ML18151A936

From kanterella
Jump to navigation Jump to search
Rev 0 to Technical Rept NE-930, Surry Unit 2,Cycle 11 Core Performance Rept
ML18151A936
Person / Time
Site: Surry Dominion icon.png
Issue date: 05/31/1993
From: Chapman D, Dziadosz D, Trace D
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18151A937 List:
References
NE-930, NE-930-R, NE-930-R00, NUDOCS 9306180313
Download: ML18151A936 (59)


Text

9306180313 930614 PDR ADOCK 05000281 p

PDR

\\

\\

Surry Unit 2 Cycle 11 Core PerforIDance Report Nuclear Analysis and Fuel Nuclear Engineering Services May 1993 VIRGINIA POWER

TECHNICAL REPORT NE-930 - Rev. 0 SURRY UNIT 2, CYCLE 11 CORE PERFORMANCE REPORT NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER May, 1993

.i:_MAff):,

Date

.,r\\

.*/"""' /'

( \\ /

, ti REVIEWED BY: f.jWt~",1:1....,,u D. A. Trace REVIEWED BY: -:-71-~

6' l6"ff Trr Date REVIEWED BY: ~~3 D. C. Lawrence Date APPROVED BY, i)_ 4=,17 !,/,,./93 D. Dziadosz ate QA Category: Nuclear Safety Related*

Keywords: S2Cll, Core Performance

C TABLE OF CONTENTS PAGE Table of Contents 1

List of Tables 2

List of Figures.

3 Section 1 Introduction and Summary.

5 Section 2 Burnup.

15 Section 3 Reactivity Depletion.

25 Section 4 Power Distribution.

27 Section 5 Prima:i:-y Coolant Activity.

49 Section 6 Conclusions 55 Section 7 References.

57 NE-930 S2Cll Core Performance Report Page 1

of 58

LIST OF TABLES TABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation......... 32 NE-930 S2Cll Core Performance Report Page 2

of 58

LIST OF FIGURES FIGURE TITLE 1.1 Core Loading Map 1.2 Burnable Poison and Source Assembly Locations.

1.3 Movable Detector Locations 1.4 Control Rod Locations.

2.1 Cycle Burnup History 2.2 Monthly Average Load Factors PAGE 10 11 12 13 17 18 2.3 Assemblywise Accumulated Burnup:

Measured and Predicted 19 2.4 Assemblywise Accumulated Burnup:

Comparison of Measured and Predicted 2.5A Sub-Batch Burnup Sharing 2.5B Sub-Batch Burnup Sharing 2.5C Sub-Batch Burnup Sharing 2.50 Sub-Batch Burnup Sharing 3.1 Critical Boron Concentration versus Burnup (HFP,ARO) 4.1 Assemblywise Power Distribution - S2-ll-13 4.2 Assemblywise Power Distribution - S2-ll-22 4.3 Assemblywise Power Distribution - S2-ll-32 4.4A Hot Channel Factor Normalized Operating Envelope (Applicable Through May 1992) 4.4B Hot Channel Factor Normalized Operating Envelope (Applicable After May 1992) 4.5 Heat Flux Hot Channel Factor, FQ(Z) - S2-11-13 4.6 Heat Flux Hot Channel Factor, FQ(Z) - S2-11-22 4.7 Heat Flux Hot Channel Factor, FQ(Z) - S2-11-32 NE-930 S2Cll Core Performance Report Page 20 21 22 23 24 26 33 34 35 36 37 38 39 40 3

of 58

LIST OF FIGURES (CONT'D)

FIGURE TITLE PAGE 4.8 Maximum Heat Flux Hot Channel Factor, FQ(Z)*P, vs.

Axial Position 41 4.9 Maximum Heat Flux Hot Channel Factor, FQ(Z), vs. Burnup 42 4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs, Burnup 4.11 Target Delta Flux versus Burnup 4.12 Core Average Axial Power Distribution - S2-11-13 4.13 Core Average Axial Power Distribution - S2-11-22 4.14 Core Average Axial Power Distribution - S2-11-32 4.15 Core Average Axial Peaking Factor vs. Burnup 5.1 Dose Equivalent I-131 vs. Time 5.2 I-131/I-133 Activity Ratio vs. Time NE-930 S2Cll Core Performance Report Page 43 44 45 46 47 48 52 53 4 of 58

Section 1 INTRODUCTION AND

SUMMARY

On March 6, 1993, Surry Unit 2 completed Cycle 11.

Since the initial criticality of Cycle 11 on June 5, 1991, the reactor core produced approximately 1.0996 x 108 MBTU (18,591 Megawatt days per metric ton of contained uranium).

The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 11.

The physics tests that were performed during the startup of this cycle were covered in the Surry Unit 2 Cycle 11 Startup Physics Test Report 1

and, therefore, will not be included here.

During the initial ascension to full power, the first flux map (taken at approximately 30% power) indicated that D-bank control rod F6 was possibly inserted.

Soon after it was confirmed F6 was fully inserted, the plant was shutdown for repairs on June 10, 1991.

Upon pulling the pressure vessel head and inspecting the rod cluster control assembly (RCCA), RCCA driveshaft, and upper internals guide tube, it was believed that control rod F6 was not properly latched during control rod latching following refueling.

The drive shaft for control rod F6 was replaced and the unit resumed operation on July 3, 1991.

C-bank control rod D4 dropped into the core twice in August, 1991.

D4 dropped first on August 14, initiating a turbine runback.

The rod was NE-930 S2Cll Core Performance Report Page

  • 5 of 58

retrieved on August 15 and power operation continued.

On August 23, D4 dropped into the core again, initiating another turbine runback.

This time D4 could not be retrieved and a safety analysis was performed which allowed the plant to stay on-line for two weeks with power restricted to 60%.

The plant continued operation at approximately 60% power until September 6, 1991 when the plant was brought off-line to repair D4's control rod drive mechanism, which had failed.

Repairs were completed and the unit was back on-line by September 15, 1991.

Besides the two dr.opped rod events, Unit 2 was off-line on four other occasions for repairs.

The plant tripped on August 2, 1991 due to an electrical fault on a vital bus.

On October 26, 1991, the unit was shut down to replace an expansion joint on the suction side of a high pressure heater drain pump.

A shutdown occured on December 11, 1991 to repair an RCS leak.

The final shutdown occured on July 6, 1992 wh.en a leaking pressuriz~r safety valve was discovered.

Foi all events, repairs were made and power operation resumed within one week, except for the July 6, 1992 maintanence outage which lasted approximately 13 days.

Surry Unit 2 began a power only coastdown on F~bruary 2, 1993, at which time the burnup was approximately 17,635 MWD/MTU.

The coastdown accounted for an additional core burnup of 956 MWD/MTU from the end of full power reactivity..

The Cycle 11 core consisted of 11 sub-batches of fuel: two fresh batches (batches 13A and l3B); four once-burned batches, three from Surry 2 Cycle 10 (batches 12A, l2B, and 12C), and one from Surry*l Cycle 6 (batch NE-930 S2Cll Core Performance Report Page 6

of 58

Sl/8B) six twice-burned batches, two from Surry 2 Cycles 9 and 10 (batches 11A and 11B), two from Surry 1 Cycle 6 and Surry 2 Cycle 10 (batches Sl/8A and Sl/8B), one from Surry 2 Cycles 7 and 8 (batch 9A),

and one from Surry 2 Cycles 6 and 7 (batch 8); and one thrice-bu.rned batch from Surry 2 Cycles 7, 8, and 9 (batch 9A).

Note that batch 9A is listed as both a twice and thrice burned batch, and batch Sl/8B is listed as both a once and twice burned batch. Eight batch 9A assemblies were previously irradiated in Surry 2 Cycles 7, 8 and 9, while four assemblies were previously burned in Surry 2 Cycles 7 and,8.

One Sl/8B assembly came from Surry 1 Cycle 6, and four Sl/8B assemblies were previously loaded in Surry 1 Cycle 6 and Surry 2 Cycle 10.

The Surry 2 Cycle 11 core loading map specifying the fuel batch identification and fuel assembly locations is shown in Figure 1.1.

The burnable poison.locations and source assembly locations are shown in Figure 1.2.

Movable detector locations that were available during Cycle 11 are sho_wn in Figure 1.3. Two movable detector locations (NS and H13) were out of service throughout Cycle 11.

Control rod locations are shown in Figure 1:4.

Routine core follow involves the analysis of four principal performance indicators.

These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.

The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.

RP-nr.tivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate the cycle burnup where coastdown operation will begin.

NE~930 S2Cll Core Performance Report Page 7 of 58

Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specification 2 limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.

Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent iodine-131 in the reactor coolant with the limits specified by the Surry Technical Specifications 2

  • Each of the four performance indicators is discussed in detail for the Surry Unit 2 Cycle 11 core in the body of this report. The results are summarized below:
1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.36% with the burnup accumulation in each batch deviating from design prediction by no more than +/-4.61%. These deviations occurred during the first 26 MWD/MTU of cycle burnup with D-bank control rod F6 fully inserted.

The maximum burnup tilt was +/-0.31%

and the maximum batch burnup accumulation was no more than +/-2.11~~ for operation after the repairs to F6 were completed.

2. Reactivity Depletion -

The critical *boron concentration, used to monitor reactivity depletion, was consistently within +/-0.44% AK/K of the design prediction which is within the +/-1%.AK/K margin allowed by Section 4.10 of the Technical Specifications.

NE-930 S2Cll Core Performance Report Page 8

of 58

3. Power Distribution -

Incore flux maps taken each month indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 2.0%.

All hot channel factors met their respective Technical Specification limits.

4. Primary Coolant Activity The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 11 was approximately 0.00294 µCi/gm.

This corresponds to less than 1% of the operating limit for the concentration of radioiodine in the primary coolant.

Radioiodine analysis indicate_d that there were no fuel rod defects.

NE-930 S2Cll Core Performance Report Page 9

of 58

R p

H H

Figure L 1 SURRY UNIT 2 - CYCLE 11 CORE tOADING MAP l

K J

H C

llA ISl/88 llA I

I OT6 I OCl I OT7 I

F E

I __ I __

._I __ I l-9:-A,--~IS-,-1-/8-A,--I 138 I 12A I 138 1""s1=-1:-::8-:-A-lc-:c9-A-I D

I 2R2 I 081 I 6V2 I OU9 I 5V8 I 083 I 3R7 I

__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

._1 __ 1 __

I llB I l3B I l3B I l2B I 13A I l2B I l3B I l3B I llB I

I 3T9 I 3V3 I 4V7 I 4Ul I lVl I 2U9 I 3V9 I 4V8 I 3T8 I

C

__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

I 9A I 12A I 138 I 128 I 13A I

8 I 13A I 128 I 138 I 12A I 9A I

I 2R7 I 1U9 I 6V3 I 4U8 I OV7 I 2P8 I OV4 I 3U6 I 5V4 I lUl I 4R3 I

8

__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

I 9A I l3B I l3B I 12A I 13A I 12A I 13A I 12A I 13A I 12A I 138 I l3B I 9A I

I OR4 I 6VO I 4V2 I 1U7 I l V3 I 1U2 I l V8 I. 2U5 I l V7 I 2U4 I 4V3 I 6Vl I 4R7 I

1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 IS1/8A I 138 I 128 I 13A I 12A I 13A I 12A I 13A I 12A I 13A I l2B I 138 IS1/8A I I 1Bl I 5V3 I 3U9 I 2V4 I 2U3 I 2V8 I OUl I 2V7 I 1U5 I 2V3 *1 5UO I 3V6 I 2BO I

A

__ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __, __, __ 1 __

I llA I l3B I 128 I 13A I 12A I 13A I 128 I 128 I 128 I 13A I 12A I 13A I l2B I 138 I llA I

I OT3 I 4V5 I 4U2 I 3VO I 2U2 I DV2 I 3U4 I 3Ul I 3U8 I lVO I 1U3 I OV9 I 4U5 I 5V5 I OT2 I

1 __ 1 __, __ 1 __, __, __, __, __ 1 __, __ 1 __ 1 __ 1 __, __, __,

ISl/88 I 12A I 13A I

8 I 13A I 12A I 128 ISl/88 I 128 I 12A I 13A I

8 I 13A *( 12c ISl/88 I I 2C7 I 1U8 I DV6 I 6P6 I 1V2 I OU7 I 4U6 I 1C9 I 4UO I 2U7 I 2VD I 1P4 I OVl I 5U3 I 2C6 I

1 __ 1 __ 1 __, __ 1 __, __ l __, __ 1 __, __ 1 __ 1 __, __ 1 __, __,

I llA I 138 I l2B I 13A I 12A I 13A I 128 I l2B I l2B I 13A I 12A I 13A I 128 I 138 I llA I

I OT4 I 3V5 I 4U9 I 1V9 I DUS I 1V5 I 3U3 I 3U5 I 5U2 I DYS I 2Ul I 2V5 I 3UO I 4V9 I on I

I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I IS1/8A I 138 I 128 I 13A I 12A I 13A I 12A I 13A I 12A I 13A I 128 I 138 IS1/8A I I 086 I 4V4 I 3U2 I 3Vl I 1U6 I 2V6 I 2U6 I 2Vl I DU6 I 3V2 I 4U4 I 5V9 I 185 I

I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I I 9A I 138 I 138 I 12A I 13A I 12A I 13A *I 12A I 13A I 12A I 138 I 138 I 9A I

I 4R8 I 5VO I 3V8 I OU2 I DVB I OU4 I DV3 I 2U8 I 1V6 I DU3 I 5Vl I 4Vl I 4R5 I

, __, __, __, __ I __, __, __, __, __, __, __, __, __,

I 9A I 12A I 138 I 128 I 13A I

8 I 13A I 128 I 138 I 12A I 9A I

I OR6 I lUO I 6V4 I 4U7 I 2V2 I lP9 I 2V9 I 4U3 I 3V7 I 1U4 I 2R5 I

, __, __, __, __, __, __ I __, __, __, __, __,

I 118 I 138 I 138 I 128 I 13A I 128 I 138 I 138 I 118 I

I 4TD I 5V6 I 3V4 I 3U7 I 1V4 I 5Ul I 5V7 I 4V6 I 3T7 I

I 9A I Sl/8A I 138 I 12A I 138 I Sl/8A I 9A.

I I 2Rl I 082 I SV2 I DUB I 4VO I 188 I 2R6 I

I llA (Sl/88 I ll~

I I

(--> BATCH I OTS I 3C5 I DT8 I

I

(--> ASSEHBLY ID I __ I FUEL ASSEHBLY DESIGN PARAHETERS SUB-BATCH Sl/8A Sl/88 8

9A llA 118 12A 128 12C 13A 138 INITIAL ENRICHHEHT 3.22 3.40 3.61 3.59 3.59 3.79 3.79 4.00 3.80 3.81 4.00 (W/0 U-235)

ASSEHBLY TYPE l5xl5 l5Xl5 ISXlS ISXIS 15Xl5 ISXIS ISXlS 15Xl5 15Xl5 15Xl5 ISXIS NUHBER OF ASSEHBLIES 8

5 4

12 8

4 27 24 l

32 32 FUEL RODS PER ASSEHBLY 204 204 204 204 204 204 204 204 204 204 204 NE-930 S2Cll Core Performance Report*

Page 10 of 58 l

3 4

5 6

7 8

9 10 11 12 13 14 15

R p

N Figure 1.2 SURRY UNIT 2 - CYCLE 11 BURNABLE POISON AND SOURCE ASSEMBLY LOCATIONS H

K J

H G

I I

I I

I F

E

_____ I __ I __

I __ I ____

I 3P I

I 3P I

I I

IBP065 I IBP067 I I

I D

I __

I __

I __ I __

I __

I __

I __

I __

I I

8P I 17P I

I zop I

I 17P I

8P I

I I

I BP077 I BP094 r I BP106 I I BP095 I BP079 I I

C

__ 1~_1 __ 1 __ 1 __ 1~-'~-1 __ 1 __, __ I_*_

I I

I zop I

I 16P I

I 16P I

I zop I

I I

I I

IBP126 I IBP086 I IBP087 I IBP127 I I

I B

__ I __ I __ I __

I __ I __ I __

I __

I __ I __

I __ I __

I __

I I

8P I ZOP I

I 20P I

I 20P I

I 20P I

I 20P I

8P I

I I SS4 I BP078 I BP128 I I BPUO I I 81>102 I I BPlll I I BP129 I BP080 I I

, __ 1 __, __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I

I 17P I

I zop I

I 20P I

I 20P I

I 20P I

I 17P I

I I

IBPlOl I IBP112 I IBP113 I IBP114 I IBP115 I IBP096 I I

A

__, __, __, __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

1 __

1 __ 1 __ 1 __ 1 __

I I

3P I

I 16P I

I 20P I

I 4P I

I 20P I

I 16P I

I 3P I

I I

I BP066 I I 8P088 I I BP116 I I BP073 I I BPU 7 I I BP089 I I BP068 I I

1 __

1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __

1 __ 1 __ 1 I

I I 20P I

I ZOP I

I 4P I 12P I

4P I

I 20P I

I 20P I

I I

I I

IBP107 I IBP103 I IBP074 IBP085 IBP075 I IBP104 I IBP108 I I

I 1 __ 1 __ 1 __, __

1 __ 1 __ 1 __

1 __

1 __ 1 __ 1 __

1 __

1 __

1 __ 1 __

1 I

I 3P I

I 16P I

I 20P I

I 4P I

I ZOP I

I 16P I

I 3P I

I I SS3 IBP071 I IBP090 I IBP118 I IBP076 I IBP119 I IBP091 I IBP069 I SS5 I

1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I

I 17P I

I 20P I

I 20P I

I 20P I

I ZOP I

I 17P I

I I

IBPlOO I IBP120 I IBP121 I IBP122 I IBP123 I IBP097 I I

I __

I __

I __

I __

I __

I __

I __

I __

I __

I __

I __

I __

I __ I I

I 8P I 20P I

I ZOP I

I 20P I

I 20P I

I 20P I

8P I

I I

IBP083 IBP130 I IBP124 I IBP105 I IBP125 I IBP131 IBP08l I I

I __

I __

._I __

I __

I __

I __

I __

I __

I __

I __

I __

I __

I __

I I

I I 20P I

I 16P I

I 16P I

I 20P I

I I

I I

IBP132 I IBP092 I IBP093 I IBP133 I I

I l __ l __ l __ l __ l __ l __ l __

  • _I __

I __

I __

I __

I I

I 8P I 17P I

I 20P I

I 17P I

8P I

I I

IBP084 IBP099 I IBP109 I IBP098 IBP082 I I

I __ I __

I __

I __

I __

I __

I __

I __

I __

I I

I I

3P I

I 3P I

I I

3P -

3 BURNABLE POISON ROD CLUSTER 4P -

4 BURNABLE POISON ROD CLUSTER 8P -

8 BURNABLE POISON ROD CLUSTER I

I I BP072 I I BP070 I I

I I __

I __

I __

I __

._I __

I __

I __

I I

I I

I 12P -

12 BURNABLE POISON ROD CLUSTER 16P -

16 BURNABLE POISON ROD CLUSTER 17P -

17 BURNABLE POISON ROD CLUSTER 20P -

20 BURNABLE POISON ROD CLUSTER SSx -

SECONDARY SOURCE I

I I

I I __ I __ I __ I xxP or SSx BP tttttt

~ OF BP RODS or SECONDARY SOURCE ID BP ASSEHBL Y ID NE-930 S2Gll Gore Performance Report Page 11 of 58 2

3 4

5 6

7 8

9 10 11 12 13 14 15

R p

N Figure 1.3 SURRY UNIT 2 - CYCLE 11 MOVABLE DETECTOR LOCATIONS H

L K

J H

G I

F E

D C

B A

I I

HD I

I I

_____ I __ I __ I __ I ____ _

I I

I I

I I

I I

I I

I I

I HD I

I 2

1 __ 1~_1 __ 1~_, __

1 __

1 __

1 __

I I

I I

I I

I I

I I

IHDI I

IHDIHDI I

I IHDI 3

1 __

1 __

1 __

1 __

1 __

1 __ 1 __

1 __

1 __

I I

I I

I I

I I

I I

I I

I I

I HD I

I I

HD I

I HD I

I I

I 4

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I I

I I

I I

I I

I I

I I

I I

I I

I IHDI IHD*I I

I IHDIHDI IHDI 5

1 __

1 __

1 __ 1 __

1 __

1 __

-_1 __

1 __

1 __

1 __ 1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

I I

I I

I HD I

I I

HD I

I HD I

I I

I I

6 1 __

1 __

1_* __ 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

I I

I I

I I

I I

I I

I I

I I

I I

I I

I HD I

  • I I

I HD I

I HD I

I I

HD I

I HD I

I 7

1 __ 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

I I

I I

HD I

I HD I

I HD I

I I

I I

HD I

I I

HD I

HD I

I 8

1 __ 1 __ 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

HD I

I I

I HD I

HD I

I I

I I

HD I

1 __

1 __ 1 __ 1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 I

I I

I I

I I

I I

I I

I I

I I

I HD I

I I

I HD I

I I

I I

HD I

I HD I

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __

1 __ 1 __

1 I

I I

I I

I I

I I

I I

I I

I I

I I

I HD I

I I

HD I

I HD I

HD I

I I

I l,l.

I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I I

I I

I I

I I

I I

I I

I I

HD I

I I

I HD I

I I

I I

HD I

HD I

12 1 __

1 __

1 __ 1 __ 1 __ 1 __

1 __ 1 __ 1 __

1 __ 1 __ 1 I

I I

I I

I I

I I

I I

I I

I I

I

. I HD I

I I

B I __ I __ I __ I __ I __ I __ I __ I __ I __ I I

I I

I

.I I

I I

I HD I

I I

I HD I

I I

14 I __ I __ I __ I __ I __ I __ I __ I I

I I

I 110 -

Movable Detector I

HD I

I I

15 I __ I __ I __ I NE-930 S2Cll Core Performance Report Page 12 of 58

R p

N H

Figure 1.4 SURRY UNIT 2 - CYCLE 11 CONTROL ROD LOCATIONS L

K J

H 180° I

G F

E D

C Loop A I

I I

I Loop c Outlet I __ I __ I __ I Inlet

\\

I IAI IDI IAI I/

_I_I_I_I_I_I_I_I_

B N-41 I

I I

I SA I I SA I I SP I I

N-43.

__ I_I_I_I_I_I_I_I_I_I_

I I c I

I B *I I

I I B I I c I

I

_1_1_1_1_1_1_1_1_1_1_1_1_

I I SP I I SB I I SP I I

I I -SB I I

I I

1_1_1_1_1_1_1_1_1_1_1_1_1_1 IAI IBI IDI ICI-IDI IBI IAI A

Loop A __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I__

Loop C_

Inlet,.!

I I SA I I

I I SB I I SB I I SP I I SA I I

I Outlet

~_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I/

90°-

I I D I I

I I c I

I I

I c I

I I

I D I

I - 210° 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 I

I I SA I I SP I I SB I I SB I I

I I SA I I

I l_l_l_l_*_l_l_l_l_l_l_*_I_I_I_I_I_I IAI IBI IDI ICI IDI IBI IAI I_I_I_I_I_I_I_I_I_I_I_I_I_I I

I I

I SB I I

I I SP I I SB I I SP I I

I_I_I_I_I_I_I_I_.I_I_I_I_I_I I

I c I

I B I I

I I B I I c I

I l_l_l_*I_I_I_I_I_I_I_I_I I

I SP I I SA I I SA I I

I I

N-44 I __ I __ I __ I __ I __ I __ I __ I __ I __ I N-42

/

I I A I ID I I A I I

1_1_1_* 1_1_1_1_1, I

I I

I Loop B I __ I __ I __ I Loop B Absorber Outlet Inlet Material I

Ag-In-Cd o0 Function Control Bank D Control Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA SP (Spare Rod Locations)

Number of Clusters 8

8 8

8 8

8 8

NE-930 S2Cll Core Performance Report:

Page 13 of 58

  • l 2

3 4

5 6

7 8

9 10 11 12 13 14 15

Section-2 BURNUP The Surry Unit 2 Cycle* 11 burnup history is graphically depicted in Figure 2.1.

Surry 2 Cycle 11 achieved a cycle burnup of 18,591 MWD/MTU.

As shown ip Figure 2. 2, the average load factor for Cycle 11 was 86. 0%

when referenced to rated thermal power (2441 MW(t)).

Unit 2 performed a power coastdown start*ing on February 2, 1993 until shutdown for refueling on March 6; 1993.

  • Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis.

The TOTE 3 computer code is used to calculate these assemblywise burnups.

Figure 2. 3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 11 operation is-given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 11 operation _is given.

As can be seen from this figure, the accumulated assembly burnups were generally within +/-3.39% of the predicted values.

In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.36%.

The burnup sharing on a batch basis is monitored to verify.that the core is operating as designed and to enable accurate end-of-cycle batch NE-930 -S2Cll Core Performance Report*

Page 15 of 58

burnup predictions to be made for use in reload fuel design studies.

Batch definitions are given in Figure 1.1. As seen in Figures 2.5A, 2.5B, 2.5C, and 2.5D,. the batch burnup sharing for Surry 2 Cycle 11 followed design predictions closely with no batch deviating from prediction by more than +/-4.61%.

This batch burnup deviation occurred during the first 26 MWD/MTU of the cycle with n~bank control rod F6 fully inserted.

(Design predictions assumed the entire cycle operated with all rods fully withdrawn.)

The maximum batch burnup deviation was no more than +/-2.11%

for Cycle 11 operation after F6 was recovered.

The batch burnup sharing deviations in conjunction with reasonable agreement between actual and predicted assemblywise burnups, and symmetric core burnups indicate that the Cycle 11 core did deplete as designed.

NE-930 S2Cll Core Performance Report Page 16 of 58

moo 21DDD 2DDDD 19DDD 18DDD 17DDD 160DD 2' 150DD I

! 14000 13DDD 12DDD

a.
, 11DDD z

a: 1DDDD m. 90DD

~ BODO

~ mo

&ODD SOOD 40DD mo mo 1DDD D -..

a:
II....

/

/

~

I/

u, ICL. -

II C,

en Cl Clo Clo Clo Clo Figure 2.1 SURRY UNIT 2 - CYCLE 11 CYCLE BURNUP HISTORY

)I' V

~

/

J

/

/

/~

/

l,-1 V

C,

a: "" ""

ao: -

z:

ICL.

co....

C C

ICL.

C

II
II
z:

Cl........,..

C -........

C Clo Clo ;;;

Clo a

c,,

Clo Clo ;;;

Clo Clo TIME (MONTHS)

MAXIMUM DESIGN BURNUP -

NE-930 S2Cll C~re Performance Report

,/

/

1' V

/

V

,/

/

j C,

a: "" ""

ao:

u co....

C C

ICL.

Cl

z:

Cl........ -

C Clo Clo Clo a

c,,

Clo Clo 2110.0 MWD/MTU*

Page

. 17 of 58

z trj I

\\0 v) 0 C/l N n JUN 91 I-'

I-'

JUL 91 n

AUG 91 0

t1 CD SEP 91

'"cl OCT 91 CD t1 NOV 91 H-,

0 t1 DEC 91 a

PJ JAN 92

!:I n CD FEB 92

0 MAR 92 CD

'O

s::

APR 92 0

t1 0

rt-z MAY 92 t-3

i:

JUN 92 JUL 92 AUG 92

'"cl JAN 93 PJ

()Q FEB 93 CD "MAR 93 I-'

CYCLE AVERAGE co 0

H-,

IJ1 co 0

I I

N 0

I I

w 0

I I

I PERCENT

. I u,

0 I

I

<J) 0 I

I

-.J 0

I I

co 0

I I

I.D

o.

I I

~

0 0

I

2 3

4 5

6 7

8 9

IO 11 12 13 14 15 R

p N

Figure 2.3 SURRY UNIT 2 - CYCLE 11 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)

H L

K J

H G

F E

D C

8 A

I 39.IOI 29.501 40.201 I 39.781 28.961 39.781 I

HEASURED I I PREDICTED I I 39.641 40.121 18.651 33.III 18.691 40.311 39.351 I 39.011 39.931 18.911 33.391 18.911 39.931 39.0II I 43.IDI 19.271 22.301 37.811 22.831 37.571 22.631 19.771 42.581 I 42.821 19.531 22.821 38.471 23.481 38.471 22.821 19.531 42.821 I 41.661 32.571 23.091 41.991 24.411 47.181 24.191 41.191 23.641 33.081 41.471 I 41.481 32.661 23.841 42.141 24.421 47.641 24.421 41.921 23.841 32.661 41.481 I 39.181 19.381 23.391 41.861 24.461 42.331 24.851 42.321 24.801 41.861 23.041 19.241 39.621 I 38.991 19.461 23.801 41.951 24.701 42.661 24.861 42.661 24.701 41.821 23.801 19.461 38.991 I 40.471 22.871 41.591 24.301 42.321 24.701 41.921 24.481 42.361 24.541 41.271 22.321 39.781 I 39.961 22.791 42.131 24.711 42.751 24.361 41.581 24.361 42.751 24.711 41.901 22.791 39.961 I 39.781 19.ool 37.981 24.0II 41.631 24.381 41.921 40.771 40.541 24.491 42.551 23.901 38.031 18.381 39.471 I 39.791 18.901 38.461 24.421 42.661 24.391 41.451 40.701 40.881 24.391 42.661 24.421 38.461 18.901 39.791 I 29.491 33.321 22.961 46.361 24.171 41.501 41.071 32.231 39.641 41.741 24.631 47.341 22.681 33.821 29.061 I 28.951 33.381 23.471 47.611 24.881 41.591 40.741 31.691 40.081 41.591 24.881 47.611 23.471 33.381 28.951 I 39.421 18.601 37.291 24.0II 42.821 24.341 40.551 40.021 41.0II 23.981 42.341 23.921 37.981 18.901 39.741 I 39.791 18.901 38.461 24.421 42.661 24.391 41.451 40.701 41.451 24.391 42.661 24.421 38.461 18.901 39.791 R

I 40.221 22.021 41.771 24.871 42.001 24.071 41.411 24.DII 41.891 24.531 41.301 23.021 39.411 I 39.961 22.791 42.131 24.711 42.751 24.361 41.581.24.361 42.751 24.711 42.131 22.791 39.201 I 39.341 19.381 23.511 41.461 24.411 42.061 24.401 41.991 24.161 41.851 23.911 19.721 39.411 I 38.991 19.461 23.801 41.821 24.701 42.661 24.861 42.661 24.701 41.821 23.801 19.461 38.991 p

I 41.731 32.761 23.591 41.611 24.IDI 47.471 24.00I 41.321 23.541 32.811 41.511 I 41.481 32.231 23.841 42.141 24.421 47.641 24.421 42.141 23.841 32.661 41.481 I 43.331 20.021 22.111 37.581 22.981 38.291 22.201 19.371 42.451 I 42.821 19.531 22.821 38.471 23.481 38.471 22.821 19.531 42.821 I 39.061 40.221 19.351 33.ool 18.601 39.0ll 38.711 I 39.0ll 39.931 18.911 32.981 18.911 39.541 39.0II I 39.491 29.501 39.831 I 39.781 28.961 39.781 N

H J

H G

F E

D C

8 A

NE-930 S2Cll Core Performance Report Page 19 of 58 2-

.3 4

5 6

7 8

9 IO 11 12 13 14 15

2 3

4 5

6 7

8 9

10 11 12 R

p N

Figure 2.4 SURRY UNIT 2 - CYCLE 11 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (GWD/MTU)

L K

J H

G F

E D

C B

A I 39.101 29.501 40.201

1. -1.701 1.841 1.061 I

MEASURED I

I N/P % DIFF I I 39.641 40.121 18.651 33.111 18.691 40.311 39.351 I

1.641 o.481 -1.351 -0.831 -1.161 o.961 o.891 I 43.101 19.271 22.301 37.811 22.831 37.571 22.631 19.771 42.581 I

o.671 -1.321 -2.261 -1.101 -2.751 -2.331 -o.841 1.201 -0.561 I 41.661 32.571 23.091 41.991 24.411 47.181 24.191 41.191 23.641 33.081 41.471 I

o.451 -0.281 -3.131 -0.341 -0.021 -0.961 -0.941 -1.751 -0.821 1.271 -0.011 I 39.181 19.381 23.391 41.861 24.461 42.331 24.851 42.321 24.801 41.861 23.041 19.241 39.621 I

o.471 -0.391 -1.121 _-o.231 -o.991 -o.771 -0.051 -o.791 o.401 0.091 -3.171 -1.131 1.621 I 40.471 22.871 41.591 24.301 42.321 24.701 41.921 24.481 42.361 24.541 41.271 22.321 39.781 I

1.271 o.351 -1.271 -I.651 -1.001 1.371 o.821 o.471 -0.911 -0.671 -1.501 -2.091 -0.461 I 39.781 19.001 37.981 24.011 41.631 24.381 41.921 40.771 40.541 24.491 42.551 23.901 38.031 18.381 39.471 I -0.021 o.541 -1.261 -1.671 -2.431 -0.011 1.131 0.161 -0.841 o.441 -0.211 -2.121 -1.121 -2.761 -0.801 I 29.491 33.321 22.961 46.361 24.171 41.501 41.071 32.231 39.641 41.741 24.631 47.341 22.681 33.821 29.o61 I

I.851 -0.191 -2.211 -2.641 -2.851 -0.241 o.821 1.731. -1.091 o.341 -1.001 -0.561 -3.381 1.311 o.371 I 39.421 18.601 37.291 24.0ll 42.821 24.341 40.551 40.021 41.0ll 23.981 42.341 23.921 37.981 18.901 39.741 I -0.921 -I.571 -3.061 -1.681 o.361 -o*.201 -2.181 -I.681 -1.011 -1.681 -0.761 -2.051 -1.261 0.011 -o.131 I 40.221 22.021 41.771 24.871 42.001 24.071 41.411 24.0ll 41.891 24.531 41.301 23.021 39.411 I

0.651 -3.391 -0.841 o.681 -1.751 -1.221 -0.411 -1.471 -2.0ll -0.731 -1.961 l.Oll 0.551

  • I 39.341 19.381 23.511 41.461 24.411 42.061 24.401 41.991 24.161 41.851 23.911 19.721 39.411 I. 0.881 -o._381 -1.231 -o.851 -1.171 -I.401 -1.871 -1.561 -2.171 o.081 o.451 1.331 1.011 I 41.73~ 32.761 23.591 41.611 24.lOI 47.471 24.001 41.321 23.541 32.811 41.511 I

o.621 1.641 -1.061 -1.261 -I.291 -0.361 -1.711_ -1.931 -1.251 o.451 0.011 2

3 4

5 6

7 8

9 11 12 13 I 43.331 20.021 22.111 37.581 22.981 38.291 22.201 19.371 42.451 I

1.201 2.481 -o.471 -2.301 -2.101 -0.451 -2.731 -0.811 -0.861 13 14 15 SUB I STANDARD DEV I I

= o.79 I

R p

NO. OF N

BATCH ASSEMBLIES Sl/8A 8

Sl/8B 5

8 4

9A 12 llA 8

llB 4

12A 27 l2B 24 12C 1

13A 32 l3B 32 I ARITHMETIC AVG I (PCT DIFF = -0.59(

I 39.061 40.221 19.351 33.00I 18.601 39.0ll 38.711.

14 I

o.131 o.731 2.331 0.061 -1.631 -1.341 -o.751 I 39.491 29.501 39.831 I -o.721 1.861 o.141 H

K SUB-BATCH SHARING IMWD/MTUJ BOC BATCH BURNUP 30,387 19,909 28,417 33,544 34,262 35,121 18,629 17,875 16,581 0

D, J

H G

EOC BATCH BURNUP 39,941 29,953 47,087 40,057 39,628 42,867 39,663 40,004 33,819 24,141 21,067 CYCLE AVERAGE ACCUHULATED BURNUP F

CYCLE BURNUP 9,554 10,044 18,670 6,513 5,366 7,746 21,034 22,129 17,238 24,141 21,067

= 18,591 E

D C

I AVG ABS PCT I I DIFF = 1.16 I B

A BURNUP TILT NW=

0.18 I NE=

0.05


1------------

sw =

0.00 I SE= -0.23 15 NE-930 S2Cll Core Performance Report Page 20 of 58 :

.i..

52 48 44 I

I i

I i

I 36

~

,,I-

/1 D

~[)

,,<D

'/(

n p

I l

I I

i I

/"

rl I

ltK, I

24 i

//

,1 j )

'J /

d. ~ :::,~

I A 7v

~ ft.I 20 V' 'w ~

v~ V 16 ~

i Figure 2.5A SURRY UNIT 2 -

CYCLE 11 SUB-BATCH BURNUP SHARING I/

IL -

IL IL' V

L IV

/

V A JV 0

,,,(-

/

,/-

,,K)

,,,f K>

1.-1 V>

IA:

~

V

/ rv

/

./tv

'" l?'

I/ '

I?'

~

I, I/

V's l'\\.1/, V' LA. D 1"1/:. V' A,D l~.r

/

J v~

J

~

' ~

.y l..k

~ =

/..

~ l'Y rv

' I~

lY

/

V

/

SUB-BATCH 12B 0

SUB-BATCH 12C SUB-BATCH 8

0 0

2 4

6 8

10 12 14 16 18 20 CYCLE BURNUP (GWd/MtU)

NE-930 S2Cll Core Performance Report Page 21 of 58

44 40 I

~

~

I' 36

~

~

I i

I I

I i

24 I

yj

)

20 I

16 0

I I

I I

I I

,~

~

~

~

5(

k)"" ' !

I i i

' I I

I I

i I

(}

i G /

)

rV 7T I I I

I I

I I

~

Figure 2. SB.

SURRY UNIT 2 - CYCLE 11 SUB-BATCH BURNUP SHARING

~

'71',.

1,.....

r*,, '

~

',, ~

~

H

/ 1' f<S iO Iv IA k

r"/1 6 10 IV 0

_, ~

_J...-?"' r( ~

~

\\. "

rl

_./

}'--'

/

p I

9')

_V V

f

/-

~

I/

e V

/

~

)

v-k'5 ~

l,e5 2

4 6

8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MtU)

SUB-BATCH llA 0

SUB-BATCH llB SUB-BATCH 12A 0

NE-930 S2Cll Core Performance Report Page 22 of 58

°'

D z p:;

D i::o

r:

44 40 36 u 28

~

i::o I

i::o D

Cf) 24 20 16

~

~

i:, -

[_/(

D'Ll

,) ~

r L.k b,.--' !Y"r, I

K v< ~

t>'v V), /

' V

.I/..;

Figure 2.SC SURRY UNIT 2 - CYCLE 11 SUB-BATCH BURNUP SHARING 0

l.Q-~

rv n,,.

r.kY w ~

K) rl_...k v

,,X: K>

~

.1..-< ~

v K.

K

-8 I~ ~v

~

V

"/

1/1* I" L;

l:'l'I"-

) V 3l /

-~

~

I,,,,

/

~

SUB-BATCH Sl/8A 0

SUB-BATCH Sl/8B SUB-BATCH 9A 0

0 2

4 6

8 10 12 14 16 18 20 CYCLE BURNUP (GWd/MtU)

NE-930 S2Cll Core Performance Report Page

  • 23 of 58

28 24 20 o.. 16 p z

~

p c:o

r:: u E-i

~ 12 I

c:o p

Cf) 8 4

0

(}

J) ll7f

~l

), {

,,, ~

xllf<

V Figure 2.50 SURRY UNIT 2 - CYCLE 11 SUB-BATCH BURNUP SHARING I~

~

'V lP ft::,

~ *

,J ~

µ 1;,z I

,,~ ~

17 [J j ~j *1,

() ~~v

~v" V II: '/

t, /

~

I/

N

,)

~ I

-~

1.7'1'

. I 1/1' SUB-BATCH 13A 0

SUB-BATCH 13B 0

2 4

6 8

10 12 14 16 18 20 CYCLE BURNUP (GWd/MtU)

NE-930 S2Cll Core Performance Report Page 24 of 58

Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLOW 4 comput~r code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon concentration, moderator temperature, and power level.

The normalized critical boron concentration versus burnup curve for the Surry 2 Cycle 11 core is shown in Figure 3. 1.

Reliable measured data was unavailable over the 1000 MWD/MTU to approximately 2500 MWD/MTU cycle burnup range due to the frequent outages, dropped rod events and periods of reduced power operation during this time.

Therefore, Figure 3.1.shows a gap in the measured data over this period.

The maximum difference between measured and predicted critical boron concentrations was 54 ppm.

The largest reactivity anomaly was +/-0.44% ~K/K which is within the +/-1% ~K/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications.

In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 11 core depleted as expected without any reactivity abnormalities.

NE-930 S2Cll Core Performance Report Page 25 of 58

1500

_..... 1400

E D. 1300 e:..

1200 z

Q 1100

~

! 1000 1-z 900 w

u 800 z

0 700 u

z 600 0

a:

0 500 m 400 g 300

-!: 200 a:

  • u 100 0

!~at I

I Figure 3.1 SURRY UNIT 2 - CYCLE 11 CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARO)

~

~"\\

" ~~

~ t\\

"' ~.

1't

'~ '

~

~

~

I I

I I

I

~

' ~

~ ~

0 1 2 3 4 5 8 7 8 9 10 11 12 13 14 15 18 17 18 19 CYCLE BURNUP (GWD/MTU)

..._I r _r r_M_&\\SURED--==-PRED_.

ICTED_.

  • ___.1 NE-930 S2Cll Core*Performance Report Page 26 of 58

I Section 4 POWER DISTRIBUTION Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specification limits and to ensure that the reactor is operating without any abnormal conditions which could cause an "uneven" burnup distribution. Three-dimensional core pow_er distributions are determined from movable detector flux map measurements using the INCORE 5 computer program.

A summary of all full core flux maps taken for Surry* 2 Cycle 11 is provided in Table 4.1, excluding the initial power ascension flux maps.

Power distribution maps were generally taken at monthly intervals with additional maps taken as needed, e.g. to verify hot channel fattors were within the Technical Specification limits during operation with C-bank control. rod D4 misaligned fully in.

Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4:1, 4.2, and 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life.

Figure 4.2 shows a power distribution map that was taken near the mid-cycle burnup.

Figure 4.3 shows a map that was taken near the end of Cycle 11.

Except for the maps taken with C-bank control rod D4

  • inserted, the maximum relative assembly power difference between measured and predicted was 8.5% and the maximum *average percent difference was equal to 2.0%.

In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for each case, except for the maps with D4 NE-930 S2Cll Core Performance Report..

Page 27 of 58

inserted or shortly after D4 was retrie~ed during power operation (Map 6).

During this latter situationt a radial xenon oscillation had not had time to completely damp out before the flux map data was obtained.

An important aspe~t of core power distribution* follow is the monitoring of nuclear hot channel factors.

- Verification that these factors are within Technical Specification limits ensures that linear power density and cr:i.tical heat flux limits will not be violated, *thereby providing*-

_adequate thermal margin and maintaining 'fuel cladding integrity.

Surry Technical Specification*3.12 limited_ the axially dependent heat flux hot channel factor, FQ(Z), to _2.32 x K(Z), where K(Z) is the hot channel factor normalized operating-envelope.

Figure 4. 4A shows a plot _ of the K(Z) curve applicable through May; 1992.

Figure 4~4B gives a plot of the K(Z) curve for the balance of Cycle 11.

During Cycle 11, there was a revisiori to Surry *Technical Specification 3.12 which modified the K(Z).

enveiope 6

  • The axially dependent heat flux hot channel factors, FQ(Z), for a*

representative set of flux maps are given in Figures 4.5, 4.6, and 4.7.

Thro_ughout Cycle 11, the measured values of FQ(Z) were within the Technical Specification limit.

A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 11 is given in Figure 4.8. The minimum margin to the FQ(Z) limit was 20.42%.

It should be noted that the graphical representation'of Figure 4.8 does not demonstrate the FQ(Z) limit change, because the FQ(Z) limit_ over the first part of the cycle was more restrictive.

Figure 4. 9 shows the NE-930 S2C-ll Core Performance Report

  • Page 28 of 58

maximum values for the heat flux hot channel factor measured during Cycle

11.

The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.

The Technical Specificat~on limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.

Additionally, the F-delta-H limit ensures_that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.

Surry Technical Specification 3.12 limited the enthalpy rise hot channel factor to 1.55(1+0.3(1-P)) for Cycle 11 through May, 1992.

To compare to this limit, where.1.55 is the F-delta-H at rated thermal power and 0.3 is the part power multiplier, the measured F-delta-H must be increased by 4% for measurement uncertainty.

Surry Technical Specification 3.12 was revised in

June, 1992 to increase ~he F-delta-H limit to 1.56(1+0.3(1-P)), where 1.56 is the F-delta-H at rated thermal power 6
  • The measured F-delta-H without any uncertainty applied is compared directly to this limit.

In Table 4.1, flux maps through Map 22 have 4% uncertainty included to the listed F-delta-H values and were compared to the 1.55 limit.

The flux maps after Map 22 have no uncertainty applied and were compared to the 1.56 limit.

A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 11 is given in °Figure 4.10. This figure reflects the 100% power Technical Specification limit, the change in the 100% power Technical Specification limit and measured F-delta-H NE-930 S2Cll Core Performance Report Page

  • 29 of 58

values that have the appropriate uncertainty applied. (The limit curve does not reflect the higher limit for maps taken at power levels less than 100%.)

The change in the application of measurement uncertainty associated with the Technical Specification change explains the sudden drop in the measured F-delta-H values in Figure 4.10.

As can be seen from this figure, the minimum margin to the limit was 3.16% for Cycle 11.

The target delta flux* is the delta* flux which would occur at conditions of full power, all rods oux, and equilibrium xenon.

The delta flux is measured with_ the core at or near these conditions and the target delta flux is established at this measured point.

Since the target delta flux varies as a function of burnup, the target value is updated monthly.

By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.

This target delta-flux was also used to establish the operational axial flux difference bands while under CAOC.

The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been ~pproximately -1.5% at the beginning of Cycle 11 and decreasing to -3.0% near middle of Cycle 11 where it leveled off before increasing during the power coastdown.

This axjAl power shift can also be observed in the corresponding core average axial power distribution for a representative series of maps given in Fig~res 4.12 through 4.14.

In Map SZ-11-13 (Figure 4.12), taken at 2,986 MWD/MTU, the axial power distribution had a shape peaked toward the middle Pt-Pb

  • k Delta Flux =

X 100 2441 where Pt= power in top of core (MW(t))

Pb= power in bottom* of core (MW(t))

NE-930 S2Cll Core Performance Report Page 30 of 58

_j

of the core with an axial peaking factor (F-Z) of 1.177.

In Map s2-11-22 (Figure 4. 13), taken at approximately 9,650 MWD/MTU, the axial power distribution peaked slightly toward the bottom of the core with an axial peaking factor of 1.146.

Finally, in Map S2-11-32 (Figure 4.14), taken at 17,246 MWD/MTU, the axial peaking factor was 1.150, with an axial power distribution similar to Map S2-ll-22. The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.

In conclusion, the Surry 2 Cycle 11 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the FQ(Z) and F-delta-H hot channel factors were within the limits of the Technical Specifications.

NE-930 S2Cll Core Performance Report Page 31 of 58

Table 4.1 SURRY UNIT 2 - CYCLE 11

SUMMARY

OF FLUX MAPS FOR ROUTINE OPERATION I

l 2

I I

3 I

I I

I 41 BURN BANK F-Q(ZJ HOT F-DH(NJ HOT ICORE F(ZJ I

CORE I AXIAL I NO. I IHAPI UP D

CHANNEL FACTOR CHNL. FACTOR IHAX I

TILT I

OFF I OF I INO. I DATE HWD/

PWR STEPS I

I I

SET ITHIHI I

I I

HTU (7.) I ASSYIPINIAXIALI IAXIAL I FCZll HAX I LOCI (7.)

IBLESI I

I I

I I

I I

IPOINTIF-QCZJ IASSYIPIN IF-DHCNJIPOINT I I

I I

I I

I_I ___ I ___ I __ I 1 __ 1_1 __ 1 __ 1_1_1 __

1 __, __ 1 __ 1_1 __ 1_1 I 4 107-23-911 548 100.01 209 Jl4 GHI 36 1.846 Jl4I GH 1.453 33 ll.21511.0051 SEI -2.0601 47 I I 5 108-15-911 1210 58.401 185 Gl2 IHI 30 2.042 HlOI KL 1.532 30 ll.28011.0611 SWI -0.6371 48 I I 6 108-15-911 1230 61.80 I 185 F04 DEi 33 2.077 F041 DE 1.584 30 ll.26811.0601 NEI -1.2601 48 I I 7 108-17-911 1280 90.101 197 DlO ELI 34 1.872 DlO I EL 1.461 32 ll.22811.0071 SEI -2.2731 48 I I 8 108-19-911 1336 90.301 200 F04 DEi 34 1.866 F041 DE 1.463 31 ll.22511.0081 SEI -1.3831 48 I I 9 I 08-23-911 1423

51. 70 I 176 ll2 IHI 37 2.101 HlOI KL 1.575 34 ll.28811.0861 SWI -7.3781 48 110 109-16-911 1730 30.201 175 F04 DEi 26 2.003 F041 DE 1.502 26 ll.29111.0041 NWI 1.6491 48 111 I 09-17-91 I 1740 45.901 179 F04 DEi 30 1.960 F041 DE 1.492 30 ll.27511.0051 NEI -0.9801 48 112 I 09-30-91 I 2136 100.11 218 ClO GLI 34 1.806 ClOI GL 1.454 34 ll.19011.0091 NEI -1.2911 47 I 13 I 10-25-91 I 2986 99.901 221 E04 GHI 37 1.796 ClOI GL 1.455 37 ll.17711.0101 NEI -1.4111 48 114 111-01-911 2990 29.501167&168 F04 DEi 33 1.928 ll21 IH 1.491 31 ll.26411.0051 NWI -4.2651 46 I 15 111-25-91 I 3792 99.501 221 E04 GHI 36 I. 780 E041 GH 1.453 37 ll.16411.0091 NEI -1.3541 48 116 112-22-911 4423 99.601 223 E04 GHI 36 1.777 E04 I GH 1.459 41 ll.16211.0091 HEI -2.0831 48 117 IOl-23-921 5514 99.701 219 E04 DGI 43 1.762 H051 HG 1.461 43 I I..15411.0081 NEI -2.6561 48 I 18 I 02-15-92 I 6297 s1.001 181 HOS HGI 35 1.880 E041 CG 1.480 33 ll.21811.0111 NWI -5.1081 48 119 103-02-921 6784 100.01 219 E04 DGI 46 1.745 H051 HG 1.468 46 ll.14311.0051 NEI -2.4311 48 120 103-25-921 7574 100.01 222 F05 IHI 48 I. 758 H051 HG 1.471 47 ll.14411.0041 NEI -2.7121 48 121 104-29-921 8741 99.901 225 L08 IHI 48 1.795 L08 I IH 1.501 48 ll.14411.0011 SWI -2.8701 38 122 105-26-921 9650 100.01 223 L08 LIi 48 1.790 L081 LI 1.497 48 ll.146fl.0021 SWI -2.9591 123 106-26-921 10686 100.01 224 LIO IHI. 48 1.783 LIO I IH 1.430 48 fl.14211.0041 NW! -2.825 124 107-23-921 11145 81.40 I 199 LIO IHI 48 1.805 LIO I IH 1.441 48 fl.14511.0101 NW! -3.71 125 107-27-921 11288 100.01 220 LIO IHI 48 1.789 LIO I IH 1.434 48 ll.14411.0051 NWI -3.098 126 108-21-921 12073 100.01 220 LIO LJI 52 1.797 LIO I LJ 1.431 52 ll.15lll.0041 NWI -3.4791 127 I09-l5-92f 12913 100.01 224 LIO LJf 52 1.798 J061 DJ 1.438 52 ll.148fl.0031 HWI -3.0361 41 128 109-24-921 13216 99.901 224 LIO LJI 52 1.800 LIO I LJ 1.438 52 ll.15411.0051 HWI -3.2641 41 129 ll0-27-921 14332 100.01 224 LIO LFI 52 1.793 J06f DJ 1.435 52 fl.150il.003f HWf -2.9381 45 130 lll-25-921 15324 100.01 223 LIO LJI 52 1.792 J06f DJ 1.434 52 fl.14711.0041 NW! -2.7881 45 131 I 12-21-921 16204 100.01 223 LIO LJI 52 1.773 J061 DJ 1.426 52 ll.14511.0031 NWI -2.7731 45 132 IOl-22-931 17246 100.01 223 LIO LJI 52 1.777 J061 DJ 1.420 52 ll.150ll.004f HWI -3.0041 44 133 102-15-931 18063 88.901 224 J06 I DJI 09 1.744 JOG! DJ 1.416 10 fl.12811.0081 NW!

1.3521 45 I I_I ___ I ______ I

__ I_I ________ I _____

I __ I __ I_I __ I_I NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEHBLY LOCATIONS (E.G. H08 IS THE CENTER-OF-CORE ASSEHBLYl, FOLLOWED BY THE PIN LOCATION (DENOTED BY THE "Y'" COORDINATE WITH THE SEVENTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE "X" COORDINATE DESIGNATED IN A SIHILAR HAHNER>.

IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROH THE TOP OF THE CORE.

I. F-Q(Zl INCLUDES A TOTAL UNCERTAINTY OF 1.08.

2. F-DHCNl INCLUDES AN UNCERTAINTY OF 1.04 FOR All HAPS THROUGH HAP 22.

THERE IS HO UNCERTAINTY APPLIED TO F-DHCNl FOR HAPS 23 THROUGH 33.

3. CORE TILT - QUADRANT POWER TILT AS DEFINED BY THE INCORE CODE.
4. HAPS 5 AND 9 WERE TAKEN TO HONITOR PEAKING FACTORS WHEN CONTROL ROD D4 WAS INSERTED.

HAPS 6, 7, 8, 10, AND 11 WERE POWER ASCENSION HAPS TAKEN TO HONITOR PEAKING FACTORS AFTER CONTROL ROD D4 WAS RETRIEVED.

NE-930 S2Cll Core Performance Report Page 32 of 58

R p

N Figure 4.1 SURRY UNIT 2 - CYCLE 11 ASSEMBLYWISE POWER DISTRIBUTION S2-11-13 L

K J

H G

F E

D C

B PREDICTED NEASURED

.PCT DIFFERENCE.

0.27 0.35 0.27

. 0.27. 0.36. 0.27.

1.3.

1.2. 2.1.

PREDICTED NEASURED

.PCT DIFFERENCE.

0.30 0.49 1.03 0.94 1.04 0.50 0.30

. 0.31. 0.50. 1.03. 0.94. 1.06. 0.51. 0.31.

2.0.

0.9

  • 0.2. -0.2
  • 1.2. 3.3. 4.0
  • 0.39 1.05 1.24 1.22 1.27 1.23 1.25 1.06 0.39

. 0.39. 1.04. 1.22. 1.23. 1.25. 1.24. 1.27. 1.10. 0.41.

1.3. -1.3. -1.3. 0.7. -1.2. 0.7. 1.9. 3.2. 5.0.

0.37 0.89 1.27 1.28 1.27 0.99 1.28 1.29 1.28 0.89 0.37

. 0.38. 0.87. 1.22. 1.26. 1.28. 1.01. 1.29. 1.30. 1.30. 0.91. 0.38.

2.0. -1.3. -3.6. -1.6. 0.7. 1.8. 0.7. 0.6. 1.5. 1.9. 2.0.

0.30 1.05 1.27 1.24 1.25 1.22 1.30 1.22. 1.26 1.25 1.28 1.06 0.30

. 0.30. 1.04. 1.24. 1.22. 1.23. 1.22. 1.31. 1.24. 1.28. 1.27. 1.27. 1.06. 0.31.

. -0.3. -1.3. -2.5. -1.9. -1.6. 0.6. 1.2. 1.3-. 1.5. 1.6. -0.8. 0.6. 2.5.

0.49 1.24 1.28 1.25 1.21 1.23 1.22 1.24 1.22 1.26 1.29 1.24 0.49

. 0.49. 1.24. 1.26. 1.23. 1.20. 1.24. 1.23. 1.25. 1.24. 1.27. 1.29. 1.24. 0.50.

. -0.3. -0.3. -1.5. -2.l. -0.6. 0.9. 0.5. 0.9. 1.6. 0.8. -0.2. -0.2. 0.7.

A 0.27 1.04 1.23 1.28 1.22 1.23 1.21 1.19 1.24 1.24 1.22 1.28 1.22 1.03 0.27 2

3 4

5 6

. 0.28. 1.05. 1.22. 1.26. 1.19. 1.22. 1.23. 1.20. 1.24. 1.26. 1.23. 1.27. 1.22. 1.03. 0.27.

7 3.8. 0.5. -0.5. -1.5. -2.5. -0.6. 1.7. 0.9. 0.8. 1.6. 0.9. -0.8. -0.7. -0.8. 0.3.

0.35 0.94 1.27 1.00 1.30 1.23 1.19 1.12 1.20 1.23 1.30 1.00 1.27 0.94 0.35

. 0.37. 0.95. 1.25. 0.99. 1.27. 1.22. 1.21. 1.13. 1.21. 1.25. 1.31. 0.98. 1.25. 0.96. 0.36.

8 3.7. 0.8. -1.2. -1.0. -2.1. -0.3. 1.8. 1.2. 1.3. 2.0.

1.0. -1.4. -1.4. 1.3. 1.0.

0.27 1.03 1.22 1.27 1.22 1.23 1.22 1.18 1.21 1.23 1.22 1.28 1.23 1.05 0.27

. 0.28. 1.03. 1.19. 1.26. 1.23. 1.23. 1.22. 1.19. 1.23. 1.24. 1.24. l*.28. 1.24. 1.06. 0.27.

9 3.8. -0.2. -2.3. -I.2. 0.7. -0.2. O.l. 0.9. 1.4. 0.8. 1.3. 0.1.

0.9. 1.5. 1.3.

0.49 1.24 1.28 1.26 1.21 1.23 1.22 1.23 1.21 1.26 1.28 1.24 0.50

. o.48. 1.20. 1.26. 1.26. 1.22. 1.23. 1.22. 1.23. 1.22. 1.21. 1.30. 1.21. o.s1*.

. -3.2. -3.2. -1.3. 0.2. 0.1. -o.o.

0.1.

0.2. 0.4. 0.8. 1.6. 2.5. 3.1.

0.30. 1.05. 1.28 1.25 1.26. 1.22 1.30 1.22. 1.26. 1.25. 1.27 I.OS 0.30.

. 0.30. 1.04. 1.26. 1.24. 1.25. 1.21. 1.29. 1.21. 1.25.* 1.26. 1.30. 1.08. 0.31.

. -1.1. -1.l : -1.0. -0.9. -0.9. -0.9. -0.8. -0.8. -0.6. 1.1. 1.7. 2.5. 3.3.

0.37 0.90 1.28 1.28 1.28 1.00 1.28 1.28 1.28 0.89 0.37

. 0.37. 0.90. 1.27. 1.26. 1.26. 0.98. 1.26. 1.27. 1.28. 0.90. 0.38.

1.0.

0.3. -0.9. -1.5. -1.8. -1.3. -1.2. -0.7. 0.3. 1.6. 2.9.

0.39 1.06 1.25 1.23 1.27 1.23 1.25 1.06 0.39

. 0.40. 1.08. 1.25. 1.21. 1.26. 1.22. 1.22. 1.05. 0.40.

1.2.

1.4. -0.2. -1.9. -1.2. -I.I. -1.8. -0.6.

2.0.

0.30 0.50 I.OS 0.96 l'.04 0.50 0.30

. 0.31. 0.50. 1.07. 0.96. 1.04. 0.49. 0.30.

1.4. 1.5. 1.5. 0.3. -0.5. -I.I. -I.9.

STANDARD DEVIATION

=0.905 0.27 0.36 0.27

. 0.28.. 0.36. 0.27.

1.5.

0.7. -0.4.

AVERAGE

.PCT DIFFERENCE.

=

1.3

SUMMARY

MAP NO: S2-ll-13 DATE: 10/25/91 POWER:

99.9%

CONTROL ROD POSITION:

F-Q(Zl

= 1.796 QPTR:

D BANK AT 221 STEPS F-DH(Nl = 1.455 NW 0.9911 INE 1.0096 I

FIZl

= 1.177 SW 0.9950 ISE 1.0044 BURNUP = 2986 HWD/HTU A.O. = -1.411%

10 11 12 13 14 15 NE-930 S2Cll Core Performance Report Page 33 of 58

R p

Figure 4.2 SURRY UNIT 2 - CYCLE 11 ASSEMBLYWISE POWER DISTRIBUTION SZ-11-22 N

PREDICTED HEASURED H

L K

J H

C F

E D

0.27 0.36 0.27 C

B

  • PCT DIFFERENCE.

. 0.28. 0.37. 0.28.

2.1. 2.1. 2.1.

PREDICTED HEASURED

.PCT DIFFERENCE

  • 0.31 0.49 0.97 0.89 0.98 0.49 0.31

. 0.30. 0.50. 0.98. 0.89. 0.98. 0.49. 0.33.

. -3.6. 1.5. 0.5. 0.2. -0.2. -o.o. 3.5.

0.40 1.04 1.21 1.14 1.25 1.14 1.21 1.04 0.40

. 0.39. 1.00. 1.21. 1.15. 1.23. 1.13. 1.21. 1.06. 0.42.

. -3.6. -3.6. -0.5. 0.9. -1.6. -0.8. -0.0. 2.1.

3.5.

0.39 0.88 1.29 1.23 1.32 1.01 1.32 1.23 1.29 0.88 0.38

. 0.37. 0.86. 1.25. 1.22. 1.32. 1.01. 1.32. 1.24. 1.30. 0.88. 0.39.

. -3.6. -1.9. -3.0. -0.9. 0.4. 0.8. -O.l

  • 0.1.

0.5. 0.6. 1.1.

0.31 1.04 1.29 1.22 1.36 1.22 1.36. 1.22 1.36 1.22 1.29 1.04 0.31

. 0.32. 1.05. 1.28. 1.22. 1.35. 1.23. 1.38: 1.23. 1.37. 1.23. 1.26. 1.04. 0.32.

1.5. 0.8. -1.l. -0.0. -I.I. I.I. l.l.

0.7. 0.7. 0.7. -2.3. -O.O. 2.9.

0.49 1.21 1.23 1.36 1.23 1.34 1.21 1.35 1.23 1.36 1.23 1.21 0.49

. 0.50. 1.23. 1.23. 1.35. 1.24. 1.37. 1.22. 1.35. 1.24. 1.35. 1.22. 1.20. 0.49.

1.5. 1.5. 0.0. -1.2. 0.3. 1.8. l.O. 0.4. 0.6. -0.6. -1.3. -0.8. 0.7.

A 0.27 0.98 1.15 1.32 1.22 1.34 1.19 1.15 1.21 1.35 1.22 1.32 1.14 0.97 0.27 1

2 3

4 5

6

. 0.28. 0.99. 1.16. 1.32. 1.20. 1.36. 1.22. 1.17. 1.21. 1.35. 1*.21. 1.30. 1.14. 0.96. 0.27.

7 4.7. 1.5. 1.1. -0.2. -1.5. l.l.

2.5. 1.2. o.o. 0.1. -0.8. -1.5. -0.5. -0.9. 0.1.

0.36 0.89 1.25 1.01 1.36 1.21 1.15 1.10 1.16 1.21 1.36 1.01 1.25 0.89 0.36

. 0.38. 0.90. 1.23. 1.01. 1.39. 1.24. 1.18. 1.12. 1.17. 1.21. 1.36. 0.99. 1.25. 0.90. 0.36.

4.7. I.5. -1.2. o.3. 2.2. 2.5. 2.1. 1.2. o.4. o.3. -o.4. -1.5. 0_2. 1.8. 0.1.

0.27 0.97 1.14 1.32 1.22 1.34 1.19 1.15 1.19 1.34 1.22 1.32 1.14 0.98 0.27

. 0.29. 0.97. 1.12. 1.31. 1.24. 1.36. 1.18. 1.15. 1.20. 1.35. 1.22. 1.30. 1.17. 1.00. 0.28.

9 4.7. 0.1. -2.2. -0.3. 2.2. 1.0. -0.7. 0.3. 0.9. 0.7. 0.3. -I.5. 2.6. 1.8. 0.8.

0.49 1.21 1.23 1.36 1.23 1.34 1.21 1.34 1.23 1.36 1.23 1.21 0.49

. 0.48. 1.18. 1.22. 1.39. 1.24. 1.33. 1.20. 1.33. 1.22. 1.35. 1.22. 1.24. 0.51.

. -2.7. -2.7. -0.8, 2.2. 0.4. -0.8. -0.6. -0.7. -0.8. -1.l. -0.2. 2.6. 2.4.

0.31 1.04 1.29 1.22 1.36 1.22 1.36 1.22 1.36 1.22 1.29 1.04 0.31

. 0.31. 1.03. 1.29. 1.25. 1.35. 1.20. 1.34. 1.20. 1.33. 1.22. 1.30. 1.06. 0.32.

. -0.4. -0.4. -0.4. 2.2. -0.9. -I.I. -I.4. -1.9. -2.l. -0.4. 0.7. 1.8. 2.3.

0.39 0.89 1.29 1.23 1.32 1.01 1.32 1.23 1.29 0.88 0.39

. 0.39. 0.90. 1.32. 1.21. 1.30. 0.99. 1.29. 1.21. 1.29. 0.89. 0.39.

1.8. 1.8. 2.2. -1.l. -1.l. -1.3. -1.9. -1.5. -0.3. 0.9. 1.7.

0.40 1.04 1.21 1.14 1.25 1.14 1.21 1.04 0.40

. 0.41. 1.07. 1.22. 1.13. 1.24. 1.13. 1.20. 1.05. 0.41.

2.0. 2.2. 0.5. -1.l. -1.l. -1.l. -1.l.

0.8. 1.3.

0.31 0.49 0.98 0.89

~-98 0.50 0.31

. 0.32. 0.50. 1.00. 0.90. 0.96. 0.49. 0.31.

2.2. 2.2. 2.3. 0.2. -1.l. -1.l. -1.1.

STANDARD DEVIATION

=0.992 0.27 0.37 0.27

. 0.28. 0.37. 0.27.

2.3.

1.0. -1.l.

AVERAGE

.PCT DIFFERENCE.

= 1.3 SUHHARY HAP NO: s2-11-22 DATE:

5/26/92 POWER: 100.0%

CONTROL ROD POSITION:

F-Q(Zl = 1.790 QPTR:

D BANK AT 223 STEPS F-DHINl = 1.497 NW 0.9999 NE 1.0004 F(Zl

= 1.146 SW 1.0018 SE 0.9980 BURNUP = 9650 HWD/HTU A.O. = -2.959%

NE-930 S2Cll Core Performance Report Page 34 of 58 10 11 12 13 14 15

R p

Figure 4.3 SURRY UNIT 2 - CYCLE 11 ASSEMBLYWISE POWER DISTRIBUTION S2-ll-32 N

PREDICTED HEASURED H

K J

H G

F E

D 0.32 0.42 0.32 C

8

. PCT DIFFERENCE.

. 0.33. 0.44. 0.33.

4.6. 4.6. 4.6.

PREDICTED HEASURED

.PCT DIFFERENCE.

0.35 0.53 1.01 0.92 1.01 0.54 0.35

  • 0.37. 0.54. 1.02. 0.93. 1.02. 0.53. 0.37.

5.3.

1.2. 1.3. 1.4.

1.4. -0.6.

4.4.

0.44 1.04 1.19 1.13 1.24 1.13 1.19 1.04 0.43

. 0.45. 1.05. 1.19. 1.13. 1.23. 1.11. 1.19. 1.06. 0.45.

4.5.

1.5. -0.2.

0.7. -1.2. -1.0. -0.6.

2.5. 4.4.

0.42 0.89 1.26 1.19 1.33 1.02 1.33 1.19 1.26 0.89 0.42

. 0.44. 0.90. 1.24. 1.18. 1.33. 1.02. 1.32. 1.18. 1.26. 0.89. 0.43.

5.3. 1.4. -1.2. -0.4. -0.l. -0.4. -0.8. -0.5. 0.0. 0.4. 2.3.

0.35 1.04 1.26 1.17 1.36 1.19 1.33 1.19 1.36 1.17 1.25 1.04 0.35

. 0.36. 1.05. 1.24. 1.17. 1.35. 1.19. 1.34. 1.18. 1.35. 1.16. 1.22. 1.05. 0.37.

2.0.

1.2. -1.l.

0.1. -1.l.

0.4. 0.4 * -0.4. -0.8. -0.6. -2.8. 1.2. 5.8.

0.53 1.20 1.19 1.36 1.20 1.35 1.16 1.35 1.20 1.36 1.19 1.19 0.53

. 0.54. 1.22. 1.18. 1.33. 1.20. 1.37. 1.18. 1.34. 1.18. 1.34. 1.16. 1.19. 0.55.

2.0. 2.0. -0.5. -2.6. -0.4. 1.8. 1.1. -0.4. -1.6. -1.7. -2.2. 0.1. 3.2.

A 0.32 1.01 1.13 1.33 1.19 1.35 1.16 1.12 1.17 1.35 1.19 1.33 1.13 1.00 0.32 2

3 4

5 6

. 0.34. 1.05. 1.15. 1.32. 1.14. 1.33. 1.18. 1.13. 1.16. 1.33. 1.16. 1.30. 1.12. 1.01. 0.32.

7 6.2. 3.7. 2.0. -1.2. -3.7. -1.0. 2.3. l.O. -0.6. -1.4. -2.l. -2.6. -0.7. 0.7. 1.8.

0.43 0.92 1.24 1.02 1.33 1.17 1.12 1.08 1.12 1.17 1,33 1.02 1.24 0.92 0.42

. 0.45. 0.96. 1.27. 1.01. 1.29. 1.16. 1.14. 1.09. 1.11. 1.15. 1.30. 0.99. 1.22. 0.94. 0.43.

8 6.2. 4.6. 2.0. -0.7. -3.2. -0.5. 2.4. 0.9. -1.0. -1.5. -2.4, -2.7. -1.7. 2.4. 2.5.

0.32 1.01 1.13 1.33 1.19 1.35 1.16 1.12 1.16 1.35 1.18 1.33 1.13 1.01 0.32

. 0.34. 1.03. 1.11. 1.32. 1.20. 1.33. 1.13. 1.11. 1.16. 1.31. 1.15. 1.29. 1.14. 1.04. 0.33.

9 "6.2. 2.3. -1.7. -0.8. 1.0. -1.0. -2.4. -0.4.

0.1. -2.8. -2.8. -2.8. 1.0. 2.4. 2.9.

0.54 1.20 1.18 1.36 1.20 1.35 1.16 1.35 1.20 1.36 1.18 1.20 0.54

. 0.53. 1.17. 1.18. 1.38. 1.19. 1.32. 1.15. I.33. 1.18. 1.34. 1.19. 1.25. 0.56.

. -1.7. -1.7. -0.2.

1.0. -0.5. -2.4. -1.4. -1.6. -1.9. -1.9. 0.1. 4.4. 4.2.

0.35. 1.04. 1.26 1.17 1.36 1.18 1.33 1.19 1.36 1.17 1.26 1.04 0.35

. 0.36. 1.05. 1.26. 1.17. 1.35. 1.17. 1.31. 1.16. 1.32. 1.17. 1.28. 1.07. 0.37.

1.1.

1.1.

0.6.

0.1. -0.9. -1.6. -1.7. -2.5. -2.7. -0.l.

1.9.

3.5.

4.1.

0.42 0.89 1.26 1.18 1.33 1.02 1.33 1.18 1.26 0.89 0.42

. 0.44. 0.91. 1.26. 1.18. 1.32. 1.01. 1.30. 1.16. 1.25. 0.91. 0.44.

3.9.

2.4.

0.1. -0.4. -0.8. -1.2. -~.2. -1.8. -0.l.

2.6. 3.4.

STANDARD DEVIATION

=l.588 0.44 1.04 1.19 1.13 1.24 1.13 1.19 1.04 0.43

. 0.46. 1.09. 1.22. 1.12. 1.24. 1.12. 1.18. 1.04. 0.45.

4.6.

5.2.

2.3. -0.7. -0.2. -0.7. -1.5.

0.0.

3.0.

0.35 0.53 1.01 0.93 1.01 0.54 0.35

. 0.37. 0.56. 1.07. 0.95. 1.01. 0.53. 0.35.

5.2.

5.6.

6.1.

2.6.

0.1. -0.7. -1.7.

0.32 0.43 0.32

. 0.34. 0.45. 0.32.

6.1.

3.8. 0.3.

AVERAGE

.PCT DIFFERE~CE.

= 2.0 MAP NO:

S2-ll-32 CONTROL ROD POSITION:

SUMMARY

DATE: 01/22/93 F-Q(Zl

= 1.777 F-DHCNl = 1.420 FIZl 1.150 POWER: 100.0%

QPTR:

D BANK AT 223 STEPS NW 1.0042 NE 0.9959 SW 1.0039 SE 0.9959 BURNUP

= 17246 HWD/MTU A.0.=-3.004%

NE-930 S2Cll Core Performance Report Page 35 of 58 10 11 12 13 14 15

1.2 1

~ 0.8 01 I",:.,

Q ril N

H

...:I i 0.6 0 z

~ 0.4

~

0.2 0

0 2

Figure 4.4A SURRY UNIT 2 - CYCLE 11 HOT CHANNEL FACTOR NORMALIZED" OPERATING ENVELOPE (APPLICABLE THROUGH MAY 1992)

(6,1.0) 4 6

8 CORE HEIGHT (FT)

NE-930 S2Cll Core Performance Report 10 (I ( 170 (l nA

~

\\

\\

\\ '

\\

\\

\\

\\

\\

1

\\1 j',,V.'tJJ 12 Page 36 of 58

1.2 1

~ 0.8 O'

Ii., *~

....:i

~ 0.6 0 z

~ 0. 4 0.2 0

0 2

Figure 4.4B SURRY UNIT 2 - CYCLE 11 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (APPLICABLE AFTER MAY 1992)

I (O,l.U) 4 6

8 CORE HEIGHT (FT)

NE-930 S2Cll Core Performance Report 12,0.925) 10 12 Page 37 of 58

2.5 N

O' 2

i:..

CG 0

E-< u

..i:

i:..

H Czl :z 1.5

z

~

u E-<

0

i::

X H

i:..

1 E-<

.i:

u:J

i::

0.5 60 50 Figure 4.5 SURRY UNIT 2 - CYCLE 11 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)

S2-ll-13 40 30 20 10 BOTTOM AXIAL POSITION (NODES)

TOP NE-930 S2Cll Core Performance Report Page FQ - LIMIT 38 of 58

'(

r

N 01

(%,

0::

0 H u

,:i:

(%,

H

µJ z z

,:i:

i::

u H

0

i::

X

~

H

(%,

2.5 2

1. 5 1

0.5 60 Figure 4.6 SURRY UNIT 2 - CYCLE 11

.HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)

S2-ll-22 50

.BOTTOM 40 30 20 AXIAL POSITION (NODES) 10 TOP NE-930 S2Cll Core Performance Report Page FQ -

LIMIT 39 of 58

N O'

o:;

0 E-< u

~

H Ci] z z

~

r: u E-<

0 :r:

X H

E-<

~

Ci]

r:

2.5 2

1.5 1

0.5 60 Figure 4.7 SURRY UNIT 2-CYCLE 11 HEAT FLUX HOT CHANNEL FACTOR, S2-ll-32 50 BOTTOM 40 30 20 AXIAL POSITION (NODES) 10 TOP NE-930 S2Cll Core Pe~formance Report Page FQ -

LIMIT 40 of 58

Figure 4.8 SURRY UNIT 2 - CYCLE 11 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)*P, vs. AXIAL POSITION 2.4 2.2 l

2.0 1.8

~*... *................

-.~

\\

.......~.........

l 1.6

\\

  • It

\\

1.4

a... 1.2 fl

\\-

  • * \\

\\

  • \\

1 1.0,-

0.8 0.6 0.4 0.2 0.0 I

I I

I 61 55 50 45 40 35 30 25 20 15 10 5

1 AXIAL POSmON (NODE)

-- FQ*P LIMIT I

I I MAXIMUM FQ*P I BOTTOM OF CORE TOP OF CORE NE-930 S2Cl1 Core Performance Report Page

  • 41 of 58

Figure 4.9 SURRY UNIT 2 - CYCLE 11 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, Fq(Z), vs. BURNUP

1. 90
1. 85 i::r::

0 E-i u

~

,-.::i l'.,:J z

~

u E-i 0

i:: 1. 80

~

p

,-.::i c,.,

E-i

~

l'.,:J

i::

~

H

~

1. 75
1. 70 I

I I

I i i+

I I

i I

i I

i I

I I

i I

i

' i 0

~

~*

0

~ ".

2 4

~~o 6

8 10 12 14 CYCLE BURNUP (GWd/MtU)

NE-930 S2Cll Core Performance Report

~~

16 18 Page 42 of 58

Figure 4.10 SURRY UNIT 2 - CYCLE 11 MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP 1.58 1.56 1.54 o::; 8 1.52

~

...:I w z

~ 1.50 u

1:-i @

w

~ 1.48 o::;

>-i 0..

...:I

2

~ 1.46 w

1. 44
1. 42
1. 40 I

I I

I I

I I

I I !

I !

I I

I I

I I

I I*

I I

0 I

I

~~~ ~~

2 1...

. I*

~.

~~ *

~

~~

4 6

8 10 12 14 16 18 CYCLE BURNUP (GWd/MtU)

NE-930 S2Cll Core Performance Report FULL POWER TECH SPEC LIMIT MEASURED VALUE

  • Page 43 of 58

3.0 2.0 1.0 I

I I

I E-t z 0.0

~

u p:;

i i I i

~

Ila

~ -1.0

,(

E-t H

~

Cl E-t

~

C) -2.0

~

I....

l....

E-t

-3.0

-4.0

-5.0 0

2 I

  • l I

I I

4 Figure 4.11 SURRY UNIT 2 - CYCLE 11 TARGET DELTA FLUX vs. BURNUP

.... 1.....

6 8

10 12. 14 CYCLE BORUP (GWd/MtU)

NE-930 S2Cll Core Performance Report I

I' I

I i

I I

I I I

I I

16 18 Page 44 of 58

1. 4 1.2 >-

1 -

Cl Ci]

N H

,-.::i i 0 0. 8 z

N N

c.. 0. 6 '-

0.4 -*

0.2 I

60 Figure 4.12 SURRY UNIT 2 - CYCLE 11 CORE AVERAGE AXIAL POWER DISTRIBUTION S2-11-13 Fz = 1.177 AXIAL OFFSET= -1.411%

l!I I

I 50 40 30 20 BOTTOM AXIAL POSITION (NODES) 10 TOP NE-930 S2Cll Core Performance Report Page I

45 of 58

1.2 t-1 -

t-Cl Ci:J N 0. 8 H

H !

0 z

- o. 6 N

c,.,

0.4 0.2 I

60 Figure 4.13 SURRY UNIT 2 - CYCLE 11 CORE AVERAGE AXIAL POWER DISTRIBUTION s2-11-22 Fz = 1.146 AXIAL OFFSET= -2.959%

50 BOTTOM I

I I

40 30 20 AXIAL POSITION (NO~ES) 10 TOP NE-930 S2Cll Core.Performance Report Page 46 of 58

Q w

N H i 0 z N

N c,..

\\

1.2 1

I--

0.8 0.6 0.4 I

60 Figure 4.14 SURRY UNIT 2 - CYCLE 11 CORE AVERAGE AXIAL POWER DISTRIBUTION SZ-11-32 Fz = 1.150 AXIAL OFFSET= -3.004%

I 40 I

30 I

20 50 BOTTOM AXIAL POSITION (NOD~S)

I 10 TOP NE-930 S2Cll Core Performance Report Page. 47 of 58

1.3 1.275 1.25 c:: 1. 225 0

E-i u

~

l:l z H

~

i::l

°'

~

H

~

1.2 1.175 1.15 1.125 1.1 I I I I

0 Figure 4.1.5 SURRY UNIT 2 - CYCLE 11 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP I

I I

I I

IT

~ ~ I T *

-~

~~

IT ~

~~

2 4

6 8

10 12

. 14 16 18 CYCLE BURNUP (GWd/MtU)

NE-930 S2C11 Core Performance Report Page 48 of 58

~'-

Section 5 PRIMARY COOLANT ACTIVITY The specific activity levels of radioidines in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to-offsite dose calculations associated with accident analyses.

Two mechanisms are primarily responsible for the presence of radioiodines in the primary coolant. Radioiodines are always present due to direct fission product recoil from trace fissile materials plated onto core components and fuel structured surfaces or trace fissile materials existing as impurities in core structural materials.

This fissile material is generally referred to as "tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects). exists.

Fuel defects are generally the predominant source of radioiodines in the primary coolant.

Surry Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 µCi/gram with provisions that ultimately limit the dose equivalent I-131 activity to.a maximum of 10. 0 µCi/gm. 2 Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 11.

These data show that the dose equivalent I-131 activity remained substantially below 1.0 µCi/gm throughout Cycle 11 operation.

The increases in the dose equivalent I-131 data trend during Cycle 11 operation shown on Figure 5.1 are attributable to removing the mixed bed demineralizers temporarily from service.

The cycle average NE-930 S2Cll Core Performanc~ Report Page 49 of 58

steady state power dose equivalent I-131 concentration was 2.94 X 10-3

µCi/gm which is less than 1% of the Technical Specification limit.

Correcting the I-131 concentration for tramp iodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the measured I-131.

The resultant tramp-corrected I-131 activity is theoretically the I-131 activity from defective fuel.

The magnitude of the tramp-corrected I-131 can then be used as an indication of the number of defective fuel rods.

The cycle average tramp corrected iodine-131 concentrat.ion was 3. 80 X 10-4 µCi/gm.

A tramp-corrected I-131 activity of this magnitude is a good indication of a defect free core.

The fact that there were no spikes in the iodine data during rapid power transients (the spikes that are present occurred during periods of time when the chemical and volume control system ion exchangers were temporarily removed from service) substantiates the conclu~ion that the Cycle 11 core contained no defective fuel rods and the reactor coolant system radioiodines resulted from tramp fissile sources.

The demineralizer. flow rate averaged approximately 100 gpm during power operation.

The ratio of the specific activities *of I-131 to I-133 is used to characterize the type (size) of fuel failure which may have occurred in the reactor* core. Use of the ratio for this determination* is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days).

For pi~hole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby c*ausing the ratio NE-930 S2Cll Core Performance Report Page 50 of 58

to be roughly 0.5 or more. In the case of large leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. The use of these ratios with regard to defect size is empirically determined and generally used throughout the commercial nuclear power industry. Figure 5.2 shows the I-131/I-133 ratio data for the Surry 2 Cycle 11.

The "spikes" in the ratio data shown on Figure 5.2 primarily *occurred when the unit was down and is the result of I-133 decay thus increasing tpe ratio substantially.

The ratio will also increase during times when the mixed bed demineralizers are removed from service.

In any event, the sporadic increases in the ratio data are not indicative of fuel defects.

NE-930 S2Cll Core Performance Report Page 51 of 58

Figure 5.1 SURRY UNIT 2 - CYCLE 11 DOSE EQUIVALENT I-131 vs. TIHE 1.00E+01 ---1--------------------------------1 1.00E +00 -+--------------------------------1

~ 1.00E-01 --t------------------------------1

<C cc

(!}

cc w

a..

ff3 1.00E-02 -+----.----------.--------------...-.r.-------t cc

=>

(.)

I

~

!-. ~~}at*~-~~.iJll!ll!!l/llll'*;t111.~~"':

0 r'1..

~ 1.00E +------,--------------------------*-----1

  • )

'I 1.00E - 05 ____ _....__.____..----Ju...----JJL----U-----------J'-'------------'------

100 80 60 0

0 19MAR91 OSOCT91 22APR92 Q8NOV92 27MAY93 DATE NE-930 S2Cll Core Performan*ce Report

  • Page 52 of 58 RUN DATE:

22

  • .i.....

~

1.5 1.4 1.3 1.2 1.1 1.0 0

C') 0.8 C')

. 0.7 C')

0.6 0.5 0:4 0.3 0.2 0.1 I

Figure 5.2 SURRY UNIT 2 - CYCLE 11 I-131 / I-133 ACTIVITY RATIO vs. TIME 100 80 ""C

~

60 m 40 ::IJ -

20 ?ft. -

0 19MAR91 27JUN91 050CT91 13JAN92 22APR92 31JUL.92 0SNOV92 16FEB93 27MAY93 DATE NE-930 S2Cll Core Performance Report Page 53 of 58 RUN DATE:

22MAR93

(,..

THIS PAGE INTENTIONALLY BLANK NE-930 S2Cll Core Performance Report Page 54 of 58

Section 6 CONCLUSIONS The Surry 2, Cycle 11 core has completed operation.

Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technicpl Specification limits were met with significant margin.

No significant abnormalities in reactivity or burnup accumulation were detected.

Radioiodine analysis indicated that there were no fuel rod defects.

NE-930 S2Cll Core Performance Report Page 55 of 58

THIS PAGE INTENTIONALLY BLANK NE-930 S2Cll Core Performance Report Page 56 of 58

j..

l Section 7 REFERENCES

1)

T. S. Psuik, "Surry Unit 2, Cycle 11 Startup Physics Test Report," Technical Report NE-852, Rev. 0, Virginia Power, August, 1991.

2)

Surry Power Station Technical Specifications, Sections 3.1.D, 3.12.B and 4.10.

3)

T. W. Schleicher, "Virginia Power Fuel Assembly Burnup and Isotopics Calculation Code Manual," Technical Report NE-726, Rev. 0, Virginia Power, February, 1990.

4)

D. L. Gilliatt, "The Virginia Power FOLLOW Code Manual,"

Technical Report NE-679, Rev. 1, Virginia Power, April, 1991.

5)

W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"

WCAP-7149, Westinghouse, December, 1967.

6)

Letter from B. C. Buckley (NRC) to.W.L. Stewart, "Surry Units 1 and 2 - Issuance of Amendments Re: F-Delta-H Limit and Statistical DNBR Methodology (TAC Nos. M81271 and M82168)",

Serial No.92-405, dated June 1, 1992.

7)

R. T. Robins, "Reload Safety Evaluation Surry Unit 2 Cycle 11 Pattern Ml, Technical Report NE-834, Rev. 0, Virginia Power, March, 1991.

NE-930 S2Cll Core Performance Report Page 5 7 of 58

REFERENCES (cont.)

8)

R. T. Robins, "Reload Safety Evaluation Surry 2 Cycle 11 Pattern Ml", Technical Report NE-834, Rev. 1, Virginia Power, January, 1993.

9)

P. D. Banning, "Surry Unit 2 Cycle 11 Design Report",

Technical Report NE-837, Rev. O, Virginia Power, May, 1991.

10) "Surry Unit 2 Cycle 11 TOTE Calculations", Calculational Note PM-385, Rev. 0 and associated addenda, Virginia Power.
11) "Evaluation of Surry Unit 2 Cycle 11 Movable Detector Flux Maps",

Calculational Note PM-380, Rev. 0 and associated addenda, Virginia Power.

12) D. M.. Chapman, "Surry Unit 2, Cycle 11 FOLOW Calculations",

Calculational Note PM-388, Rev. 0, Addendum A, Virginia Power, April, 1993.

NE-930 S2Cll Core Performance Report Page 58 of 58