ML18149A436

From kanterella
Jump to navigation Jump to search
Cycle 8 Core Performance Rept.
ML18149A436
Person / Time
Site: Surry Dominion icon.png
Issue date: 10/31/1986
From: Farley M, Pierce N, Snow C
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18149A435 List:
References
VP-NOS-30, NUDOCS 8612020369
Download: ML18149A436 (48)


Text

NOTICE -

THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMEN,: CONTROL. THEY HAVE 13EEN CHARGED TO YOU FOR A LIM,ITED TIME PERIOD AND MUST BE RETURNED TO JHE RECORDS FACILITY BRANCH 016. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.

IIJalbl*!":0.-28f DEADLINE RETURN DATEIIII 11 21 /8:!w*

Cillsr.1*9~ I )ZO;B?>,3C; 7

RSIRATOIY IMlf . .

RECORDS FACILITY BRANCH

1*

  • I ,i I VP-NOS-30 1.

I SURRY UN IT 2, CYCLE 8 CORE PERFO_RMANCE REPORT I

I by N. S. Pierce I and M.

  • K.. Farley I i I

I

  • I '

\ I-."\

Reviewed: Approved:

  • I *1.1£~

T. A.'irookmire, Associate Engineer C. T. Snow, Supervisor I Nuclear Fuel Operation Nuclear Fuel Op~ration I Operations and Maintenance Support _Subsection Nuclear Operations Department Virginia Electric and Power Company I Richmond, Virginia

  • I October, 1986 I' ,..,

I I "-

(

I ., \

I

I CLASSIFICATION/DISCLAIMER I Th;e data, techniques, information, and conclusions in this report have been
  • I ' ~ ' .

pr':epared solely for use by the Virginia. Electric and _Power Company (the Company), and they may not be appropriate for use in ~ituations othe_r than I ..

those for which they were specifically prep_ared. The Company therefore

  • makes no claim or warranty whatsoever~ express or implied, as to their I accuracy, usefulness, or applicability.

In particular, THE COMPANY MAKES NO: WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR

  • I SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect . to this . report or any of the. data, techniques, I

,, *information, or conclusions in* it. By making thi~- report ayailabl~, the Company does not authorize its use by others, and any such use is expressly.

forbidden except with the prior written approval of the Company. Any such

.,, written approval shall itself be deemed to incorporate the disclaimers of

., ii; liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (wh~ther contract, tort, warranty, or strict or absolute liability), for any property damage, I' mental or physical injury or death, loss of use of property, damage resulting 'from or arising out of the use, or other authorized or I unauthorized, of this report or the data, conclusions in it.

techniques, in:f:ormation, or

I I
  • I I /i.

i I "'*

\.

I \ .; I I '!'

I

) **

(

I

\

I l I

TABLE OF CONTENTS I I I

SEICTION TITLE. PAGE NO.

I I l Classification/Disclaimer i I List of Tables iii List of Figures . iv I ~ Introduction and Summary. 1 2

J Burnup Follow ... . . 7 I 3 Reactivity Depletion Follow 14 4 Power Distribution Follow .- . 16 I 5 Primary Coolant Activity Follow 36

  • I, 6 7

Conclusions References.

40 41 I

~

i I

I I

I I

I. ,,.,_ ii I .,_

. \

I '\

I l"

\.

I- I LIST OF TABLES

-I I I TABLE TITLE PAGE NO.

  • .1 4 .1; l Summary of Flux Maps for Routine Operation . . . . . . . . 19 I

I I

I I

_I .

I I

.I I

I I iii 11

\

I I 'fr,'* ) r i

I I I 1 LIST OF FIGURES I

. I I

I FI~URE TITLE PAGE NO.

l I 1 1 . l *Core Loading Map

/

.,t 4

1,(2 Movable* Detector and Thermocouple Locations. 5 I 1. \3* Control Rod Locations. 6.

.2 f I Core Burnup History I 2{2

)

Monthly Average Load Factors 9

10 2.3 Assemblywise Accumulated Burnup: Measured and Predicted 11 I ~-4 Assemblywise Accumulated Burnup:

'Measured and Predicted.

Comparison of 12 I 2.5 Sub-Batch Burnup Sharing 13 3.1. Critical Boron Concentration versus Burnup - HFP-ARO 15 I *.

4.1 Assemblywise Power Distribution - S2-8-07 21

4. 2 Assemblywise Power Di.stribution - S2-8-23 22 I ~*

4.3 Assemblywise Power Distribution S2-8-34 23 4.4 Hot Channel Factor Normalized Operating Envelope I 4.5 Heat Flux Hot Channel Factor, F6(Z) - S2-8-07 24 25 4.6 Heat Flux Hot Channel Factor, F6(Z) - S2-8-23 I 4.7 Heat Flux Hot Channel Factor, F6(Z) S2-8-34 27 I 4 .. 8 Maximum Heat Flux Hot Channel* Factor, FQ*P , vs.

Axial Position . *. . . . . . * . . . . . . . 28 I 4.9 Maximum Heat Flux Hot Channel Factor, F-Q, versus Burnup 4.10 Enthalpy Rise Hot Channel Factor, F-DH(N), versus Burnup 29 30 I *1 4.11 Target Delta Flux versus Burnup 31

'I

!". iv

I

I I .,.,

I I

LIST OF FIGURES CONT'D I

I FIGURE TITLE PAGE NO.

I 4.12 Core Average Axial Power Distribution - S2-8-07 32 I 4.13 Core Average Axial Power Distribution 4.14 Core Average Axial Power Distribution S2-8-23 S2-8-34 33 34 I 4.15 Core Average Axial Peaking Factor, F-Z, versus Burnup 5 .1 Dose Equivalent I-131 versus Time 35 38 I 5.2 I-131/I-133 Activity Ratio versus Time 39 I

I

.I I

I I

I I ...... V I

I \

I **

I Sec'tion 1 I

I INTRODUCTION AND

SUMMARY

I On October 4, 1986, Surry Unit 2 completed Cycle 8. Since.the initial I criticality of Cycle 8 on June 27, 1985, the reactor core produced approximately 79 x 10 6 MBTU (13,359 Megawatt . days per* metric ton of

I contained uranium), which has resulted in the generation of approximately 7.5 x 10 9 KWHr ,gross (7.1 x 10 9 KWHr net) of electrical energy. The purpose I of this report is to present an analysis of the core performance for I routine operation during Cycle 8. The physics tests that were performed during the startup of this cycle were covered in the Surry Unit 2, Cycle I 8 Startup Physics Test Report 1 and, therefore, will not be included here.

I The eighth cycle core consisted of five batches of fuel:

thrice-burned batch from Surry _2,

  • Cycles 5, 6, and 7 (batch 7); a twice a

I burned batch from Surry 2, Cycles 6 and 7 (batch 8); two once-burned batches from Sur_ry 2, Cycle 7 (batches Sl/9C and S2/9); and one fresh batch I (batch 10).

  • The Surry 2, Cycle 8 core loading ma,p specifying the batch identification, fuel assembly locations, burnable poisons locations fuel I and source assembly locations is shown . in Figure . 1. 1. . Movable detector locations and thermocouple locations .are shown in Figure* 1. 2 ., Control rod I locations are shown in Figure 1.3.

I Rout.ine core follow involves the analysis of four principal performance indicators. These are burnup distribution, reactivity depletion, power I 1 I ,.__

I \ \

\ ',

i I ~-

.*, dis'tribution, and primary coolant activity. The core burnup distribution I is ;followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be I compatible with the new fuel that is inserted. Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to I determine if the. core is depleting as designed, and t_o. indicate at what burnup level refueling ~ill be required. Core power.distribution follow I. . inciudes the monitoring of nuclear hot channel factors to verify that they I are within the Technical Specifications 2 limits, thereby ensuring adequate margins for linear power density and critical. heat flux thermal that I limits are maintained. Lastly, as part of normal core follow,'. the primary coolant activity is monitored to verify that the dose equivalent iodine-131 I concentration is within the limit~ specified by the Surry Unit 2 Technical Specifications and to assess the integrity of the fuel.

I ~ Each of the four performance indicators is discussed in detail for the I . Surry 2, Cycle 8 core summarized below:

in the body of this report. The results are I 1. Burnup Follow - The burnup tilt (deviation from quadrant .

symmetry) _on the core was no greater

  • than +/-0. 40% . with the burnup I accumulation in each batch deviating from design prediction by less than 1.5%.

I 2. Reactivity Depletion Follow The critical boron concentration, used to monitor reactivity depletion,. was. consistently I within +/-0. 23% /:J.K/K of the design prediction which is well w,ithin the +/-1%

/:J.K/K margin allowed by Section 4.10 of *the Technical Speciffcations.

I 3. Power Distribution Follow - Incore flux maps taken each month

  • I indicated that the assemblywise radial power distributions.deviated from
    • - 2 I h

I \I I Ii

(

-I - )

I th~ design predictions by an average difference of less than 1.5%. All 1.*

,. hof channel factors met their respective Technical Specificati~ns limits.

iodine-131

4. Primary Coolant Activity Follow - The average dose e_quivalent' activity level

-4 in -the primary coolant during Cycle 8 was api:iroximately 7. 4 x . 10 . µCi/ gm. This corresponds to 1ess than O. 1% of I the operating limit for the concentration of radioiodine in the primary coolant.

I 11 I

I I -~

  • I ..

I I

I I

I I. _ 3 I *-

\

I I ~*

Figure 1.1 I Surry Unit 2 - Cycle 8 I CORE LOADING MAP I II N N L I

J JP1 I H

iiP7 I I

G 2,1 I I

F [

D C 8 A I 2P7 I iiR5 l""iiJ 6iir- -m-1' Ila I ,""iiJa1osa'I"'II~ -m-I IIP

  • 16' IIP 20, IP

""Jiir-;-so-16' ""'iisit IIP

""'ii1r1 2

3 1,;rl-m-l2ir12iir1""os2lzir I I I 16' _ I 20, lSll"lir',~ "1Arl-..-n-1 20, I 16P la I ,-m-losrl5i1 I I IIP I 16P 1 1 11Rirl Tse1oiirl'""iifl 20P I I JiirlTsrl""Jiir!--m-l>>rl~,

1 20P 16P I IIP I I 1..:.1R6 I I

l->>rl2iie lTsa'l'""iie'l'259l5iirl -..sr,""'iiiizl350 oii91'65() 12iil I 16P I I 20, 20, I 1

20, I I 20, 1

16f' 1

I 353l12iio1~l""i>Pr1 6

I ,,,..1-rsrl~lssrlDNr I I IIP I I 20, l--'---'--'-::.=-'~'--'--'--'--1--

s,1 1 6R3 1 os1 1 o....

I 1 .. R2

"'"iso"l6iiol"'1ii61Jiiitl251 I 20f' 1 5R5 I

, 0R11 I

1 1R1 IIP I I 5R2 I 20f' JRII 1

TNr

-- ul--'--'--'

0R1 1~

20P

.. os1 I Bf' 1 6112 I SSII 1 -5P6_ ,

I 7 I . I I 20, I . I I I .... I . I I *1 . I I llf' 11, 1 1 1 20, I 12'41*557ltti1l"'1s9l""iio1-ssel~l"'l'iir1,n-l553loiie I &SJ 1

I IIP I I 20P 1 I 20, I I

--l*JR1l--m-'1""iiiir ""'Ji's312ii9l--;sr',~,*1521~1Tsr-lJiio1~12R21--

11, I I 20, I 12"s71 201' "liii7 ,Ts21~1 11, I SS5 I 1

!I I 16' I 20, I 20, 20, I I 20, I I 16f' I 10 I--'--'-..-=-'--'--'--'.....,,....,,-

I I cSIII I --*.......,..,...- ~*-r..:-7'""""' -;-.:-,,-,--*

I I 1f'1 I

1 3S7 8P 16f' 2113 I 157 20, I I 1N7 I laR" I ON1

- - - 1 >> r l " " " o R r 1 ' ~ 1 ~ l o s r 1 ~ Tsitloi31 "Tsill 6111-'1ur1---

I I 16f' I 20, 20, I I h,ol 1ll'IOI .. S6 -, ho I 20, 1

16f' I 16P 11, 5,0 I I

1 11 12 1 --l---;;=- 1- - 1 -=-

I 5S2 I ..S9 I -

1 - 1....,.,...- - 1 ~ 1- - 1 I .I 1

2f'o I IIP I 16P I .

JR5 I 351 I 11R1 I OSI!

I 20, I

--l'"'Drl-.Arl11S2l""'iiir'1osrloiir'1-wrl--'

I I I IIP I ...

I 16f' I If' I I

.aS2 I

I 1'2 I I 13 14 1 1

--lziiol-rn-l-m-l-- 1 I ,__, ""

, - - > ASSEMBLY ID

.I 1--> ONE OF TH[ FOLLOWING A. SS - SECONDARY SOURCE I I I I 15 I. JU<f' - BURNABLE POI SON ASSEMBLY (XX-NUN&ER OF IIODS)

I I FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH I INITIAL ENRICHMENT (W/0 U2351 783 s ... ,

I I

'1 II 3.61 I S1/9C 1--

I S.59 9A S,59 I

1--

10 S,60 ASSEMBLY TYf'[ 15X15 15X15 I 15X15 15X15 15X15 I NUMBER OF ASSEMBLIES FUEL ROOS f'ER ASSENBLY ASSEMBLY I O[NT I FI CAT fON 2011 II I II 28 2011 I

I I

4 204 ON1,0N4IOP5,0P8,1P1,1'2l6R2-6RSIOR1-0R9,1R0,1111IOR1-0R91

  • 57 204 I

I I

60 2011 ON6,0N811P7,1Pll,2P0-2P21 l1R3,1R5-1R9 l1S0-1S9I I 1N7 ,2N3 l2Pll,2P6,2P7 ;JP1 I 3N0,3N213P3,3Pll,4P0,4P21 l4P3,4P5-4P7,5POI 15P3,5P6*51>8,61'11 l6P3 I l2R0-2R9, 3RO, 3R1 l2S0-259I l3R3-3R9,4R1-laR9l3S0-3S9I l5R0-5R9,6II0,6R1l4S0-4S9I I

I*

l5S0-5S9I l6SO I


___ I 1_ _ _ 1 1_ __

I ..,.

1, ._

4

I 1* ,.

Figure 1.2 I Surry Unit 2 - Cycle 8 I MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS I

I R p M k J H G F E D C B A

" L I 1~1~1--,~-

I I I 1_ _

jrcl ITCIMDI I 2 I ,-*

--im-1'--,--,-*-1"°,--1--1--

l TC . I TC I MD I1 TC .I TC I IMTCi l lI . 3 TC-1--1--1--

I I I I1--, --1--1-1--1-*-1--,

I I I TC I I I I

MD MD MD

,--.- ---1--.-l--1-- ,--1--1 1--,MDI--IMDI

. I I I MD I I

-1--1--1"°1--1--1--1-*

I TCI MD ITCI I TC I

MD I TC I I TC I MD I TC I

--1--1--1--1--1--1 IMDITCIMD I I I I TC I I I 5

6 1---1--,--1--1--1--1-- 1---1--1--1--1--1--1--1--,

1 I ITCITC 1--.:.

I MDI.

I TC I I

I I

1--l----;w-l--1Mirl--l--l--*,--1--1--1--1Mir1--1--1 IMD I I- I. I MDI I

ITCIMDI I I I IMDI I I TC I I 7 8

1--

MD TC 1 TC TC TC TC

--1-*-1--1--,--1--1--1"°1--1--1--1--1--1 MD TC TC MD I I 1 1 I TC I MD I I I I I TC I I I TC

- - ,--1"°1--1--1--,----;w-l--l--l--l--l--l--lMDl--

MD I. I MD I1 9

~-

I TCI l--i--l--,--l--l--

I I ITCI1 I I ITC 1Mirl--l~l--l--l--l--1 IMDI ITCI1 10 I TC I I TC I TC 1 I I TC I I I I I ....

I--1--1--

IMDI MD

--,--l----;w-l--

1rc1 ITCI MD 1--1--1--1--IMDI--*

I ITCIMDITCI 1 11 12 1

--,--,--1--1--IMDI--IMDI--I--I--

I I I TC I I TC I I ' I I I_*-,--,;m-,--1--1---1--,--1--1--I TCI1 I I IMDI ITCI 13 14 MD - Movable Detector TC - The -- --1--1--1--1--

I__ 1 I__TC 1 I__

TC .1I -.-. I 15 I

I l'IIDCDup e MD I

I I

I A.

I I 5 r *-

I .

,I ,... Figure 1.3 I Surry Unit 2 - Cycle 8 I CONTROL ROD LOCATIONS

  • 1 I R p N M L K J H G 1eo 0
  • I f E D C B A I I I Loop C Outlet"-.

.........I

__ I A I I

l_*_I __ I __ I 1__ 1_1_1_1_1_1_1I D I I

I A I I

Loop B L i n let 1

2 N-41 I I I I SA I I SA I I I I N-43 3

--1 i--l-c-l-l-B-1--1-1-* I-B-l-l-c-l--1

_ 1 __ 1_1_1_1_1_1_1_1_1_1 __ 1__

4 I I I SB I I SP I I SP I I SB I 1_*_1_1_1_1 __ 1_1 __ 1_1_. _1_1 __. 1I __ 1_1 I I 5 I Inlet,.,!

.I A I I

~~-~1_1_1_1_1_1_1_1_1_1_._,_1_1 __ 1 _

I D I I I SB I C I I D I Loop C _ l __ l __ l*__ l __ l _ l __ l_*_I __ I __ I __ I __ I __ I __ I__

I SB I I SP I I B I I SA I I A I I

Loop B v.Outlet 6

7 9u-

  • I I D I I I I C I I I . I c I I I I D I
  • 270 0 8 I 1_1_1_-1_1_1_1_1_1_1_1_1_1_1_1_1 i I I SA I I SP I

, __ 1_1_1_1_1_1_1_1_1_1 __ 1_1_1 __ 1_1 I A I I B' I ID I I SB I IC I I SB I ID I I SP I I B I I SA I I I A I

  • I 9 10 1_1_1_1 __ 1_1_1 __ 1_1 __ 1__ 1_1_1 __ 1 I I
  • I I

I I C I SB I I I B I SP I 1_*_1_1_1_1_1_1_*_1_1 __ 1 _ 1 _ , _ , __ 1 I I I SP I I I B I SB I I I C I I I I

I 11 12 1

N*44

--l--1-I-ISAl--lsrl--l-l--l--

I __ I __ I __ I __ I __ I __ I __ I __ I __ I N*42 1

13 I ~. I I A J-*- 1-1-*

1 I I D I I A I

1

-~

I 14 15 Absorber Loop A I _ I __ I __ I . Loop A I Materla I Ag-In-Cd Function Outlet Nuaber or Cluatera Inlet I Control Bank D Con.trol Bank C Control Bank B Control Bank A 8

8 8

8 Shutdown Bank SB 8 I Shutdown Bank SA SP CSpa re Rod Loe* t I on*)

8 8

  • I I

I ,.._

I ,._

6

I I ~

I I Sect'ion 2

)

I BURNUP FOLLOW I \ . .

The burnup history for the Surry. 2, Cycle 8 core is graphically depicted I in Figure 2.L The Surry 2, Cycle 8 core achieved a burnup of 13,359 MWD/t1TU. As shown in Figure 2 ~ 2, the average load factor for Cycle 8 was I 84.9~; when referenced to rated thermal power (2441 MW(t)).

I Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup I distribution analysis. The NEWTOTE 3 computer code is ~sed to calculate these assemblywise burnups. Figure 2. 3 is a radial burnup. distribution 1* map in which the assemblywise burnup .accumulation of the cor,e at the end I of Cycle 8 operation is given.

are also given.

For comparison purposes, the design values Figure 2.4 is a radial burnup distribution map in.which I ....

the percentage difference comparison of measured and assemblywise burnup accumulation at the end of Cycle 8 operation is also predicted I given. As can be seen from this figure, the accumulated assembly burnups were generally within +/-2. 8% of the predicted values. :In addition, I . deviation from quadrant symmetry in the core throughout the, cycle was no greater than +/-0.40%.

I The burnup sharing on a batch basis is monitored to verify*that the core I is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design *studies. Batch I definitions are given in Figure 1.1. As seen iri Figure z'. 5; the batch burnup sharing for.Surry 2, Cycle 8 followed design predi~tions closely I 7 I ~

I I ...

I with each batch deviating less than 1.5% from design. Symmetric burnup 1* in conjunction with agreement between_ actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 8 core did deplete I as_ designed.

I I

I I

I I

  • I .

I I

I I

I I i(, 8 I

I I

I Figure 2.1 I Surry Unit 2 - Cycle 8 CORE BURNUP HISTORY I 16000 I 15000

  • Po--- i---i--- *-- ~--- ......-*- *--- ~-- *-- --* --- 11-** ~--- i---

14000 I --

~

13000 C

      • -*- *- II'**-- i , , . - ..... ~--- ..... --- ,L **- *-- ---

/

Y 12000 .

C V I L 11000 E

10000

. r- /

I B

u *so.co . /

R N 8000 /

u /

I P 7000 .

V M 6000 I w D 5000 V

I t1 4000 l7 I T U 3000 ' .r- V 2000

/

I 1000 .

/

- _v I 0 I

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l 1 l l \ l 1 l l l l l 1 l l l l l l 1 s s I J N L J

u u u A

G E

p 0

C 0 T V N 0 E

C J

A N

  • F E

B M A A p R R M J A u y N J

L A

u u E C G p 0

T N

0 V

D J E A C N B B B B B B B B B B B *a 8 6 B 6 6 6 6 B I 5 5 5 5 5 5 5 6 6 6 6 TIMElMONTHSl 6 6 6 6 6 6 6 6 7 I

I - CYCLE 6 MAXIMUM DESIGN BURNUP 15500 t1WD/MTU

      • - BURNUP WINDOW FOR CYCLE.9 DESIGN - 12500 TO 14500 t1WD/MTU I 9

I I .

I Figure 2.2 I Surry Unit 2 - Cycle 8 MONTHLY AVERAGE LOAD FACTORS -

100 I

90 I

I 80 I 70 I ~

z 60 w

  • u I a::

u.J IL 50 I 40 I 30 I 20 I 10 I 0 J J A 5 0 N D J F M A M J J A 5 0 C u u u E C 0 E A E A p A u u u E C I N L G p T V C N B R R y N L G p T y

C L

8 6 6 6 6 8 8 6 6 6 6 6 6 6 8 8 8 E I 5 5 5 5 5 5 5 6 6 6 MONTH 6 6 6 6 6 6 6 I LOAD FACTOR =

THERMAL ENERGY GENERATION JN MONTH(MHHTl AUTHORIZED POWER LEVEL (MWTl X HOURS IN MONTH (EXCLUDES REFUELING OUTAGES)

I 10

I I .

I Figure 2.3 I Surry Unit 2 - Cycle 8 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED I (1000 MWD/MTU)

I R p N K- J H F D B ,.

" L E C I 1 z

I 31,591 37.551 3Z,OOI I 31,791 37.521 31,791 I 30,951 21.*11 13,811 25,261 13.781 27,591 31.~I I

-I MEASURED I PREDICTED I 1

z I 31,3ZI 27.651 13.921 25.471 13.921 27.651 31,3ZI I 3 I 30.351 13,771 16.~I 31,321 16,701 31,151 15.951 1*.121 31,061 I 30.791 13.991 u,.201 n.s11 16,'91 11.e11 16.tol 13,'91 30.1,1

  • I 30,431 za.. 101 16.Ytl 34.671 16,881 34.191 u..631 34,811 16.751 t8 ..HI so.Ml I I I 30,571 ZB,531 16,961 34,861 16,911 34 *.591 16.911 34.861 16.961 28,5:SI 30,571 I 30.961 13.eol 16.611 35,231 1,.ee1 <t5.091 32.831 44,441 11.osl 35,471 16,591 13,961 31,621 I 31.331 13.991 16,961 35,641 17.121 44,851 33,131 44,851 17.121 :SS.641 16.961 13,991 31.331 s

I 6 7

I 27,161 15,831 34.*:sl 16,621 54.721 16.531 33.431 16.561 34 . .al 16.801 34,561 15,961 !7.511 I 27.611 16,211 34,751 17,141 34,981 16.581 33,641 16.581 34,981 17,141 34,751 16.211 27.611 I 31,601 14.0SI 31,111 16.581---------------------------------------------------------------------------------

44.611 16,271 34,511 JO.OSI 34,8ZI 16,461 44,151 16,461 31,361 13,541 31,911 6

- 7 I 51,641 13.931 31,811 16,921 44,%1 16.sel 34,71_1 30,531 34,711 16.sel "4.961 16,921 11.ell 13,931 31,641 I 8 ---------------..-------------------------------------------------------------------------------------------

I :s1.,e1 ts.571 16,661 34.Jzl 12.521 31,211 30,111 :sz.4sl 30.sol 33.321 32.761* 34.131 16.571 ~-.561 36.911 I 37,431 25,361 16.991 34,711 33.061 33.641 30,781 :s2.,21 10.1a1 33.641 33.06134.71116.991 25.361 37,431 8

I 31,681 13.941 31,301 16.621 44,671 16.271 *-------------------------*---------------------------------------

34,451 30.681 34,171 16,411 *s.111 16,551 31.641 13,841 31.501 9 I ' I 31,641 13,931 31,811 16.921 44,961 16.581 34,711 30.531 34,711 16.sel 44,961 16,921 31,811 13.931 31,641

,10 I !7.641 15,951 34,311 17,071 34,"'I 16,211 53.£61 16,311 34,421 16,791 34.lZI 16,1SI-Z7,91l 10 I 27,611 16,211 34,751 17,141 34.981 16,581 33.6<+1 16.581 34,981 17,lttl 34,751 16,211 27,611 I l.1 lZ I 31.671 lit.OJI 1',931 JI.SOI 1'.971 44.471 32.771 "4,761 16.671 Si,431 16.821 13.961 31,511 I 31.331 13.991 16,961 35.641 11.121 44,851 33,131 44,851 11.121 35,641 16,961 13,991 31.331 I 31,151 28.eel 16,961 34.341 16,571 34,011 16,361 34.391 16.651 28.3BI 10 *.541 11 lZ I 30,571 ze.531 16,961 34,861 16,911 34,591 16,911 34.86J_16,96l ze.531 so.571 I 13 *1 31,611 14,471 16,361 30,891 16,331 31.611 15.761 13,791 30.511 I 30.791 13.991 16.201 31,811 16,991 31,811 16,201 13,991 30,791 13 14 I 11.s11 27.891 13,861 24,801 11.s11 27.561 31,031 I l.l I 31,121 27,651 11.,21 25.471 13,921 27.651 31,321 I 32.311 37,651 31.591 I 31,791 37.5ZI 31,791 15 I " p N

" L K J H 8 F E D C B ,.

I I

1. 11

I I II I Figure 2.4 Surry Unit 2 - Cycle 8 I ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED

( 1000 MWD/MTU)

I It , N N L It J H 8 F E D C I A I 1 I

I 11.s,1 17.SSI 12.001 I -o.6"1 0.071 o.,sl


~~

I JD.'51 17,.71 lJ.111 15,261 lJ,711 17.ltl Jl,'41 I NEASURED I I HIP 1. DIFF I 1

t I -1.191 -0.611 -o.791 -o.esl -1,Dll -0.Zll 1.971 I I 1 JD.JS! U,771 16.°"I 11.JZI 16.70111.151 15,9511*.12111,061 I -1.*21 -1.571 -0,991 *1 *.511 *1,721 -0,IZI *1,!561 0.971 0.901 J

  • I JD.411 28.101 16.541 54,671 16.ael 14.191 16.651 54,811 16.751 28.591 ID.6"1 I -0,471 -1.511 -Z.501 -0.541 -0,111 -1.171 -1.681 -0.l*I -1.ZJI D,181 D,211 I 5 I I0.961 11.eo, 1,.,1115,ZJI 16.ael .5.091 12.eJI 4".4"1 17.DSI 11 **11 16.591lJ.'6111.621 I -1.1'1 -1.Jel -2.D6I -1.141 -1.451 0.111 -0.921 -0,901 -o.*sl -0.481 -z.211 -ct.191 D.901 s

' I 27.161 15.851 54.411 16.621 14.721 1,.111 JJ.411 16.161 s..481 16.eol 14.561 15.961 27.511 I 1 I -1,661 -z.111 -o.9itl -1.021 -0.711 -0.101 -0.611 -0.111 -1.441 -1.'81 -D,561 -1.571 -0,171 I 11.601 14.DSI 11.111 16.Jial 44.61116,27114.511 JO.OSI 14.IZI 16,4'1 4",liSI 16,461 Jl.161 lJ,541 Jl.911 I -0.111 D.911 -2.211 -2.021 -o.781 -1.,01 -o.591 -1.se1 0.111 -0.111 -0,911 -1.121 -1.421 -2.781 o.as1 7

e I 17.tel zs.S71 16.'61 34.JZI 12.SZI JJ.271 J0,711 JZ.451 JO.SOI JI.IZI 12.761 J4,lll 16.571 2",561 1,.,11 e I . I 1.481 a.as, -1.951 -1.121 -1.611 -1.091 -o.z11 -o.sz1 -0.,01 -o.,51 -0.,11 -1.651 -2.451 -1.151 -1.:sa1 I Jl.681 lJ.841 11.101 16.621 "4.671 16.271 14.451 J0,681 Jlt.171 16.411 45.171 16.liSI 11,641 lJ.841 11.sol I 0.111 -o.591 -1.,11 -1.1,1 -o.6"1 -1.e,1 -0.111 o.so1 -1.111 -1*°"' o.481 -2.191 -o.ssl -0.621 -o.451 '

I II

  • u t 27.6"115.95114.Jll 11.011 14.6"1 16.211 JJ,2611,.11114.421 16.791 Jlt.121 16,151 11.,11 t 0.101 -1.611 -1.za1 -o.sel -o.,e1 -z.z11 -1.121 -1.sa1 -1.621 -z.001 -1.~1 -o.sel

- --------------------------------------------------------------------~*

I 11,671 14.0ll 16.91115.501 16.971 "4.471 JZ,77144.76116.671 lli,411 16,82111,96111,511 1.oe1 H

11 t 1.e11 o.1e1 -0.211 -o.401 -o.,zt -a.as, -1.101 -0.201 -z.'41 -e **,1 -e.es1 -0.221 0.111 I 1t I 11.151 ze.ee11,.,.114.141 16.571 14.01116.16114.191 16.651 ze.sel ID.541 I 1.ae, 1,ZJI -a.oz, -1 ... , -2.DZI -1.so1 -1.111 -1.141 -1.IOI -0.151 -0,lZI 1Z u I 11,611 H.47116.161 JO.HI 16.JJI 11.611 U.761 11.7'1 JO.SIi - - - - - - - - ll I 1*

I 2.,,1 J,471 o.,., -z.eel -J.861 -o.611 -z.1r.1.-1.4DI -D.911 1 Jl.571 Z7.HI lJ.MI M.801 lJ.531 17,561 11,011 I 0.1,1 0.111 -0.421 -z.'51 -2.111 -0.111 -o.'41 I ARITlftnc aw I IPCT DIFF * -0.IZI 15 I STANDARD DEY I I 12.11117.651 11.s,1 I AW ABS PCT I 15 I I

  • o.eo I I 1.'21 O.HI -0,6'1 I DIFF
  • 1,11 I R , N ,. L ., H
  • ,  ! I C
  • A I BURNUP SHARING (MWD/MTU) BURNUP TILT I BATCH CYCLE 5 CYCLE 6 CYCLE.7 CYCLE 8 TOTALS NW= -o.t5 7 16796 8746 6317 12861 44720 I 8 Sl/9 16638 9948 11348 17568 5621 13697 14610 32207 25045 32178 NE= +0.13 SW a: +0.37 9
  • 15813 15813 I 10 CORE AVERAGE 13359 SE= -0.25 I 12

I I .

I Figure 2.5 I Surry Unit 2 - Cycle 8 SUB-BATCH BURNUP SHARING I SUB-BATCH SYMBOL 78 DIAMOND 8

SQUARE Sl/9C TRJANOLE 9A STAR 10 X

I 48000

.-, r"'l"' -- ..-- ,...

I 44000

~ rv

.-, l"Q

..-,(}

I 40000

~-

~

,<}

~rv I s 36000

. ~

  • ~- .. .,..

u ..,.A'J' ..-,...-

B .-Ar

- 32000 I

B A

- ~

T C 28000 -- - .-

I

~

..Jill.-

H ~-

~

_,,,. .... ~

. B "11!"

~--- ~ -

~

u 24000 I R N

u

~

__.-a

~

~

~

p 20000

.....-a I

~

. if' ~ ~

t1 w "' ~ ...

~ - _,. ~

D 16000

~~ ./ *~

I I t'1 T

~

~

~

u 12000 IK"" ,/71 I 8000

...... A I 4000

./" --

  • 1 0 -x..-'

i....,.,-

I I 0 2000 4000 6000 CYCLE BURNUP MHD/HTU 8000 10000 12000 14000 16000 I 13

I i ~

I' Section 3

  • 1 I REACTIVITY DEPLETION FOLLOW 1*

The primary coolant ~ritical boron concentration is monitored for the I

,, purposes of

  • following core reactivity and to . identify

. reactivity behavior. The FOLLOW 4 any anomalous computer code was used to normalize "actual" critical boron concentration measurements to design conditions_

taking into consideration control rod position, xenon and samarium I ~oncentrations, moderator temperature, and*. power' level. The normalized critical boron concentration versus burnup curve for the Surry 2, Cycle*B I core is shown in Figure 3 .1. It can be seen that the measured data I typically corresponds compare to within _30 ppm of the design prediction.

to less than +/-0.23% AK/K which is well within the +/-1% AK/K This I criterion for Technical reactivity anomalies Specifications.

set In conclusion~

forth in Section 4.10 of the the trend indicated by the I critical boron concentration verifies that the Cycle 8 core depleted as expected without any reactivity anomalies.

I I

I I

I ...,. 14

.I

I I *

-1 Figure 3.1 I. Surry Unit 2 - Cycle 8 CRITICAL BORON CONCENTRATION vs. BURNUP

.1 X (HFP ,ARO)

MEASURED PREDICTED I 1400 t 1200

  • I C R

.j T I

I 1000 C

A

'I* L B .'\~

~

~

0 ~

I R 0

N 800

~(,

1, I C 0

N C 600

. " I~,

~

II E N

T

. ')~"

~

R ......

~

I A T

I 400

~ lk.,

0 jl N p

~

"}I p ~

t1 ~

I 200 - ~

  • ~

I ... "" rs.

rl 01-0 I

2000 4000 6000 8000 CYCLE BURNUP lMHD/MTUl 10000 12000 14000 "' 16000 I 15

I I Section 4

,I POWER. DISTRIBUTION FOLL.OW

,I Analysis of core power distributi~n data on a routine basis is necessary t

to verify that the hot channel factors are within the* Technical Specifications limits and to ensure that the reactor is* operating without any abnormal conditions which could cause an "uneve~" burnup distribution.

Three-dimensional core power distributions are determined from movable ll detector flux map measurements using the INCORE 5 computer program. A summary of all full core flux maps taken s'ince the completion of startup

  • 'I physics testing for Surry 2, Cycle 8 is given
  • in Table 4.1. Power distribution maps were generally taken at. monthly intervals with t *additional maps taken as needed.

'I, Radial (X-Y) core power distributions for a representative series of I incore flux maps are given in Figures 4 .1 through_ 4. 3:

a power distribution map that was taken early in cycle life.

Figure 4 .1 shows Figure 4.2 I shows a power distribution map that was taken near mid-cycle Figure 4. 3 shows a map that was taken at the end of Cycle 8 life.

burnup.

The I measured relative assembly powers were generally within 3. 8% and the average percent difference was equal to 1.2%. In addition, as indi~ated I by the INCORE tilt symmetric for all cases.

factors, the power distributions were essentially.

'.I*

An important aspect of core power clJstribution follow is the monitoring I of nuclear hot channel factors.

Technical Specifications limits Verification that these factors are within ensures that lineai power density and I critical heat flux limits will not be viol_ated, thereby providing adequate thermal margins and maintaining fuel* cladding* integrity. The. Cycle 8 I Technical Specifications limit on the axially dependent heat flux hot

  • I~- 16

I I

channel factor, F Q(Z), was 2 .18 x K(Z), where K(Z) factor normalized operating envelope.

curve associated with the 2.18 FQ(Z) limit.

is the hot channel Figure 4.4 is a plot of the K(Z)

The axially dependent heat

!I flux hot channel factors, FQ(Z), for a representative set of fl~ maps are given in Figures 4.5 through 4. 7. Throughout Cycle 8, the measured.values I of FQ(Z) were within the Technical Specifications limit. A summary of the

,1 maximum values of axially~dependent heat flux hot channel factors measured during Cycle 8 is given in Figure 4.8. Figure 4.9 shows the *maximum values for the heat flux hot .channel factor measured during Cycle 8. As can be I

I seen fr.om the figure, there was an approximate 15% margin to the limit at the beginning of the cycle, with *the margin generally increasing throughout

'I

,, cycle operation.

The value of the enthalpy rise hot channel factor, F-delta H, *which is the ratio of the integral of the_ power along the rod with. the

. integrated power to that of. the average rod, is routinely followed.

highest The I Technical Spec~fications limit for this parameter is set such that

  • departure from nucleate boiling ratio (DNBR) limit will not be violated.

the I Additionally, the F-del ta H limit ensures that the* value of this parameter

.used in the LOCA-ECCS analysis is ncit' exceeded during normal operation.

/I For Cycle 8, the enthalpy rise hot channel factor limit was 1;55(1+0.3(1-P)). A summary of the maximum values for the enthalpy rise t hot channel factor measured during Cycle 8 is given in Figure 4.10.

can be seen from this figure, the smallest margin to the limit was in the As

'I last half of the cycle and was equal to approximately 7.1%.

I The Technical Specifications.require that _target_ delta flux* values be determined periodically. The. target delta flux is the delta flux which I'

,,

  • Delta Flux=

Pt-Pb X 100 where Pt= power in top of core (MW(t))

I~- 2441

  • Pb = power in bottom of core (MW(t))

17

I* ~

would occur at conditions of full power, all rods out, and equilibrium I xenon. Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured II point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then I established about this target value.*

flux relatively constant, adverse By maintaining the value of delta axial power shapes due to xenon fl redistribution are avoided.

,t The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -4;5% at the

  • 1\ beginning of Cycle 8. After approximately one-third of the cycle, delta I flux values had shifted to -2.0% and then moved to -3.5% near the middle of the cycle. At the end of Cycle 8 delta fiux values rose again to -2.0%.

I This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given II in Figures 4.12 through 4.14. In Map S2-8-07 (Figure 4.12), taken at 390 MWD/MTU, the axial power distribution had a shape peaked toward the bottom I of the core.with a peaking factor of 1.24.

taken at approximately 6,523 MWD/MTU, In Map S2-8-23 (Figure 4.13),

the axial power distribution

,I' flattened and had an axial peaking factor of 1.16. Finally, in Map S2-8-34 (Figure 4. 14), taken at approximately 12,391 MWD/MTU, the axial peaking t factor was 1.14, with a slightly concave axial power di"stribution.

history of F-Z during the cycle can be seen more clearly in a plot of F-Z The

/I versus burnup_given in Figure 4.15.

I In conclusion, the Surry 2, Cycle 8 core performed satisfactorily with power distribution analyses verifying that design predictions were I accurate and that the values of the FQ(Z) and F-delta H hot channel factors were within the limits of the Technical Specifications.

I*

ly 18

'*(

  • TABLE 4. 1 SURRY UNIT 2 - CYCLE 8

SUMMARY

OF INCORE FLUX MAPS FOR ROUTINE OPERATION I 1 I 2 I I I BURNI F-Q (T) HOT I F-DH(N) HOT CORE F(Z) I 4 I I UP I IBANK CHANNEL FACTOR I CHNL.FACTOR MAX I 31 QPTR AXIALI NO.I MAP DATE MWD/IPWRI D I I IF(XY)I OFF I OF I NO. MTU I(%) ISTEPSl---.1---.-1-eA-,-,X'"'"IA"""'L,....,1.-----1 I I . IAXIALI I MAX ,---, , SET ITHIMI I I IASSYIPINI POINTIF-Q(T)IASSYIPINIF-DH(N)IPOINTI F(Z)I I MAX ILOCI (%) IBLESI

--,--- --- --1-1-.-*-1--1-1 7 7-22-85 39011001 194 I J031 DFI 35 I

11.848 1-.--1-1 I J031 DFI 1.421 1--1--.I-'-1---1-1--.-1--1 I 34 l1.239l1.377l1.0091 NWI -6.161 41 I 11( 5) 8-28-85 163511001 203 I P071 NCI 33 11.793 I Mlll HII 1.410 I 34 11.21711.36411.0061 SWI -4.601 39 I 13( 6) 9-21-85 242311001 211 I E041 GHI 34 11.781 I. E041 GHI 1.407 I 34 ll.19911.37211.0071,NWI -2.721 42 I 115( 7) 11-15-85 361011001 228 I L12I IHI 43 11.760 I Mlll HII 1.421 I 34 IL177l1.37211.0041 SWI -2.011 38 I I__ I __ I_I__ I_I_I I I_I_I I__ I__ I__ I__ I_I I_I NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY.GIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY),

FOLLOWED BY THE .PIN LOCATION ~DENOTED BY THE "Y" COORDINATE WITH THE FIFTEEN ROWS OF FUEL RODS LETTERED A THROUGH O AND THE 'X" COORDINATE DESIGNATED IN A SIMILAR MANNER).

  • IN THE 11 2 11 DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POI_NTS STARTING FROM THE TOP OF THE CORL .
1. F-Q(T) INCLUDES A TOTAL UNCERTAINTY OF 1.'08
2. F-DH(N) INCLUDES A MEASUREMENT UNCERTAINTY OF 1.04.
3. F(XY) IS EVALUATED AT THE MIDPLANE OF THE CORE.
4. QPTR - QUADRANT POWER TILT RA Tl O.
5. MAPS 8, 9, AND 10, WERE QUARTER-CORE FLUX .MAPS TAKEN FOR INCORE/EXCORE DETECTOR CALIBRATION.
6. MAP 12 WAS.ABORTED BECAUSE 38 THIMBLES WERE NOT OBTAINED.
7. MAP 14 WAS ABORTED BECAUSE 38 THIMBLES WERE NOT 'OBTAINED.
  • o'.

TABLE 4.1 (CONT.)

  • I I I BURNI I F-Q (T) HOT I F-DH(N) HOT I CORE F(Z) I I
  • I I
  • I I
  • UP I IBANK CHANNEL FACTOR I* CHNL. FACTOR I MAX I I QPTR I AXIAL NO. I I MAP I DATE MWD/IPWRI
  • D I I I IF(XY)I I OFF OF I I NO. I I MTU I ( %) I STE PS ,------.,--1.----,-A=x-e-1A.,...,L-,1_ _ _ I I
  • I AX I AL I I MAX I I I SET TH IM I I I I I I IASSYIPINI POINT F-Q(T)IASSYIPINIF-DH(N)IPOINTI fi(Z)I I MAX !LOCI (%) BLESI I I* I__ . I_I__ I_I_I I_I_I I_._I _ _ I _ _ I _ _ I _ I _I.

121( 8)112-12-851 440211001 216 I L12I IHI 44 1.763 I Mlll HII 1.425 I 34 11.17011.37511.0061 SWI -2.15 39 I

.122 I l-18-861 571111001 217 I L12I KHI .43 1.761 I L121 KHI 1.428 I 44 ll.16211.37811.0041 SWI -2.20 41 I 123 I 2-11-861 65251100r 218" I L121 KHI 41 1.755 I L12I KHI .1.429 I 44 l1.159l1.381l1.0071 SWI -2.18 41 I 124 I *3-11-861 714211001 219 I L12I LIi 44 J.756 I L12I LIi 1.432 I 44 ll.15711.38111.0061 SWI -2.77 41 I 127( 9)1 4-11-861 820711001 211 I LlOI HGI 44 1.767 I Mlll ILi 1.437 I 45 ll.15911.38911.0061 SWI -3.53 40 I 128 I 5-18-861 942211001 217 I LlOI HGI 44 1.735 I Mlll ILi 1.436 I 45 l1.137l1.391l1.0051 SWI -2.07 41 I 129 I 6-16-8611038111001 225 I LlOI HGI 45 1.719 I K13I ILi 1.440 I 46 11.12911.38811.0051 SWI -2.26 40 I 133(10)1 8- 4-8611131211001 220 I LlOI HGI 45 1.711 I LlOI HGI 1.438 I 46 l1.123l1.383l1.0061 SWI -1.79 40 I 134 I 9- 5-8611239111001 221 I LlOI HGI 53 1.706 I LlOI HGI 1.431 I 52 ll.13711.37911.0051 SWI -2.73 41 I I I I__ I_I__ I_I_I I_I_I I__ I__ I __ I__ I_I _I

8. MAPS 16 THROUGH 20 WERE QUARTER-CORE. FLUX MAPS TAKEN FOR INCORE/EXCORE DETECTOR CALIBRATION.

N 0

9. MAPS 25 AND 26 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE/EXCORE DETECTOR CALIBRATION.
10. MAPS 30 THROUGH 32 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE/EXCORE DETECTOR CALIBRATION.

I

I I\ Figure 4.1 I( Surry Unit 2 - Cycle 8 ASSEMBL YWISE POWER DISTRIBUTION S2-_8-07 I II ,

  • N1toicfi:0°.:

M L II J

  • o:i,*:*o:iio*:

" C

  • o:;,*:

, E D -c I

.... ;iti:i,ii:ti:i,.. :

A

'I.

0

  • MEASURED *
  • D.17
  • 0.111
  • O.J7 * , MEASURED ,
  • PCT DI FFEIIENCE.
  • I. 7
  • 1,11
  • J. 7 * .PCT DlfFEIIENCE.
  • o:ir: *o: i2*: *;:05 *:*;:or:*; :i>5 *: *o: 12 *: *ci: ;;*:
  • 0.110. 0.72. 1.07. 1.09. 1.07. 0,72. 0,39. 2
    • 2. 7
  • 1. 2
  • 1, 7
  • I. 5
  • I. 9
  • D. 0 * *O, 6 *

-:* *o:iia': *;:02'.~*t w:* ;:n*:* ;:2; *: *; :n*: *;: ;r: *;:or: *o:iiis*:

0.119, 1.01, I.Ill, I.JO, 1,21

  • 1.211. 1.17. 1,01
  • 0,117. J

, *-2.11. 1.0. 0,11. 0;9. 0,1 * -0.2, o.o. -0.6. -2.1 *

, *o:iii *: *ci:;ii *: *; :2i *: *; :H *: *;: ;; *: *; :2i *: *;: ;;*: *; :2; *: *; :2; *: *o:;ii *: *ci:iii *:

D,119, 0.9S. 1,21

  • 1.2!>, 1.19. 1.27. 1,19, 1.211, 1,19. O.H, 0,1111. II

, 0.11. 0.1. -o.J. 0.1. 0.1. -o.s. -0.1. -o.6. -1.2. -1.,. 0.2.

  • I'  :* *0.39.

o: ir: *1.01 o.o,

02 *
, *Gi

, -0.11 , -0;11 , *0.2 *

  • *0,72, o: 12 *: *;:1.17.
1*
*;1.2!,,
  • *; :2.; *: *;: ;,*: *ci:;1*: *Gi *: *o:;r: *;: ;,*: *; :2, *: *;:zr: *; :02 *: *ci:i; *:

1.21

  • 1.2,. 1.16. 0,97. 1.21
  • 0.97. 1.17. 1,211. 1.19. 1.02, 0.110.

o., , -o.o *

2; *: *;:1.16, o.o. -0.1 , *0.6, -0,0.
1*
*;1.21 0.1 ,
2;-:, *;:1.16, 0.1 ,
r
*;1.211, 0.6.

o., ,

2r: *;:1,17, 0,7.

0.11 * *0,6 * -1.1 *

r
*;1.22, 1,1 ,
2; *:*;:ii":*

0.2

  • 1.16. -1.211, 1.17. 0,72, 0.11. -0.J. -1.11, -0.2.

2,11 *

,:2; *: *;: ;r: *ci: 12 *:

1,2, 5

6 I  :* *o:ie':

  • 2.6.
  • or
    *;:2;*: *;: ;;*: *o:;r :* ;:;r: *;:2i *:*;:;r: *; :2;*: *;: ;r: *o:;1*: *;:;;*: *;:n* :*;:or: *ci:;,*:

O.J7 , 1.06, 1,29, 1.19, 11,96, 1.16. 1,22, 1.15. 1.23, 1.16. 0.97. 1,111. 1,211. 1.05. 0.36.

1.11. 0.11

  • o.o. -o.s. 0.1
  • o.7 *. 0.9. 1.2. 0.11. -0.1 * -1.1 * -0.11. ~o.o.
  • o:,o*: *;:oa* :*;:2; *: *;:2a* :** ;:2i *:* ;:H *: *;: ;,*: *;:;;*:*;: ;,*: *;:2i *: *,:2; *: *;:21*: *,:2, *: *,:oi': *o:iio':
  • 0,'1
  • 1,09
  • 1.22
  • 1,211
  • 1,21
  • 1,211 , 1, 15
  • 1, 17
  • 1, 15 , 1.23
  • 1.20
  • 1.27
  • 1.21
  • 1,011
  • 0.110 ,

0.1

  • 7 I

I

  • 2.J , 1.5. 0,5. O.S. O.J, 0,11. D.7. 1,0. D,7. D,1 * *0,5. *1,11. -0,6, 0,2. 0,9.
  • o:;,*: *;:°'*: *;:n*: *;: ;;*: *o:;r:*;: ;;:: *,:2r :*;: iii' :*,:2i *: *; :;r: *o:;r: *;: ;;*: *;:2r: *,:or: *o:i,*:
  • 0.37, 1.06, 1.27. 1,111, 0.97. 1.16, 1.22, 1,111. 1.22, 1.16. 0,97. 1,111. 1,29. 1.06. 0.17. 9
  • 2.6
  • o.e * -1.1 * -o.,
  • 0.1
  • 0.2
  • 0.1
  • o.6
  • 0.1
  • 0.1 * -0.2 * -o.7
  • 0.1
  • o.9
  • 2.0 *
        • ***:* *0:12*:*  ;:;1* :* ,:2;*: *;: ;r:* G;* :*;: ;r: *;:2r:* ;: ;r: *,:2, *:*,:ff:* ;:2;*: *;: ,1* :*0:12*: *******

D,71

  • 1.16, 1.211, 1.17. 1,21
  • 1.16, 1.211. 1,15, 1,20. 1,15. 1.2,.. 1,111. 0.72. 10 I ~

, _*1,S * *1,11. *0.11.

, *o:ir:

0,0. 0,1

  • 0.2, 0.1. *0,2. -0.9. *1.2, *0,9.
  • 02*
    *,:2;*: *,:2;.*:*;:;,* :*o:w: *;:2; *: *ci:;1*: *;: ;,*: *;:2ii*: *,:2r: *;:02* :*o:j;*:

0,19. 1.02. 1,2-1 , 1,211. 1.16 .*o.97, 1.21

  • 0.96, I.IS. 1,21 , 1,20. 1,02. 0.19..

0,6 *

                • *ci:,i 0.6
  • D.I , *0,0. *0,1 * *D.1 , *0,0 * *0,9 , *1,6 * *1,1 * *0,9 ,

o.7.

0,0

  • 0,9.

0,11 *

  • *ci:;ii *: *; :2; *: *;: 25 *: *;: ;; *: *; :2i *: *;: ;; *: *;: 25 *: *; :2; *: *o: ;ii*:* o:iii *: ****** **

11 1- .

  • 2.,.
                • *ci:iii 1.,, -0.1 *
  • *; :02*:

-o.,. -0,1, -o.,. -1.11, *1.6. *1.7. -1.7. o.,.

11,119. 0.96. 1.21

  • 1.211. 1.111. 1.27, 1.17. 1.21. 1.19. 0,93. 0.1111.
  • w
    *; :n*: *; :2; *: *; :n*: *;: ;r: *; :02*: *ci:u *: **** ***

0,50, 1.06, 1,19, 1.17. 1.19, 1,26, 1,15, 1.00, D,1111, J.2, 1,9, 1,6, *1.11, *1,9. *1,7, *1,9, *2.1 , *1,D, 12 11

':., D.110, o: jg':'0,711, ci:12*: ';:i,;.: ',:cii':. ;:ci;': 'ci:i2.: 'ci: jg': .*..

I ................

11ANOAHD DEVI AT IOII

-0,920 I.OS, 1,06, 1.01, 0.70. O;III,

, J,P , J,9 , *2,D * *1,6 * *1,J , *1,6 , *2.0 ,

                              • a:;;.*:* a:iiii': *a:;,*:************** ,

, D,J7 , O,J9 , 0,15 ,

, 11,0 , *1,1 , *1,2 ,

AV[IIAClt

,,CT DIHCIICIICE,

  • 1.0 111 11

SUMMARY

  • 1 MAP NO: S2 7 DATE: 7/22/85 POWER: 100%

CONTROL ROD POSITIONS: F-Q(T) = 1.848 QPTR:

I D BANK AT 194 STEPS F-DH(N) = 1.421 F(Z) = 1.239 NW 1.009 I NE


~-,----------

SW 1.000 I SE 0.991

, .ooo 1* F(XY)

BURNUP

= 1.377

- 390 MWD/MTU A.O = -6. i6( %)

I ...

,- 21

I I Surry Unit 2 - Cycle 8 Figure 4.2 I ASSEMBL YWISE POWER DISTRIBUTION S2-8-23 R N N L K J H G [ D C B A

" ** j,iii:i,ii:ii:i, .. :

, NU.SURED ,*

, *o:H*: *o:i9': *o:ir:

0,37 , 0.40 , 0,37 ,

  • ". i'Ri:i>ii:i-i:i>":
  • NU.SURED *

, PCT DI ffERENCE, , 3,9 , 3. 7 , 3,9 , .PCT DIFFERENCE.

  • *o:;.o*: *0:10*: *i:oi':
  • i:o;* :* i:oi': *0:10;:* o:;.o*:
  • 0,39, 0.71
  • 1.03. 1.02, 1,03, 0,69, 0,41 , ,2

, *1.0.

  • 1.4 , 1,3, 1,1 , 1,2, *1,4, 2,7 ,
, *o:D,48,
.9 *
*;:iii.*  : *;: 20 *:*i: 2ci *:*;: 26 *:*i: ~ci *: *ijci *:*;: ciio *: *ci: ;.9 *:

1.03 , 1,21 , 1.21

  • 1.25, 1,19, 1.-19, 1.07, D,5D, 3.
  • -1.0. -1.0. o.5. o.9. -0,9. *D,8. -1,4. 2.1. 2.1.
  • *0.48.

ci:ri9': *o:9r: *; :21*: *; :2i *: *i:2r: *uo*: *; :2r: *;:2; *: *;:21*: *o:9i': *o:ri9':

I 0,93, 1,26, 1.22, 1,27, 1.20, 1,26, 1,22, 1,27 , D,94, 0.50 *

  • -1.1. -o.6. -0.1. 0.1. 0,9. 0.2. -0.5. o.4. o.4. o.4. *1,4,
    • *o:;.a*: *i:o;.*: 'i:zr: *i:zr :* i:zr: *o:9r: *;: ;r:* 0:91*: *i:2a *: *i:22*: *; ::21*: *;:ci;. *: *o:rici':

0.39, 1.02. 1.26. 1,23, 1,29. 0,98. 1.14, 0,97. 1.29, 1,22, 1.25, 1,05. 0,41 *

  • -1.1, -1.7. *D,9, D.3, 0,3, 1,9, 1,0, 0,4, 0.11, D,D, -1.6, 0,8, 3,5,
*0:10 *:
  • i:20*: 'G2': *i:29*: *;:22*: *i:zi *:*;:if:* i:2i': *;:22.*: *i:2r: *i:22*: *i:20*: *0:10*:

. 0.68, 1,19. 1,20. 1.26. 1.22, 1,25. 1,16. 1,24. 1.23, 1,28 , 1.20, 1,20. D,70, 6

*1,6, *1,6. *1.4 *. -~.2 *. 0.0. 1,3, 0,9, 0,9. D,11, *0,7, *1,0, *D,1
  • 1.3 ,
, *o:ir: *i:oi *: *;:20*: *;:26*: *0:91*: *Ui *.:.*;:iii':* i:cia *: *i: iii*:* i:2;*: *0:91*: *;:26*: *i:20 *: *i:cii *: *o:is':

0.37. 1,06, 1.18 , 1,25*. D,95 ,* 1.23 , 1,15, 1.10, 1,15, 1,24 , 0.96, 1,25. 1,20, 1.01 , 0.35 , 1

, 4,1 *. 4,2, *1.6, *1,4, *1,4. *D,3. 1,1. 1,D. 1,1 , 0.5. *0,7, *1.D, *0,5, *0.6, 0,0.

, *a:ir: *i:cii *: *i:2r: *i:20*: *i: ;;*: 'i: is*:* i:cia *: *i:or:* i:oa*: *i: is':* i: ;;*: *;:20*: *; :26*: *i:cii *: *o: ;9*:

0,41 , 1.05 , 1.24 , 1.20. 1.13 , 1,15, 1.10, 1.08. 1,09, 1,15, 1.12, 1,19, 1,25. *1.02. 0.39. 8

, 4.0, 3.8. *1.1 * *0.1 * *0,1 , 0.4, 1,2, 1.2. 0.7, D.D. *0,5. *1.D, *0.7, 0.11, 0,9 ,

, *ci:is*: *i:cii *: *;_:20*: *i:26*: *o:9r: *; :2i': *;:iii':* i:oa*: *;:iii':* i:2i': *o:!i1*: *;:26* :*; :20*: *;:cii *: *o:ir:

0.37, 1,03. 1.19 , 1.26 , 0,97 , 1.23 , 1.13, 1,09. 1,15. 1,24, 0,96. 1.25, 1.21 ," 1.03, 0.36 , 9

  • 4.1
  • 1,5. -1.2 * -o.6. -0.1 * -o.5. -1.0. o.3. o.9 *. 0.11. -o.5. -0,9. 0.5. 1,5. 1,9.
              • . *a:10*: *;:20*: *; :22*: *ur: *i:22*: *;:2i *: *i: if: *i:2i *: *i:22*: *i:2!i': *;:22*: *i:20*: *0:10*: *******

0.69, 1,19, 1.21 , 1,30, 1.22, 1,22. 1,15, 1,23. 1.21

  • 1.28, 1.21
  • 1,22, 0,72, 10

, -1.2 , -1.2 , *0,3

  • 1.2 , -0.2 * -1.0 , -0.2 , -0.1 , -0.11 * -0.6 , -0.1 , 1.0 , 2.8 .
, *o:;.o*: *i:o;.*: *; :2r: *i:22*: *Ua *: *ci:;.1*: *;:ii':* ci:ii'i': *i:2a*: *i:22*: *i:21*: *; :ciio *: *o:i.o *:

0.40, 1,05 , 1.28, 1.24, 1.29, 0.96, 1,12. 0,95, 1,27, 1.22. 1.27. 1,05. 0,41

  • 11
  • ).3 . 1,3
  • 1.2. 1.2. 0.1 * -o.e. -o.8. -1.11. -1,5. o.o. o.3. 1.1
  • 2.5.

I *****.. :, *o:;.;.*:

  • 3.7.
  • o:w: *i:21*: *i:2i *: *;:26*: *i:20*: *;:2r: *i:zi *: *i:21*: *0:9;*: *o:;.9*: .. *****

0.51 , 0,96, 1.211, 1.22, 1,25. 1,18, 1,24, 1,20, 1.26, 0,94. 0.50,

              • , *o:;.9*:

2.1.

3,8

  • 1.2.

3,9 ,

0.1 * -0,9. -1,5. -1.11. -1.1_ * -0.11.

1.6 , *1,5. *2,0 , *1,5 * *1.4 , *0,11 ,

0,5.

  • i:ci;. *: *i:20*: *;:20*: *;:26* :* i:20*: *i:20*: *i:ci;. *: *ci:;.r: *.. **..

0.51 , 1.08. 1,22, 1.111, 1.23, 1,18, 1,19, 1.03 , 0.49, D,9

  • 1.6; 12 13 I ,&IAIIDARO DEVIAf ION
                • *o:iici*:
  • 0:10*: 'i:cii *: *i:cii *: 'i :o;*: *0:10*: *;,:;.o*: *******

D,41. o.n

  • 1,04
  • 1.01
  • 1.00
  • o.69
  • 0,39 *

, 3,9, 4,6, 2,6, 0,1 , -1.1 * -1.2, *1,4 *

  • o.3~. u.39. o.n *

, 0.37 , 0.110 , 0.35 ,

~

AVLHAGC

  • . PCT DI HER ENCE.

14

  • 1, 104
  • 5, 7 , 3,0 , -1.0 ,
  • 1.l

-~-

SUMMARY

I MAP NO: S2-8-23 DATE: 2/11/86 POWER: 100%

CONTROL ROD POSITIONS: F-Q(T) = 1.755 QPTR:

D BANK AT 218 STEPS F-DH( N) = 1.429 NW 1.003 I NE 0.997 F(Z) = 1.159 ----------1--------~-

sw 1.007 I SE 0.993

.I F(XY)

BURNUP

= 1.381

= 6525 MWD/MTU A.O = -2.18(1)

I .. 22

Figure 4.3 Surry Unit 2 - Cycle 8 ASSEMBLYWISE POWER DISTRIBUTION S2-8-34 I II , N

.. **Nii:oicri:o"":

" K J

, *o:o. ;r:

H G

  • o:iii': *o:ii':

[ D C II

        • .;.i
          i,icii:i,'.:

I , MEASURED

, ,CT DI FF[RENC[,

  • *0.41 o:ia2':, *0:10*:

, *1,8

  • 1.3
  • 38
  • 0.112 , 0. 38 ,

11.6 , 11.5 . 4.6 ,

  • i:oi *: *o:,r: *i:oi *: *0:10*: *0:,2*:

0, 71 , 1.03 , 1.00 , 1,03 , 0,69 . o.o .

1.5

  • 1.4 , 1.6 , *1.11
  • 3,3 *

, MEASURED

, l'CT DI FF ERENCE, 2

. *0.50, o: ,o *: *1.03 i: oi *:, *;1.22.
2i *: *1.16.

i: ;; *: *1,26, i::ii*:*;:;;*:*;: 11; *: *;: os *: *o: ,o *:

I  :, *o:;o

  • -1.8 *. -1.8. 0.1
  • o.8.

1,14. 1.20, 1.09 , 0,52 *

-o.9. -1.0. -1,4

  • 3,3 *
  • *o:!i2 *: *; :21 *:*;:iii":*; :2, *: *;: ;6 *: *i:2r: Tie*:*; :21 *: *o: ,2 *: *o: ,o *:

0.50. 0,92, 1,26. 1,18. 1.30. 1,15. 1.28. 1.18, 1,28, 0.93. D.51 *

  • *0.11 * *0.6 * *1,4
  • 0.1
  • D.3 * *0.1 * *O, 7 , *0,0 , D.'4 ,

3.3

  • 0,5
  • 1.9
  • II I  :, *o:ii2': *; :o, *: *i:21*: *;: ;9*: *i:H': *0:91*: *i:ci9*: *o:9r: *Ui': *;: ;9*: *i:2r:
  • i:o, *: *o:ii2::

0.112, 1,05, 1.26, 1,19, 1,32. 0,98. 1.09, D,97. 1.33, 1.18. 1,25. 1.07, 0.44,

, *0.4 * *0.4 * *0.8 *

  • *o:0,7010*:, *1.21 i:2; *:* *;:1.17;r:* *;1.29 D, 1 * *0,4
  • 0.8
  • 0.3 , *0.1 , 0.0 , *0.3 * *1.6 *
i;*: *Go*:* i:2r: *i: i2*: *; :2r: *;:20*: *i:ii*:*;: ie*: *;:2; *: *0:10 *:

, 1.19

  • 1.28
  • 1.12 , 1.28. 1.20
  • 1.31
  • 1.16. 1.21 , 0,71
  • 1.2 * '4,3 ,

5 6

  • *0,11 . *0.4 * *1, 1 * *2,11 * *0.11
  • 0,5
  • 0.2 . 0,4 , 0.3 , *1.0 * *1,11 * *O.O , 1.8 *
  • *0.38, i,:.;1*: *;1,05, :oi *: *1,15.
i, *
*1,27.i:29*: *0.95.

0:,1*: *1.26.

i:2r: *;:ii*:* i:oa *:*;-:ii*:* i:21*: *0:91*: *; :n*: *;: ;;- :*; :o; *: *o:H*:

1.12. 1.08, 1,12, 1.28. 0,96, 1,27, 1,15, 1.01

  • D,37. 7 3,7, 3.8. *0,4. *2.0. *2,0. *D,9., D,5. 0,5. 0.5, 0,2, *1,2. *1.7. *D.7. *0,5, 0.1 .
  • *o:o.42.

.;; *: *o:9e *: *i:21*: *i: i, *: *i:09 *:*;:ii!*:* i:oa *: *i:o, *: *; :oa *: *;: i2 *: *i:09 *: *i: ;; *: *i:21 *: *o:,e *: *o: iii*:

1.02. 1.21. 1,111. 1.08. 1.11. 1.oe. 1.06. 1.oe. 1.12. 1.08. 1.111. 1.26. 0,99. o.41

  • 8 3.7, 3.6, *0,11, *1,1. *1,1. *0,5, 0.6. 0.7. 0,4. *0.2. *0,9. *1,5. *D.9, 0.8, 0,9,
  • *0.38.

o: ii':* 1.03 i:o; *:, *;:1.15;; *:, *;1,28.

2r: *0:91*: *;:fr:*;:;;*:* i:oe *: *;:;; *: *;: 21 *: *o: 91 *: *; :29 *: *i: ;; *: *; :o; *: *o: ii*:

D.96. 1.26 , 1.10. 1.08, 1,12. 1.28 , 0.96

  • 1.28 , 1.16 , 1.03
  • 0.37 , 9 3_.7. 1.1_. -o.4 * -o.e . --1.1 * -1.0. -0,9. 0.2. o.8. 0,3 * -0.1. -1.1
  • o.5
  • 1.6. 1.1 *
              • , *o:0,70. 10 *: *; :2i *: *i: ie *: *;: ;; *: *; :20 *: *; :2r: *i: i2 *: *; :21 *: *i:20 *: *i:ii*:*;: ie *: *; :2; *: *0:10 *: *******

1.21

  • 1.18, 1.34, 1.20, 1,26. 1,11. 1.27. 1.19, 1,32, 1.17. 1.23. 0.72, 10
    • -o.4 * -0.11
  • 0.2. 1.2. -0.1 * -o.9 . -0.2. -0._1 * -0.2. -0.11 * -o.e
  • 1,3
  • 3.3 *
  • o:~2*: *i:or: *;:21*: *;: ;;- :* i:H': *o:9r: *i:ci9*: *0:91*: *;:;;*: *;: ;9*: *;:21*: *;:or: *0:,2*:
  • 0.113 , 1.07
  • 1.30. 1.-20. 1.33
  • 0.96. 1.08, 0.95. 1.31
  • 1.19 . 1.29. 1.07. 0.113 , 11
  • 2.0. 2.0 , 1.6. 1.2. o.o. *0.9. *0,9. *1,7, *1,3
  • 0,6
  • 1.0. 2.1
  • 3.7 ,
      • ** **:. *o:,o*: *0:,2*: *;:2r:*;: is*:* ;:n*:*;:;r:
  • i:2r :* i: ie*: *;:21*: *o:,~*: *0:50*:* ******

0.53

  • 0,95 , 1.29, 1.18. 1.28. 1.111. 1.27. 1.17 , 1.28
  • 0.911
  • 0,52
  • 12

, 11.5. 3.2. 1.1 , *0.1 * *1.0. *1.5, *1.7. *0,8. D.1

  • 1.11
  • 3.11 *
  • ...... :'o: ,o. :' i:05' :'i :2i. :.i:i; *:.i: 27. :.i: is' :.i: 2i. :.i: 05. :'i,: 50' :' ..... .
  • 0.53 , 1.09 , 1.23
  • 1.14 , 1.25, 1.111, 1.20. -1.05
  • 0.52. 13 11.2 , 3,9. 1.5. *1,5. *1.9, *0.9. *0.9. *O,l
  • 2.1 *
      • **.. :* *o:~2*: *0:10*: *i:o;*: *o:,a*:
  • i:o;*: *0:10*: *0:,2*: **** **
  • 0.113. 0.73, 1.04, 0,99. 1.01. 0.70, 0.41
  • 3.9 ; 11.6
  • 2.6 , 0. 7 , 0.1 * *O, 3 . *1.1
  • STAIIDAIIO O[VIA1 IOII
  • 1.246
  • O.J7 ; 0.111
  • O.J7 ,

, 0.39

  • 0.112
  • 0.31 *
  • 5.6
  • J,6
  • 0.11
  • AVEIIAGE

.PCT DIH[IIENCE,

  • I

SUMMARY

HAP NO: S2-8-34 DATE: 9/ 5/86 POWER: 100%

CONTROL ROD POS I Tl ONS: F-Q(T) = 1. 706 QPTR:

D BANK AT 221 STEPS F-DH(N) = 1.431 NW* 0.998 I NE 0.997 F( Z) = 1.137

-*--------1----------

sw 1,005 I SE_ 1.000 I F(XY)

BURNUP

= 1.379

= 12391 MWD/HTU A.O = -2.73(%)

23 I

I I

  • ,, HOT CHANNEL FACTOR NORMALIZED Figure 4.4 I. OPERATING ENVELOPE I _, . t ,2 .

I ..

(6.0, 1.0)

I./

1.. 0 - .

(10.9; 0.94) 1 I K \

z*

0,8 I \* . \

\

N

t R 0

t1 *o .s . . ~~ -.*--_;i--:.. .. * * *.... :

\

R L

I ,.,

z E

J D ..

I F D

  • z 0,4 (12.0, 0.46)

I:

0.2

  • I I o.o,-

I e*

.I 0 2 4 6 CORE HEIGHT IFT l 10 12 I

., . BOTTOl'I 24 TOP I

I I

I Surry Unit 2 - Cycle 8 Figure 4.5

  • 1 HEAT FLUX HOT CHANNEL FACTOR, F6(Z)

I, s2-a-01*

'I I 2,.) +

.1

--N I '-'

HO'

~

~

2,0 +

)(

)(

)()(

)( )( )( )( )(

)( )(

)( )( )( )( )( )( .

)()(

)( )( )( )(

0 )( )( )( )(

I H t:.)

)( )(

)(

)(

)(

)(

)(

~

)(

1.5 + )( )( )( )(

)( )(

)( )( )(

~

)(

rz:l )( )(

I t:.)

1.0 +

- )(

)(

)( )(

I H 0

i::
  • )(

)(

)( )(

)(

)(

r-

i

~ - )(

'I

)(

H 0,5 +

- )(

~

i::

I o.o -

+

I , , , ** I *

  • I *
  • I *
  • I
  • I , , , I , I
  • I * * , I , ** I I
  • I '
  • I '

61 55 50 . 115 40 35 30 25 20 15 10 5 ,

BOTTOM or CORE TOP OF CO:

AX~ FOSITION (NODES)

I 25 I

I I

  • 1 Surry Unit 2 - Cycle 8 Figure 4.6 I

HEAT FLUX HOT CHANNEL FACTOR, F6(Z)

S2-8-23 I 2.5 +

I -

-N

.._, 2.0 . ~. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .~~~ .........

I E-1 O'

µ.,

XX XX X

~ XXX X XXXXXXX I 0 E-1 u

<i:

µ.,

1.5 +

X X x'x XX X

X X XX X

XXXXXXXXX X

X XX xxxx X

X

...:l X I 3 X

i::a z X X u

X I

1.0 +

H 0 -x X

i
:: XX
  • .x:
i

- X

1. ~

...:l

µ.,

0.5 +

i::a

c I

0.0 +

  • I I ..*** I .

61 IIOTTOM or 55 CORE

  • I
  • 50
  • I
  • 115
  • I
  • 110
  • I
  • 35
  • I
  • 30
  • I *.*

25 I

  • 20 I
  • 15 I
  • 10
  • . I ***

5 I

1 TOP or CORE AXIAL POSITION (NODES)

I-I I

I 26 I

I

  • 1 I Figure 4. 7
  • Surry Unit 2 -. Cycle 8 I HEAT FLUX HOT CHANNEL FACTOR, FbCZ) _
1.
  • S2-8 I 2.0 +

-* IC IC IC IC IC IC IC X X IC IC X ICIC

,., -. IC IC ICICICICXICIC XIC IC ICXIC ICICICXXIC X

  • IC JC

,.o *-

,. o.o.

I ,

61 90TTOII Of COIi£

'!I I ,

  • I '

,0

  • I '
  • I *

"° I

  • S!I

' I

  • ID ,,
  • I *
  • I
  • 20 ,,

I

  • I

or

, . I COIi[1 -

I AXIAL POSITION (NODES)

-1 27 L

I ...

Figure 4.8

'I " SURRY UNlT 2 - CYCLE 8 MAXJMUH HEAT FLUX HOT CHANNEL FACTOR, FQ

  • P VS AXIAL POSJTJON I .:. FQ
  • P LJMJT I -* MAXIMUM *re. p 2.2 I .

r----. ............

r---,...

2.0 I

I 1 .B

.l

~**** ~

    • l ~****
      • l

'*** ... ~

' I

~

  • ** ****** \

I 1 .6

\

  • \\
  • * \

I F a

l .2

  • ~

\,

1*

  • p l .0 I o.a
  • I Q.6 I 0.4 I 0.2 I o.o - I I 61 55 50 45 40 35 30 . 25 AXIAL POSITION (NODE) 20 15 10 5 1 I

BOTTOt'I OF CORE TOP OF CO~E 28

I Figure 4.9 I ~

SURRY UNIT 2 - CYCLE B I MAXIMUM HERT FLUX HOT CHANNEL FACTOR. F-Q VS. BURNUP

- .TECH SPEC LIMIT I X MEASURED VALUE 2.2 I

1. '

I -A M

X 2.Q l -

I M u

M . .

1 .9 I H E

A T-I F 1 .B 1(.

)(

)( X L X X V V I u X

1 .7 X

X X V H

I 0

.T C 1 .6 I H A

N '

N I E L

1 .5 '

I F A

C 1 .4 '

T .

I 0 R

l .3 I .

I 1 .2 -

I 0 2000 4000 6000 8000 10000 12000 14000 16000 CYCLE BURNUP lMWD/MTUl 29 -

l I Figure 4; 10 I SURRY UNJT 2 - CYCLE 8 I ENTHALPY RJSE HOl CHANNEL FACTOR, f-OHlNl VS. BURNUP

- TECH SPEC LJMJT I X MEASURED VALUE 1 .60 I

I 1 . 55 I E 1 . 50 N .

-1 T H

A

,I L p

y 1 . 45

. .. y X X X X X X X

X

. X R

I J 5

1 . 40 X X E

I H

_o -1.35 .

T I C H

A l . 30 I N N

E L

I F A

l . 25 I C T

0 l . 20 R

1.l5 .

I .

I .. 1 .l0 -

I 0 2000 4000 6000 8000 10000

. CYCLE BURNUP lMHD/MTUl 30 12000 14000 16000

I Figure 4. 11 I SURRY UNJT 2 - CYCLE B I TARGET DELTA FLUX VS. BURNUP I 10 I B

~

I 6 I T A .

R .

  • I G E

T 4.

I EL D 2.

T I A F 0 L

I u -.X

-2 . ... ..- -. -. -. ...

I ~

N 1

A A A p . -

I CE R -4

. A t,.

E I N T

-6 I .

I -6 I . I . .

0 2000 4000_ 6000 8000 10000 12000 14000 16000 I.

,~ -

CYCLE BURNUP lMWD/MTUl 31

I I ~

I Surry Unit 2 - . Cycle 8 Figure 4.12 I CORE AVERAGE AXIAL POWER DISTRIBUTION S2""8-07 I

I ,., + Fz = 1.239 I AXIAL OFFSET= -6.16 I II II II JI X XII JI X JI XX 1.2 + JI. II .JI X JI JI II II II II X II II JI

.X JI 11 II II X

,-... X II JI II JI JI

~- II II II II X o., -+

N II JI H

...:l

- II X I ~

JI JI X 0

z II II I *N N

i:,..

0.6 +

II II II X

X I O.J +

--x II JI II I

I 0.0 +

I . . . . . I ***

61 aonm,c or COIie 55

. I

~

.

  • I
  • 115
  • I 110

.*.. I 35 AXIAL POSITION (NODES)

I JO

, , ** I 25

      • , I 20

. I ,

15 I

10 TOP I

5 or

, I 1

COIi[

  • I I

I I .. 32

I *,;

I I Surry Unit 2 - Cycle 8 Figure 4. 13 I CORE AVERAGE AXIAL POWER DISTRIBUTION S2-8-23

,I I 1. !> -. F2 = 1.159 I AXIAL OFFSET= -2.18 I 1.2 *

>< )( X

>< X )(

)( )( X X ><.X _ )()()()()()(XX X X )( )( X )(

)( )( )( )( )(

I

)( )( X )( )(

0 )( )(

~ )(

C-.J X H 0.9

  • X

,-J )(

I --~

0-z X

)(

X->C

)(

I --

0.6 * )(

N X N

,'\ ~ )(

- X I

)(

., 0.3 *

-x I

o.o *.

I I , **** I *

  • 61 IIOTTOfl or

!)~

COR[

  • I *

!)O

  • I
  • 11!1

. I ... , I ..

110 l!)

I **

30

, , _I *

  • 2!)
  • I
  • 20 I
  • 15
  • I ;

10 5

I .*.

TOP Of CORC I

1 AXIAL POSITION (NODES)

I I

I I ~- 33 I.

I I

.I- 1 I Figure 4. 14 I Surry Unit 2 - Cycle 8

-, CORE AVERAGE AXIAL POWER DISTRIBUTION S2-8*34 I

I 1.,

  • Fz
  • 1.137
  • AXIAL OFFSET = -2. 73 I I.I*

1111 I

1111 JII II JI II 11111111 II

-s II JIJIXII

.11 II IIIIJIIIII 1111 JIIIJI JIIIIIIIIIIIIIII II II .

  • ** II o.,..

II II II I N a

.II

  • II X

i JIii I --

0 II .II

~

o.,..

I -N N

Ji..

  • II II II I 0.1
  • I ..

II.II*

I ***** I *

,,  !,!,

  • I
  • to ,,
  • I * . I .*** I
  • tao n
  • I .

IO

  • I
  • a,
  • I *
  • I
  • I *
  • I ; ** I I

~TJCIII Of COIi[ IO Ill

,o,!I Of 1 COIi[

AXIAL POSITIONS (NODES)

I I

I 11

  • 34 I* *
  • ,. J I

Figure 4.15 I I SURRY UNJT 2 - CYCLE B I CORE AVERAGE AXJRL PEAKJNC FACTOR, F-Z VS. BURNUP I 1 .. 4 I

I I 1 .3 I A X

I J A

L 6 I p E

A 6

l .2 ...

I K J

..N

/G A I f

~

6 6 6 ~ 6 C

I T 0

R 6

6 Q

6 I

1.1 I .

I I

1 .0 -

I fl" I

0 2000 4000 6000 . 8000 10000 \2000 14000 16000 CYCLE BURNUP lMWD/MTU)

I*** 35

I I

I Section 5 I

I PRIMARY COOLANT ACTIVITY FOLLOW I

I Activity levels of iodine-131 and 133 in the primary coolan:t are important in core perfo.rmance follow analysis because they are used as I indicators of defective fuel. Additionally, they are important with respect to the offsite dose calculation values associated with accident I analyses. Both I-131 and I-133 can leak into the primary coolant system through a breach in the cladding. As indicated in the Surry 2 Technical I Specifications, the dose equivalent I-131 concentration in the primary coolant was limited to 1. 0 µCi/gm for normal steady state operation.

I . !

Figure 5.1 shows the dose equivalent I-131 activity level history for the I

I . Surry 2, Cycle 8 core. The demineralizer flow rate averaged approximately 88 gpm during power operation. The data shows that during Cycle 8, the I core operated substantially below the.1.0 µCi/gm limit during steady state operation. Specifically, the average dose equivalent I-131 concentration 4

I of. 7. 4 x 10 -

Specifications limit.

µCi/ gm is equal to less than O. 1% of. the Technical I The ratio of the specific activities of I-131 to I-133 is used

  • to I characterize the type of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects,. where the diffusion I time through the defect is on the order of days, the I-133 decays leaving

" - the I-131 dominant in activity, thereby causing the ratio to be 0.5 or 1- -

~

36

I I .;

I more. In the case* of large leaks and "tramp"* material, where the diffusion I mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. Figure ~-2 shows the I-131/I-133 ratio data for the Surry 2, Cycle I 8 core at a general average value of 0.09. These data indicate that there were 'probably no defects in the fuel.used during Cycle 8.

I

I

.1 I

I.

I  ;""'-"\

. ( \

I

  • 1 I

I

  • 1 I

I I .r -

  • *i-'Tramp" consists of fissionable material as an impurity in the reactor core materials or fissionable material .which has adhered to the surface*

of reactor core components.

I *,

.37

I Figure 5.1 1 I

SURRY UNIT 2 CYCLE 8 I DOSE EQUIVALENT 1-131 vs. TIME I

I I 1 TECHNICAL SPECIFICATIONS LIMIT 1 I

I -b I

(!)

-N cc b I .::>-:s...ii----------------------------~

u

...0

' a.:

I "~ -

u

(!) (!)

(!)

I "'b

(!)

I (!) . (!) (!)

(!) (!)

I (!) (!)

(!) (!)

(!)

(!) (!)

I

(!)

....----tlOO

(!)

N I so a:

w

~

C

~+-=--..-----.~--..----L--.-,JL-...,......-----.-L.L,..--...--.......-.__..--.....__,.._...L.1.r--,--.......-' Q I JUL AUG SEP OCT NOV DEC JAN FEB HAR APR HAY JUN JUL AUG SEP OCT 1985 1986 CL I**I

  • 38

I r Figure 5.2

  • I . SURRY UNIT 2 CYCLE-8 1*. I-131/I-133 ACTIVITY RATI(J vs. TIME 0

I U')

  • .....,...---,,--....-----.----.----r---~-T----r---r--~---,,-~---r---~....,......,.,

('I')

1* 0 0

~-t-t---+--+-----l----t----t---t-----t-----r---t----r------t----t----t---t------t1 I

I .E:).O

-ll'!

1-N CL a:

I >-

1-0

_o

  • 1 -

->N I- .

u

. CL I 0 enU'l en

  • I -' I
  • 1 * \ -o enc

,,._, I (!)

(!)

(!)

(!)

(!)

I (!) (!) (!)

I I~

0 (!)

U')

0 C)

(!)

I I 0 I -

--cc 100 fr rl 11 I ~ I I. I I N 50 I { 0 LA.I

I:

C

~

  • I I I I I I. I .. 1 I I I *1 I I I 1*

JUL AUG SEP OCT NOV DEC JAN FEB . HAR Af'R HAY JUN JUL AUG SEP OCT.

1985

  • 1986 39

I ,

I

  • I_ Section 6 I

I CONCLUSIONS I

_The Surry 2, Cycle 8 core *has completed operation. Throughout this I *. cycle, all core performance.indicators compared favorably with the design predictions and the core related Technical Specifications limits were met I with significant margin. No significant abn~rmalities in* reactivity or burnup accumulation were detected. In addition, the mechanical integrity I of the fuel has_ not changed significantly throughout Cycle 8 as indicated

_by the radioiodine analysis.

I

.I .

    • "" \

1* ~

I I

I I

I I. -

I"'. 40

I "

~-

  • I i; I Section 7 I

I REFERENCES

1) S. B. Woody, "Surry Unit 2, Cycle 8 Startup Physics Test I Report," VEP-NOS-18, July, 1985.
2) Surry Power Station Unit 2 Technical Specifications,
  • I 3)

Sections 3.1.D, 3.lZ.B, and 4.10.

T. K. Ross, "NEWTOTE Code", VEPCO.NFO-CCR-6, Rev. 8, April, 1981.

  • I 4) R. D. Klatt, W. D; Leggett, *nr, and L. D. Eisenhart,
  • "FOLLOW Code, " WCAP- 7482, February, 19 70. * *. .
  • I 5) W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"

WCAP-7149, December, 1967.

I I* '\

i' I *~

,;.1 ii#

I I

I I

I

  • 1 I\

'. 41