ML18152A055

From kanterella
Jump to navigation Jump to search
Rev 0 to Surry Unit 1 Cycle 13 Core Performance Rept
ML18152A055
Person / Time
Site: Surry Dominion icon.png
Issue date: 11/22/1995
From: Laroe C, Tyrus Wheeler
VIRGINIA POWER (VIRGINIA ELECTRIC & POWER CO.)
To:
Shared Package
ML18152A056 List:
References
NE-1051, NE-1051-R, NE-1051-R00, NUDOCS 9512210114
Download: ML18152A055 (57)


Text


~

l

~ '

I,

,\\

1c.A C'......

~..

  • 95il.22'l10ll. ll.4 951214* *'

. lP!DR A!DaCK 0~000280 IP

!P[)R **.

Surry Unit 1 Cycle 13 Core Performance Report Nuclear Analysis and Fuel Nuclear Engineering And Services November, 1995 VIRGINIA POWER

I I 1*

TECHNICAL REPORT NE-1051 - Rev. 0

\\

SU:RRY UNIT 1, CYCLE 13 CORE PERFORMANCE REPORT NUCLEAR ANALYSIS AND FUEL NUCLEAR ENGINEERING SERVICES VIRGINIA POWER November, 1995 T. L. Wheeler REVIEWED BY:~

. LaRoe REVIEWED BY:--;:-~

T. A. Brookmire REVIEWED BY: ~

~~

M.

. Paul.

Date ll*i?J..q5 Date d&L~

Date APPROVED BY:2?. ~

11/z2f9s D. Dzi tlosz*

Date QA Category: Nuclear Safety Related Keywords: S1Cl3, CPR, Core

TABLE OF CONTENTS PAGE Table of Contents 1

List of Tables.

2 List of Figures.

3 Section 1 Introduction and Summary.

5 Section 2 Burnup........

.. 13 Section 3 Reactivity Depletion.

. 23 Section 4 Power Distribution..

. 25 Section 5 Primary Coolant Activity.

45 Section 6 Conclusions 53 Section 7 References.

55 NE-1051 SlC13 Core Performance Report Page 1 of 56

LIST OF TABLES TABLE TITLE PAGE

4. 1 Summary of Flux Maps for Routine Operation

..... *... 29 NE-1051 SlC13 Core Performance Report Page 2

of 56 el 1

LIST OF FIGURES FIGURE TITLE PAGE 1.1 Core Loading Mip..... ~......

9 1.2 Burnable Poison, Flux Suppression Insert, and Source Assembly Locations....

...*.. 10 1.3 Movable Detector Locations

. 11 1.4 Control Rod Locations.

12 2.1 Cycle Burnup History 15 2.2 Monthly Average Load Factors

. 16 2.3 Assemblywise Accumulated Burnup:

Measured and Predicted.

. 17 2.4 Assemblywise Accumulated Burnup:

Measured and Predicted.

2.5A Sub-Batch Burnup Sharing 2.5B Sub-Batch Burnup Sharing 2.5C Sub-Batch Burnup Sharing.

Comparison of 3.1 Critical Boron Concentration versus Burnup (HFP,ARO)

4. 1 Assemblywise Power D 1istribution - Sl 07 4.2 Assemblywise Power Distribution - s1~13-13 4.3 Assemblywise Power Distribution - Sl-13-24 4.4 Hot Channel Factor Normalized Operating Envelope..

4.5 Heat Flux Hot Channel Factor, FQ(Z) - Sl-13-07 4.6 Heat Flux Hot Channel Factor, FQ(Z) - Sl-13-13

4. 7 Heat Flux Hot Channel Factor, FQ(Z) - Sl-13-24 NE-1051 S1Cl3 Core Performance Report Page

. 18 19

. 20

. 21 24 30 31 32

. 33 34

. 35 36 3 of 56

LIST OF FIGURES (CONT'D)

FIGURE TITLE

  • 4.8 Maximum Heat Flux Hot Channel Factor, FQ(Z)*P, vs.

Axial Position................

4.9 Maximum Heat Flux Hot Channel Factor, FQ(Z), vs. Burnup 4.10 Maximum Enthalpy Rise Hot Channel Factor, F-delta-H vs.

Burnup 4.11 Target Delta Flux versus Burnup 4.12 Core Average Axial Power Distribution - Sl-13-07 4.13 Core Average Axial Power Distribution - Sl-13-13 4.14 Core Average Axial Power Distribution - Sl-13-24 4.15 Core Average Axial Peaking Factor vs. Burnup 5.1 Dose Equivalent I-131 vs. Time....

5.2 Measured RCS Xenon-133 vs. Time........

5.3 Measured RCS Iodine-131 vs. Time.....

5.4 I-131/I-133 Activity Ratio vs. Time NE-1051 S1C13 Core Performance Report Page PAGE

. 37 38 39 40 41

  • 42 43 44

.. 49

.. 50 51 52 4 of 56

L I

  • Section 1 INTRODUCTION AND

SUMMARY

On September 8, 1995, Surry Unit 1 completed Cycle 13.

Since the initial criticality of Cycle 13 on March 24,. 1994, the reactor core produced approximately 9.6544 x 107 MBTU (16,291 Megawatt days per metric ton of contained uranium).

The purpose of this report is to present an analysis of the core performance for routine operation during Cycle 13.

The physics tests that were performed during the startup of this cycle were covered in the Surry Unit 1 Cycle 13 Startup Physics Test Report 1 and, therefore, will not be included here.

Unit 1 experienced several outages of various lengths during Cycle 13.

On May 11, 1994 Unit 1 was manually tripped due to unrecoverable loss of steam generator level resulting from a feedwater pump motor trip.

The outage lasted one day.

Beginning around October, 1994 Unit 1 experienced oscillations in the "c" steam generator at full power conditions. The unit was operated at reduced power to eliminate. the oscillations.

Between November 28 and December 23, 1994 Unit 1 was shut down for steam generator chemical cleaning. Following this outage, Unit 1 was returned to

  • 100%

power.

On January 8~ 1995 Unit 1 tripped due to low lube oil pressure to a main feedwater pump motor bearing.

The outage lasted seven days.

Finally, on April 12, 1995, control rod J-7 dropped resulting in a turbine NE-1051 S1C13 Gore Performance Report Page 5 of 56

runback. The unit was shut down due to increasing delta-flux.

The rod was recovered and the unit was returned to power within two days.

Surry Unit.l began a power only coastdown on August 3, 1995, at which time the burnup was approximately 15,253 MWD/MTU.

The coastdown accounted for an additional core burnup of 1,038 MWD/MTU from the end of full power reactivity.

The Cycle 13 core consisted of eight sub-batches of fuel:

two fresh batches (batches 15A and 15B); two once-burned batches Cycle from 12 (batches 14A and 14B); three twice-burned batches, two from Cycles 11 and 12 (batches 13A and 13B), and one from Cycles 10 and 12 (batch 12B); and one thrice-burned batch from Cycles.IO, lOA and 11 (batch 12A). The Surry 1 Cycle 13 core loading map specifying the' fuel batch identification and fuel assembly locations is shown in Figure 1.1.

The burnable poison locations and source assembly locations are shown in Figure 1.2. Movable detector locations that were available during Cycle 13 are shown in Figure 1.3.

Control rod locations are shown in Figure 1.4.

Cycle 13 is the first cycle which uses Flux Suppression Insert (FSI) assemblies.

The purpose of the FSis is to suppress the neutron leakage flux in the radial and axial vicinity of critical reactor vessel weld locations.

Each FSI contains twenty neutron absorber rods which are inserted into the fuel assembly guide thtmble tubes.

The active absorber length contains a hafnium bar or stack of bars 27 inches long or 54 inches long for the short and long FSI designs, respectively.

The top of the NE-1051 S1C13 Core Performance Report Page 6 of 56

. :t

absorber material is loaded approximately 9 inches below the active fuel midplane for both designs.

Routine core follow involves the analysis of four principal performance indicators.

These are burnup distribution, reactivity depletion, power distribution, and primary coolant activity.

The core burnup distribution is followed to verify both burnup symmetry and proper batch burnup sharing, thereby ensuring that the fuel held over for the next cycle will be compatible with the new fuel that is inserted.

Reactivity depletion is monitored to detect the existence of any abnormal reactivity behavior, to determine if the core is depleting as designed, and to indicate the cycle burnup where coastdown operation will begin.

Core power distribution follow includes the monitoring of nuclear hot channel factors to verify that they are within the Technical Specification2 limits, thereby ensuring that adequate margins for linear power density and critical heat flux thermal limits are maintained.

Lastly, as part of normal core follow, the primary coolant activity is monitored to assess the status of the fuel cladding integrity and to compare the concentration of dose equivalent iodine-131 in the reactor coolant with the limits specified by the Surry Technical Specifications 2

  • Each of the four performance indicators is discussed in detail for the Surry Unit 1 Cycle 13 core in the body of this report. The results are summarized below:

NE-1051 S1Cl3 Core Performance Report Page 7

of 56

1. Burnup - The burnup tilt (deviation from quadrant symmetry) on the core was no greater than +/-0.25% with the burnup accumulation in each batch deviating from design prediction by no more than +/-2.92% during the cycle.
2. Reactivity Deple:tion -

The critical boron concentration, used to monitor reactivity depletion, was consistently within +/-0.38% AK/K of the design prediction which. is within the +/-1% l!J.K/K margin allowed by Section 4.10 of the Technical Specifications.

3. Power Distribution -

Incore flux maps taken each month indicated that the assemblywise radial power dis~ributions deviated from the design predictions by a maximum average difference of 1.9%.

All hot channel factors met their respective Technical Specification limits.

4. Primary Coolant Activity -

The average dose equivalent iodine-131 activity level in the primary coolant during Cycle 13 was approximately 0.00454 µCi/gm.

This corresponds to less than 1% of the operating limit for the concentration of radioiodine in the primary coolant.

Evaluation of the radioiodines and radioactive noble gases in the RCS indicated that a defect or defects in the fuel cladding occurred in the middle of July 1995.

NE-1051 S1Cl3 Core Performance Report Page 8 of 56

.\\

)

R p

N Figure 1.1 SURRY UNIT 1 - CYCLE 13 CORE LOADING KAP L

K

.J H

6 l13B l13B 1138 I

I Z1t9 I SH2 I 3113 I

F E

I 13A I 14A I

158 I 148 I

l5B I 14A I 13A I

I OH9 I 2.J6 I

3IC3 I 6.Jl I 5K6 I 2.J4 I lHO I

D I 13A I 148 I 158 I l4B I l5B I 148 I l5B I 148 I 13A I

I 1H7 I 3J9 I 3K8 I 5J9 I 4K9 I 5.JZ I 5K4 I 5.J8 I OH5 I

C I 13A I 14A I 158 I 148 I 15A I 14A I 15A I 148 I 158 I 14A I 13A I

I ZHl I 2Jl I 4K6 I 6J2 I 21C4 I O.J3 I 2K9 I 5J3 I 31C9 I l.JZ I OHl I

B I 13A I 148 I 158 I 14A I 15A I 14A I 15A I 14A I 15A I 14A I 158 I 148 I 13A I

I ZHO I 5.JO I 5K2 I 3J5 I OKZ I 3J2 I lKZ I 2JO I 1K6 I O.J8 I 4KB I 3.J6 I OH4 I

I 14A I 158 I 148 I 15A *I 14A I 15A I l3B I 15A I 148 I 15A I 14B I 158 I 14A I

I OJ5 I 31C7 I 4Jl I* lKl I O.J9 I ZK3 I 3H2 I 1K5 I 3.Jl I 2K8 I 4.J3 I 6KO I OJ2 I

A I 138 I 158 I 148 I 15A I 14A I 15A I 14A I 15A I 14A I 15A I 14A I 15A I 148 I 158 I 138 I

l 2

3 4

5 6

I 4H6 I 4K5 I 5J5 I 2K6 I 1J5 I OK5 I 2J3 I OKl I 2J5 I OK8 *1 O.J7 I 2KO I 4.J4 I 4Kl I 4HO I

7 I 138 I 148 I 158 I 14A I lSA I 138 I lSA I 12A I lSA I 138 I lSA I 14A I 158 I 148 I 138 I

I 2H8 I 4JO I 31C6 I 3JO I lKO I 4H2 I OK6 I 160 I 3KO I SHl I OK7 I lJ9 I 31CS I SJ7 I 4H7 I

8 I 13B I 158 I 14B I lSA I 14A I lSA I 14A I 15A I 14A I ISA I 14A I ISA I 148 I 15B I 138 I

I SHO I SICS I 4JS I ZK2 I lJl I 1K7 I l.J8 I 1K4 I 2J2 I OK4 I 2.J9 I 2Kl I 3J7 I SK3 I 4H5 I

9 I 14A I 158 I 148 I lSA I 14A I lSA. I 138 I 15A I 14A I 15A I 14B I lSB I 14A I

I 1J4 I 4K7 I 4.J6 I 3Kl I lJO I OK9 I 3H8 I 1K3 I OJ6 I 2K7 I 5Jl I 4KO I 2.J8 I

I 13A I 148 I lSB I 14A I 15A I 14A I 15A I 14A I 15A I 14A I 15B I l4B I 13A I

I OH2 I 3.J8 I 4K2 I 3J3 I 1K8 I 1J3 I OK3 I 1J7 I 1K9 I OJI I 5K9 I 6JO I 2H2 I

I 13A I 14A I 15B I 148 I 15A I 14A I 15A I 14B I 158 I 14A I 13A I

I 1H4 I OJ4 I 4K3 I 4J8 I 2K5 I 3J4 I 3K2 I 5J4 I 31C4 I l.J6 I 2H3 I

l~l~l~l~l~l~l~l~l~I I 1H3 I 4J9 I SK7 I 6J3 I SKO I 4J2 I 5K8 I 5J6 I 1H6 I

I 1--> BATCH I

1--> ASSENBLY ID I __ I INITIAL ENRICHMENT CW/0 U-235)

BURNUP AT BOC 13 CNWD/NTUJ.

ASSEMBLY TYPE NllffBER OF ASSEMBLIES FUEL RODS PER ASSEMBLY I 13A I 128 I 158 I 148 I 158 I 14A I 13A I

I 1H2 I 467 I 5Kl I 4.J7 I 4K4 I 2J7 I OH7 I

12A 3.80 37131 1Sxl5.

l 204 I 138 I 13B I 13B I

IZHS l2H7 l4H9 I

FUEL ASSENBLY DESIGN PARAMETERS SUB-BATCH lZB 13A 138 14A 148 3.99.

3.80 4.01 3.81 4.02 22921 40478 34317 24053 23215 15Xl5 15Xl5 15Xl5 15Xl5 15Xl5 l

16 16 35 28 20311 204 204 204 204 15A 3.82 0

15Xl5 32 204 l5B 3.99 0

15Xl5 28 204 "One fuel rod was replaced with a solid stainless steel rod during a reconstitution prograa prior to irradiation in Surry Unit 1, Cycle 11

  • NE-1051 S1C13 Core Performance Report Page 9

of 56 10 11 12 13 14 15

R Figure 1.2 SURRY UNIT 1 - CYCLE 13 BURNABLE POISON, FLUX SUPPRESSION INSERT, SOURCE ASSEMBLY LOCATIONS p

H L

K J

G F

I I FSIS I I

I IFSD04 I I

AND E

_____ 1 __ 1 __ 1 __ 1 ____ _

I 3P I

I 3P I

I I

IBP29D I IBP291 I I

I D

__ 1 __ 1 __ 1 __ 1~_1 __ 1 __ 1 __ 1 __

I FSIL I I 15P I

I 20P I

I 15P I

I FSIL I IFSD13 I IBP309 I IBP279 I IBP31D I

. IFS012 I C

~-1~-l~-l~_l~_l __ l~_l~_l __

l __ l~-

I FSIL I I 15P I*

I 20P I

I 20P I

I 15P I

I FSIL I IFSDll I IBP3DB I IBP282 I IBP283 I IBP311 I IFSDlD I B

__ 1 __ 1 __ 1 __ 1~_1 __ 1~_1 __ 1 __ 1 __ 1 __ 1 __ 1 __

I I

I 15P I

I ZOP I

I 20P I

I 2DP I

I 15P I

I I

I I

IBP307 I IBP298 I IBP266 I IBP299 I IBP312 I SS7 I

I 1 __ 1 __ 1 __ 1 __ 1~_1 __ 1~_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I

I 15P I

I 2DP I

I 2DP I

I 20P I

I 20P I

I 15P I

I I

IBP306 I IBP305 I IBP274 I IBP275 I IBP300 I IBP313 I I

A

__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

I I

3P I

I 20P I

I ZOP I

I 12P I

I ZOP I

I ZOP I

I 3P I

I I

IBP297 I IBP289 I IBPZ81 I IBP262 I IBP276 I IBP284 I IBPZ92 I ssz I

, __ 1 __ 1 __, __, __,~_1 __, __ 1 __, __ 1 __, __ 1 __, __ 1~_1 I FSIS I I 20P I

I 20P I

I 12P I

I lZP I

I 20P I

I ZOP I

I FSIS I IFSOD3 I IBP273 I IBP269 I*

IBP265 I IBPZ63 I IBP267 I IBP271 I IFSOOZ I

, __, __ 1 __ 1 __ 1 __ 1 __, __, __, __ 1 __ 1 __, __ 1 __, __, __ 1 I

I 3P I

I 20P I

I 20P I

I 12P I

I 20P I

I ZOP I

I 3P I

I I SSl I BPZ96 I I BP288 I I BPZ80 I I BP264 I I BP277 I I BP285 I I BP293 I I

1 __ 1 __ 1 __ 1 __ 1 __ 1~_1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 __ 1 __ 1 I

I 15P I

I ZOP I

I 20P I

I 20P I

I 20P I

I 15P I

I I

IBP321 I IBP304 I IBP279 I IBP278 I IBP30l I IBP314 I I

l __

l __

l __

l __ l~_l __ l~_I __

I __

I __

I __

I __ I __

._I I

I I 15P I

I 20P I

I ZOP I

I ZDP I

I 15P I

I I

I I

IBP3ZD I.

IBP303 I IBP268 I IBP302 I IBP315 I I

I 1 __ 1 __ 1 __ 1 __ 1~_1_*_1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I FSIL I I 15P I

I 20P I

I 20P I

I 15P I

I FSIL I IFS009 I IBP319 I IBP287 I IBPZ86 I IBP316 I IFS008 I 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

  • _1 __ 1 I FSIL I I 15P I

I ZOP I

I 15P I

I FSIL I IFS007 I IBP318 I IBP272 I IBP317 I IFSOD6 I

, __, __, __, __, __ 1 __ 1 __ 1 __ 1 __ 1 I

I I

3P I

I 3P I I

I I

I IBP295 I IBP294 I I

I 1 __ 1 __

1 __

1 __ 1 __

1 __ 1 __ 1 3P -

3 BURNABLE POISON ROD CLUSTER 12P - 12 BURNABLE POISON ROD CLUSTER 15P - 15 BURNABLE POISON ROD CLUSTER 2op*- 20 BURNABLE POISON ROD CLUSTER SSx -

SECONDARY SOURCE FSIL -

FLUX SUPPRESSION INSERT (LONG>

FSIS -

FLUX SUPPRESSION INSERT (SHORT)

I I FSIS I I

I IFSOOl I I

I __

I __

I __

I xxP or FSix I OF BP RODS or FLUX SUPPRESSION INSERT TYPE BP##8, SS#,

BP ASSEMBLY ID, SECONDARY SOURCE ID or FSI 88#

or FLUX SUPPRESSION INSERT ID NE-1051 S1C13 Core Performance Report Page 10 of 56 l

2 3

4 5

6 7

8 9.0

\\

11 12 13 14 15

R p

H Figure 1.3 SURRY UNIT 1 - CYCLE 13 MOVABLE DETECTOR LOCATIONS L

K

.J H

G I

I

  • I I

F E

D C

II I

I ND I

I 1

---,---1-*_t __ l __ l ____ _

I I

I I

I I

I I

I I

ND I

I z

__ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

I I

I.

I I

I I

I I

I l"DI I

l"DINDI I

I IND!

3

__ 1 __ 1_*_1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __, __

I I

I I

I I

I I

  • I I

I I

I I

I "D I

I I

ND I

I "D

I I

I I

4

__ 1 __, __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __

I I

I I

I I

I I

I I

I I

I I

I l"DI l"DI l"DI I

I l"Dl"DI INDI 5

1 __ 1 __ 1 __ 1 __ 1_*_1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 I

I I

. I I

I I

I I

  • I I

I I

I I

I I

I ND I

I I

ND I

I "D I

I I

I I

6

__ l~_l __ l~_I __ I __ I __ I __ I __ I __ I __ I __ I __

. I __ I __

I I

I I

I I

I

. I I

I I

I I

I I

I I

I I

"D I

I I

I "D I

I "D I

I I

ND I

I ND I

I 7

1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __,_. __ 1 __ 1 __ 1 __,

I I

I I

I I

I I

I I

I I

I I

I I

IHDI IHDI IHDI I

I I

IHDI I

IHDl"DI I

8 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __, __ 1 __ 1 __ 1 __ 1 __ 1 __, __, __ 1 I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

HD I

I I

I HD I

HD I

I I

I I "D I

9 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I

I I

I I

I I

I I

I I

I I

I I

I "D

I I

I I

HD I

I I

I I "D I I "D I

10 1 __ 1 __ 1 __ 1 __, __, __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 I

I I

I I

I I

I I

I I

I I

I I

I I

IHDI I

l"DI l"Dl"DI I

I I

11 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1 __ 1_*_1 __ 1 __ 1 __ 1 I

I I

I I

I I

I I

I I

I I

"D I I

I I

HD I

I I

I I

HD I "D I

lZ 1 __ 1 __, __, __ 1 __ 1 __ 1_* __ 1 __ 1 __ 1 __ 1 __ 1 I

I I

I I

I I

I I

I I.

I I

I I

ND I

I "D

I I

I 13 1 __ 1 __ 1 __, __ 1 __ 1 __ 1~_1 __, __ 1 I

I I

I I

I I

I I "D I

I I

I "D I

I I

14 1 __, __, __ 1 __ 1 __ 1 __, __,

I I

I I

"D - "ovable Detector Locations I

HD I

I I

15

  • - Locations Unavailable NE-1051 S1Cl3 Core Performance Report Page 11 of 56

R p

N H

Figure 1.4 SURRY UNIT 1 - CYCLE 13 CONTROL ROD LOCATIONS L

K J

H 6

F 180° I

N-31 N-:3.5 E

0 C

Loop C I

I I

I Loop B Outlet I

I I

I

/

Inlet

'I I A I_I_O_I_I A I I

_1_1_1_1_1_1_1_1_

N-41 I

I I

I SA I I SA I I SP I I

N-43

__ 1_1_1_1_1_1_1_1_1_1_

I I c I

I B I I

. I I B I I c I

I B

_1_1_1_1_1_1_1_1_1_1_1_1_

I ISPI ISBI ISPI I

I ISBI I

I I

1_1_1_1_1_1_1_1_1_1_1_1_1_1 IAI IBI IOI ICI IOI IBI IAI A

Loop C __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __ I __

Loop B Inlet I I

I SA I I

I I SB I I SB I I SP I I SA I I

I Outlet

\\ 1_1_1_1_1_1_1_1_1_*_1_1_1_1_1_1_1 ~

90°-~ I I o I I

I I c I

I I

I c I

I I

I o I I,_- 210°

,_,_1_1_1_1_1_1_,_,_1_1_1_1_1_1 I

I ISAI ISPI ISBI ISBI I

I ISAI I

I 1_1_1_1_1_1_1_1_1_1_1_1_1_,_,_1 Absorber Haterial Ag-In-Cd Function IAI IBI IOI ICI IOI IBI IAI 1_1_1_1_1_1_1_1_1_1_,_,_,_,

I I

I ISBI I

I ISPI ISBI ISPI I

1_1_1_1_1_1_1_,_.1_1_1_1_1_1 I

I c I

I B I I

I I B I I c I

I 1_1_1_1_1_1_*_,_,_1_1_,_,

I I SP I I SA I I.SA I I

I I

N-44 I_I __ I_I_I_I_I_I __ I __ I N-42 I

I A I I o I I A I I

.)-I_I_I_I_I_I_I

-~

I I

I I

-~

Loop A I __ I __ I __ I Loop A Outlet Inlet N-32 N-36 I

00 Nunber of Clusters Control Bank 0 Control Bank C Control Bank B Control Bank A Shutdown Bank SB Shutdown Bank SA 8

8 8

8 8

8 8

SP (Spare Rod Locations)

NE-1051 S1Cl3 Core Performance Report Page 12 of 56 1

2 3

I 4

.5 6

7 8

9

1.

11 12 13 14 1.5

Section 2 BURNUP The Surry Unit 1 Cycle 13 burnup history is graphically depicted in Figure 2.1.

Surry 1 Cycle 13 achieved a cycle burnup of 16,291 MWD/MTU.

As shown in Figure 2.2, the average load factor for Cycle 13 was 87.0%

when referenced to rated thermal power (2441 MW(t)).

Unit 1 performed a power coastdown starting on August 3, 1995 until shutdown for refueling on September 8, 1995.

Radial (X-Y) burnup distribution maps show how the core burnup is shared among the various fuel assemblies, and thereby allow a detailed

~

I burnup distribution analysis.

The TOTE 3 computer code is used to caiculate these assemblywise burnups.

Figure 2. 3 is a radial burnup distribution map in which the assemblywise burnup accumulation of the core at the end of Cycle 13 operation is given. For comparison purposes, the design values are also given. Figure 2.4 is a radial burnup distribution map in.which the percentage difference comparison of measured and predicted assemblywise burnup accumulation at the end of Cycle 13 operation is given.

As can be seen from this figure, the accumulated assembly burnups were within +/-3.46% of the predicted values. In addition, deviation from quadrant symmetry in the core throughout the cycle was no greater than +/-0.25%.

The burnup sharing on a batch basis is monitored to verify that the core is operating as designed and to enable accurate end-of-cycle batch NE-1051 S1C13 Core Performance Report Page 13 of 56

burnup predictions to be made for use in reload fuel design studies.

Batch definitions are given in Figure 1.1. As seen in Figures 2.5A, 2.5B, and 2.5C, the batch burnup sharing for Surry 1 Cycle 13 followed design predictions closely with no batch deviating from prediction by more than

+/-2.92%.

The batch burnup sharing deviations in conjunction with reasonable agreement between actual and predicted assemblywise burnups, and symmetric core burnups indicate that the Cycle 13 core did deplete as designed.

NE-1051 S1C13 Core Performance Report Page 14 of 56

1*

I L

UDD IBDD 17DDD l&DDD 15DDD 14DDD i IJIDI

~* IZDDD

!- IIDDD Q.

IODDD

~ mo i mo

~ 7DDD G

&DDD SDDD 4DDD JDDD mo IDDD D

V V

IX IX -

-c:

a..

CII CII C,

Figure 2.1 SURRY UNIT 1 - CYCLE 13 CYCLE BURNUP HISTORY I,

V V

7 V

V V

V l,-/

/.

~

~/

/

~

/

/

V 11'1 11'1...

11'1...

11'1...

11'1

z:

a..

z:

m IX IX -

z:

u, a..

u Co a..

c,,

z:

c::,

oC c,,

CII CII C,

CII CII CII CII CII C,

CII Cl CII CII CII C,

C, C,

TIME (MONTHS)

MAXIMUM DESIGN BURNUP -

17500 MWD/MTU NE-1051 S1Cl3 Core Performance Report Page 15 of 56

100 90 80 70 1-60 z

w Figure 2.2 SURRY UNIT 1 -

CYCLE 13 MONTHLY AVERAGE LOAD FACTORS

~ so 1* I I I I I I I I I I I I I I I I I w

a.

40 30 l 20 10

~

0

~~~~~~~~~~~~~~~~~~

mmmmmmmmmmmmm mmmm I

I I

I I

I* I I

I I

I I

I ffi I

I I

I

~~~z~~~~>uzm~~~z~~

~~~~~~woow~w~~~~~~

2~2JJ~wozoJ~~~2JJ~

MONTH I

~~

frj ~

ww

~

0

-~

0 NE-1051 SlC13 Core Performance Report Page 16 of 56

I_

l 2

3 4

5 6

7 8

9 10 11 12 13 14 15 R

p N

Figure 2.3

. SURRY UNIT 1 - CYCLE 13 ASSEMBLYWISE ACCUMULATED BURNUP MEASURED AND PREDICTED (GWD/MTU)

L K

  • J H

G F

E D

C B

A I 37.401 40.631 37.391 I 37.001 40.421 37.001 I

HEASURED I I PREDICTED I I 44.731 32.121 17.931 37.921 17.201 31.901 43.961 I 44.281 31.221 17.291 38.831 17.291 31.221 44.281 I 46.561 32.541 19.831 43.131 21.051 43.661 29.101 33.661 46.241 I 45.971 33.371 19.951 43.561 21.651 43.561 19.951 33.371 45.971 I 46.271 37.201 20.071 44.091.22.801 44.991 22.711 44.341 20.381 36.821 45.581 I 45.951 36.691 20.381 43.701 22.541 44.171 22.541 43.701 20.381 36.691 45.951 I 44.201 33.841 Z0.581 44.421 22.591 44.391 22.591 44.951 22.561 44.021 20.181 33.171 43.471 I 44.311 33.371 20.381 43.961 22.251 44.221 22.171 44.221 22.251 43.961 20.381 33.371 44.311 I 31.561 20.051 43.841 22.431 45.641 22.591 55.571 22.561 46.191 22.441 43.411 19.611 31.521 I 31.ZII 19.951 43.701 22.251 45.421 22.241 55.991 22.241 45.421 22.251 43.701 19.951 31.211 I

2 3

4 5

6 I 37.511 17.241 43.301 22.581 44.241 22.301 44.901 22.171 45.091 22.591 44.041 22.341 42.661 17.00I 36.971 7

I 37.041 17.291 43.561 22.541 44.221 22.251 44.831 21.8ZI 44.831 22.251 44.221 22.541 43.561 17.291 37.041 I 40.781 38.291 21.561 44.231 21.801 55.691 21.831 53.971 22.261 56.141 22.411 44.0ll 20.901 38.711 39.551 8

I 40.421 38.821 21.651 44.181 22.171 55.981 21.841 54.171 21.841 55.981 22.171 44.181 21.651 38.8ZI 40.421 I 37.211 17.121 43.621 22.611 44.371 22.411 45.0ll 21.981 45.251 22.261 43.801 22.511 43.541 17.121 38.031 9

I 37.041 17.291 43.561 22.541 44.221 22.251 44.831 21.821 44.831 22.251 44.221 22.541 43.561 17.Z91 37.041 R

I 31.161 19.781 43.581 22.481 45.201 22.071 55.871 22.501 45.531 22.541 44.021 19.971 32.041 I 31.211 19.951 43.701 22.251 45.421 22.241 55.991 22.241 45.421 22.251 43.701 19.951 31.211 I 44.351 32.751 20.311 44.201 22.361 43.871 22.~ll 43.781 22.631 43.391 20.511 33.661 44.211 I 44.311 33.371 20.381 43.961 22.251 44.221 22.171 44.221 22.251 43.961 20.381 33.371 44.311 p

I 46.071 36.181 20.271 43.901 22.381 44.141 22.591 43.021 20.451 36.921 45.791

. I 45.951 36.691 20.381 43_.701 22.541 44.171 22.541 43.701 20.381 36.691 45.951 I 45.601 33.591 19.611 43.421 Zl.121 43.181 19.711 33.731 45.821 I 45.971 33.371 19.951 43.561 21.651 43.561 19.951 33.371 45.971 I 43.421 33.251 16.961 38.541 17.251 32.021 44.021 I 44.281 33.311 17.291 38.831 17.291 31.221 44.281 I 38.071 39.641 36.471 I 37.0DI 40.421 37.00I N

L K

J H

G F

E D

C B

A IO 11 12 13 14 15 NE-1051 S1C13 Core Performance Report Page 17 of 56

R p

l.

2 3

4 I

I 5

I 44.201 I -0.231 6 --

I 31.561 I 1.101 7

I 37.511 17.241 I 1.281 -o*.331 8

I 40.781 38.291 I

0.891 -1.371 9

I 37.211 17.121 I

0.481 -1.021 10 I 31.161 I -0.191 11 I 44.351 I

0.091 12 I

I -

13 14 N

Figure 2.4

  • SURRY UNIT 1 - CYCLE 13 ASSEMBLYWISE ACCUMULATED BURNUP COMPARISON OF MEASURED AND PREDICTED.

(GWD/MTU)

L K

.J H

G F

E D

C B

A I 37.401 40.631 37.391 I 1.011 o.531 1.051 I

~ASURED I

I "'P ;c DIFF I

  • I 44.731 32.121 17.031 37.921 17.201 31.901 43.961 I

1.011 2.901 -1.561 -2.351 -o.541 2.181 -0.121 I 46.561 32.541 19.831 43.131 21.051 43.661 20.101 33.661 46.241 I

1.211 -2.491 -0.641 -0.981 -2.111 0.231 0.111 o.871 o.571 46.271 37.201 20.071 44.091 22.BOI 44.991 22.711 44.341 20.381 36.821 45.S8I o.691 1.401 *-1.501 o.891 1.151 1.861 0.111 1.461 -0.011 o~381 -0.801 33.841 20.sa1 44.421 22.591 44.391 22.591 44.951 22.561 44.021 20.181 33.171 43.471 1.431 0.991 1.061 1.531 0.391 1.911 1.661 1.391 0.131 -0.991 -O.S81 -1~901 20.051 43.841 22.431 45.641 22.591 55.571 22.561 46.191 22.441 43.411 19.611 31.521 0.461 0.311 0.831 0.481 1.571 -0.751 1.421 1.691 0.841 -0.671 -1.721 0.991 43.301 22.581 44.241 22.301 44.901 22.111 45.091 22.591 44.041 22.341 42.661 11.001 36.971

-0.601 0.201 0.051 0.231 0.181 1.601 o.581 1.551 -0.421 -0.891 -2.011 -1.101 -0.111 21.561 44.231 21.801 55.691 2l.B3I 53.971 22.261 56.141 22.411 44.0ll 20.901 38.711 39.551

-0.381 0.111 -1.651 -0.521 -0.031 -0.371 1.951 0.281 1.101 -0.371 -3.461 -0.291 -2.151 43.621 22.611 44.371 22.411 45.0ll 21.981 45.251 22.261 43.801 22.511 43.541 17.121 38.031 0.151 0.331 0.331 0.121 0.401 0.701 0.941 0.071 -0.941 -0.101 -0.051 -1.021 2.681 19.781 43.581 22.481 45.201 22.071 55.871 22.501 45.531 22.541 44.021 19.971 32.041

-0.851 -0.281. 1.041 -0.481 -0.801 -0.211 1.161 0.241 1.291 0.721 0.091 2.661 32.751 20.311 44.201 22.361 43.8il 22;411 43.781 22.631 43.391 20.511 33.661 44.211

-1.851 -0.341 0.541 0.471 -0.7BI 1.101 -0.991 1.701 -1.301 0.621. 0.891 -0.221 46.071 36.181 20.271 43.901 22.381 44.141 22.591 43.021 20.451 36.921 45.791 0.271 -1.371 -0.511 0.461 -0.681 -0.081 0.221 -1.551 0.351 0.641 -0.351 I 45.601 33.591 19.611 43.421 21.121 43.181 19.711 33.731 45.821 I -0.821 o.671 -1.731 -0.321 -2.451 -o.871 -1.201 1.081 -0.331 I 43.421 33.251 16.961 38.541 17.251 32.021 44.021 I -1.951 -0.181 -1.951 -0.741 -0.251 2.591 -0.591 I ARITH"ETIC AVG I IPCT DIFF = 0.061 15 I STANDARD DEV I I 38.011 39.641 36.471 I AVG ABS PCT I I DIFF = 0.96 I I

= 0.72 R

p SUB NO. 0 BATCH ASSEHBLI 12A 1

128 1

13A 16 138 16 14A 35 148 28 15A 32 158 28 I

N F

ES I

2.881 -1.931 -1.451 L

K

.J H

G F

SUB-BATCH SHARING CHWD/HTUJ BOC BATCH EOC BATCH*

CYCLE BURNUP BURNUP BURNUP 37,131 53,967 16,836 22,921 33,247 10,326 40,478 45,017 4,539 34,317 42,678 8,361 24,053 41,116 17,063 23,215 39,898 16,683 0

22,415 22,415 0

19,_392 19,392 CYCLE AVERAGE ACCUMULATED BURNUP = 16,291 NE-1051 S'1C13 Core Performance Report E

D C

B A

BURNUP TILT.

NW=

0.25 I NE= -0.01 SW= -0.16 I SE= -0.08 Page 18 of 56 l '

2 3

4 5

6 7

8 9

10

  • 11 12 13 14 15

I I

I~

56 54 52 f-50

E

"'C

~ 48

(!)

C.

> 46 z

0:::

00 44

c

~ 42

<(

al I

al 40 en 38 36 34

/

-k-b; ~

b-' 0

~

~

)

I/

)b V

r>

/ ~

~

~

~

'*<'I~

Figure 2.SA SURRY UNIT 1 - CYCLE 13 SUB-BATCH BURNUP SHARING

/

I ~

) ~

/ tS

)

I ~

J ~

J KS

~

~

b"' D

~

I K)_,,. h' K) l:§5 u u

.,/

Vn,

/'

~

K w

~

1//

~

,/

7,s;;:

I I

I/

I/

/ Co/ I

  • p

~

I I

t.....-L-

~

t5 e,µ I/

' WI

,,/

~

I I

0 2

4 6

8 10 12 14 16 CYCLE BURNUP (GWd/MTU)

SUB-BATCH 12A 0

SUB-BATCH 13A 0

SUB-BATCH 138 NE-1051 SlC13 Core Performance Report Page 19 of 56

42 40 38 36

.-.. 34

~ 32

E 30

"'C

~ 28

~26 0

<to' b/

I Figure 2.5B SURRY UNIT 1 - CYCLE 13 SUB-BATCH BURNUP SHARING I

I

,,)

I

.)t::>

/ ~

,_./ r?

J 0

_./ OJ'

_/ </

I

~

t,'

_/ <I'

.. v

~

,/0

~

CJ

.... ~

~~-

ro II'>""" ~

c..,,,. ~

I

_/

'~ :9'

/ f::l

/ 0 r?

.J:X"

~ er V

.J
a. 24 I:>.("~ k:r""'

z -22

~

, 20 CJ
C 18 u

~

CJ I

CJ en 16 14 12 10 8

6 4

2 0

c-V 0

I

,w

,/,,

I "X.

w I

'/7

) "'

,~

,J/

/

~

.w'

,,/,,

I I

~

~

l

,/

/

~

I V

/

I

,,1'K I

2 4

6 8

10 12 14 16 CYCLE BURNUP (GWd/MTU)

/

SUB-BATCH 148 0

SUB-BATCH 128 0

SUB-BATCH 15A NE-1051 S1C13 Core Performance Report Page 20 of 56

44 42 40 38 36 534 I-32

~.

"C 30

~ 28

(!)

y fy IY Figure 2.SC SURRY UNIT 1 - CYCLE 13 SUB-BATCH BURNUP SHARING I

I I

<~

).7

  • 'ii'

' ~

_A

~

w w

~

I I

,t('../,

"'./

()"

~./

q i..

/

(f'

'6'

._. 26

a.

y

, 24 y y

z 0::: 22 5 20

... v f6

c 18 C.J 16

~ 14 m

V

/-

/';..)

/ :?

..J:>5

~

I m 12

J 10 en V

/

d-

/

',J 8

/

K.)

'O 6

~

!,./

4

/

/'° 2

,,,o o/

0 -/

I 0

2 4

6 8

10 12 14 16 CYCLE BURNUP (GWd/MTU)

SUB-BATCH 14A 0

SUB-BATCH 158 0

NE-1051 S1C13 Core Performance Report*

Page 21 of 56

Section 3 REACTIVITY DEPLETION The primary coolant critical boron concentration is monitored for the purposes of following core reactivity and to identify any anomalous reactivity behavior. The FOLOW" computer code was used to normalize "actual" critical boron concentration measurements to design conditions taking into consideration control rod* position, xenon concentration, moderator temperature, and power level.

The normalized critical boron concentration versus burnup curve for the Surry 1 Cycle 13 core is shown in Figure 3.1.

The maximum difference between measured and predicted critical boron concentrations was 48. 0 ppm.

The largest reactivity anomaly was +/-0. 373% AK/K which is within the +/-1% AK/K criterion for reactivity anomalies set forth in Section 4.10 of the Technical Specifications.

In conclusion, the trend indicated by the critical boron concentration verifies that the Cycle 13 core depleted as expected without any reactivity abnormalities.

NE-1051 S1C13 Core Performance Report Page 23 of 56

1400

~1-~

~

1200 Z 1100 O* i 1000 I-900 z w 800 0

~ 700 0

z 600 0

500 a:

0 m 400

~ 300 0 -

I--

200 a:

(.)

100 0

~~ ~

Figure 3.1 SURRY UNIT 1 - CYCLE 13 CRITICAL BORON CONCENTRATION vs. BURNUP (HFP,ARO)

~

-~

~

L'\\.

I~ ~

' ~

'ti ~

-1~

T\\.

~ '

~

~

'~

I

~

~

~

I 0

1 2 3

4 5 6

7 8 9 10 11 12 13 14 15 16 17 18 CYCLE BURNUP (GWD/MTU) l--1 r_x_r _M_~_U_R_ED_~~---PRE_D_ICTE_o___.l NE-1051 S1Cl3 Core Performance Report Page 24 of 56

Section 4 POWER DISTRIBUTION Analysis of core power distribution data on. a routine basis is necessary to verify that the hot channel factors are within the Technical Specification limits and to ensure that the reactor is operating without any abnormal conditions which could cause an "uneven" burnup distribution. Three-dimensional core power distributions are determined from movable detector flux map measurements using the CECOR 5 computer program.

A summary of all full core flux maps taken for Surry 1 Cycle 13 is provided in Table 4.1, excluding the initial power ascension {lux maps.

Power distribution maps were generally taken at monthly intervals with additional maps taken as needed.

Radial (X-Y) core power distributions for a representative series of incore flux maps are given in Figures 4.1, 4.2, and 4.3. Figure 4.1 shows a power distribution map that was taken early in cycle life.

Figure 4.2 shows a power distribution map that was taken near the mid-cycle burnup.

Figure 4.3. shows a map that was taken near the end of Cycle 13.

The maximum relative assembly power difference between measured and predicted for these maps was 14.0% and the cycle maximum average percent difference w~s 1.9%.

In addition, as indicated by the CECOR tilt factors, the power distributions were essentially symmetric for each case.

An important aspect of core power distribution follow is the monitoring of nuclear hot channel factors.

Verification that these factors are NE-1051 S1C13 Core Performance Report Page 25 of 56

within Technical Specification limits ensures that linear power density and critical heat flux limits will not be violated, thereby provid!ng adequate thermal margin and maintaining fuel cladding integrity.

Surry Technical Specification 3.12 limited the axially dependent heat flux hot channel factor,. FQ( Z), to 2. 32 x K( Z), where K( Z) is the hot channel factor normalized operating envelope. Figure 4.4 shows a plot of. the K(Z) curve associated with the FQ(Z) limit.

The axially dependent heat flux hot channel factors, FQ(Z), for a repr:esentative set of flux maps are given in Figures 4.5, 4.6, and 4.7.

Throughout Cycle 13, the measured values of FQ(Z) were within the Technical Specification limit.

A summary of the maximum values of FQ(Z)

  • P measured during Cycle 13 is given in Figure 4.8 for the maps taken near full power conditions. The minimum margin to the FQ(Z) limit was 20.8%. Figure 4.9 shows the maximum values for the heat flux hot channel factor measured during Cycle 13.

The value of the enthalpy rise hot channel factor, F-delta-H, which is the ratio of the integral of the power along the rod with the highest integrated power to that of the average rod, is routinely followed.

The Technical Specification limit for this parameter is set such that the departure from nucleate boiling ratio (DNBR) limit will not be violated.

Additionally, the F-delta-H limit ensures that the value of this parameter used in the LOCA-ECCS analysis is not exceeded during normal-operation.

Surry Technical Specification 3.12 limited the enthalpy rise hot channel factor to 1.56(1+0.3(1-P)) for Cycle 13, where 1.56 is the F-delta-H limit at rated thermal power and 0.3 is the power factor multiplier, both as NE-1051 S1C13 Core Performance Report Page 26 of 56

.I J

specified in the COLR.

A summary of the maximum values for the enthalpy rise hot channel factor measured during Cycle 13 is given in Figure 4.10.

As can be seen from this figure, the minimum margin to the limit was 3.3%

for Cycle 13.

The target delta flux* is-the delta flux which would occur at conditions of full power, all rods out, and equilibrium xenon.

The delta flux is measured with the core at or near these conditions and the target

\\

delta flux is established at this measured point. Since the _target delta flux varies as a.function of burnup, the target value is updated monthly.

By maintaining the value of delta flux relatively constant, adverse axial power shapes due to xenon redistribution are avoided.

This target delta-flux was also used to establish the operational axial flux difference bands while under CAOC.

The plot of the target delta flux versus burnup, given in Figure 4.11, shows the value of this parameter to have been approximately -4.5% at the beginning of Cycle 13, increasing to 0.0% near the middle of Cycle 13, then decreasing and leveling off at -1.0% just past the middle of Cycle 13, then increasing towards the end of reactivity and during the power coastdown.

This axial power shift can also be observed_ in the corresponding core average axial power distribution for a representative series of maps given in Figures 4.12 through 4.14.

In Map Sl-13-07 (Figure 4.12), taken at 1969 MWD/MTU, the axial power distribution had a shape peaked toward the middle of the core with an axial peaking factor Pt-Pb

  • Delta Flux=

X 100 2441 where Pt=. power in top of core (MW(t))

Pb= power in bottom of core (MW(t))

NE-1051 S1C13 Core Performance Report Page 27 of 56

(F-Z) of 1.149.

In Map Sl-13-13 (Figure 4.13)> taken at approximately 7,836 MWD/MTU, the axial power distribution peaked slightly toward the bottom of the core with an axial peaking factor of 1.101.

Fi~ally, in Map Sl-13-24 (Figure 4.14), taken at 14,678 MWD/MTU, the axial peaking factor was-1.100, with *an axial power distribution similar to Map Sl-13-13.

The history of F-Z during the cycle can be seen more clearly in a plot of F-Z versus burnup given in Figure 4.15.

In conclusion, the Surry 1 Cycle 13 core performed satisfactorily with power distribution analyses verifying that design predictions were accurate and that the values of the FQ(Z) and F-delta-H hot channel factors were within the limits of the Technical Specifications.

NE-1051 S1C13 Core Performance Report Page 28 of 56

Table 4.1 SURRY UNIT 1 - CYCLE 13

SUMMARY

OF FLUX MAPS FOR ROUTINE OPERATION I

I l

I z

I I

3 I

I I

I BURN I

BANK F-Q(Z)

HOT I

F-DHCN) HOT ICORE FCZ>

I CORE I AXIAL NO.I IHAPI UP I

D CHANNEL FACTOR I CHNL. FACTOR IHAX I

TILT I

OFF I OF I INO. I DATE HWD/

PWR I STEPS I

I I

I SET ITHIHI I

I HTU (7.) I IAXIALI I

I IAXIAL I FCZ) I HAX [LOCI (7.)

  • IBLESI I

I I

I ASSEHBLY POINTIF-QCZ) I ASSEHBLY F-DHCN)IPOINT I I

I I

I I

I_I I

I __ I

__ I __

I 1 __, __ 1 __ 1_, __ 1_1 I 7 I05-Z6-94I 1969 99.901 ZZ3 J04 35 l.8ZO J04 1.457 30 ll.14911.0061 SEI -3.15ZI 4Z I 8 I06-Z3-94I Z917 99.901 ZZl Fll 31 1.840 Fll 1.470 31 ll.14611.0061 SEI -3.0911 4Z I 9 101-18-941 3758 100.01 zzz Fll 33 l.8Z5 Fll 1.466 30 ll.140ll.0061 SEI -1.7671 41 110 108-19-941 4819 99.9ZI ZZ3 Fll 3Z l.8Z8 Fll 1.472 31 ll.13211.0071 SEI -2.36ZI 44 111 I 09-15-94 I 5770 99.971 Zl9 Fll 33 1.824 Fll 1.467 31 ll.12711.0051 SEI -1.4851 44 112 110-17-941 6819 97.0ol Zl7 Fll 35 l.800 Fll 1.470 30 ll.11611.0031 SEI -0.1031 43 I 13 111-17-941 7836 96.2ZI Z24 Fll 32 1.778 HOS 1.471 30 ll.10111.0041 NWI -0.0371 4Z I 14 112-26-94 I 8187 66.601 18Z Fll 30 1.867 HOS 1.481 30 ll.15611.0071 NWI -O.Z86I 4Z 115 101-05-951 8510 99.8ZI Z23 G06 47 1.794 HOS 1.478 31 ll.09611.0051 HWI -1.0751 4Z 117 IOZ-07-951 9387 99.941 ZZ4 G06 48 1.808 Fll 1.473 48 ll.08511.0041 NWI -0.9901 43 118 103-08-951 10350 100.11 223 G06 48 1.812 HOS 1.476 48 ll.08511.0051 NWI -l.Z25I 43 119 104-05-951 llZ66 99.931 Z23 G06 48 1.800 G06 1.468 12 ll.07911.0041 NWI -0.8171 43 121 104-17-951 ll576 98.681 Zl7 G06 48 l.8ll G06 1.469 5Z ll.08411.0051 HWI -0.9Z71 43 122 105-17-951 12629 99.801 2ZZ G06 48 1.793 J06 1.463 52 ll.08211.0051 NWI -0.7Z21 43 IZ3 106-Zl-951 13763 99.971 223 L06 52 1.829 L06 1.509 12 ll.08811.0lll NEI -0.0881 39 124 107-17-951 14678 99.831 Z23 G06 48 1.724 KOS 1.453 11 ll.10011.0061 NWI 0.8061 43 125 108-17-951 15681 90.201 224 G06 11 1.817 KOS 1.445 11 ll.17111.0081 NWI 4.8731 40 I_I I

__ I I __ I __ I_I __

I _

NOTES: HOT SPOT LOCATIONS ARE SPECIFIED BY GIVING ASSEHBLY LOCATIONS (E.G. HOB IS THE CENTER-OF-CORE ASSEHBLY)

IN THE "Z" DIRECTION THE CORE IS DIVIDED INTO 61 AXIAL POINTS STARTING FROH THE TOP OF THE CORE.

1. F-Q(Z) INCLUDES A TOTAL UNCERTAINTY OF 1.08.
2. F-DHCHJ INCLUDES NO UNCERTAINTY.
3. CORE TILT -

QUADRANT POWER TILT AS.DEFINED BY THE CECDR CODE.

4. HAPS 4, 5, AND 6 - QUARTER CORE HAPS FOR HULTI-POINT CALIBRATION.
5. HAP 16 - PARTIAL HAP FOR LIHIT.SWITCH CHECKS.
6. HAP 20 - HAP WITH ROD J-7 OH BOTTOH AND INSUFFICIENT NUHBER OF THIHBLES.
7. HAP 23 - HAP TAKEN USING ROB AS CALIBRATION THIHBLE
  • NE-1051 S1Cl3 Core Performance Report Page 29 of 56

R p

N Figure 4.1 SURRY UNIT 1 - CYCLE 13 ASSEMBLYWISE POWER DISTRIBUTION Sl-13-07 L

K J

H G

F E

D C

B A

PREDICTED HEASURED

.PCT DIFFERENCE.

0.3Zl 0.309

  • 0.3Zl
  • 0.3Z3. 0.308. 0.3Z3.

0.5 *

-0.3

  • 0.5.

PREDICTED MEASURED

.PCT DIFFERENCE.

O.Z75 0.648 1.095 0.934. 1.095. 0.648 O.Z75

  • O.Z77. 0.654. 1.104. 0.9Z9. 1.104. 0.678. O.Z83.

0.8

  • 0.9
  • 0.8 * * -0.6
  • 0.8.

4.6

  • 3.1
  • O.Z43 0.789 l.Z47 l.Z09. l.3Z8. l.Z09 l.Z47 0.789 O.Z43
  • O.Z70. 0.796. l.Z60. l.Z30. l.Z9Z. l.Z07. l.Z63. 0.804. O.Z67 *
  • 11.Z.

0.9.

l.o.

1.7. -Z.8. -0.Z.

1.3.

1.9. 10.0.

O.Z43 0.733 l.Z65. l.Z58 1.368 l.Z65. 1.368 l.Z58 l.Z65 0.733 0.243

  • O.Z48. 0.74Z. l.Z48. l.Z63. 1.380. l.Z6Z. 1.370. 1.265. l.Z7Z. 0.736. 0.241.

Z.l.

1.3. -1.3.

0.4.

0.9. -0.Z.

D.Z.

0.6.

0.6.

0.4. -0.9.

O.Z75 0.789 1.265 l.Z06 l.3Z6 1.248 1.306. l.Z48 l.3Z6 l.Z06 l.Z65 0.789 O.Z75 *

. O.Z80. 0.818. 1.286. l.Z35. 1.340. l.Z69. 1.317. l.Z54. 1.330. l.Z03. l.Z48. 0.776. O.Z63.

Z.O.

3.6.

1.7.

Z.4.

1.0.

1.7.

0.8.

0.5.

0.3. -0.Z. -1.4. *1.6. -4.3 *

..

  • 0.648 l.Z47
  • l.Z59
  • l.3Z6
  • 1.ZZ4 1.305 l.029
  • 1.305
  • 1.224 l.3Z6 l.Z59
  • 1.247
  • 0.648 z

3 4

5

". 0.651. l.Z53. 1.257. 1.307. l.Zl9. 1.308. 1.043. 1.315. l.Z28. 1.321

  • l.Z43. 1.228. 0.640.

6 0.3.

~.5. -o.z. -1.4. -0.4.

o.z.

1.4.

0.7.

0.3. -0.4. -1.3. -1.5. -1.3

  • 0.3Zl 1.095 l.Z09 1.368 l.Z48 1.306 1.177 l.Z9Z. 1.177 1.306 l.Z48 1.368 i.209 1.095 0.321

. 0.3Z5. 1.093. 1.198. 1.351. l.Z2Z. l.Z86. 1.156. l.Z92. 1.186. 1.315. 1.243. 1.344. 1.186. 1.093. D.319.

7 l.Z. -0.l. -1.0. -1.Z. -Z.l. -1.5. -1.8.

0.0.

~.7.

  • 0.7. -0.4. -1.8. -1.9. -0.Z. -0.6.

0.309 0.934 l.3Z8 l.Z65 1.306 1.030 1.293 0.998. l.Z93 1.030 1.306 1.265 1.328 0.934 0.309

  • 0.329. 0.933. 1.314. l.Z41. l.Z53. 1.009. l.Z77. 0.996. 1.303. 1.053. 1.307. l.Z46. 1.277. 0.919. 0.304.

6.4. -0.l. -I.I. -1.8. -4.1. -1.9. -1.Z. * -0.Z.

0.8.

Z.3.

0.1 * -1.5. -3.9. -1.6. -1.6

  • 0.3Zl 1.095 l.Z09 1.368 l.Z48 1.306 1.177 l.Z9Z ** 1.177 1.306 1.248 1.368 1.209 1.095 0.321

. 0.3Z4. 1.087. 1.194. 1.354. l.Z45. 1.294. 1.167. 1.288. 1.181. 1.318. l.Z52. 1.361

  • 1.196. 1.090. 0.316.

0.8. -0.7. -1.3. -1.0. -o.z. -0.8. -0.9. -0.3.

0.3.

1.0.

0.3. -0.5. -1.l. -0.5. -1.7.

0.648 l.Z47 1.259 1.326 l.ZZ4 1.305 l.OZ9. 1.305 l.Z24 l.3Z6 l.Z59 1.247 0.648 *

. 0.639. l.ZZO. 1.248. l.3Z3. l.Zl6. l.Z88. l.OZ4. 1.311. 1.238. 1.336. l.Z6Z. 1.255. 0.666.

  • -1,5. -z.z. -0.9. -0.Z. -0.7. -1.3. -0.5.

0.4.

1.1.

0.8.

0.3.

0.6.

Z.8.

O.Z75 0.789 1.265 l.Z06 1.326 l.Z48. 1.306. 1.248 1.326 l.Z06 1.265 0.789 O.Z75 *

. O.Z7Z. 0.787. l.Z66. l.Zl5. l.3Z3. 1.239. l.Z99. 1.255. 1.357. l.ZZ3. l.Z89. 0.804.* O.Z81.

  • -1.0. -0.3.

0.1.

0.8. -0.3. -0.7. -o.~.

0.6.

Z.3.

1.5.

1.9.

1.9.

Z.Z.

O.Z43 0.733 1.265 l.Z58 1.368 l.Z65. 1.368 l.Z58 l.Z65 0.733 O.Z43

  • O.Z63. 0.738. l.Z67. l.Z53. 1.357. 1.252. 1.370. 1.274. l.Z91. 0.768. 0.264.

8.3.

o.8.

o.z. -o.4. -o.8. -1.0.

  • o.z.

1.z.

z.1.

4.9.

8.8.

O.Z43 0.789 1.247 l.Z09 l.3Z8. l.Z09 l.Z47 0.789 0.243

  • O.Z43
  • 0.786
  • 1.Z38
  • 1.194
  • 1.Z90
  • l.Z08
  • l.Z5Z ~ 0.800
  • O.Z49 *
  • -0.Z. -0.4. -0.7. -1.3. -Z.9. -O.Z.

0.4.

1.3.

Z.4.

O.Z75 0.648 1.095 0.934. 1.095. 0.648. O.Z75

  • O.Z69. 0.643. 1.087. 0.9Z9. 1.119. 0.656. O.Z78.

-2.1. -o.9. -o.7. -o.6.

z.z.

1.z.

1.z.

STANDARD DEVIATION

=1.677 0.321

  • 0.309 0.3Zl *
  • 0.3Z5. 0.309. 0.326.

1.1

  • 0.0
  • 1.6
  • AVERAGE

.PCT DIFFERENCE *

= 1.4 SUHHARV HAP NO: Sl-13-07 DATE:

5/26/94 POWER:

99.9%

CONTROL ROD POSITION:

F-Q(Z> = 1.820 QPTR:

D BANK AT 223 STEPS F-DH(NJ = 1.457 NW 1. 0012 INE 0.9993 I

F(ZJ

= 1.149 SW 0.9933 ISE 1.0063 BURNUP = 1969 HWD/NTU A.O. = -3.1527.

NE-1051 S1Cl3 Core Performance Report Page 30 of 56 8

  • 10 11 12 13 14 15 J

R p

Figure 4._2 SURRY UNIT 1 - CYCLE 13 ASSEMBLYWISE POWER DISTRIBUTION Sl-13-13 N

PREDICTED MEASURED

  • PCT DIFFERENCE.

L K

J H

G 0.515 0.507. 0.515.

  • 0.516. 0.506. 0.516.

0.5. -D.4.

0.4.

F E

D.278. 0.619. l.018 0.877. 1.018. 0.619 0.278 *

  • 0.280. 0.624. 1.025. 0~872. 1.026. 0.647. 0.286.

0.9.

0.8.

0.7. -0.6.

0.8.

4.5.

5.0

  • D C

PREDICTED NEASIJR£D

.PCT DIFFERENCE *

  • 0.249. 0.760. 1.202. 1.141 1.526. 1.141. 1.202. 0.760. 0.249 *
  • 0.276. 0.769. 1.215. 1.158. 1.292. 1.158. 1.218. 0.775. 0.275.
  • 11.1.

1.1.

1.0.

1.4. -2.6. -0.2.

1.5.

2.0. 10.7 *

  • 0.249. 0.715 1.255. 1.211 1.408 1.244 1.408 1.211 1.255 0.715. 0.249 *
  • 0.256. 0.726. 1.228. 1.216. 1.417. 1.259. 1.410. 1.217. 1.244. 0.718. 0.246.

2.9.

1.8. -0.6.

0.4.

0.6*. -0.4.

0.1.

0.5.

0.7.

0.6. -1.0

  • II
  • 0.277. 0.760. 1.256. 1.177. 1.402 1.260 1.406. 1.260. 1.402. 1.177. 1.256. 0.760. 0.277 *
  • 0.287. 0.797. 1.264. 1.206. 1.414. 1.270. 1.415. 1.265. 1.405. 1.174. 1.225. 0.750. 0.268.

5.5.

4.9.

2.5.

2.5.

0.9.

0.8.

0.4.

0.2.

0.2. -0.2. -1.0. -1.4. -5.2.

o.619 1.202 1.211 1.402 1.247 1.415 1.081 1.415 1.247 1.402 1.211 1.202. o.619 *

  • 0.628. 1.220. 1.217. 1.591. 1.244. 1.415. 1.091. 1.421. 1.248. 1.595. 1.197. 1.187. 0.615.

1.5.

1.5.

0.5. -0.8. -0.5.

0.0.

1.0.

0.4.

O.l. -0.4. -1.2. -1.2. -0.9 *

  • A
  • 0.515. 1.018. 1.141. 1.408. 1.260. 1.415. 1.212. 1.574. 1.212. 1.415. 1.260. 1.408. 1.141
  • 1.018. 0.515
  • l 2

5 4

5 6

  • 0.525. 1.028. 1.142. 1.402. 1.242. 1.599. 1.195. 1.572. 1.215. 1.418. 1.252. 1.582. 1.125. l.019. 0.514.

7 2.7.

1.0.

0.0. -0.4. -1.4. -1.1. -1.4. -0.l.

0.2.

0.2. -0.6. -1.9. -1.6.

0.1. -0.1 *

  • 0.507. 0.877. 1.526. 1.244. 1.406. 1.081. 1.575. 1.042. 1.575. 1.081. 1.406. 1.244. 1.526. 0.877. 0.507 *
  • 0.555. 0.888. 1.527. 1.255. 1.565. 1.064. 1.5~8. 1.057. 1.578. 1.095. 1.401. 1.227. 1.289. 0.869. 0.505.

8 8.5.

1.2.

0.0. -0.9. -5.l. -1.6. -1.2. -0.5.

0.2.

1.2. -0.4. -1.4. -2.8. -1.0. -0.7 *

  • 0.515. l.018. 1.141. 1.408. 1.260. 1.415. 1.212. 1.574. 1.212. 1.415. 1.260. 1.408. 1.141. 1.018. 0.515 *

. 0.522. 1.026. 1.142. 1.408. 1.265. 1.404. 1.196. 1.565. 1.210. 1.594. 1.255. 1.400. 1.154. l.020. 0.514.

2.5.

0.8.

0.1.

0.0.

0.4. -0.8. -1.5. -0.8. -0.2. -1.5. -0.6. -0.6. -0.6.

0.2. -0.2 *

  • 0.619. 1.202. 1.211 1.402. 1.247. 1.415. l.081. 1.415 1.247. 1.402. 1.211. 1.202. 0.619 *

. 0.621. 1.200. 1.215. 1.404. 1.256. 1.580. 1.067. 1.408. 1.244. 1.405. 1.216. 1.212. 0.641.

0.5. -0.l.

0.2.

0.2. -0.9. -2.5. -1.~. -0.5. -0.5.

0.1.

0.4 *. 0.8.

5.5 *

  • 0.277. 0.760. 1.256. 1.177. 1.402. 1.260. 1.406. 1.260 1.402. 1.177. 1.256. 0.760. 0.277 *
  • 0.279. 0.769. 1.246. 1.188. 1.595. 1.242. 1.591. 1.255. 1.412. 1.187. 1.256. 0.772. 0.284.

0.7.

1.2.

0.9.

1.0. -0.5. -1.4. -1.l *. -0.4.

0.8.

0.8.

1.7.

1.5.

2.4.

0.249. 0.715. 1.255. 1.211 1.408 1.244 1.408 1.211. 1.255. 0.715. 0.249 *

  • 0.274. 0.725. 1.259. 1.202. 1.588. 1.225. 1.400. 1.215. 1.255. 0.750. 0.256.
  • 10.5.

1.5.

0.5. -0.7. -1.4. -1.6. -0.6.

0.5.

1.5.

5.2.

5.1 *

  • 0.249. 0.760. 1.202. 1.141. 1.526. 1:141. 1.202. 0.760. 0.249 *
  • 0.249. 0.757. 1.191. 1.122. 1.287. 1.151. 1.200. 0.767. 0.255.

0.1. -0.4. -0.9. -1.7. -2.9. -0.9. ~o.2.

0.8.

2.6.

STANDARD DEVIATION

=l.752 HAP NO: Sl-13-13.

0.278. 0.619. l.018. 0.877. 1.018 0.619. 0.278 *

  • 0.274. 0.612. 1.007. 0.866. 1.026. 0.621. 0.279.
  • -1.4. -I.I. -1.1. -1.2.

0.8.

0.5.

0.5 *

  • 0.515. 0.507. 0.515
  • 0.518. 0.505. 0.516.

1.1 *

-0.6

  • 0.4
  • SUHHARY

.DATE: 11/17/94

.POWER:

96.22%

CONTROL ROD POSITION:

F-Q(ZJ = 1.778 QPTR:

AVERAGE

.PCT DIFFERENCE.

= 1.5 D BANK AT 224 STEPS F-DH(NJ = 1.471 NW l.0044 NE 0.9991 F<ZJ

= 1.101 SW 0.9958 SE 1.0007 BURNUP = 7836 HWD/tlTU A.O.= -0.037%

NE-1051 S1C13 Core Performance Report Page 31 of 56 9

10 11 12 15 14 15

R p

Figure 4.3 SURRY UNIT 1 - CYCLE 13 ASSEMBLYWISE POWER DISTRIBUTION Sl-13-24 N

PREDICTED HEASURED

  • PCT DIFFERENCE.

L I(

J H

G 0.356 D.351 0.356

0.353. 8.348. 0.357.

-0.9. -0.9.

o.z.

F E

  • 0.314 0.655 1.035 0.90Z 1.035 0.655 0.314
  • 0.314. 0.65Z. l.OZ7. 0.89Z. 1.041. 0.68Z*. 0.324.

o.z. -0.4. -0.8. -1.0.

0.6 *. 4.1.

3.1.

D C

PREDICTED HEASURED

.PCT DIFFERENCE

  • O.Z77 0.785 1.191 l.lZO 1.315 l.lZO 1.191 0.785 O.Z77
  • 0.315. 0.791. 1.189. 1.108. l.Z83. 1.117. l.Z07. 0.80Z. 0.310.

14.0.

0.8. -0.l. -1.0. -Z.4. -0.Z.

1.3.

z.z. lZ.l.

O.Z77 0.737 l.Zl5 1.175 1.377 l.Z04 1.377. 1.175 l.Zl5. 0.737 O.Z77

  • O.Z85
  • 0.753
  • l.ZOZ
  • 1.175
  • 1.378
  • 1.199
  • 1.378
  • 1.180
  • l.ZZ4
  • 0.743 ** O.Z75
  • 3.1.

z.z. -1.1.

0.0.

o.o. -0.4.

0.1.

0.5.

0.7.

0.8. -0.7.

B 0.314 0.785. l.Zl5 1.149 l.39Z l.ZZ3 1.398 1.zz3 l.39Z 1.149. l.Zl5 0.785 0.314

  • 0.3Z5. 0.8ZO. l.Z48. 1.186. 1.409. l.Z39.* 1.407. l.ZZ6. 1.393. 1.145. I.ZOO. 0.774. 0.308.

3.4.

4.6.

Z.7.

3.Z.

l.Z.

1.3.

0.7.

O.Z.

O.l. -0.3. -1.Z. -1.4. -1.8.

0.655 1.191 1.175 l.39Z. l.Zl5 1.401 1.084 1.401 l.Zl5 l.39Z 1.175 1.191 0.655

  • 0.669. l.Zl5. 1.188. 1.391. l.Zl8. 1.408. 1.100. 1.405. l.ZlZ. 1.381. 1.157. l.17Z. 0.645.

2.1.

Z.O.

1.1. -O.l.

O.Z.

0.5.

1.5.

o.,. -0.3. -0.8. -1.6. -1.6*. -1.5.

0.356 1.035 l.lZO 1.377 l.ZZ3 1.401 l.ZOl 1.398 l.ZOl 1.401 l.ZZ3 1.377 l.lZO 1.035 0.356 z

3 4

5 6

  • 0.370
  • 1.055. l.1Z9. l.38Z. l.Zl6. 1.393; 1.187. 1.396. 1.195. 1.396. l.Z09. 1.344. l.097. l.OZ3. 0.353.

7 4.0.

Z.O.

0.9.

0.4. -0.6. -0.6. -1.l. -o.z. -0.5. -0.4. -1.Z. -Z.4. -Z.O. -1.Z. -1.0.

0.350 0.90Z 1.315 l.Z04 1.398 1.084 1.399 1.070 1.399 l.084 1.398 l.Z04 1.315 0.90Z 0.350

  • 0.386. 0.9Zl. l.3Z5. l.ZOZ. 1.371. 1.073. 1.385. 1.061. l.39Z. 1.086. 1.385. 1.184. 1.281. 0.90Z. 0.350.

8 10.l

  • Z.l.

0.8. -0.l. -1.9. -1.l. -1.0. -0.8. -0.5.

0.1. -0.9. -1.7. -Z.6.

0.1. -0.l.

  • o:3s6*:*i:03s*:*i:i20*:*i:i;;*:*i:223*:*i:4oi*:*i:2oi*:*i:39s*:*i:2oi*:*i:4oi*:*i:22i*:*i:3;;*:*i:i20*:*i:03s*:*o:3s6 *.
  • 0.369. 1.050. l.1Z5. 1.383. l.Z33. 1.394. 1.185. 1.383. 1.188. 1.378. l.Zll. 1.366. 1.113. l.041. 0.359 9

3.6.

1.4.

0.5.

0.4 *. 0.8. -0.5. -1.3. -1.l. -1.l. -1.6. -1.0. -0.8. -0.6.

0.6.

0.9

  • 0.655 1.191. 1.175 l.39Z l.Zl5 1.401 1.084 1.401 l.Zl5 l.39Z. 1.175 1.191 0.655
  • 0.658. 1.188. 1.179. 1.395. l.Z05. 1.367. 1.067. 1.386. l.Z03. l.38Z. 1.175. l.ZOl. 0.675.

0.6. -0.3.

0.3.

0.3. -0.8. -Z.4. -1.5. -1.l. -1.0. -0.7.

0.0.

0.8.

3.1.

0.314 0.785. l.Zl5. 1.149 l.39Z l.ZZ3 1.398. l.ZZ3 l.39Z 1.149. l.Zl5. 0.785 0.314

  • 0.317. 0.797. 1.zz7. 1.156. 1.386. l.Z09. 1.383. l.ZlZ. 1.386. 1.141. l.Z30. 0.80Z. 0.3ZZ.

1.1.

1.6.

1.0.

0.6. -0.4. -1.Z. -1.l. -0.9. -0.4. -0.7.

l.Z.

2.2.

2.5.

0.277 0.737 1.215 1.175 1.377 1.204 1.377 1.175 l.Zl5 0.737. 0.277

  • o.313
  • o.751
  • 1.221
  • 1.111
  • 1.369
  • 1.187
  • 1.364
  • 1.169
  • 1.z23
  • 0.112
  • o.310
  • 13.0.

1.9.

0.5. -0.3. -0.6. -1.4. -1.0. -0.5.

0.6.

4.8. 12.0.

O.Z77 0.785 1.191 l.lZO 1.315 1.120 1.191 0.785 0.277

  • 0.279. 0.785. 1.185. 1.105. 1.276. 1.105. 1.180. 0.785. 0.28Z.

0.8.

0.0. -0.5. -1.3. -Z.9. -1.3. -0.9.

0.1.

2.0.

STANDARD DEVIATION

=2.184 HAP NO:

Sl-13-2lt 0.314 0.655 1.035 0.90Z 1.035 0.655 0.314

  • 0.313. 0.651. 1.028. 0.890. 1.035. 0.65Z. 0.313.

-0.4. -0.6. -0.7. -1.3.

0.0. -0.4. -o.z.

0.356 0.351 0.356

  • 0.364. 0.349. 0.356.

z.z. -0.4. -0.1.

SUHHARY DATE:

7/17/95 POWER: 99.837.

CONTROL ROD POSITION:

F-Q(ZJ 1.724 QPTR:

D BANK AT 224 F-DH(NJ = 1.453 NW l. 0063 I NE I

F(ZJ

= 1.100 SW 0.9993 I SE AVERAGE

.PCT DIFFERENCE *

= 1.5 0.9972 0.9972 10 11 12 13 14 15 BURNUP

= 14678 HWD/HTU A.O.= 0.8067.

NE-1051 S1Cl3 Core Performance Report Page 32 of 56

1.2 1

0.8 N° -

C"

u.

Cl UJ N.

...J Figure 4.4 SURRY UNIT 1 - CYCLE 13 HOT CHANNEL FACTOR NORMALIZED OPERATING ENVELOPE (6,1.0) r-----------------1 (12.0.925)

~ 0.6 -

c:::

0 z -

N -

~

0.4 -

0.2 -

0 I

I I

I I

0 2

4 6

8 10 12 CORE HEIGHT (FT)

NE-1051 S1C13 Core Performance Report Page 33 of 56

2.4 Figure 4.5 SURRY UNIT 1 - CYCLE 13 HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)

Sl-13-07

-r--t---. ~

~

2.2

~

C" 2.0 LL 0:::

0 1-u

~

_J w

z z

<2'.:

J:

u l-o J:

_J LL

~

w J:

1.8 1.6 1.4 1.2 1.0 0.8 0.6 0.4 0.2 0.0

      • ' k*"""'"',

~

TTT TTT I

I I

I

-t--

  • *~

IC I

~

I I I I I

I I I

I I I I

I I

I I I I I T 11 61 55 50 45 40 35 30 25 20 15 10 5

1 BOTIOM OF CORE AXIAL POSITION (NODES)

TOP OF CORE NE-1051 S1C13 Core Performance Report Page 34 of 56

N r-I er LL c::

0 r-u

<t LL

_J w

z z

<t I u r-0 I

_J LL

~

w I

24 2.2 20

  • 1.8 1.6 1.4,.

1.2 1.0 a.a 0.6 0.4 0.2 0.0 I

I I

I

  • ~

Figure 4.6 SURRY UNIT 1 - CYCLE 13 HEAT FLUX HOT CHANNEL FACTOR; FQ(Z)

Sl-13-13

-- -r---

      • ' ~****, C *** *****

~ *

~****' ~*

>t=

I I

I I

I I

I

~,.*

61 55 50 45 40 35 30 25 20 15 10 5

1 BOITOM OF CORE AXIAL POSITION. (NODES)

TOP OF CORE NE-1051 S1Cl3 Core Performance Report Page 35 of 56

N -

I-r O"

u. -

0::::

0 1-u it

_J LlJ z z

~

r: u l-o
r:
i

_J

u.

~

LlJ

r:

24 2.2 20 1.8 1.6 1.4 1.2 l

1.0 0.8 0.6 0.4 0.2 0.0 Figure 4.7 SURRY UNIT 1 CYCLE 13 HEAT FLUX HOT CHANNEL FACTOR, Fq(Z)

Sl-13-24 r--.. t--

  • ~

~

-~.,..*

  • ~

Jj:, '**olc*' *-* *

,tc

. 1-1 I I I I

I I I 0

0 I I

I I

I I

II I I*

I I. I I I

I I I

--- -i--

~**

I I

I I I

I 11 I I

61 55 50 45 40 35 30 25 20 15 10 5

1 BOTIOM OF CORE AXIAL POSITION (NODES)

TOP OF CORE NE-1051 S1C13 Core Performance Report Page 36 of 56

Figure 4.8 SURRY UNIT 1 - CYCLE 13 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, FQ(Z)*P, vs. AXIAL POSITION 2.4 2.2 2.0 1.8 1.6 1.4

a...

1.2 a

u.

1.0 0.8 0.6 0.4 0.2 0.0 61

~ --

  • -' ***** --~

~

~ *ii:***

le I~

,1c... ~*--

~

,1c

  • ,j:

I I I I

1 1 I I

I I

I I

I I I

I I

I I I

I I I

I I

I I

I I

I I

I I I I,-TTl TI I 55 50 45 40 35

30.

25 20 15 10 AXIAL POSmON (NODE)

-- FQ*P LIMIT I

I I MAXJMUM FQ*p I 5

11,:

I 1

BOTTOM OF CORE TOP OF CORE NE-1051 S1C13 Core Performance Report Page 37 of 56

2.32

~ 2.28 1-(..) 2.24

<(

LL 2.20

..J

~ 2.i6 z

<( 2.12

c

(..) 2.08 l-o 2.04

c

~ 2.00

..J LL 1.96

~ 1.92 w

c
E 1.88 i 1.84

~ 1.80

E 1.76 1.72 Figure 4.9 SURRY UNIT 1 - CYCLE 13 MAXIMUM HEAT FLUX HOT CHANNEL FACTOR, Fq(Z), vs. BURNUP T

I I

T I

I i

I i

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

i I

I l

I "Ill

.ill "1111 I

I.... I,....

I 1..a.

T

.. I I

I I

I I

I I

I 0

2 4

6 8

10 12 14 16 CYCLE BURNUP (GWd/MTU}

FULL POWER TECH SPEC LIMIT

.MEASURED VALUE NE-1051 S1Cl3 Core Performance Report Page 38 of 56

c::

0 I-(.)

<C

u.

..J w

z z

<C

c

(.)

I-0 :c w

en -c::

>-a.

..J

<C

c I-z w

Figure 4.10 SURRY UNIT 1 - CYCLE 13 MAXIMUM ENTHALPY RISE HOT CHANNEL FACTOR, F-delta-H, vs. BURNUP 1.58 I I I I

' i I

1.57 I

I ! I 1.56 I

I I

I I

1.55 I

I I

1.54 i I I

I 1.53 I

1.52 I

I 1.51 I

I 1.50 I

I I

1.49 i

I I

I 1.48 i

La.

1.47 I+

I 1.46 I *

~~

I 1.45

<i111P

""I 1.44 i

Tl 1.43, i

I i

I I

I 1.42 I

1.41 I

I

' i.

1.40 I i I

I 0

2 4

6 8

10 12 14 16 CYCLE BURNUP (GWd/MTU)

FULL POWER TECH SPEC LIMIT MEASURED VALUE NE-1051 S1C13 Core Performance Report Page 39 of 56

C:

Cl) 0 s..

Cl)

C.

J

..J

u.

<(

I-

..J w

C I-w

(!)

0::

<(

I-5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0

-0.5

-1.0

-1.5

-2.0

-2.5

-3.0

-3.5

-4.0

-4.5

-5.0

~ -

0 2

Figure 4.11 SURRY UNIT 1 - CYCLE 13 TARGET DELTA FLUX vs. BURNUP 4

6 8

10 12 14 16 CYCLE BURNUP (GWd/MTU)

NE-1051 SlC13 Core Performance Report Page 40 of 56 l

.....J

~

0 z -

1.5 +

1.2 +

Figure 4.12 SURRY UNIT 1 - CYCLE 13 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-13-07 Fz = 1.149 AXIAL OFFSET= -3.152%

)( )( )( )( )( )(

)( )(

)( )( )( )(

)( )( )( )(

)(

X >< )(

X XX X )( X X

>< )(

X X

X

)(

X

)(

0, 9 +

)( )(

)(

0.6 +

)(

-)(

0.3 +

o.o.

I

,,.,, I 61 55 BOTTOM OF CORE

. I 50

, I 45

. I,

40

)(

, I,

35

, I 30 X

, I 25 AXIAL POSITION (NODES)

NE-1051 S1Cl3 Core Performance Report

, I

  • 20 Page X

X X X X ><

X X

. I,

15 X

, I 10 41 of 56

)(

)(

)(

)(

)(

X X

X X

,, 'I,,, I 5

l TOP OF CORE

Q t:::J N

3 i -

0 z -

Figure 4.13 SURRY UNIT 1 - CYCLE 13 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-13-13 Fz = 1.101 AXIAL OFFSET= -0.037%

l.S +

1.2 +

)(

X 0.9 +

X X X

0.6 +

X

-x 0.3 +

o.o +

I

.,,,, I 61 ss BOTTOH OF CORE X

X X X

X

. I 50 xxxxxxxx X

X

' I.

4S

' I 40 X

XXXXX X

XXX X

XXXXXXX X

X X

. I.

3S

' I 30 X

. I 2S

, I.

20 AXIAL POSITION (NODES)..

NE-1051 S1Cl3 Core Performance Report Page X

X X X )( X X

X

, I 1S

. I 10 X )(

42 of 56 X

X X

X

  • X X

X

, I

, *, I s

l TOP OF CORE

....J

~

0 z -

l.S +

1.2 +

Figure 4.14 SURRY UNIT 1 - CYCLE 13 CORE AVERAGE AXIAL POWER DISTRIBUTION Sl-13-24 Fz = 1.100 AXIAL OFFSET=

0.806%

X X X X X X X X X X X X X X X X X X X X X

X 0.9 +

X 0.6 +

-x 0.3 +

o.o +

X X

X X

I..... I 61 ss BOTTOH OF CORE X

. I so X

X X X X

  • I 4S X

.. I 40 X

X X

  • I *
  • I
  • 3S 30 X

X X X X X

. I.

2S

. I 20 AXIAL POSmON (NODES)

X NE-1051 S1Cl3 Core Performance Report Page X X X X XX X X X

X

. I 1S

  • I
  • 10 43 of 56 XX X

X X

X

  • I.*. I s

l TOP OF CORE

1-.300 c::: 1.275 0 I-(..) 1.250

<(

L1.

(!) z 1.225

~

<(

w

a. 1.200

...J

<( -

~ 1.175 w

(!)

~ 1.150 w

~ 1.125 w

c::

0

(..) 1.100 1.075 Figure 4.15 SURRY UNIT 1 - CYCLE 13 CORE AVERAGE AXIAL PEAKING FACTOR vs. BURNUP I

I I

I I

I I

i i

i I

I I

I

-. "'l....

I I

4

.4 I I J

I j

i i

I I

+I I

I 1*1* I*

i+

~,

0 2

4 6

8 10 12 14 16 CYCLE BURNUP (GWd/MTU)

MEASURED VALUE NE-1051 S1C13 Core Performance Report Page 44 of 56 I

Section 5 PRIMARY COOLANT ACTIVITY The specific activity levels of radioiodines and radioactive noble gases in the primary coolant are important to core and fuel performance as indicators of failed fuel and are important with respect to offsite dose calculations associated with accident analyses.

Two mechanisms are primarily responsible for the presence of radioiodines and radioactive noble gases in the primary coolant.

These fission products are always present due to direct fission product recoil from trace fissile materials plated onto core components and fuel structured surfaces or trace fissile materials existing as impurities in core structural materials.

This fissile material is generally referred to as "tramp" material, and the resulting iodines are referred to as tramp iodine. Fission products will also diffuse into the primary coolant if a breach in the cladding (fuel defects) exists.

Fuel defects are generally the p~edominant source of radioiodines and radioactive noble gases in the primary coolant.

Surry Technical Specification 3.1.D conditionally limits the primary coolant radioiodine dose equivalent I-131 to a value of 1.0 µCi/gram with provisions that ultimately limit the dose equivalent I-131 activity to a maximum of

10. 0

µCi/gm (Reference 2).

Figure 5.1 shows the dose-equivalent I-131 activity history for Cycle 13. These data show that the dose equivalent I-131 activity remained substantially below 1.0

µCi/gm throughout Cycle 13 operation.

The cycle average steady state power dose equivalent I-131 concentration was approximately 4.54 X 10-3 NE-1051 S1Cl3 Core Performance Report Page 45 of 56

µCi/gm which is less than 1% of the full power Technical Specification limit.

Correcting the I-131 concentration for tramp iodine involves calculating the I-131 activity from tramp fissile sources and subtracting this value from the measured I-131.

The resultant tramp-corrected I-131 activity is theoretically the I-131 activitr from defective fuel.

The magnitude of the tramp-corrected I-131 can then be used as an indication of fuel reliability (the average tramp-corrected I-131 activity for a month is generally referred to as the fuel reliability indicator) as well as assisting in quantifying the extent of fuel cladding defects.

The monthly fuel reliability indicator through July 1995 generally remained below 5 X 10-4 µCi/gm.

For PWRs, this is considered to be a typical fuel reliability indicator level for a reactor core with no fuel defects.

The fuel reliability indicator increased above 5 X 10-4 µCi/gm during August of 1995 having a final fuel reliability indicator of approximately 3.0 X 10-3 µCi/gm when the cycle ended in September 1995.

An increase in the fuel reliability indicator of this nature indicates the presence of a cladding defect or defects.

Strong evidence of fuel cladding defect(s) became apparent in Cycle 13 during July 1995.

The Xe-133 noble gas activity in the RCS increased sharply indicating a cladding defect event ( see Figure 5. 2). The measured (not tramp-corrected) I-131 RCS activity (Figure 5.3) began to noticably increase later in August 1995.

The manner in which the RCS coolant activity increased, (i.e., a noble gas activity increase followed much later in time by increasing iodine activity) indicates the defect(s) were NE-1051 SlC13 Core Performance Report Page 46 of 56

either small or slowly forming.

Large defects typically manifest themselves by nearly simultaneous increases in noble gas and iodine RCS activity.

A failed fuel action plan was issued in July 1995.

The principle element of the plan was to perform fuel inspections during the subsequent refueling outage to ensure no fuel assemblies with cladding defects were reinserted for use in Cycle 14.

Westinghouse was contracted to perform vacuum sipping. inspections of the fuel in the Cycle 13 core. The results of the sipping inspections indicated that there were no cladding defects in any fuel assembly scheduled to be reinserted into the Cycle 14 core.

However, three assemblies. were identified as failed in the discharged batch. The defective assemblies are IGO, 5Hl, and 3H2. Their respective assembly average burnups are 53,967 mwd/mtu; 56,138 mwd/mtu; and 55,569 mwd/mtu.

The causes of the defects have not been identified. Four failed assemblies with similar high burnups were identified in the previous Surry Unit 1 cycle.

Also debris was found in the RCS and in one of the failed fuel assemblies during the outage.

While the failure *mechanism appears to be related to high assembly burnup, debris cannot be rµled out as a potential cause.

The ratio of the specific activities of I-131 to I-133 is used to characterize the type (size) of fuel failure which may have occurred in the reactor core*. Use of the ratio for this determination is feasible because I-133 has a short half-life (approximately 21 hours2.430556e-4 days <br />0.00583 hours <br />3.472222e-5 weeks <br />7.9905e-6 months <br />) compared to that of I-131 (approximately eight days). For pinhole defects, where the diffusion time through the defect is on the order of days, the I-133 NE-1051 S1C13 Core Performance Report Page 47 of 56

decays leaving the I-131 dominant in activity, thereby causing the ratio to be roughly 0.5 or more. In the case of large leaks and tramp material, where the diffusion mechanism is negligible, the I-131/I-133 ratio will generally be less than O.1. The use of these ratios with regard to defect size is empirically deterin1ned and generally used throughout the commercial nuclear power industry. Figure 5.4 shows the I-131/I-133 ratio data for the Surry 1 Cycle 13.. As seen on Figure 5.4, the ratio began increasing when the fuel defect occurred, but never really attained equilibrium.

Therefore, the use of the iodine ratio as a defect size indicator is not applicable.

However, the characteristic nature of the increase in noble gas and radioiodine RCS activity suggests the defect(s) to be small.

NE-1051 S1C13 Core Performance Report Page 48 of 56

1.00E+O 1 1.00E+O 0 1.00E-0 1

~

~

C, c::::

t:<l 2

C/J 1.00E-0 t:<l 13

J u

0 fd c::::

u

i I

1*

1.00E-03 1.00E-04

I 1.00E-05 I

I Figure 5.1 SURRY UNIT 1 - CYCLE 13 DOSE EQUIVALENT I-131 vs. TIME I

  • .,i 11fl.*r:arw&i"2 "'

7 1111 11::~ II L.. ti!.

I *

. 11 111 -

~

1 I I l I

I

'1 I

I I I

I II I I

I I 100 0

23MAR94 OlJUI.94

  • 090CT94 17J'AN95 DATE 27APR95 05AUG95 13NOV95 NE-1051 SlC13 Core Performance Report Page*

49 of 56

1.00E+Ol 1.00E+OO 1.00E-01 C, =

Figure 5.2 SURRY UNIT 1 - CYCLE 13 MEASURED RCS XENON-133* VS. TIME

-~* *

.~.

~--...

....... *Y**

re

~ 1.00E-02

§ t.l 0 a

$i 1.00E-03 1.00E-0.(

I II I

1.00E-05

1.

I I

I I

I I I I I

I I

I I

I I

I I 23llAR9" 01JUL9.(

09DCT9".

I I II I I I I I II I I

I ** I ***

17J.AN95 DATE 27APR95 NE-1051 S1C13 Core Performance Report I I 100 0

    • I I
  • ,,II I D5AUG95 13NOV95 Page 50 of 56

~ *

~

0

~

~

p.,

!'I.I rd -

~

u 0

~

u ii Figure 5.3 SURRY UNIT 1 - CYCLE 13 MEASURED RCS IODINE-131 VS. TIME 1.00E+Ol-1----------------------------------,1 1.ooE+oo-1---------------'------------------1 1.00E-01 I

1.00E-02 1.00E-03

~ ****-

4flJl.'fl..-*.

  • I.

1.00E 1.00E-05 100 eo '"d 0

eo=

40~ -

N zo-0 23KAR94-01JUL9(.

090CT9' 17JAN95 27APR95 D5AUG95 13NOV95 DATE.

NE-1051 S1C13 Core Performance Report Page 51 of 56

c-,

c-,

1. 0
0. g
0. B 0.7,.

0.6

o.s c-, -

0.4 0.3 0.2 -

0.1 'I 0.0 r-I 23MAR94 Figure 5.4 SURRY UNIT 1 - CYCLE 13 I-131 / I-133 ACTIVITY RATIO vs. TIME

!II I

I

~

Tl / 'I I

l I II-* -

~.-.. ---......

  • Ii -

-a-I L._J I

I I

I I I

I 01JUL94 090CT94 1*

Ir ~-..,-

II I

17JAN95 DATE I **

J//1

- --~

T I

I 27APR95 05AUG95 I

I 100 BO "'-::I 0

60 ~

~.::

,II

?.O._.

0 13NOV95 NE-1051 SlC13 Core Performance Report Page 52 of 56

~

~

Section 6 CONCLUSIONS The Surry 1, Cycle 13 core has completed operation.

Throughout this cycle, all core performance indicators compared favorably with the design predictions and the core related Technical Specification limits were met with significant margin.

No significant abnormalities in reactivity or burnup accumulation were detected.

Evaluation of the radioiodines and radioactive noble gases in the RCS indicate that a fuel cladding defect or defects occurred in the middle of July 1995.

Fuel inspections were

  • conducted during the subsequent refueling outage to preclude inserting defective fuel assem~ies into Cycle 14.

The fuel exams 'indicated that no fuel assembly scheduled for reuse in the Cycle 14 core was defective.

Three assemblies-in the discharged batch were determined to be defective.

The cause of the failures has not been identified.

NE-1051 S1Cl3 Core Performance Report Page 53 of 56

THIS PAGE INTENTIONALLY BLANK NE-1051 S1C13 Core Performance Report Page 54 of 56

~

Section 7 REFERENCES

1)

G. L. Meyers, "Surry Unit 1, Cycle 13 Startup Physics Tests Report," Technical Report NE-987, Rev. 0, Virginia Power, June, 1994.

2)

Surry Power Station Technical Specifications, Sections 3.1.D, 3.12.B and 4.10.

3)

T. W. Schleicher, "Virginia Power Fuel Assembly Burnup and Isotopics Calculation Code Manual," Technical Report NE-726, Rev. 1, Virginia Power, March, 1995.

4)

D. L. Gilliatt, "The Virginia Power FOLLOW Code Manual,"

Technical Report NE-679, Rev. 1, Virginia Power, April, 1991.

5)

T. W. Schleicher, "The Virginia Pow.er CECOR Code Package,"

Technical Report NE-831, Rev. 3, Virginia Power, July, 1995.

6) Letter from B._ C. Buckley (NRC) to W.L. Stewart, "Surry Units 1 and 2 - Issuance of Amendments Re: F-Delta-H Limit and Statistical DNBR Methodology (TAC Nos. M81271 and M82168)",

Serial No.92-405, dated June 1, 1992.

7)

G. R. Pristas, "Reload Safety Evaluation Surry 1 Cycle 13 (Pattern BF)", Technical Report NE-971, Rev. 0, Virginia Power, February, 1994.

NE-1051 S1C13 Core Performance Report Page 55 of 56

REFERENCES (cont.)

8)

T. S. Psuik, "Surry Unit 1 Cycle 13 Design Report";

Technical Report NE-975, Rev. O, Virginia Power, March, 1994.

9)

"Surry 1 Cycle 13 TOTE Calc:ulations", Calculational Note PM-532, Rev. 0 and associated addenda, Virginia Power.

10) "Surry 1 Cycle 13 Flux Map Analysis",

. Calculational Note PM-534, Rev. 0 and associated addenda, Virginia Power.

11) C. D. Clemens, "Surry 1, Cycle 13 FOLOW Input and Calculations",

Calculational Note PM-537, Rev. O, Addendum A, Virginia Power, October, 1995.

12) C. B. LaRoe, "Operational Impact of the Surry 1, Cycle 13 Reload Including Flux Suppression Inserts and Power Range Excore Nuclear Instumentation Modifications", Technical Report NE-973, Rev. 0, February, 1994.

NE-1051 S1C13 Core Performance Report Page 56 of 56

-,4i,_