ML18151A969
| ML18151A969 | |
| Person / Time | |
|---|---|
| Site: | Surry |
| Issue date: | 07/23/1991 |
| From: | Brookmire T, Ford C, Hoffman E VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML18151A970 | List: |
| References | |
| NE-850, NE-850-R, NE-850-R00, NUDOCS 9109110280 | |
| Download: ML18151A969 (50) | |
Text
-NOTICE-THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE INFORMATION &
. REPORTS MANAGEMENT BRANCH.
THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND.
MUST BE RETURNED TO THE RE-CORDS & ARCHIVES SERVICES SEC-TION P1-22 WHITE FLINT. PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE RE-I FEARED TO FILE PERSONNEL.
-NOTICE-
II
(
TECHNICAL REPORT NE-850 - Rev. 0.
SURRY UNIT 2, CYCLE 10 CORE PERFORMANCE REPORT NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES
. VIRGINIA POWER AUGUST, 1991 PREPARED BY, {? 9, 1fJ.i== 7LDJat31q /.
E. A. H man REVIEWED BY:~ U ~ 7-z3,.. 7' I C. A. Ford Date REVIEWED BY: -;-:-A.~
7.z_t;-CI/
T. A. Brookmire Date REVIEWED BYQ..l_Jj. ~~
1::JJ::J...J
~J. W. Henderson Date APPROVED BY: ";). ~~
7/3*/'i I D. Dziadosz Date QA Category: Nuclear Safety Related Keywords: S2C10, Core Performance
\\
TABLE OF CONTENTS PAGE Table of Contents 1
List of Tables 2
List of Figures.
3 Section 1 Introdu~tion and Summary.
5 Section 2 Burnup.
11 Section 3 Reactivity Depletion.
21 Section 4 Power Distribution.
23 Section 5 Primary Coolant Activity.
43 Section 6 Conclusions 47 Section 7 References.
48 NE-850 S2Cl0 Core Performance Report Page 1 of 48
LIST OF TABLES TABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation...... ;.. 27 NE-850 S2Cl0 Core Performance Report Page 2
of 48
LIST OF FIGURES FIGURE TITLE 1.1 Core Loading Map 1.2 Movable Detector Locations 1.1 Control Rod Locations.
2.1 Core Burnup History 2.2 Monthly Average Load Factors PAGE 8
9 10 13 14
- 2. 3 Assemblywise Accumulated Burnup :.
Measured and Predicted 15 2.4 Assemblywise Accumulated Burnup:
Comparison of Measured and Predicted.
16 2.5A Sub-Batch Burriup Sharing 2.5B Sub-Batch Burnup Sha~ing 2.5C Sub~Batch Burnup Sharing 3.1 Critical Boron Concentration versus Burnup - HFP-ARO 4.1 Assemblywise Power Distribution - S2-10-06 4.2 Assemblywise Power Distribution - S2-10-22 4.3 Assemblywise Power Distribution - S2-10-50 NE-850 S2C10 Core Performance Report Page 3 of 48 17 18 19 22 28 29 30
LIST OF FIGURES CONT'D FIGURE TITLE PAGE 4.4 Hot Channel Factor Normalized Operating Envelope 31 32 33 34 4.5 Heat Flux Hot Channel Factor, FQ(Z) - S2-10-06 4.6 Heat Flux Hot Channel Factor, FQ(Z) - S2-10-22 4.7 Heat Flux Hot Channel Factor, FQ(Z) - S2-10-50 4.8 Maximum Heat Flux Hot Channel Factor, FQ(Z)*P, vs.
Axial Position 35 4.9 Maximum Heat Flux Hot Channel Factor, FQ(Z), vs. Burnup 36 4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.
Burnup 4.11 Target Delta Flux versus Burnup 4.12 Core Average Axial Power Distribution - SZ-10-06 4.13 Core Average Axial Power Distribution - S2-10-22 4.14 Core Average Axial Power Distribution - S2-10-50 4.15 Core Average Axial Peaking Factor vs. Burnup 5.1 Dose Equivalent I-131 vs. Time 5.2 I-131/I-133 Activity Ratio vs. Time.
NE-850 S2C10 Core Performance Report Page 4
of 48 37 38 39 40 41 42 45 46
Section 1 INTRODUCTION AND
SUMMARY
_On March 30, 1991, Surry Unit 2 completed Cycle 10.
- Inital criticality of Cycle 10 was reached on September 16, 1989.
During Cycle 10, the reactor core produced approximateiy 8.83 x 107 MBTU (14,950 Megawatt days per metric ton of contained uranium).
The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 10. The phys_ics tests that were performed during the startup of Cycle 10 were covered in the Surry Unit 2, Cycle 10 Startup Physics Test Report 1 and theretore, will not be
- included here.
Surry Unit 2 was shutdown on October 23, 1990, when it attempted to r~start it was found that control rod M12 was stuck at the nearly fully inserted position. From analysis, it was found that due to peaking factors, the core was limited at 90% power for the remainder of the cycle.
Surry Unit 2 was in coastdown from March 3,_1991, at which time the burnup was approximately 14,209 MWD/MTU.
The coastdown accounted for an additional core burnup of roughly 741 MWD/MTU from the end of 90% power reactivity.
NE-850 S2Cl0 Core Performance Report Page 5
of 48
\\
The Cycle 10 core consisted of 10 batches of fuel: five once-burned batches, two from Surry 1 Cycle 6 (batches Sl/8A and Sl/8B); one from Surry 1 Cycle 8 (batch Sl/10); and two from Cycle 9 (batches llA and llB);
two twice-burned batches, one from Cycles 7 and 8 (batch 9A), one from Cycles 8 and 9 (batch 10); three fresh batches (batches 12A, 12B, and 12C).
The Surry 2, Cycle 10 core loading map specifying the fuel batch identification, fuel assembly locations, burnable poison locations and source assembly locations. are shown in Figure 1.1 Movable detector locations and thermocouple locations for Cycle 10 are shown in Figure 1.2 Control rod locations are shown in Figure 1.3.
Routine core follow involves the analysis of four principal performance indicators.
These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.
The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required.
Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 3 limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.
Lastly,.as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Unit 2 Technical Specifications 3
- A radioiodine NE-850 S2C10 Core Performance Report Page 6
of 48
analysis based on the iodine-131 concentration in the coolant is performed to assess the integrity of the fuel.
Each of the four performance indicators is discussed in detail for the Surry 2, Cycle 10 core in the body of this report. The results are summarized below:
- 1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0. 72% with the burnup accumulation in each batch deviating from design predictions by no more than 2.31%.
This*
deviation is for sub-batch 12C which consists of a single assembly. The maximum deviation for the remaining sub-batches was no more than 1.57%.
- 2. Reactivity Depletion -
The critical boron concentration, used to monitor reactivity depletion, was within +/-0.34% 8K/K of the design prediction which is within the +/-1% 8K/K margin allowed by Section 4.10 of the Technical Specifications.
- 3. Power Distribution -
Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the tlesign predictions by a maximum average difference of 2.0%. All hot channel factors met their respective Technical Specifications limits.
- 4. Primary Coolant Activity The average. dose equivalent iodine-131 activity level in the primary coolant during Cycle 10 was approximately 0.004 µCi/gm.
This corresponds to less than 1% of the operating limit for the concentration of radioiodine in the primary coolant.
The tramp-corrected I-131 activity indicates that Cycle 10 operated with no defective fuel rods.
NE-850 S2Cl0 Core Performance Report Page 7 of 48
R p
H H
Figure 1.1 SURRY Unit 2 - CYCLE 10 CORE LOADING MAP L
K J
H G
I 5S9 OCl I 3S5 I
I I
I I
F E
I 1s2 I 188 I 2U9 I 317 I 4Ul l-o:-::s-=2----,1,.....,..1s-4=---1 I
I I 20P>< I I 20P>< I I
I D
__ 1 __, __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I 2s2 I 1U9 I 4U4 I 114 I 2U3 I 116 I 3U2 I lUl I 5S7 I
I I 20P>< I 16P I
I 16P I
I 16P I 20P>< I I
C
__ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __
I OS9 I SSl I 3U5 I ST!
I DUS I ITO I 2Ul I STD I 4U6 I 1S9 I 4S2 I
I I
I 16P I
I 16P I
4P I 16P I
I 16P I
I I
B
__ I __ I __ I __ I __ I __ I __ I __
I __
I __ I __
I __ I __
I 5S3 I 1U8 I 5U2 I 4Tl I DT6 I 4Rl I 310 I 3R5 I OT7 I 414 I 3U3 I OU9 I 5S8 I
I I 2DP>< I 16P I
I I
I I
I I
I 16P I ZDP>< I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __, __, __ 1_* __ 1 __ 1 I 185 I 4U3 I 417 I OT3 I 210 I lU7 I 218 I 2U4 I 118 I 012 I 416 I 4U7 I 086 I
I I 16P I
I I
I 17P I
I 17P I
I SS4 I
I 16P I
I A
__ l __, __ 1 __, __, __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I OS4 I 4U9 I 214 I 2U5 I OR7 I DUI I 2C9 I 313 I lCl I 2U7 I lRl I 1U2 I 211 I 3UO I 4S9 I
I I 20P" I I 16P I
I 17P I
I 4P>< I I 17P I
I 16P I
I 20P>< I
- I 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 __, __ 1 __, __ 1 __, __ 1 __ 1 I 2C7 I 318 I 1U6 I lll I 312 I 215 I 316 I ZED I 311 I 216 I 315 I 112 I lUS I 4TO I 2C6 I
I I
I 16P I
4P I
I I
4P" I 4P I
4P>< I I
I 4P I 16P I
I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 I ISO I 4U2 I 2T2 I 2U8 I 2RO I DU7 I 4C6 I 219 I 3C6 I 2U6 I 5R8 I OU4 I 213 I 4U5 I SSS I
I I ZDP>< I I 16P I
I 17P I
I 4P>< I I 17P I
I 16P I
I 20P" I sss I
1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __, __ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 I 280 I 3U6 I 418 I DT4 I 119 I OU2 I 217 I OU3 I 117 I Oll I 415 I 4U8 I 181 I
I I 16P I
I SS3 I
I 17P I
I 17P I
I I
I 16P I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 2Sl I OU8 I 3U8 I 412 I OTS I 3R6 I 314 I SRI I 018 I 413 I 3U4 I SU3 I 4SO I
I I 2DP>< I 16P I
I I
I I
I I
I 16P I 2DP>< I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 I 4S7 I 2S8 I 4UO I 512 I 2U2 I DT9 I 1U3 I 419 I 3Ul I 4S6 I 1S3 I
I I
I 16P I
I 16P I
4P I 16P I
I 16P I
I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 3S4 I lUO I SUD I lTS I OU6 I 1T3 I 3U9 I 1U4 I lSS I
I I ZOP>< I 16P I
I 16P I
I 16P I 20P>< -1 I
I __ I __
I __ I __ I __ I __ I __
I __
I __ I I 4S5 I 083 I SUl I 319 I 3U7 I 081 I 2S9 I
I I
I 2DP>< I I 2DP>< I I
I 1--> ASSEHBLY ID I __
I __ I __ I __ I __ I __ I __
I I
1--> ONE OF THE FOLLOWING I 6SO I 3C5 I 5S6 I
I __ I A. SS - SECONDARY SOURCE B. XXP -
BURNABLE POISON ASSEHBLY (XX-NUMBER OF ROOSJ I
I I
I I __ I __ I __ I C.XXP>< - DEPLETED BURNABLE POISON ASSEMBLY (XX-NUMBER OF RODS)
FUEL ASSEHBLY DESIGN PARAHETERS SUB-BATCHCS2Cl0l Sl/8A Sl/88 Sl/10 9A 10 llA 118 INITIAL ENRICHMENT CW/0 U-235) 3.22 3.40 3.60 3.51 3.60 3.59 3.79 ASSEMBLY TYPE 15Xl5 15Xl5 15Xl5 lSXl' 15Xl5 15Xl5 15Xl5 HUMBER OF ASSEMBLIES 8
8 1
8 28 28 24 FUEL RODS PER ASSEMBLY 204 204 204 204 204 204 204 ASSEMBLY IDENTIFICATION 081 OCl 2EO OR7 OS4 4SO on ITS 219 4n 082 lCl lRl OS9 4S2 012 116 310 412 083 2C6 2RO lSO 4S5 013 ll7 3n 4T3 086 2C7 3RS 1S2 4S6 014 1TB 312 414 181 2C9 3R6 1S3 4S7 OTS 119 3T3 415 185 3C5 4Rl 1S4 4S9 016 210 314 4T6 188 3C6 SRI lSS SSl OT7 2Tl 315 4T7 280 4C6 SR8 1S9 SS3 OTB 212 316 418 2Sl SSS OT9 2T3 3T7 419 2S2 SS6 lTO 214 318 STD 2S8 5S7 1n 215 319 Sll 2S9 SS8 1T2 216 410 512 3S4 ss<
1T3 2T7 3SS 6SO 114 2TB NE-850 S2C10 Core Performance Report Page 12A 128 3.79 4.00 15Xl5 15Xl5 27 24 204 204 on ns 2U9 4Ul 012 116 3UO 4U2 on ll7 3Ul 4U3 014 1TB 3U2 4U4 OTS l T9 3U3 4US 016 2Tl 3U4 4U6 OT7 212 3US 4U7 018 2T3 3U6 4U8 019 2T4 3U7 4U9 no 21s 3U8 SUD l Tl 216 3U9 SUl 1T2 217 4UO SU2 1T3 218 1T4 8
of 48 l2C 3.80 15Xl5 1
204 SU3 2
3 4
5 6
7 8
9 10 11 12 13 14 15
R p
N H
l Figure 1. 2 SURRY UNIT 2 - CYCLE 10 MOVABLE DETECTOR LOCATIONS K
J H
G F
E HD I
D C
B A
I I
I I
1 I __ I __ I __ I l--~l--1 I
I I_H_D__,.1--1 I
I I
I I
I I
I
- 2
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I HD I
I I
HD I
HD I
I I
I HD I
I I
I I
I I
I I
I I
3
__ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __
I I
I HD. I I
I HD I
I HD I
I I
I I
I I
I I
I I
I I
I I
I 4
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I I
HD I
I HD I
I HD I
. I I
I HD I
HD I
I HD I
I I
I I
I I
I I
I I
I I
I I
s 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I I
I HD I
I I
HD I
I HD I
I I
I I
I I
I I
I I
I I
I I
I I
I I
6
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I
- I I
HD I
I I
I HD I
I HD I
I I
HD I
I HD I
I I
I I
I I
I I
I I
I I
I I
I I
I 7
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
HD I
I HD I
I HD I
I I
I I
HD I
I I
HD I
HD I
I I
I I
I I
I I
I I
I I
I I
I I
I a
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
- 1 __ 1 __ 1 I
I I
I I
HD I
I I
I HD I
HD I
I I
I I
HD I
I I
I I
I I
I I
I I
I I
I I
I I
9 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __._1 __ 1 __ 1 __ 1 I
I HD I
. I I
I HD I
I I
I I
HD I
I HD I
I I
I I
I I
I I
I I
I I
I I
10 l __ l __ l __ l __ l_* __ I __ I __ I __ I __ I __ I __ I __
._I __ I I
I I
I HD I
I I
HD I
I HD I
HD I
I I
I I
I I
I I
I I
I I
I I
I I
I 11 I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I IHDI I
I IHDI I
I I
IHDIHDI I
I I
I I
I I
I I
I I
I 12 1_* __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
I I
I I
I I
HD I
I I
I I
I I
I HD I
I I
I I
13 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I
HD I
I I
I HD I
I I
I I
I I
I I
I I
14 I __ I __ I __ I __ I __ I __ I __ I HD - Hovable Detector I
HD I
I I
I I
I I
1s I __ I __ I __ I NE-850 S2C10 Core Performance Report Page 9
of 48
R p
N H
L Figure* 1.3 SURRY UNIT 2 - CYCLE 10 CONTROL ROD LOCATIONS K
J H
1ao 0 I
G F
E D
C Loop C I
I I
I Loop B Outlet ~
I __ I_-_I __ I
_/Inlet "I
I A I I D I
I A I I~
_I_I_I_I_I_I_I_I_
N-41 I
I I
I I
N-43
__ 1_1_1_1_1_1_1_* _I_I_I_
I I c I
I B I I
I I B I I c I
I B
_1_1_1_1_1_1_1_1_1_1_1_1_
I I
I
.1 SB I I SP I I SP I I SB I I
I I
1_1_1_1_1_1_1_1_1_1_1_1_1_1 IAI IBI IDI ICI IDI IBI IAI A
Loop C __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I__
Loop B Inle\\_ I I
I J'1 Outlet 0 ~1_-I_I_I __ I_I_I_I_I_I_I_I __ I_I_I __ I/'
0 90 -
I I D I I
I I c I
I I
I c I
I I
I D I
I -
270 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 I
I I SA I I SP I I SB I I SB I I SP I I SA I I
I 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 IAI IBI IDI ICI IDI IBI IAI 1_1_1_1_,_._1_1_1_1_1_1_1_1_1 I
I I
I I
1_1_1_1_1_1_1_1_1_1_1_1_1_1 I
I c I
I B I I
I*
I B I I c I
I 1_1_1_1_1_1_1_1_1_1_1_1 I
I I
I I
N-44 I
I I
I I
I I
I I
I N-42 I
I A I I D I I A I 1--
1_ l_l_ l_l_l_l_k e"
I I
I I
- \\
Loop A I
I I
I L:oop A Absorber Outlet Inlet Material Ag-In-Cd Function Control Bank D Control Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA SP (Spare Rod Locations) 00 Number of Clusters 8
8 8
8 8
8 8
NE-850 S2Cl0 Core Performance Report Page 10 of 48 l
2*
3 4
5 6
7 8
9 10 11 12 13 14 15
Section 2 BURNUP The burnup history for the Surry Dnit 2, Cycle 10 core is graphically depicted in Figures 2. 1.
The Surry 2, Cycle 10 core achieved a burnup of 14,950 MWD/MTU.
As shown in Figure 2.2, the average load factor for Cycle 10 was 79.0% when referenced to rated thermal power (2441 MW(t)).
After December 18, 1990, the core operating limit was 90% power due to the control rod (M12) being stuck in the core.
Unit 2 performed a power coastdown starting on March 3, 1991 until shutdown for refueling on March 30,.1991.
Radial (X-Y) burnup.distribution maps show how the. core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis.
The NEWTOTE 4 computer code is used to calculate these assemblywise burnups.
Figure 2. 3 is the radial,~urnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 10 is given.
For comparison purposes, the design values are also given.
Figure 2.4 is the radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 10 operation is given.
As can be seen from these figures, the accumulated assembly burnups were generally within +/-3.11% of the predicted values.
In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.72%.
NE-850 S2C10 Core Performance Report Page 11 of 48
The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies.
Batch definitions are given in Figure 1.1.
As seen in Figures 2.5A, 2.5B and 2.5C the batch burnup sharing for Surry 2, Cycle 10 followed design predictions closely with no batch deviating from prediction by more than 2.31%. Note that this batch deviation is for batch S2/12C which consists of a single assembly.
- The maximum for the remaining batches was 1.57%.
Symmetric burnup in conjunction with agreement between actual and predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 10 core did deplete as designed.
NE-850 S2C10 Core Performance Report
.Page 12 of 48
16000 15000 14000 C 13000 y
C 12000 L
E 11000 B 10000
- u R 9000
.N u BODO p
7000 M
w 6000 D
I 5000 M
T 4000 u
30.00 2000 1000 0
. /
Figure 2.1 SURRY UNIT 2 - CYCLE 10 CORE BURNUP HISTORY
--- ------ ----- ------ ------ -- --- -- ~-- -- ~---- --- -- ---
/
V
/
V
/
r l-/ V V
/
V
/
V
/
V
/
/ V V
/
/v V
/
V
/
/
/
/
'/ -
I 0
0 0
0 0
0 0
0 0
0 0
0. 0 0
0 0
0 Q.
0 0
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
s 0
N D
J F
M A
M J
J A s 0
N D
J F
M A
E C
0 E
A E
A p
A u u *u E
C 0
E A
E
- A p
p T
V C
N B
R R
y N
L G
p T
V C
N B
R R
B B
B B
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
0 0
0 0
o*
0 0
0 0
0 0
0 1
1 1
1 TI ME (MONTHS)
NE-850 S2C10 Core Performance Report Page 13 of 48 0
1 M
A y
9 1
~
z
~
u
~
~
~
100 -
90 -
80 -
70 -
60....
50....
40....
30....
"=':':
20.... ff
[:![!
Figure 2.2 SURRY UNIT 2 - CYCLE 10 MONTHLY AVERAGE LOAD FACTORS
~
- . f.:_/.*
Th 7
I
- _1 __
.:i_:;:*_:*:=
- 1;[:1;/:1 g
!:i 1
l illlll i.i 1::1::1::1:_I:: 1 1.1 1 I I
f.lI t
/
l:::*_l:::_._i:::_::I:::.::::::_::::_
-=-
~
r:
:::
1_\\!_l_~.
=:::
===::
(;(:_':_*;:*:_:.
- _;1:1:_1;1::
i,1;1.1.1
- =:=:
_\\j_/j_/
J t f
- _i:::::_::_::_i::_-i:::.
/{
- _1
- *1:'._t:_-::_~
- 1
- _"1:I:_i;t.
.::1::_!:_1::1::
li;_i:_:*_I:_:
i:;_i_:_:_::i_'._;_
ti ti
- _!.l:l;i:_I:
t
~
1 1
~
- _];::_:;::_
0 m
0 I
~
- -i;i
- i; ri-ir
_:::;::=!::-::::1::.;:::*
1r ir
==
1::::/::::1::::!:::_i::::
f_;;_:;_;\\_
[!(
- _
- :_; __ ))_\\.
t
=
__ :i __ :i __ :i_:i __ :i ri
- -=-=-
1r ir 11
] i I_! I 1.1.l I I
- . 1;1.
1 1
1 1
.1.:_1.*
I 1
I I I
!::_l::j::_l::_l:_
1 1:)_:i;i_:i_::
+
~
~
~
- ,':.*_:,::**=
~
~
~
~
~
- _._:_._.. i
~
- .*.i:1_::;,-_::
- =::
~
~
~
w
~
~
~
~
- =:.*,:*::*:.
l!l.i:_:)
if.
1::::(::::1::::1::::1::::
- =
it
/jf
- 1) 1.l;::1::_i:::1::_*
- =:::
1,:_.:;::_i::_1:::1:::1:_
- ,;*.l,::);
\\_1.\\_1:/,
if
{:\\
)i
{:
!_:::*_i;::)_.
ff
)}
- '.f
- _i::*i::i:::i::
}1 fl fl ti 1.1.f.
1::1:_::::1:_1::
t:
.::::'.::;:::1
- 1::::::_i::1::,,
- f
-:*==*
- 1_:1;):_,:*,!
- =::
- r i
- 1.
- ;:.:_'._
0 J t 1
- =:
=
i:_:i_i_:i_
~-
ir
- =:::
- ){
_:i_:1_,!,1_:_*
=:_::_.', __ :::':
i_\\_1.r
- r
)_1.\\_!;/,1:
i.:;::::1:.1;*
- _*;_*\\;\\./:
- \\
=
- _*::::,*:.'=,
_:._:1_:._:1_::
/
t
~
[_I_;_;;:.:
5 f
~
,l:1,/:t_l.
-:=**
i:
1
- _l:_1::1:.
TI 1111:1 j::1::1::,1:_,::
.::*.!.:l::_l::_I::.:_
111:1 ljiij
- 1:11
- 111:1
- 1:11
- i::J t l
!J1 1
1
]llf 11 1
1 1
w I.I 1::::1::::1::::_I:::::::::_
1r
=*=-:
1r
==
ti it iI 1:_1:':_1:
- \\
- Z*
.':::::.:=:_::
- .*:::*::;;::_:=::::::::::_
=:_:;::_::*
1 0 -
t:
J
]
i_::1::
i
- jj f
1 1
t t
1:1::
J I
t w
- .ii.:
i:_i:_l:l:_'i:_
1:1;1:i:1*
ti
- =::-
=*:-:
- i::_
?
?
)
+ ?
ir
({
- 1~
it it
!ti ir ti
*=*
11
}i 0.__.....___....._....._._............................. =-""""--.......... ---=........... -=--""'--""""""--"".......... ""-=--=--='---""'-------
MONTH NE-850 S2C10 Core Performance Report Page 14 of 48
l 2
3 4
5 6
7 8
9 10 11 12 13 14 15 R
p N
Figure 2.3 SURRY UNIT 2 - CYCLE 10 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)
H L
K J
H G
F E
D C
B A
I 39.771 22.331 39.801 I 39.801 21.941 39.801 I
MEASURED I I PREDICTED I I 34.lll 29.581 16.051 34.781 16.171 30.541 34.751 I 34.361 30.211 16.501 35.131 16.501 30.211 34.361 I 38.631 16.121 18.281 37.361 19.691 37.451 18.991 16.581 38.811 I 38.291 16.211 18.951 37.731 19.931 37.731 18.951 16.211 38.291 I 38.131 41.771 18.521' 37.501 19.991 36.941 19.931 37.551 19.081 42.001 38.391 I 38.191 41.951 19.031 37.871 19.991 36.971 19.991 37.871 19.031 41.951*38.191 I 34.361 16.021 18.711 37.5ol 33.771 46.841 34.671 45.931 34.831 37.741 18.691 16.171 34.031 I 34.161 16.211 19.031 37.691 34.651 46.371 ~5.141 46.371 34.651 37.691 19.031 16.211 34.161 L 29.591 18.631 37.611 34.291 37.0ll 19.421 37.571 19.201 36.951 34.251 37.941 18.851 30.821 I 30.241 18.951 37.991 34.531 37.101 19.0ll 37.351 19.0ll 37.101 34.531 37.991 18.951 30.241 I 39.621 16.0ll 37.061 19.721 46.661 19.311 37.991 34.361 37.751 19.271 46.281 19.701 37.411 16.171 39.991 I 39.901 16.501 37.621 20.001 46.381 19.0ll 31.121 34.081 37.121 19.0ll 46.381 20.001 37.621 16.501 39.901 I 22.061 34.761 19.431 36.571 34.401 36.481 34.341 34.341 34.111 37.221 34.791 36.601 19.811 35.571 21.961 I 21.911 35.441 19.941 36.911 34.741 36.861 33.951 33.961 33.951 36.861 34.741 36.911 19.941 35.441 21.911 I 39.771 15.971 36.701 19.771 46.561 19.041 37.171 34.061 38.021 19.201 46.151 19.851 37.901 16.671 40.221 I 39.901 16.501 37.621 20.001 46.381 19.0ll 37.121 34.081 37.121 19.011 46.381 20.001 37.621 16.501 39.901 R
I 30.311 18.231 37.691 33.941 36.631 18.851 37.091 19.221 36.901 34.391 37.391 19.281 30.911 I 30.241 18.951 37.991 34.531 37.101 19.0ll 37.351 19.0ll 37.lOI 34.531 37.991 18.951 30.241 I 34.201 15.641 18.091 36.591 34.051 46.491 35.491 46.471 34.591 37.621 19.261 16.581 34.321 I 34.161 16.211 19.031 _37.691 34.651 46.371 35.141 46.371 34.651 37.691 19.031 16.211 34.161 p
I 38.lll 40.991 18.00I 36.821 19.501 36.581 20.091 38.061 19.101 42.191 38.461 I 38.191 41.951 19.031 37.871 19.991 36.971 19.991 37.871 19.031 41.951 38.191 I 37.361 15.931 18.611 36.901 19.391 37.551 18.721 16.121 38.851 I 38.291 16.211 18.951 37.731 19.931 37.731 18.951 16.211 38.291 I 34.731 30.761 16.841 35.381 16.081 30.591 34.411 I 34.361 30.211 16.501 35.131 16.501 30.211 34.361 I 39.991 22.121 40.011 I 39.801 21.941 39.801 N
H L
K J
H G
F E
D-C B
A NE-850 S2C10 Core Performance Report Page 15 of 48 2
3 4
5 6
7 8
9 10 11 12 13 14 15
2 3
4 5
6 7
8 9
IO 11 12 13 14 15 R
p Figure 2.4 SURRY UN1T 2 - CYCLE 10 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (GWD/MTU).
H H
L K
J H
G F
E D
C B
A I 39.771 22.331 39.801 I -0.011 1.791 0.001 I
HEASURED I
I HIP Z DIFF I I 34.lll 29.581 16.051 34.781 16.171 30.541 34.751 I -0.111 -2.091 -2.751 -1.011 -1.981 1.081 1.141 I 38.631 16.121 18.281 37.361 19.691 37.451 18.991 16.581 38.811 I
o.891 -o.581 -3.511 -o.971 -1.111 -0.741 0.241 2.281 I.361 I 38.131 41.771 18.521 37.501 19.991 36.941 19.931 37.551 19.081 42.001 38.391 I -0.151 -0.431 -2.671 -0.981 -0.0II -o.071 -0.291 -0.851 0.281 a.III 0.521 I 34.361 16.021 18.711 37.501 33.771 46.841 34.671 45.931 34.831 37.741 18.691 16.171 34.031 I
o.6ol -I.131 -I.731 -o.521 -2.541 1.011 -I.361 -0.951 o.521 0.121 -I.831 -0.201 -o.371 I 29.591 18.631 37.611 34.291 37.Dll 19.421 37.571 19.201 36.951 34.251 37.941 18.851 30.821 I -2.141 -I.671 -1.001 -o.711 -0.241 2.201 o.581 1.021 -o.4DI -0.811 -o.141 -D.541 I.921 I 39.621 16.011 37.061 19.721 46.661 19.311 37.991 34.361 37.751 19.271 46.281 19.701 37.411 16.171 39.991 I -0.701 -2.981 -I.501 -I.391 0.601 1.581 2.331 0.811 1.681 1.361 -0.211 -1.491 -0.571 -2.00I 0.221 I 22.061 34.761 19.431 36.571 34.401 36.481 34.341 34.341 34.lll 37.221 34.791 36.601 19.811 35.571 21.961 I
0.701 -1.921 -2.561 -0.931 -0.971 -I.OSI I.151 l.111 0.491 0.961 0.161 -0.851 -0.671 0.361 0.221 I 39.771 15.971 36.701 19.771 46.561 19.041 37.171 34.061 38.021 19.201 46.151 19.851 37.901 16.671 40.221 I -0.331 -3.251 -2.461 -I.101 0.381 0.151 0.131 -0.051 2.421 I.DOI -a.SOI -0.741 0.741 0.991 0.8II I 30.311 18.231 37.691 33.941 36.631 18.851 37.091 19.221 36.901 34.391 37.391 19.281 30.911 I
0.241 -3.801 -o.771 -I.711 -I.281 -D.821 -0.111 1.111 -o.s31 -o.411 -I.571 l.741 2.231 I 34.201 15.641 18.091 36.591 34.0SI 46.491 35.491 46.471 34.591 37.621 19.261 16.581 34.321 I
0.141 -3.531 -4.951 -2.921 -l.731 o.251 I.DOI 0.221 -0.151 -0.191 1.201 2.311 0.471 I 38.lll 40.991 18.001 36.821 19.501 36.581 20.091 38.061 19.lDI 42.191 38.461 I -0.211 -2.301 -5.381 -2.771 -2.451 -1.041 o.481 o.511 o.381 o.561 0.111 1
2 3
4 5
6 7
8 9
10 11 12 I 37.361 15.931 18.611 36.901 19.391 37.551 1s.121 16.121 38.851 I -2.441 -1.721 -I.SOI -2.181 -2.681 -0.471 -I.211 -0.571 I.461 13 I STANDARD DEV I I
= D.97 I
R p
H I 34.731 30.761 16.841 35.381 16.0BI 30.591 34.411 I
1.101 1.s11 2.081 0.101 -2.521 1.241 o.161 I 39.991 22.121 40.011 I
o.491 o.831 o.s51 H
L K
J H
G CYCLE 10 BATCH SHARING (MWD/MTU)
F E
D C
I ARITHHETIC AVG I IPCT DIFF = -0.381 14 I AVG ABS PCT I I DIFF = 1.17 I B
A 15 BATCH NO. OF BOC BATCH EOC BATCH CYCLE ASSEMBLIES BURNUP BURNUP BURNUP Sl/8A 8
20,682 30,387 9,705 Sl/8B 8
17,588 29,923 12,336 BURNUP TILT Sl/10 1
17, 727 34,337 16,610 9A 8
31,346 46,422 15,075 NW= -0.24 I NE=
0.35 10 28 31,543 38,134 6,591
1------------
11A 28 19,005 36,249 17,244 sw = -0.72 I SE= 0.61 11B 24 18,790 36,113 17,323 12A 27 0
18,629 18,629 12B 24 0
17,875 17,875 12C 1
0 16,581 16,581 CYCLE 10 AVERAGE ACCUMULATED BURNUP = 14,950 NE-850 S2Cl0 Core Performance Report Page 16 of 48
48 44
- J 40
-+,-)
~
'-... 36
'"d
~
c., 32 p..,
28
- J.
z
~ 24
~
~ 20
~
- ~
u 16
~
<C co 12 I
co 1----
8
~
ifl 4
A I~
0 h~
0
~-
t......--
A
~
2 v_
~
~
Figure 2.5A SURRY UNIT 2 -
CYCLE 10 SUB-BATCH BURNUP SHARING i---
_.A
~ --
k" _
~ -
V
..,._ V -
[/\\l.li'
/y
- /\\/
/y A.....-
/\\ -
A-A.....
V
~
~
u,-
4 6
8 10 12
,v i.-w C7
.:?
a7 I\\./
u.--
14 CYCLE BURNUP (G1Vd/MtU)
SUB-BATC--
S1/10 1 6 SUB-BATC~
9A SUB-BATCH 11 B
.A.
SUB-BATCH 12C l:,.
NE-850 S2C10 Core Performance Report Page 17 of 48
48 44
~ 40
+.l
- E "
36
"'O
~
u 32 1.-
0.-S 28
~
z
~ 24
~
co 20 -
- ~-
- r:: u 1 6 E-s
<t co 12 I
co
~ 8 ifl 4
0 ~
0 I ---
V L
~
Figure 2.5B SURRY UNIT 2 - CYCLE 10 SUB-BATCH BURNUP SHARING A./
. r-
.T" i,./
.. V
~
~
4 6
8 10 12
~
IV""
14 CYCLE BURNUP ( GWd/MtU)
II--
AV"'
1 6 SUB-BATCH S1/8A SUB-BATCH 10
- SUB-BATCH 12A
.A.
NE-850 S2C10 Core Performance Report Page 18 of 48
48 44
- i 40
.;..)
~
"'-.. 36
"'d
~
0 32
~ 28
- i z
~ 24
- i o
- :i 20 I/
~ - ----
- r::
u 16
~
~
co 12 I
co
- i 8
lfJ L
~
V 0.. -
0 2
4 Figure 2.SC SURRY UNIT 2 - CYCLE 10 SUB-BATCH BURNUP SHARING L.a"
~..---
.Al 1-4:
¥ v"
./
~
6 8
- 10
~
~
../.
.,/
./ -
12 14
/
I I
I SUB-'BATCH 11A SUB-BATCH S1/8B SUB-BATCH 12B A
1 5 CYCLE BURNUP (GWd/MtU)
NE-850 S2C10 Core Performance Report Pagi 19 of 48
THIS PAGE INTENTIONALLY BLANK NE-850 S2C10 Core Performance Report Page 20 of 48
Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following* core reactivity and to identify any anomalous reactivity behavior.
The FOLLOW 5 computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level.
The normalized critical boron concentration versus burnup curve for the Surry 2, Cycle 10 core is shown in Figure 3.1.
It can be seen that the measured data typically compared to within 40 ppm of the design prediction.
This corresponds to +/-0.34%
~K/K which is within the +/-1% ~K/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications.
In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 10 core depleted as expected without any reactivity anomalies.
NE-850 S2C10 Core Performance Report Page 21 of 48
1600
~ 1500 0...
0...
1400
---z 1300 0
1200
~
<t 1100 0:::
~ 1000 z
~-
'7
~ 900 u z 0
800 u
700 z
600 0
0:::
500 0
co 400
~
<t 300 u -
~ 200 0:::
100 u
- 0.
Figure 3.1 SURRY UNIT 2 - CYCLE 10 CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARO)
~--
1'1 ")
~
- ,i; '
~
a:...
~ ~
1! ~
I~
- ~
~
~ -~
I
~
CYCLE BURNUP (G"Wd/MtU)
I I i I
i i
I !
' i I I
I PREDICTED MEASURED NE-850 S2C10 Core Performance Report Page 22 of 48
Section 4 POWER DISTRIBUTION Analysis of. core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause ail.
II II uneven
.burnup distribution. Three-dimensi.onal core power distributions are determined from movable detector flux. map measurements using the INCORE 6 computer program.
A summary of all full core flux maps taken after the completion of stattup physics testing for Surry 2, Cycle 10 is in Table 4~1.
Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.
Radial (X-Y) core.power distribution for a representative series of incore flux maps are given in Figures 4.1, 4.2, and 4.3. Figure 4.1 shows a power distribution map that was taken early in Cycle 10.
Figure 4.2 shows a power distribution map that was taken near the mid-cycle burnup.
Figure 4. 3 shows a map that was taken near the end of Cycle 10.
The measured relative assembly powers were generally within 3. 7% and the maximum average percent difference was equal to 2.0%.
In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric fo.r each case.
An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.
Verification that these factors* are NE-850 S2C10 Core Performance Report Page 23 of 48
within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margin and maintaining fuel cladding integrity.
Surry Unit 2 Technical Specification Section 3.12 limited the axially dependent heat flux hot channel factor, FQ(Z), to 2.32 x K(Z), where K(Z) is the hot channel factor normalized operating envelope.
Figure 4.4 is a plot of the K(Z) curve associated with the 2.32 FQ(Z) limit.
The axially dependent heat flux hot channel factors, FQ(Z), for a representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.
Throughout Cycle 10, the measured values of FQ(Z) were within the Technical Specifications limit.
A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 10 is given in Figure 4.8.
Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 10.
As can be seen from the FQ(Z) figure, there was an approximate 20.56% margin from the maximum to the 2.32 limit at the beginning of cycle 10 which increased to 30.39% margin from the maximum FQ(z) to the 2.58 limit at 90% power.
Note however the increases in FQ(Z) seen at EOC in Figure 4.9 are a result of the coastdown.
The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.
The Technical Specifications limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.
NE-850 S2C10 Core Performance Report Page 24 of 48
Additionally, the F-delta-H limit ensures. that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
Surry Technical Specification 3.12 limited the enthalpy rise hot channel factor to 1.55(1+0.3(1-P)) for Cycle 10.
A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 10 is given in Figure 4.10.
As can be seen from this figure, the minimum margin to*
the limit was approximately 3.9% for Cycle 10.
The target delta flux* is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon.
The delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point.
Since the target delta flux varies as a function of burnup, the target value is updated monthly.
By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.
This target delta-flux was also used to establish the operational axial flux difference bands while under CAOC.
The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -1.0% at the beginning of Cycle 10 and decreased to approximately -3. 5% near the middle of the cycle, then went back up to approximately -1. 0% before the coastdown. At the end of Cycle 10, the target delta flux increased to
+1.5% due to the coastdown.
This axial power shift can also be observed in the corresponding core average axiaL power distribution for a Pt-Pb
- Delta Flux=
X 100 2441 where Pt= power in top of core (MW(t))
Pb= power in bottom of core (MW(t))
NE-850 S2C10 Core Performance Report Page 25 of 48
representative series of maps given in Figures 4.12 through 4.14.
In Map S2-10-06 (Figure 4.12), taken at 315 MWD/MTU, the ax~al power distribution had a shape peaked toward the middle of the core with a peaking factor of 1.214.
In Map S2-10-22 (Figure 4.13), taken at approximately 8,016 MWD/MTU, the axial power distribution peaked slightly toward the bottom of the core with_ an axial peaking factor of 1.145.
Finally, in Map Sl-10-50 (Figure 4.14), taken at '13,935 MWD/MTU, the axial peaking factor was 1.120, with.the axial power distribut.ion shifted slightly back toward the top.
The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.
In conclusipn, the Surry 2, Cycle 10 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the FQ(Z) and F-delta-H hot channel factors were within the limits of the Technical Specifications.
NE-850 S2Cl0 Core Performance R~port Page 26 of 48
I I
I 31 I
IHAPI I
IND. I DATE I I
I I
I I
I I_I I
I 6 110-09-891 I 9 112-18-891.
I 13 I 01-23-90 I I 14 I 02-28-90 I 11s I 03-26-90 I 118 I 04-24-90 I 119 105-31-901 120 106-27-901 122 107-18-901
- I 25 I 09-04-90 I I 26 I 09-26-90 I 131 111-18-90 I I 35 111-19-90 I I 38 111-21-90 I 141 lll-26-901 144 112-20-91 I 145 112-25-901 146 IOl-24-911 ISO 102-22-911 151 103-15-911 152 103-19-911 Table 4.1 SURRY UNIT 2 - CYCLE 10
SUMMARY
OF FLUX MAPS FOR ROUTINE OPERATION I
1 I
I I
2 I
I BURN I
BANK F-QCTl HOT I
F-DHCN) HOT ICDRE FCZ)
I CORE I AXJ;AL ND. I UP I
D CHANNEL FACTOR I CHNL. FACTOR IHAX IFCXYl TILT I
OFF I OF I HWD/
PWR I STEPS I
I I HID I
SET ITHIHI HTU OD I I ASSYIPINIAXIALI I
I IAXIAL I FCZllPLANE I HAX ILDCI c;o IBLESI
, I I
I IPDINTIF-QCTl IASSYIPIN IF-DHCNllPDINT I I
I I
I I
I
__ I l __ l_l __ l __ l_l_l __
l __ l __ 1_. __ 1_*_* I_I __ I_' I 315 100 207 F 9 AHi 33 1.840 F 91 AH 1.474 33 ll.2141 1.40211.0091 SEI -1.2121 41 1219 100 213 C 8 HDI 34 1.805 J 61 DA 1.467 34 11.1921 1.40111.0lll SEI -0.7821 43 2439 85 199 ClO EHi-25 1.843 D 91 CD 1.472 33 11.1991 1.41711.0141 SEI -0.5891 40 3549 100 221 D 9 GHI 32 1.769 J 61 DA
-1.484 34 11.1531 1.42111.0131 SEI -0.7281 40 4453 100 224 C 8 HDI 44 1.732 J 61 DA 1.488 44 11.1421 1.40711.0081 SEI -1.3331 41*
5244 100 223 J 4 HGI 44 1.733 J 61 DA 1.482 44 11.1441 1.41011.0091 SEI -L72ll 41 6476 100 218 J 4 HGI 45 1.753 J 61 DA 1.485 45 11.1511 1.41411.0061 SEI -2.8551 41 7564 100 221 J 4 HGI 45 1.746 J 61 DA 1.486 45 11.1461 1.41011.0061 SEI -2.6761 41 8016 100 222 F 3 HCI 46 1.750 J 61 DA 1.486 46 ll.1451 1.41311.0051 SEI -3.2761 41 9525 100 223 ClO CHI 46 1.750 ClDI CH 1.490 46 ll.1381 l.433ll.DD61 SEI -2.8441 39 10325 100 224 J 6 DAI 53 1.759 ClOI CH 1.489 47 11.1431 1.43011.0051 SEI -3.7991 39 11165 28 191 F 3 GDI 13 2.425 F 31 GD 1.674 14 11.3921 1.59111.0571 NEI 18.9131 42 i1200 45 187 ClO DII 14-2.023 F 31 GD 1.594 15 11.2161 1.51711.0391 NEI 6.7481 42 11231 66 190
. ClO DII 20 1.847 ClOI DI 1.563 22 11.1391 1.48411.0351 NEI -0.6931 41 11392 90 216 ClO DII 13 1.796 ClO I DI 1.528 46 11.1011 1.47111.0281 NEI -o.a32I 42 12094 90 221 ClO DII 12 1.789 ClOI DI 1.528 52 l'l.1031 1.47611.0231 NEI -1.1281 41 12208 54 182 C 9 DJI 11 1.854 F 31 GD 1.541 23 11.1551 1.46511.0281 NEI 0.1281 41 I 13070 90 222
- c10 DII 13 1.784 ClOI DI 1.528 52 11.1111 1.46811.0191 SEI -1.3811 41 I 13935 90 222 Clo DII 13 1.758 ClOI DI 1.510 52 11.1201 1.44711.0181 NEI -1.9331 41 I 14557 82 224 Clo DII 12 1.834 ClOI DI 1.503 11 ll.1391 1.44011.0161 NEI 1.4861 41 I 14666 79 225 ClO DII 1.2 1.861 ClOI DI 1.512 11 11.1511 1.45411.0171 NEI 2.1841 41 I
- I 153 103-20-911 14679 78 224 ClO DII 11 1.860 ClOI DI 1.503 11 11.1561 1.44611.0171 NWI 2.5781 41 I*
154 103-20-911 14692*
78 224 ClO DII 12 1.835 ClOI DI 1.496 11 11.1491 1.43911.0181 NWI 2.0421 41 155 103-21-911 14705 78 224 ClO DII 12 1.849 ClOI DI 1.503 11 11.1531 1.44411.0171 NWI 2.3891 41 NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEHBLY LOCATIONS CE.G. H-8 IS THE CENTER-OF-CORE ASSEHBLY>,
FOLLOWED BY THE PIN LOCATION (DENOTED BY THE "Y" COORDINATE WITH THE SEVENTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE "X" COORDINATE DESIGNATED IN A SIHILAR HANNER).
IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROH THE TOP OF THE CORE.
- 1. F-QCT) INCLUDES A TOTAL UNCERTAINTY OF 1.05 X 1.03 *.
- 2. CORE TILT - DEFINED AS THE AVERAGE AXIAL QUADRANT POWER TILT FROM INCORE.
- 3. HAPS 7,8,10,ll,16,17,23,24,27,28,29,30,32,33,34,36,37,39,40,42,43,47,48, and 49 WERE QUARTER-CORE FLUX HAPS TAKEN FOR INCORE/EXCORE CALIBRATION.Cl/E CALIBRATION)
- 4. HAPS 1 AND 2 WERE FULl-CORE *.HAPS TAKEN FOR STARTUP* PHYSICS TESTING.
- 6. HAP 21 WAS UNUSUABLE AND THEREFORE NOT ANALYZED *.
NE-850 S2C10 Core Performance Report Page 27 of 48 I
I
R p
N Figure 4.1 SURRY UNIT 2 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION S2-10-06 H
L K
J H
G F
E D
C B
PREDICTED HEASURED
.PCT DIFFERENCE.
0.32 0.48 0.32
- 0.32. 0.47. 0.32.
. -2.5. -2.5. -1.9.
PREDICTED HEASURED
.PCT DIFFERENCE
- 0.39 0.62 1.12 1.03 1.12 0.61 0.39
. 0.39. 0.61. 1.09. 1.00. 1.10. 0.60. 0.39.
. -0.8. -2.5. -2.5. -2.5. -2.l. -2.0. -0.3.
0.39 1.07 1.21 1.18 1.25 1.18 1.20 1.07 0.39
. 0.39. 1.05. 1.15. 1.16. 1.22. 1.16. 1.18. 1.07. 0.40.
. -1.2. -2.7. -4.5. -2.0. -2.3. -1.8. -1.6.
0.1.
2.3.
0.39 0.69 1.22 1.27 1.26 1.16 1.26 1.27 1.22 0.69 0.39
. 0.39. 0.67. 1.17. 1.24. 1.26. 1.14. 1.24. 1.25. 1.21. 0.68. 0.39.
. -0.9. -2.5. -3.8. -2.0. -0.5. -1.l. -1.5. -1.2. -0.7. -0.3. 0.2.
0.39 1.07 1.22 1.24 1.24 1.02 1.24 1.02 1.24 1.24 1.22 1.07 0.39
. 0.39. 1.06. 1.19. 1.21. 1.23. 1.03. 1.25. 1.02. 1.23. 1.23. 1.19. 1.06. 0.39.
. -0.8. -1.8. -2.3. -2.0. -1.l. 1.4. 1.0. 0.3. -0.4. -0.8. -2.4. -0.8. 1.2.
0.62 1.21 1.27 1.24 1.21 1.23 1.23 1.22 1.20 1.24 1.27 1.20 0.62
. 0.61. 1.20. 1.26. 1.23. 1.22. 1.26. 1.26. 1.24. 1.21. 1.23. 1.25. 1.19. 0.62.
. -2.3. -0.8. -1.2. -1.0. 0.5. 2.8. 2.8. 2.2. 0.6. -0.7. -1.6. -0.8. 0.2.
A 0.32 1.12 1.18 1.27 1.02 1.22 1.18 1.26 1.15 1.21 1.02 1.26 1.18 1.12 0.32 l
2 3
4 5
6
. 0.32. 1.10. 1.16. 1.25. 1.02. 1.24. 1.23. 1.30. 1.19. 1.24. 1.02. 1.25. 1.18. 1.11. 0.32.
7
. -2.4. -2.3. -2.3. -1.1. -0.5. 1.6. 4.2. 3.5. 3.1. 2.4. 0.7. -1.0. -0.4. -0.6. -0.l.
0.48 1.03 1.25 1.16 1.24 1.23 1.26 1.16 1.25 1.22 ~ 1.23 1.15 1.25 1.03 0.48
. 0.47. 1.01. 1.23. 1.14. 1.24. 1.25. 1.31. 1.21. 1.30. 1.26. 1.26. 1.14. 1.25. 1.04. 0.48.
8
. -2.4. -2.4. -2.3. -1.2. -0.1. 1.6. 4.4. 4.1. 3.5. 3.3. 1.9. -1.0. 0.0. 0.7. 0.7.
0.32 1.12 1.18 1.26 1.02 1.22 1.15 1.25 1.15 1.21 1.02 1.26 1.18 1.12 0.32
. 0.32. 1.09. 1.15. 1.24. 1.02. 1.22. 1.17. 1.30. 1.20. 1.25. 1.04. 1.25. 1.19. 1.14. 0.33.
9
. -2.5. -2.4. -2.5. -1.7. -0.l. 0.7. 1.7. 3.3. 4.0. 2.8. 1.7. -1.2. 0.4. 1.3. 1.5.
NE-850 0.61 1.20 1.27 1.24 1.20 1.21 1.22 1.21 1.20 1.24 1.27
.1.20 0.62
. 0.60. 1.17. 1.24. 1.22. 1.21. 1.24. 1.25. 1.25. 1.23. 1.25. 1.26. 1.20. 0.62.
. -2.7. -2.7. -2.2. -1.3. 0.5. 1.7. 2.6. 3.0. 2.5. 1.0. -1.0. -0.2. 1.0.
0.39 1.07 1.22 1.24 1.24 1.02 1.23 1.02 1.24 1.24 1.22 1.07 0.39
. 0.38. 1.06. 1.20. 1.22. 1.23. 1.03. 1.26. 1.04. 1.26. 1.25. 1.22. 1.08. 0.39.
. -1.3. -1.4. -1.4. -1.4. -0.2. 1.2. 2.0. 2.3. 2.2. 1.2. 0.6. 0.6. 1.0.
0.39 0.69 1.22 1.27 1.26 1.15 1.26 1.27 1.22 0.69 0.39
. 0.39. 0.68. 1.20. 1.26. 1.26. 1.16. 1.27. 1.27. 1.23. 0.70. 0.39.
0.0. -0.6. -1.4. -0.8. -0.l. 1.0. 1.0. 0.5. 0.9. 1.4. 1.1.
0.39 1.07 1.20 1.18 1.25 1.18 1.20 1.07 0.39
. 0.39. 1.07. 1.20. 1.17. 1.25. 1.16. 1.18. 1.07. 0.39.
. -0.l. -0.2. -0.3. -0.4. -0.4. -1.7. -1.8. -0.5. 1.3.
0.39 0.62 1.12 1.03 1.12 0.61 0.39
. 0.39. 0.62. 1.16. 1.06. 1.10. 0.60. 0.38.
- -0.2. 1.3. 3.4. 3.2. -1.7. -1.8. -1.8.
STANDARD DEVIATION
=l.050 0.32 0.48 0.32
- 0.33. 0.50. 0.33.
. 3.4. 3.3. 3.4.
AVERAGE
.PCT DIFFERENCE.
= 1.6
SUMMARY
HAP NO: S2-10-06 DATE: 10/09/89 POWER: 100%
CONTROL ROD POSITION:
F-Q(Tl = 1.840 QPTR:
D BANK AT 207 STEPS F-DHCN) = 1.474 NW 0.9949 INE 0.9986 I
FCZ)
= 1.214 SW 0.9977 ISE 1.0088 f(XY)
= 1.402 BURNUP = 315 HWD/HTU A.O. = -1.212%
S2C10 Core Performance Report Page 28 of 48 10 11 12 13 14 15
R p
N Figure 4.2 SURRY UNIT 2 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION SZ-10-22 H
l K
J G
F E
D C
8 PREDICTED HEASURED
.PCT DIFFERENCE.
0.34 0.50 0.34
- 0.33. 0.49. 0.35.*
- -1.6. -1.6. 2.3.
PREDICTED HEASURED
.PCT DIFFERENCE.
0.42 0.65 1.08 0.99 1.08 0.64 0.42
- 0.43. 0.64. 1.07. 0.98. 1.09. 0.66. 0.43.
2.2. -1.6. -1.6. -1.6. 0.8. 2.2. 2.8.
.... ~...................................................................
0.42 1.08 1.28 1.16. 1.34 1.16 1.28 1.08 0.42
. 0.43. 1.07. 1.22. 1.15. 1.32. 1.16. 1.29. 1.10. 0.44.
1.6. -1.0. -4.2. -1.0. -1.4. -0.1. 0.9. 2.1.
3.7.
0.42 0.73 1.28 1.22 1.35 1.17 1.35 1.22 1.28 0.73 0.42
. 0.43. 0.72. 1.24. 1.18. 1.34. 1.17. 1.34. 1.21. 1.28. 0.74. 0.43.
2.2. -1.1. -3.3. -3.1. -0.7. -f.3. -0.5. -0.3. 0.3. 0.7. 1.2.
0.42 1.08 1.28 1.16 1.15 1.00 1.18 1.00 1.15 1.16 1.28 1.08 0.42
. 0.41. 1.06. 1.26. 1.14. 1.13. 1.00. 1.17. 1.00. 1.15. 1.16. 1.26. 1.08. 0.43.
. -1.7. -1.5. -1.9. -1.6. -1.9. -0.2. -0.2. -0.0. 0.1. -0.l. -1.7. 0.0.
2.1.
0.65 1.28 1.22 1.15 1.14 1:29 1.14 1.28 1.14 1.15 1.22 1.28 0.65
. 0.64. 1.26. 1.21. 1.15. 1.15. 1.30. 1.14. 1.28. 1.15. 1.15. 1.20. 1.26. 0.65.
. -1.7. -1.7. -1.0. -0.4. 0.3. 1.4. 0.1.
0.2. 0.5. -0.5. -1.5. -0.9. 0.2.
A 0.34 1.08 1.16 1.35 1.00 1.28 1.10 1.14 1.08 1.28 1.00 1.35 1.16 1.08 0.34 l
2 3
4 5
6
. 0.33. 1.07. 1.14. 1.34. 0.99. 1.30. 1.13. 1.15. 1.09. 1.29. 0.99. 1.32. 1.15. 1.07. 0.34.
7
. -1.7. -1.7. -1.7. -1.1. -0.4. 1.1. 2.7. 1.4. 0.4. 0.8. -0.4. -2.0. -1.0. -1.2. -0.4.
0.50 0.99 1.34 1.17 1.18 1.14 1.14 1.06 1.14 1.14 1.18 1.17 1.34 0.99 0.50
. 0.49. 0.98. 1.32. 1.17. 1.17. 1.16. 1.17. 1.09. 1.15. 1.15. 1.17. 1,15. 1.34. 1.00. 0.50.
8
. -1.7. -1.7. -1.7. -0.6. -0.2. 1.2. 3.0. 2.8. 1.3. 0.9. -0.3. -2.0. -0.3. 1.0.
0.9.
0.34 1.08 1.16 1.35 1.00 1.28 1.08 1.14 1.09 1.28 1.00 1.35 1.16 1.08 0.34
. 0.33. 1.06. 1.14. 1.35. 1.01. 1.29. 1.08. 1.16. 1.11. 1.28. 1.00. 1.34. 1.17. 1.11. 0.35.
9
. -1.9. -1.8. -1.8. -0.2. 1.8. 0.7. -0.3. 1~5.
2.1.
0.2. -0.l. -1.0. 1.0. 2.0.
2.1.
0.64 1.27 1.22 1.15 1.14 1.28 1.14 1.28 1.14 1.15 1*022 1.27 0.64
. 0.63. l.~5. 1.21. 1.16. 1.15. 1.28. 1.15. 1.29. 1.15. 1.16. 1.21. 1.28. 0.66.
. -1.9. -1.9. -0.4. 0.8. 0.3. -0.2. 1.0. 1.3. 0.9. 0.2. -0.8. 0.6. 2.3.
0.42 1.08 1.28 1.16 1.15 1.00 1.18 1.00 1.15 1.16 1.28 1.08 0.42
. 0.41. 1.07. 1.27. 1.16. 1.14. 0.99. 1.18. 1.01. 1.16. 1.17. 1.29. 1.09. 0.43.
. -0.6. -0.6. -0.6. -0.5. -1.0. -0.5. 0.8. 1.0. 0.8. 0.9. 0.6. ls2. 2.3.
0.42 0.73 1.28 1.22 1.35 1.17 1.35 1.22 1.28 0.73 0.42
. 0.43. 0.73. 1.27. 1.20. 1.32. 1.17. 1.35. 1.22. 1.28. 0.74. 0.43.
0.7. 0.2. -0.5. -1.6. -2.0. -0.5. 0.3. 0.1. 0.4. 0.7.
2.1.
0.42 1.08, 1.28 1.16 1.34 1.16 1.27 1.08 0.42
. 0.43. l.ll
- 1.28. 1.13. 1.31.. l.14. 1.26. l-.07. 0.43
- 1.7. 2.8. 0.2. -2.4. _-2.4. -1.l. -1.2. -0.6. 1.1.
0.42 0.64 1~08 0.99 1.08 0.64 0.42
. 0.43. 0.66. 1.13. 1.03. 1.07. 0.63. 0.41.
2.8. 3.4. 4.2. 4.1. -1.1. -1.1. -1.2.
STANDARD DEVIATION
- 0.989 0.34 0.50 0.34
- 0.35. 0.53. 0.35.
- 4.2. 4.2. 4.2.
AVERAGE
.PCT DIFFERENCE.
1.3 SUMHARY MAP NO: s2-10-22 DATE: 07/18/90 POWER: 100%
CONTROL ROD POSITION:
F-Q<TJ = 1.750 QPTR:
D BANK AT 222 STEPS F-DH(N) = 1.486 NW 0.9938 NE 1.0007 F<Zl
= 1.145 SW 1. 0004 SE 1.0051 F(XY)
= 1.413 BURNUP = 8016 MWD/MTU A.O. = -3.276%
NE-850 S2Cl0 Core Performance Report Page 29 of 48 10 11 12 13 14 15
R p
Figure 4.3 SURRY UNIT 2 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION S2-10-50 N
PREDICTED HEASURED H
K J
H G
F E
D C
B
. PCT DIFFERENCE.
0.37 0.54 0.36
. 0.37. 0.54. 0.38.
. -0.4. -0.4. 3.0.
PREDICTED HEASURED
.PCT DIFFERENCE.
0.45 0.68 1.08 1.00 1.08 0.67 0.45
. 0.47. 0.68. 1.08. 0.99. 1.10. 0.69. 0.47.
4.4. -0.4. -0.4. -0.4. 1.7. 3.0. 3.9.
0.46 1.09 I.31 1.15 1.37 1.15 1.31 1.09 0.46
. 0.48. 1.10. 1.28. 1.15. 1.37. l.I6. 1.33. 1.12. 0.48.
3.7. 1.1. -2.l. o.o. -0.2. 0.7. 1.5. 3.2. 5.3.
0.46 0.78 1.32 1.20 1.38 1.18 1.38 1.21 1.32 0.78 0.46
. 0.48. 0.78. 1.30. 1.19. 1.38. 1.19. 1.38. 1.21. 1.33. 0.79. 0.47.
4.4. 0.8. -1.3. -1.4. 0.3. 0.5. 0.2. 0.0. 1.0. 1.7. 2.3.
0.45 1.09 1.32 1.15 1.14 1.01 1.17 1.01 1.14 1.16 1.32 1.09 0.45
. 0.45. 1.08. 1.30. 1.15. 1.13. 1.00. 1.16. 1.00. 1.14. 1.16. 1.31. 1.10. 0.46.
. -0.7. -0.4. -1.0. -0.7. -1.0. -0.5. -0.5. -0.7. -0.3. 0.1. -0.9. 0.8. 2.8.
0.68 1.31 1.20 1.14 1.14 1.33 1.14 1.33 1.14 1.14 1.21 1.31 0.68
. 0.67. 1.30. 1.19. 1.13. 1.14. 1.33. 1.12. 1.31. 1.13. 1.13. 1.19. 1.31. 0.69.
. -0.7. -0.7. -0.7. -0.9. -0.2. -0.3. -1.3. -1.0. -1.2. -1.0. -1.l. -0.3. 1.0.
A 0.36 1.08 1.15 1.37 1.01 1.32 1.10 1.13 1.09 1.33 1.01 1.38 1.15 1.08 0.36 I
2 3
4 5
6
. 0.36. 1.07. 1.14. 1.36. 0.99. 1.32. 1.11. 1.13. 1.09. 1.32. 0.99. 1.35. 1.15. 1.08. 0.36.
7
. -0.7. -0.7. -0.7. -0.9. -1.2. -0.l.
0.9. -O.l. -0.l. -0.7. -1.5. -2.l. -0.8. -0.5. -0.0.
0.53 0.99 1.36 1.17 1.16 1.13 1.13 1.07 1;13 1.14 1.17 1.19 1,37 1.00 0.54
. 0.53. 0.98. 1.35. 1.17. 1.15. 1.13. 1.14. 1.07. 1.13. 1.13. 1.15. 1.16. 1.37. 1.01. 0.54.
8
. -0.7. -0.7. -0.7. -0.4. -0.9. 0.2. 1.2. 0.7. -0.2. -0.6. -1.4. -2.l. -0.3. 1.0. 0.8.
0.36 1.06 1.12 1.34 0.99 1.31 1.08 1.13 1.09 1.33 1.01 1.38 1.15 1.08 0.37
. 0.36. 1.05. 1.12. 1.34. 1.00. 1.30. 1.05. 1.12. 1.09. 1.31. 1.00. 1.36. 1.17. 1.10. 0.37.
9
. -0.4. -0.6. -0.6.
0.0.
1.2. -0.3. -2.1. -0.4. 0.3. -1.4. -1.4. -1.8. 1.8. 1.7. 1.6.
NE-850 0.64 1.24 1.13 1.09 1.11 1.31 1.13 1.32 1.14 1.14 1.21 1.31 0.67
. 0.64. 1.23. 1.13. 1.09. 1.10. 1.28. 1.12. 1.32. 1.13. 1.13. 1.20. 1.34. 0.69.
. -0.4. -0.4. -0.l.
0.2. -0.8. -1.9. -0.7. -0.2. -0.6. -0.8. -0.4. 2.3. 2.2.
0.41 0.95 1.10 1.03 1.09 0.99 1.16 1.01 1.14 1.15 1.32 1.09 0.45
. 0.41. 0.97. 1.11. 1.02. 1.07. 0.97. 1.15. 1.00. 1.14. 1.15. 1.34. 1.12. 0.46.
1.7. 1.7. 0.5. -1.1. -1.7. -1.5. -0.5. -0.2. -0.3. -0.2. 1.4. 2.8. 2.9.
0.33 0.38 1.10 1.13 1.34 1.17 1.37 1.20 1.32 0.78 0.46
. 0.34. 0.38. 1.09. 1.11. 1.32. 1.16. 1.37. 1.19. 1.32. 0.79. 0.47.
3.9. 1.9. -1.l. -1.8. -2.l. -1.2. -0.6. -0.7. o.o. 1.7. 3.5.
0.33 0.95 1.24 1.13 1.36 1.15 1.31 1.09 0.46
. 0.34. 0.99. 1.24. 1.10. 1.33. 1.13. 1.29. 1.09. 0.47.
3.7. 3.4. 0.6. -2.3. -2.3. -1.3. -1.3. -0.1. 2.5.
0.41 0.64 1.06 0.99 1.08 0.67 0.45
. 0.42. 0.66. 1.10. 1.02. 1.06. 0.66. 0.44.
3.4. 3.4. 3.2. 3.2. -1.3. -1.3. -1.3.
STANDARD DEVIATION
=l. 096 0.36 0.54 0.36
. 0.37. 0.55. 0.38.
3.2.
3.2. 3.2.
AVERAGE
.PCT DIFFERENCE.
= 1.3
SUMMARY
MAP NO:
S2-10-50 DATE: 02/22/91 POWER: 907.
CONTROL ROD POSITION:
F-QCTl = 1. 758 QPTR:
D BANK AT 222 STEPS F-DHCM) = 1.510 NW 1.0123 NE 1.0181 FCZ)
= 1.120 SW 0.9541 SE 1.0155 FCXY)
= 1.447 BURNUP = 13,935 MWD/MTU A. 0. =-1. 933 S2C10 Core Performance Report Page 30 of 48 10 11 12 13 14 15
~
CJ' LI.. 0.80 C
. l.&.I N
- J
~0.60 a::
0 z I 0.40
~ -
-~
0.20 (0.00.1.00) a Figure 4.4 SURRY UNIT _2 - CYCLE 10 HOT CHANNEL FACTOR NORMALIZED-OPERATING ENVELOPE
, *. J.,.oo, I
I I
1..
1 l10.79.094i
- ~**********--******r*******-*-**-********1 111.00:0.43) 1 2
4 6
8 10 12 CORE HEIGHT (FEE])
NE-850 S2C10 Core Performance Report Page 31 of 48
2.50 N......
I-I
~2.00 a::
0 I-u <
a.... 1.50 Li.I z z < ri 1.00 I-0
- r::
>(
3 0.50 La..
I-<
Li.I
- I:
0.0060 Figure 4.5 SURRY UNIT 2 - CYCLE 10 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
S2-10-06 55 50 45 BOTTOM 40 35 30 25 20 15 AXIAL POSmON (NODES) 10 5
TOP NE-850 S2C10 Core Performance Report Page 32 of 48
I
~
I.
&!2.00 a: e u
-~ 1.50 Figure 4.6 SURRY UNIT 2 - CYCLE 10 HEAT FLUX HOT CHANNEL FACTOR, Fq(Z) s2-10-22 55 *so BOTTOM*
- 45. 40 35 30 25 20 AXIAL POSITION (NODES) 15 10 5
TOP NE-850 S2C10 Core Performance Report Page 33 of 48
N -
I-I 2.50
~2.00 a: e
~
i.... 1.50 Lr.I z z C
~ 1.00 l-o
- i::
)C 30.50 LI..
!c Lr.I
- i::
0.0060 Figure 4.7 SURRY UNIT 2 - CYCLE 10 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
S2-10-50 55 50 BOTTOM X
40 35 30 25 20 AXIAL POSITION (NODES)
NE-850 S2Cl0 Core Performance Report Page 34 of 48
Figure 4.8 SURRY UNIT 2 - CYCLE 10 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)*P, vs. AXIAL POSITION 2.4 2.2 l
2.0 l
- 1. 8
- r I 1111 Yw
\\
1111 1111 11"'-
I
... I-
- I 1... -. I
\\
I
- 1. 6 I
I
\\
'.I I
I I
I
\\
F 1.4 Q
\\
I
\\
I
- 1. 2
\\
I&
I I
\\
p 1
- 1. 0 A
0.8 0.6 0.4 0.2 0.0 I
I I
I I
I I
I 61 55 50 45 40 35 30 25 20 15 10 5
AXIAL POSITION (NODE)
BOTTOM OF CORE TOP OF CORE NE-850 S2C10 Core Performance Report Page 35 of 48
~ 2.6 0
E-,;
~ 2.5 C:r..s
~ 2.4 z z
<t
- c u
E-,;
0 2.3 2.2
- C 2.1
- J
-:l 2.0
~
<t 1.8
- 1. 7
~ 1.6 Figure 4.9 SURRY UNIT 2 - CYCLE 10 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, Fq(Z), vs. BURNUP I.
I I
-* I I
I I
I I
I I
I 0
4 6
8 10 12 14 CYCLE BURNUP (G1Vd/MtU)
I I
I I
I I
i I
100% POWER TECH SPEC LIMIT MEASURED VALUE 90% POWER TECH SPEC LIMIT NE-850 S2Cl0 Core Performance Report Page 36 of 48
rv -
0 r r u
<t:
~
_::i Ci:J z z
<t: -
....... u
~
0 --
~
iJJ -
l'Y -
l,...;..,i., -
~
~
z r...,...., -
Figure 4.10 SURRY UNIT 2 - CYCLE 10 MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP
- 1.6=
I I
1.60 i I
1.55
- 1.so.
'i.45 i I
1.40 I
i I
- 1
.,.)::,, i
- -;r--,
'-~V I
1 7 :=..
- 4- '._/
I i I
- 1.20 I
-1 1 5 I*
I I
A....
~
~...
....~
1
- I I
I I
I I
I I
4 6
8 10 12 14 CYCLE BURNUP (G1Vd/MtU) 1 6 100% POWER TECH SPEC LIMIT MEASURED VALUE 90% POWER TECH SPEC LIMIT NE-850 S2C10 Core Performance Report Page 37 of 48
E--< z
~
u
~
~
~
~
~
µ..
<C E--<
~
~
Q E--<
~
c.,
~
<C E--<
10.0 8.0 6.0
, 4.0 2.0 0.0
-2.0
-4.0
-6.0
-8.0 l
-10.0 Figure 4.11 SURRY UNIT 2 - CYCLE 10 TARGET DELTA FLUX vs. BURNUP I
i i
I
,l I
I I
I !
4 6
Q u
10 I
l I
I 1 2 14 CYCLE BURNUP (GWd/MtU)
NE-850 S2Cl0 Core Performance Report Page 38 of 48 I
i I
I I
I i
I I
I I
i I
i I I
i I I
I I
I
Figure 4.12 SURRY UNIT 2 - CYCLE 10 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-10-06 Fz = 1.214 AXIAL OFFSET= -1.212 1.50
- IE a::
0 z --
N
'"N'0.50 x
I...
0*00so
- 55.
50 45 BOTIOt.f 40 35 JO 25 20 15 AXIAL POSITION (NODES) 10 5
TOP NE-850 S2Cl0 Core Performance Report Page 39 of 48
1.50 81.00 N
~
~
a:
0 z -
N'
~0.50 L...
Figure.4.13 SURRY UNIT 2 - CYCLE 10 CORE AVERAGE AXIAL POWER DISTRIBUTION s2-10-22 Fz = 1.145 AXIAL OFFSET= -3.276 o.oo 60 55 50 45 BOJJOM 40 35 30 25 20. 15 AXIAL POSITION (NODES) 10
- 5 TOP NE-850 S2C10 Core Performance Report Page 40 of 48
1.50 81.00 N
':ii
~
a::
0 z -
";;'0.50 Figure 4.14 SURRY UNIT 2 - CYCLE 10 CORE AVERAGE AiIAL POWER DISTRIBUTION S2-10-50 Fz = 1.120 AXIAL OFFSET= -1.933 DC K
X 0*0060 55 50 45 BOTTO~
40 35 30
- 25 20 15 AXIAL POSITION (NODES) 10 5
TOP NE-850 S2C10 Core Performance Report Page 41 of 48
0:::
0
~
u <
~
c.., z -
~
~
~
~
~
~
1.4 1.3 1.2 1. 1 1.0 *o I
Figure 4. 15 SURRY UNIT 2 - CYCLE 10 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP I
i I
I I
I I
- 1*
I I I
i I
! i i
I I
4 6
8 10 12 CYCLE BURNUP (GWd/MtU)
I 14 NE-850 S2Cl0 Core Performance Report Page 42 of 48 I
16
Section 5 PRIMARY COOLANT ACTIVITY The specific activity levels of radioidines in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses.
Two mechanisms are primarily responsible for the presence of radioiodin~s in the primary coolant. Radioiodines are always present due to direct fission product recoil.from trace fissile materials plated onto core components and fuel structured surfaces or trace fissile materials existing as impurities in core structural materials.
This fissile. material is generally referred to as "tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists.
Fuel defects are generally the predominant source of radioiodines in the primary coolant.*
Surry 2 Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 µCi/gram with provisions to ultimately limit the dose equivalent I-131 activity to a maximum of 10.0 µCi/gm.
Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 10.
These data show that the dose equivalent I-131 activity remained substantially below 1.0 µCi/gm throughout Cycle 10 operation.
The cycle average full power equilibrium dose equivalent I-131 concentration was 3.96 X 10-3 µCi/gm which is significantly less than 1% of the Technical Specification limit.
NE-850 S2C10 Core Performance Report Page 43 of 48 I
I
Correcting the I-131 concentration for tra~p iodine involves calculating the I-131 activityfrom tramp fissile sources and subtracting this value from the measured I-131.
The resultant tramp-corrected I-131 activity is theoretically the I-131 activity from defective fuel.
The magnitude of the tramp-corrected I-131 can then be used as an indication of the number of defective fuel rods.
The cycle average tramp corrected iodine-131 concentration was 2.00 X 10-4 µCi/gm.
A tramp-corrected-I-131 activity of this magnitude is a clear indication that the Cycle 10 core contained no defective fuel rods* and the reactor coolant system radioiodines are resulting from tramp fissile sources.
The demineralizer flow rate averaged approximately 107 gpm during power operation.
The ratio of the specific activities of I-131 to I-133
- is used to characterize the type of fuel failure which may have. occurred in the reactor core. Use of this ratio is based upon the relatively short hal.f life pf I-133 (approximately. 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where the. diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more.
In the case of large leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than O.1.
The ratios of O. 5 and O.1 are empirically determined and are generally used throughout the industry as defect size indicators.
Figure 5.2 shows the I-131/I-133 ratio-data for the Surry 2, Cycle 10 at a general average value of approximately 0.1.
These data are consistent with the conclusion that all the RCS radioiodines are the result of tramp fis.sile sources and that no defective fuel rods existed in the Cycle 10 core.
NE-850 S2Cl0 Core Performance Report Page 44 of 48
~
C:.
c:,
. c; r-'"
-~ -
c;
~
C,,)
0 c; C,,) -=
Figure 5.1
. SURRY UNIT 2 - CYCLE 10
- DOSE EQUIVALENT I-131 vs. TIME t
l.OOE+OO...... f------_.;.. _______
1.00E-01-+------------------------------------'
1.00E-02
~
't' *
- I 1.00E-03
'I, 1.00E-,.04-I 1:ooE-05 1DD ao.,,
0 IIO ~t
- a 40-
~
zo-0 27JUL89 04-NOV89 12FEB90 23KA.Y90 31.lUGUO.
09DEC90 19KAD1 27JUNIU NE-850 S2C10 Core Performance Report Page 45 of 48
Figure 5.2 SURRY UNIT 2 - CYCLE 10 I-131 I I-133 ACTIVITY RATIO vs~
1.0 0.9 0.8 0.7 0 0.6 E-< <
~
,- _0.5 M
- 0.4 I
0.3
- 0.2 II *
, 0.1
~-~,.,.-.. j.
~... '
27JUL89 04NOV89 12FEB90 231UY90 31AUG90 NE-850 S2C10 Core Performance Report TIME QgD1C90 Page 19MAR91 46 of 48 100 0
27J1JN91
Section 6 CONCLUSIONS The Surry 2, Cycle 10 core has completed operation.
Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin.
No significant abnormalities in reactivity or burnup accumulation were detected.
Additionally, as indicated by radioiodine analysis, the Cycle 10 core operated with no defective fuel rods.
NE-850 S2C10 Core Performance Report Page 47 of 48
Section 7 REFERENCES
- 1)
A. H. Nicholson, "Surry Unit 2, Cycle 10 Startup Physics Test Report," Technical Report NE-757, Virginia Electric and Power Company, December, 1989.
- 3)
Surry Power Station Unit 2 Technical Specifications, Sections 3.1.D, 3.12.B, and 4.10.
- 4)
T. W. Schleicher, "The Virginia Power Fuel Assembly Burnup and Isotopics Code Manual," Technical Report NE-679, Virginia Power, February, 1990.
- 5)
D. L. Gilliatt, "The Virginia Power Follow Code Manual,"
Technical Report NE-679, Rev. 1, Virginia Power, April, 1991.
- 6)
W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149, December, 1967.
- 7)
E. A. Hoffman, "Surry 2, Cycle 10 Startup and Core Follow Calculations," PM-240, Add. 3, June, 1991.
- 8)
D. A. Trace, "Surry 2, Cycle 10 NEWTOTE Calculations,"
PM-281, October, 1989.
- 9)
D. A. Trace, "Evaluation of Surry Unit 2 Cycle 10 Movable Detector Flux Maps," PM-286, September, 1989.
- 10) D. A. Trace, "Surry Unit 2 Cycle 10 Design Report,"
Technical Report NE-657, Rev. 1, Virginia Power, August, 1989.
NE-850 S2C10 Core Performance Report Page 48 of 48