ML18149A215
| ML18149A215 | |
| Person / Time | |
|---|---|
| Site: | Surry |
| Issue date: | 05/31/1986 |
| From: | Iannuci J, Reitler E VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
| To: | |
| Shared Package | |
| ML18149A214 | List: |
| References | |
| VP-NOS-26, NUDOCS 8607140086 | |
| Download: ML18149A215 (51) | |
Text
~-~'l:v*::*... '*******
\\:I/-*.
! '*~****.
I'.-.
. /1 I,
I I
-, NOTICE*-
THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE DIVISION OF DOCUMENT CONTROL. THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD AND MUST BE RETURNED TO THE RECORDS FACILITY BRANCH 016.
PLEASE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE REFERRED TO FILE PERSONNEL.
DEADLINE RETURN DATE RECORDS FACILITY BRANCH 8607140086 860709 PDR ADOCK 05000~80 P
.. ~..
Surry Unit 1 Cycle 8 Core.
Performance Report Nuclear Operations Department
- Virginia Electric and Power Company
I I
I I
I I
I I
I
-I I
I Reviewed:
SURRY 1, CYCLE 8 CORE PERFORMANCE REPORT by J. V. Iannucci and E. C. Reitler Approved:
VP-NOS-26 L./~
T. A. Brookmire, Associate Engineer Nuclear Fuel Operation C. T. Snow, Supervisor Nuclear Fuel Operation Operations and Maintenance Support Subsection Nuclear Operations Department Virginia Electric & Power Company Richmond, Virginia May, 1986
I 1*
I I
I 1*
I I
I CLASSIFICATION/DISCLAIMER The data, techniques, information, and conclusions in this report have been prepared solely for use by the Virginia Electric and Power Company (the Company), and they may not be appropriate for use in situations other than those for which they were specifically prepared.
The Company therefore makes no claim or warranty whatsoever, express or implied, as to their accuracy, usefulness, or applicability.
In particular, THE COMPANY MAKES NO WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, NOR SHALL ANY WARRANTY BE DEEMED TO ARISE FROM COURSE OF DEALING OR USAGE OF TRADE, with respect to this report or any of the data, techniques, information, or conclusions in it.
By making this report available, the
. Company does not authorize its use by others, and any such use is expressly forbidden except with the prior written approval of the Company.
Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein.
In no event shall the Company be liable, under any legal theo~y whatsoever (whether contract, tort, warranty, or strict or absolute liability), for any property damage, mental or physical injury or death, loss of use of property, or other damage resulting from or arising out of the use, authorized or unauthorized, of this report or the data, techniques, information, or conclusions in it.
i
I I
I\\
I 1,
11
- 1 I
I SECTION 1
2 3
4 5
6 7
TABLE OF CONTENTS TITLE PAGE NO.
Classification/Disclaimer i
List of Tables iii List of Figures iv Introduction and Summary.
1 Burnup Follow 7
Reactivity Depletion Follow 16 Power Distribution Follow 18 Primary Coolant Activity Follow 39 Conclusions 43 References.
44 ii
I I
I' I
I' I
I I *
~
I 1*
j I
I I
LIST OF TABLES TABLE TITLE PAGE NO.
4.1 Summary of Flux Maps for Routine Operation......... 22 iii
I I
I
,I.,
11 I
I I
I I
I FIGURE 1.1 1.2 1.3 2.1 2.2 2.3 2.4 LIST OF FIGURES TITLE Core Loading Map Movable Detector and Thermocouple Locations.
Control Rod Locations.
Core Burnup History Monthly Average Load Factors Assemblywise Accumulated Burnup:
Measured and Predicted Assemblywise Accumulated Burnup:
Comparison of Measured and Predicted.
2.5A Sub-Batch Burnup Sharing 2.5B Sub-Batch Burnup Sharing 2.5C Sub-Batch Burnup Sharing 3.1 Critical Boron Concentration versus Burnup - HFP-ARO 4.1 Assemblywise Power Distribution - Sl-8-08 4.2 Assemblywise Power Distribution - Sl-8-36 4.3 Assemblywise Power Distribution - Sl-8-50 4.4 Hot Channel Factor Normalized Operating Envelope 4.5 4.6
- 4. 7 4.8 Heat Flux Hot Channel Factor, F~(Z) - Sl-8-08 Heat Flux Hot Channel Factor, F~(Z) - Sl-8-36 Heat Flux Hot Channel Factor, F~(Z) - Sl-8-50 Maximum Heat Flux Hot Channel Factor, Fq*P, vs.
Axial Position..............
PAGE NO.
4 5
6 9
10 11 12 13 14 15 17 24 25 26 27 28 29 30 31 4.9 Maximum Heat Flux Hot Channel Factor, F-Q, versus Burnup 32 4.10 Enthalpy Rise Hot Channel Factor, F-DH(N), versus.Burnup 33 4.11 Target Delta Flux versus Burnup 34 iv
I I
I I
I I
- 1
.I I
FIGURE 4.12 4.13 4.14 4.15 5.1 5.2 LIST OF FIGURES CONT'D TITLE PAGE NO.
Core Average Axial Power Distribution - Sl-8-08 35 Core Average Axial Power Distribution - Sl-8.:36 36 Core Average Axial Power Distribution - Sl-8-50 37 Core Average Axial Peaking*Factor, F-Z, versus Burnup.
38 Dose Equivalent I-131 versus Time 41 I-131/I-133 Activity Ratio versus Time 42 V
1*
I/
I
.I*
I,,
I
,I I,,
I I
1*
I I
Section 1 INTRODUCTION AND
SUMMARY
On May 10, 1986, Surry Unit 1 completed Cycle 8.
Since the initial criticality of Cycle 8 on December 26, 1984, the reactor core produced approximately 83 x 10 6 MBTU (14,040 Megawatt days per metric ton of contained uranium) which has resulted in the generation of approximately 8.0 x 10 9 KWHr gross (7.6 x 10 9 KWHr net) of electrical energy.
The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 8.
The physics tests that were performed during the startup of this cycle were covered in the Surry Unit 1, Cycle 8 Startup Physics Test Report 1 and, therefore, will not be included here.
Surry Unit 1 was in coastdown from April 11, 1986, at which time the burnup was approximately 13,142 MWD/MTU.
The coastdown, therefore, accounted for an additional core burn of 898 MWD/MTU from the end of full power reactivity.
The eighth cycle core consisted of ten batches of fuel:
a thrice-burned sub-batch from Surry 2, Cycles 3, 4, and 5 (S2/5a2); two twice-burned sub-batches from Surry 2, Cycles 4 and 5 (S2/6a3 and S2/6b6); one twice-burned sub-batch from Surry 1, Cycles 4 and 5 (6c4); two twice-burned sub-batches from Surry 1, Cycles 6 and 7 (8a3 and.8b3); three once-burned sub-batches from Surry 1, Cycle 7 (9a2, 9b2, and S2/9b); and one fresh sub-batch (10).
The Surry 1, Cycle 8 core loading map specifying the fuel batch identification, fuel assembly locations, burnable poison locations 1
I I
I
!I I
I I
I I
I.
I I
I\\
I I
and source assembly locations is shown in Figure 1.1.
Movable detector locations and thermocouple locations are identified in Figure 1. 2. Control rod locations are shown in Figure 1.3.
Routine core follow involves the analysis of four principal performance indicators. These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.
The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted. Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 2 limits thereby ensuring that adequate margins to linear power density and critical heat flux thermal limits are maintained. Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Unit 1 Technical Specifications, and to assess the integrity of the fuel.
Each of the four performance indicators is discussed in detail for the Surry 1, Cycle 8 core in the body of this report. The results are summarized below:
- 1.
Burnup Follow -
The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.32% with the burnup accumulation in each batch deviating from design prediction by less than 0.8%.
- 2.
Reactivity Depletion Follow The critical boron concentration, used to monitor reactivity depletion, was consistently 2
I I
I I
I.,
I I
I I
- /I
.1*
t I
within +/-0.68% Ak/k of the design prediction which is within the +/-1% Ak/k margin allowed by Section 4.10 of the Technical Specifications.
- 3. Power Distribution Follow - Moveable incore detector flux maps taken each month indicated that the assemblywise radial power distribution deviated from the design prediction by an average difference of less than 2%.
All hot channel factors met their respective Technical Specifications limits.
- 4. Primary Coolant Activity Follow - The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 8 was 7.5 x 10-2 µCi/gm. This is approximately 8% of the operating limit *tor the concentration of radioiodine in the primary coolant.
In addition, the effects of fuel densification were monitored throughout the cycle. No densification effects were observed.
3
I I
I I
I i
I I
I Figure 1. 1 R
p N
H L
SURRY UN IT 1 - CYCLE 8 CORE LOADING MAP K
J H
G I W21 I 207 I W39 I
I I
I I
F E
1 __ 1 __ 1 __ 1~ca:---r-c=-:-
I 085 I 304 I 4E4 I 001 I 2E2 I 004 187 I
I I
I 4P I
I 4P I
I I
D
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I V07 I 3E9 I 5E3 I 1C4 I 1E2 I OC5 I 3E6 I 5E4 I V20 I
I I 16DP I 16P I
I 16P I
I 16P I 16DP I I
C
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I JOB I 408 I OEl I 600 I 3E1 I 208 I 3E7 I 507 I OE5 I 505 I J16 I
I I
I 16P I
I 16P I 16DP I 16P I
I 16P I
I I
B
__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __
I 087 I 2E6 I 4EO I J13 I 1E9 I T15 I 008 I T14 I 4E7 I J17 I 4E2 I 1E1 I 183 I
I I 16DP I 16P I
I 20P I
I 4P I
I 20P I
I 16P I 16DP I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 3R2 I 1E8 I 301 I 4E9 I 1R4 I 204 I 5C4 I 202 I 1R2 I DEB I 405 I 2E4 I 4RO I
I I 16P I
I 20P I
I I
I I
I 20P I
I 16P I
I A
I I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __
IW5115E61 4C2 I OE4 I T17
- I 109 I V21 I 1E5 I V17 I 104 I T19 I 1E6 I 5CO I 5E1 I J07 I
I I 4P I
I 16P I
I SS7 I
I 16P I
I SS2 I
I 16P I
I 4P I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I 102 I 108 I 3E2 I 308 I 105 I 4C5 I 3E4 I 509 I OE3 I 3C4 I 007 I 303 I 3EB I 005 I OD9 I
I I
I 16P I 16DP I 4P I
I 16P I BP I 16P I
I 4P I 16DP I 16P I
I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I W33 I 1E4 I 4C4 I 4E5 I TlO I 203 I V02 I 5ED I V19 I 300 I W47 I 2E9 I OC6 I 4E6 I W35 I
I I 4P I
I 16P I
I ss1 I
I 16P I
I I
I 16P I
I 4P I
I 1--l--ri>313EOl40312E3130213D612C612C411011°2E5111>61--;-u-1205l---1 I
I 16P I
I 2DP I
I I
I I
I 20P I
I* 16P I
I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I DBB I 5E5 I 4E3 I J20 I OE9 I T18 I 003 I T01 I 4E8 I J34 I 3E3 I OE7 I 189 I
I I 16DP I 16P I
I 20P I
I 4P I
I 20P I
I 16P I 16DP I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I JOl I 100 I 5E2 I 401 I 2E7 I 201 I 2E8 I 502 I OE6 I 503 I J23 I
I I
I 16P I
I 16P I 16DP I 16P I
I 16P I
I I
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1 __
1
-I V23 I OE2 I 1 E7 I OC3 I 2EO I 3C9 I 4E1 I 2E1 I V06 I
I I 16DP I 16P I
I 16P I
I 16P I 16DP I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 ___ 1 __ 1 I W25 I 406 I 3E5 I 006 I 1 EO I 402 I 184 I
. I I
I 4P I
I 4P I
I I
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I W12 I 107 I W43 I
1--> ASSEMBLY ID I
I I
I I
1--> ONE OF THE FOLLOWING 1 __
1 __
1 __
1 I __ I A. SS -
SECONDARY SOURCE B. XXP -
BURNABLE POISON ASSEMBLY (XX-NUMBER OF RODS)
C. XDP -
DEPLETED BURNABLE POISON ROD CLUSTER (X-NUMBER OF RODS)
I
!s2/6B6 S2/5A2 :s2/6A3 FUEL ASSEMBLY DESIGN PARAMETERS SUB-BATCH 6C4 I
8A3 I
883 9A2 I
982 I S2/9B I
I I
I I
I I
I I
I 2
3 4
5 6
7 8
9 10 11 12 13 14 15 10 INITIAL ENRICHMENT (W/0 U235)
ASSEMBLY TYPE NUMBER.OF ASSEMBLIES FUEL RODS PER ASSEMBLY INITIAL ENRICHMENT (W/0 U235)
ASSEMBLY IDENTIFICATION 3.11 2.91 3.20 2.90 15X15 15X15 15X15 15X15 7
8 9
9 204 204 204 204 T01,T10 V02,V06 W12,W21 J01,J07 T14,T15 V07,V17 W25,W33 J08,J13 T17-T19 V19-V21 W35,W39 J16,J17 V23 W43,W47 J20,J23 W51 J34 3.22 15X15 7
204 085,087 088,183 184,187 189 3.40 15X15 13 204 OC3,0C5 OC6, 1C4 2C4,2C8 3C4,3C9 4C2,4C4 4C5,5CO 5C4 3.59 15X15 31 204 001,003 004-009 100-109 201-205 207,208 300-304 306 3.61 3.59 3.60 15X15 15X15 15X15 13 4
56 204 204 204 3D8,4D1 1R2,1R4 OE1-0E9 402,403 3R2,4RO 1E0-1E9 405,406 2E0-2E9 408,502 3E0-3E9 503,505 4E0-4E9 507,509, 5E0-5E6 6DO I
4
I I
I,.
I I
I I
I I
I I
I R
p Figure 1.2 H
M SURRY UNIT 1 - CYCLE 8 MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS L
K J
H G
F I
I I
I MD I
TC I
E
~~~~-1--1--1--1 I
I I
I TC I
I TC I
MD I
I D
1Mi>I--I--I--IMDI--I--I--IHD1 C
I TC I
I TC I
MD I
TC I
I TC I
I TC I
,--1--1--1--1--1--1--1-*--1--1-*--1--,
B I
TC I
I MD I
I I
MD I
I MD I
TC I
I I
I I
I I
I I
I I.
I I
I HD I
I HD I
I I
MD I
I MD I
TC I
MD I
TC I
I TC I
MD I
TC I
I TC I
1--1--1--1Mi>1--1--1--1--1--1--1--1--1-*-1 I
I TC I
I TC I
I I
MD I
TC I
MD I
I I
I I
A
,--1--1--1--1--1--1--1--1--1--1--1--1--1--1--,
I TC I
TC I
MD I
I I
I MD I
I MD I
I TC I
HD I
I MD I
I 1-* -1Mi>1--1Mi>1--1--1--1--1--1--1--l--,;nrl--l--l I
HD I
TC I
TC I
I TC I
TC I
I TC I
TC I
MD I
TC I
I TC I
MD I
TC I
1--1--1--1--1--1--1--1--1--1Mi>1--1--1--1--1--1 I
I I
I TC I
MD I
I I
TC I
MD I
TC I
I I
I I
HD I
1--l--l---mi-l--l--l--lHDI--I--I--I--I--I--IMDl--1 I
I TC I
I I
I TC I
I I
I TC I
HD I
I TC I
1--1--1--1--1--1--IMDI--IMDI--I--I--I--I
- I I
I TC I
MD I
TC I
I TC I
I TC I
MD I
I I
I
'--1--1--1--1--1Hi>1--1--1--1--1--l--,;nrl--'
I MD I
I TC I
I TC I
I I
I TC I
MD I
TC I
1--1--1--1--I--IMDI--IHDl--l--l--1 I
I I
I I
TC I
I TC I
I I
MD -
Movable Detector TC -
Thermocouple 1--1MD1--1--1--1--1--1--1--1 I
TC I
I I
I MD I
I TC I
1--1--1--1--1--1--1--1 I
HD I
TC I
TC I
5 2
3 4
5 6
7 8
9 10 11 12 13 14 15
I I
I I
1-I I
I I
I I
I Figure 1 ;3 R
p N
M SURRY UN IT 1 - CYCLE 8 CONTROL ROD LOCATIONS L
K J
H G
1ao0 I
F E
0 C
Loop C I
I Loop B outlet~
I I
I I
~Inlet I
I A 1--1-0-,--1 A I I
1_1_1_1_1_1_1 __
N-41 I
I I
I I
N-43
_1_1 __ 1_1_1_1_1_1_1_1_
I I c I
I B I
I I
I B I
I C I
I B
_1_1_1_1_1_1_1_1_1_1_1_1_
I I
I I
1_1_1_1_1_1_1_1_1_1_1_1_1 __ 1 IAI IBI IOI ICI IOI IBI IAI A
Loop C __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I__
Loop B In I e\\tl I
I SA I I SP I I SB I I SB I I SP I I SA I I
I...,, Out I et 0
1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ v o
90 -
I I D I
I I
IC I
I I
I c I I
I I o I I -
270 1_1_1_1_1_1_1_1_1_1_1_1_1_1_1_1 I
I I SA I I SP I I SB I I SB I I SP I I SA I I
I 1_1_1_1_1 __ 1_1_1_1_1_1_1_1_1_1_1 IAI IBI IOI ICI IOI IBI IAI 1_1_1_1_1_1_1_1_1_1_1_1_1_1 I
I I
I I
Absorber Materia I Ag*ln*Cd Function 1--l--l-c-l--l-B-I--I--I--I-B-l--l-c-l--l--1 1_1_1_1_1_1_1_1_1_1_1_1 I
I I
I I
N-44 I __ I __ I __ I __ I __ I __ I __ I __ I __ I N-42 I
I A I
I o I
I A I
I J-1-. 1-1-1-1-l Loop A I __ I __ I __ I Loop A Outlet Inlet Number of Clusters Control Bank O 8
Control Bank C 8
Control Bank B 8
Control Bank A 8
Shutdown Bank SB 8
Shutdown Bank SA 8
SP (Spare Rod Locations) 8 6
1 2
3 4
5 6
7 8
9 10 11 12 13 14 15
I I
I I
I,,
I I
I I
I I
I I
I Section 2 BURNUP FOLLOW The burnup history for the Surry Unit 1, Cycle 8 core is graphically depicted in Figure 2.1.
The Surry 1, Cycle 8 core achieved a burnup of 14,040 MWD/MTU. As shown in Figure 2.2, the average load factor for Cycle 8 was 82.7% when referenced to rated thermal power (2441 MW(t)).
Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed burnup distribution analysis. The NEWTOTE 3 computer code is used to calculate these assemblywise burnups. Figure 2.3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 8 operation is given.
For comparison purposes, the design values are also given.
Figure 2. 4 is a radial burnup distribution map in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 8 operation is also given.
As can be seen from this figure, the accumulated assembly burnups were generally within +/-4% of the predicted values. In addition, deviation from quadrant symmetry in the core throughout the.cycle was no greater than
+/-0.32%.
The burnup sharing on a sub-batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies.
Sub-batch definitions are given in Figure 1.1.
As seen in Figures 2.5A, 2.5B, and 2.5C, batch burnup sharing for Surry Unit 1, Cycle 8 followed design predictions closely with each batch deviating less than 0.8% from design.
Symmetric burnup in conjunction with agreement between actual and 7
I I
I I
I I
I' I
I I
I I
I I
I predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 8 core did deplete as designed.
8
I.
I
- I I
I I
I I
I I
I I
I I
I 15000 14000 13000 C 12000 y
C 1 l 000 L
E 10000 B
9000 u
R 8000 N u 7000 p
6000 M w 5000 D
I 4000 M
T 3000 u
2000 1000
/
/~
0 - -V I
0 0
0 0
0 l
l l
l 1
D J
F M
A E
A E
A p
C N
8 R
R 8
B B
8 B
4 5
5 5
5 SURRY UNIT 1 -
CYCLE 8 CORE BURNUP HISTORY
/ /
/ ~
,.--J r
~/
V
/
'._/
0 0
0 0
0 0
0 1
1 1
l 1
1 1
M J J
A s 0
N A u u u E C
0 y
N L
G p
T V
8 8
B 8
8 8
8 5
5 5
5 5
5 5
TIME(MONTHSl Figure 2. 1
/
/
/~
/ /
V
~
0 0
0 0
0 0
0 l
1 1
l 1
1 1
D J
F M A M
J E
A E A p
A u C
N B
R R
y N
8 8
8 8
B 8
8 5
6 6
6 6
6 6
14500 MhJD/MTU CYCLE 8 MAXIMUM DESIGN BURNUP BURNUP WINDOW FOR CYCLE 9 DESIGN -
13000 TO 14500 MrJD/MTU 9
I I
I I
I I
I I
-I I
I,,
I I
I PERCENT 100 90 80 70 60 50 40 30 20 10 0
D J f
E A E C
N B
8 8
8 4
5.5 LOAD FACTOR =
Figure 2.2 SURRY UNIT 1 - CYCLE 8.
MONTHLY AVERAGE LOAD FACTORS M A M J J
A s 0
N D J f
M A M A p A u u u E C 0 E
A. E A p A
R R
y N L G p T
V C
N B
R R y
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 5
5 5
5 5
5 5
5 5
5 6
6 6
6 6
MONTH THERMAL.ENERGY GENERATION IN MONTH!MWHTl AUTHORIZED POWER LEVEL !MhTl X HOURS IN MONTH
!EXCLUDES REFUELING OUTAGESl 10 C
y C
L E
I I
I I
I I
I I
I I
I I
Ii I
I 2
3 4
5 6
7 8
9 10 11 12 13 14 15 R
p H
M SURRY UN IT 1 - CYCLE 8 ASSEMBL YWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (1000 MWD/MTU)
L K
J H
G F
E D
Figure 2.3 C
B A
I 31.401 17.861 31.631 I 31.491 17.941 31.491 I
MEASURED I I PREDICTED I I 34.591 24.931 15.591 26.501 15.361 24.631 33.801 I 33.941 24.431 15.691 26.841 15.691 24.431 33.941
- I 28.491 15.191 17.251 44.291 17.761 43.631 16.971 15.231 28.511 I 28.541 15. 34 I 17. oo I 43. 99 I 18.06 I 43.99 I 17. oo I 15. 34 I 28.541 I 31.731 28.311 17.591 33.261 18.41131.02118.33132.99117.471 28.131 31.981 I 31.~61 28.161 17.431 33.171 18.571 31.241 18.571 33.171 17.431 28.161 31.761 1 33.411 15.00I 17.451 39.881 17.971 41.941 26.121 41.891 17.911 39.811 17.241 15.421 34.201 I 33.571 15.331 17.431 39.561 17.911 42.211 26.411 42.211 17.911 39.561 17.431 15.331 33.571 I 24.211 11.121 33.021 17.901 31.621 29.051 42.121 29.351 32.191 17.801 32.791 11.011 24.341 I 24.311 11.001 33.121 17.921 32.371 29.381 42.441 29.381 32.371 17.921 33.121 11.001 24.311 1* 31
- 74 I 15. 62 I 44. 06 I 18. 41 I 41. 80 I 29. 98 I 36. 05 I 17. 78 I 36. 7 31 29. 58 I 42. 11 I 18. 151 44. 1 31 15. 16 I 28. 11 I I 30.811 15.681 43.931 18.571 42.531 29.881 36.381 17.801 36.381 29.881 42.531 18.571 43.931 15.681 30.811 I 17.771 26.791 17.651 31.431 25.721 42.301 11.221 31.331 17.851 42.861 26.071 31.821 17.661 26.431 18.201 I 18.031 26.911 18.051 31.961 26.381 42.851 17.871 31.111 17.871 42.851 26.381 31.961 18.051 26.911 18.031 1 31.551 15.361 43.761 18.311 42.191 28.571 35.861 17.831 36.581 29.581 43.051 18.151 43.661 15.791 31.891 I 30.811 15.681 43.931 18.571 42.531 29.881 36.381 17.801 36.381 29.881 42.531 18.571 43.931 15.681 30.811 R
I 24.271 17.191 33.00I 17.921 32.161 29.571 42.351 27.951 32.451 18.091 33.221 17.181 24.741 I 24.311 11.001 33.121 17.921 32.371 29.381 42.441 29.381 32.371 17.921 33.121 11.001 24.31 I 1 33.321 15,541 17.671 39.771 17.491 41.961 25.831 42.131 18.051 39.881 17.821 15.611 33.881 I 33.571 15.331 17.431 39.561 17.91 I 42.211 26.41 I 42.211 17.91 I 39.561 17.431 15.331 33.571 p
I 31.921 28.591 17.551 32.731 18.201 30.881 18.241 33.231 17.731 28.221 32.171 I 31.761 28.161 17.431 33.171 18.571 31.241 18.571 33.171 17.431 28.161 31.761 I 28.691 15.661 11.011 44.251 17.731 43.611 16.851 15.281 29.021 I 28.541 15.341 11.001 43.991 18.061 43.991 11.001 15.341 28.541 I 33.841 24.881 15.801 26.781 15.341 23.731 33.741 I 33.941 24.431 15.691 26.841 15.691 24.431 33.941 I 31.551 18.081 31.491 I 31.491 17.941 31.491 H
M L
K J
H G
F E
D C
11 B
A 2
3 4
5 6
7 8
9 10 11 12 13 14 15
I I
I I
I I
I I
I I
I I
I I
I i~
2 3
4 5
6 7
8 R
p N
Figure 2.4 SURRY UNIT 1 - *CYCLE 8 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (1000 MWD/MTU)
M L
K J
H G
F E
D C
B A
I 31.401 17.861 31.631 I -0.291 -0.461 o.421 I
MEASURED I
IM/P.jDIFFI I 34.591 24.931 15,591 26.501 15.361 24,631 33.801 I
1.931 2.011 -0.581 -1.261 -2.011 o.821 -0.411 I 28.491 15.191 17.251 44.291 17.761 43.631 16.971 15.231 28.511 I -0.191 -0.941 1.451 0.671 -1. 701 -0.821 -o.171 -0.681 -0.121 I 31.731 28.311 17.591 33.261 18.411 31.021 18.331 32,991 17.471 28.131 31.981 I -0.091 o.521 o.941 o.261 -0.891 -0.101 -1.31 I -o.551 0.241 -0.101 0.101 I 33.411 15.00I 17,451 39.881 17.971 41.941 26.121 41.891 17,911 39.811 17,241 15.421 34.201 I -o.451 -2.141 0.121 o.821 0.301 -0.631 -1.101 -0.761 0.011 o.641 -1.101 o.611 1,891 I 24.211 11.121 33.021 17.901 31.621 29.051 42.121 29.351 32.191 17.801 32.791 11.01 I 24.341 I -0.391 o.741 -0.291 -0.131 -2.331 -1.141 -0.751 -0.111 -o.571 -0.101 -0.981 0.011 0.151 I 31.741 15,621 44.061 18.411 41.801 29.98136.05117.781 36.731 29,581 42.111 18.151 44.131 15.161 28.111 I
2.991 -0.351 0.311 -0.901 -1.721 0.351 -0.901 -0.131 0.971 -0.991 -1.00I -2.291 0.471 -3.311 -8.781 I 17.771 26.791 17.651 31.431 25.721 42.301 11.221 31.331 17.851 42.861 26.071 31.821 17.661 26.431 18.201 I -1.411 -o.461 -2.241 -1.681 -2.501 -1.281 -3.631 0.731 -0.091 o.031 -1.181 -0.461 -2.171 -1.811 0.961 2
3 4
5 6
7 8
- 9.
I 31,551 15.361 43.761 18.311 42.191 28.571 35.861 17.831 36.581 29.581 43.051 18.151 43.661 15.791 31.891 I
- 2. 38 I -2. 021 -o. 39 I -1. 40 I -o. 79 I -4. 39 I -1
- 41 I o. 13 I o. 5 71 -1. o 11 1. 22 I *-2. 29 I -o. 60 I
- o. 70 I
- 3. 48 I 9
10 11 12 13 14 15 I 24.271 17.191 33.00I 17.921 32.161 29.571 42.351 27.951 32.451 18.091 33.221 17.181 24.741 I -0.161 1.141 -0.351 -0.041 -0.661 0.631 -0.191 -4.871 0,231 0.911 0.301 1.061 1,801 I 33.321 15.541 17.671 39.771 17.491 41,961 25.831 42.131 18.051 39.881 17.821 15.611 33.881 I -0.741 1.411 1.421 o.531 -2.331 -0.591 -2.201 -0.191 0.791 0.821 2.251 1.871 0.931 I 31.921 28.591 17.551 32.731 18.201 30.881 18.241 33.231 17.731 28.221 32.171 I
o,501 1.531 0.691 -1.331 -1.991 -1.131 -1.771 0.181 1.721 0.211 1.311 10 11 12 I 28.691 15.661 17.071 44.251 17.731 43.61 I 16.851 15.281 29.021 I
o.521 2.141 o.431 o.581 -1.861 -o.861 -o.861 -0.391 1.671
- 13.
I STANDARD DEV I I
= 1.01 I
R p
N M
I 33.841 24,881 15.801 26.781 15.341 23.731 33.741 I -0.281 1.831 0.741 -0.221 -2.211 -2.881 -0.571 I 31.551 18.081 31.491 I
0.111 o.751 -0.011 L
K J
H G
F E
BURNUP SHARING (1000 MWD/MTU)
I I
l8ATCH I CYCLE 3 CYCLE 4 I l--1 I I IS2/5A2 I S2/6.85 S2/15.271 I
I I
IS2/6A3J S2/16.33I I
I I
IS2/686 S2/11, 05 I S2/98 6C4 8.83 8A3 88 9A 98 10 CORE AVERAGE CYCLE 5 I CYCLE 6 CYCLE 7 CYCLE 8 TOTALS 1
S2/6.30 I I
52/6, 13 I -----
1 S2/15.69 16.76 20.21 15.35 14.27 8.12 14.40 12.33 14.99 13.58 42.00 10.03 32.49
- 6. 38 33.12 13.82 28.09 9.43 35',02 5.52 33.85 12.48 42.23 14.76 27.09
- 15. 33
- 30. 32 17.05 17.05 14.04 12 D
C I ARITHMETIC AVG I IPCT DIFF = -0.301 14 I AVG ABS PCT I I O I FF = 1
- 09 I B
A 15 BURNUP TILT NW = 0.05 NE = -0.29 SW = -0.03 SE = 0.27
I I
I I
I I
I I
I I
I I
I I
5 u B
B A
T C
H M w D
I M
T-u 44000 40000 36000 32000 28000
~
24000 20000 16000 12000 8000 4000 0 - 4.,.,,,-
I 0
SUB-BATCH SYMBOL
~
-I<
-~ V I.,.,,'
SURRY UNIT l - CYCLE 8 SUB-BATCH BURNUP SHARING 8A DIAMOND 88 SQUARE 10 TRIANGLE l.--""
i,,...,--*-
l..,.,,E:I'
- l.,,,C1 L,A:l
- L,.,,CI
-~
~~
a--
~
_v I~
.x"
./"
./
_v*-
~
2000 4000 6000 8000 10000 12000 CYCLE BURNUP MWD/MTU 13 Figure 2.5A I,..,--"'
- ~
/
l..,"""
14000 16000
I I
- I I
I I
5 u I
B B
A I
T C
H R
I N u p
I M
w D
I I
M T u I
I I
I 44000 40000 36000 32000 28000
~
24000 20000 16000 ~
12000 ~
8000 -
4000 0 -
I...
0 SUB-BATCH SYMBOL
~ - -
~
I.,.,""-
~
,I:>;"'
~
SURRY UNIT 1 - CYCLE 8 SUB-BATCH BURNUP SHARING 9A DIAMOND
. -- ~
98 SQUARE
,~
...!./
~
..Cl
~.cl
~
~
-~
~
~
6C TRIANGLE A- ~
~-
I~
L__.....ci
~
1~v L,...--"V
~
2000 4000 6000 8000 10000 12000 CYCLE BURNUP MWO/HTU 14 Figure 2.5B i..--
,J"
~i,...,---
- ,r""'"
~
~V" v-
!./ V 14000 16000
I I
I I
I I
I I
I I
I I
I I
I
-s u
B B
A T
C H
M H
0 I
M T u 44000 40000 36000 32000 28000 ~
g--
24000 e-20000 16000 12000 8000 4000 0 -
I 0
SURRY UNIT l - CYCLE 8 SUB-BATCH BURNUP SHARING SUB-BATCH SYMBOL
,-t:r
~.,.,.....-
. _-A- -er-
__..,h--
~.a--
~
- __.c:r L..-"'
V'"
. j..
2000 4000 52/5A DIAMOND
~
~
..-~
~
~
~
~
~
S2/6A SQUARE
~
i,...-er 52/6B TRIANGLE
.......... V
~v
~
. ~
--8"
. -~
=--
~ --
ua-
~~
~
.,..,r
.,,,.,r
~
6000 8000 10000 12000 CYCLE BURNUP M~D/MTU 15 Figure 2.SC 52/98 STAR L..,.,,,-""V
_O r-l.,.,,"""
~~
~
1..,..,,-""""
14000 16000
I I
- I I
I I
I I
I I
I I
I I
I Section 3 REACTIVITY DEPLETION FOLLOW The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLLOW 4 computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod position, xenon and samarium concentrations, moderator temperature, and power level.
The normalized critical boron concentration versus burnup curve for the Surry 1, Cycle 8 core is shown in Figure 3.1. It can be seen that the measured data typically compare to within 86 ppm of the design prediction. This corresponds to less than +/-0.68% tK/K which is well within the +/-1%
tK/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications.
In conclusion, 'the trend indicated by the critical boron concentration verifies that the Cycle 8 core depleted as expected without any reactivity anomalies.
16
I I
I I
I I
I I
I I
I I
I I
I.
C R
I T
I C
A L
C 0
N C
E N
T R
A T
I 0
N p
p M
1400 1200 1000
. \\
800 X,~
X"'T 600 400 200 0 -
I 0
'v SURRY UNIT 1 -
CYCLE 8 CRITICAL BORON CONCENTRATION VS. BURNUP HFP-ARO X
MEASURED PREDICTED
~
- ~
~
~---
-~:
~-
~
~. '-"~.
- ~ ~-.
-~
'7' ~
- x~
~
- ~
... ~
i~
I I
'. I I
2000 4000 6000 8000 10000 12000 CYCLE BURNUP CMHD/MTUl 17 Figure 3.1 14000 l60GO
I I
I I
I I
I I
I I
I I
I I
I
- Section 4 POWER DISTRIBUTION FOLLOW Analysis of core power distribution data on a routine basis is necessary to verify that the hot channel factors are within the Technical Specifications limits and to ensure that the reactor is operating without any abnormal conditions which could cause an "uneven" burnup distribution.
Three-dimensional core power distributions are determined from movable detector flux map measurements using the INCORE 5 computer program.
A summary of all full core flux maps taken since the completion of startup physics testing for Surry 1, Cycle 8 is given in Table 4.1.
Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.
Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1 through 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life.
Figure 4.2 shows a power distribution map that was taken near mid-cycle burnup.
Figure 4.3 shows a map that was taken at the end of Cycle 8 life. In each case, the measured relative assembly powers were generally within 4.4% and the average percent difference was no greater than 1.7%.
In addition, as indicated by the INCORE tilt factors, the power distributions were essentially symmetric for all cases.
An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors. Verification that these factors are within-Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing adequate thermal margins and maintaining fuel cladding integrity. The Cycle 8 Technical Specifications limit on the axially dependent heat flux hot 18
I I
I I
I I
I I
I I
I I
I I
I channel factor, Fi(Z), was (2.18/P) x K(Z), where K(Z) is the hot channel factor normalized operating envelope and Pis the fraction of rated thermal power.
Figure 4.4 is a plot of the K(Z) curve associated with the 2.18 Fi(Z) limit. The axially dependent heat flux hot channel factors, Fi(Z),
for a representative set of flux maps are given in Figures 4.5 through 4.7.
Throughout Cycle 8, the measured values of Fi(Z) were within the Technical Specifications limit. A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 8 is given in Figure 4.8.
Figure 4.9 shows the maximum values for the heat flux hot channel factor measured as a function of burnup during Cycle 8.
As can be seen from the figure, there was approximately a 12.8% margin to the limit at the beginning of the cycle which shortly thereafter increased to approximately 15% where it remained fairly constant throughout cycle operation.
The value of the enthalpy rise hot channel factor, F-delta H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The Technical Specifications limit for this parameter is set such that the departure from nucleate boiling ratio limit (DNBR) wi"ll not be violated.
Additionally, the F-delta H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
The enthalpy rise hot channel factor limit was 1.55 x (l+0.3(1-P)), where P is again the fractional power level.
A summary of the maximum values for the Enthalpy Rise Hot Channel Factor measured during Cycle 8 is given in Figure 4.10.
As can be seen from this figure, the smallest margin to the limit was near the end of the cycle and was equal to approximately 2.0%.
19
I I
I I
I I
I I
I I
I I
I I
I The Technical Specifications require that target delta flux* values be determined periodically. The target delta flux is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. Therefore, the delta flux is measured with the core at or near these conditions and the target delta flux is established at this measured point.
Since the target delta flux varies as a function of burnup, the target value is updated monthly. Operational delta flux limits are then established about this target value. By maintaining the value of delta flux relatively
- constant, adverse axial power. shapes due to xenon redistribution are avoided.
The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -4.0% at the beginning of Cycle 8.
Values fluctuated between -4.0% and -3.0% for most of the cycle.
Only at the beginning of the last third of the cycle did values slightly increase to -2.0%.
This power shift can also be observed in the corresponding core average axial power distribution for a
representative series of maps given in Figures 4.12 through 4.14.
In Map Sl-8-08 (Figure 4.12), taken at 925 MWD/MTU, the axial power distribution had a shape peaked slightly toward the bottom of the core with a peaking factor of 1.21.
In Map Sl-8-36 (Figure 4.13), taken at approximately 6,900 MWD/MTU, the axial power distribution remained peaked toward the bottom of the core with an axial peaking factor of 1.16. Finally, in Map Sl-8-50 (Figure 4.14), taken at approximately 13,200 MWD/MTU, the axial peaking factor was 1.14, with a slightly concave axial power distr~bution.
The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.
- Delta Flux= A.O. X P where A. 0. = Axial Offset= Pt-Pb 2441 P = fractional power X 100%
Pt= power in top of core (MW(t))
Pb= power in bottom of core (MW(t))
20
I I
I I
I I
I I
I I
I I
I
~
In conclusion, the Surry 1, Cycle 8 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the FQ(Z) and F-delta H hot channel factors were within the limits of the Technical Specifications.
21
I I
I I
MAP I
NO.
I I
I I 8 111 ( 5)
I 19 ( 6)
I NOTES:
N N
TABLE 4.1 SURRY UNIT 1 -
CYCLE 8
SUMMARY
OF INCORE FLUX MAPS FOR ROUTINE OPERATION I
1 2
I I
I BURN!
F-Q (T) HOT F-DH(N) HOT CORE F(Z)
I 4
I I
UP I BANK CHANNEL FACTOR CHNL.FACTOR MAX 31 QPTR AXIAL! NO. I DATE MWD/IPWR D
F(XY)I OFF I OF I MTU 1(%) STEPS I
I AXIAL!
I I
AXIAL!
MAX I I
SET ITHIMI I
ASSYIPINI POINTIF-Q(T) ASSYIPINIF-DH(N) POINT! F(Z)
I MAX ILOC
(%) IBLESI I
I I ___ I ____ I_I _____ I ____ I __ I ___ I __ I I
I I
I I
I I
I 02-04-851 9251100 228 J021 LOI 43 11.900 J021 LDI 1.490 43 11.207 1.44311.0071 NW
-4.001 47 I 03-07-851 19301100 227 J021 LOI 43 11.839 J041 GHI 1.465 34 11,194 1.41711.0051 NW
-2.951 47 I 03-25-851 25431100 227 G041 IHI 43 11.826 J041 GHI 1.465 35 11.186 1.41811.0061 SE
-2.991 47 I
___ I __ I _____ I_I I
__ I_I
__ I ____ I __ I_
I __ I HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEMBLY LOCATIONS (E.G. H-8 IS THE CENTER-OF-CORE ASSEMBLY),
FOLLOWED BY THE PIN LOCATION 'DENOTED BY THE "Y" COORDINATE WITH THE SEVENTEEN ROWS OF FUEL RODS LETTERED A THROUGH RAND THE 'X" COORDINATE DESIGNATED IN A SIMILAR.MANNER).
IN THE "z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROM THE TOP OF THE CORE.
- 1) F-Q(T) INCLUDES A TOTAL UNCERTAINTY OF 1.08.
- 2) F-DH(N) INCLUDES A MEASUREMENT UNCERTAINTY OF 1.04.
- 3) F(XY) IS EVALUATED AT THE MIDPLANE OF THE CORE.
- 4) QPTR -
QUADRANT POWER TILT RATIO.
- 5) MAPS 9 AND 10 WERE QUARTER-CORE FLUX MAPS TAKEN FOR INCORE EXCORE DETECTOR CALIBRATION ( 1/E CALIBRATION).
- 6) MAPS 12, 13, 14, AND 15 WERE QUARTER-CORE FLUX MAPS TAKEN FOR 1/E CALIBRATION.
MAPS 16, 17, AND 18 WERE TAKEN FOR THE COMPLETION OF 1-PT-28.13.
N w I
I I
MAP I
NO.
I I
124( 7) 125 126 136( 8) 137 138 139 142( 9) 144( 10)
I 49( 11) 150,
I TABLE 4.1 (CONT.)
BURN I
I F-Q (T) HOT I
F-DH(N) HOT I CORE F(Z) I I
I UP
!BANK I CHANNEL FACTOR I
CHNL.FACTOR I
MAX I
QPTR AXIAL! NO. I DATE MWD/ PWRI D
I I
I I F(XY)
OFF I OF I MTU
(%) I STEPS I I
I AXI ALI I
I
!AXIAL I MAX I
SET ITHIMI I
IASSY PIN I POINT F-Q(T) IASSYI PIN F-DH( N) I POI NT F(Z) I MAX ILOC
(%) IBLESI
__ __ I __ I __
I I __ I _
I ____ I ____ I_
I_I 05-17-85 3737 100 223 G04 IH 44 1.824 G12 IH
- 1. 467 44 1.180 1.412 1.007 SE
-3.441 43 06-20-85 4870 100 228 G04 IH 44 1 *. 797 M07 HI
- 1. 464 44
- 1. 171 1. 412 1. 007 NW
-3.221 46 07-17-85 5786 100 227 G04 IH 45 1.796 J04 GH
- 1. 463 44 1.162 1.412 1.006 SE
-2.981 47 09-09-85 6873 100 227 D09 GD 45
- 1. 812 D09 GD 1.503 45
- 1. 161 1. 467 1. 007 SE
-3.471 38 10-22-85 8081 100 227 D09 GD 45 1.812 D09 GD
- 1. 514 45 1.153 1.487 1.006 SE
-3.331 38 11-19-85 9033 100 228 D09 GD 45
- 1. 821 D09 GD
- 1. 519 45 1.152 1.483 1.006 SE
-3.601 38 12-16-85 9838 95 222 D09 GD 46 1.787 D09 GD
- 1. 518 46 1.132 1.472 1.005 SWI -2. 16 I 38 01-14-86 10769 97 226 D09 GD 52
- 1. 786 009 GD 1.517 46 1.126 1.469 1.006 SWI -2.091 38 02-26-86 11652 100 226 D09 GD 53 1.827 009 GD
- 1. 514 53
- 1. 141 1.475 1.008 SWI -3.351 38 03-27-86 12614 100 224 D09 GD 54
- 1. 834 D09 GD 1. 511 53 1.148 1.454 1.012 SWI -3.321 38 04-14-86113212 99 212 009 GD 53
- 1. 813 D09 GD 1.507 53 1.136 1.454 1.009 SWI -2.651 39 I __ -- -- -- --
_________ I I
- 7) MAP 20 WAS TAKEN FOR THE COMPLETION OF 1-PT-28.13; MAPS 21, 22, AND 23 WERE TAKEN FOR QUADRANT POWER Tl LT VERIFICATION.
- 8) MAPS 27, 28, 30, 31, 32, 33, 34, AND 35 WERE QUARTER-CORE FLUX MAPS TAKEN FOR 1/E CALIBRATION.
MAP 29 WAS TAKEN FOR QUADRANT POWER TILT VERIFICATION.
- 9) MAPS 40 AND 41 WERE QUARTER-CORE FLUX MAPS TAKEN FOR 1/E.CALIBRATION.
(10) MAP 43 WAS A QUARTER-CORE FLUX MAP TAKEN FOR 1/E CALIBRATION.
(11) MAPS 45,.46, 47, AND 48 WERE QUARTER-CORE FLUX MAPS TAKEN FOR 1/E CALIBRATION.
I I
- I I
I I
I I
I I
I I
I I
- 1 Figure 4. 1 R
p SURRY UN IT 1 - CYCLE 8 ASSEMBLYWISE POWER DISTRIBUTION Sl-8-08 N
L K
J H
G E
D C
II PREDICTED t1EASU!!ED
.PCT DIFFERENCE.
0.40 0.69 0.40
- 0.40
- o. 70 0.40.
1.7 1.7 1.7.
PREDICTED t1E1SL"RED
.PCT DIFFERENCE
- 0.311
- o. 76 * *1.16 1.19 1.16
- o. 76 0.38 o.38 o.79.
1.111 1.zz 1.11. a.11 o.3e Z.O l.6
- Z.4
- 1.9
- 1.5.
1.7 2,4 o.41 1.10 1.16 o.911 1.z..
o.9e
- 1.16 1.10 0.41 o.42 1.12 1.zo 1.01 1.26 o.98
- 1.11 1.12 o.42 z.o z.o 3.0
].0 1.3 0.7
- 0.9
.z.o 3.4 0.39 0.90 1.11
- 1.26 1.26 1.22
- 1.26
- 1.26
- 1.17
- 0.90 0.39 0.39
- 0.91
- 1.19
- 1.ZII. 1.27
- 1.22
- 1.26
- 1.26
- 1.19
- 0.91
- 0.40
-0.1
- 1.z
- 1.9. 1.... 0.1. 0.1
- o.3. 0.1
- 1.0
- 1.6 * *z.s 0.38 1.10 1.17 0.92 1.19 0.99 1.29 0.99, 1.19 0.92 1,17 1.10 0.38 0.37
- 1.09
- 1.111
- 0.94
- 1.20
- 0.911
- 1.21
- 0.911
- 1.19
- 0.9]
- 1.17
- 1.12
- 0.39
-0.1.* -o.3
- o.9
- 1.1
- o.... -1.4 * -o.6 * -o.6 * -o.4
- o.6
- o.4
- z.1
- 4.o
- o. 76
- 1.16 1.26 1.19
- 1.2e 1.ze
- 1.oz 1.2s 1.ze
- 1.19 1.26 1.16
- o. 76,
- 0.11. 1.111. 1.21. 1.zo. 1.211. 1.z1. 1.oz
- 1.2s. 1.26. 1.111. 1.zs. 1.11. o.77.
1.4
- 1.4
- 1.z *
- o.9
- o.3 * -o.9 * -0.2 * -0.1 * -1.11 * -o.7 * -0.1
- o.4
- 1.6
- A 0.40 1.15 0.98 1.26 0.99 1.29 1.03 l.Z4 1.0J
- 1.29
- 0.99 1.Z6 0.911 1.15 0,40 o.39 1.16 1.00 1.26 o.96 1.zs 1.oz 1.24 1.oz 1.z1
- o.97 1.24 o.96 1.14 o.39
-1.9
- 0.5
- Z.5 * -0.l * -Z.6 * -Z.6 * -0.1
- O.Z * -0.0 * -1.4 * -z.o * -1. 7 * -1.6 * -1.1 * -1.5 o.68 1.n 1.24 1.2z 1.211 1.oz 1.z4 1.11 1.24 1.02 1.211 1.22 1.24 1.19 0.611 1
]
4 5
6 7
0.67 1.19 1.24 1.20 1.21 0.911 1.17 1.111 1.23 1.01 1.25 1.20 l.2Z 1.17 0.69 II
-1.11
-o.3
-o.s
-1.1
-s.1
-... o
-6.1 o.9
-o.6
-1.11
-2.1
-1.1
-1.11
-1.6 o.4 0.40 1.15 0.911 1.26 0.99
- 1.29 1.03 1.24 1.03
- 1.29 0.99 1.26 0.98 1.15 0.40 o.39 1.1s o.98 1.24
- o.97
- 1.2s 1.00 1.23 1.03 1.26 o.97 1.2s o.97 1.11 o.41 9
- -1.11 * -o.6 *. o.o * -1.6 * -1.6 * -2. 1 * -2.l * -0.1
- o.<t * -2.1 * -2.2 * -1.0 * -o. 1
- a.9
- 3.1
- 0.16 1.16. 1.26 1.19 1.211 1.211 1.02 1.zs 1.211 1.19 1.26 1.16 o.76
- a. 77 1.11
- 1.2s 1.11 1.2s 1.2s 1.00 1.211 1.29 1.20 1.2s 1.16
- o. 77 1.1 1.1 * -o.s
-1.11
-2.0
-2.4
-1.9
-o.6 o.6 o.6
-o.s 0.1 1.4 0.38 1.10 1.17 0.9Z 1.19 0.99 1.28 0.99
- 1.19 0.92 1.17 1.10 0.38 0.]8 1.12 1.17 0.90 1.11 0.97 1.24 0.98
- 1.22 0.95 1.19 1.12 0.39 1.11 1.8
-0.Z
-Z.9
-1.8
-1.9
-3.1
-0.9
- 2.0 2.11 1.9 Z.1 J.O 0.39 0.90 1.17
- 1.26 1.26 1.22 1.26
- 1.26
- 1.17 0.90 0.39 0.40
- 0.90
- 1.13
- I.ZS, 1.26
- l.Zl
- 1.26
- 1.29
- 1.19
- 0.91
- 0.41 2.5
- 0.4 * -2.9 * -1.0 * -0.1 * -1.0 * -o.o
- 2.1
- 1.9
- 1.5
- s.o
- 0.41 1.10 1.16 0.98 1.24 0.9&
1.16 1.10 0.41 0.42
- 1.lZ
- 1.17
- 0.9&
- 1.25
- 0.98
- 1.18
- 1.11
- 0.42 2.2
- 1.11
- 1.0
- o.z
- O.l
- 0.9,
1.5
- 1.1
- 2.6
- 0.311 O. 76 1.16 1.19 1.16
- 0. 76 0.38 0.]8 0.78 1.111 1.21 1.17, 0.77. 0.]8.
1.11
- z.4
- 2.0
- 1.2
- 0.11
- 1.z
- 1.6
- STANDARD DEVIATION
=1.0511 0.40 0.69 0.40
- 0.41
- o. 70 0.40 AVERAGE MAP NO: Sl-8-08 CONTROL ROD POSITIONS:
1.2 z.1 o.a *
SUMMARY
DATE: 02/04/85 F-Q(T)
= 1. 900
.PCT DIFFERENCE.
1.5 POWER
100%
QPTR:
10 11 12 13 14 15 D BANK AT 228 STEPS F-DH(N) = _1.490 NW 1.007 I NE 1.002
1----------
F(Z)
= 1. 207 sw 0,988 I SE 1,003 F(XY)
= 1. 443 BURNUP
=
925 MWD/MTU A.O =
-4.00(%)
24
I I
I.
I I
I I
I I
i I
I I
I I
Figure 4.2 R
p SURRY UNIT 1 - CYCLE 8 ASSEMBLYWISE POWER DISTRIBUTION Sl-8-36 N
11 K
J H
6 D
C B
PREDICTED IIEASUP.ED
.PCT DIFFERENCE.
0.38 0.64 0.38 0.38 0.63 0.38
-o.s
-0.5
-0.5 PREDICTED 11EASUP.ED
.PCT DIFFERENCE.
0.39 0.75 l.10 1.09 1.10 0.75 0.39 0.39
- o. 77 1.10 1.09 1.08
- o. 75 0.39 o.o
- 2. 7 o.3 * -o.5 * -1.5 * -o.3
-o.3 0.43 1.09
- 1.21 0.98 1.29 0.98 1.21 1.09 0.43 0.43 1.09
- 1.23 0.99 1.27 0.96 1.21 1.08 0.42 o.o o.o. 1.6 1.1
-1.6
-1.4
-o.3
-o.3
-1.6 0.42 0.92 1.25 1.25 1.33 1.22 1.33 1.25 l.25 0.92 0.42 0.40
- 0.92
- 1.26
- 1.27
- 1.33
- 1.21
- 1.32
- 1.25
- 1.26
- 0.92
- 0.42
-2. 7
- o.o
- o.4
- 1.5
- 0.1 * -o.e. -1.0
- o.o
- o.s
- 0.1
- 1.2 o.39 1.08 1.25 o.98 1.2e o.98 1.22 o.98 1.28 o.98
- 1.25 1.oa o.39 o.3s
- 1.06
- 1.25
- o.99
- 1.30
- o.97
- 1.22
- o.97
- 1.30
- o.99
- 1.24
- 1.10
- o.4o
-2. 7 * -2. 7 * -0.1
- 1.9.*
1.0 * -o.4 * -o.4 * -o.3
- 1.2
- 1.e * -1.0
- 1.2
- 3.9
- o. 75 1.21 1.25 1.29 1.21 1.18 o.96 1.18 1.21 1.29 1.25 1.21
- o. 75
- 0.15
- 1.21
- 1.26
- 1.28
- 1.21
- 1.18
- o.96
- 1.19. 1.21
- 1.29
- 1.24
- 1.20
- o.75
- 0.1
- 0.1
- o.4. -0.1
- 0.1
- 0.2
- o.3
- o.9. 2.1
- o.o * -a.a. -0.1
- o.6
- A o.3a 1.10 o.98 1.33 o.98 1.18 o.98 1.26 0.98 1.18
- o.98 1.33
- o.9e
- 1.10
- 0.18 0.38
- 1.10
- 1.00
- 1.34
- 0.97
- 1.17
- 0.98
- 1.27
- 0.99
- 1.18
- 0.96
- 1.30
- 0.96
- 1.07
- 0.37
-1.1
- 0.2
- 2.0
- o.3 * -o.6 * -o.6
- 0.2
- o.9
- 1.2
- o.o * -2.0 * -2.4 * -2.4 * -2. 1 * -2.s 0.64 1.09 1.29
- 1.22
- 1.22 0.96 1.27 1.19 1.27 0.96 1.22 1.22 1.29 l.09 0.64 D.63 1.08 1.26 1.22 1.23 0.97 1.24 1.22 1.28 D.96
- l.20 1.19 1.26 l.D7 0.64
- -1.1 * -o. 7 * -1.8 * -o.3
- 0.2
- 0.2 * -2.2
- 2.2
- 0.9 * -a.a * -1.e * -2.4 * -2.1 * -1.5
- 0.1
- 0.38 1.10 0.98 1.33 0.98 1.18 *,0.98 1.26 0.98 1.18 0.98 1.33 0.98 1.10 0.38 4
5 6
7 8
0.38 1.09 0.97 1.32 0.98 1.17 0.96 1.27 1.00 1.19 0.96 1.30 0.98 1.11 0.39 9
-1.1
-1.1
-1.1
-o.5 0.2
-o.e. -2.2 o.e 2.1 o.6
-1.5
-2.4
-0.2 1.2 1.1
- 0. 75 1.2_1 l.25 1.29 1.21 1.18 0.96 1-.18 1.21 1.29 l.25 1.21 O. 75 0.75 1.22 1.26 1.29 l.19 1.15 0.95 1.18 1.23 1.32 1.30 1.23 0.76 o.5 o.5 o.3 0.2
-1.2
-2.1
-1.5 o.z 2.0 2.5 4.D 1.5 1.8 0.39 1.08 1.25 0.98 1.26 0.98 1.22 0.98
- 1.28
- 0.98 1.25 1.08 0.39 0.39
- 1.10
- 1.27
- 0.98
- 1.26
- 0.95
- 1.18
- 0.96
- 1.29
- 1.01
- 1.29
- 1.12
- 0.40 1.e
- 1.e
- 1.e
- 0.2 * -1.1 * -2.4 * -3.l * -1.1
- o.8. 3.2
- 3.3
- 1.2
- 3.2
- o.42 o.92 1.25 1.25 1.33 1.22 1.33 1.25
- 1.25 o.92 D.42 0.43 0.95
- 1.28
- 1.24
- 1.31
- 1.19
- 1.31
- 1.27
- 1.27
- 0.94 0.44 3.1
- 3.1
- 2.4 * -1.3 * -1.5 * -2.2 * -1.1
- 1.1. 1.9. 1.8
- s.1
- 0.43 1.09 1.21 0.98 1.29 0.98 1.21 1.09 0.43 0.44 1.11 1.22 0.96 1.27 0.96 1.20 l.09 0.44 2.e
- 2.4
- D.6 * -1.s * -1.6 * -1.5 * -1.3
- o.9
- 2.e 0.39 0.75 1.10 l.D9 1.10 0.75 0.39 0.40 0.77 1.12 l.D9 1.08 0.74 0.38 2.4 3.1 l.B
-0.1
-1.l
-1.3
-1.3 STANDARD DEVIATION
=l.039 0.38 0.64 0.38 0.40 0.65 D.38 4.1 *
- 2. 0 * -1. 3
- AVERAGE
.PCT DIFFERENCE.
= 1.4
SUMMARY
MAP NO: Sl-8-36 DATE: 09/09/85 POWER:
100%
CONTROL ROD POSITIONS:
F-Q(T) = 1.812 QPTR:
10 11 12 13 14 15 D BANK AT 227 STEPS F-DH(N) = 1.503 NW 0.998 I NE 0.993
1.---------
F(Z)
= 1.161 SW 1.002 I SE 1.007 F(XY)
= 1.467 BURNUP = 6873 MWD/MTU A.O = -3.47(%)
25
I
.I I
I I
I I
I I
I I
I I
Figure 4.3 R
p SURRY UN IT 1 - CYCLE 8 ASSEMBLYWISE POWER DISTRIBUTION Sl-8-50 N
11 K
J H
G D
C B
PREDICTED PREDICTED MEASURED
- 0.39. 0.62. 0,39 *
. 0.39. 0.63
- 0.39.
1.4.
1.2
- 1.4
- HE.I.SURED
.PCT DIFFERENCE.
- PCT DIFFERENCE.
. 0.40
- 0.75. 1.06. 1,03
- 1.06. 0.75
- 0.40.
. 0.40. 0.77. 1.07. 1.02. 1.05
- 0.75. 0.42.
- -1.1
- 2.5
- 0.4 * -0.4 * -1.1 * -0.5.
4.1 *
- 0.45, 1.07
- 1.24
- 0.98
- 1.29. 0.98
- 1.24. 1.07. 0.45 *
- 0.45. 1.05. 1.25. 0.99. 1,26. 0.96. 1.23. 1.09. 0.47.
- -1.l * -1.1
- 1.1
- 1.3 * -z. 7 * -2.2 * -o.s.
2.3
- 4.1 *
- 0,44
- 0.94
- 1.29
- 1.24
- 1.35
- 1.19
- 1.35
- 1.24
- 1.29
- 0.94. 0,44.
. o.43
- 0,93. 1.28
- 1.24
- 1.34. 1.11. 1.32
- 1.23. 1.30. o.95. o.45.
- -1,4 * -0.5, -o. 7
- 0.6, -0.6 * -1.6. -1. 7 * -0.3
- 0.5
- 0.9
- 2,3,
- 0.40
- 1,07
- 1.29. 1.01, 1,34, 0.98. 1.19
- 0.98
- 1,34
- 1.01
- 1.29. 1.07
- 0.40 *
. 0.40. 1.05
- 1,28. 1.02, 1,33. 0.96. 1.17
- 0.97
- l.~4
- 1.02. 1.27. 1.08
- 0.43 *
- -1.4 * -1.4 * -0. 7
- 0.6 * -0.3 * -1.3. -1.3 * -1.l
- 0.4 *
- 0. 7 * -2.0.
1.3
- S.3 *
- 0.7S. 1.24. 1.23. 1.34. 1.16. 1.13. 0.95. 1.13. 1.16. 1.34. 1.23. 1.24. 0.7S *
- o.76. 1.2s. 1.23
- 1.31. 1.1s. 1.11
- o.94. 1.13. 1.11. 1.33. 1.21
- 1.23. 0.11
- 1.1
- 1.1. -0,0. -1.8. -0.8. -1.0. -0.7. 0.3. 1.6. -0.9. -1.7. -0.4. 1.9
- A
- 0.39. 1,06. 0,98. l.3S. 0.98. 1,13. 0.98. 1.29. 0.98. 1.13, 0.98. 1.35. 0.98. 1.06. 0.39.
- 0,40. 1.08
- 1.00. 1.35. 0.95. 1.10. 0.97. l.30
- 0.99, l,13. 0.95. 1.31. 0,96. 1.05. 0.38.
2.s
- 1.5.
2.6
- 0.1. -2.3 * -z.3 * -1.0.
o.3
- 1.0 * -0.1 * -z.3 * -z.a. -1.s * -1.z. -o.a *
- 0.62. l,03, l,29
- 1,19. 1.19, 0.95
- l.30. 1.22, 1,30. 0.9S
- 1,19, 1,19
- 1.29, 1.03
- 0.62.
. 0.64
- 1.03, 1.27, 1.19. 1.19, 0,95
- 1.27. 1,24, 1,31. 0.94. 1,16, l.16
- 1.28, 1.03, 0.64.
2,3
- o.6. -La. -0.1. 0,4. o.4. -1.8. 1.1. o.6. -1.1. -2.1. -z.a. -1.0. o.5. 2.z.
- 0.39
- l.06, 0,98. 1.35. 0.98. 1,13
- 0.98. 1.29
- 0.98. 1.13
- 0.98. 1.35, 0.98
- 1.06. 0.39.
3 4
5 7
8
. 0.40, l,06, 0.97, 1,34. 0.98
- 1.12
- 0.96
- 1.30, 0,99. 1.13, 0.96, 1.31. 1.00, 1,10. 0.41.
9
- 2.5. o.z. -1.0. -o.4. o.4.*-o.5. -1.8. o.4. 1.5. o.o. -1.1. -z.8. 1.8. 3.5. 5.9.
, 0,75, 1,24. 1.23. 1,34. 1,16. 1.13, 0.95. 1.13. 1.16. 1.34, 1.23. 1,24. 0.75 *
. 0.76, 1.25. 1.24, 1,34, 1.15. 1.10. 0.93, 1.11 *. 1.16. 1.35. 1.27. 1.28. 0.78.
0.6,
0.6
- O.S,
0,4 * -0.9 * -2,D. -1.8. -D.9
- 0.4
- l.D
- 2.9
- 3.2
- 3.6.
- 0.40, 1,07, 1.29. 1.01. 1,34
- 0.98. 1.19, D,98
- 1.34. l.Dl. 1.29, 1.07
- D.40..
, 0.42. 1.10. 1.33, 1.02, l,31
- 0.95. 1.14, 0.95. 1,32
- 1.03, 1,32, 1.10, 0.42,
2.8, 2,8. 2.8, 0.4. -2.2. -2.8. -3.7. -3,l, -l.3, 2,D, 2,4. 3.3,
4.2
- MAP NO:
CONTROL
. 0.44
- D.94. 1,29. 1.24
- 1.35, 1.19
- 1.35. 1.24
- 1.29, D,94. D.44,
. 0,46
- 0.99, 1.34. 1.20. 1,31. 1.15. 1.31, l,23, l.30. 0.95. D.46,
- 5.l. 5.1.
3,9, -2,5, -2.6. -2,9, -2,7, -D,l. 0.5, 0,8. 4.9 *
- D.45, 1.07
- 1.24
- 0,98. 1.29. 0.98. 1.24. 1,07. 0.45.
. D,47. 1.11
- 1,25. 0.96. 1.27. 0.96. 1,22, 1.06. 0.46
- 4.S
- 3,9,
D,7, -2.3, -2.0. *1,7 * *l.3 * -0.3
- 2.1.
- DJ+D
- D,75. 1.06. 1.03
- l,06, 0.75. D.40.
- 0.42
- D. 79. 1.10. 1.03, 1.05. D. 74
- D,40.
3.9,
S,D
- 3,1.
D.l. -1.S, *1,3. -1.3,
STANDARD DEVIATION
- 0.39. 0.62. 0.39 *
- 0,41. 0.64. D.38.
6.3.
3.1 * -1.5
- AVER.I.GE
.PCT DIFFERENCE.
- l.312 C
l, 7
SUMMARY
Sl-8-50 DATE: 04/14/86 POWER:
99%
ROD POSITIONS:
F-Q(T) = 1. 813 QPTR:
10 11 12 13 14 15 D BANK AT 212 STEPS F-DH(N) = 1.507 NW 0.993 I NE 0.995
1----------
F(Z) 1.136 sw 1.009 I SE 1.003 F(XY)
1.454 BURNUP = 13212 MWD/MTU A.O
-2.65(%)
26
- 1 I
I I,.
I I
.I I.
I
.. I I
I K
- z N
0 R
11 R
L J z E
D F a
- z 1, Z 1. 0 o.e o.s Q.4 o.z o.o.-
0
, 80TTOl1 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (6.0, 1.0) 2 4
6 8
CORE HE l GHT ! FT l 27 Figure 4.4 (10.9, 0.94)-
\\
\\,
\\
(12.0, 0.46).
10 12 TOP
__J
I I
I I
I I
I I
I I
I 2.5 +
2.0 +
1.5
- 1.0 *
-X X
X 0.5 +
0.0 +
X
)(
X SURRY UNIT 1 - CYCLE 8 HEAT FLUX HOT CHANNEL FACTOR, F6(Z)
Sl-8-08 X
XX X
X X
X
)( )( )( )( )(
)( )(
)(
)(
)(
X X X X X
X X X X
XX X
X XX XX X
X X I..... I
- I.
. I.
45
. I.
. I.
- I.
30
. I
- 25
- I
- 61 55 eonort OF CORE 50 40 35 20 AXIAL POSITION (NODES) 28 Figure 4.5 X
X X X X
XX
. I.
15 X X X
I.
10
)(
X XX
)(
X XX
.. I... I 5
l TOP OF CORE
-_J
I I
- I I
I
.I I.
I I
I I
I I
I I
SURRY UN IT 1 - CYCLE 8 HEAT FLUX HOT CHANNEL FACTOR, F~(Z)
Sl-8-36 2.5
- Z.D +
1.5 +
I(
X X
-1(
l.D +
X X
0.5
- o.o.
I(
I( I( I(
I(
I(
I( I( I( I( I( I( I(
I(
I(
I(
I(
I(
I..... I.
- I *
- I *
- I
- 61 55 eon1111 OF CO!lE 50 45 40 XX XX XX X X I(
I( I( I( I( I( I( I( I(
I(
I(
X
. I *
- I *
- I *
- I
- 35 30 ZS zo AXIAL POSITION (NODES) 29 Figure 4.6 XX XX X
I( X I(
I(
X I(
- I *
- I.
- . I... I 15 10 5
1 TOP OF CORE
I I
I I
I I
I I
I I
I I
I 2.5
- SURRY UN IT 1 - CYCLE 8 HEAT FLUX HOT CHANNEL FACTOR, F6(Z)
Sl-8-50 Figure 4. 7 2.0 +
1.5 +
- X X
X 1.0 +
X 0.5 +
0.0 +
XX X
X X
XXXXXXX X
XX X
X X
X X*
xx XX XX XX XX X xxxxxxx X
XX XX X
X X
X X
X X
I..*.. I.
.I *.*. I **.. I *.** I **** I.,,,I,, ** I...* I.
. I
- . I... I 61 S5 BOTTON OF COllE 50 45 40 35 30 2S 20 1S AXIAL POSITION (NODES) 30 10 S
l TOP OF CORE
I I
I I
I I
- 1.
I
'I I
I
- 1.
I I
I SURRY UNIT l -
CYCLE B Figure 4.8 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR. FQ
- P VS AXIAL POSITION 2.2 2.0 1. 8
~...
1. 6 1. 4 pl<
F l. 2 Q
1. G p
o.s 0.6 0.4 0.2 o.o -
I 61 55 50 45 BOTTOM OF CORE FQ
- P LIMIT
- MAXIMUM FQ
- P r------ r---r--....-
- ** ~***
~ *
~
- ~****
~......
~
40 35 30 25 20 15 10 AXIAL POSITION (NODE) 31 l
\\
\\
- \\
\\
a \\ *.,
.\\
5 TOP OF CORE
I I:
II I
- 1 I
I I
I I
I I
I I
I 2.2
- 2. l M
A X 2.0 I
M u M
1. 9.
H E
A T
1. 6 f
L u
X 1. 7 H
0 T
C 1.6 H
A N
N E
1. 5 L
f A
C 1. 4 T
0 R
1. 3.
l. 2. -
I 0
Figure 4.9 SURRY UNJT l - CYCLE 8 MAXJHUH HEAT FLUX HOT CHANNEL FACTOR, F-Q VS. BURNUP
)
X X
2000 4000 TECH SPEC LIMIT X MEASURED VALUE X
I(
(
X 6000 6000 10000 CYCLE BURNUP IMWO/MTUl 32 X
X X
X I
12000 14000 16000
I I
I I
I I
I I
I I
I_
I I
- 1.
I l. 60 l.55 E
l. 50 N
T H
A L
1. 45 p
y R
I l. 40 s
E H
0 l. 35 T
C H
A 1. 30 N
N E
L F
A C
T 1. 25 0
1. 20 R
l. l 5 l. l 0
!V I
0 Figure 4.10 SURRY UNIT l -
CYCLE 8 ENTHALPY RISE HOT CHANNEL FACTOR, F-OH!Nl VS. BURNUP
)
)
X X
2000 4000 TECH SPEC LIMIT X MEASURED VALUE
~
(
'II!
)(
6000 8000 X
10000 CYCLE BURNUP CMWD/MTU) 33 X
)(
~
X X
12000 14000 16000
I I
I I
I I
.I I
'I I
I*
,I I
I I
T A
R G
E T
D E
L T
A F
L u X
I N
p E
R C
E N
T 10 8
6 4
2 0
-2
-4..
1-
-6
-8
-10. -
I 0
2000 t,.
SURRY UNIT'1 -
CYCLE 8 TARGET DELTA FLUX VS. BURNUP
/j
~
~*
4000 6000 8000 10000 CYCLE BURNUP lMWD/MTUl 34 Figure 4.11 t,.
6 t,.
-~.
I 12000 14000 16000
I I
I I
I I
I I
I I
I I
I I
I Figure 4. 12 1.5
- FZ
- A. O.
1.2 +
0.9 +
X X
0.6 +
X
-X X U.3 +
o.o.
X SURRY UNIT 1 - CYCLE 8 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-8-08
= 1.207
= -4.00 X
X XX X
X XX XX X XX X
X X
xxxxxxx X
X X
X X
xxxxxx xx X
X X
xx X X I..... I.
- I.
. I *.
. I..** I...* I.
. I.
. I.... I.
61 55 BOTI0/1 OF CORE so 45 40 35 30 25 20 15 AXIAL POSITION (NODES) 35 X
X X
X
- I.
10 X
X XX X
X X
X
.. I... I 5
l TOP OF CORE
I I
I-I I
I I
I I
I I
I I
I I
N N
~
1.5 +
- 1.z
- 0.9 +
0.6 +
)(
0.3
- o.o +
SURRY UN IT 1 - CYCLE 8 CORE AVERAGE AXIAL POWER DISTRIBUTION S1-8-36 FZ = 1.161 A.O.= -3.47
)(
)(
)(
X X
X X
)(
X X
)( X )( )(
X X X X
>< )( X )(
X
)(
)( )(
X )( )(
X X )( X X X
X XX X
)(
X Figure 4. 13 X X X X X X
X X
)(
)(
)(
)(
)( )(
)(
)(
X X
I..*** 1 **** I.*** 1 **** 1.*** 1.*** 1 **** I **** r.**. r **** 1 **** I.** I 61 55 50 45 40 35 30 25 20 15 10 5
l BOTTDl1 OF CORE TOP OF CORE AXIAL POSITION (NODES) 36
I I
I I
I
- 1 I
I I
I I
I I
I I
- N N
!':rs Figure 4.14 1.5 +
1.2 +
SURRY UN IT 1 - CYCLE 8 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-8-50 Fz = 1.136 A.O.= -2.65 XXX X
X XXXXXX X
XX XXX XXXXX X
XXXXXXXX XXX XX X
XX 0.9 +
-x 0.6 +
X 0.3 +
0.0 +
X X
X I...,, I 61 55 BOTTOM OF CORE X
. I *
- I.
50 45 X
X X
X
. I.
. I,
- I
- 40 35 30 X
X X
. I.
25
. I,
20 AXIAL POSITION (NODES) 37 X
. I..
. I,
15 10 X
X X
X X
X X
X
.. I... I 5
l TOP OF CORE
I I
I I
I I*
I I*
I
- 1 I
I I
I I
A X
l A
L p
E A
-K I
~
G F
A C
T 0
R 1. 4 1. 3
.10 t
1. 2 1. l l. 0 -
I 0
Figure 4.15 SURRY UNIT l - CYCLE 8 CORE AVERAGE AXIAL PEAKING FACTOR, F-2 VS. BURNUP t
A A
~
2000 4000 A
A
!"1
\\
A 6000 8000 10000 CYCLE BURNUP !MWD/MTUl 38 D.
A A
A 12000 14000 l 6000
I I
ti I
1*
I I
I I
I I
I I
I.
I Section 5 PRIMARY COOLANT ACTIVITY FOLLOW Activity levels of iodine-131 and 133 in the primary coolant are important in core performance follow analys_is because they are used as indicators of defective fuel.
Additionally,. they are important with respect to the offsite dose calculation values associated with accident analyses. Both I-131 and I-133 can leak into the primary coolant system throught a breach in the cladding. As indicated in the Surry Unit 1 Technical Specifications, the dose equivalent I-131 concentration in the primary coolant* was limited to 1.0 µCi/gm for normal steady state operation; Figure 5.1 shows the dose equivalent I-131 actiyity level history for the Surry 1, Cycle 8 core.
averaged 104.5 gpm during power operation.
The demineralizer flow rate The data shows that during Cycle 8, the core operated substantially below the 1.0 µCi/gm limit during.
steady state operation (the spike data is associated with power transients and shutdown).
Specifically, the average dose equivalent I-131 concentration of 7.5 x 10-2 µCi/gm is equal to approximately 8% of the Technical Specifications limit.
The ratio of the specific activities of I-131 to I-133 is used to characterize the type of fuel failure which may have occurred in the reactor core. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 decays leaving 39
_J
I I -I I
I I
I I,.
I I
I I
I
- 1.
I the I-131 dominant in activity, thereby causing the ratio to be 0.5 or more.
In the case of large leaks and/or "tramp117' material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than O. 1.
Figure 5. 2 shows the I-131/I-133 ratio data for the Surry 1, Cycle 8 core at a general average value of O.5 and decrea!:,ing slightly toward the end of the cycle.
These data indicate that there were probably several moderately sized holes in the fuel cladding for most of Cycle 8.
- "Tramp" consists of fissionable material which adheres to the outside of the fuel.
40
I I,.
I I
I I
I I
I I
I I
I I
I
-0 l::
. c!)
(/)
UJ _
0:: b
=>-
u 0
0::
u -
l::
"" b -
SURRY UN IT 1 - CYCLE 8 DOSE EQUIVALENT 1-131 vs. TIME l TECHNICAL
(!)
(!).
(!)
(!)
(!)
(!)
(!)
t!)
Figure 5. 1 C!)
!DD 50 1:1::
w 0
b 0
c..
---t'l-""'"r---,---.,----r--'-~--.--........ __._~.........,,__---,,--...........J.l..,........,_--,--"T"-...,.....
JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC JAN FEB MAR APR MRY 1se5 1ses 41
I I
I I
I I
I I
I I
I I
I I
C CD N
C...
N oc
.....,~
~N a:
a::
t-*C
-ID
~
u a:
C (T')N
('r) * ---' -c (T')CD -,c -
Figure 5.2 SURRY UNIT 1 - CYCLE 8 1-131 / 1-133 ACTIVITY RATIO vs. TIME
(!)
C* (!)
C!
I I
I
(!)
I
(!)
(!)
1111
.., '~
C!
C!)
C!)
u
(!)
(!)
(b
!II
- 11)
(!)
(!
l!l
(!)
&(!)
(
(!)
(!)
(!
'1i
(!)
(!)
(!),;
m S
- 11)
C!)
(!) @i C!>(!)(!
(!) (!)
(
g
(!)
,!)
(!
i (!
(!)
(!)
C
(!)
I
(!)
t
~ p
(!)
(!)(!)
(!)
f
~(
~
C!)O
(!)(!)
)
&(!
C....
C
- ~
-~ :
T
~
J&,_' ~~~
I
~
~,
(!)..., !tfu;'
I~
(!)( ) '1c,,g, (!) _\\
(!)
(!) Cl!)
~m (!)
ti:'
!~~,i~~*l~
(!)
C
~.,,w; C
C C
(!)
JI ' r
'Ti I
I I
I I
I I
I I
I I
I
~-r -
I "
I "
I I
I 100 50 a:::
w
- le 0
c*
- a.
JAN FEB MAR RPR MAY JUN JUL RUG SEP OCT NOV CEC. JAN FEB HAR APR MAY 1965 1966 42
I I
I I
I I
I I
I I
I I
I I
~
I Section 6 CONCLUSIONS The Surry 1, Cycle 8 core has completed operation. Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specifications limits were met with significant margin.
No significant abnormalities in reactivity or burnup accumulation were detected.
In addition, the mechanical integrity of the fuel has not c~anged significantly throughout Cycle 8 as indicated by the radioiodine analysis.
43
I I -I I
I I
I I
I I
I I
I Section 7*
- 1)
- 2)
- 3)
- 4)
- 5)
REFERENCES T. A. Brookmire, "Surry Unit 1, Cycle 8 Startup Physics Test Report," VEP-NOS-16, February, 1985.
Surry Power Station Unit 1 and 2 Technical Specifications, Sections 3.LD, 3.12.B, and 4.10.
T. K. Ross, "NEWTOTE Code", VEPCO NFO-CCR-6, Rev. 8, April, 1981..
R. D. Klatt, W. D. Leggett, III, and L. D. Eisenhart, "FOLLOW Code," WCAP-7482, February, 1970.
W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149, December, 1967.
44