ML18151A557
ML18151A557 | |
Person / Time | |
---|---|
Site: | Surry |
Issue date: | 06/30/1991 |
From: | Hoffman E, Psuik T, Stewart W VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.) |
To: | NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
References | |
91-390, NE-823, NE-823-R, NE-823-R00, NUDOCS 9107290124 | |
Download: ML18151A557 (61) | |
Text
- -.
'. '~
- VIRG-INIA ELECTRIC AND POWER COMPANY RICHMOND, VIRGINIA 23261
' July 19, 1991 United States Nuclear Regulatory Commission Serial No.91-390 Attention: Document Control Desk NL&P/CGL RO Washington, D. C. 20555 Docket Nos. 50-280 License Nos. DPR-32 Gentlemen:
VIRGINIA ELECTRIC AND POWER COMPANY SURRY POWER STATION UNIT 1 CYCLE 10 CORE PERFORMANCE REPORT For your information, enclosed are five copies of the Virginia Electric and Power Company Technical Report NE-823, "Surry Unit 1, Cycle 1O Core Performance Report."
Very truly yours, L]~
W. L. Stewart Senior Vice President - Nuclear Enclosures cc: U. S. Nuclear Regulatory Commission Region II 101 Marietta Street, N. W.
Suite 2900 Atlanta, Georgia 30323 Mr. M. W. Branch NRC Senior Resident Inspector Surry Power Station
'~
1 9:l072'?01?.ll: *::-1101:.,:;:: 4
. . .F.*\"'.IR , 'ADOl_:K 050002:30
,. i=.,r,R P.. ,._
50- 280 Surry VEPCO Unit 1 Cycle 10 Core Performance Report June 1991 rec ' d w/ltr . dtd . 7/19/91 9107290124
-NOTICE-
- THE ATTACHED FILES ARE OFFICIAL RECORDS OF THE INFORMATION &
. REPORTS MANAGEMENT BRANCH.
THEY HAVE BEEN CHARGED TO YOU FOR A LIMITED TIME PERIOD ANO MUST BE RETURNED TO THE RE-CORDS & ARCHIVES SERVICES SEC-TION P1-22 WHITE FLINT. PLEA.SE DO NOT SEND DOCUMENTS CHARGED OUT THROUGH THE MAIL. REMOVAL OF ANY PAGE(S) FROM DOCUMENT FOR REPRODUCTION MUST BE RE-FERRED TO FILE PERSONNEL.
- NOTICE-
I I
I I
I Surry I Unit 1 Cycle 10 Core I Performance
- Report Nuclear Analysis and Fuel Nuclear Engineering I Services June, 1991 I
I I
I
- VIRGINIA POWER I
I
I TECHNICAL REPORT NE-823 - Rev. 0 SURRY UNIT 1, CYCLE 10 CORE PERFORMANCE REPORT
.- NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER JUNE, 1991 PREPARED BY:~Z ~ - - -
E. A. H~* 03/rl Date REVIEWED BY:~~"""--~---=~;....=.,t~~~~~
T. S. Psuik REVIEWED BY=---'-'..:..-:-..LA...L.:.;....:{3~~:::l
<IU:Wd~il!:li:::=-- 6-Ji-"1/
T. A. Brookmire Date REVIEWED eO\J.n. \k t W. Henderson d, .. L I APPROVED BY: : )__ ) ~~ th'l/'11 D. &iadosz ~
I I QA Category: Nuclear Safety Related Keywords: S1C10, S1C10A, Core Performance
'I
TABLE OF CONTENTS I PAGE I' Table of Contents 1 I List of Tables List of Figures.
2 3
II Section 1 Introduction and Summary. 5 Section 2 Burnup. 14 I Section 3 Reactivity Depletion. 25 I Section 4 Section 5 Power Distribution.
Pr:i,mary Coolant Activity.
27 51 I Section 6 Section 7 Conclusions References.
56 57
- I.
I*
ii
'I I
I I NE-823 SlClO Core Performance Report Page 1 of 57
LIST OF TABLES TABLE TITLE PAGE 4.1 Summary of Flux Maps for Routine Operation . . . . . . . . . 32 I'
- I:
I*
I
,,\
- I.
I I\
I I
NE-823 SlClO Core Performance Report Page 2 of 57 I
I LIST OF FIGURES I
/1,' FIGURE TITLE PAGE
.,, 1.1 1.2 Cycle 10 Core Loading Map.
Cycle lOA Core Loading Map 9
10
,, 1.3 1.4 Cycle 10 Movable Detector and Thermocouple Locations.
Cycle lOA Movable Detector and Thermocouple Locations.
11 12 1.5 Control Rod Locations. 13
- I 2.1 Core Burnup History 16 2.2 Monthly Average Load Factors 17 2.3 Assemblywise Accumulated Burnup: Measured and and Predicted, Cycle 10 . . . . . 18 2.4 Assemblywise Accumulated Burnup: Comparison of Measured and Predicted, Cycle 10 19 2.5 Assemblywise Accumulated Burnup: Measured and and Predicted, Cycle lOA . . . . . . . . . . . 20 2.6 Assemblywise Accumulated Burnup: Comparison of Measured and Predicted, Cycle lOA. 21 2.7A Sub-Batch Burnup Sharing 22
., 2.7B Sub-Batch Burnup Sharing 2.7C Sub-Batch Burnup Sharing 23 24 II 3.1 4.1 Critical Boron Concentration versus Burnup - HFP-ARO Assemblywise Power Distribution - Sl-10-06 26
.33
,,,, 4.2 Assemblywise Power Distribution - Sl-10-19 34 4.3 Assemblywise Pow.er Distribution - Sl-10-29 35.
I 4.4 Assemblywise Power Distribution Sl-10-48 36 I NE-823 SlClO Core Performance Report Page 3 of 57
I
'\IJ LIST OF FIGURES CONT'D I\
FIGURE TITLE PAGE 11 I'
4.5 Hot Channel Factor Normalized Operating Envelope 37 4.6 Heat Flux Hot Channel Factor, FQ(Z) - Sl-10-06 38 I
4.7 Heat Flux Hot Channel Factor, FQ(Z) - Sl-10-19 39 4.8 Heat Flux Hqt Channel Factor, FQ(Z) - Sl-10-29 40 4.9 Heat Flux Hot Channel Factor, FQ(Z) - Sl-10-48 41 ,I 4.10 Maximum Heat Flux Hot Channel Factor, FQ(Z)*P, vs.
Axial Position. . . . .. , .. 42 4.11 Maximum Heat Flux Hot Channel Factor, FQ(Z), vs. Burnup 43 4.12 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.
Burnup . 44 4.13 Target Delta Flux versus Burnup 45 4.14 Core Average Axial Power Distribution - Sl-10-06 46 4.15 Core Average Axial Power Distribution - Sl-10-19 47 4.16 Core Average Axial Power Distribution - Sl-10-29 48 4.17 Core Average Axial Power Distribution - Sl-10-48 49 4.18 Core Average Axial Peaking Factor vs. Burnup 50 5.1 Dose Equivalent I-131 vs. Time 54 5.2 I-131/I-133 Activity Ratio vs. Time. 55 I
NE-823 S1C10 Core Performance Report Page 4 of 57
I Section 1 INTRODUCTION AND
SUMMARY
On October 6, 1990, Surry Unit 1 was shut down for its eleventh refueling. Inital criticality of Cycle 10 was reached on July 14, 1988.
However, during Cycle 10 there were indications of fuel failure in..the core and the Unit was shut down for maintenance on September 14, 1988.
During the outage_, a single failed assembly was located and replaced.
I As a result of the full-core off load startup physics testing was required and due to the change in the core loading the remainder of the cycle was referred to as Cycle lOA. During the shortened Cycle 10 the reactor core produced approximately 1.0674 x 10 7 MBTU (1,803 Megawatt days per metric ton of contained uranium). Since initial criticality of Cycle lOA on July I 5, 1989 Surry, Unit 1 produced approximately 8.3370 x 10 7 MBTU (14,086 Megawatt days per metric ton of contained uranium). The combined
- I generation for cycle 10/lOA was 9.4043 x 10 7 MBTU (15,889 Megawatt days .j I per metric ton of contained uranium).
'I, The purpose of this report is to present an analysis of the core performance for routine operation during Cycles 10 and lOA. The physics I, tests that were performed during the startup of Cycle 10 and Cycle lOA I were covered in the Surry Unit 1, Cycle 10 Startup Physics Test Report 1
.. and the NE-823 Surry Unit 1, Cycle lOA therefore, will not be included here.
SlClO Core Performance Report Startup Physics Test Report 2 Page 5 of 57 and
I Surry Unit 1 was in coastdown from July 26, 1990, at which time the burnup was approximately 13,979 MWD/MTU. The coastdown accounted for an additional core burnup of roughly 1,910 MWD/MTU from the end of full power reactivity. I The Cycle 10 core cons.isted of 18 sub-batches of fuel: eight
\I 1*
once-burned batches, one from Cycle 6 (batch 8B7); three from Cycle 7 (batches 9A5, 9B5, and 9B7), and four from Cycle 9 (batches llAl, 11A2, 11B2, and 11B3), four twice-burned batches, two from Cycles 7 and 9 (batches 9A4 and 9B4),,one from Cycles 6 and 7 (batch 8B3), and one from 1, Cycles 8 and 9 (batch 10A3), four thrice-burned batches, three from Cycles 7,8,and 9 (batches 9A3, 9B3, and S2/9B), and one from Cycles 6, 8, and 9 I (batch 8B4), and two fresh batches (batches 12A and l2B). The Cycle' lOA core consisted of 19 sub-batches of fuel and the only change from Cycle 10 to Cycle lOA was the replacement of assembly 4G7 (batch l2B) with a
..,I fresh assembly 2UO (batch S2/12A). The Surry 1, Cycle 10 and Cycle lOA core loading maps specifying the fuel batch identification, fuel assembly 1.
locations, burnable poison locations and source assembly locations are I'
shown in Figures 1.1 and 1.2 respectively. Movable detector locations and thermocouple locations for Cycle 10 and Cycle lOA are shown in Figures 1.3 and 1.4. Control rod locations are shown in Figure 1.5.
I Routine performance core follow indicators.
involves These are the analysis of four burnup distribution, principal reactivity
\I depletion, power distribution, and primary coolant activity. The core *11 burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the NE-823 SlClO Core Performance Report Page 6 of 57 I
I next cycle will be compatible with the new fuel that is inserted.
Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate at what burnup level refueling will be required. Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specifications 3 limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.
- Lastly, as part of normal core follow, the primary coolant activity is monitored to verify that the dose equivalent iodine-131 concentration is within the limits specified by the Surry Unit 1 Technical Specifications 3
- A radioiodine I analysis based on the iodine-131 concentration in the coolant is performed to assess the in egrity of the fuel.
Each of the fur performance indicators is discussed in detail for the Surry 1, Cycles 10 and lOA core in the body of this report. The results
,I are summarized below:
- 1. Burnup - The burnup tilt (deviation from quadrant symmetry)
I on the core was no greater than +/-0.64% for Cycle 10 and no greater than
+/-0.86% for Cycle lOA with the burnup accumulation in each bate~ deviating I from design*predictions by no more than 2.40% in Cycle 10 and no more than 1*1 4.55% in Cycle lOA. This deviation is for sub-batch S2/12A which consists of a single assembly. The maximum deviation for the remaining sub-batches I was no more than 1.01% for Cycle lOA.
- 2. Reactivity Depletion - The critical boron concentration, I
.. used to monitor reactivity depletion, was consistently within +/-0.11% ~K/K of the design prediction for Cycle 10 and within +/-0.35% l!.K/K of the design I NE-823 SlClO Core Performance Report Page 7 of 57
-al prediction both are within the +/-1% AK/K margin allowed by Section 4.10 of the Technical Specifications.
- 3. Power Distribution - Incore flux maps ca.ken each month indicated that the assemblywise radial power distributions deviated from the design predictions by a maximum average difference of 1.6% for Cycle 10 and 2.0% for Cycle lOA. All hot channel factors met their respective Technical Specifications limits.
- 4. Primary Coolant Activity - The average ,:ose equivalent iodine-131 activity level in the primary coolant during Cjcle 10/lOA was approximately O.0282 lJCi/gm. This corresponds to less '.:han 3% of the operating limit for the concentration of radioiodine i.n the primary coolant. Radioiodine analysis during Cycle 10 indicatec fuel defects.
During the outage between Cycles 10 and lOA, ultrasonic :esting showed that one rod in assembly 4G7 was defective and was restric ~d from being used in Cycle lOA. Radioiodine analysis during Cycle lOA .1dicated one to three cladding defects existed which prompted ultrasoni testing (UT)
II during the Cycle lOA to Cycle 11 refueling outage. The ul:~asonic tests provided no conclusive indication of fuel cladding defects in Cycle lOA.
I.
Several "suspect" rods were identified in fuel assemblies scheduled to
- I.
be discharged, thus there was no impact to the Cycle 11 core design.
I I
NE-823 SlClO Core Performance Report Page 8 of 57
Figure 1.1 SURRY UNIT 1 - CYCLE 10 CORE LOADING MAP R p N
" L K J H G F E D C II A I 2DZ ZEZ 2D4 I I I I I I I l-2-:E-::-l---:-I-O-C9-=--I ZGS I 3P I 4Fl I
I 3G3 I 3P
,--Z-,..,C,-l_l,_O-EZ-1 I I I 2
' 4DZ I OGl I 4Ga I lFO I ZF9 I ZF6 I 3G'J I 1G9 I 406 I I I I
I I 4P I 16P I 16P
' ZDS I OC4 I 3G6 I 1F6 I
I I 1G3 I ZDP I ss1 I 4FS I
I I OG6 I ZDP I , 16P I ZFS I
I I 4GS I 16P 4P I I 4C3 I
I I 1D3 I
I I
3 4
I ' OE7 I
I ZG3 I 4P I 4Gl I 16P I 4F7 I
I OCZ I
I 4G6 I 16P I DF4 I
I lFZ I 4P I DF3 I 4P I DOZ I
I I 3FS I DG3 I ZDP I
I 309 I ZF7 I
4P I 3F3 I
I lGS I ZDP I
I I 307 I
lFl 4P I
I SF3 I DF7 I 4P I 3GO I 16P I 2F3 I
I DGS I 4P I 4G7 I 16P I
I SES I 3CD I
I I
I I 6 5
I ' ZD3 I
I 1E4 I ZG7 I 3P I
I SF6 I 1F9 I
I SFD I 1G6 I ZDP I 3F8 I
I SF4 I 506 I . I 4P I ZGO I ZDP I Zfl I
I SD4 I
,I__ ,__ ,I__ ,__*_, __ ,__ ,__ ,__ ,__ ,I__ ,__ ,__,I__ ,__,__,
I 3FZ I SS7 I SFS I
I I
4D7 I
I SDO I 4F9 I
I ZGZ I ZDP I ZF8 I
I I 4P ZD6 I lGl I ZDDP I ZDP 404 I I
3Fl I 1F4 I
I 4F3 I 3Gl I 3P I 3F7 I
I 4CO I
I SEl I
I I
I I
7 8
,I__ ,I__ ,I __ ,I __ I__ ,_. __ ,I__ ,I__* ,I__ ,I__ I __ , I__ I__ ,_. I __ ,
I 109 I 3GZ I OFZ I oca I 3F4 I lGO I zoo I SFZ I 209 I ZGl I 3F6 I lGa I OFS I 462 I 104 I 3P ZOP , I ZOP ZDP , ZOP , I__ , 3P I 9 I 3CZ I 4G9 I ZF4 I lF3 I 4DO I 1G7 I Dfl I OG4 I 508 I OF6 I lFS I 3GS I DC8 I I I 16P I I 4P I I ZOP I I ZOP I I 4P I I 16P I I 10 I '--'--'--'--'--'--'--'--'--'--'--'--'--'
I I lEl I lGZ I 4P I zca I 16P I 4F4 I
I 4RO I 2co I 4G3 I OF8 I 4P I ZFZ I 3F9 I
I DG7 I
I 409 I 4F6 4P I 4FZ I
I lG4 I lF7 I 4P I lF8 I I lFO I
3Ga I ZG9 I 16P I 3C7 I OGZ I 4P I 3RZ I ZE6 I
I I
I 11 I I I 16P I I ZOP I I ZOP I I 16P I I I 12
'--'--'--'~'--'--'--'--'--'-*
I 004 I
I 2G4 I 4P I
I 3G4 16P I
I ZFO I 4FD I ssz I DF9 I
I 4G4.
I 16P I OG9 I 4P I I 3D4 I I 13 I
I SE4 I I
lC3 I I
3G7 3P I
I 4F8 I ZG6 I zcs I I 3P I I 3E9 I I 14 1--> ASSEHBLY ID 1--> ONE OF THE FOLLOWING I
'--'--'--'--'--'--'--' I I
ZC4 I 3E5 I
I I
306 I I 15 A. SS - SECONDARY SOURCE B. XXP - BURNABLE POISON ASSEHBLY '--'--'--'
(XX-NUMBER OF RODSJ C.XDP - DEPLETED 8URNA8LE POISON ASSEHBLY CX-NUNBER OF RODSJ AJEL ASSEltBLLY DESIGN PARANETERS SUI-BATOtCSlClO>
81 9A 91 SZ/91 10 UA 111 12A lZI INITIAL E,aICHNENT (W/0 U-235) 3.40 3.59 3.61 3.61 3.60 3.60 3.80 3.80 3.99 ASSEHBLY TYPE lSXlS lSXlS lSXlS lSXlS lSXlS lSXlS lSXlS lSXlS 15Xl5 NUHBER OF ASSEIIIILIES 14 14 lZ z 12 28 27 24 24 FUEL RODS PER ASSEJtlllY 204 204 204 204 204 204 204 204 ZD4 ASSE!fBLY IDENTIFICATION DCZ DOZ 307 4RI DEZ OFl lFS ZF9 4F3 OGl 1G3 ZGS 3G7 OC4 004 309 lRZ DE7 OFZ 1F6 lFO 4F4 OGZ lG4 ZG6 3GII oc8 1D3 4DO lEl OF3 1F7 3Fl 4F5 OG3 lGS ZG7 3G9 I DC9 1C3 zco ZCl 2C4 1D4 109 ZDD ZDZ 2D3 4DZ 404 406 407 409 1E4 ZEl ZEZ ZE6 3E5 OF4 OFS OF6 OF7 OF8 1F8 1F9 ZFO Zfl ZFZ lFZ 3F3 3F4 3F5 3F6 4F6 4F7 4F8 4F9 SFO OG4 OGS OG6 DG7 oca 1G6 1G7 lGa 1G9 ZGO zca ZG9 3GO 3Gl 3GZ 4GD 4Gl 4GZ 4G3 4G4 zcs 204 soa 3E9 DF9 ZF3 3F7 SFZ OG9 2Gl 3G3 4G5 3CD ZDS SD4 SEl lFO ZF4 3F8 SF3 lGO ZGZ 3G4 4G6 3CZ 2D6 506 SE4 lFl ZF5 3F9 SF4 lGl ZG3 3GS 4G7 3C7 209 soa SES lFZ ZF6 4FO SFS lGZ ZG4 3G6 4Ga 4CD 304 1F3 2F7 4Fl SF6 4C3 306 1F4 ZF8 4FZ I NE-823 S1Cl0 Core Performance Report Page 9 of 57
Figure 1.2 SURRY UNIT 1 - CYCLE lOA CORE LOADING MAP R p N D
" L K J H G F E C B A I I I 2DZ I I 2EZ 1_ _ 1_ _ 1_ _ 1 I
2D4 I
I_Z_E__l_l,__O-C9-I 2G5 I 4Fl I 3G3 I_Z__C_l__,l.....,.,OE=-=z=--1 I 3P I I 3P I I I 2
- 1
_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _
I I 4DZ I OGl I 4GB I lFO I ZF9 I ZF6 I lG9 I 1G9 I 406 I I
I I 4P I 16P I I 16P I I ZOP I I SS1 I
_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _
I 20P I
_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _
I 16P I 4P I I 2D5 I OC4 I 3G6 I 1F6 I 1G3 I 4F5 I OG6 I ZF5 I 4G5 I 4C3 I 1D3 I I 16P I I
I I 4 3
I I OE7 I ZG3 I 4Gl I 4F7 I OF3 I 3F5 I 3D9 I 3F3 I lFl I SF3 I 3GO I OG5 I 5£5 I I'
I I 4P I 16P I I 4P - I I 4P I I 4P I I 16P I 4P I I 5 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I OCZ I 4G6 I OF4 I lFZ I ODZ I OG3 I 2F7 I 1G5 I 3D7 I OF7 I ZF3 I zuo I 3CO I I I 16P I I 4P I I 20P I I 20P I I 4P I I 15P I I 6
_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _
I ZD3 I ZG7 I 1F9 I 1G6 I 3F8 I ZGO I SD4 I 5FS I 5DO I ZGZ I 206 I lGl I 1F4 I 3Gl I 4CO I I I 3P I I -20P I I ZOP I I I I ZOP I 20DP I ZOP I I 3P I I 7 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I lE4 I SF6 I SFO I SF<t I 506 I ZFl I 3FZ I <tD7 I 4F9 I ZFI I <t04 I 3Fl I 4F3 I "3F7 I SE1 I I I I . I . I 4P I I SS7 I I I I 4P I I I I I 8 1_ _ 1_ _ 1_ _ 1_ _-_1 _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I lD9 I 3GZ I OFZ I oca I 3F4 I lGO I zoo I SFZ I 209 I ZSl I "3F6 I lGa I OF5 I 4GZ I 104 I I I 3P I I ZOP I I ZOP I I
- I 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_*_1 _ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I ZIP I I ZOP I I 3P I I 9 1:*
l~l~l~l~l~l~l~l~l~l~l~l~l~I I I 16P I I 4P I I ZOP I I 20P I I 4P I I 16P I I 10 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I
I lEl I lGZ I zca I 4F4 I OFa I "3F9 I 409 I 'iFZ I 1F7 I 3FO I 2G9 I OGZ I 2E6 I I I 4P I 16P *I I 4P I I 4P I I 4P I I 16P I 4P I I 11 I _ _ I_ _ I_ _ I _ _ I _ _ - I_ _ I_ _ I_ _ I_ _ I_ _ I_ _-_I _ _ I_ _ I I 4RO I 2CO I 4G3 I 2F2 I OG7 I 4F6 I 1G4 I 1F8 I 3Ga I 3C7 I 3RZ I I I I 16P I I ZOP I I ZOP I I 16P I I I 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I DD4 I 2G4 I 3G4 I ZFO I 4FO I OF9 I 4G4 I OG9 I 304 I I l4Pl~I l~I 1~14PI I 13 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I SE4 I lC3 I 3G7 I 4Fa I ZG6 I zcs I 3E9 I I
I I__ I 1--> ASSE"BLY ID 1--> ONE OF THE FOLLOWING I I I 3P I I 3P I 1_--_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1_ _ 1 I ZC4 I 3£5 I 306 I I I I I I I 14 15 rl'.
A. SS - SECONDARY SOURCE 1_ _ 1_ _ 1_ _ 1 B. XXP - BURNAILE POISON ASSE"ILY CXX-NIMBER OF RODS>
C. XIIP - DEPLETED IIURNAILE POISON ASSENILY CX-NUNIER OF RODS>
D. LOCATION C-6 IS Tl£ REPLACED ASSENILY FRott CYCLE 10 I,
FUEL ASSENILLY DESIGN PARAIIETERS SU1-IIATCHCS1C1DA>
I INITIAL ENRICIINENT CW/0 U-235)
H 3.'iO 9A 3.59 911 3.61 SZ/91 3.60 10 3.60 lll 3.61 111 3.ao lZA 3.ao 121 3.99 SZ/lZA 3.71 I
ASSE"IILY TYPE NUNBER OF ASSEMBLIES FUEL RODS PER ASSENILY ASSENILY IDENTIFICATION 15Xl5 14 204 ocz 15Xl5 14 204 ODZ 15)(15 12 204 307 15)(15 2
204 4RO 15Xl5 12 204 OEZ 15Xl5 OFl 211 204 1F5 15Xl5 ZF9 27 204
'iF3 15Xl5 24 204 OGl 1G3 15Xl5 ZGS 23 204 3G7 15Xl5 l
204 ZUO
- 1 OC'i 004 309 3RZ OE7 OFZ 1F6 "3FO 4F4 OGZ 1G4 ZG6 3Ga oca OC9 1C3 zco 2Cl 1D3 1D4 109 zoo 2DZ
'iDO 4DZ 404 406
<tD7 lEl lE'i 2El ZEZ 2E6 DF3 OF4 OF5 DF6 OF7 1F7 1F8 1F9 ZFO ZFl 3Fl 3FZ 3F3 3F4 3F5 4F5 4F6 4F7 4Fa 4F9 OG3 OG4 OG5 OG6 OG7 1G5 1G6 1G7 lGa lG9 2G7 2ca ZG9 3GO 3Gl 3G9
<tco 4Gl 4GZ 4G3
,I
,I 2C4 203 409 3E5 on ZFZ 3F6 5FO oca zco 3GZ 4G4 ZC5 204 5DO 3E9 DF9 ZF3 "3F7 5F2 OG9 ZGl 3G3 4G5 3CO 205 504 5El lFO ZF4 3F8 5F3 lGO 2GZ 3G4 4G6 3C2 ZD6 506 5E4 lFl ZF5 "3F9 5F4 lGl ZG3 3G5 4Ga 3C7 2D9 soa SES lFZ 2F6 4FO 5F5 1G2 2G4 3G6 4CO .i- 304 1F3 ZF7 4Fl 5F6 4C3 306 1F4 ZFa 4FZ NE-823 S1Cl0 Core Performance Report Page 10 of 57 I.
I Figure 1. 3 SURRY UNIT 1 - CYCLE 10 MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS
.,,i I
R p H H l I( J H G F E D C II A I. I HD I I I TC I I I
---,---I I
I I
I I
I I l--,,H~D----:-1--1 TC I I z I --'--'--'--'--'--'--'--'--
HD I I IHDIHDI I I IHDI I TC I I I TC I TC I I I I TC I 3 I I HD I I I HD I I I I I I I I I TC I I I TC I I HD I I I I 4 I
I HD I
I I
I I
I IHDIHDI I TC I TC I IHDI I TC I 5
, _ _ , _ _ , _ _ , _ _ , _ _ 1_ _ 1_ _ 1_ _ , _ _ 1_ _ , _ _ , _ _ , _ _ ,
I I I I Ho** I I I HD I I HD I I I I I I I I I TC I I I TC I I TC I I I I I 6 I
I I
IHDI I TC I I
I I
I *, 7 1: I HD I I I I HD I I I I HD I I HD I I
I I
I I I HD I I HD I HD I I
I, _TC_ I, _ _ ,I _TC_ I, _ _ ,I _TC_ I, _ _ ,I _ _ II _ _ I, _ _ ,I _TC_ I, _ _ I, _ _ I,_._,_.
I I HD I HD I I
I
__ , _ _ I, I, _ _ I, _ _ 1I _ _ 1I _ _ 1I _TC_ 1I _ _ 1I _ _ 1I _ _ 1I _TC_ I, _TC_ 1I _ _ I, _ _ I, _ _ ,I _ _ I, _TC_ I, I HD I a
9 I IHDI I I *IHDI I I I IHDI IHDI
,I _ _ I, _TC_ I, _ _ I, _ _ I,_ _ ,I _TC_ 1 I _ _ I, _ _ ,I _ _ 1 I _ _ I, _TC_ I, _ _ ,I _TC_ I, 10 I I I IHDI I IHDI IHDIHDI I I I I I I I TC I I I TC I I TC I TC I , I I I 11 I HD I I I I HD I I I I I HD I HD I I TC I I I I TC I I I I I TC I TC I 12 I
I I I
I I
I I
I I
I I
I I
HD I I
I I
I I 13
, _ _ , _ _ I _ _ I _ _ , _HD_ , _ _ , _TC_ , _ _ , _ _ ,
I HD I I I I HD I I I I, _TC_ I, _ _ II _ _ I*_ _ I, _TC_ I, _ _ I, _ _ ,I 14 HD - Movable Detector I HD I I I TC - Theraocouple I TC I I I 15 I,
I I NE-823 SlClO Core Performance Report Page 11 of 57
Figure 1.4 SURRY UNIT 1 - CYCLE lOA MOVABLE DETECTOR AND THERMOCOUPLE LOCATIONS R p N H K J H G F E D C B A HD I I I TC I I
~~~~-'~~'~~'~~'~~~~-
' I I I HD I I I I I I I I TC I I z
~~I I HD I
__ II__ IJ~~'~~'-~I~~'~-'~~
HD I HD I I I I HD I I TC I I I TC I TC I I I I TC I 3
~~'~~I~~'~-'~~'~~'~~'~~'~~'~~'~~
I I I HD I I I I I I I I I I I I TC I I I TC I I I I I I 4 I ~~'~~'--'~~'--'~~'--'~-'~~'~~'~~'~~'~~
JHDI JHDJ I I I .I IHDIHDI IHDJ I I TC I I TC I I I I I I TC I TC I I TC I 5
'~-'~~'--'~~'~~'-~'--'~-'~-'--'~~'~~'~~'
I I I I Ho** I I I I I HD I I I I I I I I I TC I I I TC I I TC I I I I I 6
~~'~~'~-'~~'~~'~~'~~'~-'~~'~-'~~'~~'~~'~~'~-
I I HD I I I I HD I I I I I HD I I HD I I I I I TC I I I I TC I I TC I I I TC I I TC I I 7
'~-'~~'~~'~-*-'~~'~-'~~'~-'~-'~~'~~'~~'~~'~~'~-'
I HD I I HD I I HD I I I I I HD I I I HD I HD I I I TC I I TC I I TC I I I I I TC I I I TC I TC I I a
'~-'--'~~'-~'~~'--'~~'--'~~'~-'~-'~~'~~'--'~-'
I I I I I HD I I I I ND I HD I I I I I HD I I I I I I TC I I I I TC I TC I I I I I TC I 9
'~-'~~'~~'~-'~~'~~'~-'-~'--'--'--'--'--'--'~-'
I IHDJ I I IHDI I I I IHDI JHDI I I TC I I I I TC I I I I I TC I I TC I 10
'--'-~'-~'~-'~-'--'-~'-~'--'~-'--1-~'~-'
I I I IHDI I IHDI IHDJHDI I I I I I I I TC I I I TC I I TC I TC I I I I 11
'~~'~-'~-'-~'~-'~~'-~'--'-~'~~'--'~-'~-'
I I
HD TC I
I I
I I
I I
I HD TC I
I
'--'--'--'--'-~'-~'--'~-'--'--'-~'
I I I I I I
I I
I I
I HD I
I I
I I
I HD TC I
I I
HD TC I
I 12 I:
I I I I I I I TC I I I u HD - Hovabla Datactor
'~-'-~'~-'--'~-'-~'--'--'--'
I I
HD TC I
I I
I I
I
'-~'-~'--'--'--'--'-~'
I HD I I
I I
HD TC I
I I
I I
I I 14 I
I I I I 15 I
NE-823 SlClO Core Performance Report Page 12 of 57 I
Figure 1.5 SURRY UNIT 1 - CYCLE 10 / lOA CONTROL ROD LOCATIONS I' p R N L K J H G F E B A
" D C
'I I Loop outlet c
""- I I A I
I I
I I_I_D_I_I A
_1_1_1_1_1_1_1_1_
I I
I I
I I ~
Loop B Inlet 1
2 N-41 I I I I SA I I SA I I I I N-43 3
'I I
__1_1_1_1_1_1_1_1_1_1_
I I c I I B I
_1_1_1_1_1_1_1_1_1_1_1_1_
I I I SB I I SP I I I I SP I I B I I c I I SB I I I
I I 4
s I Inlet I 1_1_1_1_1_1_1_1_1_1_1_1_1_1 IAI I I SA I IBI J SP I IDI I SB I ICI I SB I IDI IBI Loop C _ I __ I __ I _ I _ I . _ I _ I _ I _ I __ I _ *I _ I _ I _ I _
Loop B I ~ Outlet 7
\ . I _ I _ I _ I _ I _ I _ I _ I _ I _ *I _ I _ I _ I _ I _ I _ I /
- I 0 90 -'11 I D I I I I c I 1_1_1_1_1_1_1_1_1_*1_1_~_1_1_1_1 I I I SA I I SP I I SB I I I I SB I I c I I I SP I 1_1_1_*1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 _ 1 I
I SA I I D I I
I - 270 0 I
8 9
I IAI I
IBI I
IDI 1_1_1_1_1_1_1_1_1_1_1_1_1_1 I I SB I 1_1_1_1_1_1_1_1_1_1_1_1_1_1 I SP I ICI I SP I IDI IBI I SB I I IAI I I 10 11 I I C I I B I I I I B I I c I I 12 1_1_1_1_1_1_1_*_1_1_1_1_1 I I I I SA I I SA I I I I 13 N-44 I __ I _ I _ I _ I _ I _ I __ I __ I_-_I N-42 I I A I I D I I A I I 14
'I Absorber
~
Loop A Outlet 1_1_1_1_1_1_1_1 I I I_I_I_I I I "-
Loop A Inlet 1S Material I I Ag-In-Cd Function Number of Clusters 1
Control Bank D 8 I, Control Bank C Control Bank B 8
8 Control Bank A 8
'I Shutdown Bank SB Shutdown Bank SA SP (Spare Rod Locations) 8 8
8 f,
I NE-823 SlClO Core Performance Report Page 13 of 57 I
Section 2 BURNUP The burnup history for the Surry Unit 1, Cycle 10 and lOA core are graphically depicted in Figures 2.1. The Surry 1, Cycle 10 core achieved a burnup of 1,803 MWD/MTU. The Surry 1, Cycle lOA core achieved an additional 14,086 MWD/MTU of burnup, with the combined Cycle 10/lOA achieving a burnup of 15,889 MWD/MTU. As shown in Figure 2.2, the average load factor for Cycle 10/lOA was 55.3% when referenced to rated thermal power (2441 MW(t)). Unit 1 performed a power coastdown starting on July 26, 1990 until shutdown for refueling on October 6, 1990.
Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed I
burnup distribution analysis. The NEWTOTE 4 computer code is used to calculate these assemblywise burnups. Figures 2.3 and 2.5 are the radial burnup distribution maps in which the assemblywise burnup accumulation of the core at the end of Cycle 10 and Cycle lOA are given. For comparison purposes, the design values are also given. Figures 2.4 and 2.6 are I radial burnup distribution maps in which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 10 and Cycle lOA operation are given. As can be seen from these figures, the accumulated assembly burnups were generally within +/-4.91% of the predicted values for Cycle 10 and within +/-2.72% of the predicted values for Cycle lOA. In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.64% in Cycle 10 and no greater than +/-0.86 in Cycle lOA.
NE-823 SlClO Core Performance Report Page 14 of 57 I,
I The burnup sharing on a batch basis is monitored to verify that the
- ,., core is operating as designed and to enable accurate end-of-cycle batch burnup predictions to be made for use in reload fuel design studies.
I Batch definitions are given in Figure 1.1. As seen in Figures 2.7A, 2.7B and 2. 7C the batch burnup sharing for Surry 1, Cycle 10/ lOA followed I design predictions closely with no batch deviating from prediction by more than 2.40%* in Cycle 10 and no more that 4.55% in Cycle lOA. Note that I this batch devitaion is for batch S2/12A which consisits of a single I assembly.
Symmetric The maximum for the remaining batches was 1.01% for Cycle lOA.
burnup in .conjunction with agreement between actual and
.I predicted assemblywise burnups and batch burnup sharing indicate that the Cycle 10/lOA core did deplete as designed.
I
'I I
- 1
.1.
- I, I
I*
I NE-823 S1C10 Core Performance Report Page 15 of 57
Figure 2.1 SURRY UNIT 1 - CYCLE 10/lOA CORE BURNUP HISTORY 1:
17000 ---- *- -- -* . - --- -- -- *--- *- .. - -- --- ---
liio Ciiii
,ii 16000 v~ I 15000 14000 V I, C I /,
Y 13000 C
L 12000 r V I
/
E 8
11000 V J
- I u 10000 J R
N 9000 /
I 7
I u J p 8000 7 M 7000
- I w
D 6000 17 J
V 1*
I J M 5000 T
u 4000 V
I V
I I
)
3000 V 2000 J I
V 1000 V
)
I.,
0 .J I
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 I '
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 J
u u L
A s 0 N E C 0 G p T V D J F M E A E A C N 8 R A M J p A u R y N J
u u A s 0 N D J F M A M J J E C 0 E A E A p A u u L G p T V C N 8 R R y N L A
u s 0 E C 0 G p T V N
I 9 9 9 9 8
8 8 8 8 8 a 8 8 8 8 8 8 8 B 9 9 9 8 8 8 9 9 9 8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 0 0 0 0 0 0 0 0 0 0 0 *I TIME(MONTHS)
NE-8:3 S1C10 Core Performance Report Page 16 of 57 I
Figure 2.2 SURRY UNIT 1 - CYCLE 10/lOA MONTHLY AVERAGE LOAD FACTORS
~o ... 1
- l n
- ! 11 50 -
- 00 -p f 1
I z _, -*-:
I' i
~o -*.:
- I*.
40 -.
I* 30 JI
.,, 20 ~: ::j l I' 10 ~ !i/
I I
I/ ~ONTH 1*
I ~E-823 SlClO Core Performance Report Page 17 of 57
I Figure 2.3 SURRY UNIT 1 - CYCLE 10 ASSE~BLYWISE_ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU) p H H L K J H G F E D C B A I
I 34.971 31.131 34.941 I MEASURED I 2 I 34.891 17.251 I 34.921 17.551 I 34.771 31.321 34.771 2.011 21.491 2.061 21.471 2.001 17.721 35.371 Z.061 17.551 34.921 I PREDICTED I z I I
3_ I 34.311 1.881 2.081 22.771 18.781 22.921 2.081 1.891 35.521 3 I 35.121 1.921 2.141 22.741 19.231 22.741 2.141 1.921 35.121 4 I 35.321 20.361 2.111 22.831 2.151 21.751 2.121 22.731 2.121 20.971 34.841 4 I 34.881 20.701 2.171 22.801 2.231 21.501 2.231 22.801 2.171 20.701 34.881 5 I 35.271 1.891 2.141 22.111 19.031 22.341 16.481 22.541 18.801 22.011 2.111 1.891 35.041 5 I 35.00I 1.931 2.161 22.231 18.911 22.541 16.741 22.541 18.911 22.231 2.161 1.931 35.00I 6 I 17.031 2.091 22.731 18.501 17.811 2.261 23.041 2.231 17.571 19.121 22.941 2.091 16.901 6 I 17.261 2.141 22.921 18.911 17.681 2.211 22.821 2.211 17.681 18.911 22.921 2.141 17.261 7
8 I 34.291 I 34.561 2.031 22.511 2.061 22.681 2.Zlll 22.601 2.231 21.471 2.211 31.351 18.981 31.571
_2.211 31.561 18.771 31.561 2.231 17.731 2.211 21.471 2.161 23.031 2.231 22.681 1.991 32.861 2.061 34.561 I 31.051 20.591 18.571 21.791 16.651 23.631 18.921 18.1i1 18.821 23.071 16.061 21.981 18.391 21.121 30.921 I 30.981 20.891 18.551 21.941 16.321 23.311 18.831 17.971 111.831 23.311 16.321 21.941 18.551 21.891 30.981 7
8 I
9 I 35.671 2.031 22.421 2.191 22.641 2.201 31.751 18.671 31.841 2.221 22.811 2.191 22.531 2.031 35.431 9 I 34.561 2.061 22.681 2.231 21.471 2.211 31.561 18.771 31.561 2.211 21.471 2.231 22.681 2.061 34.561 10 I 17.321 2.071 23.021 19.041 17.991 2.2DI 22.721 2.251 17.431 18.961 22.871 2.111 17.781 10 I 17.261 2.141 22.921 18.911 17.681 2.211 22._821 2.211 17.681 18.911 22.921 2.141 17.261 11 I 35.101 1.921 2.141 22.151 llJ.911 22.811 16.911 22.501 18.851 22.421 2.161 1.931 34.601 11 I 35.ool 1.931 2.161 22.231 18.911 22.541 16.741 22.541 18.911 22.231 2.161 l.931 35.ool 12 I 34.581 21.211 2.101 23.051 2.191 21.161 Z.211 ::_2.421 2.161 20.481 34.831 12 I 34.881 20.701 2.171 22.801 2.231 21.501 2.231 22.801 2.171 20.701 34.881 13 14 I 35.491 I 35.121 1.891 1.921 2.101 22.421 19.511 22.631 2.141 22.741 19.231 22.741 I 34.581 17.711 2.091 21.361 2.071 2.141 1.881 35.221 1.921 35.121 1.971 17.501 34.801 13 14 I
I.
I 34.921 17.551 2.061 21.471 Z.061 17.551 34.921 15 I 33.811 31.531 35.371 15 I 34.771 31.321 34.771 R p H
" L K J H G F E D C I A I
I I
I I
NE-823 S1C10 Core Performance Report Page 18 of 57 I
I Figure 2.4 SURRY UNIT 1 - CYCLE 10 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (GWD/MTU)
I R p H
" K J H G F E D C 8 A I 34.971 31.131 34.941 I HEASURED I I o.591 -0.611 o.491 I HIP 7. DIFF I I 3 2 I 34.891 17.251 2.011 21.491 2.001 17.721 35.371 I -0.071 -1.681 -2.421 0.141 -2.581 0.991 l.311 I 34.311 l.&al 2.oa1 22.771 111.781 22.9ZI 2:oa1 l.891 35.521 2
3 I *2.301 -2.071 -2.731 0.101 -2.371 0.781 -2.891 -1.931 1.121 I 4 1
I 35.3ZI 20.361 2.111 22.831 2.151 21.751 Z.121 ZZ.731 2.121 Z0.971 34.1141 1.211 -1.641 -2.461 o.161 *3.391 1.111 -4.891 -o.2a1 -2.291 l.3ol -0.111 4
5 I 35.271 l.891 2.141 22.111 19.031 22.341 16.4111 22.541 1a.ao1 22.071 2.111 l.891 35.041 5 I 0.761 -1.951 -1.161 -0.551 0.671 *0.901 -1.521 -0.031 -0.591 -0.7DI -2.621 -2.031 0.131 6 I 17.031 2.091 22.731 18.SDI 17.811 2.261 23.041 2.231 17.571 19.121 22.941 2.091 16.901 6 I -1.351 -2.351 -o.a21 -2.211 0.111 2.111 o.951 o.861 -o.661 1.091 0.101 -2.501 -2.011 7 I 34.291 2.031 22.511 2.Zill 22.601 2.211 31.351 18.981 31.571 2.231 17.731 2.161 23.Dll l.991 32.861 7 I -0.771 -1.481 -0.721 -1.421 5.231 0.201 -0.651 1.161 o.031 1.211-17.421 -3.041 1.551 -3.501 -4.911 8 I 31.0SI 20.591 18.571 21.791 16.651 23.631 111.921 18.11,I 18.821 23.071 16.061 21.981 111.391 21.121 30.921 8 *r-:_
I 0:211 -1.451 0.131 *0.701 2.051 1.391 o.SOI o.ao1 -0.031 -1.041 -1.SSI 0.151 -0.871 1.091 -o.1a1 9 I 35.671 2.031 22.42! 2.191 22.641 2.201 31.751 18.671 31.841 2.221 22.811 2.191 22.531 2.031 35.431 9 I 3.221 *l.401 -1.11' -1.901 5.451 -0.281 o.sa1 -0.481 0.881 0.771 6.241 -1.701 -0.621 -1.<,ll 2.551 10 I 17.321 2.07 23.021 19.041 17.991 2.201 22.721 2.251 17.431 18.961 22.871 2.111 17.781 10 I o.361 -3.29 o.451 o.691 1.741 -0.101 -o.451 2.001 -1.431 o.231 -0.221 -1.451 2.991 " I 11 I 35.101 1.92. Z.141 22.151 18.911 22.811 16.911 22.SOI 18.851 22.421 2.161 1.931 34.601 11 I 0.281 -o.58, l.321 -o.351 -0:011 1.191 1.051 -0.211 -o.291 o.861 a.011 0.011 -1.131 .. I 12 I 34.S8l :l.Zll 2.lDI 23.DSI 2.191 21.161 2.211 22.421 2.161 2D.481 34.831 12 1,
I -0.861 2.441 -2.911 1.131 *l.671 -1.601 -0.921 -1.661 -0.101 -1.101 -0.131 .. I 15 ;s.491 1.891 2.101 22.421 19.511 22.631 Z.071 1.aa1 35.221 15 l.OSI -2.031 -2.021 -1.391 1.431 -0.491 -3.581 -2.251 o.2a1 I ARITHHETIC AVG I IPCT DIFF = -0.491 14 I 34.581 17.711 Z.091 Zl.561 1.971 17.501 34.801 14 I -U.971 0.941 1.721 -0.SOI -4.111 -o.2a1 -0.341 I, 15 I STANDARD DEV I I =l.73 I I 35.all 31.531 55.371 I -2.761 0.671 1.741 I AVG AIIS PCT I I DIFF = 1.45 I 15 I CYCLE 10 BATCH SHARING (HWD/HTU)
BATCH NO. OF BOC BATCH EOC BATCH CYCLE ASSEMBLIES BURNUP BURNUP BURNUP BB 14 19,463 20,643 1,180 9A 14 31,174 32,202 1,028 BURNUP TILT 9B 12 20,517 22,506 1,989 S2/9B 2 34,030 34,706 676 NW= -0.10 I NE= -0.63 10 ------------1------------
I llA llB 12 28 27 33,055 19,560 18,887 33,690 21,697 21,070 635 2,137 2,183 sw = 0.42 I SE= 0.31 12A 24 0 2,098 2,098 12B 24 0 2,078 2,078 CYCLE 10 AVERAGE ACCUMULATED BURNUP = 1,803
,I NE-823 SlClO Core Performance Report Page 19 of 57
.I Figure 2.5 SURRY UNIT 1 - CYCLE lOA ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)
R p N
" L K J H G F E ) C B A I
I 39.391 36.541 39.351 I MEASURED I 2
I 39.061 36.561 39.061 I 40.451 27.241 17.081 34.121 17.121 27.921 40.9SI I 40.271 27.331 17.291 34.351 17.291 27.331 40.271 I PREDICTED I 2 I 3 I 40.211 17.511 19.761 38.431 34.251 38.331 20.081 11.a~I ,,t.541 3 I 40.871 17.601 19.871 38.501 35.471 38.501 19.871 17.MI -~.871 I 41.241 32.501 20.091 39.141 zo.351 38.311 19.901 38.831 zo.3~1 ;3.111 40.791 I 40.641 32.461 Z0.371 39.281 Z0.671 38.591 Z0.671 39.281 20.!il '.Z.461 40.641 4
I 5 I 40.681 17.361 20.191 38.401 35.441 39.241 32.861 39.411 35.191 38.291 Z0.161 17.651 40.601 5 I 40.371 17.621 20.371 38.791 35.521 39.761 33.871 39.761 35.521 38.791 20.371 17.621 40.371 6 I 26.941 19.691 39.151 35.061 35.161 20.521 39.lOI 20.311 34.781 35.~71 l9.121 17.621 26.aal 6 I 27.041 19.891 39.401 35.521 35.161 2D.S5I 39.101 2D.55I 35.161 35.521 39.401 17.791 27.041 7 I 38.701 17.231 38.071 20.611 39.521 20.321 45.521 -34.961 46.091 20.651 34.671 Z0.241 38.561 16.971 37.201 7 I 38.851 17.291 38.451 20.691 38.65.I 20.521 45.841 35.09.I 45.841 20.521 34.941 Z0.691 38.451 17.291 38.851 8 I 36.461 33.411 34.711 38.601 33.721 39.681 34.851 34.241 34.981 39.471 33.591 38.631 34.191 33.771 36.231 8 I 36.Zll 33.791 34.821 39.041 33.531 39.561 35.121 33.911 35.121 39.561 33.531 39.041 34.821 33.791 36.211 9
10 I 40.151 17.221 38.021 20.471 39.471 20.321 45.641 34.831 46.371 20.311 39.~41 20.751 38.241 17.281 39.&al I 38.851 17.291 38.451 20:691 38.651 20.521 45.841 35.091 45.841 20.521 38.b5. *o.691 38.451 17.291 38.851 I 27.221 19.551 39.241 35.441 35.031 20.091 38.831 20.621 34.791 35.;z, 3q.43I 20.101 27.891 9
10
.I I 27.041 19.891 39.401 35.521 35.161 2D.55I 39.101 20.551 35.161 35.:.2* 59.401 19.891 27.041 11 I 40.621 17.751 20.341 38.271 35.091 39.511 33.851 39.631 35.581 38.~5, z~.611 17.961 40.211 11 I 40.371 17.621 20.371 38.791 35.521 39.761 33.871 39.761 35.521 38.'9* 'J.371 17.621 40.371 12 I 40.661 33.481 20.ool 39.181 20.231 37.791 20.571 38.891 20 * .:,7* '..:.991 40.871 12 13 I 40.641 32.461 20.371 39.281 20.671 38.591 20.671 39.281 20.37 I 41.471 17.531 19.651 37.921 35.261 38.0ll 19.541 17. 31!
I 40.871 17.601 19.871 38.501 35.471 38.501 19.871 17.60
--~61 40.641 i:81 d71 13 1*
14 I 39.961 27 .841 17 .901 34.201 16.791 27 .221 40. l!. 14 15 I 40.271 27.331 17.291 34.351 17.291 27.331 48.Z, I 38.381 36.921 39.661 I 39.D61 36.561 39.061 15 I R p N
" L K J H G F E D C II A I
1:
NE-823 SlClO Core Performance Report Page 20 of 57 I
I Figure 2.6 SURRY UNIT 1 - CYCLE lOA ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED (GWD/MTU)
I R p F H
" K J H G E D C B A I 39.391 36.541 39.351 I MEASURED I I o.841 -0.051 o.731 I M/P X DIFF I I 2 3
I 40.451 27.241 17.081 34.121 17.121 27.921 40.951 I o.451. -0.341 *l.201 -0.661 -0.981 2.151 1.681 I 40.271 17.Sll 19.761 38.431 34.251 38.331 20.081 17.831 41.541 2
3 I -1.481 -O.SOI -0.581 -0.181 -3.431 -0.451 I.OSI 1.321 1.631 I 4 I 41.241 32.SOI 20.091 39.141 20.351 38.311 19.901 38.831 20.341 33.171 40.79t I 1.491 o.131 -1.391 -o.351 -1.551 -o.731 -3.721 -1.141 -0.151 2.191 o.371 4
5 I 40.681 17.361 20.191 38.401 35.441 39.241 32.861 39.411 35.191 38.291 20.161 17.651 40.601 5 I o.781 -1.481 -0.891 -1.011 -0.241 -1.311 -2.991 -o.a9f -0.941 -1.281 -1.051 0.161 o.571 6 I 26.941 19.691 39.151 35.061 35.161 20.521 39.101 20.311 34.781 35.471.39.121 17.621 26.881 6 I -0.391 -0.991 -0.641 -1.301 0.011 -0.141 -0.021 -1.171 -1.091 -0.141 -0.721 -LOOI -0.621 7 I 38.701 17.231 38.071 20.611 39.521 20.321 45.521 34.961 46.091 Z0.651 34.671 20.241 38.561 16.971 37.201 7 I 8 I -0.381 -0.371 -0.991 -0.391 I 0.681 -1.121 -0.321 -1.111 2.251 -0.971 -0.711 -0.381 0.571 0.301 -0.771 o.541 0.651 -0.781 -2.211 0.971 -0.421 -0.211 0.271 -1.891 -4.261 I 36.461 33.411 34.711 38.601 33.721 39.681 34.851 34.241 34.981 39.471 33.591 38.631 34.191 33.771 36.231 0.201 -1.0SI -1.801 -0.0SI 0.051 8
I 40.151 17.221 38.021 20.471 39.471 20.321 45.641 ~4.831 46.371 20,311 39.1141 20.751 38.241 17.281 39.881 9 I. 10 I 3.3.SI -0.441 -LUI -1.071 I
2.lZI -1..00I -0.461 -0.761 o.631 -1.671 -0.411 -o.231 -0.371 -Z.231 -0.701 1.151 -1.041 o.311 -1.0SI 3.071 0.011 0.261 -0.541 -0.101 I 27.221 19.SSI 39.241 35.441 35.031 20.091 38.831 Z0.6ZI 34.791 35.SZI 39.431 20.101 27.891 0.081 1.061 3.111 2.641 10 11 I 40.621 17.751 20.341 38.271 35.091 39.Sll 33.851 39.631 35.581 38.851 ZD.611 17.961 40.211. 11 I 0.611 0.731 -0.191 -1~341 -1.201 -0.631 -a.oat -0.341 D.171 0.161 1.171 1.931 -0.401 12 I 40.661 33.481 zo.001 39.181 20.231 37.791 20.571 311.891 20.471 32.991 40.871 12 I 0.061 3.141 -1.821 -0.251 *2.111 -2.071 -0.461 -0.991 0.481 1.611 o.571 I 13 14 I 41.471 17.531 19.651 37.921 35.261 38.0ll 19.541 17.381 41.281 I 1.451 *0.381 -1.141 -1.SOI -0.591 -1.271 -1.681 -1.271 0.991 I 39.961 27.1141 17.901 34.201 16.791 27.221 40.151 I -0.761 1.871 3.Sll -0.441 -2.921 -0.401 -0.291 I ARITHMETIC AVG I IPCT DIFF = -0.241 13 14 I 15 I STANDARD DEV I I = o.a5 I I 38.3111 36.921 39.661 I -1.741 1.011 l.531 I AVG ABS PCT I I DIFF = 1.02 I 15 CYCLE lOA BATCH SHARING (MWD/MTU)
BATCH NO. OF BOC BATCH EOC BATCH CYCLE ASSEMBLIES BURNUP BURNUP BURNUP BB 14 20,643 30,488 9,845 9A 14 32,202 40,271 8,069 BURNUP TILT 98 12 22,506 37,189 14,683 S2/9B 2 34,706 40,767 6,061 NW= -0.09 I NE= -0.54 10 12 33,690 39,147 5,457 ------------1------------
llA 28 21,697 37,801 16,104 sw = 0.16 I SE= 0.46 I llB 12A 12B 27 24 23 21,070 2,098 2,078 36,937 19,469 19,050 15,867 17,371 16,972 I S2/12A 1 0 CYCLE lOA AVERAGE ACCUMULATED BURNUP = 14,086 17,616 17,616
( THE TOTAL CYCLE 10/lOA BURNUP = 15,889)
I NE-823 S1C10 Core Performance Report Page 21 of 57
I.
Figure 2.7A SURRY UNIT 1 - CYCLE 10/lOA SUB-BATCH BURNUP SHARING (SUB-BATCH BURNUP BEFORE 1.803 GWd/MtU CYCLE BURNUP IS FROM CYCLE 10)
.1*
i : ::: 3ATCH I
I
'" I I I I 88 I
i
~o i I
I \
\___,.
--- i S ~3-BATCH
~6 i I
- L-9""
v 9A I.
~
I I ~
-' "' -~ . ~
I i
1....- S~8-8ATCH
, J ,:_
~
v- . I 98
-- 28
~ I I
.I
.M c.. ar
- _... I SUB-BATCH
~
- J z 24
.... - S2/12A
~
_... C:::.
~ : --
- J 20 IC
~
cc
-' :6 I
- I I
I I
- K
.,,..::s
..6 I I
~ I I I /
- - I._/
........,- :1
<C
~
a
'"I
/
I
- ~
i
'I.
~ ;
- ....; K 8 *-"'
en ~
...R5.
4 V'
~
l I
2 4 6 8 10 12 14 16 CYCLE BURNUP (GWd/witC)
I I
NE-823 S1Cl0 Core Performance Report Page 22 of 57 I
I Figure 2.7B SURRY UNIT 1 - CYCLE 10/lOA SUB-BATCH BURNUP SHARING (SUB-BATCH BURNUP BEFORE 1.803 GWd/MtU CYCLE BURNUP IS FROM CYCLE 10) 44 ! I I
' I SUB-BATCH i ! I l :
11 B I .-.
40 i
i I
I I
I I . ,.._ ...
- _., i I i
. A---
- SUB-BATCH
.I ' A I . ,......,.-*- I
..r -
....)
36 I -: 12A a
! I A
~ -
I A : I
'~ -
~
~
- 1
'I
...-i-
"O 32 I I I I i
_,,, SUB-BATCH
~
I I A' c.., : .... - 10A 28 ,.,.... I ...
I 0..
- J _ .... _..
.... ..... I z 24 0::
. ;::J co 20
,,.. .... - - ,~ I I
I I
,. .JIii
-.u I I I I I I 'a' I I ! i .r' 16
'I t"'""'
<I:
I I
I I
- I
./'
1*
co co I
12
.... - .. .... ~
I I
- J 8 i..r-
~
'Cf).
ar I 4 _,,_ ,
i I
i
..... ~
' I I 0 0 2 4 6 8 10 12 I
14 16 CYCLE BU.RNUP (G1Vd/;\1tU)
I I
I NE-823 SlClO Core Performance Report Page 23 of 57
I Figure 2.7C SURRY UNIT 1 - CYCLE 10/lOA SUB-BATCH BURNUP SHARING (SUB-BATCH BURNUP BEFORE 1.803 GWd/MtU CYCLE BURNUP IS FROM CYCLE 10)
I
... 44 I 'I i SUB-BATCH I
- . ,, I I I I 11 A
-:s
>--,)
40 '
~
- - e--,-
i
- --- I SUB-BATCH I
I r-'9 ! _/"' i
.....)
36 .-a-r-w S2/9B
./
..... /
- l
_...-4
"'O 32 SUB-BATCH I'
~ ......
I I
c.,
28 I
_.. ... --- i 128
~
- J i
! ~" - '
I I
zCZ::: 24
.. ,....-, ~
i I
- J I 20 11-cc i v--
....i
-u.
~
c:....
16 I
I i
I I i,-
.,.A
/
- /1 I
I
/
I
~
cc 12 '
I
.,,, ...A I I !
I ........ I i I cc 8 i
- J rJ).
I I
I V
.... L.,.,A I
I
....... ...-1'"'
4 0
ic
..- *-- I I
I i I
i 0 2 4 6 8 10 14 16 CYCLE BURNUP (GWd/)ItlI)
NE-823 SlClO Core Performance Report Page 24 of 57 I
I Section 3 I REACTIVITY DEPLETION I
I The-primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous
,I reactivity behavior. The FOLLOW 5 computer code was used to normalize "actual" critical boron concentration measurements to design conditions
- 1. taking into consideration control rod position, xenon concentration,
-1. moderator temperature, and power level. The normalized critical boron concentration versus burnup curve for the Surry 1, Cycle 10 and lOA core is shown in Figure 3.1. It can be seen that the measured data typically compared to within 40 ppm of the design prediction. This corxesponds to I +/-0.11% 6K/K for Cycle 10 and +/-0.35% AK/K for Cycle lOA both of which are
.I within the +/-1% AK/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications. In conclusion, the trend I indicated by the critical- boron concentration verifies that the Cycles 10 and lOA core depleted as expected without any reactivity anomalies.
I
'I I
I I NE-823 S1C10 Core Performance Report Page 25 of 57
I Figure 3.1 SURRY UNIT 1 - CYCLE 10/lOA CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARO)
(CRITICAL BORON BEFORE 1.803 GWd/MtU CYCLE 10)
I
- ~
- C,*J
. :L.u
\1EASURED Ii
. cREDICTED
-z "400
- 3co
- I
. :,J,J I
I
< * '.00
--z *ooo
"'V
,. .1 I
~
z-
,. ?00
' r u
800 700 z
600 I
500
-< ~
~00 I
,. 300
" 'V
- oo
~
r-I
- iOO 0
.I I
'"'\
v CYCLE BURNUP (G1Vd/MtU)
I I
SE-823 S1Cl0 Core Performance Report Page 26 of 57 I
I.
Section 4 POWER DISTRIBUTION I
Analysis of core power distribution data on a routine basis is I necessary to verify that the hot channel factors are within the Technical I Specifications limits and to ensure that the reactor is operating -without any abnormal conditions which could cause
- an "uneven" burnup I distribution. Three-dimensional core power distributions are determined I from movable detector **nux map measurements using the INCORE' computer program. A summa~y of all full core flux maps taken after the completion I of startup physics testing for Surry 1, Cycle 10 and after the completion of the Cycle lOA startup physics testing is in .Table 4 .1. Power
- distribution maps were* generally taken at monthly intervals with I additional maps taken as needed.
I I
i Radial (X-Y) core power distribution for a representative series of incore flux maps are given in Figures 4.1, 4.2, 4.3, and 4.4. Figure 4.1 shows a power distribution map that was taken during the shortened Cycle I 10. Figure 4.2 shows a power distribution map that was taken early in I Cycle lOA. Figure 4.3 shows a power distribution map that was taken near the mid-cycle burnup of cycle lOA. Figure 4.4 shows a map that was taken I near the end of Cycle lOA. The measured relative assembly powers were I generally within 5.5% and the maximum average percent difference was equal to 1.6%. In addition, as indi~ated by the INCORE tilt factors, the power distributions were essentially symmetric for each case.
I NE-823 S1C10 Core Performance Report Page 27 of 57
.I An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors. Verification that these factors are within Technical Specifications limits ensures that linear power density and critical heat flux limits will not be violated, thereby providing I adequate thermal margin and maintaining fuel cladding integrity. Surry I
Unit 1 Technical Specification Section 3.12 limited the axially dependent heat flux hot channel factor, FQ(Z), to 2.32 x K(Z), where K(Z). is the hot channel factor normalized operating envelope. Figure 4.5 is a plot of the K(Z) curve associated with the 2.32 FQ(Z) limit. I The axially dependent heat flux hot channel factors, FQ( Z), for a I
representative set of flux maps are given in Figures 4.6, 4.7, 4.8, and
- 4. 9. Throughout Cycle 10 and lOA, the measured values of FQ(Z) were I
within the Technical Specifications limit. A summary of the maximum values of axially-dependent heat flux hot channel factors measured during Cycle 10 and lOA is given in Figure 4.10.
1:
I Figure 4. 11 shows the maximua values for the heat flux hot channel factor measured during Cycle 10 and lOA. As can be seen from the figure, there was an approximate 21.47% margin from the maximum FQ(Z) t.e the 2.32 limit at the beginning of cycle 10 which increased to 23.49% before the I
end of Cycle 10 operation. At the beginning of Cycle lOA operation there I was an approximate 22.76% margin to the 2.32 limit, this margin increased slightly to average approximat~ly 24.96% through most of the cycle with I
a decrease near the end of Cycle lOA to approximately 23. 62%. Note
.1 however the increases in FQ(Z) seen at EOC in Figure 4.11 are a result of the coastdown. ..
NE-823 SlClO Core Performance Report Page 28 of 57 I
I The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed. The I Technical Specifications limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.
Additionally, the F-delta-H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal operation.
Surry Technical Specification 3.12 limited the enthalpy rise hot channel factor to 1.55(1+0.3(1-P)) for Cycle 10 and lOA. A summary of the maximum I values for the enthalpy rise hot channel factor measured during Cycle 10 and Cycle lOA is given in Figure 4.12. As can be seen from this figure, I the minimum margin to the limit was approximately 4.0% for Cycle 10 and approximately 2.6% for Cycle lOA.
I The target delta flux* is the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon. The delta I flux is measured with the core at or near these conditions and the target
- 1. delta flux is established at this measured point. Since the target delta flux varies as a function of burnup, the target value is updated monthly.
I By maintaining the val~e of delta flux relatively constant, adverse axial I power shapes due to xenon redistribution are avoided. This target delta-flux was also used to establish the operational axial flux I difference bands while under CAOC.
I Pt-Pb
- Delta Flux= X 100 where Pt= power in top of core (MW(t))
2441 Pb= power in bottom of core (MW(t))
I NE-823 S1Cl0 Core Performance Report Page 29 of 57
I The plot of the target delta flux versus burnup, given in Figure 4.13, shows the value of this parameter to have been approximately O.Ot at the beginning of Cycle 10 and decreased to -1.0% near the end of Cycle 10.
Figure 4.13 also shows the value of this parameter to have been I approximately -3.5% at the beginning of Cycle lOA and increase steadily to -1.5% near the middle of the cycle, then gradually decreased to -4.5%
I before. the coastdown. At the end of Cycle lOA, the target delta flux I
increased to +8.5% due to the coastdown. This axial power shift can also be observed in the corresponding core average axial power distribution I for a representative series of maps given in Figures 4.14 through 4.17.
In Map Sl-10-06 (Figure 4.14), taken at 238 MWD/MTU, the axial power I:
distribution had a shape peaked toward the middle of the core with a I peaking factor of 1. 189. In Map Sl-10-19 (Figure 4.15), taken at approximately 3373 MWr>/MTU,
_,,. the axial power distribution peaked slightly toward the bottom of the core with an axial peaking factor of 1.160. In I Map Sl-10-29 (Figure 4.16), taken at 7,419 MWD/MTU, the axial peaking factor was 1.131, with the axial power distribution shifted slightly back I
toward the bottom. Finally, in Map* Sl-10-48 (Figure 4.17), taken at I
13,908 MWD/MTU, the axial peaking factor was 1.116, with the axial power distribution shifted slightly back toward the top. The history of F-Z I during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.18.
I I
In conclusion, the Surry 1, Cycle 10 and lOA core performed I
satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the FQ(Z) and F-delta-H Page 30 of 57 NE-823 S1C10 Core Performance Report
I hot channel factors were within the limits of the Technical Specifications.
I I
I I
I I
I I
I I
I I
I I
I NE-823 S1C10 Core Performance Report Page 31 of 57
Table 4.1 SURRY UNIT 1 - CYCLE 10/lOA
SUMMARY
OF FLUX MAPS FOR ROUTINE OPERA LON I I I l I I z I I I I
I 31 BURN I BANK I F-QCT> HOT F-DHCNJ HOT ICORE FCZJ I QPTR I AXIAL I NO. I I
INAPI UP I D I CHANNEL FACTOR CHNL. FACTOR INAX IFCXVJ I OFF I OF I IMO. I DATE NWD/ I PWR STEPS I I NID I SET I THINI I I NTU I CZl I I ASSVIPINIAXIALI !AXIAL I FCZllPLANE NAX ILOCI CZJ IBLESI I I I I I I I IPOINTIF-QCTJ IASSVIPIN IF-DHCN*!POINT I I I I I I I I_I I _ _ _ I __ I 1_ _ 1_1 _ _ 1_ _ _ 1 _ 1 _ 1 _ _ _ . _ _ 1_ _ 1_ _ 1_ _ 1_1 _ _ 1_1 I 6 107-29-881 238 I 100 I 225 H8 NCI 32 1.822 H Bl 11G 1.4.,0 i 34 11.11191 1.42111.00SI SEI -0.1941 45 I 9 109-02-881 1427 I 100 I 116 107-19-891 2102 I 100 I 119 108-22-1191 3373 I 100 I I 20 109-28-891 4420 I 100 I I 21 110-21-891 5185 I 74 I 222 195 217 217 193 E 8 E 8 Dll ClO ClO NII 34 NII 35 CHI 35 EHi 33 EHi 32 1.775 1.792 1.740 1.726 1.829 FlOI El E 81 NI GlOI HG DUI CH Dlll GH 1.339 I 34 ll.1821 l.39211.0071 SEI -1.0761 45 1.386 1.376 1.382 1.408 34 ll.2031 l.38lll.D09I SEI -3.2981 44 34 ll.1601 1.38411.0091 SEI -2.4941 44 43 11.1401 1.39711.0091 SEI -1.6561 43 32 ll.1991 1.40711.0111 SEI -2.3821 44 I
I 122 I 10-24-891 5254 I 100 I 225 Dll CHI 35 1.706 Dlll GH 1.385 44 ll.1331 1.39911.00SI SEI -1.5911 40 128 I 11-27-891 6439 I 100 I 223 ClO CHI 45 1.746 ClOI CH 1.414 44 11.1341 l.421111.0121 SEI -1.6951 44 I 29 112-28-891 7419 I 100 I 224 ClO CHI 46 1.732 ClOI CH 1.401 45 11.1311 1.42111.0081 SEI -1.8561 40 130 101-29-901 8346 I 100 I 223 ClO CHI 45 1.725 ClOI CH 1.457 45 ll.1271 l.41911.0071 SEI -1.9811 40 131 103-06-901 9701 I 100 I 223 E 4 OAI 47 1.738 F 31 HC 1.399 46 11.1361 1.41711.0051 SEI -3.3301 44 135 I 04-07-90 I 101100 I 100 L 221 DS CHI 48 1.741 F 31 HC 1.417 47 11.1411 1.42511.0071 SEI -3.8861 41 136 104-26-901 11440 I 100 I 137 IOS-21-901 12300 I 100 I 141 I 01-11-90 I 13450 I 100 I 146 107-211-901 131160 I 96 I 217 216 213 215 DS K3 D5 ClO DGI 52 IDI 52 DGI 52 DII 53 1.747 1.757 1.772 1.708 F 31 HC F 31 GD NlOI LG F 31 GD 1.421 1.415 1.452 1.432 SZ 11.1411 l.41511.0031 SEI -3.9871 41 52 11.1491 l.4Zlll.0021 SEI -4.ZlOI 42 I 53 11.1511 1.46911.00ZI SEI -4.2981 40. I 53 ll.1021 1.45811.00ll SEI -0.5091 41 I I.
148 I 01-30-90 I 139011 , I 94 I 224 F 3 GDI 53 1.692 F 31 GD 1.430 11 11.1161 1.42311.0021 IEI 0.6611 43 I 149 108-23-901 14858 I 83 I 224 F 3 GDI 9 1.781 F 31 GD l.4i3 10 11.11121 l.4Z91l.OOll IEI 4.9251 42 I ISO 109-24-901 15520 I 66 I 224 N 6 NHI ID 1.1191 F 31 GD 1.,;,; 10 11.2501 1.42611.00ZI NIii 11.6771 43 I I
NOTES: HOT SPOT LOCATIONS ARE SPECIFIED IV GIVING ASSEMBLY LOCATIONS (E.G. *h! rs THE CENTER-OF-CORE ASSEMILVJ, FOLLOWED IV THE PIN LOCATION (DENOTED IV THE -V- COORDINATE WITH THF. s::**:ENTEEN ROWS OF FIEL RODS LETTERED A THROUGH RAND Tl£ ftX" COORDINATE DESIGNATED IN A SIMILAR ~Aw..£R).
IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS START:*<G "QOII THE TOP OF THE CORE.
- 1. F-OCT) INCLUDES A TOTAL UNCERTAINTY OF 1.05 X 1.03.
Z. OPTR - QUADRANT POWER TILT RATIO. I
- 3. NAPS 7,8,11,12,13, 14,15,24,25,26,27,32,33,39,40,42, and 43 WERE JlJAl-ER-CORE FLUX MAPS TAKEN FOR INCORE/EXCORE CALIIRATIOH.(1/E CALIBRATION)
- 4. MAP 10 WAS A FULL-CORE MAP TAKEN FOR THE STARTUP PHYSICS TESTING Of'
- 5. NAPS 17,18,23,34,38,45, AND 47 WERE IJNUSUAIILE AND THEREFORE NOT ANALYZED.
CYCLE lDA. I
- 6. NAP 44 WAS A FULL-CORE MAP TAKEN.TO GAIN DELTA-FLUX OPERATING SPACE.
I I
I I
I NE-823 S1C10 Core Performance Report Page 32 of 57 I
I Figure 4.1 SURRY UNIT 1 - CYCLE 10 ASSEMBLYWISE POWER DISTRIBUTION Sl-10-06 R p N F E C B
" K J H G D 4 I PREDICTED
- 11EASURED
.PCT DIFFERENCE, 0.30 0.36 0.30
, 0.30 . 0.37, 0.30
- 1.3 . 1.3 . -0.l ,
PREDICTED
- MEASURED
.PCT DIFFERENCE.
I
- 0.34 0.66 1.13 0.99 1.14 0.6a
- 0.34. 0.66. l.lZ. 0.98. l.lZ. 0.66. 0.34.
0.7. -0.4. -0.9. -1.l. -1.8. -Z.4. -1.4 .
. 0.36, 1.06. 1.17 1.18 1.26 1.18 1.18 0.34 1.06 0.36 2
I , 0.36. 1.05, 1.15, 1.17, l.Zl. 1.14. 1.15, 1.05. 0.36,
. o.36. 0.1a o.3. -1.1 * -1.4. -o.9. -3.4. -3.3. -2.4. -o.a. 0.2
- 1.zo . 1.1a. 1.22. 1.za 1.22 1.1a. 1.19 o.77 o.36.
. o, 36
- o. 78 . 1. 17 . 1.17 . 1. ZO . l. ZS
- l. 17 . l .16 . 1.17
- 0. 76
- 0. 36
- 3 4
. -o.s. -o.a. -z.z. -1.3. -1.a. -z.s. -3.9. -1.9. -1.3. -1.1. -o.a.
I , 0.35 1.06 1.19 l.Zl. l.Zl 1.za. 1.26 l.Z7 1.zo l.ZO
. 0.34. 1.05, 1.19. l.Zl, l.ZO. 1.32. 1.21. 1.28, 1.19, 1.18. 1.16. 1.04. 0.34.
. -1.z. -1.z. -o.s. 0.1 . -0.2. 3.1. -3.9. o.8. -o.s. -1.1. -1.9. -1.2. -o.6.
1.19 1.06 0.34 5
I
. 0.6a
- 1.18 1.18
- l.ZO... 1.30 , 1.21
- l.Zl
- l.Zl , 1.29
- 1.19 1.17 1.17
- 0.67 *
. o.67. 1.16. 1.18. 1.22. 1.32. 1.zs. 1.26. 1.24. 1.30. 1.1a. 1.16. 1.15. o.66. 6
. -1.4. -1.4. o.o. 1.s. 1.7. 3.1. 4.3. 3.1. 1.0. -o.8. -1.4. -1.6. -z.o.
o.3o. 1.14. 1.18. 1.22. 1.za. 1.21. 1.os. 1.26. 1.04 1.zo. 1.z1. 1.z1 1.1a. 1.14. 0.30 *
. o.3o. 1.13. 1.17. 1.zi. 1.29. 1.z4. 1.oa. 1.31. 1.09. 1.z4. 1.z3. 1.20 . 1.16. 1.10. o.29. 7 I 1.5. -0.4. -1.5. -0.1. l.Z. z.o. 3.1. 4.3. 4.9. 3.5. 1.1. -o.a. -Z.l. -3.1. -Z.8.
o.36 . o.99 . *1.26 . 1.29
- l.Z6 . 1.21 . 1.26
- 1.26
- 1.z6 1.zo
- 1.z7
- 1.z8 l.Z6
- o.99 o.36
. o.37. o.99. 1.zs. 1.29. 1.27. 1.z3. 1.z9. 1.33. 1.31. 1.z5. 1.29. 1.26. 1.23. o.97. o.36. 8 1.5. o.o. -o.5. -1.1. o.7. 1.4. 3.1. 4.9. 4.7. 4.1
- z.z. -1.s. -z.z. -1.8. -o.8.
0.30. 1.14. 1.19. l.ZZ. 1.28. l.Zl. 1.04. 1.26, 1.05 1.21
- l.Z7 1.zz 1.18, 1.13 0.30
. 0.30
- l.13 , 1.17
- l.2Z . l.Z9
- 1.ZZ
- 1.06
- l.31
- 1.10 , l.Z4
- 1.30 , l.Zl
- 1.16
- 1.13 . 0.30
- 9 1.5. -o.5. -1.5. -o.z. o.8. 1.0. 1.6. 4.4. 5.5. Z.8. 2.0. -o.9. -1.4. -0.1. 1.4.
0.68 1.18 1.18 1.20 1.29 1,21. 1.21 1.21 1.29 1.20 1.18 1.18 0.67 I . 0.66, 1.15. 1.17. 1.20. 1.30, l,Z3. 1.25. 1.25. 1.33. 1,21. 1.18. 1.17, 0.67.
. -Z.6. -z.6. -1.2. -0.1. o.6. 1.1. 3.o. 3.5. z.5. o.9. -o.o. -o.6. -o.8.
o.34 1.06 1.19. 1.20. 1.20 1.z1. 1.26 1.2a 1.20 1.20
. 0.35. 1.06. 1.18, 1.18. l.ZD. 1.29. 1.29. 1.31. 1.23. 1.21 . 1.20. 1.06. 0.34, 1.19 1.06 o.34 10 11 0.4. 0.4. -0.2. -1.1. -0.l. 1.2. 2.1. 2.2. 1.8. D.4, 0.3. 0.1. -0.3, I , 0.36
- 1.77 . 1.18
- 1.18
- 1.22
- 1.29
- 1.22 1.18
- 1.20
- 9.79
- 0.37. 1.78. 1.17. 1.17. 1.22. 1.30. 1.23. 1.18. 1.21. 0.79. 0.37.
- 3.4. 1.1. -1.1 * -o.6. -o.a. 1.0. o.5. -o.3. -0.1. o.z. a.a
- D.36
- lZ
- 0.36. 1.05. 1.17. 1.19. 1.26. 1.18 1.18 1.07 D.37 I
- 0.36. 1.04. 1.16. 1.18. 1.24. 1.14. 1.14. 1.05. D.37.
1.3. 0 0.9. -0,6. -0.3. -1.8. -3.Z. -3.l. -1.8. D.4 *
- 0.34. 0.67. 1.15. D,99. 1,14 D.67 0.35 13
- 0.34. D.67. 1.17. 0.98. 1.10. 0.65. 0,34. 14 I STANDARD DEYIATICle
=1.215
- -D.9. 0.1. 1.6. -1,4. -3.3. -3.Z. -3.1.
0.30. 0.37 0.30
- D,31
- 0.36
- 0.29 .
1.6. -0.4. -3.4 *
- AVERAGE
.PCT DIFFERENCE *
,. 1.6 15 I SUNNARY I NAP NO: Sl-10-06 CONTROL ROD POSITION:
DATE: 07/29/88 F-Q(Tl = 1.882 POWER: 1007.
QPTR:
I D BANK AT 225 STEPS F-DH(N)
FIZ)
= 1.430
= 1.189 Nlf 1.0022 SW 1.0018 INE 0.9909 I
ISE l.0052 FIXY> = 1.421 BURNUP = 238 tlWD/tlTU A.O. = -0.1947.
I NE-823 S1C10 Core Performance Report Page 33 of 57
I Figure 4.2 SURRY UNIT 1 - CYCLE lOA ASSEMBLYWISE POWER DISTRIBUTION Sl-10-19 R p N N L K J H G F E D .c B A I
PREDICTED
- 0.29 0.36 0.29 PREDICTED .
NEASURED * . 0.30. 0.36. 0.30 * "EASURED
. PCT DIFFERENCE. . Z.6. Z.S. 1.4. .PCT DIFFERENCE *
- o.36 o.67 1.09. o.93. 1.10 o.69. o.36.
. 0.37 . 0.68
- 1.09 . 0.93
- 1.09
- 0.68
- 0.36
- 2 .
1.5. 0.5. -0.1. -0.4. -o.s. -o.z. 0.5 *
. 0.39. 1.10 l.ZZ. 1.14. l.ZO. 1.15. 1.Z3. 1.10 0.3a
- 0.39. 1.09. l.Zl . 1.14. 1.16. l.lZ. l.ZZ. 1.11 . 0.39.
- 1.0. c0.9. -1.0. -O.l . -3.Z. -Z.4. -o.z. 0.9. 1.7 *
- o.39. o.az. 1.26 1.1a 1.21. 1.zs. 1.21. 1.1a. 1.26
- 0.39. 0.81
- 1.23. 1.17. I.ZS. 1.ZZ. 1;22. 1.15. 1.24. o.ao. 0.38.
o.a1 o.:sa
- 4 I
. -0.5. -1.0. -Z.5. -1.4. -1.Z. -Z.l. -3.8. -Z.5. -1.3. -0.9. -0.Z.
0.36 1.18 1.26. 1.ZO 1.19 l.ZS 1.Z4 1.25 1.19
. o.36. 1.oa. 1.24. 1.19. 1.1a. 1.za. 1.19. 1.26. 1.1a. 1.11. 1.22. 1.oa. o.36.
. -1.a. -1.a. -1.1. -0.1. -o.a. 2.z. -3.a. o.a. -1.9. -z.z. -Z.4. -1.1. o.z
- 1,19 1,25 1.10 0.36 5 I
- 0.68
- 1.Z3
- 1.18 .. 1.19 . 1.26
- l.ZS
- 1.17
- I.ZS
- 1.26
- 1.19
- 1.18
- 1.19
- 0.68
- 0.29
- D.67. 1.21. 1.18: l.ZO. l.Z7. 1.za. l.ZO. l.Z6. l.Z6. 1.17. 1.15. 1.18. 0.67.
- -1.2. -1.Z. -0.2. 1.0. 1.0. 2.Z. Z.Z. 0.7. 1,3. -1,3. -z.z. -1.5. -0.9.
1.10. 1.15. l.Z7 l.ZS 1.25 1.oz 1.19 1.01 l.Z5 l.Zl 1.27 1.14 1.09 0.29 6
I
. 0.30
- 1.10
- 1 *. 14 ,* 1.27 . 1,26
- 1.27
- 1.04
- 1.21 . 1.03
- 1.28
- 1.22
- l.Zft
- l.lZ
- 1.07 . 0.29
- 7 I
1.s. o.4. -o.4. o.4. 1.0. 1.5. 2.2. 2.2. 2.3. 2.3. o.s. -1.8. -1.6. -1.a. -1.6.
0.36 0.93. 1.20. 1.25. 1.23 1.17 1.19. 1.17. 1.19. 1.17 1.25 1.25 1.20 0.93. 0.36
. 0.36. 0.94. 1.21. 1.25. 1.24. 1.18. l.Zl. 1.22. 1.23. l.Zl. 1.27. 1.23. 1.18. 0.93. 0.36. a 1.4. 0.1. o.a. o.5. o.6. 1.0. 2.2. 3.6. 3.6. 3.6. 1.4. -1.5. -1.3. -o.8. o.5.
- a:z9*: *i:ici *: *i:is *: *i:z, *: *i:z; ***i:zs ***i:ai ***i:i9 .. *i:az *: *i:zs *: *i:zs ***i:z, ***i:is ***i:i~ *.. a:i9 **
. 0.30. 1.10. 1.14. 1.27. 1.25. 1.25. 1.01. 1.23. l.D6. 1.27. 1.27. 1.27. 1,14. 1.11 . 0.30. 9 1.5. 0.1. -0.1. -o.o. o.4. o.3. -o.z. 3.o. 4.4. 1.a. 1.1. 0.1. -0.2. o.a. 2.9 *
. 0.68. 1.23. 1,18. 1.19. 1.25. 1.25. 1.17. 1.25. 1.26. 1.19. 1.19. l.Z3. 0.68 *
. 0,67. 1.20. 1.17. 1.18. 1,25. 1.25. 1,20. 1.29. 1.28. 1.20. 1.19. 1.24. 0.69. 10
. -Z.5. -2.5. -1.2. -o.3. -o.3. 0.1. z.1. 3.0. 1.9. o.9. o.a. o.9. 1.z.
0.36. 1.10. 1.25. 1.19 1.19 1.24 l.Z3. 1.zs. 1.19. l.2D. 1.26
. o.36. 1.11. 1.2s. 1.1a. 1.1a. 1.25. 1.26. 1.2a. 1.21. 1.20. 1.21. 1.12. o.37.
1.10 0.36 11 I
. 0.1 . 0.1 * -o.o * -1.0 * -o.a
- o.4
- 1.9
- z.3
- 1.a
- o.3
- o.a
- 1.4
- 1.5 .
D.38. o.a1. 1.2s 1.1a 1.21. 1.2s. 1.21. 1.19. 1.26. o.a3
- o.4D. o.83. 1.24. 1.11. 1.26. 1.2s. 1.2a. 1.1a. 1.21. a.84. o.39.
- 3.9. 2.1; -o.9. -1.1. -o.a. o.6. o.a. -1.1. 0.2. o.9. 2.1.
o.39
- 12 I o.38 1.09 1.22 1.1s. 1.20. 1.1s 1.23. 1.11 o.39
- 8.39. 1.10. 1.22. 1.13. 1.17. 1.12. 1.20. l.D9. 0.39 *
- 2.3. o.a. -0.2. -1.2. -1.a. -Z.4. -2.3. -1.1
- 1.4.
D.36
- 0.68
- 1.10 . 0.93 -1.10
- 0.36. 0.69. 1.15. 0.93. 1.07. 0.67. 0.35.
0.68
- D.36 13 14 I
- o.a. *1.9. 3.7. -0.1. -2.4. -2.4. -2.3.
STANDARD DEVI.A TIIIN
- 1.976
. 0.30 0.36 0.29
- 0.31
- 0.36
- 0.29 *
- 3.7. 1.2. -2.s.
- AVERAGE
.PCT DIFFERENCE.
= 1.4 15 I SuttttARY I' ltAP NO: Sl-10-19 DATE: 08/22/89 POWER: 1007.
CONTROL ROD POSITION:
D BANK AT 217 STEPS F-Q(Tl = 1.740 F-DH(NJ = 1.376 QPTR:
NW 0.9999 NE 0.9913 I
F(Zl F(XYJ
= 1.160
BURNUP = 3373 IMJ/NTU A.O. = -2.4947.
NE-823 SlClO Core Performance Report Page 34 of 57 I
I Figure 4.3 SURRY UNIT 1 - CYCLE lOA ASSEMBLYWISE POWER DISTRIBUTION Sl-10-29 R p N H L K J H G F E D C II A I PREDICTED .
HEASURED
.PCT DIFFERENCE.
0.30 0.36. 0.30.
. 0.30 . 0.37 . 0.30 .
l.8 . l.8 . l.6 .
PREDICTED .
HEASURED
.PCT DIFFERENCE.
I 0.41 o.:sa
. o.39 .
2.5.
1.11 o.6a o.69 .
1.06 0.90 1.01. o.69 1.06 . 0.90 . 1.01 . 0.10 .
1.6. 0.1. -0.4. -O.l. 1.2.
1.25 1.11 1.14 1.11 . 1.26 o.38 o.38 .
2.0.
1.11 0.40 .
2
. 0.41
- 1.11. 1.25. 1.12. 1.11 . 1.09. 1.27. 1.14. 0.42.
I 3
. 2.1. 0.2. O.l . 0.8. -3.2. -2.0. 1.2. 2.4. 3.2.
0.41 0.84 1.30 1.17 1.31 1.21 1.31 1.17 1.30 0.84 0.41
. 0.41 . 0.84. 1.28. 1.16. 1.30. 1.19. 1.26. J.15. 1.30. 0.85. 0.41
- 4 0.3. -0.2. -1.5. -0.6. -0.6. -1.8. -4.0. -1.4. 0.4. 1.4. 1.9.
I o.38 1.11 1.30 1.1a 1.1a 1.22 1.21 1.22 1.1a 1.1a
. o.37. 1.10. 1.2a. 1.11. 1.11. 1.23. 1.11. 1.22. 1.11. 1.11. 1.2a. 1.13. o.38.
. -1.2. -1.2. -o.9. -o.4. -o.a. o.8. -4.o. o.3. -o.s. -1.2. -1.4. 0.1. 0.1.
1.30 1.12 o.38 5
0.69 l.26 l.17 .* l.18 l.24 l.30 l.15 . l.30 . 1.24 1.19 1.18
- 1.25 0.69
- I
- 0.68 . 1.25 . 1.16 . 1.17 . 1.24 . 1.31 . 1.16 . 1.30 . 1.24 . 1.18
- 1.16
- l.ZS
- 0.70 *
. -0.1. -0.1. -o.5. -o.3. 0.1 . o.8. o.a. o.3. 0.1. -o.a. -1.s. -o.4. 0.1 .
0.30 1.07 1.11 . 1.31 . 1.22 1.30. 1.01 1.14 1.01. 1.31. l.ZO 1.32. 1.12. 1.07. 0.30 *
. o.31 . 1.oa. 1.11 .. 1.31. 1.22. 1.30 . 1.01. 1.15. 1.02. 1.33. 1.21. 1.30. 1.11 . 1.oa. 0.30.
6 7
3.S. 1.4. -o.o. o.3. o.o. o.4. o.a. c.8. 1.8. 1.a. o.3. -1.4. -o.s. o.3. o.6.
I 0.36 0.90 1.15. 1.21. 1.21 1.14. 1.14. 1.12. 1.15. 1.15. 1.24. 1.22. 1.15. 0.91. 0.36 *
. 0.38
- 0.92 . 1.16 . 1.22 . 1.22 . 1.15 . l.15 . 1.14 . 1.18 . 1.18 . 1.25 . 1.21
- 1.15 . 0.91
- 0.37
- 3.S
- l.9 . 1.4 . o.7 . o.4 . o.6 . o.a . 2.1 . z.4 . 2.a . o.9 * -o.9 . -o.3 . o.s
- o.6
- a 0.30 1.07 1.11 1.31 1.22 1.29 1.00 1.15 1.01. 1.30 1.22 1.31 . 1.11 . 1.07 0.30 .
. 0.31 . l.08 . l.ll . 1.31 . 1.22
- 1.30 . 0.99 . 1.17 . 1.04 . 1.31 . 1.24
- 1.33 . l.13 . l.08 . 0.30 . 9
- 3.5. o.8. -o.s. 0.1 . o.s. o.z. -0.1. 1.1. z.a. o.6. 1.3. o.9. 1.0. 1.1. 1.5.
0.69 1.26 1.17 1.18 1.23 1.29 1.15 1.30 1.24 1.18 1.17 1.26 0.69
. o . 6 7 . 1. 22 . 1 .1s . 1. 11 . 1. 23 . 1. 29 . 1. 16 . 1. 3z . 1. zs . 1. 19 . 1. 19
- 1. za
- o. 11
- 10 I . -2.8. -2.8. -1.3. -0.l. -0.4. -0.7. 0.9. 2.0. 1.2. 0.9. 1.6. 2.1
- 2.S.
0.38 1.11 1.29 1.17 1.17 1.22 1.21 1.22 1.111 1.18 1.30
. 0.38 . l.11 . l.29 . l.16
- 1.16
- l.20
- 1.20 . 1.25 . l.20 . 1.18 . 1.31 . 1.14 . 0.39 .
1.11 0.38 11 0.2. 0.2. -o.3. -a.a. -1.0. -1.2. -1.2. 2.4. 2.0. o.4. 1.4. 2.4. z.9.
I o.4o o.83 1.29 1.11 1.31 1.21 1.31 1.11
. o.42. o.a5. 1.za. 1.15. 1.2a. 1.19. 1.32. 1.11. 1.30. o.86. o.42.
. 3.1. 1.5. -o.a. -1.4. -1.1 . -1.1. o.6. o.4. o.s. 1.3. 3.3.
1.30 o.a5 o.41 12 0.40 1.10 1.25 1.11 1.15 1.11 1.26 1.11 0.41 I . 0.41 . 1.09. 1.23. 1.09. 1.13. 1.10. 1.24. 1.11. 0.42.
. 0.9. -1.3. -1.5. -1.7. -1.5. -1.3. -1.3. -0.4. 2.1 .
0.37 0.69 1.07 0.90 1.07 0.69. 0.38
- 0.37. 0.69. 1.13. 0.91. 1.05. 0.68. 0.37.
13 14
- -1.3. 1.2. 4.9. 1.1. -1.~. -1.3. -1.3.
I STANDARD DEVIATIOH
=0.985 0.38 0.36 0.30
. 0.31. 0.37. 0.29.
- 4.9. 2.5. -1.4.
AVERAGE
.PCT DIFFERENCE *
= 1.3 15 I SUNttARY I HAP NO: Sl-10-29 CONTROL ROD POSITION:
DATE: 12/28/89 F-Q(T) = 1.732 POWER: 100:r.
QPTR:
D BANK AT 224 STEPS F-DHOt) = 1.401 NW 0.9977 NE 0.9998 I
F(ZJ = 1.131 SW 0.9946 SE 1.0079 F(XY> = 1.421 BURNUP = 7,419 HWD/lfTU A.O .=-1.856 I NE-823 SlClO Core Performance Report Page 35 of 57
I Figure 4.4 SURRY UNIT 1 - CYCLE lOA ASSEMBLYWISE POWER DISTRIBUTION Sl-10-48 R p N H L K J H G F E D C 8 A PREDICTED . D.33 D.40 0.33 PREDICTED .
MEASURED . 0.34. 0.41 . 0.34. HEASURED
. PCT DIFFERENCE. . 4.3. 4.3. 3.9 . .PCT DIFFERENCE.
0.41 0.71 1.07 0.90 1.07 0.7Z
. D.4Z. 0.73. 1.oa. 0.91 . 1.09. 0.75. 0.4Z.
. 3.5. z.o. l.Z. 0.9. 1.8. 3.4. 3.7
- 0.41 z I D.44 1.12* 1.2a 1.09 1.11 1.09 1.2a 1.12 o.44
. 0.45. 1.14. 1.29. 1.10. 1.08. 1.09. 1.33. 1.17. 0.46.
. 3.1. 1:2. o.a. l.Z. -2.4. -0.6. 3.4. 3.9. 4.Z .
. 0.44. 0.87. l.3Z 1.15 1.33 1.17 1.33 1.15. 1.32. 0.87. 0.44 *
. 0.45 . D.88
- 1.31 . 1.15 . 1.33
- 1.15
- 1.29
- 1.14 . 1.34
- 0.88 . 0.45 .
3 4
I 2.1. 1.0. -D.5. o.z. -o.o. -1.l. -3.2. -o.a. l.O. 1.7. Z.7.
0.41 . 1.12 l.3Z 1.15 1.15 1.17 1.18 1.17 1.15 1.15. 1.33
. 0.41. 1.13. l.3Z. 1.15. 1.15. 1.15. 1.14. 1.16. 1.14. 1.14. 1.33. 1.15. 0.43.
1.1. 1.1. o.4. 0.2. 0.1. -2.1 * -3.2. -o.9. -o.a. -o.6. o.5. z.o . 3.3.
1.13. 0.41 5
I
- 0.7Z
- 1.za . 1.15 .* 1.15
- 1.19 l.3Z
- 1.11
- 1.32
- 1.19
- 1.15
- 1.16
- 1.30
- 0.7Z *
. o.1z .. 1.29. 1.16. 1.16. 1.19. 1.z9. 1.09. 1.31. 1.1a. 1.14. 1.15. 1.30. o.74.
- a.a. o.a. 0.1. a.a. -0.1 . -z.1 * -z.1 . -o.9. -o.9. -o.9. -o.9. o.4 . 1.6.
o.33. 1.01. 1.09. 1.33. 1.11. 1.32 1.00. 1.10. o.99. 1.32. 1.16. 1.34. 1.10. 1.oa o.33
- 6 I
. 0.33 . 1.08
- 1.10 .. 1.34
- 1.17 . 1.30
- 0.97
- 1.08
- 0.99 . 1.32
- 1.15 * -1.31
- 1.09 . 1.07
- 0.33
- 7
. Z.Z. 1.3. 0.7. 0.4. -o.z. -1.0. -2.l * -Z.l. -O.l. -0.1. -1.l. -Z.4. -D.9. -D.l . 0.1.
0.40 0.90 1.11. 1.17 1.18 1.11 1.10 1.07 1.11 1.11 1.19 1.17 1.11
. o.41
- o.9Z *.1.13. 1.11. 1.16. 1.10. 1.oa. 1.06. 1.11
- 1.1z. 1.1a. 1.15. 1.10. o.91. o.4o.
2.2. 1.5. 1.3. 0.0. -1.1. -1.3. -Z.l. -0.7. -0.1. 0.3. -1.1. -1.8. -0.9. 0.0 . 0.1.
0.91 0.40 8
I 0.33. 1.07. 1.09. 1.33. 1.17 1.32. 0.99. 1.11. 1.00. 1.32. 1.17. 1.33. 1.09. 1.07 0.33
. o.33. 1.oa. 1.10. 1.33. 1.16. 1.30. o.97. 1.10. 1.00. 1.29. 1.11. 1.33. 1.10. 1.oa. o.33. 9 2.z
- 1.z
- 0.1 . -o.z * -o.9 * -1.4 * -2.4 * -o.6
- o.z * -1.1 * -o.6
- o.3 . o.5 . a.a . 1.4
- 0.12. 1.29 1.15 1.15 1.19 1.32 1.11 1.32 1.19 1.15. 1.15. 1.za o.1z
. D.7Z. 1.28. 1.14. 1.14. 1.17. 1.29. 1.10. 1.31. 1.18. 1.15. 1.16. 1.31 . 0.73.
. -0.l. -0.1. -0.6. -1.0. -1.6. -Z.2. -0.9. -0.3. -0.6. -o.z. 1.0. 1.9. Z.6.
0.41 . l.lZ. 1.32 1.15 1.15. 1.17 1.18. 1.17. 1.15. 1.15. l.3Z. l.lZ. D.41
. 0.42
- 1.15 . 1.33
- 1.13
- 1.13
- 1.15
- 1.17
- 1.18 . 1.15
- 1.15
- 1.34 . 1.15 . 0.4Z .
lD 11 I
2.3 . 2.3 . a.a . -1.z * -1.a * -1.6 * -0.1
- 0.1
- o.3
- 0.1
- 1.6 . 2.a . 3.4 .
. 0.44. 0.86. 1.32. 1.15. 1.33. 1.17. 1.33. 1.15. 1.32. 0.87. 0.44 *
- o.46. o.aa. 1.30. 1.13. 1.30. 1.1s. 1.33. 1.15. 1.32. o.119. o.46.
- 4.6. 2.3. -1.2. -1.7. -1.9. -1.2. -o.z. -0.1. 0.5. 2.z. 4.Z.
lZ I o.44 1.12 1.za 1.09. 1.11. 1.09. 1.za. 1.12. o.44
. o.45. 1.14. 1.2a. 1.01. 1.09. 1.oa. 1.za. 1.13. o.45.
- 3.Z. 1.7. -o.z. -z.o. -1.6. -0.9. -0.7. 0.5. 3.1 *
- 0.40. 0.7Z. 1.07. 0.90 1.07 0.7Z. 0.41
- 13 I
- 0.41. 0.74. 1.12. 0.91. 1.05. 0.71. 0.41. 14 STANDARD DEVIATION
~1.1ss
- 1.7. 2.9. 4.7. l.Z. -1.l. -0.9. -0.6 *
- o.33
- 0.40 * *o.33 *
- 0.34. D.41. 0.32.
- 4.7. Z.4. -1.1.
AVERAGE
.PCT DIFFERENCE.
= 1.4 15 I
SUNtlARY I
DATE: 07/30/90 POWER: 94 .47.
NAP NO: Sl-10-48 CONTROL ROD POSITION: F-QITJ = 1.692 QPTR: I D BANK AT 224 STEPS F-DHINJ = 1.430 NW 1.0001 NE 1.0017 FIZJ FIXYJ
= 1.116
= 1.423 SW 0.9972 SE l.0011 I.
BURNUP = 13908 ttWD/NTU A.O.= 0.661 NE-823 S1Cl0 Core Performance Report Page 36 of 57 I
I Figure 4.5 SURRY UNIT 1 - CYCLE 10/lOA HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE I
C.
I I 1.20 *******************************1******-***********************,***********..****************T*-***************************r--**********************-** i***-**-**********************:
(0.00.1.00) . (6.00,1.001 I I I I 1.00 : *******************-~*-****************************:*****---L10.:Z.9..0..94J I
N O"'
1...
C 0.80 Lo.I N
- i
~a.so a:
I I I
I:
I=-
i:
1 0
z I -- -*-***-*--**-1------..J--------...J-----*-*-l****--*----~ ~:~~~~~!___i I 0.40 N
~
1 ~ ~: ~ ~: .
I : : .
0.20 .........................-...*r*******a.-*-*-*-*..*-*Hr**---******-*---***-*-*1*-**********-*-***-*-****1**--*--**-*-**--1***-*--*-******..********* 1 I l i I I I o.oa-.. . . . . . . . . . . . .- ................,. .,. . ,................................................................................................................. I T'"T'"'l-r-T"",
0 2 4 6 8 10 12 CORE HEIGHT (f"EET)
I I
I I
I NE-823 S1C10 Core Performance Report Page 37 of 57
___J
I Figure 4.6 SURRY U~IT 1 - CYCLE 10 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
Sl-10-06 I
,t..
N I-2.50 I
I
- ~2.00 0::
a I- *** x****x IC x1C******
X I
u
< 1.50 X XIC .
- *
.._ X X
...J X X L&J IC z
z IC 5 1.00
- I I-a IC
- c
- X 30.50 I-L&J
- c I
0.0060 55 so BOTTOM 45 40 .35 30 25 ' 20 AXIAL POSITiON (NODES) 15 1o TOP s I I
I I
I I
NE-823 S1C10 Core Performance Report Page 38 of 57 I
~
I Figure 4.7 SURRY UNIT 1 - CYCLE lOA HEAT FLUX HOT CHANNEL FACTOR, Fq(Z)
Sl-10-19 I
'I -
N I-I .
~2.00 I ** **
- XXX*
IC xXXXXXICXR
z X
X I o 5 1.00 l-IC IC
- c IC 30.50 u..
I 1-
<C uJ
- c 0.0060 I 55 50 BOTTOM 45 40 35 30 25 . 20 AXIAL POSITION (NODES)
I I
I I
I I NE-823 SlClO Core Performance Report Page 39 of 57
I Figure 4.8 SURRY UNIT 1 - CYCLE -lOA HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
Sl-10-29 I
I N
t-i .
2.50 I
~2.00 I
.xxx*****x x******x X
.x **
~
l.aJ*
- I z
- z 5 1.00
- I t-o
- c
)C 3
..... 0.50
~
u.l
- c I
O.OO '=':60~~5~5.......r...15~0.........L. J41..1.S..L..J-L4.J..O.LJ..L..L..3L..L5~3...i..O.L..L..L.L..J21..1.S~2.J...Ou..L..1-1.15..L.L.&...i..1.J...Ou..L.u5~
BOTTOM AXIAL POSITION (NODES) . TOP I
I I-I I
I NE-823 S1Cl0 Core Performance Report Page 40 of 57 I
I Figure 4.9 SURRY UNIT 1 - CYCLE lOA HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)
Sl-10-48 I
I cI-:!.
I I
&!2.00 I
- I I 55 50 BOTTOM 45 .0 J5 JO 25 20 15 10 5 AXW. POSITION (NODES) TOP I
I I
I I NE-823 S1Cl0 Core Performance Report Page 41 of 57
I Figure 4.10 SURRY UNIT 1 - CYCLE 10/ lOA .
MAXI~UM HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)*P, vs. AXIAL POSITION 2.4 I I
2.2 2.0
\ , I l
- 1. 8 rrrr .- ir rrr --
r .. ---- ... \
I rrr 1 rrr r I*
r 1 -- :I . . r ., r r
. r r r* \
- 1. 6 r
r \ -
I F 1. 4 r \
.Q r r \
- I l l
I
- 1. 2 p
1.0 r \ ,
r 0.8 I
0.6 I 0.4 I 0.2 I"3 0.0 I
-. I 61 55 50 45 40 JS JO 25 20 15 10 5 AXIAL POSITION (NODE) I I
BOTTOM Of' CORE TOP Of' CORE NE-823 SlClO Core Performance Report Page 42 of 57 I
I Figure 4 .11 SURRY UNIT 1 - CYCLE 10/lOA MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, F0 (Z), vs. BURNUP (Fq(Z) BEFORE 1,803 MWd/MtU CYCLE 10)
I ~
0 241 I FULL POWER I E-,.
u
<t: 2.3 I !I I I I I I
I I i I TECH SPE-= LIM!C
~ I I I ~
2.2 I I MEAS UR:::::::,
VALUE
~
z
- I z I I -
u
<t: 2. 1
..1-4 2.0 I
I
,* I I
I I
E-,.
- 1 0
I ::r:: 1. 9
- i
~
~
1 .8 *
- =
,. I I
I E-,.
<t:
1 ,
I . /
.:i
- I*
- ** * -
- 1*
I -
~
..1-4
~
- 1. 6
- i I -
~
1 .5 I
<t:
I ~ 1 .4 0 2 4 6 8 10 1: 14 16 - .
I CYCLE BURNUP ( GWd/:\ItU)
I I
I NE-823 SlClO Core Performance Report Page 43 of 57
I Figure 4.12 SURRY UNIT 1 - CYCLE 10/lOA
~AXI~UM ENTHALPY RISE HOT CHANNEL FACTOR, F-de~t~-H. vs. BURNUP (F-delta-H BEFORE 1,803 MWd/MtU CYCLE 10)
I 1 .6G FUL iL -::-r,1AJED c::
0 1 ,- ,-
v"il/ 1, I
... .. ::::,:)
~
u
<t 1 .50 i
I I
I
! I I
I I
i I
I i I; i I
I I
I i
i I
i MEASURED I
~ ... !~ I ..
I
~
., ! :1 I I
! I I I I ... ! ~
' I
- *~ I I I i !
~ I I ... 1 ! ! :
z 1 .45 i**i* i I I z
<t I
I l
I I
II I
I I
I I
- r:: 1.40 '
i u r I I E-,4 1 .35 I
i I I I I
I I 0 !
I !
- r:: I
~ 1.30
! I I I
l
-- I I i if). I
.....~
1.25 I
' i I I
I ! *-
I I
I I
i I I i'
' I i
~ I I I I
i I [
c.. I i
1 I I I
-:J 1 .20 I i I I I
<t I
-z i i I
~ I t I I E-,4 1 . 15 I
I I I I I
I
~ I I I ! I I 1 . 10 I I i I 2 6 8 10 12 14 16 CYCLE BURNUP (GWd/iYitU) I I
I NE-823 SlClO Core Performance Report Page 44 of 57 I
Figure 4.13 SURRY C~IT 1 - CYCLE 10/lOA TARGET DELTA FLUX vs. BURNUP (TARGET DELTA FLCX BEFORE 1,803 MWd/MtU CYCLE 10)
I I~
10.0 I i l
- I I ii i I i r I ! I I ! i I i
- I i I I i! I I I
I I I i I ! i I & i
---z I I 8.0
,. I I II i I I I l I
... ! I I ' ' I I I I ! i i I i 6.0 '
I -.-...
I I I I I I
i I .t.,
-. .,,. I i I I I I I
I I
,. 4.0 ! 1I I
I I
i I
I ! i I
i
! I I
I I I i I II i I
2.0 I
I I I
! I i ! !
X ' I i
I I I I I . I I
.=.. 0.0 ... I
< -. I
... ... ... . . I
-- ~
,.~,
. -2.0
... I - - I I
I - :~
i *I I
i -. i -. .
i i
I I
I I
,. -4.0 i
I I i
~
i I ! i I I -< ,...,,.
-6.0 I I i I. - ,.
~
-8.0 I i I
I I -10.0 0 2 4 6 8 10 I
I i
14 I I 16 I CYCLE BURNUP (GWd/NltC)
I I
Page 45 of 57 I ~E-823 S1C10 Core Performance Report
Figure 4.14 SURRY UNIT 1 - CYCLE 10 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-10-06 I
Fz = 1.189 AXIAL OFFSET= -0.194 I
I I
x****x X ******** X
- I
)CICICICXx C * * * ****
I
- i 0.90
- ** IC **
c(
~ IC
- CZ:
--a z
_N a.so
- I La..
- I I
55 50 45 40 35 30 25 20 15 10 5 BOTTOM AXIAL POSITION (NODES) TOP I I
I I
NE-823 S1C10 Core Performance Report Page 46 of 57 I
,I I Figure 4 .15 SURRY UNIT 1 - CYCLE lOA I
CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-10-19
., Fz = 1.160 AXIAL OFFSET= -2.494 I
1.50 I
I ****** * . xJC*****JC . .*JC*****JC I -C LIJ N JC JC
- x JC JC JC ***** ..
- i 0.90 2 JC
- a:
I
--0 z
,.....0.60 N
N x
JC JC LI..
- I 0.30 I 0.0060 55 50 45 40 35 30 25 20 15 10 5 I BOTIOM AXIAL POSITION (NODES) TOP I
I I
I ~E-823 S1C10 Core Performance Report Page 47 of 57
Figure 4. 16 SURRY UNIT 1 - GYCLE lOA CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-10-29 I I
Fz = 1.131 AXIAL OFFSET= -1.856 I
I I
I I
C La.I N IC
- i0.90
- a: ..IC IC 0
z
._a.so N
N
- I LI..
I I
55 50 BOTTOM 45 40 35 30 25 20* 15 .. 10 AXIAL POSITION (NODES) TOP 5
I I
I I
~E-823 SlClO Core Performance Report Page 48 of 57 I
I Figure 4.17 SURRY UNIT 1 - CYCLE lOA I' CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-10-48 I
I... Fz = 1.116 AXIAL OFFSET= -0.661 I
I 1.50 I -C N
Lu
- J 0.90 IC lC X
zXX IC
.x*****xx*
IC X
- X X
X
~-******* lC X
- lC
~ IC IX
- 0 X z
I X
_N a.so I
- N I.&..
X.
0.30 I
I 0.0060 55 BOTIOM 50 45 40 35 30 25 20 AXIAL POSITION (NODES) 15 . 10 TOP 5
I I
I I NE-823 S1C10 Core Performance Report Page 49 of 57
Figure 4.18 SURRY UNIT 1 - CYCLE 10/lOA I
CORE AV~RAGE AXIAL PEAKING FACTOR* vs. BURNUP (F(Z) BEFORE 1,803 MWd/MtU CYCLE 10) I I
-~---~~------r------,---r--------, I I
I I i I I i l I i I : I I
I I I I
I I I I
I
[
I I I' l i :I
! I I '
i i ! I ! !' i i I ; '
I i
I I'
I I
I I
I
' I' I
I '
I*
I i ' ! I i
'"V
-.: I I
I I I I I
I I
i I
I i
I I
c:-
r '
,..~ I I I !. I I
I I
I I I,
~
~-z
,._J I I I I I I I
I
-- ..._.,,,. 1 .2 i.
I' I i i
Iii I
~
"~1 !
- I -- I
('"'o I !
I I
- I I
., I i i
- I I '
,I I
i*
i I
i*
i !
i i
I I
I I
iI i I
i I
I
~
.. i I
' *I I i
' i I I l I :
I I I I
i I
I
- I i
I 1 .0 ! I I i i
I I 2 4 6 8 10 12 : 4 CYCLE BURNUP (GWd/i\ ItU) 1 I I
I NE-823 S1Cl0 Core Performance Report Page 50 of 57 I
I
-, Section 5 PRIMARY COOLANT ACTIVITY I
I The specific activity levels of radioidines in the primary coolant are important to core and fuel performance as indicators of failed fuel and I are important with respect to offsite dose calculations associated with aecident analyses. Two mechanisms are primarily responsible for the I presence of radioiodines in the primary coolant. Radioiodines are always I present due to direct fission product recoil from trace fissile materials plated onto core componerits and fuel structured surfaces or trace fissile I materials existing as impurities in core structural materials. This fi"ssile material is generally referred to as "tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel I defects) -exists. Fuel defects are generally the predominant source of I radioiodines in the primary coolant.
I Surry 1 Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 µCi/gram with I provisions to ultimately limit the dose equivalent I-131 to a maximum of I 10. 0 µCi/gram. Figure 5 .1 shows the dose-equivalent I-131 activity history for Cycle 10. These data show that the I-131 activity spikes to I a value greater than 1.0 µCi/gram upon shutdown in September 1988. During the maintenance outage which followed, the reactor was defueled to inspect I the fuel for any possible defective assemblies. One Batch 12 assembly (assembly 4G7) was identified as being defective and subsequently I NE-823 S1C10 Core Performance Report Page 51 of 57
I restricted from use in the Cycle lOA core. Ultrasonic test data later
,1 I
revealed that one rod in assembly 4G7 was defective.
new fuel batch for Cycle 10, Batch 12 was the and assembly 4G7 had accumulated only
'I.
approximately 2000 MWd/MtU of exposure prior to being discharged. The I
failure mechanism for the defective rod could not be identified.
I The coolant activity data obtained after the cycle restarted in July 1989 indicated that no defective fuel remained in the core. However, I
indications of fuel defects, i.e., spikes in the primary coolant I radioiodine concentration during power transients, were again apparent several months after the July 1989 restari. Figure 5.1 shows that, after I the July 1989 cycle restart, the dose equivalent I-131 activity remained below 1.0 µCi/gm during both steady state operation and power transients.
I Fuel inspections were conducted at the end of the cycle in October 1990 as a result of the fuel defect indications.
- The analysis of the I
radioiodine activity in the coolant indicated that one to three fuel rods may have been defective. The ultrasonic test examination results provided I
no conclusive indications of any defective fuel rods. There were I "suspect" indications in several assemblies that were tested, however, these assemblies were to be discharged at the end of Cycle lOA and no I
redesign of the Cycle 11 core was necessary.
I The cycle average full power equilibrium dose equivalent I-131 I concentration was 2.82 X 10- 2 µCi/gm which corresponds to less than 3%
of the Technical Specification limit. Correcting the I-131 concentration I
for tramp iodine involves calculating the I-131 activity from tramp NE-823 S1Cl0 Core Performance Report Page 52 of 57 I
I fissile sources and subtracting this value from the measured I-131. The resultant is the I-131 activity from defective fuel. The magnitude of the tramp-corrected I-131 can be used as an indication of the number of I defective fuel concentration was rods. The cycle average tramp corrected 2.08 X 10- 2 µCi/gm.
iodine-131 The demineralizer flow rate I averaged 106 gpm during power operation.
I The ratio of the specific activities of I-131 to I-133 is used to I characterize the type of fuel failure which may have occurred in the reactor core. Use of t})is ratio is based upon the relatively short half I life of I-133 (approximately 21 hours) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time I through the defect is on the order of days, the I-133 decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of large leaks and tramp material, where the I diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than 0.1. The ratios of 0.5 and 0.1 are empirically determined I and are generally used throughout the industry as defect indicators.
I Figure 5.2 shows the I-131/I-133 ratio data for the Surry 1, Cycles 10 and lOA core.
I I
I I
I NE-823 S1C10 Core Performance Report Page 53 of 57
I Figure 5.1 SURRY UNIT 1 - CYCLE 10/lOA I
1.00E+Ol DOSE EQUIVALENT I-131 vs. TIME
-t------------------------------~
\I I
- I 1.00E+OO-+---.-----------------------------~
- * ***
- I
- I 1.00E-01-f----:ai---------------------11---------4 .
1.
I * *!
I
- i I
- I 1*~
I
-**"~** '1fc I
- I **
I I
1.00E-03-t----......---------*- - - , - - - - - - - - - - - - - - - - - l
- I
- I
- I 1.00E-04-+-~RR=l~----------fFWl=a:FIIF=F=R~"""'=:i==MF=~-i::=11~-------l- 100 I
I 1.00E-05 _.,......._...__..___ _ _ _ _ _ ___.__ _ _ __.__ _ ___,_........_......___ __.__ _ _ __
0 I 22JUN88 08JAN89 27JUL89 12FEB90 31AUG90 19MAR91 DATE NE-823 S1C10 Core Performance Report Page 54 of 57 I
I Figure 5.2 SURRY UNIT 1 - CYCLE 10/lOA I-131 / I-133 ACTIVITY RATIO vs. TIME I *
- 0;9 I
- I 0.8
- I 0.7 *
- I ** *
, ~ 0.6 .,.
1.... o.5
- I? I
, .... 0.4 I 0.3 I .0.2 I 100 80 "ti 0
80 ~
I 0.1 Ii
"°-
- a
~
20-
- 0 N88 08JAN89 27JUL89 12FEB90 31AUG90 19llAR91 DATE I NE-823 SlClO Core Performance Report Page 55 of 57
I
,f Section 6 CONCLUSIONS I I
The Surry 1, Cycle lOA core has completed operation. Throughout this cycle, all core performance indicators compared favorably with the design I
predictions and the core related Technical Specifications limits were met I with significant margin. No significant abnormalities in reactivity or burnup accumulation were detected. Radioiodine analysis indicated that I
there were apparent fuel rod defects during Cycle lOA, however, conclusive indications of cladding defects were obtained during the no I
ultrasonic test inspections performed during the subsequent refueling outage.
I I
I I
I I
I NE-823 SlClO Core Performance Report Page 56 of 57 I
I Section 7 I REFERENCES I 1) M. K. Farley, "Surry Unit 1, Cycle 10 Startup Physics Test Report," VEP-NOS-41, September, 1988.
I 2) N. S. Pierce, "Surry Unit 1, Cycle lOA Startup Physics Test Report," Technical Report NE-751, Virginia Electric and Power Company, October, 1989.
I 3) Surry Power Station Unit 1 and 2 Technical Specifications, Sections 3.1.D, 3.12.B, and 4.10.
I 4) 5)
T. K. Ross, "NEWTOTE Code", VEPCO NFO-CCR-6 , Rev. 9, April, 1984.
R. D. Klatt, W. D. Leggett, III, and L. D. Eisenhart, "FOLLOW Code," WCAP-7482, February, 1970.
I 6) W. D. Leggett, III and L. D. Eisenhart, "INCORE Code,"
WCAP-7149, December, 1967.
- 7) J. D. McElroy, "Surry Unit 1, Cycle lOA Startup and Core Follow Calculations," Calculational Note PM-235, Revision O, I Addendum 17, February 1991.
I I
I I
I I
I NE-823 SlClO Core Performance Report Page 57 of 57