ML18153D046
| ML18153D046 | |
| Person / Time | |
|---|---|
| Site: | Surry |
| Issue date: | 05/31/1992 |
| From: | Dziadosz D, Thanh Nguyen, Psuik T VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML18153D045 | List: |
| References | |
| NE-893, NE-893-R, NE-893-R00, NUDOCS 9207010133 | |
| Download: ML18153D046 (54) | |
Text
- -NOTICE-THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE INFORMATION &
REPORTS MANAGEMENT BRANCH.
THEY HAVE BEEN CHARGED TO YOU FOR A t.lMITED TIME PERIOD AND MUST BE RETURNED TO THE RE-CORDS & ARCHIVES SERVICES SEC-TION P1-22 WHITE FLINT. PLEASE DO
. NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE RE-FERRED TO FILE PER~ONNEL.
-NOTICE-
r,
- l TECHNICAL REPORT NE-893 - Rev. 0 SURRY UNIT 1, CYCLE 11 CORE PERFORMANCE REPORT NUCLEAR ANALYSIS AND FUEL
- NUCLEAR ENGINEERING SERVICES VIRGINIA POWER MAY, 1992 PREPARED BY:__.l:...:._.-..:....I..:....* -<-..J.~c.::;.;:;_.~~-=---
_,-....,...... ~
T. T~gt{te; REVIEWED BY:_b
~_. _(ll_.r __ __
T. S. Psuik REVIEWED BY: __
-.,_/..:...,_A~~=""'-L>==---
,[Lt?-ft~
Date 5/Z8/~z..
Date S-2.i-'12..
T. A. Brookmire Date
. W. Henderson APPROVED BY: 1 _J)r"'*~
D. Dziadosz ~
QA Category: Nuclear Safety Related Keywords: SlCll, Core Performance
.s-~12
~7 0~19~
Date
TABLE OF CONTENTS PAGE Table of Contents 1
List of Tables 2
List of Figures.
3 Section 1 Introduction and Summary.
5 Section 2 Burnup.
13 Section 3 Reactivity Depletion.
23 Section 4 Power Distribution.
25 Section 5 Primary Coolant Activity.
45 Section 6 Conclusions 51 C
Section 7 References.
53 i
NE-893 SlCll Core Performance Report Page 1 of 53
LIST OF TABLES TABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation......... 29 NE-893 SlCll Core Performance Report Page 2 of 53
)
LIST OF FIGURES FIGURE TITLE 1.1 Core Loading Map 1.2 Burnable Poison And Source Assembly Locations.
1.3 Movable Detector Locations 1.4 Control Rod Locations.
2.1 Core Burnup History 2.2 Monthly Average Load Factors PAGE 8
9 10 11 15 16 2.3 Assemblywise Accumulated Burnup:
Measured and Predicted 17 2.4 Assemblywise Accumulated Burnup:
Comparison of Measured and Predicted 18 2.5A Sub-Batch Burnup Sharing 2.5B Sub-Batch Burnup Sharing 2.5C Sub-Batch Burnup Sharing 3.1 Critical Boron Concentration versus Burnup - HFP-ARO 4.1 Assemblywise Power Distribution - Sl-11-07 4.2 Assemblywise Power Distribution - Sl-11-15 4.3 Assemblywise Power Distribution - Sl-11-21 NE-893 SlCll Core Performance Report Page 3
of 53 19 20 21 24 30 31 32
LIST OF FIGURES CONT'D FIGURE TITLE 4.4 Hot Channel Factor Normalized Operating Envelope 4.5 Heat Flux Hot Channel Factor, Fq(Z) - Sl-11-07 4.6 Heat Flux Hot Channel Factor, Fq(Z) - Sl-11-15 4.7 Heat Flux Hot Channel Factor, Fq(Z) - Sl-11-21 4.8 Maximum Heat Flux Hot Channel Factor, Fq(Z)*P, vs.
Axial Position 4.9 Maximum Heat*Flux Hot Channel Factor, Fq(Z), vs. Burnup 4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.
Burnup 4.11 Target Delta Flux versus Burnup
- 4. 12 Core Average Axial Power Distribution - Sl-ll-07 4.13 Core Average Axial Power Distribution - Sl-11-15 4.14 Core Average Axial Power Distribution - Sl-11-21 4.15 Core Average Axial Peaking Factor vs. Burnup 5.1 Dose Equivalent I-131 vs. Time 5.2 I-131/I-133 Activity Ratio vs. Time.
NE-893 S1Cll Core Performance Report Page PAGE 4 of 53 33 34 35 36 37 38 39 40 41 42 43 44 48 49
~I I
Section 1 INTRODUCTION AND
SUMMARY
On February 29, 1992, Surry Unit 1 completed Cycle 11.
Inital criticality of Cycle 11 was reached on December 17, 1990.
During Cycle 11, the reactor core produced approximately 8. 27 x 10 7 MBTU (13,959 Megawatt days per metric ton of contained uranium).
The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 11. The physics tests that were performed during the startup of Cycle 11 were covered in the Surry Unit 1, Cycle 11 Startup Physics Test Report 1 and therefore, will not be included here.
Surry Unit 1 was in coastdown from January 30, 1992, at which time the burnup was approximately 13,043 MWD/MTU.
The coastdown accounted for an additional core burnup of roughly 916 MWD/MTU from the end of full power reactivity.
The Cycle 11 core consisted of 11 sub-batches of fuel:
two fresh batches (batches 13A and 13B); three once-burned, all three from Surry 1 Cycle 10/lOA (batches 12A, 12B, and S2/12A); seven twice-burned batches, one from Surry 1 Cycles 6 and 10/lOA (batch BB), one from Surry 1 Cycles 7 and 9 (batch 9A), one from Surry 1 Cycles 8 and 9 (batch lOA),
NE-893 SlCll Core Performance Report Page 5
of 53
two from Surry 1 Cycles 7 and 10/lOA (batches 9A and 9B), and two from Surry 1 Cycles 9 and 10/lOA (batches llA and llB); and one thrice-burned batch from Surry 1 Cycles 8, 9, and 10/lOA (batch lOA). The Surry 1, Cycle 11 core loading map specifying the fuel batch identification, and fuel assembly locations are shown in Figure 1.1. The Burnable poison locations and source assembly location are shown in Figure 1.2.
Movable detector locations are shown in Figure 1.3.
Control rod locations are shown in Figure 1.4.
Routine core follow involves the analysis of four principal performance indicators.
These are burnup distribution, reactivity depletion, power distribution, and piimary coolant activity.
The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed; and to indicate at what burnup level refueling will be required.
Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 2 limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.
Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Unit 1 Technical Specifications 2
- A radioiodine analysis based on the iodine-131 concentration in the coolant is performed to assess the integrity of the fuel.
NE-893 SlCll Core Performance Report Page 6
of 53
Each of the four performance indicators is discussed in detail for the Surry 1, Cycle 11 core in the body of this report. The results are summarized below:
- 1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.28% with. the burnup accumulation in each batch deviating from design predictions by no more than 1.62%.
- 2. Reactivity Depletion -
The critical boron concentration, used to monitor reactivity depletion, was within +/-0.42% AK/K of the design prediction which is within the +/-1% AK/K margin allowed by Section 4.10 of the Technical Specifications.
- 3. Power Distribution -
Incore. flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 1.4%. All hot channel factors met their respective Technical Specifications limits.
- 4. Primary Coolant Activity -
The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 11 was approximately 0.0161 µCi/gm.
This corresponds to less than 2% of the operating limit for the concentration of radioiodine in the primary coolant.
The tramp-corrected I-131 activity indicates that Cycle 11 operated with no defective fuel rods.
NE-893 SlCll Core Performance Report Page 7 of 53
A 8
C D
Figure 1.1 SURRY UNIT 1 - CYCLE 11 CORE LOADING MAP E
F G
H J
118 98 118 I
K L
I 3F5 I 5D8 I 3F3 I
I __ I __ I __ I l-l,...,0,---,A-,-I..,.l..,..28,---I 138 I 128 I 138 1"""'1,....,2,.,..8----,l,--,-lO,,...A,--I I 3E6 I 4G4 I 3H2 I 2G8 I 2H7 I 3G4 I 5El I
H
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I 118 I 138 I 138 I 12A I 13A I 12A I 138 I 138 I 118 I
I 4F8 I 4H8 I 4HO I lG4 I lHl I OG7 I 4H6 I 3H5 I 5F6 I
N
~-1 __ 1 __ 1 __ 1 __ 1~_1 __ 1 __ 1 __ 1 __ 1~-
I 118 I 88 I 13A I 88 I 12A I 12A I 12A I 88 I 13A I 88 I llB I
I 4FO I 3C7 I 2H2 I OC2 I OG2 I 1G7 I 1G2 I 3CO I OH2 I. 2CO I SFO I
p
~-1~_1 __ 1_*_1 __ 1~_1~_1 __ 1 __ 1 __ 1 __ 1~_1 __
I llB I l3B I 13A I 98 I 13A I llA I l3B I llA I 13A I 98 I 13A I l3B I 118 I*
I 4F6 I 3H6 I OH7 I 4D9 I 1H3 I lF7 I 4H3 I OF8 I lH6 I 5D6 I 1H2 I 4Hl I 5F4 I
l __ l __ l __ l __
-, __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I l2B I l3B I 8B I 13A I l2B I l2B I 12A I l2B I l2B I 13A I 88 I 138 I 128 I
I 3G5 I 2H5 I OC9 I OHl I 4G3 I 2G5 I OG4 I 3G3 I 3G8 I 2Hl I 2Cl I 4H9 I 4GO I
R I __ I __ I __ I __ I __
I __
I __
I __ I __
I __ I __ I __
I __ I __
I lOA I 138 I 12A I 12A I llA I 128 I 118 I 13A I llB I 128 I llA I 12A I 12A I l3B I 9A I
I 3E2 I 4H2 I lG8 I OG9 I OF6 I 2G7 I SFS I OH8 I 4F9 I 3Gl I 1F3 I 2G4 I OG8 I 2H8 I 2D6 I
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I I 9B I l2B I 13A. I 12A I l3B I 12A I 13A I 9A I 13A I 12A I l3B I 12A I 13A I l2B I 9B I
I 3D7 I 2G9 I 1H9 I 2G2 I 3Hl I 2Gl I lHS I 3D5 I 2H4 I 2GO I 3H7 I lGO I 1H8 I 4Gl I 4DO I
I __ I __ I __ I __ I __ I __ I __
- I_._I __ I __ I __ I __ I __ I __ I __ I I llB I l3B I 12A I 12A I llA I 128 I llB I BA I llB I 128 I llA I 12A I 12A I l3B I llB I
I 3F4 I 4H7 I lGl I 1G9 I OF7 I 3G2 I 3F2 I OH3 I 5F2 I 4G2 I 1F2 I OGl I 1G6 I SHl I 3F6 I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 IS2/12AI 138 I 8B I 13A I l2B I l2B I 12A I l2B I l2B I 13A I 88 I l3B I 128 I
I 2UO I 2H9 I lC3 - I 2H3 I 3G6 I 3G7 I OG3 I 2G6 I 4G5 I 1H4 I 2C5 I 3H3 I 4G6 I
l __ l __ l __ l __ l __ l __ l __ l __ l __ l __ l __ l __ l __ l I 118 I 138 I 13A I 98 I 13A I llA I 138 I llA I 13A I 98 I 13A I 138 I 118 I
I 3Fl I 3H9 I lHO I 4D4 I 1H7 I lFl l 2H6 I OF3 I OHS I 3D9 I OH9 I 4H4 I 4F5 I
I __ I __
. I __ I_._I __ I __ I __ I __ I __ I __ I __ I __ I __ I I 118 I 88 I 13A I 88 I 12A I 12A I 12A I 88 I 13A I 88 I 118 I
I 4F3 I 4C3 I OH4 I 3C2 I OGS I lGS I 2G3 I OC8 I 2HO I OC4 I 2F9 I
I __
I __ I __ I __
I __ I __
I __
I __ I __
I __ I __ I 1--> BATCH I 118 I 138 I 138 I 12A I 13A I 12A I 138 I 138 I 118 I
I 3F7 I 3H4 I 4H5 I OG6 I OH6 I 1G3 I SHO I 3HO I 4Fl I
I __ I __
I __
I __._I __
I __ I __
I __
I __
I I lOA I 128 I 138 I 128 I 138 I 128 I lOA I
I 1E4 I 3G9 I 5H2 I 3GO I 3H8 I 4G8 I 3E5 I
I __ I __ I __ I __ I __ I __ I __ I 1--> ASSEHBLY ID I
I 118 I 9A I 118 I
I 3F9 I OD2 I 4F2 I
I __ I __ I __ I FUEL ASSEHBLY DESIGN PARAHETERS SUB-BATCH S2/12A 88 9A 98 lOA llA 118 12A 128 13A 138 INITIAL ENRICHHEHT 3.79 3.40 3.59 3.61 3.60 3.60 3.80 3.80 3.99 3.80 4.01 (W/0 U-235)
ASSEH8LY TYPE 15xl5 15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 l5Xl5 15Xl5 15Xl5 l5Xl5 NUHBER OF ASSEHBLIES l
12 3
7 5
8 22 24 23 24 28 FUEL RODS PER ASSEHBL\\
204 204 204 204 204 204 204 204 204 204 204 NE-893 S1Cll Core Performance Report Page 8 of 53 15 14 13 12 11 10 9
8 7
6 5
4
~
3 2
l
Figure 1.2 SURRY UNIT 1 - CYCLE 11 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS A
B C
D E
F G
H J
K L
H N
p R
I I
I I
I
--~--l __ l __ l __ l __ ~--
1 BP028 I I BP027 I I
I I
BP I
I
!IP I
I I
I __
I __
I __
I __
I __
I __
I __
I __
I IBP061 IBP043 I IBP013 I IBP044 IBP063 I I
I I
SP I
16P I I 20P I
I 16P I
SP I
I I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I I
IBP049 I I
IBP009 I I
IBPOSO I I
I I
I I 12P I
I ss2 I
4P I
I I 12P I
I I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
- 1 __
1 __
I IBP062 IBPOSl I IBP033 I IBPOOS I IBP034 I IBPDS2 IBP064 I I
I
.I SP I 12P I
I 16P I
I 20P I
I 16P I
I 12P I
SP I
I I __
I __
I __
I __ I __ I_. __ I __
I __
I __
I __
I __
I __
I __
I I
IBP047 I 1BP03S I 1BP017 I IBPOlB I 1BP036 I IBP04S I I
I I 16P I
I 16P I
I 4P I
I 4P I
I 16P I
I 16P I
I I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I 1BP032 I I
I 1BP019 I IBPOOl I 1BP020 I I
I 1BP030 I I
I I
BP I
I I
I 4P I
I 16P I
I 4P I
I I
I BP I
I I __
I __ I_._I __
I __ I __
I __
I __
I __
._I __
I __
I __
I __
I __
I __
I I
I I BP014 I BPOlO I BP006 I I BP002 I I BP003 I I BPD07 I BPOll I BPOlS I I
I I
I I 20P I
4P I 20P I
I 16P I
I 16P I
I 20P I
4P I 2DP I
I I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
IBP031 I I
I 1BP021 I IBP004 I 1BPD02 I I
I IBP029 I I
I I
!IP I
I I
I 4P I
I 16P I
I 4P I
I SS7 I
I BP I
I 1 __
1 __, __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
IBP048 I IBP037 I 1BP023 I IBPD24 I IBPD38 I IBPD46 I I
I I 16P I
I 16P I
I 4P I
I 4P I
I 16P I
I 16P I
I I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I I
I BPDS9 I BPOS3 I I BPD39 I I BPOOB I I BPD40 I I BPDS4 I BPDS7 I I
I I
SP I 12P I
I 16P I
I 20P I
I 16P I
I 12P I
SP I
I I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I __
I I
I IBPOS5 I I
IBP012 I I
IBPDS6 I I
I I
I I 12P I
I I
4P I SS1 I
I 12P I
I I
I __
I __
I __
I __
I __
I __
I __
._I __
I __
I __
I __ I I
I BPD60 I BP041 I I BPD16 I I BPD42 I BPOSB I I
I I
SP I
16P I I 2DP I
I 16P I
SP I
I I __
I __
I __
I __
I __ I __
I __
I __
I __
I 4P -
4 BURNABLE POISON ROD CLUSTER SP -
S BURNABLE POISON ROD CLUSTER BP -
8 BURNABLE POISON ROD CLUSTER 12P -
12 BURNABLE POISON ROD CLUSTER 16P -
16 BURNABLE POISON ROD CLUSTER 20P -
20 BURNABLE POISON ROD CLUSTER SSxx -
SECONDARY SOURCE I
I 1BPD26 I 1BPD2S I I
I I
I I
!IP I
I BP I
I I
I __
I __
I __
I __
I __
I __
I __
I I
I I
I I
I I
I I __
I __
I __
I NE-893 SlCll Core Performance Report Page 9
of 53 15 14 13 12 11 10 9
B 7
6 s
4 3
2
R p
N figure 1.3 SURRY UNIT 1 - CYCLE 11 MOVABLE DETECTOR LOCATIONS H
L K
J H
G I
I I
HD I
I F
E
---,---I __ I __ I __._I __ -,-__
I I
I I
I I
I I
I I
HD I
I D
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
I I
I I
I I
I I
I I
I HD I
I I
HD I
HD I
I I
I HD I
C
__ l __
l __
l __
l __
l __
l __
l __
l __ l~_I __
I I
I I
I I
I I
I I
I I
I I
I HD I
I I
I I
I I
I I
B
__ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __
I I
I I
I I
I I
I I
I I
I I
. I I
HD I
I HD I
I HD I
I I
I HD I
HD I
I HD I
I __ I __ I __ I __ I __ I __ I __ I_-_I __ I __ I __ I __ I __ I I
I I
I I
I I
I I
I I
I I
I I
I I
I HD I
I I
HD I
I HD I
I I
I I
A
__, __ l __ l __, __, __, __, __ 1 __ 1 __, __, __, __, __, __
I I
I I
I I
I I
I I
I I
I I
I I
I I
I HD I
I I
I HD I
I HD I
I I
HD I
I HD I
I 1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
I I
I I
I I
I I
I I
I I
I I
I I
HD I
I HD I
I HD I
I I
I I
HD I
I I
HD I
HD I
I I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
HD I
I I
I HD I
HD I
I I
I I
HD I
I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I I
I I
I I
I I
I I
I I
I.
I I
I I
HD I
I I
I HD I
I I
I I
HD I
I HD I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 I
I I
I I
I I
I I
I I
I I
I I
I I
I HD I
I I
HD I
I HD I
HD I
I I
I l __
l __
l __
l __
l __
l __
l __
l __
l __
l __
l __
l __
I I
I I
I I
I I
I I
I I
I I
HD I
I I
- I HD I
I I
I I
HD I
HD I
I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I I
I I
I I
I I
I I
I I
I I
I I
HD I
I HD I
I I
I __ I __ I __ I __ I __ I __ I __ I __ I __ I I
I I
I I
I I
I I
HD I
I I
I HD I
I I
I __ I __ I __ I __ I __ I __ I __ I I
I I
I HD -
Hovable Detector I
HD I
I I
I __ I __ I __ I NE-893 SlCll Core Performance Report Page 10 of 53 l
2 3
4 5
6 7
8 9
- I 10
~
ll 12 13 14 15
--ti R
p N
H Figure 1.4 SURRY UNIT 1 - CYCLE 11 CONTROL ROD LOCATIONS L
K J
H 180° I
G F
E D
C Loop C I
Loop B Outlet I
Inlet
~l : A :_:_o_:_: A I
1,,/
N-41 I
I I
N-43
__ I_I_-_I_I_I_I_I_I_I_I_
I I c I
I B I I
I I B I I c I
I B
_I_I_I_I_I_I_I_I_I_I_I_I_
I I SB I I
I I
I_I_I_I_I_I_I_I_I_I_I_I_I_I IAI IBI IDI ICI IDI IBI IAI A
Loop c I
I I
I I
1
- I I
I I
I I
I I
Loop B Inlet I
I I SA I I
I I SB I I SB I I SP I I SA I I
I Outlet
~ I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I /f 90--~1 I D I I
I I c I
I I
I c I
I I
I D I 1/ 210° l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l I
I I SA I I SP I I SB I I SB I I
I I SA I I
I l_l_l_l_l_l_l_l_l_l_l_l_l_l_l_l JAi IBI IDI ICI IDI IBI IAI I_I_I_I_I_I_I_I_I_I_I_I_I_I I
I I
I SB I I
l_l_l_l_l_l_l_l_l_l_l_l_l_l I
I c I
I B I I
I I B I I c I
I l_l_l_l_l_l_l_l_l_l_l_l I
I I
N-44 I __ I __ I __ I __ I __ I __ I __ I __ I __ I N-42 Absorber Material Ag-In-Cd Function Control Bank D Control Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA I
I A I I D I I A I I
~-'-:-:-:-:-'-,
Loop A I __ I __ I __ I Loop A Outlet Inlet Number of Clusters SP (Spare Rod Locations) 8 8
8 8
8 8
8 NE-893 SlCll Core Performance Report Page 11 of 53 l
2 3
4 5
6 7
8 10 11 12 13 14 15
THIS PAGE INTENTIONALLY BLANK rr NE-893 SlCll Core Performance Report Page 12 of 53
Section 2 BURNUP The burnup history for the Surry Unit 1, Cycle 11 core is graphically depicted in Figures 2.1.
The Surry 1, Cycle 11 core achieved a burnup of 13,959 MWD/MTU.
As shown in Figure 2.2, the average load factor for Cycle 11 was 94.5% when referenced to rated thermal power (2441 MW(t)).
Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis.
The NEWTOTE 3 computer code is used to calculate these assemblywise burnups.
Figure 2.3 is the radial burnup distribution map in which the assemblywise burnup accumulation of*the core at the end of Cycle 11 is given.
For comparison purposes, the design values are also given.
Figure 2.4 is the radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 11 operation is given.
As can be seen from these figures, the accumulated assembly burnups were generally within +/-2.91% of the predicted values.
In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.28%.
The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies. Batch NE-893 SlCll Core Performance Report Page 13 of 53
definitions are given in Figure 1.1.
As seen in Figures 2.5A, 2.5B, and
- 2. SC the batch burnup sharing for Surry 1, Cycle 11 followed design predictions closely with no batch deviating from prediction by more than
- 1. 62%.
NE-893 S1Cll Core Performance Report Page 14 of 53
'I,*
,~m 14DOD 1lDDI 12DDD 11DDD Figure 2.1 SURRY UNIT 1 - CYCLE 11 CORE BURNUP HISTORY
-- -- -- - ------ -/
I J V
L V
)
i IDOII
( *m V
/
V
- a. IDII i 7011 m IDDI
~
G 5DDI 4DOD
/
/ V V
/
V I
V
,/
V lDDO
/
/
2m
/
/
1DH
/
V 0
L a,
.... =..... -
~
- a
- a
..... =
Cl a, - - - -....
a, -
1111E (IIONTHS)
MAXIUUU DESIGN BURNUP -
14100 UWD/MTU NE-893 S1Cll Core Performance Report Page 15 of 53
100 90 80 70 r*
~
z 60
~
u 50 0::
~
~ 40 30 20 10 0
- Figure 2.2 SURRY UNIT 1 - CYCLE 11 MONTHLY AVERAGE LOAD FACTORS MONTH
~E-893 S1Cll Core Performance Report Page 16 of 53
~
l 2
3 4
5 6
7 8
9 10 11 12 13 14 15 R
p H
Figure 2.3 SURRY UNIT 1 - CYCLE 11 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)
H L
K J
H G
F E
D C
B A
I 44.361 40.741 44.251 I 44.491 40.541 44.491 I
HEASURED I I PREDICTED I I 42.261 30.801 16.401 34.611 16.411 31.221 41.791 I 42.191 30.851 16.341 34.911 16.341 30.851 42.191 I 39.931 15.981 17.791 37.261 17.841 36.731 18.291 16.251 39.491 I 40.081 16.201 17.871 37.741 18.271 37.741 17.871 16.201 40.081 I 39.871 42.211 17.251 42.381 34.lOI 37.071 33.991 41.881 17.401 42.771 39.711 I 41.051 41.651 17.551 41.591 34.581 37.591 34.581 41.591 17.551 42.061 41.051 I 43.611 16.111 17.451 46.791 18.241 49.251 18.801 49.041 18.311 47.591 17.141 16.041 44.021 I 44.431 16.lOI 17.511 47.541 18.401 49.0ll 18.531 49.0ll 18.401 47.541 17.511 16.lOI 44.431 I 30.491 17.731 41.691 18.081 37.451 33.851 37.851 34.841 37.161 18.051 42.291 17.671 28.431 I 30.831 17.831 41.561 18.361 37.771 34.321 37.631 34.321 37.771 18.361 41.491 17.831 28.591 2
3 4
5 6
I 44.541 16.331 37.381 34.041 48.381 33.941 48.871 18.441 48.861 34.071 49.101 34.441 36.711 15.741 43.911 7
I 44.511 16.331 37.741 34.561 49.021 34.351 49.511 18.361 49.511 34.351 49.021 34.561 37.741 16.331 44.511 I 40.571 34.641 18.321 37.131 17.921 37.021 18.481 46.321 18.461 37.341 18.431 37.291 17.761 34.771 40.141 8
I 40.531 34.911 18.271 37.571 18.531 37.671 18.431 45.811 18.431 37.671 18.531 37.571 18.271 34.911 40.531 I 39.701 16.241 37.041 34.151 49.191 33.741 48.831 18.341 48.991 34.121 49.361 34.061 37.621 16.301 42.061 9
I 39.211 16.331 37.741 34.561 49.021 34.351 49.511 18.361 49.511 34.351 49.021 34.561 37.741 16.331 41.971 R
I 30.211 17.421 42.551 18.471 37.651 33.691 37.331 33.841 37.101 18.451 42.061 18.031 31.071 I 30.831 17.831 41.561 18.361 37.771 34.321 37.631 34.321 37.771 18.361 41:391 17.831 30.831 I 43.861 15.941 17.421 47.671 18.361 48.561 18.111 49.081 18.331 47.861 17.861 16.331 43.171 I 44.431 16.101 17.511 47.541 18.401 49.0ll 18.531 49.0ll 18.401 47.541 17.511 16.101 44.431 p
I 40.301 43.211 17.611 41.361 34.351 36.661 34.421 41.411 17.581 43.061 40.991 I 41.051 42.061 17.551 41.591 34.581 37.591 34.581 41.591 17.551 41.771 41.051 I 39.191 16.451 17.951 36.771 17.821 36.831 17.311 16.061 40.131 I 40.081 16.201 17.871 37.741 18.271 37.741 17.871 16.201 40.081 I 41.571 30.671 16.151 34.381 15.621 30.081 41.381 I 42.191 30.851 16.341 34.911 16.341 30.851 41.351 I 44.051 40.141 43.661 I 44.491 40.651 44.491 H
H K
J H
G
.F E
D C
B A
10 11 12 13 14 15 NE-893 S1Cll Core Performance Report Page 17 of 53
2 3
4 5
6 7
8 9
10 11 12 13 14 is R
Figure 2.4 SURRY UNIT 1 ~ CYCLE 11 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED p
N H
K (GWD/MTU)
J H
G F
E D
C B
A I 44.361 40.741 44.251 I -0.291 o.481 -o.561 I
HEASURED I
I HIP% DIFF I I 42.261 30.801 16.401 34.611 16.411 31.221 41.791 I
o.161 -0.111 o.381 -o.861 o.421 1.191 -0.951 I 39.931 15.981 17.791 37.261 17.841 36.731 18.291 16.251 39.491 I -o.371 -l.381 -0.421 -l.291 -2.371 -2.101 2.361 o.251 -1.471 I 39.871 42.211 17.251 42.381 34.lOI 37.071 33.991 41.881 17.401 42.771 39.711 I -2.871 1.341 -l.711 l.901 -l.381 -l.371 -1.711 o.691 -0.851 1.101 -3.261 I 43.611 16.lll 17.451 46.791 18.24L 49.251 18.801 49.041 18.311 47.591 17.141 16.041 44.021 I -l.841 0.011 -o.351 -l.581 -o.871 o.471 l.471 o.061 -0.471 0.091 -2.121 -0.401 -0.921 I 30.491 17.731 41.691 18.081 37.451 33.851 37.851 34.841 37.161 18.051 42.291 17.671 28.431 I -1.121 -o.551 o.331 -l.561 -0.871 -l.371 o.581 l.501 -l.631 -l.731 1.951 -o.931 -0.551 I 44.541 16.331 37.381 34.041 48.381 33.941 48.871 18.441 48.861 34.071 49.lOI 34.441 36.711 15.741 43.911 I
o.o.81 -0.021 -0.951 -1.sol -l.291 -l.191 -l.291 o.441 -l.301 -0.801 o.161 -0.371 -2.741 -3.651 -l.331 I 40.571 34.641 18.321 37.131 17.921 37.021 18.481 46.321 18.461 37.341 18.431 37.291 17.761 34.771 40.141 I
0.091 -o.761 0.271 -l.171 -3.291 -l.711 o.3ol 1.131 o.191 -0.871 -o.541 -o.751 ~2.801 -0.421 -o.981 I 39.701 16.241 37.041 34.151 49.191 33.741 48.831 18.341 48.991 34.121 49.361 34.061 37.621 16.301 42.061 I
1.251 -0.591 -1.851 -1.191 o.351 -1.761 -1.371 -0.091 -1.041 -o.661 0.101 -1.461 -o.311 -0.211 o.231 I 30.211 17.421 42.551 18.471 37.651 33.691 37.331 33.841 37.lOI 18.451 42.061 18.031 31.071 I -2.011 -2.291 2.401 o.591 -o.321 -l.841 -o.8ol -l.421 -1.781 o.461 1.611 1.101 o.771 I 43.861 15.941 17.421 47.671 18.361 48.561 18.lll 49.081 18.331 47.861 17.861 16.331 43.171 I -1.291 -1.021 -0,531 0.261 -0.221 -0.921 -2.241 o.141 -o.371 o.671 2.001 1.441 -2.831 I 40.301 43.211 17.611 41.361 34.351 36.661 34.421 41.411 17.581 43.061 40.991 I -l.821 2.751 o.331 -0.551 -0.661 -2.471 -0.451 -o.431 o.161 3.lol -0.161
. l 2
3 4
5 6
7 8*
9 10 11 12 I 39.191 16.451 17.951 36.771 17.821 36.831 17.311 16.061 40.131 I -2.221 l.531 o.461 -2.591 -2.491 -2.431 -3.121 -0.891 0.111 13 I STANDARD DEV I I
= o.87 I
R p
N I 41.571 30.671 16.151 34.381 15.621 30.081 41.381 I -l.471 -0.591 -l.161 -1.s21 -4.391 -2.sol 0.081 I 44.0SI 40.141 43.661 I -1.001 -1.231 -l.881 H
K J
H G
CYCLE 11 BATCH SHARING (MWD/MTU)
F E
D C
I ARITHHETIC AVG I IPCT DIFF = -0.631 14 I AVG ABS PCT I I DIFF = 1.17 I B
A 15 BATCH NO. OF BOC BATCH EOC BATCH CYCLE ASSEMBLIES BURNUP BURNUP BURNUP S2/12A 1
17,616 28,435 10,819 BB 12 29,262 42,238 12,976 BURNUP TILT 9A 3
33,859 42,259 8,400 9B 7
34,088 44,385 10,297 NW=
0.17 I NE=
0.0 lOA 5
36,640 41,814 5,174
~ ---,----- -----
llA 8
35,348 48,997 13,649 SW= -0.28 I SE= 0.0 llB 22 36,543 43,390 6,847 12A 24 19,469 36,148 16,679 12B 23 19,050 33,670 14,620 13A 24 0
17,977 17,977 13B 28 0
16,922 16,922 CYCLE 11 AVERAGE ACCUMULATED BURNUP = 13,959 NE-893 SlCll Core Performance Report Page 18 of 53
44
- =i 40
..-l
~
"'O 36
~
u
~
~ 32
- =i z 0:: 28
~
a:l
- r:: u 24
~
~
a:l 20 I
a:l
~
rn 16 12 0
~
,_........ *~ -
- ...w LK
-~
~
Figure 2.5A SURRY UNIT 1 - CYCLE 11 SUB-BATCH BURNUP SHARING
-~ ~
~ -
~
~
~...... l.,.JIII"'
~
1..4"" -
t.,"'
17 Le-1....7 1-~ 17
-~',/
.,, V
~
~
~
-~
--" ~
I_....
..a, J.. ~
_. ~
,,./ *~
I
- ~
- y I
..At>.
l£
~
2 4
6 8
10 12 14 CYCLE BURNUP (GWd/MtU)
I I
1 6 SUB-BATCH 86
- SUB-BATCr.
9A SUB-B.A.TCf-i 98
- SUB-BATCH S2/12A f::::.
NE-893 SlCll Core Performance Report Page 19 of 53 I
48 -
44
- J
....)
40
~
I
' '-' 36
~ -
~...
,._,I - 32
~
- J 28 z
0:: 24
- J co 20* *-
""T"4 -u E-4 16
<t co I
12 co
- J r.JJ 8
4 ty
~
0 LX" 0
2 Figure 2.5B SURRY UNIT 1 - CYCLE 11 SUB-BATCH BURNUP SHARING
.~
c..-
1-I I
~ -
./
I},'
,...o::::i.
A/
4 6
8 10 SUB-BATCH 10A SUB-BATCH 11 A I
i
.JI I SUB-BATCH
~
12A I
I SUB-BATCH l
13A
- 6.
...... ~
12 14 16 CYCLE BURNUP (GWd/MtU)
~E-893 SlCll Core Performance Report Page 20 of 53 ii
48 44
~
...-) 40
- g "O 36
~
c., -- 32
~
~ 28 z
~ 24
~
'°
- c: 20 u
~ 16
~
'° 12 I
'°
~ 8 rn 4 -
0
~
0 I
Figure 2.SC SURRY UNIT 1 - CYCLE 11 SUB-BATCH BURNUP SHARING
~
- i-liil
- I
~...._
c...-
~ -
~ I
~ * -
~ *
~ -
~-
2
- 4.
6 8
10 12 14 CYCLE BURNUP (GWd/MtU)
I 16 SUB-BATCH 118 SUB-BATCH 128
- SUB-BATCH 138 A
/
NE-893 SlCll Core Performance Report Page 21 of 53
Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior.
The FOLLOW 4 computer code was used to normalize "actual" critical boron concentration measurements to ftesign conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level.
The normalized critical boron concentration ver*sus burnup curve for the Surry 1, Cycle 11 core is shown in Figure 3.1.
It can be seen that the measured data typically compared to within 50 ppm of the design prediction.
This corresponds to +/-0.42%
AK/K which is within the +/-1% AK/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications.
In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 11 core depleted as expected without any reactivity anomalies.
NE-893 S1Cll Core Performance Report Page 23 of 53 l
1100
- & 1000
- a.
- a.
....... 900 z
0
.:; 800
! 700 z
w U 800 z 8 500 z
0 400 a:
0 m 300 g
200 E
a: 100 u
0 I~ -~ -'
Figure 3.1 SURRY UNIT 1 -
CYCLE 11 CRITICAL BORON CONCENTRATION vs. BURNUP
. (HFP,ARO)
~ ~
~
~
'I~
JIii ~-
"'J
~'
. t~
I ~
~~
~ ~
I I
I I
' 1z'\\ '
I 0
1 2
3 4
5 8
7 8
9 10 11 12 13 14 15 CYCLE BURNUP (GWD/MTU)
I
- I I MEASURED ~
PREDICTED I NE-893 S1C11 Core Performance Report Page 24 of 53
~
.. /
Section 4 POWER DISTRIBUTION Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause an "uneven" burnup distribution. Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCORE 5 computer program.
A summary of all full core flux maps taken after the completion of startup physics testing for Surry 1, Cycle 11 is in Table 4.1.
Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.
Radial (X-Y) core power distribution for a representative series of incore flux maps are given in Figures 4.1, 4.2, and 4.3. Figure 4.1 shows a power distribution map that was taken early in Cycle 11.
Figure 4.2 shows a power distribution map that was taken near th~ mid-cycle burnup.
Figure 4.3 shows a map that was taken near the end of Cycle 11.
The measured relative assembly powers were generally within 4.6% and the maximum average percent difference was equal to 1.4%.
In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for each case.
An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.
Verification that these factors are NE-893 SlCll Core Performance Report Page 25 of 53
within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margin ~nd maintaining fuel cladding integrity.
Surry Unit 2 Technical Specification Section 3.12 limited the axially dependent heat flux hot channel factor, Fq(Z), to 2.32 x K(Z), where K(Z) is the hot channel factor normalized operating envelope.
Figure 4.4 is a plot of the* K(Z) curve associated with.the 2. 32 Fq(Z) limit.
The axially dependent heat
- flux hot* channel factors, Fq(Z),
- for a representative set of fltix maps are given in Figures 4.5, 4.6, and 4.7.
Throughout Cycle 11, the measured values of Fq(Z) were within the Technical Specifications limit.
A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 11 is given in Figure 4.8. This figure indicates that the minimum margin to the Fq(Z) limit is 11.3%.
- Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 11.
As can be seen from the Fq(Z) figure, there was an approximate 30.6% margin from the maximum Fq(Z) to the 2.32 limit at the beginning of cycle 11.
The margin increased slightly and remained relatively constant for the remainder of the cycle.
Note that at 9610 MWD/MTU, the margin appears to be less than 30%, however the fl~x map was taken a~ 61.7% power where there is more than 30% margin.
The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.
The NE-893 S1Cll Core Performance Report Page 26 of 53
I *.,,
I integrated power to that of the average rod, is routinely followed.
The Technical Specifications limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.
Additionally, the F-delta-H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
Surry Technical Specification 3.12 limited the enthalpy rise hot channel factor to 1.55(1+0.3(1-P)) for Cycle 11.
A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 11 is given in Figure 4.10.
As can be seen from this figure, the minimum margin to the limit was approximately 4.0% for Cycle 11.
The target delta flux* is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon.
The delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point.
Since the target delta flux varies as a function of burnup, the target value is updat~d monthly.
By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.
This target delta-flux was also used to establish the operational axial flux difference bands while under CAOC.
The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -1.5% at 0 the beginning of Cycle 11 and decreased to appro~imately -4.0% near the middle of the cycle, then increased to approximately -3.5% before the coastdown.
Pt-Pb
- Delta Flux=
X 100 2441 where Pt= power in top of core (HW(t))
Pb= power in bottom of core (HW(t))
NE-893 S1Cll Core Performance Report Page 27 of 53
At the end of Cycle 11, the target delta flux increas~d to +2.0% due to the coastdown.
This axial power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in* Figures 4.12 through 4. i4.
In Map Sl-11-07 (Figure 4.12), taken at *626 MWD/MTU, the axial power distribution had a shape peaked toward the middle of the core with a peaking factor of 1.167.
In Map Sl-11-15 (Figure 4.13), taken at approximately 6,670 MWD/MTU, the axial power distribution peaked slightly toward the bottom of.the core with ari axial peaking factor of 1.142.
Finally, in Map Sl-11-21 (Figure 4.14), taken at 12,640 MWD/MTU, the axial peaking factor was 1.137, with the axial power distribution shifted slightly back toward the top.
The history of F-Z during ~he cycle can be s~en more clearly in a plot of F-Z versus burnup given in Fiiure 4.15..
In conclusion, the Surry 1, Cycle 11 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the Fq(Z) and F-delta-H hot channel factors were within the limits of the Technical Specifications.
NE-893 SICII Core Performance Report Page 28 of 53
Table 4.1 SURRY UNIT 1 - CYCLE 11
SUMMARY
OF FLUX HAPS FOR ROUTINE OPERATION I
1 I
I 2
I I
31 BURN BANK F-QCTl HOT F-DHCN) HOT ICORE FCZ)
I CORE I AXIAL NO. I IHAPI UP D
CHANNEL FACTOR CHNL. FACTOR IHAX IFCXY)
TILT I
OFF I OF I IND.I DATE HWD/
PWR STEPS I
I HID I
SET ITHIHI I
I HTU
(%)
ASSYIPINIAXIALI IAXIAL I FCZ)IPLANE I HAX ILOCI
(%)
IBLESI I
I I
I I
I IPOINTIF-QCTJ IASSYIPIN IF-DHCNJIPOINT I I
I I
I I
I I_I I ___ I __
I ___ I __ I_I __ I __ I_I_I __
I __
I __ I __ I __ I_I ___ I_I I 7 IOl-08-911 626 I
100 I 219 LI3 JJI 34 1.780 I HSI HG 1.449 35 ll.1671 1.41211.0031 NEI -1.4431 46 I I 8 IOl-10-911 675 I 99.9 I 209 Hl3 HII 41 1.776 IE 81 GH 1.440 36 II.1881 1.37811.000I SEI -4.4451 46 I I 9 IOl-10-911 685 I
100 I 219 E 8 GHI 23 1.746 IE 81 GH 1.447 32 11.1591 1.37811.000I SEI 1.0951 46 I 110 102-11-911 1716 I
100 I 221 LI3 JJI 35 1.758 I HSI HG 1.459 35 11.1591 1.397ll.0021 SEI -1.6261 46 I.
Ill 103-11-911 2656 I 99.8 I 222 ElO GHI 35 1.753 I ElOI GH 1.467 35 11.1521 1.41611.0041 SEI -1.7101 42 I 112 104-09-911 3948 IIOO.l I 224 Fll HII 42 1.739 I H 51 HG 1.476 42 ll.1431 l.4I3l1.002I SEI -I.9881 43 I 113 IOS-14-911 4733 I
100 I 224 ElO GHI 44 l.743 I HSI HG I.481 44 II.1431 l.42111.0021 SEI -2.4001 42 I 114 I06-ll-9II 5762. I 99.6 I 224 H 5 HGI 45 1.747 I HSI HG I.484 45 II.1431 l.42211.0021 SEI -2.7381 41 r II5 107-08-911 6670 I 99.851 224 H 5 HGI 46 1.752 I HSI HG l.491 45 ll.1421 1.42411.0021 SEI -2.8811 41 I li6 I08-I2-9II 7795 I 99.851 224 H 5 HGI 46 I.752 I HSI HG l.487 46 ll.1421 l.42611.0041 NWI -3.1751 42 I 117 I09-I2-9II 8806 I
loo I 223 H 5 HGI 46 I.766 I HSI HG I.488 47 ll-1511 1.42311.0041 NWI -3.9281 42 I 118 ll0-08-911 9610 I 61.7 I 170 N 8 IHI 34 1.830 I H 81 IH I.490 33 11.1651 l.45311.0101 NWI -5.3161 46 I 119 lll-13-911 10750 I
loo I 224 L 6 LIi 52 1.754 I HSI HG 1.489 48 II.1401 1.43411.0031 HWI -3.5141 44 I 120 112-10-911 11650 I 99.731 224 L 6 LIi 52 l.762 I LIOI LG 1.481 52 11.1401 I.43411.0041 NWI -3.4381 48 I 121 IOI-17-921 12640 I 99.5 I 224 L 6 LIi 52 I.768 I LlOI LG I.483 52 ll.1371 l.42611.0041 NWI -3.2901 48 I 122 102-06-921 13270 I 93.6 I 224 H 3 FDI 47 I.722 I H 31 FD 1.492 52 II.IOII I.44011.0061 HWI -0.6301 47 I 123 102-17~921 !3545 I 87.7 I 224 LIO LGI 10 1.736 I H 51 ID 1.480 11 ll.r28I l.4321I.0071 NWI +I.8021 48 I I
I NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEHBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEHBLYJ, FOLLOWED BY THE PIN LOCATION !DENOTED BY THE "Y" COORDINATE WITH THE SEVENTEEN ROWS OF FUEL RODS LETTERED A THROUGH R AND THE "X"' COORDINATE DESIGNATED IN A SIHILAR HANNERJ.
IN THE "z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROH THE TOP OF THE CORE.
I. F-QCT) INCLUDES A TOTAL UNCERTAINTY OF I.OS X 1.03.
- 2. CORE TILT - DEFINED AS THE AVERAGE AXIAL QUADRANT POWER TILT FROH.INCORE.
NE-893 SlCll Core Performance Report Page 29 of 53
R p
Figure 4.1 SURRY UNIT 1 - CYCLE 11 ASSEMBLYWISE POWER DISTRIBUTION Sl-11-07 N
PREDICTED HEASURED H
l K
J H
G F
E 0.33 0.38 0.33 D
C B
. PCT DIFFERENCE.
. 0.34. 0.40. 0.34.
5.1. 5.1. 3.6.
PREDICTED HEASURED
.PCT DIFFERENCE.
0.36 0.79 1.20 1.08 1.20 0.79 0.36
. 0.36.. 0.81. 1.22. 1.10. 1.22. 0.80. 0.36.
0.2. 1.8. 2.1
- 2.2. 1.9. 1.3. 1.4.
0.38 1.15 1.24 1.28 1.25 1.28 1.23 1.14 0.38
. 0.38. 1.13. 1.24. 1.30. 1.25. 1.28. 1.25. 1.15. 0.39.
. -0.l. -1.2. 0.1. 1.4. -O.l. 0.3. 1.3. 1.4. 1.5.
0.37. 0.64 1.19 1.03 1.26 1.27 1.26 1.03 1.18 0.63 0.37
. 0.37. 0.63. 1.17. 1.03. 1.27. 1.27. 1.25. 1.04. 1.19. 0.63. 0.37.
0.0. -0.3. -1.7. 0.0. 0.6. 0.4. -0.4; 1.5. 1.2. 1.1.
1.6.
0.37 1.14 1.18 0.96 1.25 0.98 1.27 0.98 1.24 0.95 1.17 1.14 0.37
. 0.37. 1.14. 1.18. 0.97. 1.25. 0.99. 1.29. 0.99. 1.24. 0.96. 1.18. 1.16. 0.38.
. -0.l. -0.l. -0.0. l.l.
0.0. 0.4. 1.7. 1.3. 0.4. 1.2. 0.6. 1.7. 2.9.
0.79 1.24 1.03 1.25 1.28 1.25 1.27 1.25 1.27 1.24 1.03 1.25 0.80
. 0.79. 1.23. 1.03. 1.24. 1.29. 1.27.. 1.31. 1.26. 1.27. 1.24. 1.03. 1.25. 0.80.
. -0.5. -0.5. 0.1. -0.1. 0.5. 1.5. 2.7. 1.3. -0.5. 0.3. 0.5. 0.3. 0.4.
A
~...
0.33 1.20 1.28 1.26 0.99 1.25 1.01 1.25 1.01 1.25 0.98 1.27. 1.29 1.21 0.33 2
3 4
5 6
. o.34. 1.21. 1.21. 1.25. o:96.. 1.24. 1.03. 1.21. 1.03. 1.26. o.98. 1.21 _ 1.21. 1.18. 0.32.
1 2.7. 0.4. -0.7. -1.3. -2.3. -0.8. 1.4. 2.0. 1.4. 0.4. -0.l. -0.3. -1.4. -2.0. -2.1.
0.38 1.08 1.26 1.27 1.27 1.28. 1.26 1.01 1.26 1.28 1.27 1.27 1.26 1.08. 0.38.
. 0.39. 1.09. 1.26. 1.26. 1.23. 1.27. 1.27. 1.02. 1.26. 1.29. 1.27. 1.26. 1.24. 1.07. 0.38.
8 2.6.
0.8. -.O.l. -l.O. -3.2. -0.9 *.
l.2.
l.2.
0.5.
0.4. -0.3. -1.0. -l.8. -l.l.
0.3.
0.35 1.21 1.28 1.26 0.98 1.25. 1.02 1.25 1.01 1.25 0.99 1.27 1.28 1.20 0.32
. 0.36. 1.21. 1.27. 1.25. 1.00. 1.25. 1.01. 1.25. 1.02. 1.24. 0.98. 1.26. 1.28. 1.21. 0.33.
9 2.7.
0.4. -0.7. -0.5. 1.2. -0.5 *. -0.7. 0.2. 0.5. -1.2. -0.6. -0.7. -0.5. 0.7. 1.7.
NE-893 0.79 1.23 1.03 1.24 1.28 1.25 1.27 1.25 1.28 1.25 1.03 1.24 0.79
. 0.78. 1.22. 1.03. 1.26 0 1.28. 1.24. 1.27. 1.25. 1.28. 1.25. 1.03. 1.24. 0.80.
. -1.4. -1.4. 0.1. 1.2. 0.3. -0.7. -0.1. 0.0.
0.1.
0.2. 0.2. 0.7. 1.4.
0.36 1.13 1.18 0.96 1.25 0.98 1.27 0.99 1.25 0.96 1.18 1.14 0.37
. 0.37. 1.14. 1.18. 0.96. 1.25. 0.98. 1.27. 0.99. 1.26. 0.97. 1.20. 1.15. 0.37.
0.4. 0.4. 0.4. 0.4.
0.0. -O.l. -0.0. 0.4. 0.9. 1.4. 1.7. 1.6. 1.3.
0.37 0.63 1.18 1.02 1.26 1.27 1.26 1.03 1.18 0.64 0.37
. 0.38. 0.64. 1.18. 1.03. l.i6. 1.26. 1.25. 1.02. 1.19. 0.66. 0.38.
2.3*. 1.6. 0.4. 0.3. 0.1. -0.4. -1.1. -0.7. 0.9. 3.3. 3.5.
0.38 1.14 1.23 1~28 1.26 1.28 1.24 1.15 0.38
. 0.39. 1.17. 1.25. 1.27. 1.24. 1.25. 1.19. 1.14. 0.40.
2.4. 2.4. 1.3. -0.6. -1.4. -2.6. -3.5. -0.8. 3.5.
0.36 0.79 1.20 1.08 1.20 0.79 0.37
. 0.37. 0.81. 1.21. 1.07. 1.17. 0.77. 0.35.
2.4. 2.1.
0.5. -1.2. -2.7. -3.2. -3.6.
0.33 0.38 0.33 AVERAGE STANDARD DEVIATION
=1.021
. 0.33. 0.38. 0.32.
1.7. -O.l. -2.8.
. PCT DIFFERENCE.
= l.l
SUMMARY
HAP NO: Sl-11-07 DATE: 01/08/91 POWER: 100%
CONTROL ROD POSITION:
F-QCT)
= 1.780 QPTR:
D BANK AT 219 STEPS F-DHCN) = 1.449 NW 1. 0008 INE 1.0026 I
f(Z)
= 1.167 SW 0.9996 ISE 0.9970 FCXY)
= 1.412 BURNUP
= 626 HWD/HTU A.O. = -1.443%
SlCll Core Performance Report Page 30 of 53 10 11 12 13 14 15
R p
Figure 4.2 SURRY UNIT 1 - CYCLE 11 ASSEMBLYWISE POWER DISTRIBUTION Sl-11-15 N
PREDICTED HEASURED H
K J
H G
F E
0.33 0.38 0.33 D
C B
. PCT DIFFERENCE.
- 0.34. 0.40. 0.34.
4.0.
4.0.
3.5.
PREDICTED HEASURED
.PCT DIFFERENCE
- 0.37 0.77 1.15 1.02 1.15 0.77 0.37
. 0.38. 0.76. 1.16. 1.03. 1.18. 0.80. 0.38.
1.5. -2.l. 1.0. 1.0. 1.8. 2.9. 1.9.
0.41 1.16 1.28 1.20 1.31 1.20 1.28 1.16 0.41
. 0.42. 1.15. 1.24. 1.17. 1.28. 1.19. 1.31. 1.17. 0.41.
1.1. -0.8. -3.2. -2.l. -2.l. -0.l. 2.9. 1.3. 0.3.
0.40 0.69 1.27 1.03 1.19 1.21 1.19 1.03 1.27 0.68 0.40
. 0.41. 0.69. 1.24. 1.03. 1.20. 1.20. 1.17. 1.03. 1.26
- 0.67. 0.40
- 1.5. -0.2. -2.l. -0.5.
0.1. -0.7. -2.l. -0.0. c0.6. -0.7. -0.2
- 0.38 1.15 1.27 0.99 1.32 0.97 1.33 0.97 1.32 0.99 1.26 1.15 0.38
. 0.38. 1.17. 1.26. 1.00. 1.32. 0.99. 1.36. 0.99. 1.32. 0.99. 1.24. 1.15. 0.39.
0.7. 1.7. -0.5. 0.7. 0.1. 1.7. 2.6. 2.2. 0.3. -0.3. -1.9. -0.4. 1.4.
0.77 1.28 1.03 1.32*
1.23 1.20 1.21 1.20 1.22 1.31 1.03 1.28 0.78
. 0.78. 1.29. 1.03. 1.31. 1.23. 1.23. 1.25. 1.23. 1.23. 1.31. 1.02. 1.27. 0.77.
0.7. 0.7. 0.1. -0.8. 0.5. 2.1. 3.2. 1.8. 0.6. -0.3. -0.8. -1.0. -1.0.
A 0.33 1.16 1.20 1.19 0.97 1.20 1.00 1.32 1.00 1.20 0.97 1.20 1.20 1.16 0.33 l
2 4
5 6
. 0.34. 1.17. 1.21. 1.19. 0.95. 1.20. 1.01. 1.34. 1.01. 1.21. 0.97. 1.20. 1.18. 1.12. 0.32.
7 2.4. 1.3. 0.7. -0.5. -2.l. -0.7. 1.4. 2.0. 1.3. 0.8, 0.3. -0.l. -1.7. -3.2. -3.3.
0.38 1.02 1.31 1.21 l.33 1.21 1.32 1.03 1.32 1.21 1.33 1.21 1.31 1.02 0.38
. 0.39. 1.04. 1.32. 1.20. 1.30. 1.21. 1.33. 1.04. 1.34. 1.23. 1.33. 1.20. 1.28. 1.01. 0.38.
8 2.4. 1.4. 0.9. -0.l. -2.3. -0.4. 1.2. 1.3. 1.4. 1.4. o.o. -0.9. -1.7. -1.5. -0.3.
0.34 1.16 1.20 1.19 0.97 1.21 1.00 1.32 1.00 1.20 0.97 1.20 1.20 1.16 0.32
. 0.35. 1.17. 1.19. 1.19. 0.99. 1.21. l.01. 1.34. 1.02. 1.23. 1.00. 1.21. 1.20. 1.17. 0.33.
9 2.4. 0.6. -0.3. -0.l. 1.3. 0.1.
1.2. 1.8. 1.8. 1.8. 2.3. 0.7. 0.4. 0.8. 1.7.
NE-893 0.77 1.28 1.03 1.32 1.23 1.20 1.21 1.20 1.23 1.32 1.03 1.28 0.77
. 0.76. 1.25. 1.03. 1.34. 1.24. l.19. 1.21. 1.21. 1.24. 1.34. 1.06. 1.30. 0.79.
. -1.7. -1.7. 0.1. 1.4. 1.4. -1.0. 0.1. 0.6. 1.1. 1.6. 2.3. 2.0. 1.7.
o.38 1.15 1.26 o.99 1.32 o.97 1.33 o.97 1.32 o.99 1.21 1.i5 o.38
. 0.38. 1.15. 1.27. 1.00. 1.33. 0.97. 1.32. 0.97. 1.33. 1.01. 1.30. 1.18. 0.39.
. -0.l. -O.l. 0.3. 0.7. 0.5. -0.4. -0.9. -0.3. 0.5. 1.6. 2,5. 2.6. 1.6.
0.40 0.68 1.27 1.03 1.19 1.21 1.19 1.03 1.27 0.69 0.40
. 0.41. 0.69. 1.27. 1.03. 1.19. 1.19. 1.18. 1.03. 1.28. 0.71. 0.41.
1.5. 1.2. 0.7. 0.4. -0.0. -0.9. -1.4. -0.5.
1.1.
3.5. 3.7.
STANDARD DEVIATION
=0.98~
0.41 1.16 1.28 1.20 1.31 1.20 1.28 1.16 0.41
. 0.42. 1.18. 1.29. l.19. 1.28. 1.16. 1.24. 1.16. 0.43.
1.7.
1.8.
1.0. -0.9. -2.0. -2.8. -2.9. -0.2. 3.7.
0.37 0.77 1.15 1.02 1.15 0.78 0.38
. 0.38. 0.79. 1.15. 1.00. 1.11. 0.75. 0.37.
1.8.
1.6. -0.l. -1.9. -3.4. -3.2. -2.8.
0.33 0.38 0.33
. 0.33. 0.38. 0.31.
1.2. -0.7. -3.7.
AVERAGE
.PCT DIFFERENCE.
= 1.3 HAP NO: Sl-11-15 CONTROL ROD POSITION:
SUMMARY
DATE: 07/08/91 F-QCT)
= 1.752 F-DHCN) = 1.491 POWER: 99.85%
QPTR:
D BANK AT 224 STEPS F!Z)
FCXY)
= 1.142
= 1.424 NW 0.9996 NE 0.9985 SW 1.0003 SE 1.0016 BURNUP
= 6670 HWD/HTU A.O.= -2.881%
SlCll Core Performance Report Page 31 of s3 10 11 12 13 14 15
R p
Figure 4.3 SURRY UNIT 1 - CYCLE 11 ASSEMBLYWISE POWER DISTRIBUTION Sl-11-21 N
N K
J H
G F
E D
PREDICTED 0.34 0.40 0.34 NEASURED C
8
- PCT DIFFERENCE.
. 0.35. 0.42. 0.35.
4.6. 4.6. 4.4.
PREDICTED HEASURED
.PCT DIFFERENCE.
0.39 0.77 1.12*
0.99 1.12 0.77 0.39
. 0.40. 0.80. 1.14. 1.01. 1.15. 0.80. 0.40.
2.9. 3.4. 2.1. 1.6. 2.3. 4.0. 3.0.
0.44 1.15 1.30 1.15 1.33 1.15 1.30 1.15 0.44
. *o.45. 1.15. 1.31. 1.18. 1.31. 1.15. 1.35. 1.11. o.44.
2.3.
0.1.
1.1. 2.5. -1.1. ~o.o. 4.o. 2.5. 1.5.
0.43 0.72 1.29 1.03 1.16 1.17 1.16 1.03 1.29 0.71 0.43
- 0. 43. O. 72. l. 27. l. 04. 1.17. 1.17. l. 13. l. 03. l. 29. 0. 71.
- 0. 43.
1.3. 0.5. -1.5. 0.5. 1.1. 0.1. -2.6. -0.3. -0.4. -0.4. 0.3.
0.40 1.14 1.29 1.01 1.35 0.97 1.36 0.97 1.35 1.01 1.29 1.14 0.40
. 0.40. 1.14. 1.29. 1.02. 1.36. 0.99. 1.38. 0.99. 1.35. 1.01. 1.26. 1.14. 0.41.
0.3. 0.3. 0.0. 1.0. 0.2. 1.3. 2.0. 1.4. -0.2. -0.5. -2.l. -0.3. 1.7.
0.77 1.30 1.03 1.35 1.19 1.17 1.17 1.17 1.19 1.35 1.03 1.30 0.77
. 0.78. 1.31. 1.04. 1.35. 1.20. 1.19. 1.20. 1.18. 1.19. 1.34. 1.02. 1.29. 0.77.
1.0. 1.0. 0.6. -0.5. 0.4. 1.3. 2.2. 0.8. -O.l. -0.6. -1~0. -0.8. -0.3.
A 0.34 1.12 1.15 1.16 0.97 1.17 1.00 1.36 1.00 1.17 0.97 1.16 1.15 1.12 0.34 2
3 4
5 6
. 0.35. 1.14. 1.17. 1.16. 0.95. 1.16. 1.01. 1.37. 1.00. 1.18. 0.98. 1.16. 1.14. 1.10. 0.34.
7 3.6. 2.0. 1.5. -0.1. -2.0. -1.1.
0.3. 0.8. 0.1. 0.5. 0.5. -0.4. -1.3. -1.9. -1.0.
0.40 1.00 1.33 1.17 1.36 1.18 1.36 1.05 1.36 1.18 1.36 1.17 1.33 0.99 0.40
. 0.42. 1.02. 1.35. 1.17. 1.32. 1.17. 1.36. 1.05. 1.37. 1.19. 1.36. 1.15. 1.30. 1.00. 0.40.
8 3.6. 2.1. 1.1.
0.0. -2.4. -0.9. 0.0. -0.1.
0.4. 1.4. 0.7. -1.7. -2.3. 0.3. 0.9.
0.36 1.13 1.15 1.16 0.97 1.17 1.00 1.36 1.00 1.17 0.97 1.16 1.15 1.12 0.33
. 0.37. 1.14. 1.15. 1.16. 0.98. 1.17. 0.99. 1.35. 1.00. 1.17. 0.98. 1.15. 1.15. 1.14. 0.34.
9 3.6. 1.1. -0.2. -0.2. 1.1. ~o.3. -o.9. -0.2. 0.2. -0.2. o.6. -o.7. -o.o. 1.2. 2.6.
NE-893 0.77 1.30 1.03 1.35 1.19 1.17 1.17 1.17 1.19 1.35 1.03 1.30 0.77
. 0.76. 1.28. 1.03. 1.37. 1.20. 1.16. 1.16. 1.16. 1.19. 1.36. 1.04. 1.32. 0.79.
. -1.4. -1.4. 0.0. 1.1.
0.2. -1.0. -1.3. -0.8. -0.4. 0.0. 0.8. 1.8. 2.8.
0.40 1.14 1.29 1.01 1.35 0.97 1.36 0.97 1.35 1.01 1.29 1.14 0.40
. 0.40. 1.14. 1.29. 1.01. 1.36. 0.97. 1.33. i.96. 1.35. 1.01. 1.31. 1.17. 0.41.
0.4. 0.4. 0.4. 0.4.
0.1. -0.9. -2.1. -1.7. -0.6. 0.3. 1.7. 2.6. 3.0.
0.43 0.72 1.29 1.03 1.16 1,17 1.16 1.03 1.29 0.72 0.43
. 0.44. 0.73. 1.29. 1.04. 1.16. '1.15. 1.13. 1.02. 1.29. 0.74. 0.44.
2.2
- 1.5.
0.4.
0.6.
0.2. -L4. -2.l. -1.2.
0.3.
2.7.
3.2.
STANDARD 0.44 1.14 1.30 1.15 1.33 1.15 1.30 1.15 0.44
. 0.45*. 1.19. 1.33. 1.14. 1.31. 1.13. 1.26. 1.14. 0.45.
3.0. 3.7. 2.2. -0.8. -2.0. -2.2. -2.5. -0.4. 3.0.
0.39 0.77 1.12 1.00 1.12 0.77 0.40
. 0.41. 0.80. 1.13. 0.99. 1.10. 0.76. 0.39.
3.7. 3.5. 0.9. -0.8. -1.8. -2.1. -2.6.
0.34 0.40 0.34 AVERAGE DEVIATION
- l.122
. 0.35. 0.40. 0.33.
3.0. 1.2. -1.6.
- PCT DIFFERENCE.
1.4 HAP NO:
Sl-11-21 CONTROL ROD POSITION:
D BANK AT 224 STEPS SUHHARY DATE: 01/17/92 F-QCTJ
= 1.768 F-DHCN) = 1.483 FCZ)
FCXY)
= 1.137
= 1.426 BURNUP
= 12,640 HWD/HTU SlCll Core Performance Report POWER: 99.5%
QPTR:
NW 1. 0040 SW 1. 0007 NE O.9996 SE 0.9958 A.0.=-3.290%
Page 32 of 53 10 11 12 13 14 15 v
Figure 4.4 SURRY UNIT 1 - CYCLE 11 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE 1.2a -~::~~~-.::~-*****-----.*-*-***-,s.oJ.1.oo~*-*-***1------*-****-**-*****
N -
rr 1.00 1.. 0.80 C
r..J N
~
.................. J... *-*****-***--
1 -Ll.Q.Z.9.0.941
~ 0.60-+-------i----....;..----------;.-..------o\\,
a:
0 z li2.00.0.431 I 0.40 N
~
0.20--**--""-*----.....--
0 2
4 6
B 10 12 CORE HEIGHT (FEET)
NE-893 SlCll Core Performance Report Page 33 of 53
2.50
~
I-I
~2.00 a:
0 1-u
~ 1.50
...J L&J z
.z
- ir ri 1.00 l-o
- c
)C 30.50 LI..
I-<
L&J
- c X
Figure 4.5 SURRY UNIT 1 - CYCLE 11 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
Sl-11-07 X
X 0.00-+-+-+-+--t-++-++-...... -+-+-++-+-+-t-+-+++-....... -++++-..+-t-++++-t-+-t-+++-+--4-++...... +-+--t-++++-t-+-t......
60 55 50 45 40 35 30 25 20 BOTTOM AXIAL POSITION(NODES) 15 10 5
TOP NE-893 SlCll Core Performance Report Page 34 of 53
\\,,
- J 2.50 N-I-I
~2.00 Ct:
0 1-u <
~ 1.50 l-o
- c
)(.
30.50
~
I-<
Lu
- c Figure 4.6 SURRY UNIT 1 - CYCLE 11 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
Sl-11-15 xrx~x~~x~
X X
X X
X O.OCl++-......,.......,.-++++-t-+-t-++++-<1-++-++-+-+-t-++++-s~-++~..... -+++-+--ii-++++-t-+-t-++++-t-+-t-t-t 60 55 50
- 45. 40 35 30 25 - 20 BOTTOM AXIAL POSmON(NODES) 15 10 5
TOP NE-893.S1Cll Core Performance Report Page 35 of 53
N -
I-I 2.50
~2.00 a:
O*
1-u <
1.r.. 1.50
..J La.I z z < G 1.00 x l-o
- c
)(
30.50 Lr..
I-
~ -
- c Figure 4.7 SURRY UNIT 1 -. CYCLE 11 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
Sl-11-21 X
0.00-+-+-...........+-+-+-+-+-+-i-+++..+-4-++......_.............._i-++++"4............ ~~+-+-1-+++-+-1-++-t-t-t-+-4 10
- 5 TOP 60 55 50 45 40 35 30 25 20 15 BOTTOM AXIAL POSITION(NODES)
NE-893 S1Cll Core Performance Report Page 36 of 53
.)
Figure 4.8 SURRY UNIT 1 - CYCLE 11 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)*P, vs. AXIAL POSITION
- a.
2.4 2.2 2.0 1.8 1.6 1.4
.. 1.2 fl 1.0 0.8 0.8 0.4 0.2 0.0 I
I I
I I
zllz JU 1111 zU 1111 I.I I
I I
I l
\\
lll'w '
\\
'"'1 1111
\\
I
&I l
1
--\\ J
\\
zl m ~ ~ ~ ~ ~ ~ ~ m ~ ro s 1
AXIAL POSITION (NODE) 1-FQ*PUMIT r r r MAXIMUM FQ*P I BOTTOM OF CORE TOP OF CORE NE-893 S1Cll Core Performance Report Page 37 of 53
/
1-
~ 2.2 z z
~ 2.1
~ -
u E--
0
~
2.0 1.9 1.6 1.4 Figure 4.9 SURRY UNIT 1 - CYCLE 11 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ(Z), vs. BURNUP 0
I 2
4 6
-8
. 10
~
12 FULL POWER TECH SPEC LIMIT 14 1 6 MEASURED VALUE CYCLE BURNUP (GWd/MtU)
NE-893 S1Cll Core Performance Report Page 38 of 53
\\.'
~
0
~
u
<C
~
-::i
~
z z
<C
~
u
~
0
~
µ::J lfJ.
~
~
~
0..
-::i
<C
~
~
z
µ::J Figure 4.10 SURRY UNIT 1 - CYCLE 11 MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP 1.60 1.55 1.50 J...
1.45 16,..
1-I I
1.40 1.35 1.30 1.25 1.20 I
- 1. 1 5 1.10 0
2 4
6
.6
.6.........
8 10 12 14 FULL POWER TECH SPEC LIMIT 1 6 MEASURED VALUE CYCLE BURNUP (GWd/MtU)
NE-893 SlCll Core Performance Report Page 39 of 53
10.0 8.0 E--z 6.0
~
u 0:::
4._Q
~
I c.. ---
2.0
- J
~
~
0.0
~
A -
E--
~ -2.0
~
~
E--
-4.0
~
u 0::
-6.0
~
E--
-8.0
-10.0 0
2 Figure 4.11 SURRY UNIT 1 - CYCLE 11 TARGET DELTA FLUX vs. BURNUP I
I 4
6 8
10 12 CYCLE BURNUP* (GWd/MtU) 14 NE-893 S1Cll Core Performance Report Page 40 of 53 16 l,.
Figure 4.12 SURRY UNIT 1 - CYCLE 11 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-11-07 Fz = 1.167 AXIAL OFFSET= -1.443 1.50 8 1.00 N _,
Xx
- E a:
0 z X
X X
R X
';t0.50 i....
X X
X O.OO+r--+-t---++<i-++++-t..++-+-+-+..++-+++-++<i-++++-t..++-+++-+++++-+-+-.._-+-+-_-t-+-',..........
60 55 so 45 40 35 30 25 20 15 10 5
0 BOTTOM AXIAL POSITION(NODES)
TOP NE-893 S1Cll Core Performance Report Page 41 of 53
1.50 81.00 N
...J c(
~
a:
0 z --
N
~0.50 Li..
Figure 4.13 SURRY UNIT 1 - CYCLE 11 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-11-15 Fz = 1.142 AXIAL OFFSET= -2.881
~*:ft.
r x~ ' "",: i:oacccaa:c:.o~~,?ff~
JC x
x_.
x
.. x~
X X
X
~
X X
X JC X
0.00+t--+1"'1_+-t-4_+-t-4_+-t-4_+-t-t_.............. t-++_M'-+_H-+_......,._-t-+-~
. 60 55 50 45 40 35 30 25 20 15 10 5
0 BOTTOM AXIAL POSITION(NODES)
TOP NE-893 SlCll Core Performance Report Page 42 of 53
Figure 4.14 SURRY UNIT 1 - CYCLE 11 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-11-21 Fz = 1.137 AXIAL OFFSET= -3.290 1.50 81.00 N
- i
~
a:
0 z --
N ~0.50
~
X X
X 0.00+-+-+++-+-+-+++-t-+-t-+-+-t-+--.+...... l-+++-4-4-++-....... -++-...+-+...........+-+++-4!-++++4...++-+-+-+-++-~
60 55 50 45 40 35 30 25 20 15 10 5
0 BOTTOM AXIAL POSITION(NODES)
TOP NE-893 SlCll Core Performance Report Page 43 of 53
Figure 4.15 SURRY UNIT 1 - CYCLE 11 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP 1.4
~ 1.3 0
~
- ..)
~
I
~
c., z 1.2
~
~
~
~
~
I * * * *
~
~ 1. 1
~
1.0 0
2 4
6 8
10 12.
14 16 CYCLE BURNUP (GWd/MtU)
NE-893 SlCll Core Performance Report Page 44 of 53
Section 5 PRIMARY COOLANT ACTIVITY The specific activity levels of radioidines in the primary coolant are important to core and fuel performance as indicators of failed £uel and are important with respect to offsite dose calculations associated with accident analyses.
Two mechanisms are primarily respon~ible for the presence of radioiodines in the primary coolant. Radioiodines are always present due to direct fission product recoil from trace fissile materials plated onto core components and fuel cladding surfaces or trace fissile materials existing as impurities in core structural materials.
This fissile material is generally referred to as "tramp" mat,erial, and the resulting iodines are referred to as tramp iodine.
Fission products can also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists.
Fuel defects are generally the predominant source of radioiodines in the primary coolant.
Surry 1 Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 µCi/gram with provisions to ultimately limit the dose equivalent I-131 activity to a maximum of 10. 0 µCi/gm.
Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 11.
These data show that the dose equivalent I-131 activity remained substantially below 1.0 µCi/gm throughout Cycle 11 operation.
The cycle average steady state power dose equivalent I-131 concentration was 1.61 X 10- 2 µCi/gm which is approximately 2% of the Technical Specification limit.
NE-893 S1Cll Core Performance Report Page 45 of 53
Correcting the I-131 concentration for tramp iodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the measured I-131.
The resultant tramp-corrected I-131 activity is theoretically the I-131 activity from defective fuel.
The magnitude of the tramp-corrected I-131 can then be used as an indication of the number of defective fuel rods.
The cycle average tramp corrected iodine-131 concentration was 1.66 X 10-3 µCi/gm.
A tramp-corrected I-131 activity of this magnitude is a good indication of a defect free core.
The fact that there were no spikes in the iodine data during rapid power transients (the spikes that are present occurred during periods of time when the chemical and volume control system ion exchangers were temporarily removed from service) substantiates the conclusion that the Cycle 11 core contained no defective fuel rods and the reactor coolant system radioiodines resulted.
from tramp fissile sources.
The demineralizer flow rate averaged approximately 107 gpm during power operation.
The ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel failure which may have occurred in the reactor core. Use of this ratio is based upon the relatively short half life of I-133 (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more.
In the case of large leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1.
The ratios of 0.5 and 0.1 are empirically determined NE-893 SlCll Core Performance Report Page 46 of 53 lr
(
- and are generally used throughout the industry as defect size indicators.
Figure 5.2 shows the I-131/I-133 ratio data for the Surry 1, Cycle 11 at a general average value of approximately 0.1.
These data are consistent with the conclusion that all the RCS radioiodines are the result of tramp fissile sources and that no defective fuel rods existed in the Cycle 11 core.
NE-893 S1Cll Core Performance Report Page 47 of 53
-~
Figure 5.1 SURRY UNIT 1 - CYCLE 11 DOSE EQUIVALENT I-131 vs. TIME 1.00E+01 ~------------------------------1 1.00E + 00 ---------------'------------------1
~ 1.00E-01
<(
cc CJ cc UJ a..
en UJ cc
=>
()
0 cc
()
~
,;,. 4'l?i._11iq.~,.. ~
- ~~ "!7~
1.00E- 02 ------------------=----"-------------1 1.00E- 03 -------
1.00E-04 -----------------------------1 100 1.00E-05 ---~-----------------
09DEC90 19MAR91 27JUN91 050CT91 DATE NE-893 SlCll Core Performance Report 13JAN92 Page 48 of 53 80 2 60 ~
n 40 :I 2oi 0
22APR92 1
j 0
i I
I
- M M
I I"
~
~
M
~
Figure 5.2 SURRY UNIT 1 - CYCLE 11 I-131 / I-.133 ACTIVITY RATIO vs. TIME 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 09DEC90 19MAR91 27JUN91 050CT91 13JAN92 DATE NE-893 SlCll Core Performance Report Page 49 of 53 100 80 60 40 20 0
22APR92
THIS PAGE INTENTIONALLY BLANK NE-893 S1Cll Core Performance Report Page 50 of 53
Section 6 CONCLUSIONS The Surry 1, Cycle 11 core has completed operation.
Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin.
No significant abnormalities in reactivity or burnup accumulation were detected.
NE-893 S1Cll Core Performance Report Page 51 of 53
Section 7 REFERENCES
- 1) J. D. McElroy, "Surry Unit 1, Cycle 11 Startup Physics Test Report," Technical Report NE-819, Virginia Power, February, 1991.
- 2)
Surry Power Station Unit 1 Technical Specifications, Sections 3.1.D, 3.12.B, and 4.10.
- 3)
T. W. Schleich~r, "The Virginia Power Fuel Assembly Burnup and Isotopics Code Manual," Technical Report NE-679, Virginia Power, February, 1990.
- 4)
D. L. Gilliatt, "The Virginia Power Follow Code Manual,"
Technical Report NE-679, Rev. 1, Virginia Power, April, 1991.
- 5)
W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149, December, 1967.
- 6)
A.H. Nicholson, "Surry Unit 1 Cycle 11 Design Report,"
Technical Report NE-814, Rev. O, Virginia Power, December,1990. *
- 7)
T. T. Nguyen, "Surry 1, Cycle 11 FOLOW Input and Calculations",
PM-359, Rev. O, Addendum C, May 1992.
NE-893 SlCll Core Performance Report Page 53 of 53 1'11
THIS PAGE INTENTIONALLY BLANK
- ~
NE-893 SlCll Core Performance Report Page 52 of 53