ML18153B477
| ML18153B477 | |
| Person / Time | |
|---|---|
| Site: | Surry |
| Issue date: | 06/30/1988 |
| From: | Brookmire T, Farley M, Ford C VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML18153B476 | List: |
| References | |
| VP-NOS-39, NUDOCS 8807070439 | |
| Download: ML18153B477 (50) | |
Text
VP-NOS-39 Surry Unit 1 Cycle9 Core Performance Report Power Engineering Servi.ces VIRGINIA POWER
Reviewed:
T. A. Brookmire, Engineer SURRY UNIT 1, CYCLE 9 CORE PERFORMANCE REPORT by M. K. Farley Approved:
C. A. Ford, Staff Engineer Nuclear Analysis and Fuel Power Engineering Services Virginia Power Richmond, Virginia June 1988 VP-NOS'."39
L CLASSIFICATION/DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared.
The Company therefore makes no claim or warranty whatsoever, express or implied,as to their accuracy, usefulness, or applicability.
In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it.
By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company.
Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein.
In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.
i
TABLE OF CONTENTS SECTION TITLE PAGE NO.
Classification/Disclaimer i
List of Tables iii List of Figures iv 1
Introduc.tion and Summary.
i 2
Burnup.
7 3
Reactivity Depletion.
15 4
Power Distribution.
17 5
Primary Coolant Activity.
38 6
Conclusions 42 7
References.
43 ii
~*
LIST OF TABLES TABLE TITLE PAGE NO.
4.1 Summary of Flux Maps for Routine Operation......... 21 iii
LIST OF FIGURES FIGURE TITLE 1.1 Core Loading Map 1.2 Movable Detector and Thermocouple Locations.
1.3 Control Rod Locations.
2.1 Core Burnup History 2.2 Monthly Average Load Factors PAGE NO.
5 6
9 10 2.3 Assemblywise Accumulated Burnup:
Measured and Predicted 11 2.4 Assemblywise Accumulated Burnup:
Comparison of Measured and Predicted.
12 2.5A Sub-natch Burnup Sharing 2.5B Sub-Batch Burnup Sharing 3.1 Critical Boron Concentration versus Burnup - HFP-ARO 4.1 Assemblywise Power Distribution - Sl-9-06 4.2 Assemblywise Power Distribution - Sl-9-29 4.3 Assemblywise Power Distribution - Sl-9-41 4.4 Hot Channel Factor Normalized Operating Envelope 4.5 Heat Flux Hot Channel Factor, FQT(z) - Sl-9-06 4.6 Heat Flux Hot Channel Factor, FQT(z) - Sl-9-29 4.7 Heat Flux Hot Channel Factor, FQT(z) - Sl-9-41 4.8 Maximum Heat Flux Hot Charinel Factor, FQ*P, vs.
Axial Position..............
13 14 16 23 24 25 26
.27
.28
.29 30 4.9 Maximum Heat Flux Hot Channel Factor, F-Q, versus Burnup 31 4.10 Enthalpy Rise Hot Channel Factor, F-DH(N), versus Burnup 32 iv
LIST OF FIGURES CONT'D FIGURE TITLE PAGE NO.
4.11 Target Delta Flux versus Burnup 33 4.12 Core Average Axial Power Distribution - Sl-9-06 34 4.13 Core Average Axial Power Distribution - Sl-9-29 35 4.14 Core Average Axial Power Distribution - Sl-9-41 36 4.15 Core Average Axial Peaking Factor, F-Z, versus Burnup 37 5.1 Dose Equivalent I-131 versus Time 40 5.2 I-131/1-133 Activity Ratio versus Time 41 V
Section 1 INTRODUCTION AND
SUMMARY
On April 9, 1988, Surry Unit 1 completed Cycle 9.
Since the initial criticality -of Cycle 9 on July 12, 1986, the reactor core produced approximately 9. 5 x 107 MBTU (16,073 Megawatt days per metric ton of contained uranium), which has resulted in the generation of approximately 9.3 x 106 KWHr gross (8.8 x 106 KWHr.net) of electrical energy.
The purpose of this report is to present an analysis of the core performance for routine operation during -:ycle 9.
The physics tests that. were performed during the startup of this cycle were covered in the Surry Unit 1,. Cycle 9 Startup Physics Test Report 1 and, therefore, will not be included here.
Surry Unit 1 was in coastdown from February 27, 1988, at which time the burnup was approximately 15,000 MWD/MTU.
The coastdown accounted for an additional core burnup of roughly 1; 073 MWD/MTU from the end of full power reactivity.
The ninth cycle core consisted of fifteen sub-batches of fuel:
five once-burned sub-batches, four from Cycle 7 and one from Cycle 8 (sub-batches
- 9A3, 9A7,-
- 9A8, 9B2 and
- lOA, respectively);
eight twice-burned batches, one from Cycles 6 and 7, one from Cycles 6 and 8,
one from Cycles 6 and 7 of Unit 2, and five from Cycles 7 and 8 (sub-batches
- 8B3, BB4, S2/8A,
- 9A2, 9A4,
- 9Bl, 9B3, and S2/9B, respectively); ahd two fresh sub-batches (sub-batches llA and llB).
The Surry 1,
Cycle 9
core loading map specifying the fuel batch identification, fuel assembly locations, burnable poison locations and
~ource assembly locations is shown in Figure 1. 1.
Movable detector locations and thermocouple locations are shown in Figure 1.2.
Control rod locations are shown in Figure 1.3.
Routine core follow involves the analysis of four principal performance indicators.
These are burnup distribution, reactivity depletion, power. distribution, and primary coolant activity.
The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing~ thereby ensuring that the fuel hel~ over for the next cycle will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if.the core is depleting as designed, and to indicate at what burnup level refueling will be required.
Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 2 lim~ts, thereb.y ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.
Lastly, as part of normal core follow, the primary coolant activity'is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Unit 1 Technical Specifications.
A radioiodine 2
~.,.
I.:
analysis based on the iodine-131 concentration in the coolant is performed to assess the integrity of the fuel.
Each of the four performance indicators is discussed in detail for the Surry 1, Cycle 9 core in the body of this report.
summarized below:
The results are
- 1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.28% with the burnup accumulation in each batch deviating from design prediction by less than** 1. 8%.
- 2. Reactivity Depletion -
The critical boron* concentration, used to monitor reactivity depletion, was consistently within +/-0.32% tK/K of the design prediction which is within the +/-1% tK/K margin allowed by Section 4.10 of the Technical Specifications.
- 3. Power Distribution -
Incore flux maps taken each month -
indicated that the assemblywise radial power distributions deviated from the design predictions by an average difference of 1.6%.
All hot channel factors met their respective Technical Specifications limits.
- 4. Primary Coolant Activity -
The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 9 was approximately 3.1 x 10-~ µCi/gm.
This corresponds to roughly 3% of the operating limit for the concentration of radioiodine in the primary coolant.
A radioiodine analysis indicates at least two fuel rod defects.
3
FIGURE 1.1 R
p H
H L
SURRY UNIT 1 - CYCLE 9 CORE LOADING MAP K
J H
G F
3D6 I 5D3 2C4 I
I I
I I
E
,-~1 __ 1 __ 1 __ 1~-,-.,....,=--
1 2DB I 4DZ I SFS I 3E5 I 2F9 I 4D6 I 5D9 I
I I
I IIP*
I I IIP*
I I
I D
. 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I 6DO I OF6 I 4F5 I 1E9 I SFl I 4E7 I '+Fl I 1F3 I SD7 I
I I 4P I 12P I
I 16P I
I 12P I 4P I
I C
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I 3Dl I ZD9 I 3F5 I 3El I ZF2 I 0Dl I lFII I 3E7 I 3F3 I 2DO I 405 I
I I
I 13P I
I 16P I
I 16P I
I 13P I
I I
B
__ 1 __ 1_._1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I 3PO I lF7 I 3FB
- 1 4El I 2El I 3E2 I OFl I OE6 I OE2 I 1E7 I 4F7 I OFII I 3D2 I
I I 4P I 13P I
I 4P I
I 16P I
I 4P I
I 13P I 4P I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_*_1 __ 1 __ 1 __ 1_
.. _1 I 2D5 I 5F4 I OE4 I OE7 I 1E3 I lFD I 1D7 I 2F6 I 3EO I SES I 1E6 I 3F7 I 1D3 I
I I 12P I
I 4P I
I 20P I
- I 20P I
I 4P I
I lZP I
I A
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_*_1 __ 1 __ 1 __
I 1D4 I 3F2 I 4E9 I 2F3 I 4E2 I lF9, I lES *I lEO I OE3 I 1F4 I 4ED I DF<+
I DEii I 4F3 I 1D9 I
I I BP*
I I 16P I
I ZOP I
I 4P*
I I ZOP I
I 16P I
I IIP*
I SS7 I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I SD5 I SEl I 4F4 I 1DII I ZFII I OD9 I 4E6 I 3D5 I 5E6 I 1DZ I ZFl I ODS I 5F3 I 1E4 I 1C6 I
I I
I 16P I
I 16P I
I 4P*
I BP I 4P*
I I 16P I
I 16P I
I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
. 1 __ 1 __
. 1 __ 1 __ 1 __ 1 __ 1 I 3DO I SFO I 2E3 I lFS I 3E3 I OF2 I 3E4 I 4E4 I SEO I OFS I 4E3 I ZF4 I 2E5 I 4F9 I ZD3 I
I SS2 I BP*
I I 16P I
I ZOP I
I 4P*
I I ZOP I
I 16P I
I IIP*
I SS1 I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 4RO I 5F6 I 4E5 I lEl I ZE4 I 2FO I ZD7 I OF9 I lEII I ZE6 I ZE9 I 3Fl I 3RZ I
I I 12P I
I 4P I
I ZOP I
I 20P I
I 4P I
I lZP I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I lRZ I lFl I 3F4 I 3E6 I 5E4 I OEl I ZF7 I OES I 3E9 I 5E3 I 3F6 I OF3 I 1R4 I
I I 4P I 13P I
I 4P I
I 16P I
I 4P I
I 13P I 4P I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 4D3 I SDO I 3F9 I 2E7 I lF6 I OD6 I ZFS I ZEii I ltFZ I 5ll't I 1D6
- I
. I I
I 13P I
I 16P I
I 16P I
I 13P I
I I
1 __ 1 __ 1_*_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 4Dl I OF7 I 4FII I OE9 I 3FO I 4E8 I 4F6 I 1F2 I SDZ I
I I 4P I 12P I
I 16P I
I -lZP I 4P I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
1--> ASSEMBLY ID I 3DB I OD4 I 4FO I ZEZ I SFZ I 304 I 3PZ I
I I
IBP*I IIIP*I I
I I __ I __
I __ I __
I __ I __ I __
I*
I 1--> ONE OF THE FOLLOHIHG I 2D4 I 4DB I ZDZ I
I I
I I
1 __ 1 __ 1 __ 1 1 __ 1 A.
4P --
'+ BURNABLE POISON ROD CLUSTER B,
BP --
II BURNABLE POISON ROD CLUSTER C. lZP -- 12 BURNABLE POISON ROD CLUSTER D, 16P -- 16 BURNABLE POISON ROD CLUSTER E, 20P -- 20 BURNABLE POISON ROD CLUSTER F, 13P -- 13 BURNABLE POISON ROD CLUSTER I AS'nl1£TRIC I G. 4P* -- 4 DEPLETED BURNABLE POISON ROD CLUSTER H. 'BP* -- B DEPLETED BURNABLE POISON ROD CLUSTER I
- SSX - -
SECONDARY SOURCE FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH
- 8A 88 9A 98
- 98 lOA INITIAL ENRICHMENT 3.61 3.40 3.59 3.61 3.59 3.60 (W/0 U-235) llA 3.60 118 3.80
~SSEMBLY TYPE 15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 NUMBER OF ASSEMBLIES 2
2 26 15 4
52 28 28 FUEL RODS PER ASSEMBLY 204 204 204 204 204 204 204 204 ASSEMBLY IDENTIFICATION 3P0,3P2 1C6,2C4 0Dl,OD4-3D8,4Dl-1R2,1R4, K>El-OE9, 0Fl-OF9, 2F9,3FO-OD6,0D9 403,405, 3R2,4RO, lEO, lEl, 1F0-1F9, 3F9,4FO-102-104, l4D6,4D8, 1E3-1E9, 2F0-2F8 4F9,5FO-106-109, 5DO,SD2-2El-2E9, 5F6 2D0,2D2-505,507, 3El-3E7, 2DS,2D7-SD9,6DO 3E9,4EO-2D9,3DO-4E9,5EO, 3D2,3D4-SE1,SE3, 306 5E6 4
z 3
4 5
6 7
II 9
10 11 lZ 13 14 15
R p
N H
L SURRY UNIT 1 - CYCLE 9 MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS K
J H
G I
I HD I
I FIGURE 1.2 F
E D
C B
A I
I TC I
I 1
...,...... __ 1 __
1 __
1 _____...,...... __
I I
I I
I HD I
I I
I I
I I TC I
I Z
1 __
1 ___ 1 ___, ___, __
1 __
1 ___ 1 __
I HD I
I I HD I HD I
I I
I HD I
ITCI I
ITCITCI I
I ITCI 3
1 ___ 1 ___ 1 __
1 __
1 ___ 1 ___ 1_*_1 __
I I
I HD I
- I
. I HD I
I I
I I
I I
I ITCI I
ITCI IHDI I
I I
4 1 __
1 __
1 __
1 ___, ___ 1 ___ 1 __, ___ 1 ___ 1 __, __
1 __
I I HD I
I HD I
I I
I I
I HD I HD I
I HD I
I ITCI ITCI IHDI I
I ITCITCI ITCI 5
. 1 __
1 ___,_. __ 1 ___ 1 ___ 1 __
1 __
1 ___ 1 __
1 __
1 __
1 I
I I
I HD I
I I HD I
I HD I
I I
I I
I I
I ITCI I
li"CI ITCI I
I I
I 6
1 __
1 __
1 __ 1 __
1 __
1 __
1 __, __, __
1 __
1 __
I I
I HD I
I I
I HD I
I HD I
I I HD I
I HD I
I I
I ITCI I
I ITC!
ITCI I
ITCI ITCI I
7 1 __ 1 __
1 __ 1 __
1 __, __, __, __ 1 __, __
1 __, __
1 __
1 IHDI IHDI IHDI I
I I
IHDI I
IHDIHDI I
ITCI ITCI ITCI I
I I
ITCI I
ITCITCI I
8 l __ l __ l __ l_*_I_. __ I __ I __
._I __ I __ I __ I __ I __ I __ I ___. I __ I I
I I
I IHDI I
I IHDIHDI I
I I
IHDI I
I I
I ITCI I
I ITCITCI I
I I
ITC!
9 1 __
1 __
1 __
1 __
1 ___ 1 ___ 1 ___, __
1 __
, ___ 1 __
1 __
I I HD I
I I
I HD I
I I
I I HD I
I HD I
I I TC I
I I
I TC I
I I
I I TC I
I TC I
10 1 __
1 __,_. __, __
1 ___ 1 ___ 1 __
, ___ 1 __
1 __
I I
I IHDI I
IHDI IHDIHDI I
I I
I I
I ITCI I
ITCI ITCITCI I
I I
11 1 __,~1 ___ 1 ___ 1 __,_. __, ___ 1 __, __ 1 __
IHDI I
I IHDI I
I I
IHDIHDI I TC I
I I
I TC I
I I
lZ 1 __
1 __ 1 __
1 ___ 1 ___, ___, __
1 __
1 ___, __
1 I
I I
I I
I I
HD I
I I
I I
I I
I HD I
I TC I
I I
13
, __, ___ 1 ___ 1 ___ 1_. __, __
1 I HD I
I I
I HD I
I I
I TC I
I I
I TC I
I I.
14 1 ___ 1 ___ 1 ___, __
1 __
1 ___,
MD -
Movable Detector I
HD I
I I
I TC I
I I
15 TC -
Thermocouple I __ I __ I __ I 5
R p
SURRY UNIT 1 - CYCLE 9 CONTROL ROD LOCATIONS N
N L
K J
H G,
1acf FIGURE 1.3 E
D C
I A
Loop C I
Loop 8 Outlet I
I I
I Inlet 1_1_1_1
/
_1_1_1_1_1_1_1_1_
N-41 I
I I
I I N-43
_1_1_1_1_1_1_1_1_1_1_:
I I c I I* B I.
I I
I.B I
I c I I
_1_1_1_1_1_1_1_1_1_1_1_1_
I I
I ISBI ISPI ISPI ISBI I
I I
L C
I_I_I_I_I_I_I_I_I_I_I_I_I_I Loop B oop
- I A I
I B I
I D I I C I
I D I I B I I A I Out I et lnlet"-.._I __ I_I_I_I_I_I_I_I_I_I_I_I_I_ /
"I I
I SA I I SP I I SB I I SB I I SP I I SA I I
I 1_1_1_1_1_1_1_*_1_1_1_1_1_1_1_1_1 9ef' - I I D I I
I I c I I
I I c I I
I I D I I - 210° 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 I
I ISAI ISPI ISBI.
ISBI ISPI ISAI I
I 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 Absorber Hateria I Ag*ln*Cd Func:tlon Control Bank 0 Control Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA IAI IBI IDI ICI IDI IBI IAI 1_1_1_1_1_1_1_1_1_1_1_1_1_1 I
I I
ISBI ISPI ISPI ISBI I
I I
1_1_1_1_1_1_1_1_1_1_1_1_1_1 I
I c I I B I
I I
I B I
I c I I
1_1_1_1_1_1_1_1_1_1_1_1 I
I I
I I
N-44 I_I_I_I_I_I_I_I_I_I N-42 I
I A I I D I I A I I
r l
1_1_1_1_1_1_1 I
I I
I
\\
I_I_I_I Loop A loop A Outlet I
Inlet oo Number:of Clusters SP (Spare Rod Locations) 8 8
8 8
8 8
8 6
l 2
3 s
7 8
10 11 12 13 14 1S.
Section 2 BURNUP The burnup history for the Surry 1, Cycle 9 core is graphically depicted in Figure 2.1.
The Surry 1, Cycle 9 core achieved a burnup of 16,073 MWD/MTU.
As shown in Figure 2.2, the average load factor for Cycle 9 was 74.7% when referenced to rated thermal power (2441 MW(t)).
Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis.
The NEWTOTE 3 computer code is used to calculate these assemblywise burnups.
Figure 2. 3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 9 operation is given.
For comparison purposes, the design values are also given.
Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison.of measured and predicted assemblywise purnup accumulation at the end of Cycle 9 operation is also given.
As can be seen.from this figure, the accumulated assembly burnups were generally within +/-4% of the predicted values.
In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.28%.
The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies.
7
Batch definitions are given in Figure 1.1.
As seen in Figures 2.SA and 2.SB, the batch burnup sharing for Surry 1, Cycle 9 followed design predictions close~y with no batch deviating from prediction by more than 1.72%.
Symmetric burnup in conjunction with agreement between actu~l and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 9 core did deplete as designed.
8
18000 17000 16000 15000 14000 C
y 13000 C
L 12000 E
B 11000 u 10000 R
N 9000 u
p 8000 M
H 7000 D
I 6000 M
l 5000 u
4000 3000
.2000
. l 000 V
0 __..J I
0 0
l 1
J A
u u L
G 6
6 6
6 V
/
V
/
0 0
0 l
l l
5 0
N E
C 0
p T
V 6
6 6
6 6
6 SURRY UNIT 1 - CYCLE 9 CORE BURNUP HISTORY i,--
/
/
V V
V
~
0 0
0 0
0 0
0 0
l l
l 1
l 1
l 1
D J F
M A t1 J
J E A E A p A u u C N B R R y
N L
6 6
6 6
6 6
6 6
6 7
7 7
7 7
7 7
V
/
0 1
A u G
6 7
TIMElMONTHSl CYCLE 9 MAXIMUM DESIGN BURNUP 9
FIGURE 2.1 V
/
V V
V r V V
/
0 0
0 0
0 0
0 0
0 l
1 l
l l
l 1
1 l
s 0
N D J F
M A M E C 0
E A E A p A
p T
V C
N B R R y
6 6
6 6
6 6
B 8
6 7
7 7* 7 6
6 6
6 6
17000 MWD/MTU
~---~----
PERCENT 100 90 BO 70 60 50 40
- 3 El 20 10 0
J u L
8 6
LOAD FACTOR A u G
8 6
=
SURRY UNIT 1 - CYCLE 9 MONTHLY AVERAGE LOAD FACTORS s 0 N 0 J F M A M J J A E C 0 E A E A p A u u u p T V C N B R R y N L G 8 8 8 8 8 8 8 8 8 8 8 8 6 6 6 6 7 7 7 7 7 7 7 7
- MONTH THERMAL ENERGY GENERATION FIGURE 2. 2 s 0 N 0 J F 11 A E C 0 E A E A p p T V C N B R R 8 8 8 8 B B 8 B 7 7 7 7 B B B 8 IN MONTH!MMHTl
. AUTHORIZED POWER LEVEL !MMTl X HOURS IN MONTH
!EXCLUDES REFUELING OUTAGES) 10 C
y C L E
~
l 2
3 4
5 6
7 8
9 10 11 12 13 14 15 R
p FIGURE 2. 3 N
H SURRY UNIT 1 - CYCLE 9 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED L
( 1000 HWD/MTU)
K J
H
- G I 34.851 34.591 33.251 I 34,141 34.541 34.141.
F E
I 37.051 33.651 16.651 30.881 16.621 34,861 37,241 I 36.881 34.311 16.931 30.901 16.931 34,311 36,881 D
I 39.971 16.771 19,511 36.761 19.911 36.201 19,761 16.ael 39,621 I 39.511 16,561 19,671 36.611 20.871 36.611 19.671 16.561 39.511 C
I 39.701 29.851 19,991 37.361 20.951 43.561 20.2e1 37.481 20,241 29,851 39,431 I 39.461 29.361 20,361 37.351 21.211 43.971 21.211 37,351 20.361 29,361 39,461 8
I HEASURED I I PREDICTED I I 36.941 16.641 20.291 35.971 34.261 37.441 20,481 37.721 34,751 36,041 19,961 16,761 38,0ll I 37.321 16,541 20.391 35.981 34.311 37.441 21.421 37.441 34,311 35,981 20.391 16,541 37,321 I 34.661 19.501 37.531 34.641 36.871 20.681 37.351 20.861 36,981 34,421 37,041 19.391 34.181 I 34.151 19.651 37.321 34.371 36.771 20.741 37.171 20.741 36,771 34.371 37,321 19,651 34,151 I 34.891 16.621 36.561 20.861 36.681 20.431 37.131 34.301 37.351 20.941 37,331 20.591 35,971 16,201 35,121 I 34,581 16.921 36.671 21.191 37.361 20.101 37.lOI 34.501 37.101 20.101 37.361 21,191 36.671 16,921 34.581 I 34.521 30.271 20.051 43.931 20.811 37.191 34.781 31.751 34.741 37.321 21,431 43,291 19,961 30,381 31,231 I 32.8'1 30.591 20.851 43.911 21.391 37.141 34.721 31.641 34,721 37.141 21,391 43,911 20.asl 30,591 32,Bll I 34,a.* 1 16.341 36.101 20.741 37.531 20.331 36.321 34.481 37.361 20.441 37,471 20,921 36,541 16,491 33,751 I 34.581 16.921 36.671 21,191 37,361 20.101 37.101 34.501 37,101 20.101 37,361 21,191 36.671 16,921 34.581 R
I -33.901 18.831 37.161 34.471 36.561 20.301 36.801 20.581 36.691 33.981 37.371 19,721 34,161 I 34.151 19.651 37.321 34.371 36.771 20.741 37.171 20.741 36.771 34.371 37,321 19,651 34,151 I 37.821 16.651 20.351 36.151 33.971 37.051 20.781 36.971 34,191 36,271 20.491 16,861 37,361 I 37.321' 16.541 20.391 35.981 34.311 37.441 21,421 37.441 34.311 35,981 20,391 16,541 37.321 p
I 39.791 29.581 20.511 37.061 20.. 731 43.821 20.661 37.091 20.161 29.421 39.881 I 39.461 29.361 20.361 37.351 21.211 43.971 21.211 37.351 20.361 29,361 39,461 I 39.501 16.991 19.611 35.761 20.261 36.241 18.841 16,291 39.881 I 39.511 16,561 19.671 36.611 20.871 36.611 19,671 16.561 39,511 I 37.431 34.821 17.301 30.471 16.331 34.551 36.451 I 36.a&I 34.311 16.931 30.901 16.931 34.311 36.881 I 34.411 34.631 34.431 I 34.141 34.541 34.141 N
H L
K J
H G
F E
D C
11 8
A 1
2 3
4 5
6 7
8 9
10 11 12 13 14 15
1-2 3
4 5
6 7
a 9
10 11 lZ 13 14 15 BATCH
- BA BB 9A 9B
- 9B lOA llA llB R
FIGURE 2.4 p
N SURRY UNIT 1 - CYCLE 9 ASSEMBLYWI$E ACCUMULArED BURNUP COMPARISON OF MEASURED AND PREDICTED
( 1000 MWD/MTU)
L K
J H
6 F
E 0
C 8
A I 34.851 34.591 33.ZSI I 2.091 0.141 -2.591 I
HEASUREO I
I IVP % DIFF I I 37.051 33.651 16.651 30.881 16.621 34.861 37.241 I o.461 -1.921 -1.611 -0.091 -1.801 1.591 o.991 I 39_.971 U.771 19.511 36.761 19.911 36.201 19.761 16.881 39.621 I
1.171 1.281 -O.HI 0.411 -4.571 -1.131 0.441 1.951
- 0.291 I 39.701 29.851 19.991 37.361 20.95i 43.561 20.zel 37.481 20.241 29.851 39.431 I
o.621 1.661 -1.821 0.021 -1.231 -o.951 -4.351 o.361 -o.591 1.691 -o.oal I 36.941 16.641 20.291 35.971 34.261 37.441 20.481 37.721 34.751 36.041 19.961 16.761 38.0ll I -1.031 0.651 -o.sol -0.031 -0.131 ~O.Oll -4.381 0.751 1.301 0.181 -2.151 1.331 1.841 I 34.661 19.SOI 37.531 34.641 36.871 20.681 37.351 20.1161 36.981 34.421 37.041 19.391 34.181 I
I.SOI -0.781 0.571 o.aol 0.271 -0.311 0.471 0.571 0.561 0.151 -0.741 -1.341 0.121 l
2 3
4 5
6 I 34.891 16.621 36.561 20.861 36.681 20.431 37.131 34.301 37.351 20.941 37.331 2D.59I 35.971 16.201 35.121 7
I o.891 -1.781 -o.3ol -1.591 -1.811 -1.311 0.011 -o.sel o.661 1.191 -0.061 -2.831 -1.,11 -4.251 1.551 I 34.521 30.271 20.051 43.931 20.811 37.191 34.781 31.751 34.741 37.321 21.431 43.291 19.961 30.381 31.231 8
I 5.221 -1.041 -3.871 0,041 -2,711 0.111 0,201 0.361 0.071 0.481 0.171 -1.411 -4.271 -0.661 -4.811 I 34.1141 16.341 36,101 20.741 37.531 20.331 36.321 34.481 37.361 20.441 37.471 20.921 36.541 16.491 33.751 9
I o.741 -3.421 -1.561 -2.151 0.461 -1.771 -2.111 -0.061 o.681 -1.241 o.311 -1.301 -o.351 -2.541 -2.411 I 33.901 18,831 37,161 34.471 36.561 20.301 36.aol 20.sel 36.691 33.981 37.371 19.721 34.161 I -o.731 -4.191 -0.411 0.291 -o.571 -2.111 -1.001 -o.aol -0.221 -1.141 o.161 o.341 0.051 I 37.821 16.651 20.351 36.151 33.971 37.051 20.781 36.971 34.191 36.271 20.491 16.861 37.361 I
1.341 o.681 -0.221 o.471 -0.991 -1.041.-2.981 -1.251 -0.341 o.811 o.481 1.991 0.111 I 39.791 29.sal 20.511 37.061 20.731 43.821 20.661 37.091 20.161 29.421 39.881 I o.HI 0.111 0.111 -0.111 -2.251 -o.351 -2.sal -o.691 -1.001 0.211 1.oa1 10 11 12 I 39.501 16.991 19.611 35.761 20.261 36.241 18.841 16.291 39.881 I -0.031 2.591 -0.311 -2.311 -2.921 -1.ool -4.201 -1.601 0.921 13 I AAITHHETIC AVG I i 37.431 34.821 17.301 30.471 16.331 34,551 36.451 IPCT DIFF ~ -0.461 14 I
1.501 1.491 2.201 -1.421 -3.SOI o.681 -1.151 I STANOARD DEV I I
= 1.14 I
I 34.411 34.631 34.431 I o.791 o.261 o.871 I AVG ABS PCT I I DIFF = l. 24 I
- 15 R
p N
CYCLE 6 S2/15921 10966 K
J BATCH SHARING (HWD/HTU)
CYCLE 7 CYCLE 8 S2/15125 7161 8317 12708 12535 14967 13293 14273 13819 17004 CORE AVERAGE= 16073 12 H
6 F
CYCLE 9 5648 5799 11285 8022 7720 18785 19560 18924 E
D TOTALS 36694 32243 36528 36282 35812 35789 19560 18924 C
8 BURNUP TILT NW= +0.21 NE= +0.05 SW= -0.02 SE= -0.24
40000 36000 32000 s u B 26000 B
A T 24000 C
H B u 20000 R
N u p
M 16000 w
D I
M T 12000 u
6000 4000 0
~~
~
SUB-BATCH SYMBOL I-&--.,...-
-~
..-t::r" ---
/
/..
- f.'
~
-?
I SURRY UNIT 1 - CYCLE 9 SUB-BATCH BURNUP SHARING 52/8A DIAMOND S2/9B SQUARE FIGURE 2.5A BB l \\ B TRlANGLE STA~
~ _.-Id,r- ---
~
r--
r i---"',..
1--c"J-~[V J~~
__:_ ~ -
~,J
~
i.-a-*-
"~
~ aer-
- ~
_.er
- ~
~
~
...-z::r -
~
---1:l" --
/
,,,/
/
/~
.,.,/'5~
/~
A'
/
V
/
A L"
/"'
.... f*-
v...
/*'"
~
0 2000 4000. 6000 6000 l 0000 12000 l 4000 16000 18000 CYCLE BURNUP MWD/MTU 13
40000 36000 32000 s u B 28000 B
A T 24000 C
H B u 20000 R
N u p
M 16000 w
D I
M 12000 T u 8000 4000 0
~
~
I.A' SURRY UNIT 1 - CYCLE 9 SUB-BATCH BURNUP SHARING SUB-BATCH :
9B SYMBOL DIAMOND 9A SQUARE c.--
._.fr -- ~
~
I::>""' i-----
I~ --
~
b--I"'"
a-......---
/
K'
_e---
¥.,
o-"""i::J V
,,K
/
/
K
/
/ ""
,,K
~
FIGURE 2.5B IOA llA TRIANGLE STAR J;; ~
~ --~
____.,j ~ _,,A
~J
....... ~
_,,/
v"'
/
/
/
/
/
/
/'
,....i-
~
~
_,,£'
/
/ f'*
v-
/"'
/
/~
~
/
I/
I 0
2000 4000 6000 8000 10000 12000 14000 16000 18000 CYCLE BURNUP MWD/MTU 14
Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW 4 computer code was use~ to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level.
The normalized critical boron concentration versus burnup curve for the Surry~. Cycle 9 core is shown in Figure 3.1. It can be seen that the measured data typically compare to within 36 ppm of the design prediction. This corresponds to +/-0. 32%
AK/K which is within the +/-1% AK/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications.
In cone 1 us ion, the trend indicated by the critical boron concentration verifies that the Cycle 9 core depleted as expected without any reactivity anomalies.
15
1600 1400 C
R I
T 1200 I C A
L B 1000 0
R 0
N C 800 0
N C
E N
T 600 R
A T
I 0
N 400 p
p M
200 0
\\.
~
ilr'
~
I SURRY UNIT 1 - CYCLE 9 CRITICAL BORON CONCENTRATION VS. BURNUP X
MEASURED PREDICTED
- ~,,
~~
- ~
~
~ 0)..
- ~
'.I) ~
- ~
.,~
?IS ~
~
~
~
.J5i ~
FIGURE 3.1
~
~
~
0 2000 4000 6000 6000 l 0000 12000 14000 16000 18000 CYCLE BURNUP IMWD/MTUI 16
Section 4 POWER DISTRIBUTION Analysis of core* power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause an uneven burnup distribution. Three-dimensional core power distribution is determined from movable detector flux map measurements using the INCORE 5 computer program.
A summary of all full core flux maps taken since the completi,n of startup physics testing for Surry 1, Cycle 9 is given in Table 4.1.
Power distribution maps were generally taken at monthly intervals. with additional maps taken as needed.
Radial (X-Y) core power di~tribution for a representative series of incore flux maps are given in Figures 4.1, 4.2, and 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life.
Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup.
Figure 4.3 shows a map that was taken at the end of Cycle 9 life.
The measured relative assembly powers were generally within 4. 8% and the average percent difference was equal to 2.1%.
In addition, as indicated by the INCORE tilt factors, the power distribution was essentially symmetric for all cases.
17
An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.
Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits are not violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.
The Cycle 9 Technical Specifications limit on the axially dependent heat flux hot channel factor, Fq(Z), is 2.32 x K(Z), where K(Z) is the hot channel" factor normalized operating envelope.
Figure 4.4 is a plot of the K(Z) curve associated with the 2.32 Fq(Z) limit.
During Cycle 9 operation, this limit was increased from 2.18 x K(Z) to the current 2.32 x K(Z) limit.
The axially dependent heat flux hot channel factors, Fq(Z), for a representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.
Throughout Cycle 9, the measured values of Fq(Z) were within the Technical Specifications limit.
A summary of the*
maximum values of axially-dependent heat flux hot channel factors measured during Cycle 9 is given in Figure 4.8.
Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 9.
As can be seen from the figure, there was an approximate 18% margin to the 2.18 limit at the beginning of the cycle, with the margin generally increasing throughout cycle operation.
Near the end of Cycle 9 there was roughly a 24% margin to the 2.32 limit.
The value of the enthalpy rise hot channel factor, F-delta H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.
The Technical Specifications limit for this parameter is set such that the 18
departure from nucleate boiling ratio (DNBR) limit will not be violated.
Additionally; the F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
For Cycle 9,
the enthalpy rise hot channel factor limit was 1.55(1+0.3(1-P)).
A summary of the maximum values for the enthalpy rise hot channel factor me.asured during Cycle 9 is given in Figure 4.10.
As can be seen from this figure, the smallest margin to the limit was in the beginning of the cycle and was equal to approximately 5%.
The Technical Specifications require that target delta flux* values be determined periodically. The target delta flux is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon.
Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point.
Since the target delta flux varies as a function of burnup, the target value is updated monthly.
Operational delta flux limits are then established about this target value.
By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.
The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -0.5% at the beginning of Cycle 9.
Delta flux values increased briefly to +1.5% and Pt-Pb
- Delta Flux=
X 100 2441 where Pt= power in top of core (MW(t))
Pb= power in bottom of core (MW(t))
19
then decreased steadily to -3.0% near the middle of the cycle.
At the end of Cycle 9, during coastdown, delta flux values decreased again to
-5.5%.
This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14.
In Map Sl-9-06 (Figure 4.12), taken at 240 MWD/MTU, the axial power distribution had a shape peaked toward the middle of the core with a peaking factor of 1. 20.
In Map Sl-9-29 (Figure 4.13), taken at approximately 8,640 MWD/MTU, the axial power distribution peaked slightly toward the bottom of the core with -an axial peaking factor of 1.14.
Finally, in Map Sl-9-41 (Figure 4.14), taken at roughly 15,018 MWD/MTU, the axial peaking factor was 1.18, with axial power distribution peaked more towards *the bottom.
The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.
In conclusion, the Surry 1, Cycle 9 core performed satisfactorily with power distribution analyses verifying that design predict~ons were accurate and that the values of the FQ(Z) and F-delta H hot channel factors were within the limits of the Technical Specifications.
20
N TABLE 4.1 SURRY UNIT l - CYCLE 9
SUMMARY
OF INCOR~ FLUX MAPS FOR ROUTINE OPERATION I
I I
I l
2 I
I I
I BURNI I
I F-Q ITI HOT F-DHINI HOT CORE FIZI I 4
I I
I UP I IBANK I CHANNEL FACTOR CHNL. FACTOR MAX*
I 3 I QPTR AXIAL I NO. I MAP I DATE MHD/IPHRI D I IFIXVII oF*F I OF I NO.* I HTU II% I I STEPS I I
I AXIAL I I
I I
I AXIAL I I MAX I SET ITHIMI.
I
.1 I
I I
IASSYIPINI POINTIF-QITJIASSYIPINIF-DHINJIPOINTI FIZII I MAX ILOCI 1%1 IBLESI 1
1 __
1 1
I __ I_I __ I_I_I __ I __ I_I_I I __ I_** _I __ I __ I_I __ I_I I
I I
I I
I I
I I
I I
I I
I I
I I
I I 6 I 7-29-861 24011001 220 I Mlll HII 33 ll.823 I L041 IHI 1.476 I 33 ll.20411.40511.0061 SHI -0.441 39 I 110 1511 9-4-861 152711001 203 I Mlll HII 33 ll.792 I L041 IHI 1.468 I 34 ll.. 188ll.402ll.0061 NHI -0.691 39 I 119 161110- 3-861 223411001 205 I Ll3I LMI 34 ll.787 I L041 IHI 1.465 I 33 11.11,ll.40311.0051 NHI -0.381 39 I 120 ll0-27-861 306011001 208 I E081 BMI 24 ll.753 I L041 IHI 1.470 I 33 ll.158ll.402ll.0071 NHI -0.101 38 I 121 lll-26-861 401211001 217 I E081 BMI 23 ll.733 I L041 IHI 1.463 I 23 ll.138ll.404ll.0081 NHI 1.261 38 I I __ I I __ I_I __ I_I_I __ I_. _l_l_l I __ I __ I __ I __ I_I_._I_I NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS IE.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY!,
FOLLOHED BY THE PIN LOCATION I DENOTED BY THE "Y" COORDINATE HITH THE SEVENTEEN'ROHS OF FUEL RODS LETTERED A THROUGH RAND THE "X" COORDINATE DESIGNATED IN A SIMILAR MANNER I.
IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.
- 1. F-QITI INCLUDES A TOTAL UNCERTAINTY OF 1.08
- 2. F-DHINJ INCLUDES A MEASUREMENT UNCERTAINTY OF L04
- - *~*
- 3. FIXYI IS EVALUATED AT THE MIDPLANE OF THE CORE AND INCLUDES A TOTAL UNCERTAINTY OF 1.05 X 1.03.
- 4. QPTR - QUADRANT POHER TILT RATIO.
- 5. HAPS 7, 8, AND 9 HERE QUARTER-CORE FLUX HAPS TAKEN FOR INCORE/EXCORE DETECTOR CALIBRATION II/E CALIBRATION).
- 6. HAPS 11 AND 12 HERE QUARTER-CORE FLUX MAPS TAKEN FOR. I/ E CALIBRATION.
MAP. 13 HAS A DROPPED ROD MAP TO DETERMINE
.HOT CHANNEL FACTORS AND VERIFY QPTR.
MAPS 14, 15, 16, 17, AND 18 HERE QUARTER-CORE FLUX HAPS TAKEN FOR I/E CALIBRATION.
TABLE 4.1 (CONT. l I
BURNI I
I F-Q ITJ HOT F-DHINl HOT I CORE FIZl I
4 I
I I
UP I IBANK I CHANNEL FACTOR CHNL.FACTOR I
MAX I
31 QPTR AXIALI NO. I MAP I DATE MHD/IPHRI
- o I
I IFIXYfl OFF I OF I NO. I MTU I 1%) I STEPS I I AXIALI
- IAXIALI I MAX I I
SET ITHIMI I
I I
I I
IASSYIPINI POINTIF-QITllASSYIPINIF-DHINJIPOINTI FIZJI I MAX ILOCI
(%) IBLESI I __ I 1 __ 1_1 __ 1_1_1 __ 1_. __ 1_1_1 1 __ 1_._1_. _1 __ 1_1 __ 1_1 122 I 3-2-871 46261100 228 E081 BMI. 43
- 11. 710 E081 BMI 1.460 34 ll.12711.40611.0041 NHI 0.231 45 I 24 171 I 3-12-871 50281100 228 J041 GHI 45
- 11. 709 H051 MBI 1.463 34 ll.12lll.403ll.0061 NHI 0.311 45 127 (8)1 4-12-871 61091100 227 J041 GHI 46
- 11. 753 H051 MBI 1.463 45 ll.14411.40711.0051 NHI -2.181 45 128 I 6-*2-871 72951100 222 E081 BMI 45
- 11. 747 E081 BMI 1.472 45 ll.14011.42011,0031 NEI -2,531 44 129 I 7-27-871 86401100 228 J041 HGI 47
- 11. 749 E081 BMI 1.467 46 ll,139ll.409ll,0051 NHI -2.931 44 130 I 8-3-871 86661100 228 J041 HGI 46
- 11. 736 E081 BMI 1.465 46 ll,130ll,406ll,0061 NHI -2.301 45 133 (9)1 8-28-871 94531100 227 J041 HGI 47
- 11. 742 H051 LCI 1.467 47 ll,139ll,413ll,D061 NHI -3.171 45 134 ll0-12-871105231100 223 J041.HGI 48
- 11. 731 H051 LCI 1.458 52 ll,13611,40911,004~ NHI -3.101 44 l38(10Jll2-17-87ll2466ll00 227 H051 LCI 53
- 11. 736 H051 LCI 1.445 53 l1.15lll.393ll.004l NHI -3.191 44 140 I 2-19-881146061100 217 H051 KOi 53
- 11. 739 F031 EDI 1.436 53 ll.163ll.390ll.0041. NEI -4.031 44 N
141 I 3-2-88ll5Dl8ll00 203 N081 LIi 53 11.763 E041 OJI 1.449 53 ll.17711.38511.0061 NEI -5.361 44 N
144(11)1 3-17-881154821 93 213 N081 LIi 53 11.669 "J041 IOI 1.429 53 ll.11411.38511.0031 NHI -1.041 42 145 I 3-23-881156661 ~91 222 H051 KOi 12 11.711 J041 IOI 1.432 53 ll.14511.38511.0051 NHI -l.991 41 I __ I I __ I_I ____ I_I __ I __
- ___ I_I
__ 1 __ 1 __ 1 __ 1_1 __ 1_
- 7. MAP 23 HAS A QUARTER-CORE FLUX MAP TAKEN FOR I/E CALIBATION.
- 8. MAPS 25 AND 26 HERE FULL-CORE MAPS FOR I/E CALIBRATION.
DELTA FLUX HAS NOT AT EQUILIBRIUM FOR THESE MAPS.
- 9. MAPS 31 AND 32 HERE FULL CORE MAPS FOR I/E CALIBRATION.
DELTA FLUX HAS NOT AT EQUILIBRIUM FOR THESE MAPS.
- 10. MAPS 36 AND 37 HERE QUARTER-CORE FLUX MAPS TAKEN'FOR I/E GALIBRATION.
- 11. MAPS 42 AND 43 HERE QUARTER-CORE*FLUX MAPS TAKEN FOR I/E CALIBRATION.
R p
SURRY UNIT 1 - CYCLE 9 ASSEMBLYWISE POWER DISTRIBUTION Sl-09-06 N
PREDICTED MEASURED M
K J
H G
D.31 0.37 0.31 FIGURE 4.1 D
C B
- PCT DIFFERENCE.
. 0.30. D.36. 0.30,
. -Z.6, -2,6, -1,5.
PREDICTED MEASURED
.PCT DIFFERENCE
- 0.33 0.60 1.08 0.98 1.08 0.60 0.33
, 0.34. 0.59. 1.05
- 0.95. 1.06. 0.60. 0.33
- 3.6 * -o.5. -Z,4. -3.0. -z.o.
0.3.
0.3.
0.38 I.DI l.ZO l.Zl 1.24 l.Zl 1.zo 1.01 D.38
. 0.39. 1.05. 1.19. 1.19, 1.19. 1.17. l.ZD. I.OZ. 0.37.
3.6.
3.6. -0.5. -1.Z. -4.3. -Z.9. 0.3.
0.3, -1.5.
0.38 o.ea l.Z4 l.Z3 l.Z5 1.06 1.25 1.23 1.24 0.88 0.38
. 0.38. 0.90. I.ZS. 1.24. l.ZZ
- l.OZ
- 1.111
- I.ZS. l.Z5. 0.87
- 0.311
- Z,l.
Z.6.
Z.9. 1,0. -Z.3. -3.Z. -4.9.
1.6. 0.4. -0.3. 0.9.
0.3Z 1.01. I.ZS l.Z4 l.ZZ l.Z6 1.23 l.Z6 1.zz 1.24 1.25 1.01 0.32
. 0.3Z. l.DZ. 1.27. 1.27. l.Z4. l.Z9. 1,17. 1.27. 1.23
- 1.26. l,Z3, ~.oz, 0.33
- 1.1,
1,1
- 1.6.
Z.3.
Z.O.
Z.Z. -4.9. 0.7. l.Z.
1.1 * -1.1. 0.9, 3.3.
0.59 1.19 l.Z3 l.ZZ l.~7 1.19 l,Zl 1.19 l.Z7 1.22 l,Z3 1.19 0.59
. 0.59. 1.19. l.Z4. l.Z3. 1.29. l.ZZ. 1.24. 1.21. 1.ze. l.Z2. l,Z3. 1.19. 0.59.
. -o.o. -o.o.
o.9.
1.3. 1.e. z.z. 2.s. 1.e. 1.0. o.s. -o.3. -o.s. -o.o.
A 0.31 1.oe 1.21 1,2s 1.26 1.19 1.26 1.26 1.26 1.19 1.26 1.2s 1.21 1.011 o.31 3
4 5
6
- . 0.30. 1.os. 1.19. 1.23. 1.26. 1.20. 1.29. 1.29. 1.30. 1.21. 1.2e. 1.zo. 1.16. 1.04. 0.29.
7
. -1.2. -Z.4. -1.6. -1.2.
0.3.
1.1.
2.2.
2.5.
2.7
- 2.2. 1.9. -3.8, -3.9. -3.6. -3.9.
0.37*
0,98 1.24 1.05 1.23 1.21 1.25 1.21 1.25 1.21 1.23 1,05 1.24 0.98 0.37
. 0.36. 0.95. 1.19. 1.04. 1.23. 1.21. 1.28, 1.24. 1.28. 1.24. 1.25. 1.01. 1.19. 0.94. 0.36
- II
. -4.3. -3.l. -3.8. -1.5, -0.3.
0, 7.
Z.2.
Z.6.
Z,4.
- 2. 7.
Z.O. -3.8. -3.9. -4.2. -3.3
- 0.31 1.oe 1.21 1.2s 1.26 1.19 1.26 1.26 1.26 1.19 1.26 1.25 1.21 1.011 o.31
. 0.30. 1.04. 1.11. 1.z3
- 1.21. 1.19. 1.z1
- 1.ze. 1.30 : 1.20. 1.21
- 1.z4. 1.11. 1.04. o.3o
- 9
. -z.z, -3.3. -3.3. -1.Z, 0.9. 0.6. 0.8, 2.0.
Z.5.
1.0.
l.3. -0.8. -Z.7. -3.4. -Z.l
- 0.59 1.19 l.Z3 l.ZZ 1.27 1.19 l.Zl 1.19 1.27 1.22 l.Z3 1.19 0.59
- 0.58, 1.17. 1.23. 1,24. I.ZS. l.ZO. 1.22
- 1.ZO. 1.29. 1.23
- 1,25. l.Zl. 0.511 *
. -Z.3. -i.3.
0.1.
2.0. 1.5. 0.7. 0.7. l.Z.
1.6.
1.3.
1.3, 1.2. -1.11.
0.3Z 1.01 l.Z5 1.24 l.ZZ 1.26 1.23 1.26 l.ZZ 1.24 1.25 1.01 0.32
. o.32. 1.02. 1.21. 1.ze. 1.23 ; 1.26. 1.23. 1.26. 1.24. 1.21. 1.21. 1.03
- o.33.
1.3.
1.3.
Z.O.
Z.9.
1.3, -0.Z. -0.5. 0.5.
1.7. 1.8. 1.7. 1.8. 2.3.
0.38 0.88 1.24 1.23 l.Z5 1.06 l.Z5 1.23 1.24 0.88 0.38
, D.40. 0.91. 1.28. 1.24. 1.24. 1.05. 1.24, 1.23. 1,25. 0,89. 0.39.
4.e.
4.1.
2.9.
0.1. -o.e. -0.1. -0.9. -o.3. 0.1. 1.1. 2.z.
0.38 1.01 1.20 1.21 l.Z4 l,Zl 1.20 1.01 0.38
- 0.39. 1.05. l.Zl. 1,20. 1.21. 1.16. 1.15. 1.00. 0.38.
4.3.
3.7
- 1.5. -0.8. -2.6, -4.0. -3.7. -1.5.
1.9.
0.33 0.60 1.08 0.98 1.08 0.60. 0.33
. 0.34. 0,6Z. l.lZ. 0.94, 1.03, 0.57, 0.3Z *
, 3.7, 3.7, 3.7. -4.4, -4.3, -4.0, -3.6.
STANDARD DEVIATION
=l. 279 0.31 0.37 0.31 AVERAGE MAP NO: Sl-9-06 CONTROL ROD POSITIONS:
D BANK AT 220 STEPS
, 0.3Z. 0.36, 0,29, 3,7. -4.4, -4.4,
SUMMARY
DATE:
7/29/86 F-Q(T) = 1.823 F-DH(N) = 1.476 F(Z)
= 1. 204 F(XY)
1.405 BURNUP
240 MWD/MTU 23
, PCT DIFFERENCE.
= 2.0 POWER:
100%
.QPTR:
NW 1.0025 I NE 0.9965 SW 1. 0064 I SE 0.9946 A.O = -0.435(%)
10 11 lZ 13 14 15
R FIGURE 4.2 p
N H
SURRY UNIT 1 - CYCLE 9 ASSEMBLYWISE POWER DISTRIBUTION Sl-09-29 L
K J
H G.
F E
D C
B PREDICTED HEASURED
.PCT DIFFERENCE,
. 0.32, 0.39, 0.32,
- 0.33. 0.37, 0,33.
2.3, -3.7, 2.3,
PREDICTED HEASURED
,PCT DIFFERENCE.
, 0.36, 0.60, 1.03, 0.94, 1.03, 0.60, 0.36,
- 0.37, 0.62, 1.03, 0,92, 1.03, 0.62, 0,37, 3.8,
2.3, -0.l * -1.3, -o.o.
2.3,
2.6,
, 0.40, 1.02. 1.22, 1.15. 1.30, 1,15, 1.22, 1.02. 0.40.
- o.42. 1.03. 1.z2. 1.16
- 1.27
- 1.13
- 1.25
- 1.05. o.41.
3.1,
0.6,
0.3,
1.4, -2.8, -1.3,
2.4,
2.7,
2,9,
0.40 0.87 1.26, 1.17 1,33 ** 1,08, 1.33 1,17 1,26
- 0.87 0.40
, 0.41, 0.88, 1,24, 1.17, 1,33, 1.07, 1.28, 1.18, 1.28. 0.88, 0.41.
2.0
- 1.0, -1.4.
0.2. -0.1, -1.3 * -3.7
- 1.3,
1.2
- 1.2.
2.3
- 0.35 1.02 1.26 1.15 1.17, 1.22 1,36 1.22 1,17. 1.15 1.26 1.02 0.35
, 0.35, 1.03, 1.27, 1.17, 1.17, 1.23, l.3i, 1.24, 1.18 ** 1,17, 1,26, i.04,.0.36.
0.8,. 0.8,
0.6,
1.6,
0.5,
0.5
- 73,7,
1.3,
1.3,
1,0, -0.4,
2.1,
4,B,
0.60, 1.22 1.17 1.17, 1.21. 1,31*. 1.19. 1,31, 1.21 1.17. 1.17 1.22 0.60
, 0.61. 1.23, 1.18, 1.18, 1.22. 1.32
- 1.20. 1.33
- 1.22, 1.17. 1.16, 1.22, 0.61,
0.7. 0.7. 1.1. 1.0. 1.2. 0.5. 0.5. 0.9, 1.3. 0.4.-0.5. o.o. 1.2.
A l
2 3
4 5
6
- 0.32, 1.03, 1,15, 1.33 '* 1.22. 1.31, 1.19. 1,16, 1.19. 1,31, 1.22. 1,33, 1.15. 1.03. 0.32.
, 0.33. 1.04. 1.15. 1.32. 1.21 *. 1.31. 1.20. 1.17. 1.20
- 1.33, 1.23
- 1.31. 1.12. 1.01, 0.31,
7 3.1,
0.6. 0.2. -0.7. -1.0. -0.3. 0.5. 0.5. 0.8. 1.6, 0.5. -1.7. -2.1. -2.2, -1.5, 0.39 0.94. 1.30. 1.08 1.35. 1,19. 1.16 1.14. 1.16. 1,19. 1.35. 1.08. 1.30 0.94 0.39
. 0.40, 0.94, 1.28. 1.07, 1.32, 1.18.* 1.17, 1.15, 1.17, l.Zl, 1.36, 1.05, 1.26, 0.93. 0.39.
11 3.1.
0.6. -1.6. -1.2, -2.3 * -0.9.
0.5,
0.6
- 0.9
- 2.0.
0.4. -2.6 * -2.9 * -0.7 * -0.3.
0,32 1.03, 1.15 1.33 1.22, 1.31. 1.19, 1,16. 1,19. 1.31, 1.22. 1.33, 1.15. 1,03. 0.32,
, 0.33, 1.03, 1.12. 1.31, 1.23, 1.30, 1.17, 1,16. 1.20, 1.30, 1.23. 1,32. 1.14. 1.04. 0.32, 3.1, -0.5, -2.3, -1.4,
0.2, -0.9, -1.5, -0.1. o. 7, -0.6
- 0.5 * -0.6. -0.4.
0.2.
1.0,
0.60 1.22 1.17 1,17. 1.21. 1.31 1.19. 1.31
- 1,21
- 1.11*, 1.17. 1.22, 0,60,
, 0.5'1. 1.19, 1.16, 1.18. 1.21, 1.29, 1.18, 1.31. 1.21-. 1.18, 1.18, 1.24, 0,62,
, -2.1,
-2.6. -0.5,
1.2, -o.o, -1.6 * -1.3 * -0.1
- 0.5,
0.9,
1.3.
1.8,
2,2.
. 0.35, 1.02, 1.26, 1,15, 1.17, 1.22, 1.36,.1.22. 1.17, 1.15. 1.26, 1.02. 0.35,
, 0.35, l,03, 1.28, 1,17, 1.16, 1.20, 1.33. 1.22
- 1.19. 1.17, 1.29. 1,05, 0.36.
l.l,
l.l,
1,3,
l.6. -0.1. -1.7. -2,2 * -0.3
- 1.7,
1.4 ** 1.9.
2.5
- 2.9.
. 0.40. 0.87, 1.26, 1.17
- 1.33. 1.08, 1.33, 1.17. 1.26, 0.87, 0.40,
, 0,42, 0.91, 1.28. 1.16, 1.31, 1.06. 1,32
- 1.17. 1.27, 0.89. 0.42,
4.8,
3.6, 1.6, -0.l. -1.4, -1.8. -1.2 * -0.l.
0.7. 2.0
- 3,6,
0.40 1.02, 1.22, 1.15, 1.30, 1.15
- 1.22. 1.02, 0.40.
, 0,42, 1,06, 1,23, 1.13. 1,28, 1.12. 1.18, 1,01
- 0.41.
4.1,
3,4, 1.0, -1.3. -1.4. -2,3 * -2,B. -1.1
- 2.6.
0.36 0.60 1.03. 0.94, 1.03, 0.60, 0,36.
, 0,37, 0,63, 1,07, 0,94. 1.02, D.59, 0.35.
, 3.4, 3.5, 3.7, 0.5. *-1,7. -2,3, -3.0.
STANDARD DEVIATION
=l.087 0.32 0.39 0.32
, 0,33, 0.39, 0.31,
3, 7,
1.6, -1.6,
AVERAGE
.PCT DIFFERENCE,
= 1.5
SUMMARY
MAP NO: Sl-9-29 DATE:
7/27/87 POWER:
100%
CONTROL ROD POSITIONS:
F-Q(T) = 1. 749 QPTR:
D BANK AT 228 STEPS F-DH(N) = 1.467 NW 1.0050 I NE 0.9984 F(Z)
= 1.139 SW 0.9984 I SE 0.9983 F(XY)
= 1.409 BURNUP = 8640 MWD/MTU A.O = -2.925(%)
24 9
10 11 12 13 14 15
R p
N PREDICTED MEASURED
- PCT DIFFERENCE, M
SURRY UNIT 1 - CYCLE 9 ASSEMBLYWISE POWER DISTRIBUTION Sl-09-41 L
K J
H G
- 0.35
- 0.42. 0.35.
. 0.36. 0.43. 0.36
- 2.0,
1.9,
2.4,
F E
- o: 40 *:
- o: 64 *: *;: oj *:
- o: 92 *: *;: 03 *:
- o: 64 *:
- o: 40 *:
- 0.41. 0.66. 1.04
- 0.92, 1.04. 0.66, 0.41
- 3.6
- 2.5.
1.0.
0.4.
1.1
- 2.9,
3.3.
D FIGURE 4.3 C
B PREDICTED MEASURED
, PCT DI F FERENCE.
- o:4;*:*;:06*:*;:24*:*;:;3*:*;:3;*:*;:;3*:*;:24*:*;:06*:*o:4;*:
A 2
- 0.46
- 1,07
- 1.25
- 1.15. 1.28
- 1.12
- 1.27. 1.09
- 0.46,
3 3.1.
0,9.
0.8
- 1.8. -2.0. -0.5
- 3.0
- 3.4
- 3.7 *
- o:4;*:*o:9;*:*;:2i*:*;:;4*:*;:3i*:*;:oi*:*;:33*: *;:;4*:*;:2i*:*o:9;*:*o:4;*:
- 0.46. 0.92. 1.27. 1.15. 1.34. 1.07. 1.29. 1.16. 1.30. 0.92. 0.46.
4 2.5.
1.3 * -0.8.
0.6,, 0.4,* -0.7 * -2.8.
1.7,
1.6
- 1.6
- 2.9.
- o:39*::;:06*:*;:2i*:*;:;3*:*;:;3*:*;:;i*:*;:3;*:*;:;i*:*;:;3*:*;:;3*:*;:2i*:*;:06*:*o:ii':
, 0.39. 1.07. 1.29
- 1.15
- 1.14. 1.17
- 1.31
- 1.20
- 1.15. 1.13. 1.27. 1.08
- 0.41,
5
- 1. 1.
- 1. 7.
- 1. o
- 1. 6.
- o. 8 * -o. 7 * -2. 8.
1. 5 *
- 1. 4 *
- o. 4 * -o*. 4 *
- 2. 5.
- 5. 4.
, 0. 64, 1. 24, 1, 14. 1, 1 3, 1, 1 3, 1, 3 1, 1. 1 5, 1, 3 1. 1, 1 3, 1. 1 3, 1. 14, 1. 24, 0. 64.
- 0. 65. 1. 26. 1. 16. 1. 15. 1. 14
- 1. 30. 1. 15. 1. 32
- 1. 14
- 1
- 14. 1. 1 3. 1. 24. 0. 65.
6 1.6
- 1.6.
1.5.
1.0. 0.8 * -0.7 * -0.4.
0.6
- 0.5
- 0.1. -1.0
- 0.6
- 2.2.
- . o: 35.:' i: 03.:. i: i 3.:. i: 33. :. i: ii. :. i: 3 i.:. i: ii/:. i: ii. :. i: i 4. :. i: 3 i. :. i: i a. :. i: 33.:. i: ii. :. i: 03. :. o: 35. :
, 0, 36, 1. 04. 1. 14, 1, 32, 1, 16, 1. 29, 1. 13, 1. 11, 1. 14, 1. 32, 1. 18
- 1. 31, 1. 11. 1. 02, 0. 35.
7 3.8
- 1.2
- 1.0. -o.6. -1.6. -1.2 * -0.1. -o.4.
0.2
- o.8
- 0.1 * -1.8 * -1,5 * -1.0. -0.2.
, 0.42, 0.92, 1.31, 1.08, 1.35, 1.15, 1.11. 1.11, 1.11. 1.15. 1.35, 1.08, 1.31, 0.92, 0.42.
, 0, 44, 0, 93, 1. 29, 1. 06, 1. 3 1, 1. 1 3. 1. 1 1, 1. 10, 1, 11. 1. 16, 1, 34. 1. 05, 1. 27, 0. 92, 0, 43.
3.5,
1.0 * ~1.3 * -1.4. -3.3 * -1.8. -0.7. -0.3. -0.2
- 0.6. -0.6. -2.6 * -2.7 * -0.1
- 0.4.
- . o: 35. :. i: 03.:. i: i 3.:. i: 33.:. i:; s. :. i: 3 i.:. i: i 4.:. i: ii. :. i: i 4. :. i: 3 i.:. i: i a.:. i: 33.:. i: i 3.:. i: 03.:. o: 35. :
. 0.36. 1.03, 1.11.. 1.31, 1.*'. 1.29. 1.11. 1.10, 1.14, 1.29
- 1.18, 1.32, 1.13, 1.04, 0.36,
3.8.
0.3. -1.6. -1.4. -o.* -1.8. -2.9. -1.2. -0.4 * -1.9 * -0.6. -1.0 * -0.1
- 0.9.
1.2 *
....... :. o: 64. :. i : 24. :. i : i 4. :. i : i 3. :. i : i 3. :. i : 3 i. :. i : i;. :. i : 3 i. :. i : i 3. :. i : i 3. :. i : i 4. :. i : 24. :. o: 64. :.......
8 9
, 0.63, 1.22. 1.14. 1.14, 1.12, 1.27. 1.13, 1.30, 1.13.* 1.14, 1.15, 1.26, 0.66,
10
- -1.5, -1.5. -0.3.
0.6, -1.0, -2.9, -2.2, -1.1. -0.6,
0.1,
0.8,
2.1,
3.2,
, 0. 39, 1, 06, 1, 28, 1. 1 3, 1. 1 3, 1. 18, 1. 35, 1, 18. 1, 1 3, 1. 1 3, 1. 28, 1. 06, 0, 39,
, 0.39, 1.07. 1.29. 1.14, 1.12*, 1.15. 1.31. 1.17, 1.14, 1.14, 1.30, 1.08, 0.40, 11 1.5,
1,5.
1.3.
0.9. -0.9, -2.5. -2.8. -1.1
- 0.7.
0.7
- 1.5
- 2.6.
3.6.
.. '.... :. o: 45.:. o: 9 i.:. i: 2i.:. i: i 4.:. i: 33.:. i: 08. :. i: 33. :. i: i4.:. i: 28.:. o: 9i. :. o: 45.:.......
, 0.47, 0.94. 1.29. 1.14. 1.31. 1.05. 1.31. 1.14. 1.28. 0.93. 0.46.
12 4.5.
3,1.
0.9. -0.7. -1.9. -2.3 * -1.5 * -0.4
- 0.4.
1.8,
3.5 *
....... :. o: 45. :. i : 06. :. i: 24. :. i : ii. :. i: ii. :. i: i 3. :. i : 24. :. i : 06. :. o: 45. :.......
, 0.47. 1.10, 1.25. 1.11, 1.29, 1.11, 1.21, 1.05. 0.46.
13 4,3.
4.0
- 1.1. -1.7 * -0.9. -1.2 * -2.0 * -0.7,
2.5.
....... :. o: 40.:. o: 64. :. i: 03. :. o '.92.:. i :03.:. o: 64.:. o: 40. :.......
, 0.41. 0.67
- 1.09
- 0.94
- 1.03
- 0.63
- 0.39,
14 4,0.
4.6
- 5.3.
1.9, -0.4. -1.2 * -2.2,
STANDARD DEVIATION
=1. 191 MAP NO: Sl-9-41 CONTROL ROD POSITIONS:
D BANK AT 203 STEPS
, 0.35, 0.42
- 0.35 *
- 0.37, 0.44. 0.35
- 5,3,
3.0 * -0.2 *.
SUMMARY
DATE:
3/2/88 F-Q(T) = 1. 763 F-DH(N) = 1.449 F(Z)
= 1.177 F(XY)
= 1. 385 BURNUP = 15018 MWD/MTU 25 POWER:
QPTR:
AVERAGE
, PCT DIFFERENCE.
1.6 100%
NW 0.9994 I NE 1.0055
~-----,----------
SW 0.9977 I SE 0.9974 A.O = -5.356(%)
15
K
- t..
\\
N 0
R M.;
t..
E D
F t
- 2 :
1'. 0
~
0.8 0.6 Q 0. 4 _,
2 0.2 o.o.J I_
I 0
2 BOTTOM FIGURE 4.4 SURRY UNl HOT CHANNEL; 1 -
CYCLE 9 OPERAT I :iTEONRVENORMALl ZED LOPE (6.00, 1. 00)
--r-------
I
1( 10. 79, 0.94)
.r-,1 I
(12.00, 0 *43 )
I l
I I
T 4
6 8
10 12 CORE HE1GHT (FTl TOP 26
N t-- QI LL.
a::
0 t-u c:(
LL.
t-0
- I:
X
_J LL.
t-c:(
LLJ
- I:
2.S +
2,0 +
l.S +
)(
)(
)(
1,.0 +
)(
)(
-x
)(
o.s +
0.0 +
I..... I.
61 ss BOTTOtt OF CORE SURRY UNIT 1 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, FQT(z)
Sl-09-06
)()()()()()()()()(
)()()()()()()()(
)( )( )(
)(
)(
I.
so
)(
)( )( )( )( )( )(
)( )(
)(
)(
- I *
, I
- 45 40
)(
)(
- a*
)(
- I.
. I,
. I,
35 30 25 AXIAL POSITION (NODES) 27
. I
- 20 FIGURE 4.5
)(
)( )(
)( )(
)( )(
)(
)(
X.
)(
)(
)(
I,
15
. I.
., I. ;. I 10 S
l TOP OF CORE
N I-cl LL.
0:::
0 1-u c:::c LL.
- I:
u l-o
- I:
X
...J LL.
1-c:::c w
- I:
- J..~.
FIGURE 4. 6 SURRY UNIT 1 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, FQT(z)
- sl-09-29 z.s +
2.0 +
l.S +
1.0 +
)(
o.s +
o.o +
)(.
)(
)(
)(
)(
)( )( )(
)(
I..... I.
61 ss BOTTOl1 OF CORE
)()()()()()(
)(
)( )(
)(
)()()()()()()()()(
)(
)(
I
- so
. I
- 4S
)(
I
- 40 I
- 3S I.
30 AXIAL POSTTION (NODES) 28
)( )( )( )(
)()(
)()()(
)()()()()(
)(
)(
)( )(
)(
. )(
)(
I
- ZS I
- 20 I.
1S
)(
)(
)(
I.
.. I... I 10 S
l TOP OF CORE
N I-Cl LL.
0::
0 1-u c:i::
LL.
...J w
z z c:i::
- c:
u l-o
- c:
X
...J LL.
l-e:!
2.5 +
2.0 +
1.5 +
-x 1.0 +
X X
SURRY UNIT 1 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, FQT(z)
Sl-09-41 XXX XXX XX X
XX XX
. XX X
X XXXXXXXX XXXXXXXX X
XX X
X X
X X
~
0.5 +
0.0 +
I..... I.
61 55 BOTTOM OF CORE I
- 50 I
- 45 I
- 40 1 **
35 I
- 30 I
- 25 AXIAL POSITION (NODES) 29 I
- 20 FIGURE 4.7 xxxxxx X
X X
X X
X I
- 15 I
- 10 X
- I *** I 5
1 TOP OF CORE
F a p
2.4 2.2 2.0 l. 8 l. 6 1. 4 l. 2 lll' l. 0 Q.8 o.6 0.4 0.2 o.o I
61 FIGURE 4.8 SURRY UNIT 1 - CYCLE 9 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ*P VS. AXIAL POSITION
- FQ*P LIMIT
- MAXIMUM FQ*P
--.. r---__
lll'
~
55 50 45 40 35 30 25 20 15 10 AXIAL POSITION INOOEl
\\
I
\\
\\
- \\
~.\\
' \\
- \\
~
\\
5 BOTTOM OF CORE TOP OF CORE 30
~
2.4 2.3 M
A X
I 2.2 M u M
H 2. 1 E
A T F 2.0 L u X
H 1. 9 0 T C 1. 8 H
A N
N E 1. 7 L
F A
C l. 6 T
.0 R
l. 5 I
- 4 I
0 X
.--~--------~
FIGURE 4.9 SURRY UNIT 1 - CYCLE 9 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F-Q VS. BURNUP TECH SPEC LIMIT X MEASURED VALUE X
X
- ~
X X
X X
~
X X
X 2000 4000 6000 6000 l 0000 12000 14000 16000 18000 CYCLE BURNUP (MWO/MTUJ 31
l.so 1. 55 E
N l. 50 T
H A
L p l. 45 y
R I 1. 40 s
E H
0 T l. 35 C
H A l. 30 N
N E
L F l. 25
-A C
T 0 1. 20 R
- l. 15 1. l 0 I
0 FIGURE 4.10 SURRY UNIT 1 - CYCLE 9 ENTHALPY RISE HOT CHANNEL FACTOR, F*DH(N) VS. BURNUP -
TECH SPEC LIMIT X MEASURED VALUE V
X K
X X
X A
X I( X
~
X X
I' X
2000 4000 6000 6000 l 0000 12000 14000 16000 16000 CYCLE BURNUP !MWO/MTUl 32
T A
R G
E T
D E
L T
A F
L u x*
l N
p E
R C
E N
T SURRY UNIT 1 - CYCLE 9 TARGET DELTA FLUX VS. BURNUP FIGURE 4.11 10+--+---+---+---+-----t---+---+----i-----+---+----if----+---+--I---+--+--+---+
8 -+---l-----+--+---+----if---+---+--1---+---+--I---+--+--+---+---+--+--+
6 4
2
.~
0 A
A A
-2 A
-4 I~
-6
-8+---+---+---+---+--1---+--+-""--+---+---+--+---+---+---+--+---+---t--+
-10 I
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 CYCLE BURNUP lMHD/MTUl 33
Cl UJ N
_J
~
er.
0 z N
N LL 1.5 +
F z = 1
- 204 SURRY UNIT 1 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-09-06 AXIAL OFFSET= -0.435 1.z +
xxxxxxx XX XX XXX X
X XX X 0.9 +
X X
X X
0.6 +
X
-x X
0.3 +
o.o +
I *.*.* I 61 55 BOTTOH OF CORE X
XX X
X
. I.
50 XX X X
)(
X X
X
- I.
- I.
45 40 X
- I.
35 I.
30 X
X I.
ZS AXIAL POSITION (NODES) 34 I.
zo X
X FIGURE 4.12 X
X XX X
X X
I.
15 X
X X
X X
X X
X X
)(
I.
.. I... I 10 5
l TOP OF CORE
Cl LI.I N
_J
- N N
LL FIGURE 4.13 SURRY UNIT 1 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-09-29 1.5 +
Fz =. L139 AXIAL OFFSET= -2.925 1.2 +
X X
0.9 +
X X
X 0.6 +
-x X
0.3 +
o.o +
I..... I 61 5S BOTT~ OF CORE X X X X
X I so xxxxxx X
XX
, I.
4S X
- . I,
40 X
XX X X
XX XX X
X I,
3S I,
30 X
XX XXX XXX
)(
)(
I 2S I,
20 AXIAL POSITION (NODES) 35
)(
)(
XX XX X I.
1S X X
)(
)(
X
)(
X
)(
X
)(
I,
,. I.,. I 10 S
l TOP OF CORE
N N
LL SURRY UNIT 1 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-09-41
,. 5 +
F Z = 1. 177 AXIAL OFFSET= -5.356 1.2 +
XX X X
X X X X X X
X X X X X
X X X X X X X
X
)(
)( X xxxxxxx X
X X
X X
X 0.9 +
-x 0.6 +
X
- o. 3 +
o.o +
I 61 X
I 55 BOTTOM OF CORE I
I 50 45 X
X I
- I.
I I
- I 40 35 30 25 20 AXIAL POSITION (NODES) 36 FIGURE 4.14 X X X X X X X
X X
X X
X X
X X
X X
I I
I I
15 10 5
1 TOP OF CORE
FIGURE 4.15 SURRY UNIT 1 - CYCLE 9 CORE AVE~GE AXIAL PEAKING FACTOR, F-Z VS. BURNUP l. 4 1. 3 A
X I
A L
p E
A K
I l. 2 tJ,.
N t;.
G tJ,.
F t:::.
A
~
C A
T 0
~
t:::.
t:::.
~
tJ,.
t:::.
t:::.
R I\\
tJ,.
I. l I.O I
0 2000 4000 6000 8000 l 0000 12000 1 4000 16000 l 8000 CYCLE BURNUP lMWD/MTUl 37
Section 5 PRIMARY COOLANT ACTIVITY Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indicators of defective fuel.
Additionally, they are important with respect to the offsite dose calculation values associated with accident analyses.
Both I-131 and I *133 can diffuse into the primary coolant system through a breach in the cladding.
As indicated in the Surry 1 Technical Specifications, the dose equivalent I-131 concentration in the primary coolant is limited to 1.0 µCi/gm for normal steady state operation.
Figure 5.1 shows the dose equivalent I-131 activity level history for the Surry 1, Cycle 9 core.
The demineralizer flow rate averaged roughly 105 gpm during power operation.
The data show that during Cycle 9, the core operated substantially below the 1. 0 µCi/gm Technical Specifications limit during steady state operation.
Specifically, the average dose equivalent I-131 concentration was 3.1 x 10-2 µCi/gm which corresponds to approximately 3% of the Technical Specifications limit.
The ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel failure which may have occurred in the 38
reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days).
For pinhole defects, where the diffusion time through the defect is on the order of days, the* I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be O. 5 or more. In the case of large leak~ and "tramp"* material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1.
Figure 5.2 shows the I-131/I-133 ratio data for the Surry 1, Cycle 9 core at. a general average value of.0. 15. However, due to the substantial amount of tramp fissile material in the system, an iodine ratio of 0.15 is not necessarily indicative of large defects.
Tramp iodine analysis resulted in a corrected iodine-131 concentration of roughly 7.3 x 10-3 µCi/gm.
This valu, indicates two to four defective fuel rods in the core.
- "Tramp" consfsts of fissionable material as an impurity in the reactor core materials or fissionable material which has adhered to the surface of reactor core components.
39
0
'b I
- l: D SURRY UNIT 1 - CYCLE 9 DOSE EQUIVALENT I-131 VS. TIME l rECHN I CAL SPECIF I CAT ICJNS LIM IT l
(!)
(!)
FIGURE 5.1
(!)
(!)
(!)
(!)
(!)
(!)
(!)
§ C).-..+-----------------------'-------------l.'----1 en w -
(!)
(!)
(!)
(!)
(!) (!)
(!)
8
(!)(!)
(!)
(!)
(!)
(!)
(!)
(!)
(!)
(!)
(!)
(!)
(!)
(!)
100 so cc w
3:
b
..... +-.-........ ~"r----.----.-~'r----1..----.---.-......._.,_._..u,.._...,.......;....., __ '-,!U---'-T--4--.--...-.............___........ o ~
AUG SEP OCT NOV DEC JAN FEB MAR APR MAT JUN JUL ROG SEP OCT NOV DEC JRN FEB MAR APR 1986.
- 1987 1988 40
0 l1'l
('t')
0 0
('t')
c,o
.,_,LJ'l f-C'\\J (I
a:
f-u (I
0
('11 l1'l.
('11 -
-o
('110 0
Lrl 0
Cl 0
Cl
(!)
I~
SURRY UNIT 1 - CYCLE 9 I-131/I-133 ACTIVITY RATIO VS. TIME
(!)
(!)
RJ
~
i
(!)§
(!)
(!)
(!)
t!)
'o(!)
(!)
\\!)
- !)
(!)
I!>
~
FIGURE 5.2
(!
(!)
m 9
(!)
(!
(!)
(!
(!)
~
(!)
(!)
./>
('I)
J)
\\
~
(!)
(!)
(!)
(!)
~ ~
~
~,~:
rT I I
r I
, I
'I I I
I I
I I
I I
I I
I I
1 l
I I.
I I
100 so er:
UJ 3:
0 0
Cl..
I I
AUG-SEP OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR 1986 1987 1988 41
Section 6 CONCLUSIONS The Surry 1, Cycle 9 core has completed operation.
Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin.
No significant abnormalities in reactivity or burnup accumulation were detected.
Radioiodine analysis indicated that there were at least two fuel rod defects during Cycle 9.
42
')
Section 7 REFERENCES
- 1)
E. C. Reitler and N. S. Pierce, "Surry Unit 1, Cycle 9 Startup Physics Test Report," VEP-NOS-18, August, 1986.
- 2)
Surry Power Station Unit 1 Technical Specifications, Sections 3.1.D, 3.12.B, and 4.10.
- 3)
T. K. Ross, "NEWTOTE Code", VEPCO NFO-CCR-6, Rev. 9, April, 1981.
- 4)
R. D. Klatt, W. D. Leggett, III, and L. D. Eisenhart, "FOLLOW Code," WCAP-7482, February, 1970.
- 5)
W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149, December, 1967.
43