.0 9.3 2.8 0.3 67 1 18.5 27.0 11.0 124 3 33.5 49 0 19.7 04 104 3 43.9 56 4 26.0 168 4 75.8 98.3 44 8 05 76 2 674 81.7 40 0 139 1 118.6 144.1 70 4 06 56 4 84.3 96.8 50.0 124 6 152.6 174.7 90 6 07 48 1 90.5 96.1 53.6 86 7 165 0 178.2 97.7 08 48 2 88.1 90.5 52.1 80 1 161.4 165.5 95.5 09 28 1 81.0 79.7 47.9 36 0 146.3 144.3 86.6~
1 17 1 71.9 67.9 42.4 28 2 126.0 120 2 74.5 1.1 10 1 60.3 55.0 35.6 15 2 103.3 95.2 61.1 1.2 8 0 47.3 41.6 27.9 14 2 80.0 71.2 47.1 1.3 4 2 36.0 30.6 21.1 9 5 80.4 52.0 35.2 1.4 9 3 27.5 22.5 15.9 8 3 45.0 37.3 26.0 15 6 4 20.7 16.1 11.7 3 32.5 25 8 1 18.5 16 0 0 15.1 11.1 8.3 1 0 22.8 17.3 12.8 1.7 2 2 10 8 7.5 5.8 2 1 15.7 11.6 8.7 1.8 3 2 7.8 5.2 40 2 0 11.1 8.0 6.1 1.9 0 0 56 3.5 2.7 2 1 7.9 56 43 2 0 0 40 2.4 1.9 0 0 5.7 3.9 3J 2.1 2 1 30 1.7 1.3 0 0 4.1 2.8 2.2 2.2 1 1 2.3 1.3 1.0 0 0 30 20 1.6 2.3 1 1 1.9 1.1 08 2.2 1 1 1.6 1.2 2.4 0 0 16 1.0 0.7 1.9 1.5 1.0 25 0 0 14 0.9 0.6 1.7 1.4 0.9 2.6 1.2 0.8 0.5 1.5 1.3 0.8 2.7 0.9 0.7 0.4 1.3 1.1 0.7 28 0.8 0.6 04 1.1 1.0 0.6 29 0.7 0.5 0.3 1.0 0.9 0.5 3 0.5 0.4 0.3 0.8 0.7 0.5 3.1 04 0.4 0.2 0.7 06 04 32 0.4 0.3 1.0 0.6 0.6 0.4 3.3 0.3 0.3 0.6 0.5 0.3 3.4 0.3 0.3 0.5 0.5 0.3 35 0.3 0.2 0.4 0.4 0.3 36 0.2 0.2 04 0.3 0.2 37 0.2 0.9 0.3 0.3 1.0 38 08 0.7 0.2 0.2 39 0.2 0.2 4
0.2 0.2 4.1 0.2 0.1 4.2 0.1 0.1 4.3 0.1 0.1 44 0.1 0.1 45 0.7 0.9 0.9 52 0.7 0.7 54 0.3 56 07 0.7 57 03 0.3 59 03 03 03 Total i 5011 33i i e '
862i 431 i !
-amn w 7-4
e Tetde 7-2 (Pe98 2 of 2)
Calmste Uniti Produced EOC-9 Bobten Volle9e (810 Probe) 5/G C 5/G D EOC-8 Measured EOC-9 EOC4 Measured EOC4 M Pluged M Plugged Volt Batten Tunes POO POD POO Bolden Tubes POO POO POO Dm ines. Only 06 EPRI 10 Inds Onfr 06 EPRI 1.0 0.1 1 0 0 32 0 54 0.19 1 0 0.42 0.81 0.25 02 28 2 7.18 13.29 4.18 54 2 13.21 24.51 7.81 0.3 126 7 35.93 53 81 21.02 158 5 40.09 76.53 29.61 04 173 16 78 54 103 83 45 64 108 6 102.01 138.05 80.42 0.5 171 15 12649 15488 73.31 200 8 158 45 197.88 93 73 06 185 26 176 86 19405 9643 164 5 200.93 233.03 118.44 07 130 19 194.81 207.18 111.89 115 8 217.05 237.12 12884 0.8 130 10 204.32 204 79 11617 110 6 216 05 222.82 127.42 0.9 101 9 200.70 191.32 114.77 86 3 100 00 198.38 117.15 1 73 18 1FG 188.53 105.40 48 9 174.5 15.05 102.25 1.1 50 34 12 87 13984 8 98 36 8 146.26 132.88 85 23 1.2 23 17 131.08 108.53 71.53 20 4 116.57 101.82 67.33 1.3 32 19 102.28 80.74 53 88 16 6 80 51 K17 51.03 1.4 16 13 75.03 58.24 30 39 5 2 N 73 53.87 37.40 1.5 26 15 59.24 41.43 28 71 9 6 48 48 37.47 26.42 1.6 8 6 44.97 29 40 20 85 5 1 34 42 25.48 18.67 1.7 8 6 33.34 20.41 14 74 3 2 24 05 17.13 12.76 1.8 5 2 24 47 14.10 10.35 1 1 16 88 11.80 8.72 1.9 2 2 17.81 9 75
~
7.27 1 1 11 76 7.79 5.80 2 4 3 12.06 6 't? 5 12 3 3 8 13 5.18 3.90 2.1 2 2 9.46 4.76 3 83 2 2 5.88 3 43 2.58 2.2 1 0 6 93 3.42 2.50 0 0 4 11 2.41 1.74 2.3 0 0 5 24 2.71 1 98 0 0 317 2.03 1.32 24 1 1 4 19 2.30 12 0 0 2.64 1.90 1.14 2.5 1 1 3 30 2.07 1.30 0 0 2.26 1.76 1.03 2.6 2.79 1.78 1.15 1.97 1.82 0.05 2.7 1 1 2.37 1.58 1.00 0 0 1.71 1.46 0.88 2.8 2.03 1.37 0 87 1.49 1.29 0 77 2.9 1.80 1.22 0.77 1.33 1.15 0 80 3 1 1 1.50 1.07 0 88 1 1 1.17 1.01 0 61 3.1 1 1 1.41 0 92 0 57 1.04 0 80 0.54 ,
3.2 1.25 0 to 0 de 0 94 0.41 0 48 '
3.3 1 1 1.14 0 72 0 44 0.87 0.74 0 44 34 1.03 0 64 0 30 0.76 0 85 0.30 35 0 90 0 54 0 33 0 85 0.54 0.33 {
36 0.76 0 45 0.29 0 53 0.44 0.28 37 0 63 037 0.24 OM 0.35 0.23 38 0.51 0 31 0 20 0.35 0.29 0.19 39 l 0 41 0.26 0.17 0.30 0.25 0 16 4 0.33 0.22 0.14 0.25 0.'21 0 13 41 037 0 19 0 94 D32 0.19 0.08 4.2 0.24 0.17 0.19 0.18 4.3 0.21 0.17 0.18 0.18 44 0.20 0.16 0.17 0.17 45 0 18 6 16 0.17 0.17
)
46 0.18 0.16 0.17 0.17 47 0.17 0.16 0.17 0.17 48 0.17 0.16 0.16 0.17 l 49 0.17 0 31 0.16 0 99 5 0 17 0 80 51 0.16 5.2 0 16 53 0 16 54 0.16 5's 0 87 0 70 0.70 57 1 1 0.70
$8 0 70 0 70 59 0.30 0.30 6 0.30 0.30 0 30 62 0 70 e 64 0 30 Toled 1302e 248i 1714i 93 i
--anw 7-5
Figure 7 - 1 Catawba Unit - 1 Cumulative Probability Distributions for Voltage Growth on EFPY Hasis Composite of All Four Steam Generators 1.0 : :
0.9 - --
0.8 -- -- -- -- -- -- - - - - -
0.7 - -- --- - ---
j -+-Cycle 8 (1993 to 1995) j 0.6 - -- - --
E 7 I> 0.5 - - - - - - - - - -
0 -o- C yc el 7 (1992 to 1993) i
= 0.4 - -- -
E a
U 03 - _ _ -
0.2 - - --- -- - - - - - - - -
0.1 - - - - -
0.0 e -. .
9 C. 9 0 9 0 9 0 9 o 3 3 o o o - - n n m Voltage Growth cmaic,mm xtsco.+, _wsm s n m
. _ - __ _ _ _ _ . - - - % - -- .- o . - , , , ,
Figure 7 - 2 Catawba Unit- 1 1995 EOC-8 Signal Growth on EFPY Basis ( in Equivalent 610 Voltage)
Cumulative Probability Distributions for All Steam Generators 1.00
- a 0.90 - - - - - - - - - - - - - - - - --- -- -- -
0.80 - - - - - - - - - - - - - - - - - - - - -
E E 0.70 - - - - - - - -- - - - - -. -
a w
g 0.60 - -- - -- --
-o-S/G A '
=
.E -+- S/G B y 3 0.50 - - -- - ----
C S/G C a
y 0.40 - -
-*- S/G D
=
E 0.30 - -- -
U 0.20 - - -
0.10 - -
^
0.00 :- ===;;_; - - - - -
o o
o o
o o
e o
o o
c;i - - - - c4 Signal Growth per EFPY GROWTH XLSFig7-26/25.95 4 09 PM
i Figure 7-3 Catawba 1: S/G C Comparison of Predicted and Actual EOC-8 Bobbin Voltage Distributions (610 Probe) l 800 POD = 0.6 )
1 600 E I g 1 8 )
j400 -
l E
200 -
O
' - - b'I h^ -
01 03 05 07 09 11 13 15 17 10 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 6.1 63 SS 67 Volts 600 l POD = NIM E 400 ---- - - - - - - - - ---
o O
j200 =- -- --
l 0 Y---*8-- L 11~ --
01 03 06 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 SS 67 Volts 400 POD = 1.0 300 8
.9
] 200 g
g l l Projected EOC-8 j Actual EOC-8 100 - -
0 -- - - - k'~
01 03 05 07 09 11 13 16 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 61 53 65 57 Volts CEODCP9530CEOCARw2 7-8
Figure 7-4a Catawba 1: S/G A Predicted EOC-9 Voltage Distributions (610 Probe) 200 POD = 0.6 150 - - - - -
v 8
7 100 - - -
o, 1 -
, Z 50 - -
0
' ' a m - _ _. _ _ _ . ._
01 03 06 07 09 11 13 16 17 19 21 23 25 2.7 29 31 3.3 36 37 45 64 67 Volts 200 POD = EPRI 150 -
- a. g j100 - - --- -
2 N r !
50 -- -
4 0"L EI '-I'"" -- - - -
01 03 05 07 09 1.1 13 16 17 19 21 23 26 27 29 31 33 36 37 45 54 57 Volts 120 POD = 1.0 100 --
l 80 l
$u l j 60 I o Predicted EOC-9 2o 40 l l BOC-9 20 - > > -
0 -1 *- "- h * ^- -- - - - - - -
01 03 08 07 09 11 13 16 17 19 21 23 26 27 29 31 33 35 37 45 54 57 Volts APCtDCP96kSGAECX4 Re+1 7-9
Figure 7-4b Catawba 1: S/G B Predicted EOC-9 Voltage Distributions (610 Probe) 300 POD = 0.6
$200 - - -
Eo b
o I i y100 - - - - --
T
! 8^*------
0- -
01 03 OS 07 09 11 13 15 17 19 21 23 26 27 29 31 33 35 37 39 41 43 4S 56 69 Volts 400 POD = EPRI 300 8
}200 - - - -
2 N
100 , [ f - - - - -
l 0 L' - '"""--
01 03 CS 07 09 11 13 16 17 19 21 23 25 27 29 31 33 36 37 39 41 43 46 56 $9 Volts 200 POD = 1.0 150 - - - -
8 3 ..
8 j 100 - -- --- --
g Predcted EOC-9 l l l lE9 50 - - -
{
0 & 5- Ei"* - - - --
I 01 03 06 07 09 11 1.3 16 17 19 21 23 26 27 29 31 33 35 37 39 41 43 45 66 69 Volts ecwwaoecoc9a 1 7-10
Figure 7-4c Catawba 1: S/G C Predicted EOC-9 Voltage Distributions (610 Probe) 300 l POD = 0.6 l
,f200 ~
3 o
y100 0u =- *, nn..______
0.1 0.4 0.71.01.31.6 1.92.22.52.83.1 3.43.74.04.34.64.95.25.55.96.2 Volts POD = EPRI 300 N
j 200 -
0 I 100 - - - - - - - - - - - -
0 -" L ' =
-- 3A"- -----
0.1 0.4 0.7 1.0 1.3 1.6 1.92.22.52.83.1 3.4 3.74.04.34.64.9 5.25.55.96.2 Volts 200 POD = 1.0 150 - - -
E 1
.9
] 100 t Predicted EOC-9 N l l BOC-9 50 -
0 4-'- -
- li*=--- -
0.1 0.4 0.7 10 1.3 1.6 1.92.22.52.83.1 34 3.7 40 4.3 4.6 4.9 5.25.55.96.2 Volts APCOCP95kSOCEOCS Rn '
7-11
Figure 7-4d Catawba 1: S/G D Predicted EOC-9 Voltage Distributions (610 Probe) 400 POD = 0.6 300 8
1 200 - -
l s l l
100 - - -- -
j 01- --* . . _amm - -
01 03 06 07 09 11 13 16 17 1.9 21 23 26 27 29 3.1 33 36 37 39 41 43 46 47 49 66 66 60 Volts 400 POD = EPRI 300 --- - - - - - - - - - - - - - - -
8 8
8
_] 200 s
l 100 _ . _ _ _ _ _ _ _ _ _ _
0 - b- -' - - I'"- --- -
01 03 06 07 09 11 13 16 17 19 21 23 26 27 29 31 33 36 37 39 41 43 46 47 49 66 SS 60 Volts 250 POD = 1.0 200 E
o l % 150 l
k o 100 4 ei Predicted EOC-9 BOC-9 l l 50 0
' ' - >-<- 11L" ---
01 03 06 07 09 11 13 16 17 19 21 23 25 27 29 31 33 36 37 39 41 43 46 47 49 66 66 60 Volts ececmsoccoesn i 7-12
8.0 TUBE LEAK RATE AND TUBE BURST PROBABILITIES 8.1 COMPARISON OF PREDICTED AND ACTUAL EOC 8 LEAK RATE AND TUBE BURST PROBABILITY FOR EOC-8 Using the methodology previously described in this report, analyses were performed to calculate EOC-8 SLB tube leak rate and probability of burst (PoB) for the actual and predicted bobbin voltage distribution previously presented in this report. The results ofMonte Carlo calculations performed for the predicted and the actual voltage distributions are summarized on Table 81. Comparison of the EOC-8 actuals with the corresponding predictions indicates that:
a) SG C was predicted to be the most limiting steam generator for Cycle 8.
b) SG C was confirmed to have the highest tube leak and PoB numbers based on actual ECT bobbin measurements at EOC-8.
c) The leak and PoB predictions (based on projected indication population) are conservative compared to actualleak and PoB values (based on ECT bobbin measurements for EOC-8). The POD = 0.6 prediction for SG C was conservative by approximately a factor of more than three.
d) A voltage based POD can conservatively predict tube leakage and PoB, with greater accuracy than POD = 0.6.
The SLB leak rate of 0.3 gpm calculated from the actual EOC-8 voltage distribution is well below the Catawba-1 allowable limit of 17.5 gpm and the burst probability of 2.84 E 03 is also below the NRC reporting threshold of 1.0 E-2.
8.2 LEAK RATE AND TUBE BURST PROBABILITY FOR EOC-9 Calculations have been conducted to predict the performance of the limiting steam generator in Catawba Unit I at EOC-9 conditions. The methodology used in these predictions is the same as previously described for EOC-8. Results of the EOC-9 predictions are summarized on Table 8-1. With the NRC endorsed POD = 0.6, the predicted EOC 9 SLB leak rate for S/G C is calculated as 0.93 gpm and the EOC 9 SLB tube burst probability is calculated as 9.54 E 03. The performance of the individual steam generators, shown on Table 8-1, indicates that the limiting steam generator for Cycle 9 of Catawba Unit 1 is expected to be SG C.
The projected EOC-9 SLB leak rate of 0.93 gpm is well below the Catawba-1 allowable limit of 17.5 gpm and the projected tube burst probability of 9.54 E 03 is below the NRC reporting guideline of 1.0 E-02.
SWC\DCM5\DCMODAY.5-9 8-1 OW305)5. IM3
Table 8 - 1 Catawba Unit 1 1995 Outage Summary of Calculations of Tube Leak Rate and Burst Probability Steam POD No. of Max. Burst Probability SI.D Generator Indic- Volts Lerx Rate ations 1 Tube 2 Tubes gpm EOC-8 PREDICTED C 0.6 4136, 5.7 9.6 E-03 _
NiMi 3076. 5.2 0.2 E-03 31 1.0 2292. 5.1 3.5 E 03 _- 0.51 EOC-8 ACTUAL 8 A 1.0 501, 2.6 1.70 E-04 None 0.01 D 1.0 862. 2.5 1.32 E-04 None 0.01 C 1.0 1302. 6.0 2.84 E-03 None 0.30 D 1.0 1214. 3.2 3.02 E-04 None 0.03 EOC 9 PREDICTED A 0.6 802, 5.7 2.88 E-03 6.79 E-05 0.31 EPRI 812. 5.7 2.41 E-03 4.75 E-05 0.27 1.0 468. 5.4 1.66 E 03 4.75 E-05 0.16 ,
B 0.6 1394. 5.9 4.35 E-03 6.30 E-05 0.48 EPRI 1432, 5.9 4.06 E-03 4.75 E-05 0.46 1.0 819. 5.7 2.74 E-03 4.75 E-05 0.28 C 0.6 1922. 6.4 9.54 E-03 1.10 E-04 0.93 EPRI 1832. 6.0 5.81 E 03 9.17 E-05 0.60 l
1.0 1054. 5.0 3.46 E.03 4.75 E-05 0.39 l 1
D 0.0 1930. 6.0 6.72 E-03 1.27 E-04 0.65 )
EPRI 1986. 6.0 5.32 E-03 9.16 E-05 0.60 1.0 1121. 5.9 3.51 E-03 None 0.38
' NIM = New Indication Method, described in Reference 10.5.
' Voltages include NDE uncertainties from Monte Carlo analyses and exceed measured voltages. I S \APC\DC195\DCP90 DAY.5-9 8-2 OW3095.17:13 l
i
9.0 COMPARISON OF POPCD FOR 9 INSPECTIONS,7 PLANTS WITH EPRI POD ,
The evaluation of the probability of prior cycle detection (POPCD) for Catawba-1 is described in Section 3.3. At this time, POPCD evaluations are available for nine inspections of seven plants, including the last two inspections at Catawba-1. The available data include three inspections of plants with 3/4" diameter tubing and six inspections of plants with 7/8" diameter tubing. This section summarizes these POPCD evaluations for comparison with the EPRI proposed POD.
Figure 91 shows the POPCD evaluations for plants with 3/4" tubing including the
' two Catawba-1 assessments (Plant R). The Catawba 1 EOC-6 results represent a '92 inspection while the other two results represent '93 and '94 inspections. These results tend to indicate improvement in POPCD for the later inspections and support a POD approaching unity above about 2 volts.
Figure 0 2 shows the POPCD evaluations for plants with 7/8" diameter tubing and includes results for six inspections. The lower POPCDs for Plants A 1 and A-2 (EOC-
- 8) represent 1992 inspections such that the general trend also shows incre.asing PODS for later inspections. The lowest POPCDs at about 1.5,2.0 and 2.5 volts represent a single missed indication in each of these bins. For the data of Figure 0-2, a POD approaching unity is supported above 3 volts and above 2 volts for inspections performed since 1992.
The individual plant POPCD evaluations can be combined for comparisons with the i EPRI proposed POD. Figures 9 3 to 9 5 show the combined data for 3/4" tubing, for i 7/8" tubing and for the combined 3/4" and 7/8" tubing plants. The 3/4" POPCD is in l very good agreement with the EPRI POD above 1.0 volt while the 7/8" POPCD is !
slightly lower than the EPRI POD above 1.0 volt. When all nine POPCD assessments are combined (Figure 9-5), there is generally good agreement with the EPRI POD although the trend exists to be below the EPRI POD. The definition of POPCD includes indications which were not present at the prior inspection and thus would be expected to be somewhat lower than the EPRI POD which is based on " expert" evaluations of inspection results and does not include indications clearly below detectable levels. )
The POPCD evaluations shown in Figures 9-1 to 9-5 are based on the definition of
" truth" as RPC confirmed plus not RPC inspected indications. Since many of the indications not RPC inspected would be expected to be found to be NDD ifinspected, this represents a lower bound POPCD evaluation. Figure 9-6 shows the POPCD evaluation for all nine inspections based only on RPC confirmed indications. This results in a significant increase in POPCD below 1.0 volt and a modest increase between 1.0 and 1.5 volts. Above 1.5 volts, all indications are RPC inspected and there is no difference in the definitions. The data supporting Figures 9-5 and 9-6 are S \APC\DCP95\DCP90 DAY.6-9 9-1 OMW95. W8
__O
(
there is no difference in the definitions. The data supporting Figures 9-5 and 9 6 are given in Table 91. The data of Table 9-1 show more than 100 indications in all voltage bins below 1.8 volts and at least 28 indications in the voltage bins up to 4 volts. Thus the collective data are a reasonable basis for defining a POD.
As noted above, the POPCD evaluations performed since 1992 show significant improvement over the earlier assessments which represent the first IPC inspections.
Bobbin data analysis guidelines (Appendix A) have been revised since the first inspections to reflect the initial IPC experience. Thus, it is appropriate to assess POPCD for inspections performed since 1992. Five of the nine inspections for which POPCD has been evaluated were performed since 1992. The data for these five inspections are given in Table 9 2 and the POPCD evaluation is shown in Figure 9-7 for RPC confirmed plus not inspected indications. It is seen that the inspections since 1992 yield a POPCD in good agreement with the EPRI POD which was a 1994 evaluation. POPCD supports a POD approaching unity above 2 volts while the EPRI POD is about 0.98 at 2 volts and unity at 3 volts. Since the data analysis guidelines were revised since 1992 and significant experience has been gained in IPC inspections, the POPCD of Figure 9-7 is the appropriate data for assessing voltage dependent PODS for IPC applications. Figure 9 7 strongly supports the EPRI POD,
-without further adjustments for new indications, as an acceptable POD.
The results of Figure 9-7 clearly support an increase in the POD fbr IPC applications above the POD = 0.6, independent of voltage, required by the NRC draft generic letter. For indications above 1.0 volt, the POD exceeds 0.8 and is 0.98 to near unity at 2.0 volts. A POD of 0.6 is only applicable to indications below about 0.6 volts.
The POPCD evaluations for nine inspections, including five inspections since 1992, together with the EPRI POD evaluation provide a database for updating the NRC generic letter requirements on POD. .
I l
S WC\DCIS5\DC150 DAY.5-9 9-2 06/30S5, IM5
!Iil1 Il !1l Ifl!ll)l1jl llllllij
+
lilIljIa 7
e 7 3 1 s 3 t 9 0 9 i g t
n 4 4 6 e 2 e 3 r o 1 e 9 2 8 u m 4 /5 4 /2 p e 4 t t t m /4 2
/ /
3 2
/ .
d o 5
/
8 7
/
2 7 9 5 t e 7 e 9 1 8 8 dhec C 5 4
3 2
4 9
3 4
4 4
4 7
7 3
4 1
g 5 4 2 3 2 me r p 2 2 2 1 a s n n ai Ct o CN P s Rlu c 0 8 7 8 2 9 7 8 8 4 0 0 9 0 0 P a 8 0 1 2 3 3 5 4 0 3 8 0 6 0 0 r 4 5 5 5 6 8 8 8 9 9 9 0 9 0 0 F 0 o 0 0 0 0 0 0 0 0 0 1 0 1 1 D
C P
O P
- 7 0 6 1 4 0 6 8
- t n 8 1 1 2 6 6 5 1 9 9 2 8 _
0 u
o 2
1
/
1
/
5
/
1 4 5
/
6 4
9 9 2 3
/
2 1
/
6 1
/
6
/
7 4
/
8 2
r 9
3
/
1 2
/
8 e
6 C 6 0 1 1 2 7 2 3 9 5 4 2 3 2 1 3 4 5 5 3 1 9 d
e
- Cmr P R Rn o
s C n
s o t i c .
0 0
1 6
9 5
6 0
2 5
2 7
4 9
2 7
7 1
4 3
0 8
9 6
_ at a ar 5 5 7 8 8 8 8 8 9 9 9 1 9 1 1 l
a c F 0 0 0 0 0 0 0 0 0 0 0 0
- i P dn l
l I A d r
ot e .
F c -
)s pe L d
- t. s n d e ,e
.i C m ,u 4 4 t
o w r
Piifr RnP 6 2 8
8 8
1 5
9 1
5 8
1 8
3 4
1 7
2 3
0 1
7 8
0 5
5 4
7 2 2 9 8 2 6 0 7
8 0
1 nN s u s I
t s
od C.n 1 1
- Al P r 99 ( d F l e s e bater m i
e i s Tuaf no l
a d e
d vC Cmn et o 4 9 3 2 8 EC P r Re nups e c 9 4 5 5 7 5 3 0
0 0 2 2 7 3 2 2 0 0 6 1 7
DF olpn s 4 1 2
7 2
2 2
2 1 3 1 4 1 3 9 4 CR L C i P n h Oe t o
Pd e B d n e e n in iB l biD la d sC C e oP M Cm 3 3 7 4 1 1 3 2 8 1 C O t P
R *, 0 2 2 1
5 2 3 4 4 1 5 3 1 7 3 2 2 0 0 9 9
5 2
P b o o C B
C P
6to 2 0 8
0 5
1 7 4 2 2 6 0 3
8 6 s R i. u s 9 7 4 4 6 2 4 1 0 1 0 0 6 4 n%
1 1 1 n 4 2 2 2 8 1 8 2 o
l p
it C a
ci d M I
n P 3
w 2 e a 2 N C P 2 9 0 2 5 8 0 7 8 1
5 6 8 9 0 9 8 3 2 9 4 1 0 1 0 0 3 5 9 R
C
_. 1 5 1 /
5 2
/
8 ib a
2 T-o 4 a a 0 2 4 a a o 2 5 o 0 o v t
t n
o la JB we -
- o. o- - -
4 e 8 1 t 0 2 t
- t. 1 2
2 0
2 3
4 5 o A L
> P L
V o 2 4 8 8 2 5 0 im L a o o o 2 2 2 3 T 1 1 t t t 4
> O io A T T S L
X.
R E
T S
A -
M -
o' t
i f !l llIlll,i
Figure 9 - 1 POPCD Evaluntion for Plants with 3/4" DiameterTubes POPCD Based on RPC Confirmed Plus Not inspected Indications 1.0 : : x ;
- x. .
, - - . f . - . _, g 1
0.9 _,_,j x--,f - - - - L-- -E s.-.-, n 0.8 - -
f y---.5 ,
l .
T p.-._, I
^
0.7 i x..-.-.I o I -
. I e 8 0.6 - + - - * -
. % 1 u o T 0.5 I
A Plant R (EOC-6 Data) s x - - - - -x . ..
3 J 0.4 -
! - *-- Plant R (EOC-7 Data)
^
E ..
m - -
0.3 ! - .x_ . Plant AA-1 .
7.___.x 0.2 I 1
0.1 - X- - -k 0.0 : : :
0 0.5 1 1.5 2 2.5 Bobbin Amplitude MASTER.XLS(AB 0 75"_ Chart l6/25/95112.25 PM
Figure 9 - 2 POPCD Evaluation for Plants with 7/8" Diameter Tubes POPCD Based on RPC Confirmed Plus Not Inspected Indications 1.0 --o--c -
T T T
^
u
~ I I I f
I 0.9 -- -
---n : t- -- ig - - - -3: -
Il- - - -a y - -- - -- -1 l
j-x- - - - a: .
. I
- t- - ---.x A 2 7 :E----* I l
0.8 - -- - - - '-
^
-y - - - } - - - -
- --y - - --- - t ---y 0.7 g--- ;;
u- -
it-.-#==$ ' - - - "
- l l e
lL---se I - h--n--- .
t a - - - - - - d--
-$ !E- - - - - E g - -- - d ! l .
l t 0.6 ---i - --l--- '
l-w z - 1. . - - -- 3 <
- - S --- = f
- I
, c w
', I l -
g . I
- I C'
g 0.5 --- - -
,, _ _ _ - - - - -- - - o - - - -o - --4 ---o- - - -- - - - - - - - -
g :t- - - - - ):
o - e- Plant A-1 a 0.4 -- -- -----
E
' I --o-- Plant A-2 (EOC-8 Data) 0.3 --h ~
i --a O Plant A-2 (EOC-9 Data)
"-~"
0.2 - o--4 > - - -
--m - Plant P-1 - - - - -
--o--Plant D-1 0.1 - - - -
~
- c- - Plant F 00 l l l l l 0 0.5 1 1.5 2 2.5 3 Bobbin Amplitude MASTER XLSTAll 0 875_ Chart!6/25/95112 27 PM
Figure 9 -3 Combined POPCD Evaluation (3 Assessments) for Plants with 3/4" Dia. Tubes POPCD Based on RPC Confirmed Plus Not Inspected Indications 1.0
._.fi.._._it_._. .E n
_,3
- t- 1' 0.9 - - _-_ _-
. .-l'~
+
~
0.8 - .
,;c' - -
/
0.7 - - - -
,s -- -
, /
O
= X g 0.6 ----
,e' _
CD tl"l X
, w 00-
' --+-Combined Plant data e g 0.5 fg ; __
iE /
.c
- j 0.4 -
,/
8 /
c-.
--x-- EPRI POD 0.3 - x, 3 0.2 0.1 __
0.0 O 0.5 1 1.5 2 2.5 3 Bobbin Amplitude MASTERXLS{Comtnned4 75"_Charq6/25/95l12.25 PM e
_______m_ _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
O O
Figure 9 - 4 Combined POPCD Evaluation (6 Assessments) for Plants with 7/8" Dia. Tubes POPCD Based on RPC Confirmed Plus Not Inspected Indications 1.0
_,,_,_,,,,_,__,_,_,j; :t :t
-x* 1 -
s,. -
0.9 - - - - - - - ---
.x.
/
0.8 - - -
2* - -- e "
3 s
X 0.7 -- - - - - - - -
, . -*5 - ---
a /
5 M 0.6 ,s
_t o /
O :C'
. : Combined Plant Data e g 0.5 -
= f w 2 j
0.4 -,5----------- --
We x- - -
0.2 -- - -
0.1 - - -
0.0 : : : : :
0 0.5 1 1.5 2 2.5 3 Bobbin Amplitude MASTER.XLSIComtzned 0 875'_ Charts /25f95l12:28 PM
4 Figure 9 - 5 Combined POPCD Evaluation (9 Assessments) for All Plants POPCD Based on RPC Confirmed Plus Not inspected Indications 1.0 ^ - -
' , ,x _ _ _ . : - - -y - - - - g 7
.x-s,,, .
I 0.9 - - - - -
.x.e
'^ ^
1 0.8 - - - - - - - - - - -
/ - - . - -
/
~
X 0.7 -- - - -
/---- - - -- -
a /
4 .
3 0.6 -
,/ - - - - -
es /
e Oe 0'5
^ .}' ^
- Combined Plant Data 6 M /
00 =
3 ./
3 0.4 /
2 /
4 0.2 -- - -
0.1 0.0 : : : : :
0 0.5 1 1.5 2 2.5 3 Bobbin Amplitude MASTERXLSlALL Plant-CPat_116/25/95112 29 PM -
e
.. . _ . - , m_ _ _ _ _ _ _
o
+
Figure 9 - 6 Combined POPCD Evaluation (9 Assessments) for All Plants POPCD Based on RPC Confirmed Indications Only 1.0- - - -
-x**,, x____.y.___y___.--g :f -
0.9 -
. s- 1
. 1 ;" '
0.8 -
] - ,-
,X'
/
s' 0.7 -
s '- -
a ,-
e 3 0.6 -
/
.x y ./
Co . : Combined Plant Data 0.5 - w--f -.
b
.=., /
o .c -
es 0.4 - /
, .o .
e 2 /
A 0.3 - x, . x --x-- EPRI POD -
0.2 -
0.1 0.0 : : : : :
0 0.5 1 1.5 2 2.5 3 Bobbin Amplitude MASTER.ALSjAB-Pfant-Chart _21&"25/95l1230 PM
9 e
10.0 REFERENCES
10.1 WCAP-14277, "SLB Leak Rate and Tube Burst Probability Analysis Methods for ODSCC at TSP Intersections", Westinghouse Nuclear Services Division, Jan.1995.
10.2 Draft NRC Generic Letter 94-XX, " Voltage-Based Repair Criteria for the Repair of Westinghouse Steam Generator Tubes Affected by Outside Diameter Stress Corrosion Cracking", USNRC OfEce of Nuclear Reactor Regulation, August 1994.
10.3 WCAP-13494, " Catawba Unit 1 Technical Support for Steam Generator Interim Plugging Criteria for Indications at Tube Support Plates", Westinghouse Electric Corporation, Proprietary Class 2, March 1993.
10.4 WCAP-13854, " Technical Support for Cycle 8 Steam Generator Tube Interim Plugging Criteria for Catawba Unit 1", Westinghouse Electric Corporation, Proprietary Class 2, September,1993.
j 10.5 NSD TAP-3093, SG-94-11001, " Catawba - 1 Cycle 7 IPC Assessment and Projected EOC 8 SLB Leakage", Westinghouse Nuclear Service Division, November 1994.
10.6 Duke Power (L. A. Reed and Blake Lowery) letter to the NRC Project Manager (
(Bob Martin), " Duke Power Company, Catawba Nuclear Station Unit 1, Use of the 0.630 Bobbin Pa'se," Duke Power Company, February 22,1995.
10.7 Letter to the USNRC, Document Control Desk, from Duke Power Company (David Rehn) on the subject of application of the 0.630" bobbin probe with respect to the IPC submittal for Catawba Unit 1, March 12,1995.
10.8 Facsimile transmission of data from Westinghouse (R.F. Keating) to Duke Power Company (Blake Lowery) and the USNRC (Bob Martin and Ken Karwoski) on March 7,1995 (reproductions included in this report).
10.9 Safety Evaluation Report, " Safety Evaluation by the Office of Nuclear Reactor Regulation Related to Amendment No.130 to Facility Operating License NPF 35 and Amendment No.124 to Facility Operating License NPF-52, Duke Power Company, et al., Catawba Nuclear Station, Units 1 and 2, Docket Nos.
50-413 and 50-414," K. Karwoski and J. Hayes, United States Nuclear Regulatory Commiseion, March 1995.
S \APC\DCP95\DCP90 DAY S.9 10 - 1 omoes. itia
- _ _ _ _ _ _ _ _ _ _ _ _ _ _.