ML13123A165

From kanterella
Jump to navigation Jump to search
Revisions to Technical Specifications Bases Manual
ML13123A165
Person / Time
Site: Susquehanna Talen Energy icon.png
Issue date: 03/29/2013
From: Gerlach R
Susquehanna
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML13123A165 (46)


Text

Mar. 29, 2013 Page 1 of 3 MANUAL HARD COPY DISTRIBUTION DOCUMENT TRANSMITTAL 2013-13570 USER INFORMATION:

GERLACH*ROSE M EMPL#:028401 CA#: 0363 Address: NUCSA2 Phone#: 254-3194 TRANSMITTAL INFORMATION:

TO: GERLACH*ROSE M 03/29/2013 LOCATION: USNRC FROM: NUCLEAR RECORDS DOCUMENT CONTROL CENTER (NUCSA-2)

THE FOLLOWING CHANGES HAVE OCCURRED TO THE HARDCOPY OR ELECTRONIC MANUAL ASSIGNED TO YOU. HARDCOPY USERS MUST ENSURE THE DOCUMENTS PROVIDED MATCH THE INFORMATION ON THIS TRANSMITTAL. WHEN REPLACING THIS MATERIAL IN YOUR HARDCOPY MANUAL, ENSURE THE

  • UPDATE DOCUMENT ID IS THE SAME DOCUMENT ID YOU'RE REMOVING FROM YOUR MANUAL. TOOLS FROM THE HUMAN PERFORMANCE TOOL BAG SHOULD BE UTILIZED TO ELIMINATE THE CHANCE OF ERRORS.

ATTENTION: "REPLACE" directions do not affect the Table of Contents, Therefore no TOC will be issued with the updated material.

TSB1 - TECHNICAL SPECIFICATION BASES UNIT 1 MANUAL REMOVE MANUAL TABLE OF CONTENTS DATE: 03/04/2013 ADD MANUAL TABLE OF CONTENTS DATE: 03/28/2013 CATEGORY: DOCUMENTS TYPE: TSBI 4cu(

t

Mar. 29, 2013 Page 2 of 3 ID: TEXT 3.4.8 REMOVE: REV:1 ADD: REV: 2 CATEGORY: DOCUMENTS TYPE: TSB1 ID: TEXT 3.4.9 ADD: REV: 1 REMOVE: REV:0 CATEGORY: DOCUMENTS TYPE: TSB1 ID: TEXT 3.6.4.2 ADD: REV: 8 REMOVE: REV:7 CATEGORY: DOCUMENTS TYPE: TSB1 ID: TEXT LOES

  • ADD: IREV: 109 REMOVE:' REV:108 CATEGORY:

I DOCUMENTS TYPE: TSB1 ID: TEXT TOC ADD: REV: 22 REMOVE: REV:21 ANY DISCREPANCIES WITH THE MATERIAL PROVIDED, CONTACT DCS @ X3107 OR X3136 FOR ASSISTANCE. UPDATES FOR HARDCOPY MANUALS WILL BE DISTRIBUTED WITHIN 3 DAYS IN ACCORDANCE WITH DEPARTMENT PROCEDURES. PLEASE MAKE ALL CHANGES AND ACKNOWLEDGE COMPLETE IN YOUR NIMS INBOX UPON COMPLETION OF UPDATES. FOR ELECTRONIC MANUAL USERS, ELECTRONICALLY REVIEW THE APPROPRIATE DOCUMENTS AND ACKNOWLEDGE COMPLETE IN

Mar. 29, 2013 Page 3 of 3 YOUR NIMS INBOX.

SSES MANUAL Manual Name: TSB1 Manual

Title:

TECHNICAL SPECIFICATION BASES UNIT 1 MANUAL Table Of Contents Issue Date: 03/28/2013 Procedure Name Rev Issue Date Change ID Change Number TEXT LOES 109 03/28/2013

Title:

LIST OF EFFECTIVE SECTIONS TEXT TOC 22 03/28/2013

Title:

TABLE OF CONTENTS TEXT 2.1.1 5 05/06/2009

Title:

SAFETY LIMITS (SLS) REACTOR CORE SLS TEXT 2.1.2 1 10/04/2007

Title:

SAFETY LIMITS (SLS) REACTOR COOLANT SYSTEM (RCS) PRESSURE S TEXT 3.0 3 08/20/2009

Title:

LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY TEXT 3.1.1 1 04/18/2006

Title:

REACTIVITY CONTROL SYSTEMS SHUTDOWN MARGIN (SDM)

TEXT 3.1.2 0 11/15/2002

Title:

REACTIVITY CONTROL SYSTEMS REACTIVITY ANOMALIES TEXT 3.1.3 2 01/19/2009

Title:

REACTIVITY CONTROL SYSTEMS CONTROL ROD OPERABILITY TEXT 3.1.4 4 01/30/2009

Title:

REACTIVITY CONTROL SYSTEMS CONTROL ROD SCRAM TIMES TEXT 3.1.5 1 07/06/2005

Title:

REACTIVITY CONTROL SYSTEMS CONTROL ROD SCRAM ACCUMULATORS TEXT 3.1.6 2 04/18/2006

Title:

REACTIVITY CONTROL SYSTEMS ROD PATTERN CONTROL Report Date: 04/01/13 Pagel Page I of of .a8 Report Date: 04/01/13

SSES MANU.AIL Manual Name: TSB1 Manual

Title:

TECHNICAL SPECIFICATION BASES UNIT 1 MANUAL TEXT 3.1.7 3 04/23/2008

Title:

REACTIVITY CONTROL SYSTEMS STANDBY LIQUID CONTROL (SLC) SYSTEM TEXT 3.1.8 3 05/06/2009

Title:

REACTIVITY CONTROL SYSTEMS SCRAM DISCHARGE VOLUME (SDV) VENT AND DRAIN VALVES TEXT 3.2.1 2 04/23/2008

Title:

POWER DISTRIBUTION LIMITS AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)

TEXT 3.2.2 3 05/06/2009

Title:

POWER DISTRIBUTION LIMITS MINIMUM CRITICAL POWER RATIO (MCPR)

TEXT 3.2.3 2 04/23/2008

Title:

POWER DISTRIBUTION LIMITS LINEAR HEAT GENERATION RATE (LHGR)

TEXT 3.3.1.1 4 04/23/2008

Title:

INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION TEXT 3.3.1.2 2 01/19/2009

Title:

INSTRUMENTATION SOURCE RANGE MONITOR (SRM) INSTRUMENTATION TEXT 3.3.2.1 3 04/23/2008

Title:

INSTRUMENTATION CONTROL ROD BLOCK INSTRUMENTATION TEXT 3.3.2.2 2 04/05/2010

Title:

INSTRUMENTATION FEEDWATER MAIN TURBINE HIGH WATER LEVEL TRIP INSTRUMENTATION TEXT 3.3.3.1 9 02/28/2013

Title:

INSTRUMENTATION POST ACCIDENT MONITORING (PAM) INSTRUMENTATION TEXT 3.3.3.2 1 04/18/2005

Title:

INSTRUMENTATION REMOTE SHUTDOWN SYSTEM TEXT 3.3.4.1 1 04/23/2008

Title:

INSTRUMENTATION END OF CYCLE RECIRCULATION PUMP TRIP (EOC-RPT) INSTRUMENTATION Page 2 of 8 Report Date: 04/01/13

SSES MAN*_AL

. Manual Name:

Manual

Title:

TSB1 TECHNICAL SPECIFICATION BASES UNIT 1 MANUAL TEXT 3.3.4.2 0 11/15/2002

Title:

INSTRUMENTATION ANTICIPATED TRANSIENT WITHOUT SCRAM RECIRCULATION PUMP TRIP (ATWS-RPT) INSTRUMENTATION TEXT 3.3.5.1 3 08/20/2009

Title:

INSTRUMENTATION EMERGENCY CORE COOLING SYSTEM (ECCS) INSTRUMENTATION TEXT 3.3.5.2 0 11/15/2002

Title:

INSTRUMENTATION REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM INSTRUMENTATION TEXT 3.3.6.1 4 04/23/2008

Title:

INSTRUMENTATION PRIMARY CONTAINMENT ISOLATION INSTRUMENTATION TEXT 3.3.6.2 4 09/01/2010

Title:

INSTRUMENTATION SECONDARY CONTAINMENT ISOLATION INSTRUMENTATION TEXT 3.3.7.1 2 10/27/2008

Title:

INSTRUMENTATION CONTROL ROOM EMERGENCY OUTSIDE AIR SUPPLY (CREOAS) SYSTEM INSTRUMENTATION TEXT 3.3.8.1 2 12/17/2007

Title:

INSTRUMENTATION LOSS OF POWER (LOP) INSTRUMENTATION TEXT 3.3.8.2 0 11/15/2002

Title:

INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) ELECTRIC POWER MONITORING TEXT 3.4.1 4 04/27/2010

Title:

REACTOR COOLANT SYSTEM (RCS) RECIRCULATION LOOPS OPERATING TEXT 3.4.2 2 04/27/2010

Title:

REACTOR COOLANT SYSTEM (RCS) JET PUMPS TEXT 3.4.3 3 01/13/2012

Title:

REACTOR COOLANT SYSTEM RCS SAFETY RELIEF VALVES S/RVS

. TEXT 3.4.4

Title:

REACTOR COOLANT SYSTEM 0

(RCS) 11/15/2002 RCS OPERATIONAL LEAKAGE Report Date: 04/01/13 Page~

Page 3 of of 88 Report Date: 04/01/13

SSES MANUJAL Manual Name:

Manual

Title:

TSBI TECHNICAL SPECIFICATION BASES UNIT 1 MANUAL 0

TEXT 3.4.5 1 01/16/2006

Title:

REACTOR COOLANT SYSTEM (RCS) RCS PRESSURE ISOLATION VALVE (PIV) LEAKAGE TEXT 3.4.6 3 01/25/2011

Title:

REACTOR COOLANT SYSTEM (RCS) RCS LEAKAGE DETECTION INSTRUMENTATION TEXT 3.4.7 2 10/04/2007

Title:

REACTOR COOLANT SYSTEM (RCS) RCS SPECIFIC ACTIVITY TEXT 3.4.8 2 03/28/2013

Title:

REACTOR COOLANT SYSTEM (RCS) RESIDUAL HEAT REMOVAL (RHR) SHUTDOWN COOLING SYSTEM

- HOT SHUTDOWN TEXT 3.4.9 1 03/28/2013

Title:

REACTOR COOLANT SYSTEM (RCS) RESIDUAL HEAT REMOVAL (RHR) SHUTDOWN COOLING SYST*

- COLD SHUTDOWN TEXT 3.4.10 3 04/23/2008

Title:

REACTOR COOLANT SYSTEM (RCS) RCS PRESSURE AND TEMPERATURE (P/T) LIMITS TEXT 3.4.11 0 11/15/2002

Title:

REACTOR COOLANT SYSTEM (RCS) REACTOR STEAM DOME PRESSURE TEXT 3.5.1 2 01/16/2006

Title:

EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC)

SYSTEM ECCS - OPERATING TEXT 3.5.2 0 11/15/2002

Title:

EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC)

SYSTEM ECCS - SHUTDOWN TEXT 3.5.3 2 07/09/2010

Title:

EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC)

SYSTEM RCIC SYSTEM TEXT 3.6.1.1 4 11/09/2011

Title:

PRIMARY CONTAINMENT TEXT 3.6.1.2

Title:

1 04/23/2008 CONTAINMENT SYSTEMS PRIMARY CONTAINMENT AIR LOCK 0

Report Date: 04/01/13 Page 4 Page4 of of 88 Report Date: 04/01/13

SSES MANUAL Manual Name: TSB1 Manual

Title:

TECHNICAL SPECIFICATION BASES UNIT 1 MANUAL TEXT 3.6.1.3 10 05/23/2012

Title:

CONTAINMENT SYSTEMS PRIMARY CONTAINMENT ISOLATION VALVES (PCIVS)

's LDCN 3092 TEXT 3.6.1.4 1 04/23/2008

Title:

CONTAINMENT SYSTEMS CONTAINMENT PRESSURE TEXT 3.6.1.5 1 10/05/2005

Title:

CONTAINMENT SYSTEMS DRYWELL AIR TEMPERATURE TEXT 3.6.1.6 0 11/15/2002

Title:

CONTAINMENT SYSTEMS SUPPRESSION CHAMBER-TO-DRYWELL VACUUM BREAKERS TEXT 3.6.2.1 2 04/23/2008

Title:

CONTAINMENT SYSTEMS SUPPRESSION POOL AVERAGE TEMPERATURE TEXT 3.6.2.2 0 11/15/2002

Title:

CONTAINMENT SYSTEMS SUPPRESSION POOL WATER LEVEL TEXT 3.6.2.3 1 01/16/2006

Title:

CONTAINMENT SYSTEMS RESIDUAL HEAT REMOVAL (RHR) SUPPRESSION POOL COOLING TEXT 3.6.2.4 0 11/15/2002

Title:

CONTAINMENT SYSTEMS RESIDUAL HEAT REMOVAL (RHR) SUPPRESSION POOL SPRAY TEXT 3.6.3.1 2 06/13/2006

Title:

CONTAINMENT SYSTEMS PRIMARY CONTAINMENT HYDROGEN RECOMBINERS TEXT 3.6.3.2 1 04/18/2005

Title:

CONTAINMENT SYSTEMS DRYWELL AIR FLOW SYSTEM TEXT 3.6.3.3 1 02/28/2013

Title:

CONTAINMENT SYSTEMS PRIMARY CONTAINMENT OXYGEN CONCENTRATION TEXT 3.6.4.1 8 03/26/2012

Title:

CONTAINMENT SYSTEMS SECONDARY CONTAINMENT Report Date: 04/01/13 Pages Page a of of 88 Report Date: 04/01/13

SSES MANUJAL Manual Name: TSBl Manual

Title:

TECHNICAL SPECIFICATION BASES UNIT 1 MANUAL TEXT 3.6.4.2 8 03/28/2013

Title:

CONTAINMENT SYSTEMS SECONDARY CONTAINMENT ISOLATION VALVES (SCIVS)

TEXT 3.6.4.3 4 09/21/2006

Title:

CONTAINMENT SYSTEMS STANDBY GAS TREATMENT (SGT) SYSTEM TEXT 3.7. 1 4 04/05/2010

Title:

PLANT SYSTEMS RESIDUAL HEAT REMOVAL SERVICE WATER (RHRSW) SYSTEM AND THE ULTIMATE HEAT SINK (UHS)

TEXT 3.7.2 2 02/11/2009

Title:

PLANT SYSTEMS EMERGENCY SERVICE WATER (ESW) SYSTEM TEXT 3.7.3 1 01/08/2010

Title:

PLANT SYSTEMS CONTROL ROOM EMERGENCY OUTSIDE AIR SUPPLY (CREOAS) SYSTEM TEXT 3.7.4 0 11/15/2002

Title:

PLANT SYSTEMS CONTROL ROOM FLOOR COOLING SYSTEM TEXT 3.7.5 1 10/04/2007

Title:

PLANT SYSTEMS MAIN CONDENSER OFFGAS TEXT 3.7.6 2 04/23/2008

Title:

PLANT SYSTEMS MAIN TURBINE BYPASS SYSTEM TEXT 3.7.7 1 10/04/2007

Title:

PLANT SYSTEMS SPENT FUEL STORAGE POOL WATER LEVEL TEXT 3.7.8 0 04/23/2008

Title:

PLANT SYSTEMS TEXT 3.8.1 6 05/06/2009

Title:

ELECTRICAL POWER SYSTEMS AC SOURCES - OPERATING TEXT 3.8.2 0 11/15/2002

Title:

ELECTRICAL POWER SYSTEMS AC SOURCES - SHUTDOWN 0 Report Date: 04/01/13 Page6 Page 6 of of 88 Report Date: 04/01/13

SfSES MANUAL Manual Name: TSBI Manual

Title:

TECHNICAL SPECIFICATION BASES UNIT 1 MANUAL TEXT 3. 8.3 3 02/28/2013

Title:

ELECTRICAL POWER SYSTEMS DIESEL FUEL OIL, LUBE OIL, AND STARTING AIR TEXT 3.8.4 3 01/19/2009

Title:

ELECTRICAL POWER SYSTEMS DC SOURCES - OPERATING TEXT 3.8.5 1 12/14/2006

Title:

ELECTRICAL POWER SYSTEMS DC SOURCES - SHUTDOWN TEXT 3.8.6 1 12/14/2006

Title:

ELECTRICAL POWER SYSTEMS BATTERY CELL PARAMETERS TEXT 3.8.7 1 10/05/2005

Title:

ELECTRICAL POWER SYSTEMS DISTRIBUTION SYSTEMS - OPERATING TEXT 3.8.8 0 11/15/2002

Title:

ELECTRICAL POWER SYSTEMS DISTRIBUTION SYSTEMS - SHUTDOWN TEXT 3.9.1 0 11/15/2002

Title:

REFUELING OPERATIONS REFUELING EQUIPMENT INTERLOCKS TEXT 3.9.2 1 09/01/2010

Title:

REFUELING OPERATIONS REFUEL POSITION ONE-ROD-OUT INTERLOCK TEXT 3.9.3 0 11/15/2002

Title:

REFUELING OPERATIONS CONTROL ROD POSITION TEXT 3.9.4 0 11/15/2002

Title:

REFUELING OPERATIONS CONTROL ROD POSITION INDICATION TEXT 3.9.5 0 11/15/2002

Title:

REFUELING OPERATIONS CONTROL ROD OPERABILITY - REFUELING TEXT 3.9.6 1 10/04/2007

Title:

REFUELING OPERATIONS REACTOR PRESSURE VESSEL (RPV) WATER LEVEL Report Date: 04/01/13 Page2 Page :L of of ~8 Report Date: 04/01/13

SSES MANUAL Manual Name: TSB1 Manual

Title:

TECHNICAL SPECIFICATION BASES UNIT 1 MANUAL TEXT 3.9.7 0 11/15/2002

Title:

REFUELING OPERATIONS RESIDUAL HEAT REMOVAL (RHR) - HIGH WATER LEVEL TEXT 3.9.8 0 11/15/2002

Title:

REFUELING OPERATIONS RESIDUAL HEAT REMOVAL (RHR) - LOW WATER LEVEL TEXT 3.10.1 1 01/23/2008

Title:

SPECIAL OPERATIONS INSERVICE LEAK AND HYDROSTATIC TESTING OPERATION TEXT 3.10.2 0 11/15/2002

Title:

SPECIAL OPERATIONS REACTOR MODE SWITCH INTERLOCK TESTING TEXT 3.10.3 0 11/15/2002

Title:

SPECIAL OPERATIONS SINGLE CONTROL ROD WITHDRAWAL - HOT SHUTDOWN TEXT 3.10.4 0 11/15/2002 0

Title:

SPECIAL OPERATIONS SINGLE CONTROL ROD WITHDRAWAL - COLD SHUTDOWN TEXT 3.10.5 0 11/15/2002

Title:

SPECIAL OPERATIONS SINGLE CONTROL ROD DRIVE (CRD) REMOVAL - REFUELING TEXT 3.10.6 0 11/15/2002

Title:

SPECIAL OPERATIONS MULTIPLE CONTROL ROD WITHDRAWAL - REFUELING TEXT 3.10.7 1 04/18/2006

Title:

SPECIAL OPERATIONS CONTROL ROD TESTING - OPERATING TEXT 3.10.8 1 04/12/2006

Title:

SPECIAL OPERATIONS SHUTDOWN MARGIN (SDM) TEST - REFUELING 0

Report Date: 04/01/13 Page88 Page of of 88 Report Date: 04/01/13

TABLE OF CONTENTS (TECHNICAL SPECIFICATIONS BASES)

B2.0 SA FETY LIM ITS (S Ls) .................................................................................. B2.0-1 B2.1.1 Reactor C ore S Ls ........................................................................... B2.0-1 B2.1.2 Reactor Coolant System (RCS) Pressure SL ...................... TS/B2.0-7 B3.0 LIMITING CONDITION FOR OPERATION (LCO) APPLICABILITY ........ TS/B3.0-1 B3.0 SURVEILLANCE REQUIREMENT (SR) APPLICABILITY ...................... TS/B3.0-10 B3.1 REACTIVITY CONTROL SYSTEMS ....................... B3.1-1 B3.1.1 Shutdow n Margin (SDM ) ................................................................ B3.1-1 B3.1.2 Reactivity A nom alies ...................................................................... B3.1-8 B3.1.3 Control Rod O PERABILITY ............................................................ B3.1-13 B3.1.4 Control Rod Scram Times ........................................................ TS/B3.1-22 B3.1.5 Control Rod Scram Accumulators ............................................ TS/B3.1-29 B3.1.6 Rod Pattern Control .................................................................. TS/B3.1-34 B3.1.7 Standby Liquid Control (SLC) System ...................................... TS/B3.1-39 B3.1.8 Scram Discharge Volume (SDV) Vent and Drain Valves .......... TS/B3.1-47 B3.2 POWER DISTRIBUTION LIMITS ...................... TS/B3.2-1 B3.2.1 Average Planar Linear Heat Generation Rate (APLHGR) ........ TS/B3.2-1 B3.2.2 Minimum Critical Power Ratio (MCPR)..................................... TS/B3.2-5 B3.2.3 Linear Heat Generation Rate (LHGR) ....................................... TS/B3.2-10 B3.3 INSTRUM ENTATIO N..................................................................... TS/B3.3-1 B3.3.1.1 i* Reactor Protection System (RPS) Instrumentation ................... TS/B3.3-1 B3.3.1.2 Source Range Monitor (SRM) Instrumentation ......................... TS/B3.3-35 B3.3.2.1 Control Rod Block Instrumentation ....... .............................. TS/B3.3-44 B3.3.2.2 Feedwater - Main Turbine High Water Level Trip Instrum entation ................................................................... TS/B3.3-55 B3.3.3.1 Post Accident Monitoring (PAM) Instrumentation ..................... TS/B3.3-64 B3.3.3.2 Remote Shutdown System ............................................................. B3.3-76 B3.3.4.1 End of Cycle Recirculation Pump Trip (EOC-RPT)

Instrum entation ......................................................................... B3.3-81 B3.3.4.2 Anticipated Transient Without Scram Recirculation Pump Trip (ATWS-RPT) Instrumentation .............................. TS/B3.3-92 B3.3.5.1 Emergency Core Cooling System (ECCS)

Instrum entation ................................................................... TS/B 3.3-1 01 B3.3.5.2 Reactor Core Isolation Cooling (RCIC) System Instrum entation ......................................................................... B3.3-135 B3.3.6.1 Primary Containment Isolation Instrumentation ............. B3.3-147 B3.3.6.2 Secondary Containment Isolation Instrumentation ................... TS/B3.3-180 B3.3.7.1 Control Room Emergency Outside Air Supply (CREOAS)

System Instrum entation ...................................................... TS/B3.3-192 i(continued)

SUSQUEHANNA - UNIT 1 TS / B TOC - 1 Revision 22

TABLE OF CONTENTS (TECHNICAL SPECIFICATIONS BASES)

B3.3 INSTRUMENTATION (continued)

B3.3.8.1 Loss of Power (LOP) Instrumentation ....................................... TS/B3.3-205 B3.3.8.2 Reactor Protection System (RPS) Electric Power Monitoring ................................................................................ B3.3-2 13 B3.4 REACTOR COOLANT SYSTEM (RCS) ............................................... B3.4-1 B3.4.1 Recirculation Loops Operating ....................................................... B3.4-1 B3.4.2 Jet Pum ps ................................................................................ TS/B3.4-10 B3.4.3 Safety/Relief Valves (S/RVs) .................................................... TS/B3.4-15 B3.4.4 RCS Operational LEAKAGE .......................................................... B3.4-19 B3.4.5 RCS Pressure Isolation Valve (PIV) Leakage ................................. B3.4-24 B3.4.6 RCS Leakage Detection Instrumentation .................................. TS/B3.4-30 B3.4.7 RCS Specific Activity ................................................................ TS/B3.4-35 B3.4.8 Residual Heat Removal (RHR) Shutdown Cooling System - Hot Shutdown ........................................................... B3.4-39 B3.4.9 Residual Heat Removal (RHR) Shutdown Cooling System - Cold Shutdown ................................................... TS/B3.4-44 B3.4.10 RCS Pressure and Temperature (P/T) Limits ........................... TS/B3.4-49 B3.4.11 Reactor Steam Dome Pressure ................................................ TS/B3.4-58 B3.5 EMERGENCY CORE COOLING SYSTEMS (ECCS) AND REACTOR CORE ISOLATION COOLING (RCIC) SYSTEM .................................. B3.5-1 B3.5.1 ECCS - Operating ......................................................................... B3.5-1 B3.5.2 ECCS - Shutdown ................................ B3.5-19 B3.5.3 RCIC System ........................................................................... TS/B3.5-25 B3.6 CONTAINMENT SYSTEMS ........................................................... TS/B3.6-1 B3.6.1.1 Primary Containment ................................................................ TS/B3.6-1 B3.6.1.2 Primary Containment Air Lock ........................................................ B3.6-7 B3.6.1.3 Primary Containment Isolation Valves (PCIVs) ......................... TS/B3.6-15 B3.6.1.4 Containment Pressure .................................................................... B3.6-41 B3.6.1.5 Drywell Air Temperature ........................................................... TS/B3.6-44 B3.6.1.6 Suppression Chamber-to-Drywell Vacuum Breakers ................ TS/B3.6-47 B3.6.2.1 Suppression Pool Average Temperature .................................. TS/B3.6-53 B3.6.2.2 Suppression Pool Water Level ....................................................... B3.6-59 B3.6.2.3 Residual Heat Removal (RHR) Suppression Pool C o o ling ..................................................................................... B3 .6-62 B3.6.2.4 Residual Heat Removal (RHR) Suppression Pool Spray ................ 63.6-66 B3.6.3.1 Not Used .................................................................................. TS/B3.6-70 B3.6.3.2 Drywell Air Flow System ................................................................. 63.6-76 B3.6.3.3 Primary Containment Oxygen Concentration ............................ TS/B3.6-81 B3.6.4.1 Secondary Containment ........................................................... TS/B3.6-84 B3.6.4.2 Secondary Containment Isolation Valves (SCIVs) .................... TS/B3.6-91 B3.6.4.3 Standby Gas Treatment (SGT) System ................................... TS/B3.6-1 01 (continued)

SUSQUEHANNA - UNIT 1 TS / B TOC - 2 Revision 22

TABLE OF CONTENTS (TECHNICAL SPECIFICATIONS BASES)

B3.7 PLANT SYSTEMS ................................. ;....................................... TSIB3.7-1 B3.7.1 Residual Heat Removal Service Water (RHRSW) System and the Ultimate Heat Sink (UHS) ...................................... TS/B3.7-1 B3.7.2 Emergency Service Water (ESW) System ................................ TS/B3.7-7 B3.7.3 Control Room Emergency Outside Air Supply (CREOAS) System ............................................................. TS/B3.7-12 B3.7.4 Control Room Floor Cooling System ........................................ TS/B3.7-19 B3.7.5 Main Condenser Offgas .......................................................... TS/B3.7-24 B3.7.6 Main Turbine Bypass System ................................................... TS/B3.7-27 B3.7.7 Spent Fuel Storage Pool Water Level ...................................... TS/B3.7-31 B3.7.8 Main Turbine Pressure Regulation System ............................. TS/B3.7-34 B3.8 ELECTRICAL POWER SYSTEM ................................................... TS/B3.8-1 B3.8.1 AC Sources - Operating .......................................................... TS/13.8-1 B3.8.2 AC Sources - Shutdown ................................................................ B3.8-38 B3.8.3 Diesel Fuel Oil, Lube Oil, and Starting Air ................................ TS/B3.8-45 B3.8.4 DC Sources - Operating .......................................................... TS/B3.8-54 B3.8.5 DC Sources - Shutdown .......................................................... TS/B3.8-66 B3.8.6 Battery Cell Parameters ........................................................... TS/B3.8-71 B3.8.7 Distribution Systems- Operating ................................................... B3.8-78 B3.8.8 Distribution Systems - Shutdown ................................................... B3.8-86 B3.9. REFUELING OPERATIONS .......................................................... TS/B3.9-1 B3.9.1 Refueling Equipment Interlocks ........................ ....................... TS/B3.9-1 B3.9.2 Refuel Position One-Rod-Out Interlock ..................................... TS/B3.9-5 B3.9.3 C ontrol Rod Position ...................................................................... B3.9-9 B3.9.4 Control.Rod Position Indication ...................................................... B3.9-12 B3.9.5 Control Rod OPERABILITY - Refueling ........................................ B3.9-16 B3.9.6 Reactor Pressure Vessel (RPV) Water Level ........................... TS/B3.9-19 B3.9.7 Residual Heat Removal (RHR) - High Water Level ........................ B3.9-22 B3.9.8 Residual Heat Removal (RHR) - Low Water Level ......................... B3.9-26 B3.10 SPECIAL OPERATIONS ............................................................... TS/B3.10-1 B3.10.1 Inservice Leak and Hydrostatic Testing Operation ................... TS/B3.10-1 B3.10.2 Reactor Mode Switch Interlock Testing .......................................... B3.10-6 B3.10.3 Single Control Rod Withdrawal - Hot Shutdown ............................. B3.10-11 B3.10.4 Single Control Rod Withdrawal - Cold Shutdown ........................... B3.10-16 B3.10.5 Single Control Rod Drive (CRD) Removal - Refueling ................... B3.10-21 B3.10.6 Multiple Control Rod Withdrawal - Refueling .................................. B3.10-26 B3.10.7 Control Rod Testing - Operating .................................................... B3.10-29 B3.10.8 SHUTDOWN MARGIN (SDM) Test - Refueling ............................. B3.10-33 TSB1 Text TOC 3/1412013 Revision 22 TS I B TOC -3 SUSQUEHANNA -

UNIT 1 SUSQUEHANNA - UNIT 1 TS / B TOC - 3 Revision 22

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision TOC Table of Contents 22 B 2.0 SAFETY LIMITS BASES Page B 2.0-1 0 Page TS / B 2.0-2 3 Page TS / B 2.0-3 5 Page TS / B 2.0-4 3 Page TS / B 2.0-5 5 Page TS / B 2.0-6 1 Pages TS / B 2.0-7 through TS / B 2.0-9 1 B 3.0 LCO AND SR APPLICABILITY BASES Page TS / B 3.0-1 1 Pages TS / B 3.0-2 through TS / B 3.0-4 0 Pages TS / B 3.0-5 through TS / B 3.0-7 1 Page TS / B 3.0-8 3 Pages TS / B 3.0-9 through TS / B 3.0-11 2 Page TS / B 3.0-1 la 0 Page TS / B 3.0-12 1 Pages TS / B 3.0-13 through TS / B 3.0-15 2 Pages TS / B 3.0-16 and TS / B 3.0-17 0 B 3.1 REACTIVITY CONTROL BASES Pages B 3.1-1 through B 3.1-4 0 Page TS / B 3.1-5 1 Pages TS / B 3.1-6 and TS / B 3.1-7 2 Pages B 3.1-8 through B 3.1-13 0 Page TS / B 3.1-14 1 Page.B 3.1-15 0 Page TS / B 3.1-16 1 Pages B 3.1-17 through B 3.1-19 0 Pages TS / B 3.1-20 and TS / B 3.1-21 1 Page TS / B 3.1-22 0 Page TS / B 3.1-23 1 Page TS / B 3.1-24 0 Pages TS / B 3.1-25 through TS / B 3.1-27 1 Page TS / B 3.1-28 2 Page TS / B 3.1-29 1 Pages B 3.1-30 through B 3.1-33 0 Pages TS / B 3.3-34 through TS / B 3.3-36 1 Pages TS / B 3.1-37 and TS / B 3.1-38 2 Pages TS I B 3.1-39 and TS / B 3.1-40 2 Page TS / B 3.1-40a 0 Pages TS / B 3.1-41 and TS / B 3.1-42 2 TS/BLOES-1 Revision 109 SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT 1I TS / B LOES-1 Revision 109

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Page TS / B 3.1.43 1 Page TS / B 3.1-44 0 Page TS / B 3.1-45 3 Pages TS / B 3.1-46 through TS I B 3.1-49 1 Page TS / B 3.1-50 0 Page TS / B 3.1-51 3 B 3.2 POWER DISTRIBUTION LIMITS BASES Page TS / B 3.2-1 2 Pages TS / B 3.2-2 and TS / B 3.2-3 3 Pages TS / B 3.2-4 and TS / B 3.2-5 2 Page TS / B 3.2-6 3 Page B 3.2-7 1 Pages TS / B 3.2-8 and TS / B 3.2-9 3 Page TS / B 3.2.10 2 Page TS / B 3.2-11 3 Page TS / B 3.2-12 1 Page TS / B 3.2-13 2 B 3.3 INSTRUMENTATION Pages TS / B 3.3-1 through TS / B 3.3-4 1 Page TS / B 3.3-5 2 Page TS / B 3.3-6 1 Page TS / B 3.3-7 3 Page TS / B 3.3-7a 1 Page TS / B 3.3-8 4 Pages TS / B 3.3-9 through TS / B 3.3-12 3 Pages TS / B 3.3-12a 1 Pages TS / B 3.3-12b and TS / B 3.3-12c 0 Page TS / B 3.3-13 1 Page TS / B 3.3-14 3 Pages TS / B 3.3-15 and TS / B 3.3-16 1 Pages TS / B 3.3-17 and TS / B 3.3-18 4 Page TS / B 3.3-19 1 Pages TS / B 3.3-20 through TS / B 3.3-22 2 Page TS / B 3.3-22a 0 Pages TS / B 3.3-23 and TS / B 3.3-24 2 Pages TS / B 3.3-24a and TS / B 3.3-24b 0 Page TS / B 3.3-25 3 Page TS / B 3.3-26 2 Page TS / B 3.3-27 1 Pages TS / B 3.3-28 through TS / B 3.3-30 3 Page TS / B 3.3-30a 0 TS/BLOES-2 Revision 109 SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT 1 1 TS / B LOES-2 Revision 109

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Page TS / B 3.3-31 4 Page TS / B 3.3-32 5 Pages TS / B 3.3-32a 0 Page TS / B 3.3-32b 1 Page TS / B 3.3-33 5 Page TS / B 3.3-33a 0 Page TS / B 3.3-34 1 Pages TS / B 3.3-35 and TS / B 3.3-36 2 Pages TS / B 3.3-37 and TS / B 3.3-38 1 Page TS / B 3.3-39 2 Pages TS / B 3.3-40 through TS / B 3.3-43 1 Page TS / B 3.3-44 4 Pages TS / B 3.3-44a and TS / B 3.3-44b 0 Page TS / B 3.3-45 3 Pages TS / B 3.3-45a and TS / B 3.3-45b 0 Page TS / B 3.3-46 3 Pages TS / B 3.3-47 2 Pages TS / B 3.3-48 through TS / B 3.3-51 3 Pages TS / B 3.3-52 and TS / B 3.3-53 2 Page TS / B 3-3-53a 0 Page TS / B 3.3-54 4 Page TS / B 3.3-55 2 Pages TS / B 3.3-56 and TS / B 3.3-57 1 Page TS / B 3.3-58 0 Page TS / B 3.3-59 1 Page TS / B 3.3-60 0

.Page TS / B 3.3-61 1 Pages TS / B 3.3-62 and TS / B 3.3-63 0 Pages TS / B 3.3-64 and TS / B 3.3-65 2 Page TS / B 3.3-66 4 Page TS / B 3.3-67 3 Page TS / B 3.3-68 4 Page TS / B 3.3-69 5 Pages TS / B 3.3-70 4 Page TS / B 3.3-71 3 Pages TS / B 3.3-72 and TS I B 3.3-73 2 Page TS / B 3.3-74 3 Page TS / B 3.3-75 2 Page TS / B 3.3-75a 6 Page TS / B 3.3-75b 7 Page TS / B 3.3-75c 6 TS/BLOES-3 Revision 109 SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT 11 TS / B LOES-3 Revision 109

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Pages B 3.3-76 through 3.3-77 0 Page TS / B 3.3-78 1 Pages B 3.3-79 through B 3.3-81 0 Page B 3.3-82 1 Page B 3.3-83 0 Pages B 3.3-84 and B 3.3-85 1 Page B 3.3-86 0 Page B 3.3-87 1 Page B 3.3-88 0 Page B 3.3-89 1 Page TS / B 3.3-90 1 Page B 3.3-91 0 Pages TS / B 3.3-92 through TS / B 3.3-100 1 Pages TS / B 3.3-101 through TS / B 3.3-103 0 Page TS / B 3.3-104 2 Pages TS / B 3.3-105 and TS / B 3.3-106 0 Page TS / B 3.3-107 1 Page TS / B 3.3-108 0 Page TS / B 3.3-109 1 Pages TS / B 3.3-110 and TS / B 3.3-111 0 Pages TS / B 3.3-112 and TS / B 3.3-112a 1 Pages TS / B 3.3-113 through TS / B 3.3-115 1 Page TS / B 3.3-116 3 Page TS / B 3.3-117 1 Pages TS / B 3.3-118 through TS / B 3.3-122 0 Pages TS / B 3.3-123 and TS / B 3.3-124 1 Page TS / B 3.3-124a 0 Page TS / B 3.3-125 0 Pages TS / B 3.3-126 and TS / B 3.3-127 1 Pages TS / B 3.3-128 through TS/ B 3.3-130 0 Page TS / B 3.3-131 1 Pages TS / B 3.3-132 through TS / B 3.3-134 0 Pages B 3.3-135 through B 3.3-137 0 Page TS / B 3.3-138 1 Pages B 3.3-139 through B 3.3-149 0 Pages TS / B 3.3-150 and TS / B 3.3-151 1 Pages TS / B 3.3-152 through TS / B 3.3-154 2 Page TS / B 3.3-155 1 Pages TS / B 3.3-156 through TS / B 3.3-158 2 Pages TS / B 3.3-159 through TS / B 3.3-162 1 Page TS / B 3.3-163 2 Pages TS / B 3.3-164 and TS / B 3.3-165 1 Pages TS / B 3.3-166 and TS / B 3.3-167 2 Revision 109 SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT 11 TS /

TS B LOES-4

/B LOES-4 Revision 109

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Pages TS / B 3.3-168 and TS / B 3.3-169 1 Page TS / B 3.3-170 2 Pages TS / B 3.3-171 through TS / B 3.3-177 1 Pages TS / B 3.3-178 through TS / B 3.3-179a 2 Pages TS / B 3.3-179b and TS / B 3.3-179c 0 Page TS / B 3.3-180 1 Page'-TS / B 3.3-181 3 Page TS / B 3.3-182 1 Page TS / B 3.3-183 2 Page TS / B 3.3-184 1 Page TS / B 3.3-185 4 Page TS / B 3.3-186 1 Pages TS / B 3.3-187 and TS /.B 3.3-188 2 Pages TS / B 3.3-189 through TS / B 3.3-191 1 Page TS / B 3.3-192 0 Page TS / B 3.3-193 1 Pages TS / B 3.3-194 and TS / B 3.3-195 0 Page TS / B 3.3-196 2 Pages TS / B 3.3-197 through TS / B 3.3-204 0 Page TS / B 3.3-205 1 Pages B 3.3-206 through B 3.3-209 0 Page TS / B 3.3-210 1 Pages B 3.3-211 through B 3.3-219 0 B 3.4 REACTOR COOLANT SYSTEM BASES Pages B 3.4-1 and B 3.4-2 0 Pages TS / B 3.4-3 and Page TS / B 3.4-4 4 Page TS / B 3.4-5 " 3 Pages TS / B 3.4-6 through TS / B 3.4-9 2 Page TS / B 3.4-10 1 Pages TS / 3.4-11 and TS / B 3.4-12 0 Page TS / B 3.4-13 1 Page TS / B 3.4-14 0 Page TS / B 3.4-15 2 Pages TS / B 3.4-16 and TS / B 3.4-17 4 Page TS / B 3.4-18 2 Pages B 3.4-19 through B 3.4-27 0 Pages TS / B 3.4-28 through TS / B 3.4-30 1 Page TS / B 3.4-31 0 Pages TS / B 3.4-32 and TS / B 3.4-33 1 Page TS / B 3.4-34 0 Pages TS / B 3.4-35 and TS / B 3.4-36 1 Page TS / B 3.4-37 2 Page TS / B 3.4-38. 1 TSIBLOES-5 Revision 109 SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT I1 TS / B LOES-5 Revision 109

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Pages B 3.4-39 and B 3.4-40 0 Page TS / B 3.4-41 2 Pages TS / B 3.4-42 through TS / B 3.4-45 0 Page TS / B 3.4-46

  • 1 Pages TS B 3.4-47 and TS / B 3.4-48 0 Page TS / B 3.4-49 3 Page TS / B 3.4-50 1 Page TS / B 3.4-51 3 Page TS / B 3.4-52 2 Page TS / B 3.4-53 1 Pages TS / B 3.4-54 through TS / B 3.4-56 2 Page TS / B 3.4-57 3 Pages TS / B 3.4-58 through TS / B 3.4-60 1 B 3.5 ECCS AND RCIC BASES Pages B 3.5-1 and B 3.5-2 0 Page TS / B 3.5-3 2 Page TS / B 3.5-4 1 Page TS / B 3.5-5 2 Page TS / B 3.5-6 1 Pages B 3.5-7 through B 3.5-10 0 Page TS / B 3.5-11 1 Page TS / B 3.5-12 0 Page TS / B 3.5-13 1 Pages TS / B 3.5-14 and TS / B 3.5-15 0 Pages TS / B 3.5-16 through TS / B 3.5-18 1 Pages B 3.5-19 through B 3.5-24 0 Page TS / B 3.5-25 through TS / B 3.5-27 1 Page TS / B 3.5-28 0 Page TS / B 3.5-29 1 Pages TS / B 3.5-30 and TS / B 3.5-31 0 B 3.6 CONTAINMENT SYSTEMS BASES Page TS / B 3.6-1 2 Page TS / B 3.6-1a 3 Page TS / B 3.6-2 4 Page TS / B 3.6-3 3 Page TS / B 3.6-4 4 Pages TS / B 3.6-5 and TS / B 3.6-6 3 Page TS / B 3.6-6a 2 Page TS / B 3.6-6b 3 Page TS / B 3.6-6c 0 Page B 3.6-7 0 TS/BLOES-6 Revision 109 SUSQUEHANNA - UNIT SUSQUEHANNA - UNIT 11 TS I B LOES-6 Revision 109

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVESECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Page B 3.6-8 1 Pages B 3.6-9 through B 3.6-14 0 Page TS / B 3.6-15 3 Page TS / B 3.6-15a 0 Page TS / B 3.6-15b 2 Pages TS / B 3.6-16 and TS / B 3.6-17 2 Page TS / B 3.6-17a 1 Pages TS / B 3.6-18 and TS / B 3.6-19 0 Page TS / B 3.6-20 1 Page TS / B 3.6-21 2 Page TS / B 3.6-22 1 Page TS / B 3.6-22a 0 Page TS / B 3.6-23 1 Pages TS / B 3.6-24 and TS / B 3.6-25 0 Pages TS / B 3.6-26 and TS / B 3.6-27 2 Page TS / B 3.6-28 7 Page TS / B 3.6-29 2 Page TS / B 3.6-30 1 Page TS / B 3.6-31 3 Pages TS / B 3.6-32 and TS / B 3.6-33 1 Pages TS / B 3.6-34 and TS / B 3.6-35 0 Page TS / B 3.6-36 1 Page TS / B 3.6-37 0 Page TS / B 3.6-38 3 Page TS / B 3.6-39 2 Page TS / B 3.6-40 6 Page TS / B 3.6-40a 0 Page B 3.6-41 1 Pages B 3.6-42 and B 3.6-43 3 Pages TS / B 3.6-44 and TS / B 3.6-45 1 Page TS / B 3.6-46 2 Pages TS / B 3.6-47 through TS / B 3.6-51 1 Page TS / B 3.6-52 2 Pages TS / B 3.6-53 through TS I B 3.6-56 0 Page TS / B 3.6-57 1 Page TS / 3.6-58 2 Pages B 3.6-59 through B 3.6-63 0 Pages TS / B 3.6-64 and TS / B 3.6-65 1 Pages B 3.6-66 through B 3.6-69 0 Pages TS / B 3.6-70 through TS / B 3.6-72 1 Page TS / B 3.6-73 2 Pages TS / B 3.6-74 and TS / B 3.6-75 1 Pages B 3.6-76 and B 3.6-77 0 TSIBLOES-7 Revision 109 SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT 11 TS / B LOES-7 Revision 109

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Page TS / B 3.6-78 1 Pages B 3.6-79 and B 3.3.6-80 0 Page TS / B 3.6-81 1 Pages TS / B 3.6-82 and TS / B 3.6-83 0 Page TS / B 3.6-84 4 Page TS / B 3.6-85 2 Page TS / B 3.6-86 4 Pages TS / B 3.6-87 through TS / B 3.6-88a 2 Page TS / B 3.6-89 4 Page TS / B 3.6-90 2 Pages TS / B 3.6-91 and TS / B 3.6-92 3 Page TS / B 3.6-93 2 Pages TS / B 3.6-94 through, TS / B 3.6-96 1 Page TS / B 3.6-97 2 Page TS / B 3.6-98 1 Page TS / B 3.6-99 2 Pages TS / B 3.6-100 and TS / B 3.6-2O~a 5 Page TS / B 3.6-100b 3 Pages TS / B 3.6-101 and TS / B 3.6-102 1 Pages TS / B 3.6-103 and TS / B 3.6-104 2 Page TS / B 3.6-105 3 Page TS / B 3.6-106 2

" Page TS / B 3.6-107 3 B 3.7 PLANT SYSTEMS BASES Pages TS / B 3.7-1 3 Page TS / B 3.7-2 4 Pages TS / B 3.7-3 through TS / B 3.7-5 3 Page TS / B 3.7-5a 1 Page TS / B 3.7-6 3 Page TS / B 3.7-6a 2 Page TS / B 3.7-6b 1 Page TS / B 3.7-6c 2 Page TS / B 3.7-7 3 Page TS / B 3.7-8 2 Pages TS / B 3.7-9 through TS / B 3.7-11 1 Pages TS / B 3.7-12 and TS / B 3.7-13 2 Pages TS / B 3.7-14 through TS / B 3.7-18 3 Page TS / B 3.7-18a 1 Pages TS / B 3.7-18b through TS / B 3.7-18e 0 Pages TS / B 3.7-19 through TS / B 3.7-23 1 Page. TS / B 3.7-24 1 TS/BLOES-8 Revision 109 SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT I1 TS / B LOES-8 Revision 109

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision Pages TS / B 3.7-25 and TS / B 3.7-26 0 Pages TS / B 3.7-27 through TS / B 3.7-29 5 Page TS / B 3.7-30 2 Page TS / B 3.7-31 1 Page TS / B 3.7-32 0 Page TS / B 3.7-33 1 Pages TS / B 3.7-34 through TS / B 3.7-37 0 B 3.8 ELECTRICAL POWER SYSTEMS BASES Page TS / B 3.8-1 3 Pages TS / B 3.8-2 and TS / B 3.8-3 2 Page TS / B 3.8-4 3 Pages TS / B 3.8-4a and TS / B 3.8-4b 0 Page TS / B 3.8-5 5 Page TS / B 3.8-6 3 Pages TS / B 3.8-7 through TS/B 3.8-8 2 Page TS / B 3.8-9 4 Page TS / B 3.8-10 3 Pages TS / B 3.8-11 and TS / B 3.8-17 2 Page TS / B 3.8-18 3 Pages TS / B 3.8-19 through TS / B 3.8-21 2 Pages TS / B 3.8-22 and TS / B 318-23 3 Pages TS / B 3.8-24 through TS / B 3.8-37 2 Pages B 3.8-38 through B 3.8-44 0 Page TS / B 3.8-45 2 Pages TS / B 3.8-46 through TS / B 3.8-48 0 Pages TS / B 3.8-49 and TS I B 3.8-50 2 Page TS / B 3.8-51 1 Page TS / B 3.8-52 0 Page TS / B 3.8-53 1 Pages TS / B 3.8-54 through.TS / B 3.8-57 2 Pages TS / B 3.8-58 through TS / B 3.8-61 3 Pages TS / B 3.8-62 and TS / B 3.8-63 5 Page TS / B 3.8-64 4 Page TS / B 3.8-65 5 Pages TS / B 3.8-66 through TS / B 3.8-77 1 Pages TS / B 3.8-77A through TS / B 3.8-77C, 01 Pages B 3.8-78 through B 3.8-80 0 Page TS / B 3.8-81 1 Pages B 3.8-82 through B 3.8-90 0 TSIBLOES-9 Revision 109 SUSQUEHANNA - UNIT SUSQUEHANNA -

UNIT 11 TS / B LOES-9 Revision 109

SUSQUEHANNA STEAM ELECTRIC STATION LIST OF EFFECTIVE SECTIONS (TECHNICAL SPECIFICATIONS BASES)

Section Title Revision B 3.9 REFUELING OPERATIONS BASES Pages TS / B 3.9-1 and TS / B 3.9-1a 1 Pages TS / B 3.9-2 through TS / B 3.9-5 1 Pages TS / B 3.9-6 through TS / B 3.9-8 0 Pages B 3.9-9 through B 3.9-18 0 Pages TS / B 3.9-19 through TS / B 3.9-21 1 Pages B 3.9-22 through B 3.9-30 0 B 3.10 SPECIAL OPERATIONS BASES Page TS / B 3.10-1 2 Pages TS / B 3.10-2 through TS / B 3.10-5 1 Pages B 3.10-6 through B 3.10-31 0 Page TS / B 3.10-32 2 Page B 3.10-33 0 Page TS / B 3.10-34 1 Pages B 3.10-35 and B 3.10-36 0 Page TS / B 3.10-37 .1 Page TS / B 3.10-38 2 TSB1 Text LOES.doc 3114/2013 SUSQUEHANNA - UNIT 1 TS / B LOES-1 0 Revision 109

PPL Rev. 2 RHR Shutdown Cooling System-Hot Shutdown B 3.4.8 B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.8 Residual Heat Removal (RHR) Shutdown Cooling System-Hot Shutdown BASES BACKGROUND Irradiated fuel in the shutdown reactor core generates heat during the decay of fission products and increases the temperature of the reactor coolant. This decay heat must be removed to reduce the temperature of the reactor coolant to

  • 200 0 F. This decay heat removal is in preparation for performing refueling or maintenance operations, or for keeping the reactor in the Hot Shutdown condition.

The shutdown cooling function of the RHR System provides decay heat removal and is manually controlled. Each RHR loop consists of two motor driven pumps, a heat exchanger, and associated piping and valves. Both loops have a common suction from the same recirculation loop. Each pump discharges the reactor coolant, after circulation through the respective heat exchanger, to the reactor via the associated recirculation loop. The RHR heat exchangers transfer heat to the RHR Service Water System (LCO 3.7.1, "Residual Heat Removal Service Water (RHRSW)

System").

APPLICABLE Decay heat removal by operation of the RHR System in the shutdown SAFETY cooling mode is not required for mitigation of any event or accident ANALYSES evaluated in the safety analyses. Decay heat removal is, however, an important safety function that must be accomplished or core damage could result. Although the RHR shutdown cooling subsystem does not meet a specific criterion of the NRC Policy Statement (Ref. 1), it was identified in the NRC Policy Statement as a significant contributor to risk reduction. Therefore, the RHR Shutdown Cooling System is retained as a Technical Specification.

LCO Two RHR shutdown cooling subsystems are required to be OPERABLE, and when no recirculation pump is in operation, one shutdown cooling subsystem must be in operation. An OPERABLE RHR shutdown cooling subsystem consists of one OPERABLE RHR pump, one heat exchanger, and the associated piping and valves. The two subsystems have a common suction source and are allowed to have a common heat exchanger and (continued)

SUSQUEHANNA - UNIT 1 B 3.4-39 Revision 0

PPL Rev. 2 RHR Shutdown Cooling System-Hot Shutdown B 3.4.8 BASES LCO common discharge piping. Thus, to meet the LCO, both pumps in one (continued) loop or one pump in each of the two loops must be OPERABLE. Since the piping and heat exchangers are passive components that are assumed not to fail, they are allowed to be common to both subsystems.

Each shutdown cooling subsystem is considered OPERABLE if it can be manually aligned (remote or local) in the shutdown cooling mode for removal of decay heat. In MODE 3, one RHR shutdown cooling subsystem can provide the required cooling, but two subsystems are required to be OPERABLE to provide redundancy. Operation of one subsystem can maintain or reduce the reactor coolant temperature as required. However, to ensure adequate core flow to allow for accurate average reactor coolant temperature monitoring, nearly continuous operation is required.

Note 1 permits both RHR shutdown cooling subsystems to be shut down for a period of 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> in an 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> period. Note 2 allows one RHR shutdown cooling subsystem to be inoperable for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for the performance of Surveillance tests. These tests may be on the affected RHR System or on some other plant system or component that necessitates placing the RHR System in an inoperable status during the performance. This is permitted because the core heat generation can be low enough and the heatup rate slow enough to allow some changes to the RHR subsystems or other operations requiring RHR flow interruption and loss of redundancy.

APPLICABILITY In MODE 3 with reactor steam dome pressure below the RHR cut in permissive pressure (i.e., the actual pressure at which the interlock resets) the RHR System may be operated in the shutdown cooling mode to remove decay heat to reduce or maintain coolant temperature.

Otherwise, a recirculation pump is required to be in operation.

In MODES 1 and 2, and in MODE 3 with reactor steam dome pressure greater than or equal to the RHR cut in permissive pressure, this LCO is not applicable. Operation of the RHR System in the shutdown cooling mode is not allowed above this pressure because the RCS pressure may exceed the design pressure of the shitdown cooling piping. Decay heat removal at reactor pressures greater than or equal to the RHR cut in permissive pressure is typically accomplished by condensing (continued)

SUSQUEHANNA-UNIT 1 B 3.4-40 Revision 0

PPL Rev. 2 RHR Shutdown Cooling System-Hot Shutdown B 3.4.8 BASES APPLICABILITY the steam in the main condenser. Additionally, in MODE 2 below this (continued) pressure, the OPERABILITY requirements for the Emergency Core Cooling Systems (ECCS) (LCO 3.5.1, "ECCS-Operating") do not allow placing the RHR shutdown cooling subsystem into operation.

The requirements for decay heat removal in MODES 4 and 5 are discussed in LCO 3.4.9, "Residual Heat Removal (RHR) Shutdown Cooling System-Cold Shutdown," LCO 3.9.7, "Residual Heat Removal (RHR)-High Water Level," and LCO 3.9.8, "Residual Heat Removal (RHR)-Low Water Level."

ACTIONS A note has been provided to modify the ACTIONS related to RHR shutdown cooling subsystems. Section 1.3, Completion Times, specifies once a Condition has been entered, subsequent divisions, subsystems, components or variables expressed in the Condition, discovered to be inoperable or not within limits, will not result in separate entry into the Condition. Section 1.3 also specifies Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable shutdown cooling subsystems provide appropriate compensatory measures for separate inoperable shutdown cooling subsystems. As such, a Note has been provided that allows separate Condition entry for each inoperable RHR shutdown cooling subsystem.

A.1, A.2, and A.3 With one required RHR shutdown cooling subsystem inoperable for decay heat removal, except as permitted by LCO Note 2, the inoperable subsystem must be restored to OPERABLE status (continued)

SUSQUEHANNA - UNIT 1 TS / B 3.4-41 Revision 2

PPL Rev. 2 RHR Shutdown Cooling System-Hot Shutdown B 3.4.8 BASES ACTIONS A.1, A.2, and A.3 (continued) without delay. In this condition, the remaining OPERABLE subsystem can provide the necessary decay heat removal. The overall reliability is reduced, however, because a single failure in the OPERABLE subsystem could result in reduced RHR shutdown cooling capability. Therefore, an alternate method of decay heat removal must be provided.

With both RHR shutdown cooling subsystems inoperable, an alternate method of decay heat removal must be provided in addition to that provided for the initial RHR shutdown cooling subsystem inoperability.

This re-establishes backup decay heat removal capabilities, similar to the requirements of the LCO. The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Completion Time is based on the decay heat removal function and the probability of a loss of the available decay heat removal capabilities.

The required cooling capacity of the alternate method must be ensured by verifying (by calculation or demonstration) its capability to maintain or reduce temperature. Decay heat removal by ambient losses can be considered as, or contributing to, the alternate method capability.

Alternate methods that can be used include (but are not limited to) the Spent Fuel Pool Cooling System and the Reactor Water Cleanup System.

However, due to the potentially reduced reliability of the alternate methods of decay heat removal, it is also required to reduce the reactor coolant temperature to the point where MODE 4 is entered.

B.1, B.2, and B.3 With no RHR shutdown cooling subsystem and no recirculation pump in operation, except as permitted by LCO Note 1, reactor coolant circulation by the RHR shutdown cooling subsystem or recirculation pump must be restored without delay.

Until RHR or recirculation pump operation is re-established, an alternate method of reactor coolant circulation must be placed into service. This will provide the necessary circulation for monitoring coolant temperature. The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Completion Time is based on the coolant circulation function (continued)

SUSQUEHANNA - UNIT 1 B 3.4-42 Revision 0

PPL Rev. 2 RHR Shutdown Cooling System-Hot Shutdown B 3.4.8 BASES ACTIONS B.1, B.2, and B.3 (continued) and is modified such that the 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is applicable separately for each occurrence involving a loss of coolant circulation. Furthermore, verification of the functioning of the alternate method must be reconfirmed every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> thereafter. This will provide assurance of continued temperature monitoring capability.

During the period when the reactor coolant is being circulated by an alternate method (other than by the required RHR shutdown cooling subsystem or recirculation pump), the reactor coolant temperature and pressure must be periodically monitored to ensure proper function of the alternate method. The once per hour Completion Time is deemed appropriate.

SURVEILLANCE SR 3.4.8.1 he REQUIREMENTS This Surveillance verifies that one RHR shutdown cooling subsystem or recirculation pump is in operation and circulating reactor coolant. The required flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability. The Frequency of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> is sufficient in view of other visual and audible indications available to the operator for monitoring the RHR subsystem in the control room.

This Surveillance is modified by a Note allowing sufficient time to align the RHR System for shutdown cooling operation after the pressure interlock that isolates the system resets, or for placing a recirculation pump in operation. The Note takes exception to the requirements of the Surveillance being met (i.e., forced coolant circulation is not required for this initial 2 hour2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> period),

which also allows entry into the Applicability of this Specification in accordance with SR 3.0.4 since the Surveillance will not be "not met" at the time of entry into the Applicability.

REFERENCES 1. Final Policy Statement on Technical Specifications Improvements, July 22, 1993 (58 FR 39132).

SUSQUEHANNA - UNIT I B 3.4-43 Revision 0

PPL Rev. 1 RHR Shutdown Cooling System-Cold Shutdown B 3.4.9 B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.9 Residual Heat Removal (RHR) Shutdown Cooling System-Cold Shutdown BASES BACKGROUND Irradiated fuel in the shutdown reactor core generates heat during the decay of fission products and increases the temperature of the reactor coolant. This decay heat must be removed to maintain the temperature of the reactor coolant < 200 0 F. This decay heat removal is in preparation for performing refueling or maintenance operations, or for keeping the reactor in the Cold Shutdown condition.

The shutdown cooling function of the RHR System provides decay heat removal and is manually controlled. Each RHR loop consists of two motor driven pumps, a heat exchanger, and associated piping and valves. Both loops have a common suction from the same recirculation loop. Each pump discharges the reactor coolant, after circulation through the respective heat exchanger, to the reactor via the associated recirculation loop. The RHR heat exchangers transfer heat to the RHR Service Water System.

APPLICABLE Decay heat removal by operation of the RHR System in the shutdown SAFETY cooling mode is not required for mitigation of any event or accident ANALYSES evaluated in the safety analyses. Decay heat removal is, however, an important safety function that must be accomplished or core damage could result. Although the RHR Shutdown Cooling System does not meet a specific criterion of the NRC Policy Statement (Ref. 1), it was identified in the NRC Policy Statement as a significant contributor to risk reduction.

Therefore, the RHR Shutdown Cooling System is retained as a Technical Specification.

LCO Two RHR shutdown cooling subsystems are required to be OPERABLE, and when no recirculation pump is in operation, one RHR shutdown cooling subsystem must be in operation. An OPERABLE RHR shutdown cooling subsystem consists of an RHR pump with an associated RHRSW pump, a heat exchanger, valves, piping, instruments, and controls to ensure the corresponding flow paths are OPERABLE. On the primary side, the two subsystems have a common suction source and are (continued)

SUSQUEHANNA - UNIT I TS / B 3.4-44 Revision 0

PPL Rev. 1 RHR Shutdown Cooling System-Cold Shutdown B 3.4.9 BASES LCO allowed to have a common heat exchanger and common discharge (continued) piping. Thus, to meet the LCO, both pumps in one loop or one pump in each of the two loops must be OPERABLE. Since the piping and heat exchangers are' passive components that are assumed not to fail, they are allowed to be common to both subsystems. For each pump required to be OPERABLE on the primary (RHR) side, an associated RHRSW pump must be OPERABLE on the secondary side to transport decay heat to the UHS. Therefore, if two RHR pumps (and one heat exchanger) in the same loop are being used to comprise two shutdown cooling subsystems, the two RHRSW pumps (one from Unit I and one from Unit 2) which are capable of servicing the subject heat exchanger must be OPERABLE.

In MODE 4, the RHR cross tie valves (HV-151-FO10A and B) may be opened to allow pumps in one loop to discharge through the opposite recirculation loop to make a complete subsystem. Additionally, each shutdown cooling subsystem is considered OPERABLE if it can be manually aligned (remote or local) in the shutdown cooling mode for removal of decay heat. In MODE 4, one RHR shutdown cooling subsystem can provide the required cooling, but two subsystems are required to be OPERABLE to provide redundancy. Operation of one subsystem can maintain or reduce the reactor coolant temperature as required. However, to ensure adequate core flow to allow for accurate average reactor coolant temperature monitoring, nearly continuous operation is required.

Note 1 permits both RHR shutdown cooling subsystems to be shut down for a period of 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> in an 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> period. Note 2 allows one RHR shutdown cooling subsystem to be inoperable for up to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> for the performance of Surveillance tests. These tests may be on the affected RHR System or on some other plant system or component that necessitates placing the RHR System in an inoperable status during the performance. This is permitted because the core heat generation can be low enough and the heatup rate slow enough to allow some changes to the RHR subsystems or other operations requiring RHR flow interruption and loss of redundancy.

APPLICABILITY In MODE 4, the RHR Shutdown Cooling System may be operated in the shutdown cooling mode to remove decay heat to (continued)

SUSQUEHANNA-UNIT 1 TS / B 3.4-45 Revision 0

PPL Rev. 1 RHR Shutdown Cooling System-Cold Shutdown B 3.4.9 BASES APPLICABILITY maintain coolant temperature below 200 0 F. Otherwise, a recirculation (continued) pump is required to be in operation.

In MODES 1 and 2, and in MODE 3 with reactor steam dome pressure greater than or equal to the RHR cut in permissive pressure, this LCO is not applicable. Operation of the RHR System in the shutdown cooling mode is not allowed above this pressure because the RCS pressure may exceed the design pressure of the shutdown cooling piping. Decay heat removal at reactor pressures greater than or equal to the RHR cut in permissive pressure is typically accomplished by condensing the steam in the main condenser. Additionally, in MODE 2 below this pressure, the OPERABILITY requirements for the Emergency Core Cooling Systems (ECCS) (LCO 3.5.1, "ECCS-Operating") do not allow placing the RHR shutdown cooling subsystem into operation.

The requirements for decay heat removal in MODE 3 below the cut in permissive pressure and in MODE 5 are discussed in LCO 3.4.8, "Residual Heat Removal (RHR) Shutdown Cooling System-H'ot Shutdown"; LCO 3.9.7 "Residual Heat Removal (RHR)-High Water Level";

and LCO 3.9.8, "Residual Heat Removal (RHR)-Low Water Level."

ACTIONS A Note has been provided to modify the ACTIONS related to RHR shutdown cooling subsystems. Section 1.3, Completion Times, specifies once a Condition has been entered, subsequent divisions, subsystems, components or variables expressed in the Condition, discovered to be inoperable ornot within limits, will not result in separate entry into the Condition. Section 1.3 also specifies Required Actions of the Condition continue to apply for each additional failure, with Completion Times based on initial entry into the Condition. However, the Required Actions for inoperable shutdown cooling subsystems provide appropriate compensatory measures for separate inoperable shutdown cooling subsystems. As such, a Note has been provided that allows separate Condition entry for each inoperable RHR shutdown cooling subsystem.

_ (continued)

SUSQUEHANNA - UNIT 1 TS / B 3.4-46 Revision 1

PPL Rev. 1 RHR Shutdown Cooling System-Cold Shutdown B 3.4.9 BASES ACTIONS (continued)

With one of the two required RHR shutdown cooling subsystems inoperable, except as permitted by LCO Note 2, the remaining subsystem is capable of providing the required decay heat removal. However, the overall reliability is reduced. Therefore, an alternate method of decay heat removal must be provided. With both RHR shutdown cooling subsystems inoperable, an alternate method of decay heat removal must be provided in addition to that provided for the initial RHR shutdown cooling subsystem inoperability. This re-establishes backup decay heat removal capabilities, similar to the requirements of the LCO. The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Completion Time is based on the decay heat removal function and the probability of a loss of the available decay heat removal capabilities.

Furthermore, verification of the functional availability of these alternate method(s) must be reconfirmed every 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> thereafter. This will provide assurance of continued heat removal capability.

The required cooling capacity of the alternate method must be ensured by verifying (by calculation or demonstration) its capability to maintain or reduce temperature. Decay heat removal by ambient losses can be considered as, or contributing to, the alternate method capability.

Alternate methods that can be used include (but are not limited to) the Reactor Water Cleanup System.

B.1 and B.2 With no RHR shutdown cooling subsystem and no recirculation pump in operation, except as permitted by LCO Note 1, and until RHR or recirculation pump operation is re-established, an alternate method of reactor coolant circulation must be placed into service. The alternate method may use forced or natural circulation. This will provide the necessary circulation for monitoring coolant temperature. The 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> Completion Time is based on the coolant circulation function and is modified such that the 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> is applicable separately for each occurrence involving a loss of coolant circulation. Furthermore, verification of the functioning of the alternate method must be reconfirmed every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> thereafter. This will provide assurance of continued temperature monitoring capability.

(continued)

SUSQUEHANNA - UNIT 1 TS / B 3.4-47 Revision 0

PPL Rev. .1 RHR Shutdown Cooling System-Cold Shutdown B 3.4.9 BASES ACTIONS B.1 and B.2 (continued)

During the period when the reactor coolant is being circulated by an alternate method (other than by the required RHR Shutdown Cooling System'or recirculation pump), the reactor coolant temperature and pressure must be periodically monitored to ensure proper function of the alternate method. The once per hour Completion Time is deemed appropriate.

SURVEILLANCE SR 3.4.9.1 REQUIREMENTS This Surveillance verifies that one RHR shutdown cooling subsystem or recirculation pump is in operation and circulating reactor coolant. The required flow rate is determined by the flow rate necessary to provide sufficient decay heat removal capability. The Frequency of 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> is sufficient in view of other visual and audible indications available to the operator for monitoring the RHR subsystem in the control room.

REFERENCES 1. Final Policy Statement on Technical Specifications Improvements, July 22, 1993 (58 FR 39132).

SUSQUEHANNA - UNIT 1 TS / B 3.4-48 Revision 0

PPL Rev. 8 SCIVs B 3.6.4.2 3.6 CONTAINMENT SYSTEMS B 3.6.4.2 Secondary Containment Isolation Valves (SCIVs).

BASES BACKGROUND The function of the SCIVs, in combination with other accident mitigation systems, is to limit fission product release during and following postulated Design Basis Accidents (DBAs) (Ref. 1). Secondary containment isolation within the time limits specified for those isolation valves designed to close automatically ensures that fission products that leak from primary containment into secondary containment following a DBA, or that are released during certain operations when primary containment is not required to be OPERABLE or take place outside primary containment, are maintained within the secondary containment boundary.

The OPERABILITY requirements for SCIVs help ensure that an adequate secondary containment boundary is maintained during and after an accident by minimizing potential paths to the environment. These isolation devices consist of either passive devices or active (automatic) devices. Manual valves or dampers, de-activated automatic valves or dampers secured in their closed position (including check valves with flow through the valve secured), and blind flanges are considered passive devices.

Automatic SCIVs close on a secondary containment isolation signal to establish a boundary for untreated radioactive material within secondary containment following. a DBA or other accidents.

Other non-sealed penetrations which cross a secondary containment boundary are isolated by the use of valves in the closed position or blind flanges.

APPLICABLE The SCIVs must be OPERABLE to ensure the secondary containment SAFETY barrier to fission product releases is established. The principal accidents for ANALYSES which the secondary containment boundary is required are a loss of coolant accident (Ref. 1) and a fuel handling accident inside secondary containment (Ref. 2). The secondary containment performs no active function in response to either of these limiting events, but the boundary (continued)

SUSQUEHANNA - UNIT 1 TS / B 3.6-91 Revision 3

PPL Rev. 8 SCIVs I., B3.6.4.2 BASES APPLICABLE established by SCIVs is required to ensure that leakage from the primary SAFETY containment is processed by the Standby Gas Treatment (SGT) System ANALYSES before being released to the environment.

(continued)

Maintaining SCIVs OPERABLE with isolation times within limits ensures that fission products will remain trapped inside secondary containment so that they can be treated by the SGT System prior to discharge to the environment.

SCIVs satisfy Criterion 3 of the NRC Policy Statement (Ref. 3).

LCO SCIVs that form a part of the secondary containment boundary are required to be OPERABLE. Depending on the configuration of the secondary containment only specific SCIVs are required. The SCIV safety function is related to control of offsite radiation releases resulting from DBAs.

The automatic isolation valves are considered OPERABLE when their isolation times are within limits and the valves actuate on an automatic isolation signal. The valves covered by this LCO, along with their associated stroke times, are listed in Table B 3.6.4.2-1.

The normally closed isolation valves or blind flanges are considered OPERABLE when manual valves are closed or open in accordance with appropriate administrative controls, automatic SCIVs are deactivated and secured in their closed position, or blind flanges are in place. These passive isolation valves or devices are listed in Table B3.6.4.2-2. Penetrations closed with sealants are considered part of the secondary containment boundary and are not considered penetration flow paths.

Certain plant piping systems (e.g., Service Water, RHR Service Water, Emergency Service Water, Feedwater, etc.) penetrate the secondary containment boundary. The intact piping within secondary containment provides a passive barrier which maintains secondary containment requirements. When the SDHR and temporary chiller system piping is connected and full of water, the piping forms the secondary containment boundary and the passive devices in TS Bases Table B3.6.4.2-2 are no longer required for these systems since the piping forms the barrier. During certain plant evolutions, piping systems may be drained and breached within secondary containment. During the pipe breach, system isolation valves can be used to provide secondary containment isolation. The isolation valve alignment will be controlled when the piping system is breached.

(continued)

SUSQUEHANNA - UNIT 1 TS / B 3.6-92 Revision 3

PPL Rev. 8 SCIVs B 3.6.4.2 BASES (continued)

APPLICABILITY In MODES 1, 2, and 3, a DBA could lead to a fission product release to the primary containment that leaks to the secondary containment. Therefore, the OPERABILITY of SCIVs is required.

In MODES 4 and 5, the probability and consequences of these events are reduced due to pressure and temperature limitations in these MODES.

Therefore, maintaining SCIVs OPERABLE is not required in MODE 4 or 5, except for other situations under which significant radioactive releases can be postulated, such as during operations with a potential for draining the reactor vessel (OPDRVs), during CORE ALTERATIONS, or during movement of irradiated fuel assemblies in the secondary containment.

Moving irradiated fuel assemblies in the secondary containment may also occur in MODES 1, 2, and 3.

ACTIONS The ACTIONS are modified by three Notes. The first Note allows penetration flow paths to be unisolated intermittently under administrative controls. These controls consist of stationing a dedicated operator, who is in continuous communication with the control room, at the controls of the isolation device. In this way, the penetration can be rapidly isolated when a need for secondary containment isolation is indicated.

The second Note provides clarification that for the purpose of this LCO separate Condition entry is allowed for each penetration flow path. This is acceptable, since the Required Actions for each Condition provide appropriate compensatory actions for each inoperable SCIV. Complying with the Required Actions may allow for continued operation, and subsequent inoperable SCIVs are governed by subsequent Condition entry and application of associated Required Actions.

The third Note ensures appropriate remedial actions are taken, if necessary, if the affected system(s) are rendered inoperable by an inoperable SCIV.

A.1 and A.2 In the event that there are one or more required penetration flow paths with one required SCIV inoperable, the affected penetration flow path(s) must be isolated. The method of isolation must include the use of at least one isolation barder that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic SCIV, a closed manual valve, and a blind flange. For penetrations isolated in (continued)

SUSQUEHANNA - UNIT 1 TS / B 3.6-93 Revision 2

PPL Rev. 8 SCIVs B 3.6.4.2 BASES ACTIONS A.1 and A.2 (continued) accordance with Required Action A.1, the device used to isolate the penetration should be the closest available device to secondary containment. The Required Action must be completed within the 8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> Completion Time. The specified time period is reasonable considering the time required to isolate the penetration, and the probability of a DBA, which requires the SCIVs to close, occurring during this short time is very low.

For affected penetrations that have been isolated in accordance with Required Action A.1, the affected penetration must be verified to be isolated on a periodic basis. This is necessary to ensure that secondary containment penetrations required to be isolated following an accident, but no longer capable of being automatically isolated, will be in the isolation position should an event occur. The Completion Time of once per 31 days is appropriate because the valves are operated under administrative controls and the probability of their misalignment is low. This Required Action does not require any testing or device manipulation. Rather, it involves verification that the affected penetration remains isolated.

Condition A is modified by a Note indicating that this Condition is only applicable to those penetration flow paths with two SCIVs. For penetration flow paths with one SCIV, Condition C provides the appropriate Required Actions.

Required Action A.2 is modified by a Note that applies to devices located in high radiation areas and allows them to be verified closed by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted.

Therefore, the probability of misalignment, once they have been verified to be in the proper position, is low.

B.I With two SCIVs in one or more penetration flow paths inoperable, the affected penetration flow path must be isolated within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. The method of isolation must (continued)

SUSQUEHANNA - UNIT 1 TS / B 3.6-94 Revision 1 P

PPL Rev. 8 SCIVs B 3.6.4.2 BASES ACTIONS B.1 (continued) include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. The 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> Completion Time is reasonable considering the time required to isolate the penetration and the probability of a DBA, which requires the SCIVs to close, occurring during this short time, is very low.

The Condition has been modified by a Note stating that Condition B is only applicable to penetration flow paths with two isolation valves. For penetration flow paths with one SCIV, Condition C provides the appropriate Required Actions.

C.1 and C.2 With one or more required penetration flow paths with one required SCIV inoperable, the inoperable valve must be restored to OPERABLE status or the affected penetration flow path must be isolated. The method of isolation must include the use of at least one isolation barrier that cannot be adversely affected by a single active failure. Isolation barriers that meet this criterion are a closed and de-activated automatic valve, a closed manual valve, and a blind flange. A check valve may not be used to isolate the affected penetration. Required Action C.1 must be completed within the 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> Completion Time. The Completion Time of 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> is reasonable considering the relative stability of the system (hence, reliability) to act as a penetration isolation boundary and the relative importance of supporting secondary containment OPERABILITY during MODES 1, 2, and 3.

In the event the affected penetration flow path is isolated in accordance with Required Action C.1, the affected penetration must be verified to be isolated on a periodic basis. This is necessary to ensure that secondary containment penetrations required to be isolated following an accident are isolated.

The Completion Time of once per 31 days for verifying each affected penetration is isolated is appropriate because the (continued)

SUSQUEHANNA - UNIT 1 TS / B 3.6-95 Revision 1

PPL Rev. 8 SCIVs B 3.6.4.2 BASES ACTIONS C.1 and C.2 (continued) valves are operated under administrative controls and the probability of their misalignment is low.

Condition C is modified by a Note indicating that this Condition is only applicable to penetration flow paths with only one SCIV. For penetration flow paths with two SCIVs, Conditions A and B provide the appropriate Required Actions.

Required Action C.2 is modified by a Note that applies to valves and blind flanges located in high radiation areas and allows them to be verified by use of administrative means. Allowing verification by administrative means is considered acceptable, since access to these areas is typically restricted.

Therefore, the probability of misalignment of these valves, once they have been verified to be in the proper position, is low.

D.1 and D.2 If any Required Action and associated Completion Time cannot be met, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and to MODE 4 within 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

E.1, E.2, and E.3 If any Required Action and associated Completion Time are not met, the plant must be placed in a condition in which the LCO does not apply. If applicable, CORE ALTERATIONS and the movement of irradiated fuel assemblies in the secondary containment must be immediately suspended.

Suspension of these activities shall not preclude completion of movement of a component to a safe position. Also, if applicable, actions must be immediately initiated to suspend OPDRVs in order to minimize the probability of a vessel draindown and the subsequent potential for fission product release. Actions must continue until OPDRVs are suspended.

(continued)

SUSQUEHANNA - UNIT 1 TS / B 3.6-96 Revision 1

PPL Rev. 8 SCIVs B 3.6.4.2 BASES ACTIONS E.1, E.2, and E.3 (continued)

Required Action E.1 has been modified by a Note stating that LCO 3.0.3 is not applicable. If moving irradiated fuel assemblies while in MODE 4 or 5, LCO 3.0.3 would not specify any action. If moving fuel while in MODE 1, 2, or 3, the fuel movement is independent of reactor operations.

Therefore, in either case, inability to suspend movement of irradiated fuel assemblies would not be a sufficient reason to require a reactor shutdown.

SURVEILLANCE SR 3.6.4.2.1 REQUIREMENTS This SR verifies that each secondary containment manual isolation valve and blind flange that is required to be closed during accident conditions is closed. The SR helps to ensure that post accident leakage of radioactive fluids or gases outside of the secondary containment boundary is within design limits. This SR does not require any testing or valve manipulation.

Rather, it involves verification (typically visual) that those required SCIVs in secondary containment that are capable of being mispositioned are in the correct position.

Since these SCIVs are readily accessible to personnel during normal operation and verification of their position is relatively easy, the 31 day Frequency was chosen to provide added assurance that the SCIVs are in the correct positions.

Two Notes have been added to this SR. The first Note applies to valves and blind flanges located in high radiation areas and allows them to be verified by use of administrative controls. Allowing verification by administrative controls is considered acceptable, since access to these areas is typically restricted during MODES 1, 2, and 3 for ALARA reasons.

Therefore, the probability of misalignment of these SCIVs, once they have been verified to be in the proper position, is low.-

A second Note has been included to clarify that SCIVs that are open under administrative controls are not required to meet the SR during the time the SCIVs are open.

(continued)

SUSQUEHANNA - UNIT 1 TS / B 3.6-97 Revision 2

PPL Rev. 8 SCIVs B 3.6.4.2 BASES SURVEILLANCE SR 3.6.4.2.2 REQUIREMENTS (continued) SCIVs with maximum isolation times specified in Table B 3.6.2.4-1 are tested every 92 days to verify that the isolation time is within limits to demonstrate OPERABILITY. Automatic SCIVs without maximum isolation times specified in Table B 3.6.4.2-1 are tested under the requirements of SR 3.6.4.2.3. The isolation time test ensures that the SCIV will isolate in a time period less than or equal to that assumed in the safety analyses.

SR 3.6.4.2.3 Verifying that each automatic required SCIV closes on a secondary containment isolation signal is required to prevent leakage of radioactive material from secondary containment following a DBA or other accidents.

This SR ensures that each automatic SCIV will actuate to the isolation position on a secondary containment isolation signal. The LOGIC SYSTEM FUNCTIONAL TEST in SR 3.3.6.2.5 overlaps this SR to provide complete testing of the safety function. The 24 month Frequency is based on the need to perform this Surveillance under the conditions that apply during a plant outage and the potential for an unplanned transient if the Surveillance were performed with the reactor at power. Operating experience has shown these components usually pass the Surveillance when performed at the 24 month Frequency. Therefore, the Frequency was concluded to be acceptable from a reliability standpoint.

REFERENCES 1. FSAR, Section 6.2.

2. FSAR, Section 15.
3. Final Policy Statement on Technical Specifications Improvements, July 22, 1993 (58 FR 39132).

SUSQUEHANNA - UNIT 1 TS / B 3.6-98 Revision 1

PPL Rev. 8 SCIVs B 3.6.4.2 Table B 3.6.4.2-1 Secondary Containment Ventilation System Automatic Isolation Dampers (Page 1 of 1)

Reactor Maximum Building Valve Number Valve Description Type of Valve Isolation S.

Blne iTime tone I(Seconds)

I HD-1 7586 A&B Supply System Dampers Automatic Isolation Damper 10.0 I HD-1 7524 A&B Filtered Exhaust System Dampers Automatic Isolation Damper 10.0 I HD-17576A&B Unfiltered Exhaust System Automatic Isolation Damper 10.0 H2Slyr S II HD-27586 A&B Supply System Dampers Automatic Isolation Damper 10.0 II HD-27524 A&B Filtered Exhaust System Dampers Automatic Isolation Damper 10.0 Il HD-27576 A&B Unfiltered Exhaust System Automatic Auomti Isolation Damper Islainrame 1.6.0 rl--

III HD-17564 A&B Supply System Dampers Automatic Isolation Damper 14.0 III HD-17514 A&B Filtered Exhaust System Dampers Automatic Isolation Damper 6.5 III HD-17502 A&B Unfiltered Exhaust System Automatic Isolation Damper 6.0 III HD-27564 A&B Supply System Dampers Automatic Isolation Damper 14.0 N/A HD-27514 A&B Filtered Exhaust System Dampers Automatic Isolation Damper 6.5 N/A HD-27502 A&B Unfiltered Exhaust System Automatic Isolation Damper N/A HD-17534A Zone 3 Airlock 1-617 Automatic Isolation Damper N/A N/A HD-17534A Zone 3 Airlock 1-618 Automatic Isolation Damper N/A N/A HD-17534A Zone 3 Airlock 1-610 Automatic Isolation Damper N/A N/A HD-17534D Zone 3 Airlock 1-803 Automatic Isolation Damper N/A N/A HD-17534E Zone 3 Airlock 1-805 Automatic Isolation Damper N/A N/A HD-17534F Zone 3 Airlock 1-617 Automatic Isolation Damper N/A N/A HD-27534H Zone 3 Airlock 11-618 Automatic Isolation Damper N/A N/A HD-27534A Zone 3 Airlock 11-606 Automatic Isolation Damper N/A N/A HD-27534E Zone 3 Airlock 11-805 Automatic Isolation Damper N/A N/A HD-27534G Zone 3 Airlock C-806 Automatic Isolation Dampe r N/A N/A HD-27534H Zone 3 Airlock 11-618 Automatic Isolation Damper N/A N/A HD-275341 Zone 3 Airlock 11-609 Automatic Isolation Damper N/A SUSQUEHANNA - UNIT 1 TS / B 3.6-99 Revision 2

PPL Rev. 8 SCIVs B 3.6.4.2 Table B 3.6.4.2-2 Secondary Containment Ventilation System Passive Isolation Valves or Devices (Page 1 of 3)

DeviceAraEe Number Device Description AreaElev Required Position Notes X-29-2-44 SDHR System to Fuel Pool Cooling Yard/670 Blind Flanged / Note 1 X-29-2-45 SDHR System to Fuel Pool Cooling Yard/670 Blind Flanged I Note 1 110176 SDHR Supply Drain VIv 29/670 Closed Manual Iso Valve/ Note 1 110186 SDHR Discharge Drain Vlv 29/670 Closed Manual Iso Valve / Note 1 110180 SDHR Supply Vent Vlv 29/749 Closed Manual Iso Valve / Note 1 110181 SDHR Discharge Fill Vlv 27/749 Closed Manual Iso Valve / Note 1 110182 SDHR Discharge Vent VIv 27/749 Closed Manual Iso Valve / Note 1 110187 SDHR Supply Fill VIv 29/749 Closed Manual Iso Valve / Note 1 210186 SDHR Supply Drain Vlv 33/749 Closed Manual Iso Valve / Note 1 210187 SDHR Supply Vent VIv 33/749 Closed Manual Iso Valve / Note 1 210191 SDHR Discharge Vent VIv 30/749 Closed Manual Iso Valve / Note 1 210192 SDHR Discharge Drain Vlv 30/749 Closed Manual Iso Valve / Note 1 210193 SDHR Discharge Vent Vlv 33/749 Closed Manual Iso Valve / Note 1 X-29-2-46 Temporary Chiller to RBCW Yard/670 Blind Flanged / Note 2 X-29-2-47 Temporary Chiller to RBCW Yard/670 Blind Flanged / Note 2 X-29-5-95 Temporary Chiller to Unit 1 RBCW 29/749 Blind Flanged / Note 2 X-29-5-96 Temporary Chiller to Unit 1 RBCW 29/749 Blind Flanged / Note 2 X-29-5-91 Temporary Chiller to Unit 2 RBCW 33/749 Blind Flanged / Note 2 X-29-5-92 Temporary Chiller to Unit 2 RBCW 33/749 Blind Flanged / Note 2 187388 RBCW Temp Chiller Discharge Iso VIv 29/670 Closed Manual iso Valve / Note 2 187389 RBCW Temp Chiller Supply Iso VIv 29/670 Closed Manual Iso Valve / Note 2 187390 RBCW Temp Chiller Supply Drain Vlv 29/670 Closed Manual Iso Valve / Note 2 187391 RBCW Temp Chiller Discharge Drain VIv 29/670 Closed Manual Iso Valve / Note 2 X-28-2-3000 Utility Penetration to Unit 1 East Stairwell Yard/670 Blind Flanged / Note 3 X-29-2-48 Utility Penetration to Unit 1 RR Bay Yard/670 Capped / Note 5 X-33-2-3000 Utility Penetration to Unit 2 East Stairwell Yard/670 Blind Flanged / Note 4 X-28-2-3000 Utility Penetration to Unit 1 East Stairwell 28/670 Blind Flanged / Note 3 X-29-2-48 Utility Penetration to Unit 1 RR Bay 29/670 Capped / Note 5 X-33-2-3000 Utility Penetration to Unit 2 East Stairwell 33/670 Blind Flanged / Note 4 X-29-3-54 Utility Penetration to Unit 1 RBCCW Hx Area 27/683 Blind Flanged / Note 6 X-29-3-55 Utility Penetrationto Unit I RBCCW Hx Area 27/683 Blind Flanged / Note 6 X-29-5-97 Utility Penetration from Unit 1 RR Bay to Unit 2 Elev. 749 33/749 Capped X-27-6-42 Diamond Plate Cover over Floor Penetration 27/779' Installed X-27-6-92 Instrument Tubing Stubs 27/779' Capped X-29-7-4 1" Spare Conduit Threaded Plug 29/818' Installed X-30-6-72 Instrument Tubing Stubs 30/779' Capped X-30-6-1002 Stairwell #214 Rupture Disc 30/779' Installed Intact X-30-6-1003 Airlock 11-609 Rupture Disc 30/779' Installed Intact SUSQUEHANNA - UNIT I TS / B 3.6-100 Revision 5

PPL Rev. 8 SCIVs B 3.6.4.2 Table B 3.6.4.2-2 Secondary Containment Ventilation System Passive Isolation Valves or Devices (Page 2 of 3)

Device Device Description Area/Elev Required Position / Notes Number X-25-6-1008 Airlock 1-606 Rupture Disc 25/779' Installed Intact X-29-4-D1-B Penetration at Door 4330 29/719' Blind Flange Installed X-29-4-D1-A Penetration at Door 4330 29/719' Blind Flange Installed X-29-4-D1 -B Penetration at Door 404 33/719' Blind Flange Installed X-29-4-D1-A Penetration at Door 404 33/719' Blind Flange Installed HD17534C Airlock 1-707 Blind Flange 28/799' Blind Flange Installed HD27534C Airlock 11-707 Blind Flange 33/799' Blind Flange Installed XD-17513 Isolation damper for Railroad Bay Zone IIIHVAC Supply 29/799' Position is dependent on Railroad Bay alignment XD-17514 Isolation damper for Railroad Bay Zone IIIHVAC Exhaust 29/719' Position is dependent on Railroad Bay alignment XD-1 2301 PASS Air Flow Damper 11/729' Closed Damper XD-22301 PASS Air Flow Damper 22/729' Closed Damper 161827 HPCI Blowout Steam Vent Drain Valve 25/645' Closed Manual Iso Valve / Note 3 161828 RCIC Blowout Steam Vent Drain Valve 28/645' Closed Manual Iso Valve/ Note 3 161829 'A' RHR Blowout Steam Vent Drain Valve 29/645' Closed Manual Iso Valve / Note 3 161830 'B' RHR Blowout Steam Vent Drain Valve 28/645' Closed Manual Iso Valve / Note 3 261820 RCIC Blowout Steam Vent Drain Valve 33/645' Closed Manual Iso Valve I Note 4 261821 'A' RHR Blowout Steam Vent Drain Valve 34/645' Closed Manual Iso Valve / Note 4 261822 'B' RHR Blowout Steam Vent Drain Valve 33/645' Closed Manual Iso Valve I Note 4 1LRW181OU Zone IIIFloor Drain 29-818 Plugged / Note 7 1LRWI81OV Zone IIIFloor Drain 29-818 Plugged / Note 7 1LRWI81OW Zone IIIFloor Drain 29-818 Plugged / Note 7 1LRW181OX Zone IIIFloor Drain 29-818 Plugged / Note 7 1LRWI81OY Zone IIIFloor Drain 29-818 Plugged / Note 7 1LRWI81OZ Zone IlIIFloor Drain 29-818 Plugged / Note 7 1LRW181 OFF Zone IIIFloor Drain 29-818 Plugged / Note 7 1LRWI81OGG Zone IIIFloor Drain 29-818 Plugged / Note 7 1LRWI81OHH Zone IIIFloor Drain.29-818 Plugged / Note 7 1LRWI81OJJ Zone IIIFloor Drain 29-818 Plugged / Note 7 1LRWI81OKK Zone IIIFloor Drain 29-818 Plugged / Note 7 1LRW1615A Zone I, Zone III,or No Zone Floor Drain 29-779 Plugged / Note 7 1LRWI100A Zone I, Zone I11,or No Zone Floor Drain 29-670 Plugged / Note 7 1LRWI100B Zone I, Zone Ill, or No Zone Floor Drain 29-670 Plugged / Note 7 1LRWI100C Zone I, Zone Ill, or No Zone Floor Drain 29-670 Plugged / Note 7 1LRWI100D Zone I, Zone Ill, or No Zone Floor Drain 29-670 Plugged / Note 7 1LRWI100E Zone I, Zone I11,or No Zone Floor Drain 29-670 Plugged / Note 7 1LRWI100F Zone I, Zone Ill, or No Zone Floor Drain 29-670 Plugged / Note 7 1LRWI100G Zone I, Zone I11,or No Zone Floor Drain 29-670 Plugged I Note 7 L _ _ _ _ _ _ _ _ _ _ I _ _ I _ _ _ _

SUSQUEHANNA - UNIT 1 TS / B 3.6-1 00a Revision 5

PPL Rev. 8 SCIVs B 3.6.4.2 Table B 3.6.4.2-2 Secondary Containment Ventilation System Passive Isolation Valves or Devices (Page 3 of 3)

Note 1: The two blind flanges on the SDHR penetrations (blind flanges for device number X-29-2-44 and X-29-2-45) and all the closed manual valves for the SDHR system (110176,110186,110180,110181, 110182,110187, 210186, 210187, 210191,210192, 210193) can each be considered as a separate secondary containment isolation device for the SDHR penetrations. If one or both of the blind flanges is removed and all the above identified manual valves for the SDHR system are closed, the appropriate LCO should be entered for one inoperable SCIV in a penetration flow path with two SCIVs. With the blind flange removed, the manual valves could be opened intermittently under administrative controls per the Technical Specification Note. When both SDHR blind flanges are installed, opening of the manual valves for the SDHR system will be controlled to prevent cross connecting ventilation zones. When the manual valves for the SDHR system are open in this condition, the appropriate LCO should be entered for one inoperable SCIV in a penetration flow path with two SCIVs. When the SDHR system piping is connected and full of water, the piping forms the secondary containment boundary and the above listed SCIVs in Table B3.6.4.2-2 are no longer required for this system since the piping forms the barrier.

Note 2: Due to the multiple alignments of the RBCW temporary chiller, different devices will perform the SCIV function depending on the RBCW configuration. There are three devices/equipment that can perform the SCIV function for the RBCW temporary chiller supply penetration. The first SCIV for the RBCW temporary chiller supply penetration is the installed blind flange on penetration X-29-2-47. The second SCIV for the RBCW temporary chiller supply penetration is isolation valve 187389. The third SCIV for the temporary RBCW chiller supply penetration is closed drain valve 187390 and an installed blind flange on penetrations X-29-5-92 and X-29-5-96. Since there are effectively three SCIVs, any two can be used to satisfy the SCIV requirements for the penetration. Removal of one of the two required SCIVs requires entry into the appropriate LCO for one inoperable SCIV in a penetration flow path with two SCIVs. Opening of drain valve 187390 and operation of blank flanges X-29-5-96 and X-29-5-92 will be controlled to prevent cross connecting ventilation zones. These three SCIVs prevent air leakage. The isolation of the penetration per the Technical Specification requirement is to assure that one of the above SCIVs is closed so that there is no air leakage.

There are three devices/equipment that can perform the SCIV function for the RBCW temporary chiller return penetration. The first SCIV for the RBCW temporary chiller return penetration is the installed blind flange on penetration X-29-2-46. The second SCIV for the RBCW temporary chiller return penetration is isolation valve 187388. The third SCIV for the temporary RBCW chiller return penetration is closed drain valve 187391 and an installed blind flange on penetrations X-29-5-91 and X-29-5-95. Since there are effectively three SCIVs, any two can be used to define the SCIV for the penetration. Removal of one of the two required SCIVs requires entry into the appropriate LCO for one inoperable SCIV in a penetration flow path with two SCIVs. Opening of drain valve 187391 and operation of blank flanges X-29-5-91 and X-29-5-95 will be controlled to prevent cross connecting ventilation zones. These three SCIVs prevent air leakage. The isolation of the penetration per the Technical Specification requirement is to assure that one of the above SCIVs is closed so that there is no air leakage.

When the RBCW temporary chiller piping is connected and full of water, the piping inside secondary containment forms the secondary containment boundary and the above listed SCIVs in Table B3.6.4.2-2 are no longer required for this system.

Note 3: These penetrations connect Secondary Containment Zone I to a No-Zone. When Secondary Containment Zone I is isolated from the recirculation plenum, the above listed SCIVs in Table B3.6.4.2-2 are no longer required.

Note 4: These penetrations connect Secondary Containment Zone IIto a No-Zone. When Secondary Containment Zone Il is isolated from the recirculation plenum, the above listed SCIVs in Table B3.6.4.2-2 are no longer required.

Note 5: These penetrations connect the Railroad Bay to a No-Zone. When the Railroad Bay is a No-Zone, the above listed SCIVs in Table B3.6.4.2-2 are no longer required.

N6te 6: These penetrations connect Secondary Containment Zone I to the Railroad Bay. The above listed SCIVs in Table B3.6.4.2-2 are not required ifthe Railroad Bay is a No-Zone and Zone I is isolated from the recirculation plenum OR ifthe Railroad Bay is aligned to Zone I.

Note 7: Due to a drain header containing multiple floor drains in different ventilation zones, drain plugs were installed in all of the drain header floor drains. To provide the passive Secondary Containment boundary only drain plugs in one ventilation zone are required to be installed.

SUSQUEHANNA-UNIT TS / BB 3.6-1 00b Revision 3