ML18151A891

From kanterella
Jump to navigation Jump to search
Rev 0 to Surry Unit 2,Cycle 9 Core Performance Rept.
ML18151A891
Person / Time
Site: Surry Dominion icon.png
Issue date: 10/31/1988
From: Dziadosz D, Ford C, Mann B
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18151A892 List:
References
659, 659-R, 659-R00, NUDOCS 8812270243
Download: ML18151A891 (51)


Text

1 I r

Surry Unit 2 Cycle 9 Core Performance Report

  • Nuclear Analysis and Fuel Power Engineering Services 8812270243 881220 PDR ADOCJ( 05000086 '2$1
  • VIRGINIA POWER P PNU

NE TECHNICAL REPORT NO. 659 - Rev. 0 SURRY UNIT 2, CYCLE 9 CORE PERFORMANCE REPORT NUCLEAR ANALYSIS AND FUEL POWER ENGINEERING SERVICES VIRGINIA POWER OCTOBER, 1988 PREPARED BY: ft~tt/{1-'i__ !opo/82 B. D. Mann Date REVIEWED BY: ft)

C.

J A. Ford 1°*-Z-/-~ REVIEWED Date APPROVED BY
])])~ 1°P1U
  • D. Dz1ados~ Date APPROVED BY,K~

K.~

QA Category: Nuclear Safety Related Keywords: Surry, Core, Performance

CLASSIFICATION/DISCLAIMER The data, information, analytical techniques, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared.

The Company therefore makes no claim or warranty whatsoever, expressed or implied, as to their accuracy, usefulness, or applicability. In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, information, analytical techniques, or conclusions in it.

By making this report available, the Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall the Company be liable, under any legal theory whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, information, and analytical techniques, or conclusions in it.

i

( /

TABLE OF CONTENTS PAGE Classification/Disclaimer .. i List of Tables iii List of Figures. iv Section 1 Introdu.ction and Summary. 1 Section 2 Burnup. 7 Section 3 Reactivity Depletion. 15 Section 4 Power Distribution. 17 Section 5 Primary Coolant Activity. 38 Section 6 Conclusions 42 Section 7 References. 43 ii

{

LIST OF TABLES TABLE TITLE PAGE 4.1 Summary of*Flux Maps for Routine Operation . . . . . . . . . 21 iii

{ _,

LIST OF FIGURES FIGURE TITLE PAGE 1.1 Core Loading Map 4 1.2 Movable Detector and Thermocouple Locations. 5 1.3 Control Rod Locations. 6 2.1 Core Burnup History 9 2.2 Monthly Average Load Factors 10 2.3 Assemblywise Accumulated Burnup: Measured and Predicted 11 2.4 Assemblywise Accumulated Burnup: Comparison of Measured and Predicted . 12 2.5A Sub-Batch Burnup Sharing 13 2.5B Sub-Batch Burnup Sharing 14 3.1 Critical Boron Concentration versus Burnup - HFP-ARO 16 4.1 Assemblywise Power Distribution - S2-9-09 23 4.2 Assemblywise Power Distribution - S2-9-17 24 4.3 Assemblywise Power Distribution - S2-9-28 25 4.4 Hot Channel Factor Normalized Operating Envelope 26 4.5 Heat Flux Hot Channel Factor, FqT(z) - S2-9-09 27 4.6 Heat Flux Hot Channe-1 Factor, FqT(z) - S2-9-17 28 4.7 Heat Flux Hot Channel Factor, FqT(z) - S2-9-28 29 4.8 Maximum Heat Flux Hot Channel Factor, Fq*P, vs.

Axial Position . . . . . . . . . . . . . . 30 4.9 Maximum Heat Flux Hot Channel Factor, F-Q, versus Burnup 31 4.10 Enthalpy Rise Hot Channel Factor, F-DH(N), versus Burnup 32 iv

LIST OF FIGURES CONT'D FIGURE TITLE PAGE 4.11 Target Delta Flux versus Burnup 33 4.12 Core Average Axial Power Distribution - S2-9-09 34 4.13 Core *Average Axial Power Distribution - S2-:-9-17 35 4.14 Core Average Axial Power Distribution - S2-9-28 36 4.15 Core Average Axial Peaking Factor, F-Z, ver:sus Burnup 37 5.1 Dose Equivalent I-131 versus Time. 40 5.2 I-131/I-133 Activity Ratio versus Time 4*1 V

Section 1 INTRODUCTION AND

SUMMARY

On September 10, 1988, Surry Unit 2 completed Cycle 9. Since the initial criticality of Cycle 9 on November 30, 1986, the reactor core produced approximately 9.3 x 10 7 MBTU (15,710 Megawatt days per m~tric ton of contained uranium), *which has result~d in the generation of approximately 8.9 x 10 6 KWHr gross (8.4 x 10 6 KWHr net) of electrical energy. The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 9. The physics tests that were performed_during the startup of this cycle were covered in the Surry Unit 2, Cycle 9 Startup Physics Test Report 1 and, therefore, will not be included here.

Surry Unit 2 was in coastdown from July 15, 1988, at which time the burnup was approximately 14,111 MWD/MTU. The coastdown accounted for an additional core burnup of roughly 1,599 MWD/MTU from the end of full power reactivity.

The ninth cycle core consisted of. seven sub-batches of fuel: two once-burned sub-batches, one from Cycle 7 and one from* Cycle 8 (sub-batches Sl/9B, and 10, respectively); two twice-burned batches from Cycles 7 and 8, (sub-batches Sl/9C and 9); one thrice burned sub-batch from Cycles 6, 7, and 8 (sub-batch 8); and two fresh sub-batches (sub-batches llA and llB). The Surry 2, Cycle 9 core loading map 1

specifying the fuel batch identification, fuel, assembly locations, burnable poison locations and source assembly locations is shown in Figure 1.1. Movable detector locations and thermocouple locations are shown in Figure 1.2. Control rod locations are shown in Figure 1.3.

Routine core follow** involves the analysis of four principal performance indicators. These ?re burnup distribution, reactivity depletion, power distribution, and primary coolant activity. The *core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted ..

Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 2 limits,. thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained. Lastly, as part of normal core follow, the primary *coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Unit 2 Technical Specifications. A radioiodine analysis based on the iodine-131 concentration in the coolant is performed to assess the integrity of the fuel.

Each of the four performance indicators is discussed in detail for the Surry 2, Cycle* 9 core in the body of .this report. The results are summarized below:

2

1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0. 50% with the bur.nup accumulation in each batch deviating from design prediction by less than 1. 2%.
2. Reactivity Depletion - The critical boron concentration, used to monitor reactivity depletion, was consistently within +/-0.27% AK/K of the design prediction which is within the +/-1% AK/K margin allowed by Section 4.10 of the Technical Specifications.
3. Power Distribution - Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by an average difference of 1.6%. All hot channel factors m*et. *their respective Technical Specifications limits.
4. Primary Coolant Activity - The average dbse equivalent iodine-131 activity level in the primary coolant during Cycle 9 was approximately 1.6 x 10- 3 µCi/gm. This corresponds to much less than 1%

of the operating limit for the concentration of radioiodine in the primary coolant. Rad:i'~odine analysis indicated no fuel rod defects.

3

Figure 1.1 SURRY UNIT 2 - CYCLE 9 CORE LOADING MAP R p N H L K J H 6 F , E D C B A I OR4 I SR9 I 4R7 I

_ _ _ _ _ I1_ _ I1_ _ ,I_ _ I1_ _ _ __ l I 3P4 I 2S9 I 3T3 I 6R4 I 3TO I 4SS I 4P6 I

_ _ ,I_ _ I,_ _ 1I_ SP*_ ,I_ _ I1_ SP*_ 1I_ _ 1I_ _ 1I_ _ 2 I SPS I OTS I 4T7 I 556 I DT9 I 6SO I 4T6 I OTS I OPS I I I lZP* I 16P I I 16P I I 16P I lZP* I I 3

_ _ 1_ _ 1 ~ 1_ _ 1_ _ ,_ _ ,_ _ 1_ _ 1_*- ' - - ' - -

' 3Pl I SSl I 3T9 I 550 I 1T3 I 1S8 I lTS I 3S3 I 3TS I 1S9 I 2Pl I

_ _ 1I_ _ I1_ _ I1_ 16P_ 1I_ _ ,I_ 16P_ 1_*_,

I 4P I_ 16P_ I1_ _ ,I_ 16P_ 1I_ _ ,I_ _ ,I_ _

I OPS I OTl I 4T3 I 3SII I 2S2 I SP7 I OS8 I 6P3 I SS7 I 2S3 I 4T2 I OT4 I 4P3 I

,I_ _ ,I_ 12P*

_ I1_ 16P_ I1_ _ 1I_ 16P*

_ I1_ _ 1I_ _ 1I_ _ I1_ 161'*

_ 1I_-_ 1I_ 16P_ ,_._1 I lZP* I_ _ I1 5 I 4SO I STl I osz I OS9 I zso I 2TS I 4Sl I 2T6 I 4SII I 4S2 I lSl I STD I 2Sl I

_ _ ,I_ _ I,_-_, 16P I_ _ I,_ 16P*

_ I1_ _ ,I_ 16P_ ,I_ _ . I,_ 16P_ I1_ _ ,I_ 16P*

_ I1_ _ 1I_ 16P_ ,I_ _ I1_ _ 6 I 2R2 I 3T2 I sss I 2T3 I SPO I 2TD I 3R9 I 552 I 1R7 I 1TB I lPl I 2Tt I 1SO I !Tl I 3R7 I I1_ _ 1I_ BP*_ I1_ _ I1_ 16P_ 1I_ _ I1_ 16P_ I1_ _ I, _ _ I1_ _ I1_ 16P_ ,I_ _ I1_ 16P_ ,I_ _ 1I_ SP*_ 1I_SS4 I

_1 7 l~l~l~l~l~t~l~l~l~l~l~l~lml~l~I I I* . I 16P I 4P I I I I BP I I I I 4P I 16P I I I a 1_*__ 1_*_1_ _ 1_*__ 1_ _ 1_ _ 1_ _ 1_*_*.: 1_._._1~1 _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 l-~l~l~lm-1~-1~1~t-l~.I-Wl~l~l~l~l~I

  • I SS3 I SP* , I . I 16P I - I 16P I - I I , - I i6P I ..: .* 1*_ 16P I I SP* I SS5 I
  • ,_-__ 1_:_-_-_- I_ _ I_-___._-1 _ _ 1_ _ 1_ _ 1_ _ 1_*_-_I_.--*---1~1---_'_1_*_._I _ _ I _ _ I
  • I SS8
  • I ST2 I OS!, I 4S7 I oss I 2TS I 3S1 I ZT7 I 2S6 I
  • 1S3' I 2S4 I 4T9 * - I SS3 I I I 16P I I 16P* I I 16P I 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_*_1 I 16P I I 16P* I I 16P I I 10 I 2P6 I OT2 I 4T4 I 1S7 I 3S4 I 4PO I 3S2 I 2P7 I 1SS I lS6 I 4Tl I OT3 I 1P2 I

,I_ _ I1_ 12P*

_ 1I_ 16P_ I1_ _ I1_ 16P*

_ I1_ _ I1_ _ 1I_ _ 1I_ 16P* I I 16P I 12P* I

_ 1_ _ 1_ _ 1_ _ 1_ _ 1 I 11 I 2PO I 2S8 I 4TO I 3S9 I 1T6 I 2SS I 1T4 I 2S7 I 3T7 I 4S6 I SP3 I I I I 16P 1. I 16P I 4P I 16P I

, _ _ , _ _ 1_ _ 1_ _ , _ _ 1_ _ 1_ _ 1_ _ 1_ _ , _ _ 1_ _ ,

I 16P I I I 12

- I 2P4 I OT7 I 4TB I 3S5 I lTO I 5S9 I 4TS I OT6 I 4P2 I 1I_ _ 1I_ l2P*

_ 1I_16P_ 1I_ _ 1I_ 16P_ 1I_ _ 1I_ 16P_ 1I_ 12P*

_ 1I_ _ 1I 13 I lPB I 1S4 I 3T4 I 6R5 I 2T9 I 1S2 I 2P2 I I1_ _ 1I_ _ IBP*I IBP*I 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I I 14 I 4RB I SR6 I 4R5 I 1--1--> ASSEIIILY ID I1_ _ 1I_ _ I1_ _ I1 15 I 1--> ONE OF THE FOLLOWING I_ _ I A, SS - SECONDARY SOURCE B. >O<P - BURNABLE POISON ROD CLUSTER IXX-N..tllER OF RODS I C. XXP*- DEPLETED BURNABLE ROD CLUSTER IXX-l&JHBER OF RODS)

FUEL ASSEMBLY DESIGN PARAMETERS 1

SUB-BATCH 8 9 Sl/9C Sl/9B 10 ilA llB INITIAL ENRICHMENT (W/0 U-23S) 3.61 3.S9 3.S9 3.61 3.60 3.6p 3.80 ASSEMBLY TYPE lSXlS lSXlS lSXlS lSXlS lSXlS lSXlS lSXlS NUMBER OF ASSEMBLIES 24 16 4 1 60 28 24 FUEL RODS PER ASSEMBLY 204 204 204 204 204

  • _204 204 ASSEMBLY IDENTIFICATION OPS OPS OR4 ORS 6R2-6RS SD1 0Sl-6SO 0Tl-2T8 2T9-ST2 lPl 1P2 ORB 1R7 1P7 1P8 2Rl 2R2 2PO 2Pl 2R6 3R7 2P2 2P4 3R9 4RS 2P6 2P7 4R7 4R8 3Pl 3P4 SR2 SR6 4PO 4P2 SR9 6Rl 4P3 4PS

~P6 SPO SP3 SP7 SP8 6P3 4

- - - - - - ~ --=------- - - - ~ - - - - - - - - - - - - - - - - - - - - - - - - - -

(* .J

~

~

Figure 1.2 SURRY UNIT 2 - CYCLE 9 MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS R p N M L K J H G* F E D C B A I

I I MD I I l

---,---1_._1_*_1 _ _ 1_ _-,-__

I I I J MD I

_ _ 1I_ _ 1I_ _ 1I_ _ 1I__ ._1I__._1I _TC_ I1_ _ 1I_ _ 2 I MD I. I I MD I MD I I I I MD I I TC I I I TC I TC I I I* I TC I 3

_ _ 1_._1 _ _ 1__._1 _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _

I I I MD I I I MD I I MD I I I I I I ITCI I ITCI ITCI I I I 4

__._1 _ _ 1_*_1 __*_1 ___ 1___ 1___ 1 1___ 1_ _ 1___ 1_ _

I I I I MD I I MD I I I MD I MD I I MD I I I MD I I TC I I TC I I I I TC I TC I I TC I 5 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_.__ 1_._1 _ _ 1 I I I I MD I I I MD I I MD I I I I I I

~1_. __ 1I_ _ 1I _ _ ITCI1_ _ 1_ _ 1I_ _ ITCI 1_ _ 1_ _ ITCI 1_ _ 1_ _ 1I_ _ I1_.__ 1I_ _ 1I_ _ 6 I I I MD I I I * .I MD I I MD I I

  • I I I I Tc I I I I TC I I TC I I I TC I I TC I I 7 1_ _ 1_ _ 1_*_1 _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_-__ 1_._1 _ _ 1_ _ 1 I I I MD I I -MD I I I I I MD I I I MD I MD I I IMDI ITCI l'TCI I I I ITCI I ITCITCI .I 8 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1__ ._1 _ _ 1 I I I I . I MD I I I I MD I MD I I I I I MD I I I I I ITCI I I ITCITCI I I I ITCI 9 1_ _ 1_ _ 1__ ._1 _ _ 1_ _ 1_ _ 1_ _ 1_-_1 _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I I MD I I I I MD I I I I I MD I I MD I 1I _ _ 1I_TC_ 1I_ _ 1I _ _ 1I_ _ 1I_TC_ 1I_ _ 1I_ _ 1I_ _ 1I_ _ 1I_TC_ 1I_ _ I1_TC_ 1I 10 I I I I MD I I I MD I I MD I MD I I I I I I 1* ITCI I ITCI ITC ITCI I I I 11 1_ _ 1_ _ 1_ _ 1_ _-1 _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I MD I I I I MD I I I I I MD I MD I I TC I I I I TC I I I* *1 I TC I TC I 12 1_ _ 1_.-
  • 1_ _ 1___ 1___ 1___ 1___ 1___ 1___ 1_ _ 1___ 1 I 1* I I IMDI IMDI 1* 1
  • I I I I I I I . TC I
  • I I 13 1___ 1_ _ 1_ _ 1_ _ 1___ 1_ _ 1___ 1_ _ 1_ _ 1 I MD I I I I I I I I . TC I I . I I MD I I I 14 1_ _ 1_ _ 1_ _ 1_ _ 1___ 1___ 1_._._1 I MD I I I I TC I I I 15 1___ 1___ 1___ 1 MD - Movable Detector
  • TC Thermocouple 5

Figure .L3

  • SURRY UNIT 2 - CYCLE 9 CONTROL ROD LOCATIONS R p N H L K J H G F E D C B A 180° I Loop B Loop c I I I I Inlet l Outlet t<.... I_I_I_*I /

"- I I A I I D' I *I A I I z

_1_1_1_1_1_1_1_1_

N-41 I I I I SA I I SA I. I I I N-43 3

_ I _ I _ I _ I _ I _ . I _ I _ I _

  • I_I_-_*

I I. c I I B I I I I B I I c I I 4

_._1_1_1_1_1_1_.1_1_1_1_1_1_

I I I I SB I I SP I I SP I I SB I I I I 5 I __ I __ I __ I __ I _ I _ I _ ._I __ I _ I _ I _ I __ I_.J Loop B Loop-C IA I IB I ID I IC_ I ID .I IB*I IA I Outlet 6 Inlet"-. _ I _ I _ I _ I _ I _ I _ I _ I _ I _ I _ I _ I _ I _ I _ ,r

_':i I I I SA I I SP I I SB I I SB I I SP I I SA I I I/ 7 0 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 0 90 - I I D I I .I I c I I I I c I I I I D I I - 270 8 1_1_1_1_1_1_1_*_1_1_1_1_1_1_1_1_1 I I ISAI ISPI ISBI ISBI ISPI ISAI I I 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 IAI IBI IDI ICI IDI IBI IAI 10 l_l_*_I_I_I_I_I_I_I_I_I_I_I_I I I. I I .SB I I SP I I SP I I SB I I I I '11 1_1_1_1_1_1_1_1_1_1_1_1_1_1 I I c I I B .I I I I B I I c I I lZ 1_1_1_1_1_1_1_1_1_1_1_1 I I I I SA I I SA I I I I 13

  • N-44 I __ I __ I _ I _ I __ I _ I _ I _ I _ I N-42 I I A I I D I I A I I 14 .

1_1_1_1_1_1_1_1

/ I I I I \ 15 I_I_I_I Loop A Loop A Outlet Inlet Absorber Material Ag*ln*Cd Function Number of Clusters Control Bank D 8 Control Bank C 8 Control Bank B 8 Control Bank-A 8 Shutdown Bank SB 8 Shutdown Bank SA 8 SP (Spare Rod Locations) 8 6

Section 2 BURNUP The burnup history for the Surry 2, Cycle 9 core is graphically depicted in Figure 2. 1. The Surry 2_, Cycle 9 core achieved a burnup of 15,710 t:1WD/MTU. As shown in Figure 2. 2, the average load factor for Cycle 9 was 71.4% when referenced to rated thermal power (2441 MW(t)). Surry 2 was shutdown from December 9, 1986 to March 19, 1987 for repair and inspection of secondary system piping. Unit 2 performed a temperature/

power coastdown starting on July 15, 1988 until shutdown for refueling on September 10, 1988.

Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWTOTE 3 computer code is used to calculate these assemblywise burnups. Figure 2. 3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 9 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 9 operation is also given. As can be seen from this figure, the accumulated assembly burnups were generally within +/-1% of the predicted values. In addition, deviation from quadrant symmetry in the core throughout the cycle was no greate~ than +/-0.50%.

7

The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle *batch burnup predictions to be made for use in reload fuel design studies.

Batch definitions are given in Figure 1.1. As seen in Figures 2.5A and 2.5B, the batch burnup sharing for Surry 2, Cycle 9 followed design predictions closely with no batch deviating from prediction by more than 1.24%. Symmetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 9 core did deplete as designed.

8

Figure 2.1 SURRY UNIT*2 - CYCLE 9 CORE B_l]RNUP HISTORY t7000 I  !

i

' I

' ' I  !

' ' I I I

! i i i! I 16000 I I i  !

i

'  ! I  ! I I I i I  : I i I I I

! I; I I i

I i I iI lI i I 15000 "1

I I  ! I I I I

I I I I I II I i i I I I I /v t4000 i ___ J___ ~ __ J___ i__ J___ l__ J___ l___l__ l__ _l __ L_J_J ___ l__ J__ _l __ L_.l __ J_i-f__ ~---

  • l  !

!J-A I

i I!

I i i II

~ I I I 13000 i

' I I I i I I I I I I I

II i i I I i;;f I

C

~I  ! I I I I.

I

.* y I I ! !

C 12000 L

E t t 000 I

i I

I I II II I

I i

I I

I I

I I

\

I I II I

! *v, i i

I' I I i .I B 10000 '

1 I I i

I I

I I

i I  :

i i

iI I

I I'

I I

I I I II 1/1  !

I I

I II I

I /

u R 9000 i! I I I I I .i I

I I.

I I I V i I I

I' i

I I l I I I 1f~I I !

N u I I I

! I I I I 1* I I I I p 6000 I I J I i / I M. 7000 I I I I I I I ' I I I ! I I I

/ I I I 11 I I I I rJ D 6000 I I I I I I

.i I I I I I I M 5000 I I I  !

II I I* i I \I I I I I I I I T

u 4000 i I i I I I i

I I I I f I I I I I I I I I I ..

/!

I

! i*  ;  ;

i i i ' j . I I 3000 I I I !

i

! I I I ! I i i

I I I I i! I I vi j I I I I I I 2000 I I I I !I i I I I II

.I

! i I i/ i 1000 I i  ! I JV 0-I I I i I I

I .1 ' I I I 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 l l l l t l l. l l l l t l l l l l t l l l l l l N D j F M A M J j A s 0 N D *j F. M R M j j A s 0 0 E A E A p R u u u E C 0 E A E A p q u u u E. C V C N B R R '{ N L G p T V C N B R R y N L G p T B B B B 8 B* B 8 B B B B B 8 B B B s* B B B 8 B B 6 6 7 7 7 7 7 7 7 7 7 7 7 7 8 8 8 B B 8 B 8 8 8 TIME\MONTHSl

-~- CYCLE 9 MAXIMUM DESIGN BURNUP 16100 MWO/MTU BURNUP WINDOW FOR CYCLE A OES1GN - 14100 TO 16100 MWO/MTU 9

PERCENT

___,. N (_,J -+'- (Jl CJ) '-1 CD l.O 0 0 o* o 0 0 0 0 0 0 0 0 DEC 86 :III/Iff\IflIJ JAN 87 FEB 87 MAR 87 11111r11mrtrr1111rjir11rmmrtmmimrmrit1 APR 87 {mmrm~~tmmmfrmrmmmmmmmmmmJIJ~~rmfmmitt~Itt{i~I~~ItIIIt@Itrmmrmmmmmmm~i1rmmmm~m~~ttrt~/~~=ttmttrtrtr~~!

MAY 87 mrmm11rmmmmmrrrmmmrttrtrtt1irirrmrirtrtt@mtrttt@ttlittr1rr1tti\ttttttJtttfrrtttrtirfrrttrmr@rrtrt/

3:

JUN 87 ftl!ltftl]lttltltlfttlll'tftlHtlHt:::t!lfHlftl!lHlllWlttlllt'ttttlt::tttfftlllftJll 0 JUL 87 *?r11:ti;r.?r;:tt1\il:tt11\t\iftti=tfJ;:::=t\tt:1tt/I;1;11:Jt?f1:ttri1111:11rr1r;\;Jttj\ft:1:rri;trr;rrtrJ1i/iftftt11rrrr1?1r11r

~t-1 . Cll

~

AUG 87 ..rrII@mrrtrittttrJttmrmmtJt1rrrmrrrrrrmmmrrrrrrrirmttrrtjfmmrmmrrr1t/lttft1ttttrtrm111rrirrirrtmttrtm1 >-<: ~

.*.*.*.*.*.*.*.*.*.*.*.*.*.***-*-*-*-*-*-*-*-*-*]

ti>

SEP 87 mrtttttttttJtttrtrrmrmtttmrttttrmttittfijffftftfmrrmrrrrrrrrrrrrrmmrmmrmmmmtmmmrrmrrnmmmmmmmmmrmmmrt

~ 87 . . . . . . . . . . ,. . . t . .*. . . . . . . .;}_'..~.U...:..U.JU...:.=. : tr~:~~;:~:f}~=~~:~:~:;:~:~:i:;:~:~:~:~:~:~:~:~:~: \:~:~:~:i:~:~:;::::::::::::::::=::.::::::::::::::::::::::::::::,:*:*:::,:::,:,:,:::,:,:,:,:,:,:,:,:::*:*:*:*: ...*.,:,:*.; **..........*.;*. *; ...**,.*.*.*..**; ...*.*********;

M ~

OCT ~

H 0 87 f/IIIIJIIJIIIfII!III?JIJII/l\l/tffIIItit\IIIfI/ItI\tiiIII/ll})ifitfif/fif/it?Ifl/Itttffl/J?@flfJtitit?t G".l z NOV t-'

0 M N DEC 87 mmrmmrrrtttfiffittirttltt1mrtttrr1rmmmrmmmmmrrmrtrt t-1 0

~ JAN 88 ::::nr1::r1111111rr11t11111t11::::1111rn1r1rrtttr1rttttttt::rmttttttr1111::1r1r1r1:::1rnill ti>

i::;

n n

~ FEB 88 1-%1

~

MAR 88

..,n ti>

0 I.C

~

APR 88 Cll MAY 88 JUN 88 Immrmmmmtitittitittrrirrr1rmirrmtmmm:

. JUL 88 rn1=1:=:r:=r1r1rn1mrt@t'tt1t:tnt1t:m::1::n::mntntrtt@trrr11:r:m::n:::1rt:@:tnttttttt:t1tntttt1 1-%1 f-'*

AUG 88 r111111ritmririrrm111trtritr1titrrttI111111111111rrirrrrmr11rtttr111tri11r1mrirtrtitrrrr1rrr

  • .*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*.*-*.*.*.***********-***-***-*****-*****-*******-*-*-***-*-*-*-*-*-*-*-*-*-*-*-*A ~

SEP 88 ittittttt/\\lfttti111irmttififtt1rmrtm1rmmmrrrritrmrmmrtrtrrrrrrrrrrrrrm. 11 (1)

N CYCLE AVERAGE l}ti}(fiI{tI\(\(j/ffjffitfi/tiJfmtmmmmmmmmmmti!IfIIIIIIfIIIEJWiiI[rtr{1/((ll( .N

!.I

Figure 2.3 SURRY UNIT 2 - CYCLE 9 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (1000 MWD/MTU)

R p N H L K J H G F E D C . B A l I 33.141 36.sal 33.531 I MEASURED I 1

. I 33.171 36.411 33.171 I PREDICTED I z I 36.721 ZB.251 16.761 37.S8I 16.911 ZS.SDI 36.871 2 I 36.701 za.011 17.091 38.171 11.091 za.011 36.701 3 I 38.641 17.Dll 19.511 34.731 19.351 34.751 19.811 17.lDI 38.971 3 I 38;471 16.951 19.691 35.0BI 20.021 35,081 19.691 16.951 38.471 4 I 38.651 30.931 19.871 36.lOI *20.461 35.421 20.131 35.BOI zo.oal 30.891 38.911 4 I 38.661 30.961 zo.161 36.151 20.621 35.Bll 20.621 36,151 20.161 30.961 38.661 5 I 36.411 16.851 19.BBI 35.751 32.141 46.711 32.611 46.911 32.171 36.101 19.581 16.731 37.311 5 I 36,881 16.941 Z0.141 36.0BI 32.181 46.BOI 3Z.S8I 46.BOI 32.181 36,0BI 20,141 16.94.I 36.881 I 27,941 19.601 36.341 31.621 35,391 20:221 35.781 19,BOI 35.781 31.941 35.681 19.321 28.151 6 I 28.0ZI i9.69I 36.ZOI 32.091 35.611 19.791 35,161 19.791 35.611 32.091 36.201 19.691 28.0ZI 7

I 33.491 16.751 34.981 20.301 46.871 19.751 44.631 32.961 44,741 19.691----------------------------------------

47.031 19.861 34.741 16.561 33.181 7 I 33.101 11.091 35.141 20.621 46.861 19.771 44.491 32.411 44.491 19.771 46.861 20.621 35.141* 17.091 33.101 8

I 36.381 37.341 19.401 36.0ll 32.541 35.501 32.621 32.681 *32.041 35.lll -----------------------

32.321 35.271 19.361*--------------

38.741 36.841 8 I 36,661 38.ZZI 20.031 36.041 32.661 35.ZSI 3Z.091 32.401 32.* 091 35.251 32.661 36.041 Z0.031 38.ZZI 36.661 9 I 32.941 16.481 34.911 zo.291 47.411 19.581 44.531 32.171 44.491 19,481 46.311 20.111 34.661 11.061 32.831 9 I 33.lOI 17.091 35.141 20.621 46.861 19.771 44,491 32.411 44.491 19.771 46.861 20.621 35.141 11.091 33,101 10 --~-----------------* ---------------------* ---------------------------------------------------------------

I 27.671 19.151 36.041 32.Zll 35.261 19.151 34.721 19.701 35.101 31.961 35.671 19.711 28.221 10 I 28.0ZI 19.691 .36.ZOI 32.091 35.611 19.791 35.161 19.791 35.611 32.091 36,201 19.691 28.0ZI 11 I 37.751 16.931 Z0.191 36.111 31.431 47.151 32.381 46.331 32.391 35.701 20.171 17.00I 36.681 11 I 36.881 16.941 20,141 36.081 32.181 46.801 32.581 46.801 32.181 36.081 20.141 16.941 36.881 12 I 39.431 31.551 20;411 35.751 20.151 35.511 20.261 35.901 Z0.021 31.111 38.621 12 I 38.661 30.961 20,161 36.151 20.621 35.811 ZD.621 36.151 20,161 30.961 38.661 13 I 38.731 17.371 19.761 34.671 19.511 34.721 19,121 16.581 38.451 13 I 38.471 16.951 19.691 35.0BI 20.021 35.oal 19.691 16.951 38.471 14 I 37.431 28.301 11.101 38.851 16.551 27.711 36.481 14 I 36.701 28.071 17.091 38.171 17.091 28.071 36.701 15 I 33.401 36.391 33.291 15 I 33.171 36.411 33,171 R p N H L K J H G F E D C B A 11

l I

Figure 2.4 SURRY UNIT 2 - CYCLE 9 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED

( 1000 MWD/MTU)

R p N H L K J H G F E D C B A l I 33.141 36,581 33.531 I HEASURED I l I -D.D71 D,UI 1.111 I HIP l( DIFF I z

I 36.721 ze.zsl 16.761 37.581 16,911 ZS.SOI 36.871 z I 0,051 0.631 -1,931 -1,551 -1.031 l.5ZI 0.471 3 I 38.641 11.011 19,511 34,731 19.351 34,751 19,811 11.101 38.971 3 I o.461 o.371 -0.931 -0.991 -3.321 -o.951 o.611 o.891 1.311 4 I 38,651 30,931 19.871 36.101 20.461 35,421 20,131 35,801 zo.oel 30,891 38,911 4 I -0.031 -0.091 -1.411 -0.141 -0.791 -1,091 -2,371 -0.951 -0.381 -0.221 D,641 5 I 36.411 16.851 19.eel 35,751 32,141 46,711 32.611 46,911 32,171 36.101 19.581 16.731 37.311 5

_I -1.2e1 -o.541 -1.291 -o.9ol -o.131 -0.201 0.111 0.241 -0.031 0.051 -2.111 -1.231 1.141 6 I 27.941 19.601 36.341 31,621 35.391 20.ZZI 35.781 19.801 35.781 31.941 35.68& l9.3ZI 28,151 6 I -0.291 -0.491 0.401 -1.471 -0.6ZI 2,Zll 1,751 0.061 0,461 -0.471 -1.431 -l,901 0,471 7 I 33.491 16.751 34.981 Z0.301 46.871 19.751 44.631 32.961 44.741 19.691 47.031 19.861 34.741 16.561 33.lBI 7 I 1.191 -2.001 -D.451 -1.551

  • 0.031 -0.101 o.nr 1.111 o.571 -0.411 o.371 -3.671 -1.141 -3.lZI o.zsl 8 I 36,381 37.341 19.401 36.0ll 32,541 35.501 32.621 32.681 32.041 35,111 32,321 35.271 19.361 38,741 36.841 8 I -0.781 -Z.ZBI -3.151 -0.081 -0.351 0.711 1.661 0.871 -0.131 -0.381 -1.021 -Z.131 -3.3ZI 1.371 0.481 9 I 32.941 16.481 34.911 Z0.291 47,411 19.581 44,531 32.171 44,491"19,481 46.311 20.lll 34,661.17.061 32,831 9 I -0,491 -3.561 -0.651 -l.601 . 1,181 -0.931 0.101 -0.721 -0.0ll -1.471 -1.161 -Z.471 -1.381 -0.191 -o.eol 10 I 27.671 19,151 36,041 32,211 35.261 19.151 34,721 19,701 35.101 31,961 35,671 19.711 28,221 10 I -l.Z41 -Z.741 -0.441 0.361 -l.OOl*-3,Z3I -1,271 -0.441 -1.441 -0.401 -1.451 *a.oar 0.711 11 I 37.751 16.931 Z0,191 36,lll 31.431 47.151 3Z.3BI 46,331 32.391 35,701 Z0,171 17,00I 36,681 11 I Z.331 -0.041 O.Z61 0.101 -Z,3ZI 0,751 -0.611 -1.0ll 0.671 -1.041 0.151 0.361 -0.561 12 I 39.431 31.551 20,411 35.751 Z0.151 35.511 ZO.Z61 35,901 20,0ZI 31,111 38.6ZI 12 I 1,991 l.901 1.251 -1,lll -Z,271 -0.831 -1,771 -0.681 -0.671 0.481 -0,lZI 13 I 38.731 17.371 19.761 34,671 19.511 34.721 19,121 16,581 38,451 ------------------ 13 I
  • 0.691 2,481 0,311 -1.171 -2.541 -1.011 -Z,891 -2.161 -0.051 I ARITHHETIC AVG I IPCT DIFF = -0.421 14 I 37.431 28.301 11.1oi 38.851 16.551 27.711 36,481 ------------------ 14 I 1.991 o.e11 3.581 1. 771"-3,161 -1.ze1 -0.601 15 I STANDARD DEY I I 33.401 36.391 33.291 I AYG ASS PCT I 15 I = o.,o I I o. 121 -0.011 o.381 I DIFF
  • 1.06 I R p *N H L K J H G F E D C B A BATCH SHARING (MWD/HTU) BURNUP TILT BATCH CYCLE 6 CYCLE 7 CYCLE 8 CYCLE 9 TOTALS 8 16723 8856 5657 9507 40743 NW = 0.01 9 -- 17046 11493 8361 36900 Sl/9C -- 11348 13698 13082 38128 NE = 0.01 S1/9B -- Sl/15617 -- 17064 32681 SW =

10 -- -- 15817 17495 33312 0.26 llA -- -- -- 18992 18992 SE =

llB -- -- -- 18790 18790

-0.37 CORE AVERAGE= 15710 12

Figure 2.5A SURRY UNIT 2 - CYCLE 9 SUB-BATCH BURNUP SHARING.

44 SLJB-,-BATCH S1/9C

-:....,)

40 36 .........

1...-r I

.....~-

SUB-BATCH 10

~ ,..,.........-1

""'- .... I "O

~

32

...... - -....u

- f9-SUB-c-BATCH c.,

~

28 i--- - i......a-I I

r"'"'"

.v- - 11 B z~ 24

~

20 0::: 16 ...._.-,,

.. 1,....9 I

V'

...-.r U. , p .... "'"

~ I I V' I

<r: 12 1../

~ ./T I I ..... ~ I

~ v-8

> ~

,,A if).

V

~./

4 .......

111..A 0

0 2 4 6 8 10 12 14 16 CYCLE BURNUP (GWd/MtU) 13

Figure 2.5B SURRY UNIT 2 - CYCLE 9 SUB-BATCH BURNUP SHARING 44 SUB-BATCH 8

Lo--""

40 ..-

J

,,+,,,) 36 I

~pl"

.. i-w-

- SUB-BATCH 9

~

~

-- ~

-- - ~

"O

~

c..,

32 28 ....

...... --- - ~

.,.~

~v

" >k:.,

js;..-

7"

  • "" SUB-BATCH S1/9B

~ V II""

SUB-BATCH

';:J j..;"

24 11 A z I....-""'

V A

~ I I~

~ 20 ~

~ _......... .¥ ...

,t-,,,"""' v-- ----

~ 16 : '7' _... ,--~

u ...

t"-1 I ~

<r: 12 v

~ ./

_t'*

I ~

~ .,.,

J 8 ......-

~

lfJ. ¥

./

4

.,.- /

0 0 2 4 6 8 10 12 14 16

  • cYCLE BURNUP (GWd/MtU) 14 .

Section 3

  • REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW 4 computer code was used to normalize 11 actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level. The normalized .critical boron concentration versus burnup curve for the Surry 2, Cycle 9 core ls shown in Figure 3.1. It can be seen that the measured data typically compare to within 30 ppm of the design prediction. This corresponds to +/-0. 27%

~K/K which is within the +/-1% ~K/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications. In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 9 core depleted as expected without any reactivity anomalies.

15

Figure 3.1 SURRY UNIT 2 - CYCLE 9 CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARO)

~

~

1 600 1500 I

.- PREDICTED MEASURED

~ 1400

---z I

I I I I

1300 I I I I I I I

i I I I 0 I I I I I I I I I I I

~

1200 I ' I I I

~ i

~ 11 00 I I I I I I i I

~

~ I

' ,,~

~ "1.-. I  ! I 1000 z

µ=l

~

I I I I 900 u

z 800 I I  !

0 u

\ ~I I

I i! i I

1, 700 I I -~

I z

I I I I I I I I I 600 0 I

~ I I ~ I I i I I

0 500 I I

I '~

I I

I Q:)

~

I I ~I I I I I I 400 II

~ '1fi I I

~

~ 300 I I I I u IC},

I

~

I I I

~ 200

~

I

~

~ 100 I I I u i I

! I I

II I'~ I I . i - ~ I 0

0 2 3 4 5 6 7 8 9 10 11 12 13 14 15 CYCLE BURNUP (GWd/MtU) 16

Section 4 POWER DISTRIBUTION Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without II any abnormal conditions which could cause an uneven II burnup distribution. Three-dimensional core power distribution is determined from movable detector flux map measurements using the INCORE 5 computer program. A summary of all full core flux maps taken since the completion of startup physics testing for Surry 2, Cycle 9 is given in Table 4.1.

Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.

Radial (X-Y) core power distributi.on for a representative series of incore flux maps are given in Figures 4.1, 4.2, and 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life. Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup.

Figure 4. 3 shows a map that was taken near the end of Cycle 9. The measured relative assembly powers were generally within 6. 3% and the average percent difference was equal to 1.6%. In addition, as indicated by the INCORE tilt factors, the power distribution was essentially symmetric'for all cases.

An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors. Verification that these factors are within Technical Specifications limits ensures that linear power density 17

and critical heat flux limits are not violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity. The Cycle 9 Technical Specifications limit on the axially dependent heat flux hot channel factor, Fq(Z), is 2. 32 x K(Z), where K(Z) is the hot channel factor normalized operating envelope. Figure 4.4 is a plot of the K(Z) curve associated with the 2.32 Fq(Z) limit. During Cycle 9 operation, this limit was increased from 2. 18 x K( Z) to the current 2. 32 x K( Z) limit. The axially dependent heat flux hot channel factors, Fq(Z), for a representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.

Throughout Cycle 9, the measured values of Fq(Z) were within the Technical Specifications limit. A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 9 is given in Figure 4.8. Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 9. As can be seen from the figure, there was an approximate 20% margin to the 2. 18 limit at the beginning of the cycle, with the margin generally increasing throughout cycle operation. Near the end of Cycle 9 there was roughly a 30% margin to the 2.32 limit.

The value of the enthalpy rise hot channel factor, F-delta H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.

Additionally, the F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exce.eded during normal operation.

For Cycle 9, the enthalpy rise hot channel factor limit was 1.55(1+0:3('.-P)). A summar-y of the maximum values for the enthalpy rise 18

hot channel factor measured during Cycle 9 is given in Figure 4.10. As can be seen from this figure, the average margin to the limit was approximately 5%.

The Technical Specificattons require that target delta fluxi, values be determined periodically. The target delta flux is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits_ are then established about this target value. By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.

The plot or ~he target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -1.0% at the begi~ning of Cycle 9. Delta flux values increased to +2. 0% and then decreased steadily to -3.5% near the middle of the cycle. At the end of Cycle 9, during coastdown, delta flux values increased to +3.5%. This axial power shift can also be observed in the corresponding core average axial power dis-tribution for a representative series of maps given in Figures 4.12 through 4.14. In Map S2-9-09 (Figure 4.12), taken at 1,072 MWD/MTU, the axial power distribution had a shape peaked toward the middle of the core with a peaking factor of 1.18. In Map S2-9-17 (Figure 4.13),

Pt-Pb

  • Delta Flux= X 100 where Pt= power in top of core (MW(t))

2441 Pb= power in bottom of core (MW(t))

19

_j

taken at approximately 6,887 MWD/MTU, the axial power distribution peaked slightly toward the bottom of the core with an axial peaking factor of 1.13. Finally, in Map S2-9-28 (Figure 4.14), taken at 14,538 MWD/MTU, the axial peaking factor was 1.12, with axial power distribution peaked at the top and bottom. The history of F-Z during the cycle can be seen

\,

more clearly in a plot of F-Z versus burnup given in Figure 4.15.

In conclusion, the Surry 2, Cycle 9 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the Fq(Z) and F-delta H hot channel factors were within the limits of the Technical Specifications.

I 20

TABLE 4.1 SURRY UNIT 2 - CYCLE 9

SUMMARY

OF INCORE FLUX MAPS FOR ROUTINE OPERATION I I I I* 11 l 12 l I I

  • I I I I BURNI I. I F-Q ITJ HOT F-DHINJ HOT I CORE FIZJ I 14JI I I I UP I IBANK I CHANNEL FACTOR CHNL.FACTOR I MAX I 1311 QPTR I AXIAL! NO.I I MAP DATE MHD/IPHRI D I I IFIXYJI I OFF I OF I I* NO. MTU l1%JISTEPSI I AXIALI IAXIALI I MAX I I SET ITHIMI I I I I I IASSYIPINI POINTIF.:.QITJIASSYIPINIF-DHINJIPOINTI FIZJI I MAX ILOCI 1%) IBLESI I_ _ I I_ _ I_I _ _ I _ I _ I _ _ I_ _ I _ I _ I I_ _ I_ _ I_ _ I_ _ I_I _ _ I _ I I I I I I I I I I I I I I I I I I I I I I 6 I 3-30-871 4281 991 197 I K061 LEI 23 11.792 I K041 LJI 1.445 I 33 ll.190ll.390ll.0071 NHI -1.031 45 I I 91 511 4-23-871 101211001 208 I K061 LEI 22 11.758 I K041 LJI 1,434 I 23 l1.177ll.383ll.0071 NHI 2.241 43 I 110 I 5-26-871 220911001 223 I Ll31 KLI 21 11. 726 I J041 CNI 1.436 I 22 l1.149ll.390ll.0071 NHI 2.121 43 I Ill I 7- 2-871 343311001 219 I J06l BCI 13 11.726 I J041 CNI 1.446 I 21 ll.132ll.394ll.005l NHI 1.811 44 I 1151 611 8- 6-871 460011001 226 I 0091 HBI 44 11.110 I D09J HBI 1.435 I 44 11.12511.39311.0051 SEI -0.481 43 I 116 I 9- 8-871 570211001 222 I Olli HKI 44 ll.706 I .J041 CNI 1.449 I 45 ll.12711.39911.0061 NHI -0.871 44 I 0

117 .110-14-871 688711001 223 I Olli HKI 46 11. 705 I Olli HKI 1.444 I 45 l1.125ll.39lll.0071 NHI -1.461 44* I I_ _ I I_ _ I_I _ _ I _ I _ I _ _ I_ _ I _ I _ I I_ _ I_ _ I_ _ I_ _ I_I _ _ I _ I NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY),

FOLLOWED BY THE PIN LOCATION IDENOTED BY THE "Y" COORDINATE HITH THE SEVENTEEN ROHS OF FUEL RODS LETTERED A THROUGH RAND THE "X" COORDINATE DESIGNATED.IN A SIMILAR MANNER).

IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.

I 1 l. F-QI Tl INCLUDES A TOTAL UNCERTAINTY OF 1. 08 I 2 1*. F-DHI Nl INCLUDES A MEASUREMENT UNCERTAINTY OF 1. 04 I 31. FIXYJ IS EVALUATED AT THE MIDPLANE OF THE CORE AND INCLUDES A TOTAL UNCERTAINTY OF 1.05 X 1.03.

41. QPTR -*QUADRANT POHER TILT RATIO.
51. MAPS 7 AND 8 HERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE/EXCORE CALIBRATION. 11/E CALIBRATION)

I 61. MAPS 12, 13, AND 14 HERE QUARTER~CORE FLUX HAPS TAKEN FOR 1/E CALIBRATION.

TABLE 4.1 (CONT. l I I I I 11 l 12 l I' I I I I BURNI I I F-Q ITl HOT F-DHINl HOT I CORE FIZl I 141 I I I UP I !BANK I CHANNEL FACTOR CHNL.FACTOR I MAX I 13ll QPTR AXIAL! NO.I I HAP DATE HHD/IPHRI D I I IFIXYll OFF I OF I I NO. MTU l1%1ISTEPS1 I I AXIAL! I I I IAXIALI I MAX I SET ITHIHI I I I I IASSYIPINI POINTIF-QITIIASSYIPIN F-'DHINllPOINTI FIZll I MAX ILOC 1%1 IBLESI I_ _ _ _ _ I_ _ . I _ I _ _ I _ I _ I _ _ I_ _ I _ I _ I _ _ I _ _ I_ _ . I_ _ I_ _ _ I _ I 118 11-14-871 *797511001 225 I N06l LGI 45 11.712 I J041 CN 1.443 I 46 ll.130ll.39lll.005l NH -2.111 44 I 121( 71 1- 4-881 914511001 227 I Mlll Ill 46 11.732 I Olli GL 1.446 I 46 ll.13211.40411.0051 NH -3.011 42 I 122 2- 8-88ll0333llOOI 224 I N061 LGI 53 11.753 I Olli GL 1.448 I 52 ll.14711.40711.0041 SH -3.941 41 I 123 3-10-88lll308llOOI 222 I F03l GDI 53 11.813 I F031 GD 1.504 I 52 ll.14811.45311.0091 NE -3.571 39 I 126( 8) 4-20-88ll2396llOOI 223 I N061 LGI 53 11.772 I ClOI DI 1.462 I 53 ll.15711.41211.0071 SH -3.651 40 I 127 6-28-88ll3553llOOI 224 I N061 LGI 53 11.770 I Hlll IL 1.455 I 53 ll.16811.41311.0081 SH -3.741 41 I 128 7-29-8811453811001 214 I F03l GDI 11 11.737 I F03l GD 1.469 I 53 ll.12lll.403ll.005l NH -0.951 40 I 131( 9) 8-23-881152871 761 203 I Mlll ILi 13 11.782 I L04l LI 1.472 I 12 ll.17211.41611.0lOI NH 3.601 38 I I I_ _ I _ I _ _ I _ I _ I _ _ I _ _ I _ I _ I _ _ I _ _ I _ _ I_ _ I _ _ _ I _ I N

N I 7). HAP 19 HAS A QUARTER-CORE FLUX MAP TAKEN FOR I/E CALIBRATION.

I 8). MAPS 24 AND 25 HERE QUARTER-CORE FLUX MAPS TAKEN FOR I/E CALIBRATION.

91. MAPS 29 AND 30 HERE QUARTER-CORE FLUX HAPS TAKEN FOR I/E CALIBRATION.

Figure 4.1 SURRY UNIT 2 - CYCLE 9 ASSEMBLYWISE POWER DISTRIBUTION S2-9-09 R p N M K J H G C B A PREDICTED o.33 o.35 o.33 PREDICTED MEASURED . o.33 . o.35 . o.n . MEASURED

. PCT DIFFERENCE. , -0.3 . -1.9 , -0.l * . PCT DIFFERENCE

  • 0.36 o. 73 1.08 0.81 1,08 o. 73 0.36

. 0.38, 0.73 , 1.07. 0.80. 1.08. 0.73 . 0.36 ,

4.9. -0.2 , -0.9. -1.2. -0.8. -0.l . 0.7.

0.41 1.06 1.20 1.24 1.20 1.24 1.20 1.06 0.41

. 0,42 . 1.08 . 1.19 . 1.23 . 1.18 . 1.22 . 1.20 . 1.07 . 0.41 .

4,3 . 2.0 . -0.5. -0,6 . -1.7. -1.3. -0.l . l.l . 1.9.

0.41 0.89 1.24 1.29 1.25 1.22 1.25 1.29 1.24 0,89 0.41

  • 0,43 . 0.90 . 1.23 . 1.30
  • 1.26 . 1.21 . 1.23 , 1.28
  • 1.22 . 0,88 , 0.40 . 4 4.9. 1.4. -0.3. 0.5. 0.3 * -1.0, -1.7. -1.l * -1.0 . -1.0. -0.3 .

0.36 1.06 1.23 1.28 1.21 0.99 1.24 0.99 1.21 1.28 1.23 1.06 0.36

. 0.36 . 1.06 . 1.23 . 1.27 . 1.22 . 1.03

  • 1.26 . 0.99 . 1.21 . 1.26 . 1.19 . 1.05 . 0.36
  • 5

. -0.5 * -0.5 . -0.6 . -0.5 . 0.9 . 3.5

  • 1.3 . -0.4 . -0.2 . -1.3 . -3.4 * -1.4 . l.l ,

0.73 1.20 1.29 1.21 1.25 1.22 1,25 1.22 1.25 1.21 1.29 1.20 0.73

, 0.73 . 1.19. 1.28. 1.20. 1.26 , 1.27. 1.30

  • 1.24. 1.25. 1.19. 1.26 . 1.18 , 0.72 . 6

. -0.5 . -0.5. -0.4. -0.5. 1.5. 4.2 . 3,7. 1.6 . 0.4. -1.3 . -2.5. -1.9 . -0.8 .

0.33 1.08 1.24 1.25 0.99 1.22 1.05 1.22 1.05 1.22 0.99 1.25 1,24 1.08 0.33

. 0.33 . 1.07 . 1.23 . 1.24 . 0.98 . 1.24 . 1.10 . l.27 , 1.08 , 1.23 . 0.98 . 1.22 . 1.22 . 1.06 . 0.33 . 7

. -0.4 * -1.3 . -0.8 . -1.0 . -0.7 . 1.5

  • 4.4 . 3.5 . 2.1 . 0.9 . -0.8 . -2.2 . -1.6 * -2.0 . -0.8 .

0.35 0.81 1.20 1.22 1.24 1.25 1.22 1.11 1.22 1.25 1.24 1.22 1.20 0.81 0.35

. 0. 35 . 0. BO . 1.17 . l. 21 . l. 24 . l. 27

  • l. 28 . 1.15 . l. 24
  • l. 25 . l. 23 . 1.19 . 1.18 . 0. 82 . . 0. 36 . B

. -2.6 . -1.7 . -2.3 . -0.6 . -0.3. 1.7. 4.4 . 3.4. 1.6. 0.2. -0.6 . -2.3 . -1.9. 0.8. 0.4.

0.33 1.08 1.24 1.25 0.99 1.22 1.05 1.22 1.05 1.22 0.99 1,25 1.24 1.08 0.33

. 0.32 . 1.05 . 1.20 . 1.25

  • 1.01 . 1.23 , 1.05
  • 1.25 . 1.08 . 1.23 . 0.99 . 1.23 . 1.23
  • 1.09 . 0,33 . 9
  • -3.l . -2.9. -2.9. -0.4 , 2.4. 1.0 . 0.1. 2.0 , 2.5. 0.8. -0,2 . -1.8, -0,7. 0.4. 0.9.

0.73 1.20 1.29 1.21 1.25 1.22 1.25 1.22 1.25 1.21 1.29 1.20 0.73

. 0.71 . 1.16 . 1.28. 1.22 . 1.25. 1.22 . 1.26. 1.24, 1.26. 1.21 . 1.27. 1,19. 0.73. 10

. -3.l * -3.2 . -0.B. 1.0. 0.4. -0.0. 0.6 . 1.4. 0.9. -0.3 , -1.4. * ,.7. 0.2.

0,36 1.06 1.23 1.28, 1.21 0.99 1.24 0,99 l.Zl 1.28 1,23 1.06 0.36

. 0.35 . 1.05 . 1.23 . 1.27 , 1.20

  • 0.98 . 1.24 . 1.00 , 1.22 . 1.27 . 1.23 . 1.06 . 0.36 . 11

. -o.6 . -o.6 . -o.8 . -1.0 . -o.8 . -o.6 . -o.5 . o.5 . 1.1 . -0.0 . -0.1 . -0.1 . o.6 .

0.41 0.89 1.24 1.29 1.25 1.22 1.25 1.29 1.24 0.89 0.41

. 0.41 . 0.90 , 1.22

  • 1.27
  • 1.23 . 1.21 . 1.25 , 1.29 . 1.23 . 0.88 . 0.41 . 12 1.9. 0.8. -1.0 . -1.3 . -1.5. -1.0 . -0.l . -0.2 . -0.6 . -0.7. 1.0 .

0.41 1.06 1,20 1.24 1.20 1,24 1.20 1.06 0.41

. 0.41 . 1.08 . 1.20 . 1.22 . 1.18 . 1.22 . 1.18 . 1.05 . 0.41 . 13 1.8 . 1.7 . 0.0 . -1.6 . -1.6 . -1.3 . -1.4 . -1.2 , -0.l ,

0.36 0.73 1.08 0.81 1.08 0.73 0.36

. 0.36 . 0.75 .* 1'13

  • 0.84 . 1.07 , 0.72 . 0.35
  • 14 1.7. 2,9. 4.7. 4.4, -1.Z. -1.3 . -1.4.

STANDARD 0.33 0.35 0.33 AVERAGE DEVIATION . 0.35. 0.37. 0.35. .PCT DIFFERENCE.

=l.196 .* 4.6 . 4.5 . 4.6 . = 1.4

SUMMARY

MAP NO: S2-9-9 DATE: 4/23/87 POHER: 100%

CONTROL ROD POSITIONS: F-Q(T l = 1.758 QPTR:

D BANK AT 208 STEPS F-DHINJ = 1.434 NH 1.007 I NE 0.993 FIZJ = 1.177


1----------

SH 0.998 I SE 1.002 FIXY l = 1.383 BURNUP 1072 MHD/HTU A.O = +2.24(%J 23

Figure 4.2 SURRY UNIT 2 - CYCLE 9 ASSEMBLYWISE POWER DISTRIBUTION S2-9-17 R p N H K J H G D C B A PREDICTED 0.35 0.38 0.35 PREDICTED HEASURED , 0.35 , 0.37 . 0.35 , MEASURED

.PCT DIFFERENCE. 0.1 . -2.8

  • 0.9 . .PCT DIFFERENCE, 0.38 0.74 1.08 0.83 1.08 0.74 0.38

. 0.40 . 0.74. 1.07. 0,82 , 1.07. 0.75. 0.39 . 2 4.3 . 0.1. -1.1. -1.1. -o.5. o.~. 1.5.

0.43 1.08 1.26 1.21 1.28 1.21 1.26 1.08 0.43

. 0.45 . 1.09 . 1.24 . 1.21 . 1.25 . 1.20 . 1.26 . 1.09 . 0.44 .

3.6 . 0.6 . -1.2 . -0.4 . -2.2 . -1.3 . -0.l . 1.0 . 2.4 .

0.43 0.91 1.29 1.24 1.32 1.21 1.32 1.24 1.29 0.91 0.43

. 0.45 . 0.91 . 1.26

  • 1.24 . 1.32 . 1.20 , 1.30 . 1.23 . 1.28 . 0.90 . 0.43 . 4 4.3 . 0.4 . -2.0 . -0.5, -0.l. -1.0. -1.6. -1.0 . -0.7. -0.5. 0.5 ,

0.38 1.08 1.29 1.21 1.16 0.97 1.18 0.97 1.16 *l.21 1.29 1.08 0.38

. 0.38 . 1.08 , 1.27 . 1.20 . 1.16 . 1.00 . 1.19 . 0.97 . 1.16 . 1.20 . 1.25 . 1.08 . 0.39 . 5 0.0 . -0.l . -1.l . -0.5 , 0.1 . 2.3 , 0.7 * -0.5 , -0.2 * -0.8 . -2.9 , -0.4 . 2.5 .

0, 74 l. 26 1. 24 l. 16 1.18 l. 25 1.17 l. 25 1.18 l. 16 l. 24 l. 26 0. 74

. 0, 74 . l. 26 . l. 24 . 1.15 . 1. 20 . l. 30 . l. 20 . l. 27 . 1.19 . 1.14 . 1. 21 . l. 24 , 0. 74 . 6

.o.o . o.o . -o.3 . -o.6 . 1.4. 3.7. 3.2 . 1.5. o.6 . -1.1. -2.5. -1.6 . -o.o*.

o.35 1.08 1.21 1.32 o.97 1.25* 1.00 1.13 1.00 1.25 o.97 1.32 1.21

  • 1.08 o.35 .

, 0.35 . 1.07, 1.21 . 1.30 . 0.97. 1,27. 1.05. 1.17, 1.02. 1.26 , 0.96 . 1.28, 1.19, 1.06 . 0.35, 7 0.0 . -1.3 , -0.5 . -1.0 . -0.7, 1.7. 4.7. 3.5, 1.9. 0.8. -1.2 . -2.9. -2.0 , -2.0 . -0.7, 0.38 0.83 1.28 1.21 1.18 1.16 1.13 1.04 1.13 1.16 1.18 1.21 1.28 0.83 0.38

, 0.37 , 0.81 . 1.24 . 1.20 . 1.18 , 1.19 . 1.18 , 1.08 . 1.14 . 1.16 . 1.16 , 1.18 . 1.25 , 0.84 , 0.38 , 8

. -3.4 , -2.l . -2.9 . -0.6 . -0.2 . 1.9 . 4.8 . 3.2 . 0.9 . -0.l . -1.4 . -3.l . -2.5 , 0.8 , 0.6 ,

o.35 1.08 1.21 1.32 o.97 1.25 1.00 1.13 1.00 1.25 *o.97 1.32 1.21 . 1.oa o.35 .

, 0.34. 1.05, 1.18. 1.31. 1.00, 1.26. 0.98, 1.13. 1.02. 1.24, 0.97. 1.30. 1.21. 1.09. 0.35.

, -2.5 , -2.9 . -2.9. -0.4. 2.6 . 0.6. -1.9. 0.8. 1.7, -0.8. -0.7. -1.3 , -0.3 , 0.7, 1.2,

o. 74 1.26 1.24 1.16 1.18 1.25 1.17 1.25 1.18 1.16 1.24 1.26 o. 74

, 0.72. 1.23. 1.24. 1.17. 1.18. 1.23. 1.17, 1.26. 1.19. 1.16. 1.24. l . H . 0.75. 10

. -2.5, -2.5 , -0.3 . 1.3 . -0.2 . -1.7. -0.0 . 0.8. 0.4, 0.1 . 0.1 . ..6 , 1.3 .

0.38 1.08 1.29 1.21 1.16 0.97 1.18 0.97 1.16 1.21 1.29 1.08 . 0.38

, 0.38 , 1.08 . 1.28 . 1.20 . 1.14 . 0.96 . 1.18 . 0.98 . 1.17 . 1.22 . 1.29 . 1.09 . 0.39 . 11 0.3 . 0.3 . -0.l . -0.6 . -1.3 . -1.l. -0.l . 0.5. 0.7. 0.7. 0.6 . 0.9. 1.5 ,

o.43 o.91 1.29 1.24 1.32 1.21 1.32 . 1.24 1.29 o.91 *o.43

, 0.45 . 0,92 , 1.28 . 1.23 . 1.30 . 1.20 . 1.31 . 1.23 , 1.29 . 0.91 , 0.44 . 12 3.l . 1. 6 . -o. 6 . -1. 2 . -1. 5 , -0. 7 . -0. 6 , . -o, 5 . -0. l . 0. 3 . l. 6 .

0.43 1.08 1.26 1.21 1.28 1.21 1.26 1.08 0.43

. 0,44 . 1.11 . 1.26 . 1.19 . 1.26 . 1.18 . 1.22 . 1.06 . 0.44 . 13 2.8 . 2,5. 0.4 , -1.7. -1.7. -2.6 . -2,6 , -1.6 . 0.7.

0.38 o. 74 1.08 0,83 1.08 0.*74 0.38

, 0.39. 0.76. 1.12. 0.86. 1.05, 0.72 . 0.37. 14 Z.5 . 3.1. 4.1 . 3.9. -2.6. -2,6 * -2.7.

STANDARD 0.35 0.38 0.35 AVERAGE DEVIATION

  • 0.36 , 0.40 , 0.36 , , PCT DIFFERENCE *

=l.186 . 4.0 , 4.0 . 4.0 . = 1.4

SUMMARY

MAP NO: S2:..9-17 DATE: 10/14/87 POWER: 100%

CONTROL ROD POSITIONS: F-Q(TJ = 1.705 QPTR:

D BANK AT 223 STEPS F-DH( NJ = 1.444 NH 1.007 I NE 0.995


1----------

Fl Z J = 1.125 SH 0.998 I SE 1.000 F(XYJ = 1.391 BURNUP = 6887 MHD/MTU A.O = -1.46(%)

24

Figure 4.3 SURRY UNIT 2 - CYCLE 9 ASSEMBLYWISE POWER DISTRIBUTION S2-9-28 R p N M L K J H G F D C B A PREDICTED 0.37 0.41 0.37 PREDICTED MEASURED . 0.38. 0.39. 0.38. MEASURED

.PCT DIFFERENCE. 0.4 * -5.5

  • 2.3 * .PCT DIFFERENCE.

0.41 0.75 1.07 0.84 1.07 0.75 0.41

  • 0.44 . 0.76 . 1.05 . 0.81
  • 1.06
  • 0.77 . 0.43 .

6.9 . 0.3 . -1.9 . -3,l . -0*.7. 2.3 . 4.4 .

~

0, 46 1. OB 1. 28 1.18 1. 31 1.18 1. 28 1. OB O. 46

, 0.49 . 1.15 . 1.28 . 1.17 . 1.25 . 1.16 . 1.31 . 1.14 . 0.50 . 3

6. 9 . 6. 9 . 0. 3 . -0. 6 . -4. l . -2. 0 . 2. 3 . 5, 5
  • 7. 5 .

0, 46 0. 92 1. 30 1. 20 1. 34 1. 20 1. 34

  • l, 20 . 1. 30 0. 92 0. 46

. 0.49 . 0.96 . 1.33 . 1.20 , 1.33 , 1.18 . 1.30 . 1.21 . 1.32 . 0.94 . 0.48 . 4 6.9 . 4.1 *. 2.6 . 0.4 . -0.9 . -1.4 * -2.8

  • 0.5
  • 1.5 . 1.9 . 3.5 *.

0.41 1.08 1.30 1.16 1.12 0.98 1.16 0.98 1.12 1.16 1.30 1.08 0.41

. 0.41 . 1.07 . 1.29 . 1.16 . 1.12

  • 0.98 . 1.16 . 0.97 . 1.12 , 1.16 . 1.27 , 1.09 . 0.43 , 5 1.3 * -0.2 . -0.9 , -0.4 . -0.l . 0.9 . 0.0 *. -0.2
  • 0.6 . 0.1 . -2.4 . 1.6 . 6.0 .
0. 75 1. 28 1. 20 1.12 1.13 1. 27 1.14 l. 27
  • 1.13
  • 1.12 l. 20 l. 28 0. 75
  • 0.76. 1.29. 1.19. 1.10. 1.13. 1.30. 1.16, 1.28. 1.13. 1.11. 1.17. 1.27. 0.77. 6 1.3 , 1.3 . -0.5 . -1.B . 0.0 . 1.8
  • 1.2 . 0.3 . 0.3 . -0.7 . -2.0 . -0.5 . 1.9
  • 0.37 1.07 1,18 1.34 0.98 1.27 1.00 . 1.11 1.00. 1.27 0,98 1.34 1.18 1.07 0.37

. 0.38 , 1.07 , 1.19 . 1.33 , 0.96 . 1.27 , 1.03 .* 1.13

  • 1.00 , 1.27
  • 0.96 . 1.30 . 1.16 . 1.05 . 0.38
  • 7 1.4 , -0.l . 0.8 , -0.9 . -1.B , 0.1 . 2.6 . 1,3 , -0,1 , -0.2 * -1.3 , -2.9 , -1.6 . -1.6 . . 0.2
  • 0.41 0.84 1.31 1.20 1.16 1.14 1.11 1.06 1.11 1.14 1.16 1.20 1.31 0.84 0.41

. o.4o . o.e3 . 1.2a . .1.20 . 1.15 . 1.15 . 1.14 . 1.01 . 1.10 . 1.13 . 1.13 . 1.16 . 1.21 . o.e6 . o.42

  • a

, -2.4 . -0.9. -1.B. -0.5. -1.0 , 0.7 . 2,6

  • 1.1. -0.7. -1.2 . -2.3, -3.2 . -2.5. 2.3
  • 2.B; 0.37 1.07 1.18 1.34 0.98 1.27 1.00 1,11 1.00 1.27 0.98 1.34 1.18 1.07 0.37

. 0.37 . 1.04 . 1.16 . 1.33 . 0.99 . 1.27 . 0.97 . 1*.10 . 1.00

  • 1.24 , 0.96 , 1.32 . 1.18 . 1.10 . 0.39 . 9

. -1.9 . -2.2 . -2.2 * -0.5 . 1.8 . -0.4 . -3.6 . -1.0 . 0.0 . -2.6 * -1.9 . -1.6 . -0.4 . 2.6

  • 4.9 .

0.75 1.28 1.20 1.12 1.13 1.27 1.14 1.27 1.13 1.12 1.20 1.28 0.75

. 0.74 . 1.25 . 1.20. 1.14. 1.12 . 1.23 , 1.12. 1.26. 1.12 . 1.11 . 1.19. l . H . 0.79. 10

. -2.0 . -2.0 . -o.3 . 2.4 . -1.3 . -3.4 . -2.0 . -1.1 . -1.2 . -1.0 . -o.4 * . ,.4 . 5.1*.

0.41 1.08 1.30 1.16 1.12 0.98 1.16 0.98 1.12 1.16 1.30 1.08 0.41

, 0,42 . 1.10 . 1.33 , 1.19 . 1.08

  • 0.95 . 1.13 . 0.96 . 1.11
  • 1.16 , 1.31 , 1.10
  • 0.43 . 11 2.3 , 2.3 . 2.3 . 2.4 . -3.l . -2.8 , -2.3 * -1.2 * -0.3 . -0.4 . 1.0 . 2.6 . 5.1 .

0.46 0.92 1.30 1.20 1.34 1.20 1.34 1.20 1.30 0.92 0.46

. 0.49 . 0.98 . 1.37 . 1.17 , 1.30

  • 1.17 . 1.31 . 1.18 . 1.29 . 0.94 . 0.48 . 12 6.5 , 6.5 , 5.4. -2.7 . -2.6 . -2.4. -1.B. -1.4. -0.4. 1.8 . 4.6 .

0.46 1.08 1.28 1.18 1.31 1.18 1.28 1.08 0.46

. o.49 . 1.14 . 1.29 . 1.i5 . 1.21

  • 1.15 . 1.24
  • 1.06 . o.47 . 13 6.0 . 5.4. 1.4. -2.7. -2.7. -3.0. -3.0 . -1.3 . 2.9.

0.41 0.75 1.07 0.84 1.07 0.75 0.41

. o.43

  • a.ea . 1.15
  • 0.89 . 1.04 . o. 73
  • o.40 . 14 5.4 . 6.2
  • 7.2 . 6.9 . -2.9 . -3.0 . -3.l ,

STANDARD 0.37 0.41 0.37 AVERAGE DEVIATION

  • 0.40
  • 0.44
  • 0.40 *
  • PCT DIFFERENCE.

=l. 951 7.2

  • 7.1
  • 7.2 * = 2.3

SUMMARY

MAP NO: S2-9-28 DATE: 7/29/88 POHER: 100%

CONTROL ROD POSITIONS: F-Q(Tl = l..737 QPTR:

D BANK AT 214 STEPS F-DHCNJ = 1.469 NH 1.005 I NE 0.998 FCZJ = 1.121


1----* -----

SH 1.002 I SE 0 *. 995 FCXY l = 1 *.403 BURNUP = 14538 MHD/MTU A.O = -0.95(%)

25

I I

Figure 4.4 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE l .2 (6.00, 1.00) 1 *0 (10.79, 0.94)

\

1 K

z* o.e \

\

N

\

0 R

t1 A Q.6

\

\

L ,

l z

E D

F Q

  • 2 0.4 '

(12.00, 0.43) 0.2 o.o I 0 2 4 6 8 10 12 CORE HEIGHT lFTl BOTTOM 26 TOP

Figure 4.5 SURRY UNIT 2 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, FqT(z)

S2-9-09 2.5 +

- N I- d 2.0 +

LL

~

0 X X X X X X X X X X X X X X X X X 1-u *X X X X X X X X X X X

<( XXXX XX X LL X X X X X X X

....J l.5 + XX w X z X X z X

<(

I:

u X l-o X l.O + X X

....J LL X X

-x

  • ~ X w - x-
I:

0.5 +

0.0 +

I , .. , , I . I , .. I .  ; I . , I . , I . I . I . I . , I . . , I , , , I 61 55 50 45 40 35 30 25 20 15 10 5 l

.BOTTOH OF CORE TOP OF CORE AXIAL POSITION (NODES) 27

Figure 4.6 SURRY UNIT 2 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, FQT(z)

SZ-9-17 2.5 +

N I-CY 2.0+

LL.

.:i:::

0 1-u X X X X X X X X c:( X X X X X X X XX X X XX X X X X XX X XXXX LL. X X X X X X X X X X X X

...J 1.5 + X X w X X z

z X c:(

I:

u X

l-o

= 1.0 + X X -x

) X

...J LL. X

- X l-e:(

w

I:

0.5 +

o.o +

I , . , , , I . I . I . , I , . I , , I , I . I . I . I . . . I . , , I 61 55 50 45 40 35 30 25 20 15 10 5 l BOTTOM OF CORE TOP OF CORE AXIAL POSITION (NODES) 28

Figure 4.7 SURRY UNIT 2 - CYCLE 9 HEAT FLUX HOT CHANNEL FACTOR, FQT(z)

S2-9-28 2.S +

-N I- cl LL. 2.0 +

.:i::

0 1- *x u XXXX XX XX

<(

.LL.. XX XXXXX XX X.X XX X XX X X XXX XXXXX X XX X '. X

...J *- X X XX X X X X w l.S + X z X X X z *x X

<(

c u -x X l-o X 1.0 +
, - *x

...J LL.

I-

<(

w

c o.s +

o.o +

I ..... I . I , I , I * , I . , I . I

  • I , I , I . . . I ... I 61 ss 50 45 40 35 30 25 zo 15 10 S l BOTTOM OF CORE TOP OF CORE AXIAL POSITION (NODES) 29 I .

Figure 4.8 SURRY UNJT 2 - CYCLE -9 MAXJMUM HEAT FLUX HOT CHANNEL FACTOR, FQ

  • P VS AXJAL POSJTION FQ
  • P LJMIT
  • MAXIMUM FQ
  • P 2 .4 I t-......

2 .2 2 .o

\ I l .B

. ~

  • *"'"'* *** ~ w **; ***** ~* .:

it**'**i

  • w w
        • t ;p;

\

  • \

1 .6 .,.. .,.. + ~ *

  • \

l .4 * ... \

F ' E \

Q ,+

1 .2 * \

  • -\

p l .o I

0.8 0,6 0.4 0.2 o.o . I II 61 _ 55 50 45 40 35 30 25 20 15 10 5 RXJAL POSITION (NOOEI BOTTOM OF CORE TOP OF CORE 30

) '

Figure 4.9.

SURRY UNIT 2 - CYCLE 9 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ(Z), vs. BURNUP

~ 2.4 TECH SPEC 0

~ I LIMIT

~ 2.3  :

I

~ I I I I I MEASURED I .I I VALUE

~ 2.2 I

I I ' I I

I I! I I

I z I I  !  !  !

z<r: 2. 1 I

I

r:: I u I 2.0

~

0 I

r:: 1. 9 I I I I I . I
x I I I I I! I
J f I

~ 1.8 *

  • I I

I I*

µ.j 1111 * *I I

~ * *

  • I I * .II

~ 1.7 * *

  • I I

µ:J I I

I

.::r::

I

~

I 1.6

J I I

~ 1.5 I I II

x I

~ I!

~ 1.4 0 2 4 6 8 10 12 14 16 CYCLE BURNUP (GWd/MtU) 31 i

~

) '

Figure 4.10 SURRY UNIT 2 - CYCLE 9 MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta H, vs. BURNUP 1.60 TECH SPEC I

~ LIMll 0 1.55 I

~

u I I MEASURED

<r: A I I VALUE

~ 1.50 I .

I I

I i I  !

I A

~ I.A w

z z.

1 .45 ... ~ A A

A

-. j A IA. ... IA I

I I

A 1 *

<r: I I

~ 1 .40 i u I I

~ 1.35 I 0

~

I w 1.30 1 I if). I I

~

l

~ I i I I I 1.25 I

~ I I I

~

~

1.20 l I

<r:

~ I

~

z 1 . 15 l

w I I I

1. 10 I 0 2 4 6 8 10 12 14 16 CYCLE BURNUP (GWd/MtU) 32

l '

Figure 4.11 SURRY UNIT 2 - CYCLE 9 TARGET DELTA FLUX vs. BURNUP 10.0 '

-z

~

8.0 6.0 I

~ I I I I I I U* I

~ I I I II I I

~

4.0

-p,.,

X

~

2.0 ... ....

I I I I I

I II I

.A.

~

µ:.. 0.0

<r: . I ...

~ Ji

~ -2.0 -

~

Q

  • I I

I I  !

I I

-. . .A. I .a. I I

A i:..... -4.0 ' -

~ I I I c.,

~ -6.0

<r: I

~

-8.0

-10.0 I I I 0 2 4 6 8 10 12 14 16 CYCLE BURNUP (GWd/MtU)

I 33

__J

Figure.4.12 SURRY UNIT 2 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-9-09 l.5

  • F = 1.177 z

AXIAL OFFSET= 2.24

l. 2
  • XXXX XXXX XXXX XXX X X X XXX XXXXXX *x X X X XX X X X X X X X X XX X X X X 0.9 +

x X X

X X

X X

......... X N 0.6 +

N X LL.

X X

- X X 0.3 +X o.o.

I , , , .. I . . I .

  • I . . I . , I * , I . . I . . I , , I , I . . . I , .. I 61 55 50 45 40 35 30 25 20 15 10 5 l B0TTOl1 OF CORE TOP OF CORE AXIAL POSITION (NODES) 34

) '

Figure 4.13 SURRY UNIT 2 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-9-17 1.5 +

F z

= 1

  • 125 AXIAL OFFSET= -1.46
1. 2 +

X XXX XXXX XXX XXX X X XXX XXX XXXXXXXX XXXX X X X X XX X X X X X X X X X X

0.9 +

X X

X X X N

LL N 0,6 +

X X

X

- X X

-x 0.3 +

o.o +

I *..*. I . I * , I . , I . . I . . I . . I . . I . . I .- . I . . . I ... I 61 55 50 45 40 35 30 25 20 15 10 5 l BOTTOH OF CORE TOP OF CORE AXIAL POSITION (NODES) 35

Figure 4.14 SURRY UNIT 2 - CYCLE 9 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-9-28 1.5 +

.F = 1.121 z

AXIAL OFFSET= -0.95

l. 2 +

XXX X X XXXXXX XX X XX X X XX XX X X XX XXXXXXXX XXX X X

X X X X X

X X X

X X X X 0.9 +

X X X

X X

X N

0.6 +

N LL. - X X

-x X

0.3 +

0.0 +

I .. , .. I . I. , I , , I , . I ,

61 55

, I

  • I . , I , I , I , I , .. I 50 45 40 35 30 BOTTOM OF CORE 25 20 15 10 5 1 TOP OF CORE AXIAL POSITION (NODES) 36

Figure 4.15 SURRY UNIT 2 - CYCLE 9 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP 1 .4 I  !  :

I I

I: I I I I i I

~ I I I I 1 .3 I I .

I 0

E-,4 I- I i u

~ I I I

~

0 I I I I I I z

~

1.2 I I I

~

~

  • I I

µ=l I * *

~ *

~

I * *

~

1. I -_
  • --
  • 1* I I

~

I

  • I

~ 1. 1 I I I I I -

I I I I I I I

1 .0 I 0 2 4 6 8 10 12 14 16 CYCLE BURNUP (GWd/MtU) 37

\ .

Section 5 PRIMARY COOLANT ACTIVITY Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analysis because they are used as indicators of defective fuel. Additionally, they are important with respect to the offsite dose calculation values associated with accident analyses. Both I-131 and I-133 can diffuse into the primary coolant system through a breach in the cladding. As indicated in the Surry 2 Technical Specifications, the dose equivalent I-131 concentration in the primary coolant is limited to 1.0 µCi/gm for normal steady state operation. Figure 5.1 shows the dose equivalent *I-131 activity level history for the Surry 2, Cycle 9 core. The demineralizer flow rate averaged 102 gpm during power operation except for August through December, 1987 when letdown flow was isolated and demineralizer flow was limited to approximately 20 gpm. An accompanying rise in coolant activity can be observed. The data show that during Cycle 9, the core operated substantially below the 1.0 µCi/gm Technical Specifications limit during steady state operation. Specifically, the average dose equivalent I-131 concentration was 1.6 x 10- 3 µCi/gm which corresponds to much less than 1% of the Technical Specifications limit.

The ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel failure which may have occurred in the 38

reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where .the diffusfon time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby ca~sing the ratio to be O. 5 or more. In the case of large leaks and "tramp"* material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generaily be less than 0.1. Figure 5.2 shows the I-131/I-133 ratio data for the Surry 2, Cycle 9 core at a general average value of 0.10. However, due to the very low radioiodine concentration in the coolant, an iodine ratio of 0.10 is not indicative of fuel defects. Tramp iodine analysis resulted in a corrected iodine-131 concentration of 9.5 "X 10- 5 µCi/gm.

This value indicates no defective fuel rods in the core.(1)

( 1) *Tramp" consists of fissionable material as an impurity in the reactor core materials or fissionable material which has adhered to the surface of reactor core components.

39

' ';.,Ir.

Figure.5.1 SURRY UNIT 2 - CYCLE 9.

DOSE EQUIVALENT I-131 vs. TIME OD TECHNICAL SPECIFICATIONS LIMIT l _,

(;)

(!)

(;)

Ill

'o IO I

D 100 N

50 a:

,... UJ 3:

'o a Cl..

0 JRNFEB MAR RPR MRY JUN JUL RUG SEP OCT NOV DEC JRN FEB MAR APR MAY JUN JUL RUG 1987 1988 40

  • I ***

f Figure.5.2 SURRY UNIT 2 - CYCLE 9 I-131 / I-133 ACTIVITY RATIO vs. TIME I

I  !  !

I i I I I  ! I I

I I

II I

I I

I I

\

p I I I D

I i I(:;

("\J I I

~

I\

I I I I I

I I I I I

~I (!)I I

i I CI  !

er: IC) I I C) I I I I 1 II

a ""'-(!) I I ~l i I 1 1-- u CI C) I I I I ~I ~ flC) I I D I I (Y)tO en .  ! I I I ! I (T\ I I D I I -o C) I II I ' I (Y) :::r I I I  :  ! - (T i I ~a ~} I ! C)  ! I I C: I I I C) C) § I I I I (i ~ I I I I D i I ~ C) ("\J !"I C) (!; C). . C) I "' "' ~ ~ D '-' lfti~ V \: cf! . & ~ ,ffi t (!)(!) ~~ C) ~- (!) ~fi(~ ~vr~ ~' 'J) C)C) ~.@si{r) ""' Jl', rTJ /T'r "' i~t!)l ~ ~r'YA"E -.J;/. ~ ~ 0 0 D i . I IJ!!llJ] ,:r=~ ~ l:!J err~ ~:) .~~~ D I l~r,rn I ~ - 100 I ~ 50 a: u.J 3: 0 I *1 I I I I I I I I I I i I . I I I I I I I I I I Q CL JRN FEB MAR RPR MR Y JUN JLJL RLJG SEP OCT NOV DEC JAN FEB MRR RPR MR r JUN JUL RLJG 1987 1.9 8 6 41 '. \,) " Section 6 CONCLUSIONS The _Surry 2, Cycle 9 core has completed operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin. No.significant abnormalities in reactivity or burnup accumulation were detected. Radioiodine analysis indicated that there were no fuel rod defects during Cycle 9. 42

  • <,l

'..I ... ,, Section 7 REFERENCES

1) M. K. Farley and N. S. Pierce, "Surry Unit 2, Cycle 9 Startup Physics Test Report," VEP-NOS-31, April, 1987.
2) Surry Power Station Unit 2 Technical Specifications, Sections 3.1.D, 3.12.B, and 4.10.
3) T. K. Ross, "NEWTOTE Code", VEPCO NFO-CCR-6 , Rev. 9, April, 1981.
4) R. D. Klatt, W. D. Leggett, III, and L. D. Eisenhart, "FOLLOW Code," WCAP-7482, February, 1970.
  • 5) W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"

WCAP-7149, December, 1967. 43 -NOTICE-THE ATIACHED FILES ARE OFFICIAL RE-CORDS *' OF THE RECORDS & REPORTS MANAGl:MENT BRANCH. THEY HAVE BEEN CHARGED TO .Yqu FOR A LIMITED TIME PERIOD AND MUS'ff' BE RETURNED TO THE RECORDS & ARCHIVES SERVICES SECTION Pi-122 WHITE FLINT. _PLEASE DQ NO:T SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM C>OCUMENT FOR REPRO-DUCTION MUST BE REFERRED TO FILE PERSONNEL.