ML20083C988

From kanterella
Jump to navigation Jump to search
Cycle 12 Core Performance Rept, Dtd Mar 1995
ML20083C988
Person / Time
Site: Surry Dominion icon.png
Issue date: 04/10/1995
From: Brookmire T, Miller W, Villaflor R
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18152A054 List:
References
NE-1011, NE-1011-R, NE-1011-R00, NUDOCS 9505230204
Download: ML20083C988 (55)


Text

angr.

4. y; w r w; ~\\s? r =

r

=

-y.,*

1;,

g;.y.

-[ N y:,

y ' g f.-c n - O.

+7

....,,4.,-

g,. (.,.,

a

, ~

a..,.

};y ],

y.

..e,

' ' 'j-te et t 3

,y

.g

%. g. -]. (w. y ;- (. 't {

p.} J ;,f:,

.y f.

,. ; g? f'

+

a 3

3

+,

9 y

73.,

\\pgn y g; r.

g..v,._

e s<

4

,,. _, w.

,i i.,> -

..-* b

.a-(p q, _

y S N ;v (g,,

.g g.., y; 3

a-..

v ~s

,? ;.-y

, y(. 't,7 5 y-

' cA y.

.,. ' n 1

3

_ ;M...

'+

s s

.,.3

,,l J: :

y

'h:q p y;

.N I MN..

JU 7. L u

Q{f < %.% ' ff n 4g 3p QA,~ (,g's. Q 'y.\\j f;;

?

y

}

F, _ ; O f *,

.v.

y 3

., y >. N.,g 7

-q y \\,

y, e.3

,t. A u h.., i s.,#;-,. e;h, \\

.o.,

5,g

.,. y m

'g#

4.

t

,,,. \\

s,.

.1

' ['

e i

'".[jf.',,...h.\\h";f\\L,\\g\\'

i

,,c

}, (9,', '

". M

,',\\

( -,

w

,j,-8*

I #

3,..

1. x

. /g.,

e g,

} y'..

g.

o.

, 4. -[.\\'i 4 +

(,,; \\. yll

-. (4,.., l.

., 3

',),

r.

,,., t(35- {3,...

.e,.,

,. -/

,..,. i y

O.

4

[

,X,, -

2

.g..

s

.Y.

'k*

J. / ' 96 ;

p

.p.s y y e,.a s

t,

\\ (; -

sc

y. q -

s

.,,., +

.y.

2

$,3;.

. % i

,,g".,

.g g.~

^"s

.s t

t

.s,;

f \\.'

\\ C '?.. -

\\i \\';. f " 14l[" 4l [~\\';. f,

f.

5 T.

'*i,W3.

^.([ l

'l

', -y,.. ? O

' s '

f '

4 r

s N. c 7,' s; [%..- l; \\;.;)

e t

2A 7:

'[

[.N, s'

N, ; j - 1 g' t J5 hi>

~ t,. y M., s... ];,W M,il %.:;.o,"V,?

C,; h ' '5(f

~'r 3

y.'

4

  • ,7 m;

v

, s,,. q

,f 1

.\\. 3

a l(\\ k,\\g[,Mi A;) N\\(g- [ bly.. k,..

s, u

>r.,

3 3

.l'

,,h.:.

j,oN

.R t

.g

g.

1gy +

3 o,- wy,

. q yg y\\ ; WNc : x y; q;uNie7%

- o u

s m

o1

/ :' a.

2\\;

N aV7 c, T, b

  • i ' QlU

- 1, q[;

.. A ' L h,. f, 2

P

.y y

~ ; \\;)i

' :\\ >. e \\p

.w :..y

~; c

~.

.w.

(

dg :,' Z.

D..

(t EH 0

.r' l

C.,

r0 kt.:

4

i., J ', q

.th 4

v\\n v

g.. -

,, g'g l 1

i'

\\k

'e

,g

  • p_ ;\\ ' V

(',

.\\ '"

'; K ' '

Kt,,. &.

.. ? )

lc. :'

'. i ;

'J'_"

)\\j :

h[

l\\

8 I:

l s

.. s.. c.

m.

a,

~ A.

m,

g

[

=*.,.

I V

a s

s

.o t

,4 k

//

.f '

'4 T

/

t 4

8

/

1 s

1

^

~

!Su, rry; D c ' ' i. ~

E t

a Unit 12 1o wlg; '

< Cycles 12; ;' y e f

~

~

l a

n a

i core; ;

~

v n

v l.

!Performancek ' ' ' J.

c9 j-

?Repoirt!

u j

1 1

6 4

^

ll

'NucleatAnalysis and Fuel L

cNuclear; Engineering Servicesi d

l i

,j a

1

,4 i:

- March 1995z o

f '

1 4 s s

i, I

s

)

' C.

1 4

A i

i,a Virginia P6ser.

i

' I.

D

&4 6

L

.e**1>

e l.

-._. l

.h-

n.,.. _,
w.,

s 'l

.s 3. w *.ie

... :~..... '.. i......

  • .u.,,.

., ',. e

. #*/

.f.

4.. ;..,,;

' # E p. '#

- " -',.. _, [

,7 I

.. ' -.. ',, p',',.,'

e,.,

s,

-J,,.'.- ',,.; ;.,- -,".

.t.,

.a n

..N.,".*^., ' ', ', *:.. -.. .,;'.

,-.J,, -.' ','l

,. l./ '.

- : _q:,..,.

.e :- _. 's

-;t... '.,..... '

. '.. 'i e.w

(...:y t

',.',...z,'_'

9

,~;c

.... ~.

  • y..

,a

'. ~

,. ~ ','

t.

c.

n

..,, '..;=

a

  • c l.,. en..

s... '.

-,. _(

"w

,z,

"_...... q ;, ;:, '...

.* -l.;;.-.

..'j,_.,.

[,^,,,_

...,,...r.:

s

.e

,..,,__v

- y

,s

,C

.l-

.e,.

.,'u,-

e ;,7 *.,.......

r s.

',..t,

.. 7,

i*

- *; ' ' i, :

^

's'

  • ... ~

L, ' _. ',. '., ',,

'.f.

..: l '- I -

_ s,.;.,..l.

,_f

- 9

- {,,,

' j - '.

},,

. f.(

- ~. :....',

,,. - s

'...,:.'.'. ', l

,~r

, g'

.l _.s,*

e'

,a e',',

a.

~

.,s

., c.

' __ '. ;2 tv.,

?

.L-

. ~ _ ; ;.,.' ',

y' Qe

-.I.

..) ',... ' -

r

".t.<,

't.~,..

l' s.

v

.e.

o

,. ( '. '....,....,

. _ 4, l,s,
,

,. ' *l.,

..... +

,g e

. ^.

7.... * *..
e..,, 3-

_ ',3.'. :..-.'

.,g.

. - ~ '

.i.,.,."

-6 o.

?..

y k,,. '.<...3

'. - -. tp,-

.(

e.

c t.;,'..,.1.

y-

.-.A

. t e';

'. ce...-- *. ;..'

_.c.. ',' ;'- '. -

,s ej 6

r..,

l 3

^

.e

..,.;..-(-

ip -.,,.

d e.

'g U

r.

......o.. " *'..: '..../,3',.-,,

A

f. ',,. J..,/. - - ' f, ' (

.......... j

.r

.,.7...,

... c,

?'f,'-

...jg..

,i

.i

- -'.s g. j-

,p

,,i

,y,.,.-

,.... ~ ' : '. '.., :

,;v.... -,,

f, '

p,, y,...: y.,,

1

..,'?-

'I,f.....-

,' f. ',[ / < ~ - e

,,L

. ' P,;..',1 -.,' {.. ;. '; ' 1 ['. } j.l ' ,, 7. 2 *..D ip, '.

.. ',.}, 7.

,,'.:4 :

- 9. - y. -.. *,':...,

e :.

t;. 7 ;., i.

'd :. a ' '^, l

'. '....,. ' i. t.'/. '

l ',L, 'W.. :

.?'-

-1

..n

..g.... - - ' :..'.

.r n

...:...;:e

.'.,,.?..,'

^.

',.;.;.;^..'..*<','...;...';_....'.'...,-

~.

...' 1 *

~

g. ; Q: y. '

l..i,.. :.

l?{ * '.,'. '.h*'.',... ? )a'.,f ; ~.c ;., ;

' b,l^ ;'..l-t' v h.

1,:...

W

_ " v. 4,;........

. y

.,..,. t.T M w.....-*

(,., g,...; t;.

u

.c., :..,.;.....

4,,.-

.3 u,'..

'r

.-j,,..,.,'.

.r rf,e... 9...,..-

r-.

,t z,..g.

s.

,.., f.,,

.* j.

-g

..... 44F.

.'or t

9

' 'g...'.

.~.s V...,....

4'. ;

t..

,./.,,

...,.e'.'r.~

. c ':

~

,:.y (;....;

,a ;,. b.'.

v.. x,'.:;.,5 g.;_A.,;;v.',.. g..~, ' r

-l.., *. :..

... e '....

b,

  • ;. m. _.;..c
  • q..
n;
. '

q, v,...,.V:.l <w: :... p. 7 c *

,1.t, 5.

.,e

~

L s.

.. ;. s -

.- '...;..-. ; b. -

f- - -...

,: : 3.,.V".:<.: 4 L....; ; y!. - : 4;., a.;, i..'3 u ;,,..:...
,,
.{.

,. ~..,.... ; :.a ;.., v..

,9.,... - (; '."...$

+, '.

?..-

to' v

s o.

....v

- ;../s,,: a:. m. :4.,.M. 4

< <+y !d, n'.. ;,?.

7,. ',..,

s

.,.. ; a n.: - : s y-

.4,; m.. 3 1 L.,. t,.' : ' : '. '. '.

. c.

  • ..a..~ G..-..... '... - i...

?.....-

.4 1..- -.,. '.

~

,,.L.**

.::, tr. g

n...

....s.-

M.:.;.K.'L. M, :.., M. &. T,_... t:c m :. e,a-[M- [?.,.l.$..,I ; j '.;;. A 4..: ?sf.',

'.5.12f.

.: a:.~..

?

..:ip. :

Y.r ,...

.z...

L

.c!-

d'f'.'.*,ik

.4

h
Y.$*4

> h. $. jlf:,"A >,

-c y, ;*,.;...v L.

6.T..,j'...(*:.*

. '....,;. p

"."..fE I,. f~ ; :J.[.S .$, 5 9.

iU i.2

 ?

, f s.

g :C., :,,.. *

. r b :s 2.B :. o '.i..

i

..... < ': r$,,<

'.1, M :... ;.. ; '..

7

s...

h ( '....,....

, ; 4.. ;._._.,,;

+ -

.s W<. ' Jf;.. ; M.

E

. w. : -.,;,_.2,.

l.

..,'c.,y

.t.Y&s.g,.6. hnl,.d..:

...~.;.... ;,.

..e

~ v.. 4 :r....

. v *,.., : ~..- -.: ; - t ': r. :. ;.. n. ~.. '... *.. /., xJ n /,..

y W,' y. n...

..s:,.... n. c..~:x

~...). t :

.,...,.,s t..%..:./.: >.,.. - v.: " "..;;. :,

. s

.e ma g g.,.y k. 4l:7.:h $..l.9

.N't.:$ $. W ?... :'.I AMjj...

J.. q'

.;Ql,l

. f.:..T 0 k.. -.00....

. ? '.,* s.*ll.:iI-.

s

.0. c$,%O 'Q..-.... -

v~

)-

..N

):9,. f,.g ::::.. f, Y '...

7:.,' '[.?:'.* G. ?.k'..j ' '

I.5 l

.[

b,'..

g.

) _ { : M '.h;l.. _:.; ' s. l...* [. _

n }..?g><&.t ry g%' :%'. i ? m.g p'y a w;?'l.4 f,'f... ; f -l,.T...

t.. T, ':. %":.

...c S.

n

-c. :

. /

2.

^.l...q.4 '

hy

' ; : Q.lt
. ', ?..S i,O ;;j...

R'Li 3.f,

,,3 % ~f.

v......

...~ ;....:..,..

F.;l-fbn, p.

r

...at.

u,..( :

~ y, s

i..*'. 5.; : ~ ?.:,:........ - M';

a 6%.n. ?,f yp S,w ".U JY. L.-'...h 4.' U.f..

i 'i ? a. V. N.

- I.

a'.

1

i:W1%?.Q,9 e y;.
w
f:,.%".V:'i < + ' ?. ? D ; ;..f 'v:.
.h A.
. ?

..'u.... ; 2. ' in.

.? w 1..

~; :n

'. 5. q"

.:.x.

at:!'.i '.

Y,..-

.c:

4, ;

... - \\:.. s... (

'k

.[= 5.. *.I,Y k [ ;
.' '

....; 1

-[

  • j=*.

," f2-.

.. n. : s, s d

..v..'.[

,;,[,

T.W,....' I.,[0,!.? * *

.b, '. '). ?,

,'[, 5,,. I, j '9..... '

I

[. ":

....'..A a.

. L,.?.

.,'f.

..t' j.

NQ,M"*MO.6 J.b,._'.a.!c];.y.., sij:M[)C 3b;iK,y::..:

T,' Q..

1

';a r;. ;. _ ^ :.::y: V L ' ?'. q':

'. ' J:gy o f}f+,.s.,h..

v s+%',.

..o

,t 3

sy e

s

.s

.',n,'

..s. ~- -

.,: 4 *.'

. ;,(,.

.s a*

t'.-

.MW Q*l,.M' iA$...[f $$:cl,.q Q.

.,y'.)..

  • at:

sy

".4.'Y <y. ;

'.. ). ;= 1. :

v

's y.,,!.. l % :..l3

.G:y y

.n.? '. *;<

y!

Y

.s.'.:;.

L

';ss A h..%', A:-

e D * *..: ' u - ' *..j-, '..

.h.-

' ';^' ib_ lI @;;2) ':. ' ?,kc, Y

% :, @?..j ',

/9 Y ' G - h : -)i:

...lO.. '.

5 j

- o

?b W6,

  • g ' f c.

.e

~ r t?! :

- l

~ '. '

. s $ $ h

'W

.. 'le f,.; : b' l

",.:..'V.c,.,..,.1*

..*..I.t'

?.Y ' %,>< n'?'kn..W:q. c(,a T'

@h.%hh.'i Wlh P.p.

i *

  • N"? '"Q', 5 $

?, ?g(&h..p.. gg.j..b. gl.eM, h.... Y ':.:...'.%'j; c: ' k4.'n: ':.N f.,...

?

l

s.

>A

'^

D.,3, h. f **

.:m:, f:

-:i

+?

.'.. <.. ~ :i. :... i, ; j

-. ~..:

c.

2 '.;.?g;ij % % : % W W.:})s.defa,fiy M..v.@ s,p G;f'i. 'i k'."- @rQ. %,; w.1:;%G.:

. k. *.

-... }

st -...,

n :p v...,..<

g.,,,.,)

- 4 q. - c..,c.. G: (.'

e u c. e,,

. e.

v1.. +.

'}4.

i

. :'. ~. ;.'. '. : [ ' l '- U '

3 I #,4.,,..

..e.....

u. *. 3 s

s,c,.

^,

gfj;g.s

,=.

s-

?n*

. v.

g v.

5 c.

W:.

%...,im.P 'Q. :X:;L:

.b
.3l.. :lp. 7.y

?.

$.'.. Y. *

~

U:.'.Nl Ylh. f.? l5l?' $,h:g[,%'.

'.? v*

," ).y.n k).,N l.

.s ?,

s h ' Q' 5 Y':?.l}, $.' -

- 0'!M'. ;; * ' b '..'. ;. ' :,. :2* L ;., :.... l

?? ?;- '

.,5c. % g,,:. *k l f;,? fy".?- l*lh *[Y

?? ja.

f: ;,. '. l.'h..l

^..';~ 6,

.t

., ' *g ';

. ' ',.. . '. '.'.~Y h e.

  • g h.[.h.'[.

T D..,) f &

.v..

" L. jh. j f.[-/'. \\. "[,v,1.. (. c ':f. ff. f. 'I0.h('.

e

,I,. ; *'.2 h '.i

' _ &e ;.(( Ys...4,,,3.l* '*.. s'

..~..;[..

i< I N,h: g u =:j k.'y*A*

? [+ '

. * ',s;.,,... ;,

t* 1.. * *' f f. G*:i~

E '. '

4

..l..

,P-

,: s

~

-)

+t

.Y. i,y ;;; g, _ :q.

  • =

' g.i 'y

\\ Q... 7 :.; ~ :;, y u, ;.._..,. ;,, _... ;l.> : n v..

e. ?;;../ '. s-

+ ~

>y

~_

. ;u.Qw bj i a l ' :: c:,.t. ' t:,y.*ls% !:a r

,y

.r

,. W '.. :. ;e L.: :

.e

y-

..r.>'

t"'.-

+ s. :.. ~ ~.. ; ; s. 4. &q,. '. Vv.... *-

..::. r.:y:u,y19 l.QW,: : > a f f.y.h. 5:M.%r... &.%y;qq.;;><..':;; c'g;,,a*.t G ',,;.:g,,s,.

n..

, b 4;. ' :' b.9 p:.1;.vy.n.:i;,,.u. Q u

' e

d. -

.. ~, r :.. ' ' -

~ a, s.

..:....u... ':. p ;,.. 'n.

.,t,..",." c :,..;L,7.. * ~:.:.. - :. ). 2 i, ' n.. " - ' :.'

q

~ ' :

n. ;.f. A. -

. i..' ' : > -

a

.-y:';.4.m,,.:,%m.9 e

9 g W; : M.Wq,.g[: ln.u

.x. ~.s M. e.:.. ; A:

W.,..: '* "r.

p 1

:2:- a

... ?..i. ' '. 4. :"..4,

~ n :. !. ' v.. -

. c.......,,. n g %v....:

'A..m.%. g.ps. :.:

.' -... ~,..:e.....

r A.

.%.  ;....<...::,:. :.n :.. \\. : :

n%

. n.a 4.: :* t..

WfMW;;k:4.b...,y; g:

'..a j...

' : Q.l? :.

.[:.}l

.;* j:

..s Y

" ' /.

Q:;.. '; y,y* *: '. ~.* x,c.A ~ ~ % V ;..3'. -:; ' ::.

. r

} :.[:-lllKb.l.:'G.. n. i'. :;:*. :..s.. ' + g " : i;l. ?:4 ' '.- L: ^..: '.. p*

.r.;n pl d;:@,.M ?;;' e

<. ~.

h

. f, k*.. ' :.., ',.{.,; ;l.[ 4:u::. j,"...f n.

4.. :,:s,hm:l,'fL.f', y } "(fif.~.tm'., ' *y(. r. W}.,".. ~; e, a }. );. 'f...,. :,,.; i ::  :

.yN'kh

![ 'A:.h;;y {'?

?:;y;. i.q ' G.}ly);1].:;t/:..~ p. *r t

');..\\) ' '.

-,q

. f. f M ;...p; e g:...

_L.

- ** - ~.. -... ;..

...~. l,: ;,j...Df.,,.,.;. y ~* m Gl7:

.
i? x y:'. :.u%., '.. '

.k. ~. :.n }.o.;4, \\ _; _. y.:e..., L., l - ' u. ;.. d..y.'. 'x:u. :: ;:

,%, :e,,. : ;;.. ; ;.

. s ;.. ';;

.,5*

~. =. ~. -

, w:m.f.,, k,',f:.:.&x;;~1.G* y($+*(.N

.w. e :-

-, - r.Y: Ac..

9:g y.w<.'v;4..,%,.D.. (:n %rt o.

.'.r..

  • [+.::;:,.v.:. %,.y n

..c ? ?.::^.: y

,,. a,

  • . y \\h a 'i.. *, l :
.;,.'4:

-e.

. t;,s y.

+....

M.. g. q. \\: f. '{ '...v;.,...

,.n1,. s.

: b.. c.

-s: -

- q.,.' :.,. r' p.

$.+ '.,. a......

2

-,y..

e

.a g.

  • u a

.h..

.n ' e-.-.

N

?.$.

,\\.., s A '.

n..','

..a

.. l

..a,..:...

.. A. e. :......s.,,

  • p, s..
p...*
,n,,...ay p *' q/,.p'. u ;

g f.$ 2 y m.p" $p,.*,Q,,.3 1. :' ? s..' f..'Q'~. ';*)V, 'Q.* '. l.9.,;.'.; g..." '.' ;.

li.' :f. ~;;;;,3. '.. ' <. s.

v...-%.

m.

3,.,>w s '

. f.;,.

sas.p

.w: ~.h;G s..,*

.?.,'; ;_.. :;.,...!., y: :: : ' *..~. "; ; a. '.

...v i's s

..
. * *.6

,'4l:' f.q' p:

n

.'t

' ; ' G.. 4..,

p.- Q l

? ' ;, *: > ^

,n
w. %

.g

.s

.,'?,.

', %.,W:...

,.1,

'l.,...

\\,p.

7 :.

s

.. ) * ; g %y r;

r m' -k,,,,,i..

..*h ;: : r. 4,V,s;,; ;.

ep... v, '..

9:&$M ):(IffM$#,6 ~g,n';,,,

t i %

... : 4. ';..?*;.4,"...

.. 3.. o g,g 4A: y,.,.y

.. % :Q. ~.... :.y, *.D yam.,.

...r;:... - y p...

a

... p?;y '% :. :a

...r.

m,-

.qi:T %sQ,.W,

. v. ; *:.m v v:H; p..w v n.. L::., v

  • i :

pM

' G.Mq{ hpf',L W;.hMQN 2 M@,C.' 1::

ql 4-

%.,E

",s.jif.M.:;m..'.; clf.E f,r:f.7%g &M: 7. s U.

@S I^1 h@[Y,'hs $;N.S,F.%j; N.bM 9505230204 950517 k.[.D 9

YW$d;.M$ hff)l.:J.Or, d.i.:'.f? b.N@.C.:.@h;'

.'M g,.K.p.;h.

M. d. :j:

, ; ll.1,M.

PDR

.> V).:'i. f ?. *.p

,.l./. $'!,W :i s.e @. '.C:".L.C:i :n.v *.,;;:;i.d:.L ::..:

i PDR AD0CK 05000281 c.,

1 L; *

.n:c:.

I TECHNICAL REPORT NE-1011 - Rev. O SURRY UNIT 2, CYCLE 12 CORE PERFORMANCE REPORT I

NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER MARCH, 1995 I

3- & 15 PREPARED BY:

W. S. Miller Date REVIEWED BY: [ 6 424

~ 3 27-if R, F. Villaf" lor Date REVIEWED BY:

- - -h 3 - 2 7-rf"

,=_

T.

. Br

!kmire Date REVIEWED BY:

Y

[

D. C. La'wrence Date M

  • NT APPROVED BY:

4 D. Dzia'osz #

ba t'e d

QA Category: Nuclear Safety Related Keywords: S2C12, Core Performance

TABLE OF CONTENTS l

PAGE Table of Contents 1

List of Tables.

2 List of Figures.

3 Section 1 Introduction and Summary...

5 Section 2 Burnup.

13 Section 3 Reactivity Depletion.

. 23 I

Section 4 Power Distribution.

. 25 Section 5 Primary Coolant Activity.

. 45

. 51 Section 6 Conclusions Section 7 References.

. 53

ll 1

1 I

I I

NE-1011 S2C12 Core Performance Report Page 1 of 54 1

J

am LIST OF TABLES TABLE TITLE PAGE I

4.1 Summary of Flux Maps for Routine Operation

. 29 I

I I

Il Il I

I' NE-1011 S2C12 Core Performance Report Page 2 of 54 s

y


...__,e

'V

""'T

-' ~. -. - -.,

I LIST OF FIGURES I

FIGURE TITLE PAGE 1.1 Core Loading Map.

9 1.2 Burnable Poison and Source Assembly Locations.

. 10 1.3 Movable Detector Locations.

11 1.4 Control Rod Locations.

12 2.1 Cycle Burnup History.

15 2.2 Monthly Average Load Factors 16 2.3 Assemblywise Accumulated Burnup: Measured and Predicted..

17 2.4 Assemblywise Accumulated Burnup: Comparison of Measured and Predicted.

18 2.5A Sub-Batch Burnup Sharing.

19 2.5B Sub-Batch Burnup Sharing.

. 20 2.5C Sub-Batch Burnup Sharing.

. 21 3.1 Critical Boron Concentrat. ion versus Burnup (HFP, ARO)

. 24 4.1 Assemblywise P,.er Distribution - S2-12-04

. 30 4.2 Assemblywise Power Distribution - S2-12-16.

31 4.3 Assemblywise Power Distribution - S2-12-28 32 4.4 Hot Channel Factor Normalized Operating Envelope.

. 33 4.5 Heat Flux Hot Channel Factor, F (Z) - S2-12-04.

34 9

4.6 Heat Flux Hot Channel Factor, F (Z) - S2-12-16.

35 q

4.7 Heat Flux Hot Channel Factor, F (Z) - S2-12-28.

36 q

I NE-1011 S2C12 Core Performance Report Page 3 of 54

E LIST OF FIGURES (CONT'D)

FIGURE TITLE PAGE 4.0 Maximum lleat Flux Hot Channel Factor, F (Z)*P, vs.

9 Axial Position.

37 4.9 Maximum Heat Flux Ilot Channel Factor, F (Z), vs. Burnup

. 38 q

4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.

Burnup.

. 39 4.11 Target Delta Flux versus Burnup

. 40 4.12 Core Average Axial Power Distribution - S2-12-04.

. 41 4.13 Core Average Axial Power Distribution - S2-12-16.

. 42 4.14 Core Average Axial Power Distribution - S2-12-28.

. 43 4.15 Core Average Axial Peaking Factor vs. Burnup.

. 44 5.1 Dose Equivalent I-131 vs. Time.

. 48 5.2 I-131/I-133 Activity Ratio vs. Time

. 49 I

. I I

I NE-1011 S2C12 Core Performance Report Page 4 of 54 g

1 I

Section 1 I

INTRODUCTION AND

SUMMARY

I I

On February 3,

1995, Surry Unit 2 completed Cycle 12.

Since the I

initial criticality of Cycle 12 on May 4,1993, the reactor core produced 8

approximately 1.0994 x 10 MBTU (18,551 Megawatt days per metric ton of j

f contained uranium). The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 12.

The physics tests that were performed during the startup of this cycle were covered in the Surry Unit 2 Cycle 12 Startup Physics Test Report

  • and,

\\

l therefore, will not be included here.

Prior to the beginning of Cycle 12, pressurizer safety valve problems forced Unit 2 to operate at a reactor coolant system pressure of 2150 psia instead of the normal 2250 psia.

In addition, Unit 2 was unable to maintain 1007 power due to material buildup on the steam generator upper tube support plates.

Between May and August of 1993, Unit 2 experienced several short outages due to equipment failure and the associated repairs. There were also three longer outages. First, on August 6, 1993, Unit 2 experienced a 13 day outage due to problems with three pressurizer safety values.

It was necessary to send the valves offsite for repairs.

The second outage occurred when Unit 2 was shutdown for 15 days, beginning November NE-1011 S2C12 Core Performance Report P.ge 5 of 54

am E

15, 1993, for steam generator pressure pulse cleaning. The final outage occurred on June 4,1994 and lasted for 21 days. During this outage, Unit 2 underwent steam generator chemical cleaning, which allowed Unit 2 to I

operate at 100% power. Additionally, the pressurizer safety valves were replaced, allowing the reactor coolant system pressure to be returned to 2250 psia.

Surry Unit 2 began a power only coastdown on January 11, 1995, at which time the burnup was approximately 17,845 MWD /MTU. The coastdown accounted for an additional core burnup of 706 MWD /MTU from the end of full power reactivity.

The Cycle 12 core consisted of 8 sub-batches of fuel: two f resh batches (batches 14A and 14B); three once-burned batches, two from Cycle 11 (batches '13A, and 13B) and one from Surry 1 Cycle 6 (batch S1/8B); and three twice-burned batches, all from Cycles 10 and 11.(batches 12A, 12B, and.12C). The Surry 2 Cycle 12 core loading map specifying the fuel batch identification and fuel assembly locations is shown in Figure 1.1.

The I,

burnable poison locations and source assembly locations are shown in Figure 1.2.

Movabic detector locations that were available during Cycle 12 are shown in Figure 1.3.

Three movable detector locations (NS, J3, and H13) were out of service throughout Cycle 12.

Control rod locations are shown in Figure 1.4.

I Routine core follow involves the analysis of four principal performance indicators.

These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.

The core NE-1011 S2C12 Core Performance Report Page 6 of 54 g

I i

burnup distribution is followed to verify both burnup symmetry and proper i

l 1

batch burnup sharing, thereby ensuring that the fuel held over for the j

next cycle will be compatible with the new fuel that is inserted.

Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate the cycle burnup where coastdown operation will begin.

Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specification' limits, thereby ensuring that adequate margins for linear power denalty and critical heat flux thermal limits are maintained.

Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent iodine-131 in the reactor coolant with the limits specified by the Surry Technical Specifications 2 Each of the four performance indicators is discussed in detail for the Surry Unit 2 Cycle 12 core in the body of this report. The results are summarized below:

1. Burnup - Tht burnup tilt (deviation from quadrant symmetry) on the core was no greater than 10.30% with the burnup accumulation in each batch deviating from design prediction by no more than 2.53%.

2.

Reactivity Depletion - The critical boron concentration, used to monitor reactivity depletion, was consistently within 10.26% AK/K of the design prediction which is within the 11% AK/K margin allowed by Section 4.10 of the Technical Specifications.

NE-1011 S2C12 Core Performance Report Page 7 of 54

l en 5'

I Incore flux maps taken each month 3.

Power Distribution indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 1.9%.

All hot g

l channel factors met their respective Technical Specification limits.

The average dose equivalent 4.

Primary Coolant Activity iodine-131 activity level in the primary coolant during Cycle 12 was approximately 0.000763 pC1/gm.

This corresponds to less than 1% of the operating limit for the concentration of radiciodine in the primary coolant.

Radioiodine analysis indicated that there were no fuel rod defects.

l I'

I I

I E

NE-1011 S2C12 Core Performance Report Page 8 of 54 g

I Figure 1.1 I

SURRY UNIT 2 - CYCLE 12 CORE LOADING MAP R

P N

N t

E J

N C

F E

D C

s A

I 1 tra i tu i tra 1 1 8u4 1 evs I tue i a

1 i

i i

i tra i tsa i tea i Isa i sta i sia i tra l l su9 I tv3 I out I tv7 1 tw9 I tv7 I sue I r

I i

l i

l i

l I

l I tra i sea e les I ass I tes I ass I tes I tea 1 tra 1 i sut I own i sur i svr i ews I ove 1 6vs I aus I su7 l 1

1 I

I I

I I

I I

I I

I tra 1 asa i les I ass i 14e i Isa i les i tsa i les i ass I tra 1 l Sue I sv7 I sw9 i sv3 1 6wr i Iva i swy I ava i ews I sv4 I su9 I 4

1 I

l i

I I

I I

I I

I I

I tra i tea 1 tes I ass I tes i nsa i tea I a ss i les I ass I tes i tea 1 ars i i sus I ow6 i Sus I sv9 1 6ws 1 6vs I tur i 5v4 1 6st I ev4 I sus I ow2 I su6 1 5

8.

I I

I I

i 1

l I

i l_

l i

I I Asa i les i tsa i les 1 834 1 34a 1 asa i tea i nsa i les I ass i 34s I asa l I

i tv4 I swa 1 6ve i Sw? I av9 l tw4 1 rvt i two i tv5 I sw6 1 6va i eve I tv3 1 6

i i

I I

i i

I I

I i

i 1

1 1

I trc 1 sea i tsa i les I ass I tea i tsa i tea i tsa i 144 1 tsa i les I ass i 14a i tra 1 i sus i sur i svs I ew9 i evr i rws 1 ove i. swr i ev7 8 3ve i evs i ewt i evs I tw6 I sus I r

i l

I i

1, I

I i

l i

1 1

1 I

l t

I asa 1 nsa 4 34s i tsa i tea 1 asa 1 sea ist/ss i 144 I asa i tea i 13a i 14s I asa 1 15a 1 I

i rve i Ivs I sw4 i ev6 I tur i evs I rw9 I 4ct i Iws i evt i two I evt I sur l Ivo I avr i a

I i

i I

I i

l 1

1 I

I i

1 1

1 1

1 tra I asa i nsa i les I 136 l 144 I asa i tea i 134 1 34a 1 tsa i 14s I ass I tea i tra i 1 eu9 1 rue 1 ove i eus I swa i swa i tv9 1 rwr i tvr I rw6 i svi i Sw6 1 3vs i rus I tus t 9

I I

I I

i i

I 1

I a

l i

I I

I I

i 15a 1 tes I ass I tes I asa i 14a I asa i 144 asa i les I ass I ans I asa l I

8 swa 1 6wr i sve 1 6v6 i sve i aus I rva i set ev9 1 eve i evs 1 6ws I svr i le 1

I I

I l

i I

I I

i i

i I

I tra i sta 1 tea i ass I tes I ass I tea i tsa i les I ass I tes I tea i tra 1 i sur I ows I swa i sv6 i ews I ove i ows I sv7 i swa i svs l Sus I two i 4us I 11 1

1 1.,_

I I

I I

I I

i 1

I i

1 I tra i las i 14e I ass 1 146 i tsa i les I ass I tes I ass I tra l l sus i sv9 l 4ue l Sv6 I sw9 1 ave i sus i ev6 I sus I ev7 1 4ur i nr 1

1 1

I l

i 1

1 1

1 1

I i 14a i les i 15s I tes I ass I tes I tea i tra l I tra, I ru i tw9 3 6ws t 6vt i sw7 i Svs I sus I rut I out i 13 I

i l

I i

l 1

1 1

I i tra i 13a I sta 1 asa i 844 l tsa I ars 1 i Sur I eva i twr i tv6 I twa i tv6 I 404 l 14 I

i 1

1 1

1 1

I I tra i taa i tra i I

l-->

saftw I tut I ave I tu9 1 15 I

l--> asstnsty In I

l l

l I

1 1

,u[L AS$tMstY DEsICM PARAMETER $

sus-salCH st/ss tra tre arc Isa las 14A tes INITIAL EMRICHMENI 3.4e 3.19 4.es 3.se 3.st 4.00 3.st 4.Se ew/o u rsst I

suRNUP af s0C tr 1134s 3r95e 19663 31st9 24442 2:067 e

8 (nwD/MTut ASSEMsLY TYPE assis iszts 15X15 asx35 35115 anxts isXts tsX s Nunsta DF atstnsLIts t

7 36 3

32 3r 3r 36

.s v r.

re.

re.

r-re.

r..

7.

I I

rI 1

l NE-1011 S2C11 Core Performance Report Page 9 of 54

t aan E

I Figure 1.2 SURRY UNIT 2 - CYCLE 12 g

BURNABLE POISON AND SOURCE g

ASSEMBLY LOCATIONS I

e P

N M

L K

J M

C F

E D

C 8

A I

I i

1 1

I i

1 1

l l

1 i

i 1

1 1

I I

i 1

1 1

1 I

i 1

i 1

2 i

l I

i l

i I

I I

i 4P l Esp i i teP l 1 20P i 4P i i

l laP254 ISP234 I lbPfl0 l lBP239 15PZ56 1 1

3 i

I i

1 I

I i

1 1

1 1

1 I 2ee i I 20P 1 1 2DP l 1 20P $

j i

1 i

IsP240 1 lBP222 1 (SP223 1 ISPt41 I i

l 4

1 1

1 1

1 I

I i

l I

i 1

1 I

i ne i rep i i 20p i i rap i i top l l 2ep 1 4e I I

i ss4 iBP2551SP242 l lSP230 1 iSP296 1 iSP231 1 iSP243 iSP257 1 1

5 1

i i

l I

1 1

i l

i~

1 1

i l

1 1 20P i 1 20P l 1 20P i 1 26P 1 l FDP 1 1 79P l l

l leP244 I lap 232 1 l&P284 1 ISP215 1 ISP233 I ISP245 I I

6 I

I I

i 1

1 1

l 1

1 I

I I

I l

i I

i 2ep i i rep 1 ile i I ZeP i i 20e i I

I i

i i

laPtre a inP216 l l$Pf02 1 1;SPFIF l 18P225 l l

l 7

I i

l 1

I I

i l

1 I

i i

i i

i i

i rep i l 20P 1 ile i i Ip I I Fop i i tee 1 I

i 4

1 4

IsPtll I inPler i IsP203 1 lap 294 h itP208 l lBP212 I i

1 8

i 1

1 I

I I

1 1

1 1

1 I

I I

i 4

i i

I top i i tee 1 I ap I I rep 1 1 20P i l

i i

i ss3 1 I

Isp226 I isP21s I ispres i IsP219 I ISP227 l l

1 $$5 1 9

l 1

i l

i i

i l

i i

1 1~

1 I

I I

i 1

i FSP i 1 29P l I 70p j l 2SP 1 l 20P l 1 2DP l l

6 ISP246 l lBP234 l l&P220 l ISPTF1 1 ISP235 I lBPF47 l l

10 l

t I

i 1

l I

I I

l 1

i i

1 i

i

  • P 1 20P 1 1 29P 1 1 FDP 1 l F9P 1 1 20P l 4P $

i i

ISPt60 lap 244 l 18P236 l 18P209 1 (BP237 1 l&P249 lEP254 1 1

j 1

i i

1.

I I

I i

1 l

l 1

I i

I l

t top 1 l 20P l 1 FSP i l FOP 1 l

l l

i l

isp250 1 lap 228 1

$8P229 I (SP251 l l

l 42 8

i l

1 i

1 l

l 1

i i

1 l

l 4P l teP 1 1 20P, I l 20P l 4P $

1 I

isPt68 IsP252 1 ISP113 1 88PZ53 lBP259 i l

IS I

I I

I i

i l

i l

i 4

1 I

i i

l i

1 I

1 1

1 1

1 1

1 1

14 I

I i

1 I

l i

1 i

i i

1 4P - 4 almMAstE Pol $0N ROD CLUSTER l

i 1

1 15 16P - 16 SLRNABLE POISON WOD CLUSIER l

l l

l i

70P - 20 SLRNASLE POISON POD CLUSI(R

$5m - SECONDARY SOUNCE f

I awP or $5s

- t OF SP D0DS or StCONDARY $0uRCE 10 BPitt

- SP A$$t MBLY 10 E

NE-1011 S2C11 Core Performance Report Page 10 of 54 g

I I

Figure 1.3 SURRY UNIT 2 - CYCLE 12 I-HOVABLE DETECTOR LOCATIONS R

P M

M L

E J

H C

F E

o C

8 A

I I

I i

-l i

I Mo I i

I i

1 1

1 i

i i

1 1

1 1

1 1

1 1

1 1

i Mo l 1

2 I

I I

l i

i l

I I

I I

I 1

a e i

i i

i i

i MD 1 1

1 Mo l Mo 1 1

l l Mo 1 3

1 1

I I

I i

i l

1 1

1 I

i 1

i 1

i i

l I

i 1

i i

1 Mo 1 1

i Mo i 1 Mo 1 i

i 1

6 I

I I

I 1

1 1

1 1

I I

i I

i 1

=1 1

I I

I i

i i

I I

I I

I I no l l Mo l 1 Mo il 1

1 1 MD 1 Mo I i Mo i 5

I i

1 1

1 1

N 1

I I

l i

1 i

i i

i l

1 I

i i

1 i

i 1

1 i

Mo. I i

Mo l Mo I 1

1 i

I 6

1 1

I i

1 I

i 1

1 1

I I

I I

l i

i l

i li 1

1 i

i i

i i no I i

l Mo l Mo I

ll Mo I i Mo i i

y i

I I

I I

i i

I

1 1

l I

i i

i i

h I

i l

I I

I I

l 1

I I MD I I Mo I l MD 1 I

I I

no 1 i MD 1 no 1 l

s I

I I

I i

i i

l I

I I

i i

l I

i i

l I

i I

I i

l I

i i

i l

i i

i a

i no 1 i

I 1 Mo l Mo 1 1

i i Mo I 9

1 1

I I

I I

I I

I i

l i

l I

l 1

1 1

I a

l 1

1 1

1 1

I I

i i Mo I i

l i Mo 1

1 1

1 1 no i I MD I le I

i i

1 1

1 1

1 I

I I

h i

I l

i 1

a l

I i

1 i

i i

11 I

i 1

I i

i i Mo i I

l Mo i i no i MD 11 I

I I

11 1

I i

1 I

I i

'l i

l 1

1 I

I I

i i

i I

i l

i i

i i no i l

I i Me I i

1 i

Mo i Mo i It 1

i l

I l

i l

i l

I i

l I

i i

1

=1 l

1 1

I i

1 1 Mo 1 Mo I i

15 4

I i

1 1

I I

I 1

I I

i i

1 1

I; I

I Mo i l

1 1 Mo ll l

l 14 I

l i

I i

11 1

1 1

1 1

Mo a Mowable Detector i Me 1 l

IS I

i i

I e - unavallebte tocation I

I I

I I

NE-1e u S2C u C - ~ ~ - R -

e-u - s.

~-

E O

I Figure 1.4 SURRY UNIT 2 - CYCLE 12 CONTROL ROD LOCATIONS R

P N

N L

K J

H G

F E

D C

B A

188*

1 Loop A 1

1 1

1 Loop C 1

outlet i

I I

I Inlet

\\

l*l l" l l*l l

/

H 41 l

l l

l sA l l SA'l l Sr 1 1 N-43 3

I I

I I

l 1

1 1

I l

5 l

1C i 1e I i

1 le l lC l l

4 I

I I

i 1

1 I

l i

i I

I I

I sr I l sa 1 i sr i 1

1 i sa I I

i i

s I

l 1

1 1

I I

I I

I I

I I

I IA 1 1a l Io l lC 1 lD l Ia l lA 1 6

Loop A _. l I

l I

I i

l I

I I

I i

l 1

Loop C Inlet i I

I SA i 1

l l So l l sa l I Sr i i SA l l

l Outlet 7

\\1 l

I i

i l

l l

1 l

i 1

I i

i If l

9e*-

1 Io l l

l lC i 1

1 iC l l

l 1o 1 1 - 27e*

8 g

i l

i i

i l

1 I

I I

I i

i l

i I

I I

i sA l l sr i I se l l 58 l l

l l SA 1 I

I 9

I I

l I.

I I

i 1

1 I

I I

I I

l l

IA 1 1e 1 in l lC i io i 1a l 1A 1 lo i

I l

l I

I I

I I

I I

i l

I l

I I

i ss I i

i i sr i i sa l I sr 1 i

11 1

I I

I I

I I

I I

I I

l I

I l

1 lC 1 1e 1 I

I IB I lC 1 i

12 l

l l

l 1

I I

I I

I l

I g

i i sr 1 i SA l l SA 1 l

l l

13 N-44 I

i 1

l 1

I I

I I

I N-42 iA I iD l l A l l

14

/t 1

1 1

1 1

1 1

A Lo\\

I I

l 1

15 Loop B l

l l

l op B Absorber outlet Inlet Material I

Ag-In Cd o'

Function Number of Clusters Control Bank D 8

Control Bank C 8

Control Bank 8 8

Control Bank A 8

Shutdown Bank s8 8

Shutdown Bank SA 8

Sr (Spore Rod Locations) 8 I

3 Ns.1 m S2cu C.. e.,,.. _. R. -

28.

m., s.

I I

Section 2 I

BURNUP I

The Surry Unit 2 Cycie 12 burnup history is graphically depicted in Figure 2.1.

Surry 2 Cycle 12 achieved a cycle burnup of 18,551 MWD /MTU.

As shown in Figure 2.2, the average load factor for Cycle 12 was 86.0%

when referenced to rated thermal power (2441 MW(t)). Unit 2 performed a power coastdown starting on January 11, 1995 until shutdown for refueling on February 3, 1995.

l 5

Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fue, assemblies, and thereby allow a detailed 8

burnup distribution analysis.

The TOTE computer code is used to ca,cusate these assemblywise burnups.

Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 12 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemb1ywise burnup accumulation at the end of Cycle 12 operation is given.

As can be seen from this figure, the accumulated assembly burnups were generally within 14.24% of the predicted values.

In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than 10.30%.

I The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch g

sE.1 m S2c12 core eerfor. _ e...,t eage 13 - 54 l

am,

B!

I burnup predictions to be made for use in reload fuel design studies.

Batch definitions are given in Figure 1.1.

As seen in Figures 2.5A, 2.5B, and 2.5C, the batch burnup sharing for Surry 2 Cycle 12 followed design predictions closely.

Batch S1/8B had a batch burnup that deviated from predicted by as much as 12.53%. SI/8B is a single assembly batch locar.cd in the center of the core.

The batch burnup sharing deviations in conjunction with reasonable agreement between actual and predicted assemblywise burnups, and symmetric core burnups indicate that the Cycle 12 core did deplete as designed.

I I

I I

I I

I I

I I

E l

NE-1011 S2C11 Core Performance Report Page 14 of 54 g

l

I I

Figure 2.1 SURRY UNIT 2 - CYCLE 12 I

CYCLE BURNUP HISTORY

,1100.

- I 19800,

)

lison, f

/

\\nce.

l

}

15:30.

g

)

1MC0 f

I

)

14108.

g

)

13100 7

I 12100 g

a. inos.

3 I

= inaa.

/

E

~

3 1800 -

m

/

g g un :

7 g noo.

I una:

/

4800 :

/

r un.

,/

non,

1100' r

!/

O

===2

========: :

=

0 nMSU=S" E dMS

= S" ="

...= = o=2=.==2.2 2 =

=2 2 2

=

=2

--o o

=

=a l

TIME (MONTHS)

WAXIWUW DESIGN BURNUP -

20700WWD/WTU I

I

--m1s2c12c..e.m _.....m 1s., s.

T E

i PERCENT

~

L'J m

0 8

8 o

e i

i i

i i

i i

i i

i MAY-93 JUN-93 A

JUL-93

x o

AUG-93 e m 5

SEPT-93 yE g

OCT-93

  • 5 NOV-93

%c m

5' DEC-93 N$#

3 JAN-94 M

E "m*

N FEB-94 hn."

E MAR-94 O

APR-94 n

o Z

MAY-94 s!E

@G l

h JUN-94 JUL-94 g

AUG-94 SEP-94 OCT-94

[

NOV-94 DEC-94 JAN-95 E

FEB-95 CYCLE AVG.

i m

E I

I.

I Figure 2.3 I

SURRY UNIT 2 - CYCLE 12 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)

R P

N M

L K

J M

G F

E D

C e

6 I ss.est 31.7el 34.461 i MEAsuRfD l 1

1 1 ParDic7to 1

..............1.ss. sol 32.898 ss.sel..............

1 47.751 ss.611 1s.e41 39.641 1s.1st 36.361 47.611 2

I 2

....................1.......

t es.e9

....................................l 1s.441 56.et 1 44.s96 36. sal 1s.441 39.se s

I es.esi 19.141 21.7s: 4e.rel tr stl 39.681 22.ast to.ast 45.331 s

..............1 19.201 22.451.te.231 as.sel ee.as t.22.451 19.rel 45.561 I =s.56 I

I 45.351 37.54l 22.761 41.541 24.771 44.431 24.s91 42.551 23.741 18.231 44.571 4

4

............. 1.so.171 23.611 42.46l.24.961 45 141 24.96.................................... 1 42 1 45.57 s

i es.est 19.141 as.tal 44.771 at.7el 45.44l 24.s3145.921 25.121 45.961 tz.9st 19.esi 47.411 s

........l19.321 2s.621 44.es t.24.961 46.101 24.s61 46.10................................

............1 24.96.....1 44.est 23.621 19.231.es.let i es.1e I

i ss.671 22.371 41.921 24.451 45.51l 24.561 45.521 24.431 45.7s1 24.s71 41.56l 22.est ss.s61 6

6

.......1 36.921.ta es t.42.391 24.931.es.sel.23.991.es. sel as 991.es es t.24.931 42.391 32.45l.36.ea 1 39.46l 1s.311 39.681 24.721 45.261 24.151 46.e41 ts. eel 46.161 24.asi 45.161 24.291 39. sol 17.971 ss.541 7

7

............................1 46.e71 23.991 4s.691 24.471 45.691 23.998 44.e78 24.961 4e.211 1s.ssi se.stl I se.sel 1s.sel es.all 34.96........................................................................

I 1 31.os t 39.691 23.291 44.36l 25.701 es.tel 24.951 54.951 24.9el 44.151 24.4el 43.741 as.est to.est 31.411 s

e

..................................1 39.741 31.9st l 24.s614s.131 as.47

.I.st. gel.39.741 as.471 4s.131 24.361 es. sal 24.471.s4.3e...............................................

.....1 24.471 es.st 1 so.641 17.971 39.301 24.sel 45.571 ts.est es.est 24.571 45.451 23.721 43.941 24.4e1 39.691 1s.ssi 39.021 9

9

............................1 46.871 23. 991 45.691, 24.471 45.69 8.as. 991 46. ef t.24. 961 49.211 1s.se t.ss.sti i ss.sel 1s. set 40.211 24.96 I

I ss.sel 21.491 41.e41 24.sel es.141 23.611 45.991 as.s71 45.e91 re.sel 42.6el 22.sst 56.191 to to

.....................1 24.931 es.es l 23.991 es.e s i 23.991 es.ss t 24.93 8 42.s91 22.45l 36.stl I so.ori 22.458 42.39......................................................................

11 1 47.511 1s.est 23.341 44.221 24.641 45.291 24.esi es. sol 24.521 44.961 ts.est 19.611 47.ast 11

.................................................1 46.1e1 24.961 44.est as.6tl 19.221 48,161 l es. net 19.221 2s.621 44.est 24.961 46.let 24.36 I

1 45.s51 ss. eel 23.471 42.561 24.ssi 44.e98 24.411 41.751 23.421 37.951 45.561 12 12

............................1 24.961 45.141 24.961 42.46l 23.611.ss.171 45.s71 1 45.571 ss.171 23.611 42.46..............................................

Is 1 44.s11 19.641 22.431 39.471 22.911 39.191 21.671 1s.sel 45.s61 13 i 45.561 19. ret 22.451 4e.231 ts.sel es.rst 22.451 19. ret 45.561 I

i es.lel 35.961 is.591 19.s61 17.921 55.151 47.131 14 14 i es e91 56.e21 1s.441 39.sel 1s.441 36. ort es.e91 is I ss.991 32.141 18.161 1s I

I ss.ssi 32.e91 se set R

P N

M L

K J

M C

f E

D C

e A

I I

I I

.E NE-1011 S2C12 Core Performance Report Page 17 of 54

E P

J I

Figure 2.4 SURRY UNIT 2 - CYCLE 12 E

ASSEMBLYWISE ACCUMULATED BURNUP W

COMPARISON OF MEASURED AND PREDICTED (GWD/MTU) e P

N M

L E

J M

S r

E D

C 3

A 1

I se.est 31.7e1 34.4 1 1 MEAsWRIO l 1

l e.es 1 M/r a crer i

......................t. 1.24l..e.438 i 47.751 35.611 te.e41 39.641 to.tel 36.361 47.611

........I. 8.781 1.151 -2.181 e.411 1.391..............................................1.......

8.931.e 99 3

i 45.esi 19.141 31.7sl es.tel 22.s21 39.6el 22.4el 19.sel 45.331 s

.......1..e.641..e.stl s.e91.s.stl.2.e91 1.341.............................................1..s.sel.......

e.161 3.52 4

1 48.351 37.541 22.761 41.541 24.771 44.431 24.s91 42.531 23.741 34.231 44.s71 e

..................1..2.211 e.s41 e.17

........i..e.491. 1.6s l..s.611..t.171..e.7 t l. 1.ssi..e.se l..e.161 s

I to.sel 19.141 ts.lel 44.771 24.7el 45.46] 24.531 4s.921 25.121 45.961 22.981 19.8e1 47.411 s

1 e.911. e.4tl 1.e41 e.te l.1.es t.1 4el..e.7tl..e.391..c.621..t.ee l..t.698..e.1 s t.1.4s1 6

i 35.671 22.371 41.921 24.451 45.311 24.561 45.sti 24.431 es.7el 24.871 41.561 22. set ss.e61 6

..........................l. e. 3 71. e. 211

1. 941
1. 6 51. e. 461.......

2.sst.e.6el 1.el

......................t. 1.111. 1.9st. 1.231 1 -e.971 e.ss 7

1 39.461 18.311 39.641 24.721 45.261 24.151 46.sel ts. eel 46.161 24.4el 4s.161 24.291 st.sel 17.971 so. set 7

...................t. 2. o 11 1.9 71..7 e 1

1. e t t.2.231 0.e 91
1. 1.441. e. 3 71. 1. 311. e. 951..1. 7 61..e. 6s l..e.771 2.191 1.et e

1 31.981 39.691 2s.291 44.261 ts.7el 4s.tel 24.951 34.951 24.941 46.151 24.4el 43.74l as.es t 4e. sal 31.411 e

I e.etl e.12 e.tet.s. eft -1.e71 e.sel.1.fot

..............1. e. 771

1. 9 21..t. 681 1. s41. 1. 9 71. 1. go l. 1.7 41.e.7 21 9

i 34.641 17.971 st.sel 24.sel 45.571 ts.esi 49.831 24.571 48.651 23.72l 45.941 24.401 39.691 te.ssi 39.et!

9

...................................1 - e.5 91 1.441.e.4 s l.e. e 91 1.161.e.291

-2. 241 1.29 8..e e41..e. ss i l e.641 2.246 2.261 1.ssi.1.e9 1e i ss. set 21.491 41.e41 24.e41 45.141 25.611 45.991 23.e71 es.e91 24.se t 42.601 22.551 36.161 to

..........................................1..e.441..e.ssi.1.711..e.ssi..................

...................1 i.e.6tl.4.241 1.291.e.368 1.611 1,61 e.sel s.47 e.211 It i 47.s11 1s.est 23.541 44.221 24.6el 45.291 24.est 45. set 24.321 44.968 ts.est 19.611 47.4e1 11 I.1.241 2.sel.1.171 1.4el.1.lel.1.761 1.141 1.741 t.561 e.241 1.141 2.est.1.281 It i 45.ssi se. eel ts.471 42.561 24.331 44.e91 24.418 41.7sl 23.421 57.951 4s.561 12

......................t..o.ast. t.sel. 2.331.t.231 1.671 -e.7el.e.sfl.e.e41 I.e.4el.e.est e.se 13 1 44.411 19.641 22.431 39.47 8 22.911 39.191 21.671 le.sel 45.e61

-.* **..-.-...... 13 l 1.651 2.261.e.e91 1.99).t.521 2.sel.s.471 1.698 -1.111 1 ARITHMETIC Avc 1

-...--..--.......l l PCT 33rr..e.7s 14 1 44.101 35.961 te.sel 39.361 17.921 35.151 47.131 14 l e.et].e.171 e.421 *1.111 *2.821 -2.411 -1.991 Is I s74NDARD DEV l l so.991 32.141 so.168 i AVC Ass PCT l 1s I

= e.se i

I 1.sti s.171 e.tsi 1 etrr = 1.26 l R

P N

M L

M J

H G

F E

D C

3 A

I SUB. BATCH SHARING IMWD/NTU)

SUB NO. OF BOC BATCH

[0C BATCH CYCLE BATCH ASSEMBLIES BURNUP BURNUP BURNUP l

S1/88 1

11,348 34,955 23,607 BURNUP TILT j

12A 7

32,950 38,609 5,659 l

128 16 39,661 46,429 6,768 NW =

0.06 l NE = 0.19 12C 1

33,819 39,463 5,644


l------..----

13A 32 24,142 40,501 16,359 SW = -0.16 l SE =.0.10 138 32 21,067 42,090 21,023 14A 32 8

21,515 21,515 l

148 36 0

23,606 23,606 CYCLE AVERAGE ACCUMULATED BURNUP = 33,562 n

l NE-1011 S2C12 Core Performance Report Page 18 of 54 E

l

I I

F1gure 2.5A I.

SURRY UNIT 2 - CYCLE 12 SUB-BATCH BURNUP SHARING 48 SUB-BATCH 13B O

44 6

SUB-BATCH

/

/v S1/8B I

40 s

N o

/>

/

36 fl

/

SUB-BATCH

')

I x

+

14A D

/J U/

m I

I-32

/

JJ n

//

/

vg

/>

J/

l 9 28 f

?

o.

x:

1 c#

D f

l h24 j'

/

/

o

~

D tv y

.y I

620

?

?-$

/s m

$ 16

~ '

I

/

/

3 O'

f up ry

.s 12 j

.,l I

s

/

. f 8

,/

~

sj.y

.s I

W

/s

. r, O

I 0

2 4

6 8

10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)

LINES ARE PREDICTED VALUES, SYMBOLS ARE MEASURED VALUES.

E I

NE-1011 S2C12 Core Performance Report Page 19 of 54

E' I

Figure 2.5B SURRY UNIT 2 - CYCLE 12 SUB-BATCH BURNUP SHARING l

44

- SUB-BATCH

/

12C

/

4 0

40 A

O SUB-BATCH

, s op-a V'M 13A E

,,vp F

36 E,

o y.2

/

O

^

~

jf' "

b

/

SUB-BATCH X

g 32 14B B1 A

S A

W W

/D 2

f.)

% 28 x

5 A

/

9.

/>

l n.24 3

4 p

I m 20 M~

i x

/=

O F-

/

i 4

/

m. 16 A

g t

~

a

/

y) p 12 A

[

8

, /

ja

/<

g s

/

g

)

f.

4

,-}

fs 7

l 0

2 4

6 8

10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)

LINES ARE PREDICTED VALUES, SYMBOLS ARE MEASURED VALUES.

I E

NE-1011 S2C12 Core Performance Report Page 20 of 54 E

I Figure 2.5C I

SURRY UNIT 2 - CYCLE 12 SUB-BATCH BURNUP SHARING 50 SUB-BATCH 12A l

48 O

/

SUB-BATCH

/

o 12B I

46 f g g

p

/

a

/m y

, o y

/p I

a

/a a u 42 5

/

CD 40 z

_/

(

I D

P~S m 38 C

5 Z

6 4

op 36 m

9Vyj AY g

34 g -

32 I

30 I

l 28 0

2 4

6 8

10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU)

LINES ARE PREDICTED VALUES, SYMBOLS ARE MEASURED VALUES.

I I

Ns-1 m S2C12 cm. e.,,_. _.. -

e...

21 - se

4 su 5

I I

I I

I.-

I I

I THIS PAGE INTENTIONALLY BLANK 1

I I

I I

I I

I I

NE-1011 S2C12 Core Performance Report Page 22 of 54 g

I I

Section 3

I I

REACTIVITY DEPLETION I

The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW" computer code was used to normalize

" actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level.

The normalized critical boron concentration versus burnup curve for the Surry 2 Cycle 12 core is shown in Figure 3.1.

It can be seen that the measured data typically compared to within 36 ppm of the design prediction. The largest reactivity anomaly was 10.26% AK/K which is within the 11% AK/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications.

In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 12 core depleted as expected without any reactivity abnormalities.

I I

I I

I "8-wu82c12- ~< -

e-

~-

23

an E

I Figure 3.1 SURRY UNIT 2 - CYCLE 12 g

CRITICAL BORON CONCENTRATION vs. BURNUP g

(HFP,ARO) 1500 g '" A I

G 1300 b

\\

z '"

m O

1100

\\

1000

\\

g til 5 "=.

\\

I o

N 8-I T

y 0

A l

b"o0

\\

4 g

I

!=

y U

100

\\.-

0 0 1 2 3 4 56 7 8 910111213141516171819 CYCLE BURNUP (GWD/MTU) l I

:: MEASURED PREDICTED I

NE-1011 S2C12 Core Performance Report Page 24 of 54 5

I

' I Section 4 j

E POWER DISTRIBUTION I

Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specification limits and to ensure that the reactor is operating without any abnormal conditions which could cause an

" uneven" burnup distribution. Three-dimensional core power distributions are determined 5

from movable detector flux map measurements using both the INCORE and CECOR computer programs. The INCORE program was used from the beginning 8

of the cycle through flux map 18.

The CECOR program was used from flux map 19 to the end of the cycle. A summary of all full core flux maps taken for Surry 2 Cycle 12 is provided in Table 4.1, excluding the initial power ascension flux maps which were included in the S2C13 Startup Physics Tests Report. Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.

I Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1, 4.2, and 4.3.

Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near the mid-cycle burnup.

Figure 4.3 shows a map that was taken near the end of Cycle 12.

The I

maximum relative assembly power dif ference between measured and predicted was 10.6% and the maximum average percent difference was equal to 1.9%.

In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for each case.

I "t-1o" 82c12 - r-r- " e "

2>

O O

An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.

Verification that these factors are within Technical Specification limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.

Surry Technical Specification 3.12 limited the axially dependent heat flux hot F (Z), to 2.32 x K(Z), where K(Z) is the hot channel channel factor, n

factor normalized operating envelope.

Figure 4.4 is a plot of the K(Z) curve associated with the 2.32 F (Z) limit.

q F (Z), for a The axially dependent heat flux hot channel factors, q

representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.

Throughout Cycle 12, the measured values of F (Z) were within the 9

Technical Specification limit.

A summary of the maximum values of axially-dependent heat flux hot channel factots measured during Cycle 12 is given in Figure 4.8. The minimum margin to the F (Z) limit was 17.897..

q Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 12.

E The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Specification limit for this parameter is set such that the I

departure from nuc1cate boiling ratio (DNBR) limit will not be violated.

Additionally, the F-delta-H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.

Surry Technical Specification 3.12 limited the enthalpy rise hot channel NE-1011 S2C11 Core Performance Report Page 26 of 54 um

I I

factor to 1.56(1+0.3(1-P)) for Cycle 12, where 1.56 is the F-delta-Il at rated thermal power and 0.3 is the power factor multiplier, both as specified in the COLR. A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 12 is given in Figure 4.10.

As can be seen from this figure, the minimum margin to the limit was 5.77%

for Cycle 12.

I The target delta flux

  • is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. The delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly.

By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.

This target delta-flux was also used to establish the operational axial flux dif ference bands while under CAOC.

I The plot of the target delta flux versus burnup, given in Figure 4.11, she,ws the value of this parameter to have been approximately 2.5% at the beginning of Cycle 12 and decreasing to -1.5% where it leveled off until the middle of the cycle.

After an outage near the middle of Cycle 12, the delta flux was approximately -4.5 where it increased until the end of the cycle.

This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14.

In Map S2-12-04 I

Pt-Pb I

  • Delta Flux = ----- X 100 where Pt = power in top of core (MW(t))

2441 Pb = power in bottom of core (MW(t))

NE-1011 S2Cl2 Core Performance Report Page 27 of 54

O i

(Figure 4.12), taken at 646 MWD /MTU, the axial power distribution had a shape peaked towards core midplane with an axial peaking factor (F-Z) of 1.228.

In Map S2-12-16 (Figure 4.13), taken at approximately 9,368 MWD /MTU, the axial power distribution peaked toward the bottom of the core with an axial peaking factor of 1.143.

Finally, in Map S2-12-28 (Figure 4.14), taken at 17,575 MWD /MTU, the axial peaking factor was 1.144, with an axial power distribution similar to Map S2-12-16.

The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.

I, in conclusion, the Surry 2 Cycle 12 core performed satisfactorily with power distribution analyses verifying that design predictions were F (Z) and F-delta-H hot channel accurate and that the values of the q

factors were within the limits of the Technical Specifications.

I I

I I

I I

I I

a NE-1011 S2C12 Core Petformance Report Page 28 of 54 g

ns j

I Table 4.1 I

SURRY UNIT 2 - CYCLE 12

SUMMARY

OF FLUX MAPS FOR ROUTINE OPERATION I

i i l

1 i

4 i

i 1

i 3

i i

l I

l I l $ URN 1 1 SANK 1 F*0( D Hof i F-DH(Na H0f l CORE Ftrl l CORE i ARIAL l NO.l l MAP) l UP 1

1 0

l CHANNEL F AC10R I CHNL. F ACION l MAX l IILT l OF F i 0F l INU.I DafE l MWS/ l PWR 1 SitPS l I

i l

i SET ITHIM) l l

l Nfu l 428 l l ASSYlPINIAXI&Ll l

i i

lAXIAL i F(ill MAX l LOC i (2) ISLESI l

l l

l 1

l l

IPOINilF-Q(D l ASSYlPIN lF DH(N)lPOINI i i

i i

l i

l,_ t I

I i

l l

,_1 1

f._ l_

l 1

l l

1 1

1I I

I4 1 5-29-931 6% i 99.91 tre i 011 i H!l 32 1 1.a94 i fe44 00 1 1.424 1 34 II.rSit.seil NE l e.r/il 46 i I 5 1 6 25-931 1464 I u.tl la6 i Dli l HIl 3e 1 2. eel l Etel cH l 1.457 I 30 la.ra511.ee91 NE l *e.4571 43 1 l 6 3 7 r6-93) 234a 1 9a.tl tr3 1 Dit i Hll 38 l 1.99: 1 Otti HI 'I 1.443 i Se 11.20911.01:4 NE l e.3351 43 1 1 7 l 9 I4-931 3169 'l 99.al tre l Dil I HIl 31 1 1.879 i Dill HI 118.4451 35 ft.19418.elrl NE 1 -1.r361431 1 8 110 15-931 4r3a I 96.88 r:4 l Dil l Mil 3r i 1.8% l Olli Hs 111.4% 1 36 18.1/811.e81) NE l -1.3291 43 1 I

19 lil-lb-931 522 1 95.Il rl7 i Dit i ctl 31 l a.see 1 D134 ct 1 1.438 1 36 II.t6411.elet NE I-1.4%)4r1 lie 112-16-931 5727 l tee.nl Flo l Fe5 I nil et i 1.797 i Datt ct 1.4ra i et 13.l u it.ee91 NE 1 -2.6e91 43 I lit lit tr-est Sa95 l 6e.71 tra I tie l CN1 3r 1 3.984 i Dall FL 1.45a i 31 ft.24 ell.eest NW l -4.5e38 41 l 11r I l-re-941 6u3 1 lee.el tr3 i F05 i Hil 43 1 1.784 i Fell H!

i 1.4r5 1 44 11.1 % l1.0878 NE l -r.%al 43 l 113 I t-17-941 Fae5 1 94.el tir i Jos l MMI er i 1.791 1 Jeal MM 1.43r i 45 11.14843.e851 NE I -2.3171 43 8 134 1 3 14-941 a629 l 96.71 rir i Jos l NMI er i 1.792 1 Jeal MN 1: 1.445 l 47 II.13981.se41 NE I I.9%l 43 I I

las 1 4-es-941 9276 8 65.al as?

l Jos l MMI se i 1.a61 1 Jeal MM i 1.4% i 3e 11.ltsit.es71 SW I -r.alal 43 l 116 1 4 e6 941 *na l 94.el rl?

l He7 1 MRI 46 l 1.se6 l Jeal MM 1.454 1 47 ll.14341.serlNE/SWl -2.23rl er i 117 1 4-tr-941 9%a i se.61 lan l Joe i sett er 1 1. ara l Jeal MM 1.461 1 er ll.tralt.se71 SW l -5.315) 43 1 lla 1 4 ta-941 97tr I 94.el ria i Mer i nel 46 8 1.aea l Jeal NM t.Me 1 47 11.13811.e0r1 NE l -2.eerl 41 l 119 l 5 e9-941 te375 8 90.01 rrr i M471 -l 47 l 1.791 l Je81 *- l 1. % e 1 48 11.12911.e031 MW l -1.944l 43 l Ito 1 6 r6-941 1:164 1 67.sl la4 i Her 1

--I to l 1.7a1 i Her! -- l 1.461 1 re 11.12581.0061 SW I -2.1761 % 1 5

121 1 6-se 941 1129: I see.nl 223 l ces 1

--I 4a l 1.4% i coal ~ l I.4u I 4a la.16tla.ee31 NE l -4.5551 % 1 127 i 7 26-941 triu I tes.el tra i ces 1 --l ta l 1.e41 1 Herl - l 1.uS I Er 11.1511.e421 NE 1 -3.78a8 % i las I a 15 941 Irars t 99.91 tra 1 cea !

-I na i 1.e4 i Herl -- I t.465 1 52 11.15311.e821 NW l

-3. uol 43 1 124 I 9 13-941 13ase t 99.91 tre i ces 1

-l Sr i 1.e44 l Hs71 ~ l 1.469 1 Er it.15314.ee41 NE I -3.6tal 44 l 1r5 ite-13-941 84ae9 I lee.el r:3 l ces l ~ 1 53 1 1.aSe i Heil - l 1.4Fe 1 52 il.15381.ee41 NE l -3.5931 44 l I

1r6 Ile 31-941 15416 1 leo.el 723 1 cea 1 - I sr i 1.e4: I coal -- l 1.464 i sr it.14911.eaF1 Nr 1 -3.eF51 41 l Ir7 lit-ra 944 e6362 l lee.el tre i ces 1

--l Si i 1.st? l Herl - l 1.455 1 52 ft.15til. seal NE l -r.Sa61 43 l Ira i

-e3 951 tr575 I leo.el tr4 l ces 1 -l Sr i 1.aol I coal -- l 3.443 1 52 II.14411.sesi NE 1 -r.5e98 43 1 fr9 l l r6 95) 88259 1 89.31 r6 i He7 l a l la i 1.759 l He71 ~ l 1.45r 1 Il ll.Il418.se41 SW l e.15el 44 l l.,,,,, 1 l

i i

i 1l l

1 l,,,, l I

l i

l 1

lI I

NOTES: Hut $ POI LOCAt 0NS ARE SPECIFIED BY civlMG ASSEMoLY LOCAIIONS (E.c. Hoa 15 IHE Cf NTER-OF-CORf' AS$f MBLVI, f 0LLOWED SY TE PIM LOCATION (DE NOTED BV IHE

  • Y" COORDINATE WITH TE FIFTEEN RDWS Of FLNL RODS (ElfERf D A 16ef00CH R AND THE "X" COORDINATE DESicMATED IN A SIMIL AR MANERI. AFilR IMPLEMENI ATION I

OF IHE CECOR CODE, PIN LOCATIONS WE RE NO LOMCER AVAIL ABLE AND ANE NOT INDICATED.

IM THE "l" DIRECTIDM TE CORE IS DIVIDtB INTO el AXI AL POINTS STANTINc $90M THE TOP Of' IE CORE.

1. F-OtD INCLUDES A 10l AL UNCERI AINIV Of 1.co.

I

r. F-DHIN) INCLUDES NO UNCERI AINIV.
3. CORE TILT - OUADRANT Powt R 11L T AS DEFINE D oY IE INCORE/CECOR CODE.
4. Flux NAPS 4 THROUGH l8 WERE ANALVrED USING THE INCDNE CODE, WHILE FLUX MAPS 19 THROUCH 79 WE RE ANALVi(D USING INE CICOR CUDE.

I I

I I

I "E-1o11 S2c12 c r r <<

.a c R e <<

r-2e r Se

M lil '

Ill i Figure 4.1 SURRY UNIT 2 - CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION S2-12-04 R

P N

M L

E J

H C

F E

D C

8 8

ll PRfDICTED

. 0.32. 0.40. 0.32.

PRfDICT[0 MEASURf6

. 0.31. 0.40 0.32.

Mf ASURED 3

. PCT Dif f lRI NCE.

. -1.2. -1.2.

8.4.

. PCT Dlfr!PINCE.

0.32 0.65. 1.11. 0.92. 1.11. 0.6%. 0.32.

l

. 0.34. 0.64. l.09. 0.90. 1.11. 0.67. 0.34 2

i 6.6. -1.6. -1.4. -1.4 0.4 2.7.

5.5.

0.38 l.09. 1,74. 1.25. 3.28. 1.25. 1.23. 1.09. 9.58

. 0.40. 1.82. 1.21. 1.25. 1.26. 1.26. 1.26. 1.85. 4.42.

3 5.7 2.2. -2.5. -0.4. -1.1.

8.6.

1.9,

5.4 9.9.

0.38. 0.86 1.F8. 1,38. 1.28. 1.20 1.28. 1.31 1.F8. 9.86. 8.38.

O.41. 0.87 1.26 1.30 1.F9. 1.21. 1.28. 1.32 1.31 0.89. 0.40.

4 6.6.

l.7. -l.1. -0.5.

0.8.

4.0.

0.5.

l.0.

2.4 3.7.

4. 0.

0.32 1.09 3.F8. 1.23. 1.F4 1.18. 3.17, I.18. 1.F4. 1.23. 1.F8. 1.09 0.32.

1

. e.32. l.09 1.26 1.23 - 1.23. l.29. 1.18 1.29 1.25. 1.25. 1.27. 1.le. 0.33.

i F.F. -0.1.

1.0. -0.5. -0.2.

1.6 1.4.

1.4 1.4 1.0. -0.6.

l.0.

F.9.

0. 6 %. 1. 24. 1.31 1.23. 1.11. 1.11. 1.09.1.11.1.11. 1.23. 1.31 1.23. 0.65.

0.63 1.28. 1.29 1.22. 1.32. 3.14. 1.11. 1.13. 1.13. 1.24. 1.38 1.22. 0. 64.

6 2.F. -2.2. -1.3. -1.3.

0.7.

2.2.

1.3.

1.5.

l.9 0.4. -0.9. -1.1

-0.6.

0.38 1.10 1.25. 1.F8. 1.18. 3.11 1.07 1.15. 1.08. 1.12. 1.la. 1.28 1.25. 1.10. e.31.

. 0.30 1.04. 1.23, 1.25. 1.16 1.12. 3.11. 1.88 1.09. 3.13. 1.18. 1.F4. 1.21. 1.06. 0.30

)

2. 5. - 2. 3. - 2.2. - 1. 8. - 1. 5.

0.8.

3.6.

2.3.

1.4 1.3. -0.3 2.5. -3.0

-3.7

-2.8.

0.40 0.91. 1.27. 3.20 3.16 1.09. 1.14. l.19, l.17, 1.09 1.57 3.F0. 1.27. 0.91 9.40.

0.39. 0.89 1.F4. 1.10. 1.85. 1.09 1.19, 1.28. 1.17. I.30 3.16 l.16. 3.23. 0.90. 8.39 8

i

-2.5

-2.4

-F.2. -1.2

-1.3.

4.4 3.7.

2.3.

0.6.

0.3

-0.9. *3.F. -3.4

-1.6. -1.6 I

0.38 1.19 8.7%. 1.27. 1.18. 3.11. 1.87. 1.8%

3.08. 1.12. 3.18. 1.28. l.26. l.10. 0.35.

l 0.30. 1.06 l.19 1.25 1.10 1.10 1.07. 1.16. 1.09 3.11 1.18. 1.26. 1.24 1.09 - 8.31.

9

- 2.6. ~ 3.4.

4.6. -l.6

-0.1. -0.3.

0.1.

0.7.

0.7. -0.8 0.4 l.3

.l.4. -1.2

-e.8 0.64 1.23. 1.30 1.23. 3.11 1.11. 4.09 1.11. 1.11. I.23. 1.31. l.74 0.65.

0.61 1.18. 1.28 1.23. 1.11 1.11. 1.80 1.12 1.11 1.24 1.32. l.24 0.6%

10

-4.5

-4.6. -1.8.

0.2.

8.1.

0.2.

0.8.

0.1. -0.3.

0.8 0.5.

8.1. *0.1.

0.32 1.09. l.F7. 1.23 1.23. 1.10. I.17 1.88 1.F4 3.23. 1.28. 1.99 0.32 0.32. 1.07. 1.26. 1.25. 3.23 1.18 1.88 1.88. 1.73. 1.24 1.31. 1.12. 0.33.

II

- 1. 7. - 1. 7. - 0. 9.

0.2. -0.2.

8.1.

1.0.

0.0. -0.8 1.7 F.2 2.6 2.2.

0.38. 0.86. 1.24. 1.31 l.ta. 1.70. l.78. 1.31. 1.28. 0.84. 0.38.

4.39. 0.86 1.F8. 1.30 8.F7. 1.20. 1.27. 1.30. 1.79. 0.89 0.40 12 1.0.

0.7.

0.2.

-0.6

-0.8.

8.1

-0.7

-0.9 0.6 3.9 5.1.

. 4.38. 1.09. 1. F3. 1.26. 1. 28. 3. 25, 1.23 1.#9

6. 38

. 0.39 1.14 1.76 1.24. 1.25. 1.27. 1.28. 3.09. 0.40.

13 2.9.

4.7 1.8

-1.1. -1.8

-2.3.

2.2

-0.3.

3.8 0.32 0.6%. 1.11 0.92 L.11. 0.6%. 0.32 0.34. 0.67 - 1.17 4.94. l.08, 0.63. 0.32.

14 4.7 3.5 1.6. -0.9

-2.5,-F.3. -2.8.

SIANDARD 0.32. 0.40. 0.32 AVE RACf DtVIATIDM 0.32. 0.40. 0.31

.PCI Dif flRI NCE.

=

1.7

= 1. 5 29 1.6. -0.0. -F.5

SUMMARY

MAP l*3: $2-12-04 DATE! 5/29/95 power: 99.9%

CONTROL ROD POSITIONI F-QiZ) a 1.890 QPTR D BAbet AT 224 STEPS F-DH(NI a 1.424 HW 0.9989 lNE 1.0069 F(ZI

= 1.228 SW 0.9947 SE 0.9994 BURNUP = 646 MWD /MTU A.O.

= 0.271%

ll1 lIl ll NE-1011 S2C11 Core Performance Report Page 30 of 54 g

Ill g

Figure 4.2 SURRY UNIT 2 - CYCLE 12 ASSEMBLYWISE POWER DISTRIBUTION S2-12-16 R

P N

M L

K J

M C

F E

D C

8 A

PRf01CIEC 0.29. 0.37. 0.29 PREDICTED Mt &SURED

. 0.29. 0.37. 0.29.

ME ASURED 1

' I

.PCf OlfflWENCE.

-0.3. -0.3. -0.3.

.PC f DIF FI Rt NCE.

. 0.31. 0.59. 0.94. 0.79. 0.94. 0.59. 0.31.

0.33. 0.57. 0.95. 0.77. 0.93. 0.59. 0.54.

2 5.4.

-3. 0 - 1.4. - 1.7. - l.6.

8.1.

F.0.

I 8.18. 1.04. 1.19 1.11. 1.25. 1.11. 1.19. 1.01. 0.18.

. 0.39. 1.02. I.15. 1.09. 1.22. 3.10. 1.19 1.05. 0.40 3

4.4 0.7. -4.0. -1.5. *2.5. -1.1.

0.4 4.3.

7.0.

. 0.38 0.81. 1.27. 1.22. 1.56. 3.36 I.36. 1.21. 1.27. 0.01. 0.58.

. 0.40 0.02. 1.25. 3.19 1.35. 1.16 l.56. 1.21. 1.28. 0.02. 0.38 4

I 5.4 0.7. -2.6. -2.2. -0.7.

0.E. -0.4.

8.1 0.9.

1.4 l.9

. 0.31. 1.01. 1.27. 1.88. 1.37. 1.21. 1.56. 1.23. 1.37. 1.18. 1.27. 1.08. 0.31.

. 0.32 1.02. 1.25. 1.17. 1.35. I.22. 1.37. l.22. 1.39 1.le. l.23. 3.00. 0.32.

5 l.8.

0.7. -1.4. -0.2. -1.5.

1.0.

1.0. 1.2.

1.1.

0. 3

-3.1. - 0.6.

2.6.

I 0.59 1.20. 1.22. 1.37. 1.16. 1. 54 1.18. l.54. 1.16. 1.37. 4.21. 1.19. 0.59.

0.60. 1.22. 1.21. 1.35. 1.17. 1.37. l.20. 1.37. 3.19 1.56. 1.18. 1.37. 0.59 6

1.8.

1.8. -0.1. -1.5.

0.5.

2.6. 4.6. 2.0. 2.1. - 0. 4. -2.5. - 1. 7.

9.2.

. 0.28. 0.94. 1.11. 1.56. l. 21. 1. 54. 3.16. 1.16. 1.17. 1. 54 1.21

1. 36. 1. !!. 0. 94 0.20.

I 0.29. 0.96. 3.13. 3.56. 1.10. 1. 54 1.21. 1.39. 1.20. 1.37. 1.21. 1.32. 1.09. 0.92. 0.20.

7 2.2.

2.0.

1.7. -0.5. -2.2 0.5.

3.7.

2.5.

2.2.

2.1

-0. 2.

-3. 2. -2. 0. - 1. 7

-0.4.

. 0.37 0.78. 1.25. 1.16. 1.56. 1.17. 1.35. l.26. 1.56. 1.18 1.36. 4.16. 1.25. 0.70. 0.37.

. 0.37. 0.80. 1.27. 1.16. 1.33. l.I8. 4.40. 1.30. 1.38. 1.19 l.15. 1.52. 1.22. 0.79. 4.37 8

2.2.

l.9 l. 7.

0. 2. -l.9.

0.4.

3.9.

2.7.

1.3.

1. 3. - 0. 7. -3.4. - 2.6.

1.0.

0.9.

I

. 0.28. 0.94 3.11. 1.16 1.21. 1.14. 3.16 1.35. 1.17. 1.54. 1.21. 1.36 1.11. 0.94. 0.28.

0.29 0.95. l.07. l.35. 1.22. 1.33. 1.21. 3.18. 1.19. 1.33. 1.20. 1.31. l.11. 0.9%. 4.29.

9 2.2. -0.6.

3.5. -1.2.

0.6. -0.3.

3.9.

l.9.

1.4.

0.9.

0.4. -3.5. -0.4.

0.9.

1.6.

I

. 0.59. 1.19 1.21. 1.37. 1.86. 1. 34 1.18. 1.34 1.16. 1.37. 1.21. 1.20. 0.59

. 0.57. 1.15. 1.20. 1.38. 3.18. 1.32. 1.17. 1.33. 1.15. l.36. 1.23. 1.21. 0.60 le

-3.5. - 3.5

-0.9.

l.1.

1.1.

1. 3. -8.1. -0.6.
0. 7. - 0. 8.

1.0 1.3.

1.4.

0.31. 1.01. 1.27. 1.18. 1.37. 1.21. 1.36. 3.21. 1.37. 1.10. 1.27. l.01. 0.31.

. 0.31. I.00 1.27. 1.19 1.36 1.18. I.34. 3.19

1. 54 1.10. l. 29 1.04 0.32.

II I

-0.5.

0.5.

9.1.

1.0.

-0.4

-1.9. -1.4 1.9.

2.0.

0.5.

2.0.

2.8.

2.7.

0. 38 0.81. 1.27. l.21. 1. 56. l.16. 1.56. 1.21. 1.27. 0.81. w.38.

. 0.39 0.83. 1.28 1.20. 3.33. 3.14 l.33. 1.19. 1.26. 0.85. 0.39 It 2.4 1.8.

1.0. -1.1. -2.3. *l.9.

2.5. -2.0. -0.5.

1.7.

4.3.

I 0.37. 1.08. 1.20. 1.18. 1.25. l.Il. 1.19. 1.08. 0.38.

. 0.39 1.06. 1.21. 1.09, 1.22. 1.00 1.15. 0.99. 0.39.

13 3.8 5.3.

1.4. - 2. 5.

  • 2.3. - 2. 8.

-3. 4 al.7.

2.7.

. 0.31. 0.E9. 0.94. 0.79. 0.94. 0.59. 0.31.

I 0.33. 0.62. 0.98. 0.79 0.92. 0.57. 0.30.

14 5.3.

4.7 -

3.7.

0.0 2.2. -2.8. -3.6.

St&NDARD

. 0.29. 0.57. 6.29 AVERACE 15 DtvlaflDN

. 0.30. 0.37. 0.20

. PCT DIFFERENCE.

  • l.581 1.6.

1.3. -2.1.

=

1.8 I

SLPw1ARY NAP NO: S2-12-16 DATER 4/06/94 POWER: 94.0%

f CONTROL, ROD POSITION:

F-Q(Z) = 1.806 QPTR D BANK AT 217 STEPS F-DH(N) = 1.454 NW 1.0015 l NE 1.0017 I

i F(Z)

= 1.143 SW 1.0017 l SE 0.9951 BURNUP = 9368 MWD /NTU A.O. s 2.232%

i Ill NE-1011 S2C12 Core Performance Report Page 31 of 54

i m

5l I'

Figure 4.3 SURRY UNIT 2 - CYCLE 12 3

ASSEMBLYWISE POWER DISTRIBUTION S2-12-28 5l

\\

R P

N M

L K

J M

C F

E 9

C 8

A l

I(l, melcno

. e, m. e.44 e. e. 34 3.

meletro i

wa5unto

. e.344. 0.45. e.35 m asun e 1

.PC1 oIFFrPf MCE.

0.9.

4.1.

2.0.

.PCI oIFFifttMCE.

i 0.346. 0.624. 0.975. 0.4 %. 0.975. 0.624, 0.347.

. 4.345. 0.620. e.968. 0.433. 0.945. 0.653. 4.359.

2

-0.4

-0.7.

-0.6.

-0.4.

1.0.

4.6.

3.3.

. 0. 447. e.99 2. I.168. 1.047. 1. 250. 1.088 1.164. 0.992. 4.406

. 0.442 9.999 1.159. 1.074. 1.214 1.986. 1.184. 1.087. 0.447.

3 8.7.

-0.2.

-0.4.

-1.2.

-2.9.

0.2.

1.3.

2.5. 10.1.

1

. e.407. 0.015. 1.214. 1.1%. l.344 1.127. 1.344. 1.155. 1.244. 0.485. 8.407.

0.409. e.817. 1.143. 1.144. 1.137. 1.128. 1.343. 1.155. 1.224. 0.834. 0.412.

4 9.4 e.3.

-2.5.

-1.0.

-0.5.

0.3.

-0.1.

0.9.

0.8.

l.8.

l.3.

I 0.346. 0.993. 1.214 1.127. 1. % 4. 1.176. 1.350. 1.175, 1. %4 1.126. 3.214. 0.993. 0.347.

0.349 0.999 1.216. I.125. 1.359. 3.176. l. h6. 1.174

1. %5. 3.121. 1.236 1.001. 8. % 9.

5 i

0.9 0.6.

0.2.

-0.2.

=0.4.

0.9.

-0.3.

-0.1.

c.1.

0.5.

8.1.

0.4.

6.2.

0.624 1.169. 1.5 %. 1. % 4 1.153.1.%5. l.165. 3.%4. 1.153. l.h3. 1.1%. l.168. 0.623.

. 0.633. 1.180. 1.154. l.154. 4.154. 1. % 4. 1.150. l.M2. 1.163. 1.3%. 1.144 l.lu. e.629 6

1.3.

4.0.

4.1.

-0.4.

-0.3.

0.0

-1.2.

0.1.

8.9

-0.5.

-1 4.

-0.2.

0.9,

. O.335. e.973. 1.049. 1.545. 1.177. 1. % 5. 1.167. 1.397. 1.169. 1. % 4 1.175. 1.344. 1.887. 0.972. e.335.

0.347. 0.992. 3.111 1.344. l.162. l. M 4. 3.186. l.396. 1.168. 1.%3 1.160. 1.295. I.e79. 0.975. 0.340 7

3.5 1.9.

2.0.

-0.1.

  • l.3.

0.4.

l.6.

4.0.

0.1.

-0.1.

-1.2.

-3.7.

-0.7.

8.4.

1. 5.

O 4 %. 0.834 4.259. 1.174. l.354. 1.165. 1.394 3.249. 1.399. 3.165. l.350. 1.127. I.249. 0.833. 4.4 %.

j

. 0.466. s.847. 3.2 %. 3.185. 1.294 3.147. 1.347. 1.243. 1.396. 1.165. 1.348. 1.118. I.262. 0.873. 0.4 %.

6 7.0.

1.6 4.4

-1.2.

-4.2.

-l.6.

-0.5.

-0.4.

  • 0.2.

3.1.

-0.8.

-0.4.

i.e.

4.6.

4.1.

0,333, 0.972. 1.087. 1.345. 1.176. 3.%5. l.167. 1.397. 3.168

1. %4 1.175. 1.344. l.049 0,973. 0.335.

0.341. e.976 1.083. 1. 3 %

l.169 1.347.1.148. 3.142. 1. lu. l.334.1.862.1.144. 3.198. 3.409. e.352.

9 i

2.5.

0.5.

-0.4

-e.7.

-0.6.

3.5.

-1,6.

1,1.

-e.2.

-3.7.

  • l.1.

0.3.

1.8.

3.7.

5.1.

I 4.623 1.169 1.157. 3. % 4 1.153. 1. % 5. 1.165. 1. % 4. 3.152. l.%1. 1.1%. l.164. e.624.

. 0.619 1.149 1.151. 1. % 0. 1.1 %. 3.517. 1.440. 1.349. 1.!!4. 1.359. 1.173. 1.199. 0.655.

le

-0.6.

-1.7. - 0. 5.

-0.3.

-1.5.

-3.6.

-2.1.

-1.8.

-2.4

-0.3.

1.5.

2.6.

5.0.

. 0.346. 8,993. 1.215. l.127. l. h 5. 1.175. l.350. 1.175. 1. % 4 1.126. 1.214. 0.993. e.346.

4.346. 0.996 1.222. 1.142. 1.3 %. l.147. 1.321. 1.147 1.313. 1.134. 1.239. 1.025. 0.he.

Il

-0.1.

4.3.

e.6.

1.3.

  • 0.8.

-2.4

-2.2.

-2.4.

-3.8.

0.7.

2.8.

3.2.

3.9.

0.467 0.816 1.214. 1.155. 1.344. 1.827. 1.344 1.155. l.214 9.886. 8.447.

9.429 0.427. 1.225 1.847. 1.304 1.195. 1.320. 1.1%.1.2 8 8. e.843. 9.449.

12 5.4.

l.4 0.9 0.7

-3.0

-1.9.

1.8.

al.7.

0.3.

3.3.

8.0.

. 0.466. 0.992 8.169. l.089. 1.250. 1.047. 1.164. 0.992. 0.446.

e.483. I. ele 1.173. 1.042. 1.240. l.077. 1.152. 0.990. 0.482.

13 l

1.6 3.4.

0.4

-0.7.

-0.8.

-0.9.

al.4

-0.2.

1.4

. e.346. 0.624. 0.975. 0.4%. 0.974 0.624. 0.346.

e.379. 0.637 0.489 0.843. 0.979. 0.628. 0.345.

14 9.6.

2.1.

1.4 0.6.

0.5.

0.5.

-0.3.

STANDARD

. 0.341. e.440 0.341.

AVE RAM lwvlAfton a.372 9.451. e.345.

.Kl 0!r7t etutt'.

15 1.6 j

al.927 9.1 2.6.

l.2.

=

r 1

Il J

SUMMAR1f MAP NOR $2-12-28 DATEI 01/03/95 POWERI 100.0%

CONTROL ROD POSITIONI F-Q(Z) s 1.805 QPTRI g

D BANK AT 224 STEPS F-DH(N) = 1.443 NW 0.9996 l NE 1.e451 i

F(Z)

= 1.144 SW 8.9971 SE 1.0003 f

BURNUP: a 17575 MWD /NTU A.O.= -2.589%

I NE-1011 S2C11 Core Performance Report Page 32 of 54 g

I I

Figure 4.4 SURRY UNIT 2 - CYCLE 12 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE I

1.2 I

(6,1.0)

(12,0.925) l l

0.8 3e l

h f 0.6 I

2" I

0.4 I

i 1

j I

I l

I 0.2 I

t l

I I

0 O

2 4

6 8

10 12 l

I CORE HEIGHT (FT) j l

l l

I NE-1011 S2C12 Core Performance Report Page 33 of 54

__- __- _ ___-___--__ - _________ _ _n

1 M

I t

I!

Figure 4.5 SURRY UNIT 2 - CYCLE 12 gl HEAT FLUX HOT CHANNEL FACTOR, F (Z) 3 l q

S2-12-04 I,

2.5

!!!!!!!!!!!!!!!e!!!!!!!!!!!!!!sm...,________________________

I' I "" Emmen,g I'

2

=

N ni,iiinioou

,,i n i

g,,o o

y o

n ii o

m m

m y

u u.

n n~

o i,

o 1,

O o

H n

n 01.5 o

's

.s wz o

z<

n I

ii m o

n go 1

o I

x Da LL.

]

i, I

E 0.5 g

I 0

60 50 40 30 20 10 1

g DONM OF CORE AXIAL POSITION (NODES)

TOP OF CORE g

I NE-1011 S2C12 Core Performance Report Page 34 of 54 g

I Figure 4.6 I

SURRY UNIT 2 - CYCLE 12

!! EAT FLUX IIOT CliANNEL FACTOR, F (Z) q S2-12-16 2.5 I

--==...,

2 I

ti4cr I

u.

o.,

i.o ll II IIllllllllil,,

,,q,

,1

,,,q,,li,g, O

""""ii,,

I H

ii o

o 1.5 o

o k

o J

I w

Z i,

Z<

o I

I o

o o

HO 1

n I

g XD J

o u.

o I

I g

0.5 I

I i

0 60 50 40 30 20 10 1

TOP OF CORE BOTTOM OF CORE AX1AL POSITION (NODES)

I NE-1011 S2C12 Core Performance Report Page 35 of 54

5 I

Figure 4.7 SURRY UNIT 2 CYCLE 12 E

HEAT FLUX HOT CHANNEL FACTOR, F (Z) 3 q

S2-12-28 2.5

!!!!!!!!!!!!!!!!!!!!!!!EEEEEE! nam,,,,

______________________I_"I""*Emm..,," _

" ann.,

2

^N v4 i

cr o

o IIll,,n 1

ti w

ll llllllll II llitiriisisi itii is O

i' o

o o

H i,

i o

01.5 j

{

l' o

i o

o J

o LU Z

o z<

IO o

p O

1 o

I X

D

.J LL.

I l

0.5 I

I O

60 50 40 30 20 10 1

TOP OF CORE BOTTOM OF CORE AXIAL POSITION (NODES)

I NE-1011 S2C12 Core Performance Report Page 36 of 54 E

I I

Figure 4.8 I

SURRY UNIT 2 - CYCLE 12 HAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F (Z)*P, vs. AXIAL e0SITION g

2.4

~

~

I 2.0 1.8 g

~

1.6 I

v 1.4 n.

l 1.2 1,0 0.8 0.8 I

0.4 l

02 0.0....l....

I 81 55 50 45 40 35 30 25 20 15 10 5

1 g

AX1AL POSITION (NODE)

I FQ*P UMIT I

x MAXIMUM FQ*P I

BOTIOM Of CORE TOP Of CORE I

I Nt-1o12 s2C12 Core eerrormance Report eage 37 or 54

mm uj Il Figure 4.9 SURRY UNIT 2 - CYCLE 12 1

MAXIMUM HEAT FLUX 110T CHANNEL FACTOR, F (Z), vs. BURNUP q

2.40 FULL POWER 2.36 g

l 5

% 2.32 MEASURED h

MUE l

o 28 2

I 2.24 I

.a W 2.20 l

Z g

Z 2.16 a

] 2.12 -],

g h

2.08 g

I l

+

>< 2.04 i

D

_J 2.00 l

LL 1.96 5

W 1.92 I

l i

+

l' 2 1.88

^

2 1.84

~

{+ ?4 l

!4 l

i 1.80 i

4

. ?x 2

3" '

lll 1.76 4

1.72 0

2 4

6 8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU) g I

El NE-1011 S2C12 Core Performance Report Page 38 of 54 E

I I

t Figure 4.10 SURRY UNIT 2 - CYCLE 12 MAXIMUM ENTHALeY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNU, 1,58 FULL POWER i

TECH SPEC LIMIT i

l I

1.56

i i

i !

MEASURED

% 1.55 O

+

H 1.54 g

k 1,53 I

a W 1.52 Z

Z 1.51 l

I 4

i IIl I 1.50 l

i jii g

H 1 l

o

.49 1 1.48 il i

I w

i M 1

?

i I 2

47

    • +n ii i

p 1.46 i!

i i CL FI +!

J 1.45 i iiiii 4

4+

I i+, !

7 1 44 H

4 i !

II Z

+

I!

I w 1.43 g

l l I!! I-v 1.42 I

i I

l 1.41 I

1.40 0

2 4

6 8 10 12 14 16 18 20 g

CYCLE BURNUP (GWd/MTU)

I I

mE.1 m S2c12 c... e.,,... _......

e.s-se.< se

an E

E Figure 4.11 SURRY UNIT 2 - CYCLE 12 l

TARGET DELTA FLUX vs. BURNUP E

5.0 4.5 l

4.0 -

i l

3.5 1

I I

I I

l 3.0 1

c 2.5 >

C0 2.0 o

u OO.1.5 v

X 1.0 b 0.5 h 0

l L1.

l l

E, WI

( 0.0 F-l l

1 J -0.5 l

e gl W

l t

O -1.0

?,

l F-l,1 W -1.5 f_~@

0 l

m 1i T -2.0

. gv 1

F

-2.5

^ "._.^v g^

v 1

T I

J l

07 E

ll

-3,0

.2 m

-3.5

.vva y

l

-4.0 O;

gl m

il l

1

-4.5

^

1 1

l l

-5.0 x

0 2

4 6

8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU) l I

E NE-1011 S2C12 Core Performance Report Page 40 of 54 E

I I

Figure 4.12 I

SURRY UNIT 2 - CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-12-04 I

I Fz = 1.228 AXIAL OFFSET = 0.271 1.5 I

MNNNNI I.I.

I NI N NNMNNN M2 I

E 3xg NM NN N

V EN I

=,

=

=,

g

=,

y... ;

I M

A

=

=

=

Q 6... !

a w

I w

x

=K

- E I

I I

TOP OF CORT

.0TT0n OF Coat AX1ALPOSITION (NODES)

I I

I I

NE-1011 S2Cl2 Core Performance Report Page 41 of 54

an E

I Figure 4.13 SURRY UNIT 2 - CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-12-16 I

l Fz = 1.143 AXIAL OFFSET = -2.232 1..

I i...

3MIMMXX X

X XXX hEXXXXXMN MEEX X

X X

NI

=

=

=

,Q id... -

=

E

==

3 9

o6 i

=

=M

  • I

.........s.....s....s.....x....#.....:,....:.....:...:

u i

i 90710M OF.088 AXIAL POSITION (NODES)

I I

I NE-1011 S2C12 Core Performance Report Page 42 of 54

I I

Figure 4.14 I

SURRY UNIT 2 - CYCLE 12 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-12-28 I

Fz = 1.144 AXIAL OFFSET = -2.509 I

a...

I I

a..

xxx x

x xxx xxxxxxxx y

X xxxxxx xxxxxxxx Q

y... ".

,8 x

x x

g B

d 9

o I

R...."

g I.

I I

e

..,....,....n.....s...

1...

1..

. #.... x..,:...

...l n

a a

a u

I

,,,,,,,x, 30T10H OF,0tt AXIAL POSITION (NODES)

I I

' I I

NE.1 11 S2c12 c... e..,.....c. R.

.,t eage 43

.f 54

am 5

I Figure 4.15 SURRY UNIT 2 - CYCLE 12 E

CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP W

1.275 MEASURED l

VALUE l

+

g 1.250 g

O l--0

+

1.225 0

g E

E M<

+1 1.200 J

i i

g

+

g 1.175 ga o

I l

+

l w

i

+

  • + +.

1.150

, 4-i +, !;

'l+-+

j I

i i 8

L li 1.125 I

6 0

2 4

6 8

10 12 14 16 18 20 CYCLE BURNUP (GWd/MTU) g I

NE-1011 S2C12 Core Performance Report Page 44 of 54 5

I I

Section 5 PRIMARY COOLANT ACTIVITY I

I The specific activity levels of radiolodines in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses. Two mechanisms are primarily responsible for the presence of radioiodinns in the primary coolant. Radiolodines are always present due to direct fission product recoil from trace fissile materials plated onto core components and fuel structured surfaces or trace fissile materials existing as impurities in core structural materials.

This fissile material is generally referred to as " tramp" material, and the resulting lodines are referred to as tramp iodine. Fission products will also dif fuse into the primary coolant if a breach in the cladding (fuel defects) exists.

Fuel defects, when they exist, are generally the predominant source of radiolodines in the primary coolant.

I Surry Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 pCi/ gram with provisions that ultimately limit the dose equivalent I-131 activity to a maximum of 10.0 pCi/gm2 Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 12.

These data show that the dose equivalent I-131 activity remained substantially below 1.0 pCi/gm throughout Cycle 12 operation. The cycle average steady state power dose equivalent 1-131 concentration was 7.63 X 10~4 pC1/gm which is less than.1% of the Technical Specification limit.

NE-1011 S2C12 Core Performance Report Page 45 of 54

l as 5

E Correcting the I-131 concentration for tramp lodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the measured I-131.

The resultant tramp-corrected I-131 activity is theoretically the I-131 activity from defective fuel.

The magnitude of the tramp-corrected 1-131 can then be used as an indication of the number of defective fuel rods. The cycle average tramp corrected iodine-131 concentration was 2.90 X 10-5 pCi/gm. A tramp-corrected I-131 activity of this low magnitude is a good indication of a defect f ree core.

The fact that there were no spikes in the iodine data during rapid power transients substantiates the conclusion that the Cycle 12 core contained no defective fuel rods and the reactor coolant system radiolodines resulted f rom tramp fissile sources. The dominera11zer flow rate averaged approximately 100 gpm during power operation.

I The ratio of the specific activities of I-131 to I-133 is used to characterize the type (size) of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to I

that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the 1-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of largo leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will I

generally be less than 0.1.

The use of these ratios with regard to defect size is empirically determined and generally used throughout the commercial nuclear power industry. Figure 5.2 shows the I-131/I-133 ratio data for the Surry 2 Cycle 12.

The " spikes" in the ratio data shown on E

NE-1011 S2C12 Core Performance Report Page 46 of 54 g

1 I

I Figure 5.2 primarily occurred when the unit was down and is the result of I-133 decay thus increasing the ratio substantially.

While the unit was in full power operation, the I-131/I-133 ratio remained consistantly under

.1, which is typical for a core with zero defective fuel rods.

I I

I I

I I

I I

I I

I I

E I

. 1 m s2 m core ee,fo,m _...po,t eage u

,f 5.

i 5

E Figure 5.1 SURRY UNIT 2 - CYCLE 12 DOSE EQUIVALENT I-131 vs. TIME I

1.00E+01 I!

I 1.00E+00

~

Il l

1.00E-01 I

5o b

m E 1.00E-02 st 8

~

E L_

1.00E-03 eWS*.. Mil

~

n 1.00E-04 a

n 4:

.c,; m 7m =

~

li I

a to "

l o

1.00E-05 g

liiiiiiiii;.ijiiiii.,i,gisisiiiiigiiiii,iigisi,..ii;ii,,iiiiig......,

16 FED 93 27MAYD3 04SEP93 13DEC93 23 MAR 94 OllUI.94 090CT94 17JAN95 27APR95 DATE I

E NE-1011 S2C12 Core Performance Report Page 48 of 54 E

l I

I Figure 5.2 I

SURRY UNIT 2 - CYCLE 12 I-131 / I-133 ACTIVITY RATIO vs. TIME I

1.0 r

0.9 I

0.7 2

0.6 i

n

o.5 I

?

0.4 I

0.3 I

.E E.E.

u I

n

'jDIk$df 7 7'

- [

"j I

cre w.S Yg ;20seMpp

j I

,.........,.........,.........,..................,.........,......... v.........

16FEB03 27MAY93 04SEP93 13DEC93 23 MAR 94 DlJUL94 090CT94 17JAN95 27APR95 DATE E

I u s. 1 m s 2 c 1 2 c... e.,,,. _.. -

e...

e - se

e A

.ais w

aw,..m a

G E

I I

Il I

Ii I

I i

1,,,e _s 1 1em11-m emmx I

I I

I l

I I

I 3

us.1 m s2cm c.,. e.,<.,. _....,<

e...

so.,,.

I I

Section 6 I

CONCLUSIONS I

The Surry 2, Cycle 12 core has completed operation.

Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specification limits were met with significant margin.

No significant abnormalities in reactivity or burnup accumulation were detected.

Radiolodine analysis indicated that there were no fuel rod defects.

I I

I E

I I

I

.I I

NE-1011 S2C12 Core Performance Report Page 51 of 54

...r a..--

4 d

w s

..w 5

I I

I I

I I

I I

g 1,,1s e m i m m11eu m, m mx I

I I

I I

I I

I me.1 m s2c m c _ e.,,,,. _.....,,

s2 e,.

LI Section 7

!I I

1

)

REFERENCES Il l

1)

D. A. Trace, "Surry Unit 2, Cycle 12 Startup Physics Test Report," Technical Report NE-943, l

Rev. O, Virginia Power, June, 1993.

(

l

2) Surry Power Statica Technical Specifications, Sections 3.1.D, 3.12.B and 4.10.

lI

)

3)

T. W. Schleicher, " Virginia Power Fuel Assembly Burnup l

and Isotopics Calculation Code Manual," Technical Report NE-726, i

Rev. O, Virginia Power, February, 1990.

4)

D. L. C1111att, "The Virginia Power FOLLOW Code Manual,"

Technical Report NE-679, Rev. 1, Virginia Power, April, 1991.

I 5)

W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"

WCAP-7149, Westinghouse, December, 1967.

6)

T. W. Schleicher, "The Virginia Power CECOR Code Package",

NE-831, Rev. 2, March, 1994.

7)

G. R. Pristas, " Reload Safety Evaluation Surry Unit 2 Cycle 12 I

Pattern AZ", Technical Report NE-922, Rev. O, Virginia Power, June, 1993.

8) Letter from B. C. Buckley (NRC) to W.L. Stewart, "Surry Units 1 and 2 - Issuance of Amendments Re: F-Delta-H Limit and I

Statistical DNBR Methodology (TAC Nos. M81271 and M82168)",

Serial No.92-405, dated June 1, 1992.

NE-1011 S2C12 Core Performance Report Page 53 of 54

am I:

REFERENCES (cont.)

9)

D. A. Trace, "Surry Unit 2 Cycle 12 Design Report",

Technical Report NE-932, Rev. O, Virginia Power, April, 1993.

10) "Surry Unit 2 Cycle 12 TOTE Calculations", Calculational Note l

PM-489, Rev. O and associated addenda, Virginia Power.

p

11) R. A. Itall, et al, "Surry Unit 2 Cycle 12 Flux Map Analysis",

~~

PM-491, Rev. O, and Addenda, May 1993 - January 1995.

12) W. S. Miller, "Surry Unit 2, Cycle 12 FOLOW Calculations",

g Calculational Note PM-495, Rev. O, Addendum B, Virginia Power, g

February, 1995.

13) Nuclear Standard, " Fuel Integrity Monitcring", ENNS-2904, Rev. O, May 26, 1992.

I I

I I

I I

NF-1011 S2C12 Core Performance Report Page 54 of 54 g'