ML20213F601

From kanterella
Revision as of 01:31, 20 January 2021 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Rev 1 to Procedure PMP 6010.OSD.001, Offsite Dose Calculation Manual
ML20213F601
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 05/15/1986
From:
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To:
Shared Package
ML20213F589 List:
References
PMP-6010.OSD., PMP-6010.OSD.00, NUDOCS 8611140330
Download: ML20213F601 (99)


Text

--

. . . . . . . _ . . . . .i ... -

Penassaas .

./NDIANA ELECTRIC COMNNr

& MICHIGAN DONALD C COOK NUCLEAR PLANT

~

PROCEDURE COVER SHEET Procedure No. PMP 6010.0SD.001 Revison No. 1 Tm.E OFF-SITE DOSE CALCUI.ATION MANUAL SCOPE OF REVISION Revision 1 - Major revision - no marginal markings used.

Rearranged the procedure sections and information forms.

I Added Channel 9 High Range Noble Gas to SJAE and GSE, monitors. Updated MPC and energies in Attachment 3.14.

Updated v/Q and D/Q values for 1985. Incorporated the change sheets CS CS-7. Changed Information Sheets to Attach =ents and deleted the revision number from page 2 of Attachments 3.31 and 3.32. Two year review / revision. .

SIGNATURES REVISION NUMBER

            • REV. 1 REV. 2 REV. 3 REV. 4 PREPARED BY M DEPARTMENT HEAD /)A.

I APPROVAL // I" o i U N CON' RO

---' :) '-

INTERFACING DEPARTMENT jy --

HEAD CONCURRENCE  ;

CUALITY ASSURANCE , )'  !  :

SUPERVISOR APPROVAL ,w # N' . , ,

l

,,- i . '

js/f[,(, ' /,,v PLANT NUCLEAR -

/ l SAFETY COMMITTEE j Q11$$$$k$I$$$$15 p PDR j PLANT MANAGER APPROVAL /[/ '

Io APPROVAL. DATE [f 9/g EFFECTIVE CATE f ,'[,

-- -- --v--,.n,- -w- - , , - , - ,-n_ - , y._, , , , - - - --------my--,-- - - - - - , - - - - - - - - - - - - - - - - - - - - - ~ - - - - - - - - - - ,

PMP 6010.OSD.001 LIST OF EFFECTIVE PAGES PAGE NUMBER REVISION NUMBER AND DATE Page 1 of 41 Revision 1 Page 2 of 41 Revision 1 Page 3 of 41 Revision 1 Page 4 of 41 Revision 1 Page 5 of 41 Revision 1 Page 6 of 41 Revision 1 Page 7 of 41 Revision 1 Page 8 of 41 Revision 1 Page 9 of 41 Revision 1 Page 10 of 41 Revision 1 Page 11 of 41 Revision 1 Page 12 of 41 Revision i Page 13 of 41 Revision 1 Page 14 of 41 Revision 1 Page 15 of 41 Revision 1 Page 16 of 41 Revision 1 Page 17 of 41 Revision 1 Page 18 of 41 Revision 1 Page 19 of 41 Revision 1 Page 20 of 41 Revision 1 Page 21 of 41 Revision 1 Page 22 of 41 Revision 1 Page 23 of 41 Revision 1 Page 24 of 41 Revision 1 Page 25 of 41 Revision 1 Page 1 of 6 Revision 1 ,5/15/86

I PMP 6010.0SD.001 PAGE NUMBER REVISION NUMBER / EFFECTIVE CHANGE Page 26 of 41 Revision 1 Page 27 of 41 Revision 1 Page 28 of 41 Revision 1 Page 29 of 41 Revision 1 Page 30 of 41 Revision 1 Page 31 of 41 Revision 1 Page 32 of 41 Revision 1

( Page 33 of 41 Revision 1 1

Page 34 of 41 Revision 1 Page 35 of 41 Revision 1 Page 36 of 41 Revision 1 Page 37 of 41 Revision 1 I  :;,; :: .: m  :, . . ; ,. .

Page 39 of 41 Revision 1 Page 40 of 41 Revision 1 Page 41 of 41 Revision 1 ATTACHMENT 3.1 Page 1 of 1 Revision 1 ATTACHMENT 3.2 Page 1 of 1 Revision 1 ATTACHMENT 3.3 Page 1 of 1

  • Revision 1 ATTACHMENT 3.4 Page 1 of 1 Revision 1 Page 2 of 6 Revision 1 ,5/15/86

PMP 6010.OSD.001 PAGE NUMBER REVISION NUMBER / EFFECTIVE CNANGE ATTACHMENT 3.5 Page 1 of 1 Revision 1 ATTACHMENT 3.6 Page 1 of 1 Revision 1 ATTACHMENT 3.7 Page 1 of 1 Revision 1 ATTACHMENT 3.8 Page 1 of 1 Revision 1 ATTACHMENT 3.9 Page 1 of 2 Revision 1 Page 2 of 2 Revision 1 ATTACHMENT 3.10 Paga 1 of 1 Revision .

AMACEMEN" 3.11 Page 1 of 1 Revision 1 ATTACHMENT 3.12 Page 1 of 1 Revision 1 ATTACHMENT 3.13 Page 1 of 1 Revision 1 ATTACHMENT 3.14 Page 1 of 1 Revision 1 ATTACHMENT 3.15 Page 1 of 1 Revision 1 ATTACHMENT 3.16 Page 1 of 1 Revision 1 Page 3 of 6 Revision 1 5/15/86

l PMP 6010.05D.001 PAGE NUMBER REVISION NUMBER / EFFECTIVE CHANGE ATTACHMDTI 3.17 Page 1 of 1 Revision 1 ATTACHMENT 3.18 Page 1 of 1 Revision 1 ATTACHMENT 3.19 Page 1 of 1 Revision 1 ATTACHMENT 3.20 Page 1 of 1 Revision 1 ATTACHMENT 3.21 Page 1 of 2 Revision 1 Page 2 of 2 Revision 1 ATTACEMEN'" 3 . 2 2 2aga 1 ci 2 Aevision .

Page 2 of 2 Revision 1 ATTACHMENT 3.23 Page 1 of 2 Revision 1 Page 2 of 2 Revision 1 ATTACHME!r" 3. 24 Page 1 of 2 Revision 1 Page 2 of 2 Revision 1 ATTACHMENT 3.25 Page 1 of 1 Revision 1 ATTACHMENT 3.26 Page 1 of 1 Revision 1 ATTACHMENT 3.27 Page 1 cf 1 Revision 1 Page 4 of 6 Revision 1 5/15/86

~ ~

PMP 6010.OSD.001 I

PAGE NUMBER REVISION NUMBER / EFFECTIVE CHANGE ATTACHMENT 3.28 Page 1 of 1 Revision 1 ATTACHMENT 3.29 Page 1 of 1 Revision 1 ATTACHMENT 3.30 Page 1 of 1 Revision 1 I ATTACHMENT 3.31 Page 1 of 2 Revision 1 Page 2 of 2 Revision 1 AMACHMENT 3.32 Page 1 of 2 Revision 1 Page 2 of 2 Revision 1 ATTACT"E!"" 3 . 2 3 Page 1 of 3 Revis:.cn 1 Page 2 of 3 Revision 1 Page 3 of 3 Revision 1 ATTACHMENT 3.34 Page 1 of 1 Revision 1 ATTACHMENT 3.35 Page 1 of 1 Revision 1 ATTACHMENT 3.36 Page 1 of 1 Revision 1 ATTACHMENT 3.37 Page 1 of 1 Revision 1 Page 5 of 6 Revision 1, 5/15/86

I '

PMP 6010.OSD.001 PAGE NUMBER REVISION NUMBER / EFFECTIVE CHANGE ATTACHMENT 3.38 Page 1 of 5 Revision 1 Page 2 of 5 Revision 1 Page 3 of 5 Revision 1 Page 4 of 5 R.svision 1 Page 5 of 5 Revision 1 l

1 I  ;

l i

I 1

. I l

I Page 6 of 6 Revision 1, 5/15/86 l

l

e PMP 6010.CSD.001 INDIANA & MICHIGAN ELECTRIC COMPANY DONALD C. COOK NUCLEAR PLANT OFF-SITE DOSE CALCULATION MANUAL 1.0 OBJECTIVE The Off-Site Dose Calculation Manual (ODCM) is a supporting document to the Radiological Effluent Technical Specifications (RETS), as defined in NUREG-0472. The ODCM contains the methodology and parameters to be used in the calculation of offsite doses due to radioactive liquid and gaseous effluents and in the calculation of liquid and gaseous monitoring instrumentation alarm / trip setpoints. The ODCM provides flow diagrams detailing the treatment path and the major components of the radioactive liquid and gaseous waste management systems.

The CDCM also presents a map of the radiological environmental monitoring sample locations and the meteorological model used 3 to estimate the atmospheric dispersion and deposition 5 parameters. The CDCM specifically addresses the design characteristics of the Donald C. Cook Nuclear Plant based on the flow diagrams contained on the "OP Drawings" and plant

" System Description" documents.

1.1 The Technical Physical Sciences Department is r2:;onsible for implementation of the Off-Sita Ocsa calculation Manual. The Radiation Protection Section of the Technical Physical Sciences Department will conduct periodic review and update of the ODCM. Any design related change will be reviewed and approved by the Radiological Support Section Manager, AEPSC and forwarded to the Plant Radiation Protection Section for implementation.

2.0 REFERENCES

2.1 10CFR20, Standards for Protection Against Radiation.

2.2 10CFR50, Domestic Licensing of Production and Utilization Facilities.

2.3 12 THP 6010. RAD.001-011, Radiation Protection Environmental Sampling Procedures.

2.4 12 THP 6010. RAD.332, Liquid Waste Releases.

2.5 12 THP 6010. RAD.335, Gaseous Waste Releases.

2.6 12 THP 6010. RAD.548, RMS Setpoints.

2.7 PMP 6010 RAD.001, Radiation Protection Manual.

Page 1 of 41 Revision 1

PMP 6010.oSD.001 I

2.8 12 THP 6010. RAD.700, Radiation Protection Section Files and Document Control.

2.9 PMI 6010, Radiation Monitoring and Protection.

2.10 NUREC-0472 2.11 NUREG-0133 2.12 Regulatory Guide 1.109.

2.13 Regulatory Guide 1.111.

2.14 Regulatory Guide 1.113.

2.15 Final Safety Analysis Report (FSAR).

2.16 Technical Specifications, Appendix A, Sections 6.8.1.H; 6.15, Offsite Dose Calculation Manual.

2.17 Final Environmental Statement D. C. Cook Nuclear Plant, August 1973.

3.0 ATTACHMENTS 3.1 Characteristics and Functions of Raciation iioni;or R-is (Tag No. RRC-285).

3.2 Characteristics and Functions of Radiation Monitor R-19 (Tag No. DRA-300).

3.3 Characteristics and Functions of Radiation Monitor R-24 (Tag No. DRA-353).

I 3.4 Characteristics and Functions of Radiation Monitors 1R20/2R20 (Tag No. WRA713 and WRA714).

3.5 Characteristics and Functions of Radiation Monitors 1R28/2R28 (Tag No. WRA717 and WRA718).

3.6 Characteristics and Functions of the Unit Vent Effluent Monitor (VRS-1500/2500).

3.7 Characteristics and Functions of the Lower Containment Airborne Monitor (ERS-1300/2300).

3.8 Characteristics and Functions of the Lower Containment Airborne Monitor (ERS-1400/2400).

3.9 Characteristics and Functions of the Containment Area Radiation Monitor (VRS-1201/2201; 1101/2101).

i l

Page 2 of 41 I ,

Revision 1

PMP 6010.OSD.001 3.10 Character:i.stics and Functions of the Steam Jet Air Ejector Vent Monitor (SRA-1900/2900).

3.11 Characteristics and Functions of the Gland Steam Condenser Vent Monitor (SRA-1800/2800).

3.12 Plant Liquid Effluent Parameters.

3.13 Plant Gaseous Effluent Parameters.

3.14 Effective Gamma Energy per Disintegration and MPC of Selected Radionuclides.

3.15 Bioaccumulation Factor for Freshwater Fish.

3.16 Site Related Ingestion Dose Commitment Factor.

  • 3.17 Cround Average x/Q (sec/m3).

3.18 Deposition (1/m2),

3.19 Dose Factors for Noble Cases and Daughters.

3.20 Dose Parameters for Radiciodines and Radioactive Particulate, Gaseous Effluents.

3. 01 2.th..ay .";;3a 2 4. ar.ie tars for Radianuclides Other than Noble Gases, for Infant.

3.22 Pathway Dose Parameters for Radionuclides Other than Noble Gases, for Child.

3.23 Pathway Dose Parameters for Radionuclides Other than Noble Gases, for Teenager.

3.24 Pathway Dose Parameters for Radionuclides Other than E Noble Gases, for Adult. , E 3.25 Pathway Dose Factors Due to Radionuclides Other than Noble Gases (Maximum Dose Conversion Factor, Age Independent).

3.26 Graph cpm vs. pC1/ml for R-18 Waste Disposal Liquid.

3.27 Monitor Energy Calibration Curve.

3.28 Graph cpm vs. pCi/ml for R-19 Steam Generator Blowdown.

3.29 Graph cpm vs. pCi/ml for R-24 Steam Generator Blowdown Treatment.

3.30 Graph cpm vs. pCi/ml for R-20, R-28 Essential Service Water.

Page 3 of 41 Revision 1

PMP 6010.OSD.001

  • I 3.31 Liquid Effluent Release Systems.

3.32 Gaseous Effluent Release Systems.

3.33 Environmental Sampling Location Codes.

3.34 Maps of TLD, Air, and Water Sampling Stations on Plant Site.

3.35 Map of TLD Stations Within 4-5 Mile Radius of the Plant.

3.36 Map of TLD, Air, Drinking Water and Milk Sample Stations I Within a 20 Mile Radius.

3.37 Annual Evaluation / Update of X/Q values for all sectors.

3.38 Definitions of terms / variables for the ODCM.

4.0 DETAILS 4.1 Liquid Effluent Wastes:

4.1.1 The Donald C. Cook site is located on Lake Michigan. The lake provides supply and I discharge capacity for the plant's circulating water systam. Le pla...'s liquid effluen;s are discharged into the environment via six I

release points. Except for the Turbine Building Sump, all liquid effluents are discharged into Lake Michigan via the site's Circulating Water Discharge Tunnels. The I ,

Turbine Building Sump is discharged into the absorption field located southeast of the facility. Each effluent pathway and its discharge point are described below.

4.1.2 Identification of Liquid Effluent Release Points 4.1.2.1 Waste Disposal System Liquid Effluent Line (WDS)

The liquid processing portion of the WDS is shared by both units, 1 and 2 and discharges liquid effluents into I Lake Michigan. The liquid effluents are commonly processed by the Waste Evaporator Package. The liquids are I categorized as either " clean" or

" dirty" and wastes are generally segregated and processed on this basis. Liquid effluents originating Page 4 of 41 Revision 1

PMP 6010.CSD.001

~

from the Monitor Tanks, Waste I

Evaporator Condensate Tanks, Chemical l Drain Tank, and the Laundry and Hot E Shower Tanks are released via a radiation monitor R-18 (Tag No.

RRC-285) and liquid effluent flow monitoring device. The radiation monitor, upon a high level alarm, automatically terminates the liquid effluent release by tripping off the pumps of the Waste Evaporator condensate Tank, monitor tank pumps and closes discharge valve (RRV-285).

Discharge valve RRV-285 isolates all liquid effluent releases identified above. Attachment 3.1 presents the characteristics and functions of radiation monitor R-18 (RRC-285).

Attachment 3.31 schematically presents the sources of liquid effluents, major treatment systems, and their release points.

4.1.2.2 Steam Generator Blowdown and Blowdown Treatment System a) Steam Generat0r 310wdOwn Syster.

(SCBD)

During normal operation, the

. Steam Generator Blowdown System directs secondary side water to the normal Steam Generator g Blowdown Flash Tank. The 3 water is flashed to steam, approximately 30% of the fluid flashes to steam and 70%

remains liquid. When it enters the normal blowdown flash tank, i the steam is vented to the A Condenser and the liquid is i

directed to the blowdown

! treatment system. The steam is returned to the condensate l system via the unit turbine condenser. The fluid stream is directed to the blowdown l treatment pump, between the l pump and the tank. The radiation

(

monitor R-19 (Tag No. DRA-300) monitors the fluid stream via a sample line (Attachment 3.31).

Upon a high level alarm on Page 5 of 41 I

Revision 1

I ~

PMP 6010.OSD.001 R-19, each of the four blowdown I containment isolation valves and blowdown sampling lines and the single blowdown tank drain line valve DRV-350 are closed.

I Attachment 3.2 presents the characteristics of the radiation l

monitor R-19 (DRA-300).

b) Steam Generator Blowdown Treatment System (SGBTS)

The Steam Generator Blowdown Treatment System, during normal operations, directs secondary I ,

side water to the S/G Blowdown Flash Tank and to the three blowdown demineralizers. The treated S/G Blowdown effluents are released to Lake Michigan via the Circulating Water System through the Turbine Room I Sump Overflow. The S/G Blowdown Treatment Systems of Unit 1 and 2 can be cross-connected as is I necessary. In this mode of operation. the blowdown tank drain line valve (DRV-350) is closed. Radiation Monitor R-24 I (Tag No. DRA-353), located between the second and third S/G Blowdown Treatment demineralizers, upon a high I level alarm closes each of the four blowdown discharge line valves and each of the four sampling line valves, while the Blowdown Tank drain line valve (DRV-350) remains closed. l Attachment 3.3 presents the characteristics and functions 1 of radiation monitor R-24 l (DRA-353). Attachment 3.31 1 schematically presents the i sources of liquid effluents, l major system components, and '

its release point.

c) Start-up Flash Tank The start-up flash tank can be used 1

as necessary to maintain secondary chemistry and can be used during  ;

start-up from hot standby to full '

Page 6 of 41 Revision 1 I ,

i

PMP 6010.OSD.001 l

power and during abnormal operations.

I The S/G blowdown effluents are g released to Lake Michigan via the E Circulating Water System. In this mode of operation, the blow-down a

tank drain line valve (DRV-350) is opened. g The steam produced in the start-up flash tank is released to the atmosphere and the liquid E effluent is released to Lake Michigan W via the Circulating Water System and is monitored by R-19 (DRA-300), and E has the trip functions as described in 4.1.2.2a. See Attachment 3.31 g

for schematic diagram.

4.1.2.3 Essential Service Water System (ESW)

The Essential Service Water System, g shared by both units, provides g cooling for the Containment spray Heat Exchangers. The system also provides cooling to other heat transfer equipment which are not radioactive effluent sources.

l Circulating water is drawn from the E intake oices and routed through the 3 Heat Exenangers. The discharge side of the Heat Exchangers are returned to the Circulating Water Discharge pipe and is released into Lake l Michigan. Radiation Monitors 1R20, 1R28 (Tag No. WRA 713 and 717 for E Unit 1) and 2R20, 2R28 (WRA 714 and E 713 for Unit 2 ) sample the downstream flow from the containment Spray a Heat Exchangers. Upon a high radiation signal, each monitor trips E an alarm in the Control Room. Water sampling connections are provided E downstream of the Containment Spray B Heat Exchangers. Attachments 3.4 and 3.5, present the characteristics 3 and functions of Radiation Monitors g 1R20 (WRA-713) or 2R20 (WRA-714) and

.1R28 (WRA-717) or 2R28 (WRA-718).

Attachment 3.31 schematically presents the sources of liquid effluents, system components, and l

their release points.

Page 7 of 41 I

Revision 1 i

I '

~

PMP 6010.CSD.001 I '

'4.1.2.4 Turbine Building Sump System The Turbine Building Sump, shared by both units, collects leaks and drains from various secondary side systems. The collected waters are discharged by the turbine room sump pumps to the on-site absorption I field. The effluent discharge from the turbine room sumps is pH adjusted and sampled by a pH probe, capped I off to the drain line. Upon either high or a low effluent pH, the discharge is automatically terminated via closure of valve (DRV-710) and I the system is placed on recirculation mode. The effluent line is equipped with an automatic composite sampler

'I (DSX-740) and effluent flow meters (DFR-700). Attachment 3.31 schematically present the system ficw path and components. The I turbine room sump overflow is discharged into Lake Michigan.

4.1.3 Alarm Setpoint Determination For the purpose of implementing Technical Specifications 3.3.3.9 :nd 3.11.1.1 fcr 13 CFR 20, Appendix B, Table II, Column 2, instantaneous concentration limits, the alarm set points for liquid effluents released into unrestricted I areas will be established using the following methodology.

I 4.3.1.1 Waste Disposal System Liquid Effluent Line (Batch releases only)

The radioactivity concentration of each batch of radioactive liquid waste to be discharged shall be determined prior to the release by I sampling and analysis in accordance with Table 4.11-1 of Technical Specifications.

I The basic equation to calculate the variable setpoints for liquid effluents is cf

<C F+f -

(1)

Where:

Page 8 of 41 Revision 1

J' PMP 6010.OSD.001 I

c= the setpmint, in pCi/ml, of the radioactive monitor measuring the radioactivity concentration in the effluent line prior to l

dilution and subsequent release; the setpoint, which is proportional 3 3

to the volumetric flow of the effluent line and inversely proportional to the volumetric l flow of the dilution stream l plug the effluent stream, represents a value which, if exceeded, would result in concentrations exceeding the limits of 10 CFR 20, Appendix g B, Table II for the unrestricted g area.

f= the effluent flow rate as j measured at the radiation a monitor location, in volume per unit time, but in the same g units as F below (gpm). g Attachment 3.12 presents the effluent flow rate parameter.

F= the dilution water flow r?.te as estimated prior to the release point, in volume per unit time 3

( gpm ) . Attachment 3.12 presents the dilution flowrate parameters.

E The minimum available dilution water flow rate (F) is 230,000 gpm for one circulation pump in operation. For two or more pumps, the available dilution flowrates are:

2 circulation pumps - 460,000 gpm a 3 circulation pumps - 690,000 gpm g 4 circulation pumps (Unit 2 only)

, 920,000 gpm C= effluent concentration limit, technical specification 3/4.11.1, implementing 10 CFR 20 for the a site, in pCi/ml. g

, Since f< F, equation (1) can be rewritten as follows, to obtain the E minimum required dilution flow rate W for any discharge:

Page 9 of 41 Revision 1

I PMP 6010.OSD.001 F> -

cf C (2)

Substituting C , the tank concentration radionuclideifforc,andMPC maximum permissibleconcentrationradibn,uclidei, i for C, in equation (2), when C '

1 ,t yields: MPC g i

f F>I

~

MPC g i

(3) since the value of f is assumed l fixed, i.e., maximizes the effluent  ;

flowrate, for each discharge line, I the alarm setpoint, c, using the l

following equation (4) is computed with the derived value of F, as defined by equation (3).

c _< CF (MRP ) (4) 7 (SF)

I Where:

SF = an admir.tstrative operation safety factor, < 1.0 (established by Plant Radiation Protection Supervisor in specific effluent release procedures upon evaluation of each effluent pathway's parameters).

MRP = a weighed multiple release point factor, <l.0, such that when I all site releases are integrated, the applicable MPC will not be exceeded. That is, the sum of the MRP's for all liquid effluent I monitors is less than or equal to 1.

The MRP for each of the effluent release points will be assigned I based on operational performance or computed as follows:

C

.1) Compute (I iI j or each MPC g diluted effluent I stream, j, discharged into the environment.

Page 10 of 41 Revision 1

PMP 6010.OSD.001-C

2) Compute (I gI fran MPC g diluted effluent stream, T, discharged, into the environment.
3) Ratio 1) to 2) above to compute the MRP for each release point

.i .

4) Repeat steps 1) through 3) for each of the site's six liquid release points.

Normally no more than one tank is lined up for sampling or release simultaneously. But in case of an accident, combined liquid effluent discharges through radiation monitor R-18 (RRC-285), i.e., two or more tank leakages or discharges from either the Condensate (Monitor)

Tanks (CT), Laundry and Hot Shower Tanks (L), and Monitor Tanks (MT),

equation (3) is rewritten as follows to acc:modata each subsystem's effluent flow rate (f):

F 3 ((I i _fCT)

  • II i IL I
  • II i fE)I MPC f MC f MC g (5)

The condition for an acceptable single or combined release from one or more. subsystems is met if equations (3) and/or (5) are satisfi+3d. If 3 this condition cannot be met, the E intended discharges can proceed only if any one of the following conditions (1), (2), or (3) are sat.d.sfied:

-(1) Increase the minimum dilution flow rate, F, while maintaining a constant effluent flow rate, 3

E f.

I Page 11 of 41 I

Rrivision 1 g 3

I '

PMP 6010.CSD.001 I

(2) Decrease the maximum effluent flow rate, f, while maintaining a constant dilution flow rate F.

(3)

I Reprocess liquid effluents as is necessary.

For the purpose of transposing the I alarm set-point, c, in pCi/ml, to the average reading, in epm on the liquid effluent monitor, for the I radiation monitor R-18 (Tag No.

RRC-285) calibration curve shown in Attachment 3.26 will be used.

I -

In case of the waste disposal liquid monitor, the efficiency of the monitor is the concentration of the I equivalent radionuclide, which was used for calibration, in pCi/ml that corresponds with the monitor reading, in cpm. For any releases, the total concentration of gamma emitters mixture, in uCi/ml, is transposed to the monitor reading, in cpm, using I the relative detector efficiency (E) compared to that for the equitalant radionuclide.

I c ency for M nergy G E = Relative detector efficiency = Efficiency for the equivalent radionuclide W

G = is the weighted y-energy per disintegration for the mixture.

, 7 (Isotope concentration) (Ef fect.tve y-energy /dist. ) (7)

Total concentration The efficiency factor E can be obtained from the monitor energy I calibration curve, Attachment 3.27.

Attachment 3.14 presents isotopic effective gamma energy per I disintegration and their respective MPC's for a selected group of radionuclides.

I If no discharges are planned through this liquid effluent radiation monitor R-18 (Tag No. RRC-285), the I monitor set-point will be set (Reference 2.6) as close to the ambient background radiation level as practicable to prevent I

Page 12 of 41 Revision 1

PMP 6010.OSD.001 inadvertant releases, but yet high I

enough to prevent spurious alarms.

4.1.3.2 Steam Generator Blowdown and Blowdown Treatment System (Continuous releases) a) Steam Generator Blowdown (SGBD)

The radioactive concentration E of the S/G Blowdown System 3 effluent lines (Unit 1 or

2) shall be monitored by their respective Radiation Monitors R-19 (Tag No. DRA-300) and R-24 (Tag No. DRA-353) in the blowdown waste treatment system. Using equation (4),

the alarm setpoints, c SGBD' will be established as follows:

c SGBD I, ( }( }

'SGBD (8)

Where:

C= the effluent concentration limit 10 CFR 20 for the site, in pCi/ml. The value of C may be calculated as a weighted average MPC based on a specified radionuclide mixture and the following formula:

l Ic i

C= C g i (9)

MPC g Where C t is the concentration of radionuclide i and MPC f is g the value for the MPC of E radionuclide i as found in 10CFR20, Appendix B, Table II. Col. 2. If no radionuclide mixture is identified and documented, the value of C is taken as 1.0 x 10 7 pCi/ml if it is known that I-129, Ra-226 Page 13 of 41 I

Revision 1

l 1 I ~

PMP 6010.OSD.001 I .

and Ra-228 are not present.

See Note b, Table II, column 2, Appendix B, of 10 CFR 20.

I f SGBD

= the S/G Blowdown effluent flow rate at the radiation I monitor, in gpm.

Attachment 3.12 presents the I S/G Blowdown effluent flow rate under normal operation.

l l

I F= the dilution rate as estimated prior to the release point in gpm and i

l which varies as a function i of the number of operating i circulating water pumps  !

from both units. For the S/G Blowdown system, no additional dilution credit is being taken for I the S/G blowdown discharge.

.Sti?.chr.ent 3.12 precent:

the dilution flow rate

)

i parameters for both units.

I For the purpose of transposing 1

1 i

the alarm setpoint, c, in I pCi/ml to its corresponding monitor count rate, in cpm, the radiation monitor calibration I curve R-19 (Tag No. DRA-300) shown in Attachment 3.28 will be used.

I In the event of alarm trip, the S/G Blowdown System will be isolated. If releases are then I planned through the S/G Blowdown Treatment System, refer to b) below for the alarm setpoint determination of the S/G Blowdown Treatment System radiation monitor R-24 (Tag No.

, DRA-353).

lI

(

I Page 14 of 41 Revision 1

PMP 6010.OSD.001 b) Steam Generator Blowdown I

Treatment System (SGBDT)

The radioactive concentration of the S/G Blowdown System g1 effluent lines during the use of the normal blowdown flash B tank (Unit 1 or 2) shall be monitored by their respective radiation monitors R-24 (Tag No. DRA-353). Using Equation (8), the alarm setpoints will be established as follows:

c F (SF) (W)

SGBDT i  ;

f SGBDT (9) l where:

f -

e eam enerator j SGBDT blowdown treatment flow rate in gpm.

Use Attachment 3.12.

Where all the terms are as previously defined above.

For the purpose of transposing the alarm set-point, c, in -

E pCi/ml to its corresponding monitor count rate, in cpm, g

the radiation monitor calibration curve for R-24 (Tag No. DRA-353) l shown in Attachment 3.29 will W be used.

In the event of alarm trip, the S/G Blowdown Treatment System will be isolated.

4.1.3.3 Essential Service Water System (ESW)

(Continuous Release)

Since the Containment Spray Heat Exchangers (CSHE) are only used

.during LOCA, the alarm set-point methodology described below provides a safeguard alarm trip setpoint.

. I Page 15 of 41 I

Revision 1

I PMP 6010.OSD.001 I ~

The radioactive concentration of ESW effluents (Unit 1 or 2), shall be monitored by their respective Radiation Monitor, 1R20 (WRA-713)

I and 1R28 (WRA-717) for Unit 1 and 2R20 (WRA-714) and 2R28 (WRA-718) for Unit 2. Using oquation (8),

I the alarm setpoints will be established as follows:

c F ESW $ g (SF)

CSHE (10) and where:

f CSHE = the Containment Spray Heat Exchanger effluent flow I rate for each exchanger, in gpm. Attachment 3.12 presents the CSHE effluent flow rate.

F =

the dilution flow rate as I estimated prior to the release point, in gpm, and wnich varies as a function of the number cf operating circulating water pumps. For the CSHE

  • no additional dilution credit is taken from the following sources: Control Room Air Conditioning Condensers, Component Cooling Heat Exchangers, and Emergency Generator Diesel Engine Heat Exchangers.

and where the other terms are as previously defined above.

For the purpose of transposing the

, alarm setpoint, c, in uC1/ml to its I

'3 corresponding monitor count rate, E in cpm, the radiation monitors calibration curve (1R20-WRA713, 2R20-WRA714, 1R28-WRA717, jI 2R28-WRA718) shown in Attachment 3.30, will be used.

I Page 16 of 41 Revision 1

PMP 6010.OSD.001 In the event of an alarm trip, the I

CSEE will not be isolated. Each CSHE will be manually sampled to determine the origin and nature of the radioactivity. These steps and other corrective measures will have, as an objective, to minimize r'adioactive effluent releases into the environment.

4.1.3.4 Turbine Building Sump System The Turbine Building Sump effluent line is not equipped with a liquid radiation monitor. An automatic composite sampler is used to E determine tha effluent activity E concentration. The liquid effluents from the Turbine Building Sump System will follow the analysis program given in Table 4.11-1 of the Plant Technical Specifications (RETS).

4.1.4 Liquid Effluent Dose Calculations (10CFR50)

For the purcose of Imp'ementing Technical Specification 3.11.1.1, 3.11.1.2 and 3.11.1.3 the cumulative cose contributions from liquid effluents will be determined using the following me thodolo gy .

4.1.4.1 Dose Determination m

Dg =21.( Ago I y at t c gy Ff) ,

l

. (12)

I where:

D o = the cumulative dose commitment to the total body or any organ, o, from 3 the liquid effluents for E the total time period at, in mrem.

at =

l the length of the Ith time period over which C gy and l g F are averaged for all f

W liquid releases, in hours.

Page 17 of 41 Revision 1 g 3

I PMP 6010.OSD.001 I ~

C = the average concentration 11 of radio-nuclide, i, period t y , from any liquid release, in pCi/ml.

A. = the site related ingestion 1

dose commitment factor to the whole body or any I organ, o, for each identified principal gamma and beta emitter listed in RETS Table 4.11-1 in mRam/hr per pCi/ml.

I F 1 = the near Field average dilution Factor for C gy during any liquid effluent release. Defined in 4.1.4.2.

4.1.4.2 Dilution Factor Determination The near Field average dilution factor for C g is defined as follows:

F1= kWS (13)

(Few) (AF) where:

f =

I UW3 is the sum of actual release effluent path (s) flow rate from all liquid waste management systems discharging into Lake Michigan. The value of f ggg is computed as follows:

f ggg

= (fCT * 'L * 'MT *fSGBD + IESW) 18,040gpm = 20gpm + 20gpm + 150gpm

+ 350gpm + 2(8750 gpm)*

I F CW

= Circulating water system discharge flow rate based on the number of operating I circulating water pumps.

(230,000 gpm per pump, see page 8)

I Page 18 of 41 I Revision 1

. a

PMP 6010.OSD.001 AF =

Applicable Factor reflecting the mixing effect of the discharge structure. For once-thru-cooling systems, the AF Factor is set equal to 1, from NUREG-0133.

  • NOTE: ESW flows vary greatly a

according to plant / unit status. See paragraph g

6.2 of System Description SD.DCC-HP102.

4.1.4.3 Dose Factor Determination The site related ingestion dose commitment factor for the total body or critical organ, or, for the maximum exposed individual (adult) E is derived using the following E equation.

A gg = Kg (U p y +UF DF g (14)

BFf) where:

K = ua.i = ca""areiaa Sc*?r =

b m /' 86 ry U"

= maximum adult water consumption, 730 kg/yr.

Table E-5 of R.G. 1.109.

U = maximum adult fish consumption, 21 kg/yr.

Table E-5 of R.G. 1.109. i BF.

1

= bicaccumulation factor for radionuclide, i, in fish for fresh water site. See Attachment 3.15.

DF. = dose conversion factor for ,;

1 radionuclide, i, for -

adults and critical' organ, g; o, in mrem /pCi.

Table E-ll of R.G. 1.109.

From g I

I Page 19 of 41 Revision 1

E PMP 6010.055.001 D"

=

dilution factor at the I -

nearest potable water intake. A value of 2.6 is used for the Lake township intake located approximately 2800 feet SW of the station discharge points.

See page V-42 of reference 2.17.

Inserting the usage factors of R.G.

1.109 as appropriately into equation (14), the following equation is derived:

A gg = 1.14 x 105 (730/Dy + 21 BFg) DF g (15)

The value of A g9 for those elements I

listed in Attachment 3.15 are tabulated in Attachment 3.16.

4.1.4.4 Shore Line Activities Doses Based on the D.C. Cook nuclear power plant semi-annual radioactive effluent release reports, it has ceen snown tnat une exposures due to

. swimming and boating activities are less than 1% of the dose due to all l liquid effluents. See NRC regulations position C. in Regulatory Guide 1.109. Therefore, only shoreline activities are considered here.

Shoreline activities doses, Dgg, due to liquid effluents are determined, based on equation (A-6) of R.G. I 1.109, using the following methodology:

m 7

D 3 = 1.1' x IC Teg'4ji pU DFt=1I .ity [1 - exp(-A3)] (16) 1 where:

D = dose due to shore line 3b activities from deposited radionuclides, in mrem.

T4 = radiological half-life of

~

nuclide i, in days.

I Page 20 of 41 I .

Revision 1

P PMP 6010.OSD.001 C gt = the average concentration of radionuclide, i, in undiluted liquid effluent, in pCi/ml, during that time period, At. .

Wg =

lake-shore width factor accounting for the geometry 3 of exposure, 0.3, from the g Table A-2 R.G. 1.109.

U ap = shore-line usage factor specifying the exposure time for the maximum exposed individual 67 E hr/yr, for the teenager, from Table E-5, R.G.

3 1.109.

DF =

external dose factor for standing on contaminated ground for radionuclide 3 i, in mrem /hr per pCi/m a, g from Table E-6, R.G.

1.109.

M E

= mixing ratio expressed as the reciprocal of the I

dilution factor, D , at the point of exposure, dimensionless, t = time period for which b

sediments are exposed to the contaminated water, in hours, 1.31 x 105 hrs (15 years), from Table E-15, R.G. 1.109.

A. = radioactive decay constant 1

of nuclide i, in hr 1 E at.1 = is as previously defined.

E i=1 3 1.14 x 107 = 100,dd x los x los

  • der bed 87 hrs, from equations (A-5) and (A-6) from R.G. 1.109.

I I

Page 21 of 41 Revision 1

. . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _u

I PMP 6010.OSD.001 4.1.4.5 Dose Projection Doses due to liquid releases into unrestricted areas will be projected I once per calendar month. Equation (12) of Section 4.1.4.1 is used to project monthly doses based on anticipated or planned liquid effluent discharges.

Anticipated liquid effluent discharges are those discharges which are based on past operations experience and are recurrent. The liquid effluent concentrations for such discharges I are based on historical operational experience. Planned liquid effluent discharges are those discharges for I which the actual effluent concentration is known, for example, in the case of batch releases. With the anticipated or known effluent concentration, the projected dose is derived using equation (12). When projected doses exceed 0.06 mrem to the total body or 0.2 mrem to any organ, that effluent straa= .ill ha treated prior to discharge.

4.2 Gaseous Effluent Wastes 4.2.1 Gaseous effluent wastes, at the Donald C. Cook I site, are released to the atmosphere via the following pathways: Plant Unit Vent (2),

Condenser Air Ejector System (2), Turbine Gland Seal Condenser Exhaust (2), the Startup S/G Blowdown Flash Tank Vent (2) and S/G PORV (8).

4.2.1.1 All the gaseous effluent pathway radiation monitor alarm setpoints l will be determined using the equation (17). Normally, most setpoint alarms will be determined at maximum release flow.

4.2.1.2 when directed by the Radiation Protection Supervisor, the setpoints for the gaseous effluent pathways I may be recalculated for release flows less than maximum, using equation (17).

I Page 22 of 41 I .

Revision 1

PMP 6010.OSD.001 l'

4.2.2' I

Identification of Gaseous Effluent Release Points 4.2.2.1 Plant Unit Vent (PUV)

The plant unit vent discharges gaseous effluents from the following sources: Waste Gas Decay Tanks; Aux. Building Ventilation; Engineered Safety Features Ventilation; Fuel Handling Ventilation; Containment Purge and Relief Systems; and l Instrumentation Room Purge System. 5 The plant vent is equipped with a radiation monitor, Eberline SPING-4 g model [ Tag No. VRS-1500 (Unit 1),

VRS-2500 (Unit 2)], which collects 5 and measures particulates and Iodine-131 and measures the amount of noble gas in the passing effluent from all sources noted above. The l{

W particulate channel uses a fixed g collection filter, monitored by a g beta scintillation detector ( for background subtract purposes) on the other side. The Iodine-131 channel u::: : :h2r ::1 cartridge for collection and is monitored by a gain-stabilized (to minimize the 3 effects of drift caused by g fluctuations in ta=perature and/or aging) 2-inch by 2-inch NaI(Tl) gamma scintillation detector. The effects of a fluctuating noble gas measurement are determined by several detectors viewing a sample volume. These are the low and medium range noble gas detectors which view the same sample volume.

A high range noble gas detector utilizes a section of one-inch stainless steel tubing as the sample volume. The Minimum Detectable E Activity (MDA) of any radiation E channel is ten times the channel's calibration constant. Data less g than MDA level are to be considered background levels and insignificant g

for concentration, exposure rate, or release rate determinations. All l channels directly report their data e in the units of interest; e.g., pCi I

Page 23 of 41 Revision 1

PMP 6010.OSD.001 I l (particulate or iodine channel); i pCi/cc (noble gas channel); mR/hr or 1

l R/hr (area monitor channel); CFM (flow rate channel) and CPM (most

. background radiation channels).

Any channel (s) with automatic actuations will initiate those functions upon high alarm. The high radiation alarm occurs when the display value exceeds the high alarm I setpoint. Upon a high level alarm, the plant vent effluent monitor, low range noble gas channel (VRS-1505 or VRS-2505) automatically trips and closes the waste gas release valve (RRV-306).

I Attachment 3.6 presents the characteristics and functions of the plant unit vent effluent radiation monitor VRS-1500 (or VRS-2500).

Attachment 3.32 schematically presents the gaseous effluent flow paths and components.

The major gaseous effluent source contributors to the plant vent, which are equipped with gaseous I. radiation monitors, are described individually below.

a) Waste Gas System The Waste Gas System is shared I by both Units #1 and #2, and discharges gaseous effluents from any one of the eight gas I decay tanks via the plant vent.

Before the content of gas decay tank is released to the environment, it must be sampled I and analyzed. The tank content is discharged at a controlled rate to the plant vent through I a flow regulator (RRV-305),

isolation valve (RRV-306), and radiation monitor R-21 (Tag No.

RRA-300). The Waste Gas System I radiation monitor R-21 (Tag No.

RRA-300) is used for indication I

Page 24 of 41 I Revision 1

PMP 6010.OSD.001 l

~

only. VRS-1505, 2505 (see I

4.2.2.1) are the controlling radiation monitors for releases from the waste gas system.

b) Containment Purge and Exhaust Systems The Containment Purge System discharges gaseous effluents via the plant vent only periodically, during refueling g outage and during Containment 5t pressure relief, and is monitored by the plant vent radiation noble gas channel (VRS-1505 or VRS-2505). For the Containment system, the Lower Containment atmosphere is sampled by radiation monitors, Eberline SPING-4 model [ Tag No. ERS-1300, ERS-1400 (Unit 1); ERS-2300, ERS-2400 (Unit 2)]. The Upper Containment area is monitored by normal range area monitors

[ Tag No. VRS-1101, VRS-1201 l (Unit 1): '") S - 2101, ""S-2201 E

(Unit 2)]. A high radiation alarm occurs when the display g value exceeds the high alarm satpoint. The airborne or area g

monitor then automatically trips and isolates the Containment l Purge and Exhaust System. W Complete trip of all isolation control devices requires high 3 alarm of one of the two Train A E monitors (ERS-1300/2300 or VRS-1101/2101) and one of the two Train B monitors (ERS-1400/

2400 or VRS-1201/2201).

Attachments 3.6 - 3.9 present the E characteristics and functions of E these Containment radiation and area monitors and lists those valves which are closed on a high alarm signal. [ NOTE: Exceeding the high alarm setpoint will occur prior to exceeding the Technical Specification limits.] The setpoints for these monitors are contained in the Plant Technical Specifications, Appendix A.

Page 25 of 41 Revision 1

PMP 6010.OSD.001 4.2.2.2 Steam Jet Air Ejector System Steam Jet Air Ejector effluents are non-condensable gases discharged I locally to the environment via radiation monitor, Eberline SPING-4 models (Tag No. SRA-1900 (Unit 1),

SRA-2900 (Unit 2)]. A high alarm is actuated on these monitors when channel values exceed channel high alarm setpoints. The Condenser Air Ejector effluent flow is monitored by a recorder and a local sampling point is provided. Attachment 3.10 I presents the characteristics and functions of the Condenser Air Ejector System radiation monitor.

Information Sheet 3.32 schematically ,

presents the condenser air ejector effluent flow path and components.

4.2.2.3 Gland Seal Condenser Exhaust The Gland Seal Condenser effluents are non-condensable gases that are discharged to the environment through a local exnaust and are monitored via radiation monitor Eberline SPING-4 [ Tag No. SRA-1800 (Unit 1), SRA-2800 (Unit 2)]. An alarm is actuated on these monitors when channel values exceed channel high alarm setpoints. The Gland Seal Condenser effluent flow is monitored by a recorder and a local I sampling point for grab samples is provided.

Attachment 3.11 presents the characteristics and functions of the Gland Seal Condenser Exhaust radiation monitor. Attachment 3.32 schematically presents the Gland Seal Condenser effluent flow path and components.

4.2.2.4 S/G Blowdown System (Start-up Flash  ;

Tank Vent)  ;

The S/G Blowdown System discharges steam and non-condensable gases to l the environment via the S/G Start-up I

i i

l i

\

Page 26 of 41 l Revision 1

PMP 6010.OSD.001 I

~

I Flash Tank Vent. Attachment 3.32-schematically presents the gaseous effluent flow paths and start-up flash system components. The l

determination of the release rate and offsite doses due to radioiodines, via the start-up flash tank vent, are provided in Section 4.2.4.3.

4.2.3 Alarm Setpoint Determination For the purpose of implementing Technical E Specifications 3.3.3.10 and 3.11.2.1, E instantaneous concentration limits, the alarm setpoints for gaseous effluents released into unrestricted areas will be established using the following methodology. In addition, the gaseous effluent Technical Specifications do not apply to instantaneous alarm and trip l setpoints for integrating radiation monitors a sampling radiciodines, radioactive materials in particulate form and radionuclides other than noble gases. The calculated high level alarm and release termination setpoint adjustments may be established at lower Values than the calculated values, if so desired.

Attachment 3.13 presents the effluent fl 'e rate parameter.

4.2.3.1 Plant Unit Vent The gaseous effluents discharged from the plant vent will be monitored by the plant vent radiation monitor low range noble gas channel [ Tag No.

l VRS-1505 (Unit 1), VRS-2505 (Unit 3 2)] to assure that alarms and trip 5 actions (isolation of gaseous release) will occur prior to exceeding the E Technical Specifications noted g above. The alarm setpoint values will be established using the following equation:

(SF)(MRP)(DL$ ) (17)

P F p X/Q Z (Wi x DGij) where:

I Page 27 of 41 Revision 1

I ~

PMP 6010.OSD.001 S = the maximum setpoint of the 9 monitor in pCi/cc for release point p, based on the most limiting organ.

SF = an operating safety factor,

{l.0. (see page 10)

I MRP= a weighed multiple release point factor (<1.0), such that when all site gaseous releases I are integrated, the applicable dose will not be exceeded based on the release rate of each effluent point. The MRP will I be based on the release rate or the volumetric flow rate of each effluent point to the I total respective value and will be consistent with past operational experience. Tha MRP is computed as follows:

1) compute the average release rate, Q, (or the p

I volumetric flow rate, f) p from each release point p.

2) compute I4 (orIf )all release pointe. for

3) ratio Qp /IQp (or pf /Ifp) for each release point.

This ratio is the MRP for that specific release point.

4) repeat 1) through 3) for each of the site's eight gaseous release points.

F = the maximum volumetric flow P rate of release point p, at the time of the release in cc/sec.

I The maximum Unit Vent flow rate, by design, is 159,600 cfm for Unit 1 and 123,500 cfm for j Unit 2.

l I Page 28 of 41  ;

I Revision 1

PMP 6010.OSD.001 I

DL.= dose rate limit to organ j in g 3

an unrestricted area required g to limit the dose to the -

applicable limit (mrem /yr).

Based on continuous releases, the dose rate limits, DL , from Tech.

3 Spec. 3.11.2.1, are as follows:

Total Body 5 500 mrem / year Skin 5 3000 mrem / year Any Organ 1 1500 nRem/ year x/Q= the annual average relative concentration in the applicable sector or area, in sec/m3 (see Attachment 3.17). The X/Q values will be re-evaluated Ei g

on an annual basis. The '

re-evaluation will include determination of the worst sector. If the new worst sector x/Q value is less than the previous year worst x/Q value, no change is required.

O therwis e , the offsite Cose Calcula:1:n Manual and the g Gaseous Release Program will g be modified accordingly (see Attachment 3.37).

W.

1

= weighted factor for the radionuclide:

C 1

Wg = Ic*k (18) where C. = concentration of 1

I radionuclide i, and k has the range of all identified radionuclides in that release pathway.

DCF..= dose conversion factor which is 13 used to relate radiation dose to organ j, from exposure to radionuclide i in mrem /yr per pCi/m3 See Equations 19 to 21.

Page 29 of 41 Revision 1

PMP 6010.OSD.001 l

The dose conversion factor, DCF l I

ij, is dependent upon the organ of l concern.

I For the whole body:

DCF 13 = Kg (19) where:

K. = whole body dose factor due to I 1 gamma emissions for each identified noble gas radionuclide in mrem /yr per pCi/m a. See Attachment 3.19.

For the skin:

DCF g3 = Li + 1.1 Mg (20) where:

L.1 = skin dose factor due to beta emissions for each identifiad noble gas radionuclide, in mrem /yr per pCi/m3 See Attachment 3.19.

1.1= the ratio of tissue to air absorption coefficient over the energy range of photons of interest. This ratio converts dose (mrad) to dose equivalent (mrem).

I M. = the air dose factor due to 1

gamma emissions for each identified noble gas radionuclide in mrad /yr per pCi/m3 See Attachment 3.19.

For the thyroid, via inhalation:

DCFg3 = Pg (21)

'where:

P. = the dose parameter, for 1

radionuclides other than noble I gas, for the inhalation pathway in mrem /yr per pCi/m3 Attachment 3.20.

See I Page 30 of 41 Revision 1

PMP 6010.OSD.001 The plant vent radiation monitor low range noble gas channel setpoint, Sp, will be set such that the dose rate in unrestricted areas to the whole body, skin and thyroid (or any other organ), whichever is most limiting, will be less than or equal to 500 mrem /yr, 3000 mrem /yr, and g 1500 mrem /yr, respectively. The g thyroid dose is limited to the inhalation pathway only. The plant vent radiation monitor low range Ej noble gas channel setpoint, Sp, will E be recomputed whenever gaseous ~

releases from the containment and gas decay tanks are discharged through the plant vent to redetermine the most limiting organ.

The setpoint, Sp, may be established <

at less concentration level than the lowest computed value via equation 17.

At certain times, it may be desirable to increase the setpoint, if the vent flowrate is decreased and this may be accomplished in one of two ways.

a) (Max. Concentra tion-pCi/ ce ) # Max. Flowrate-efm)

(New Max. Concentration-pCi/cc)

= New Max. Flowrate in efm b) (Max. Flowrite-efm)(Max. Concentration pCi/ce)

(New Max. Flowrate-cfm)

I

= New Max. Concentration in pCi/cc

, a) Waste Gas System Decay Tanks The gaseous effluents discharged or leakage from the Waste Gas System will be monitored by E the waste gas radiation monitor E R-21 (Tag No. RRA-300).

The waste gas radiation monitor alarm setpoint will be set as close to the ambient background radiation level as practicable to monitor any inadvertant releases through this pathway Page 31 of 41 Revision 1 '

I '

PMP 6010.OSD.001 rI from an tanks, yifofnothedischarges gas decayare I planned, but yet high enough to prevent spurious alarms (2x background, Reference 2.6.

The automatic termination of release from the Waste Gas I System will be initiated from the plant vent radiation monitor low range noble gas I channel (VRS-1505 or VRS-2505).

Therefore, for any gaseous release configuration, which l

I include normal operation and I waste gas system gaseous discharges, the alarm setpoint of the plant vent radiation monitor will be recomputed to I determine the most limiting organ based on all gaseous effluent source terms.

b). Containment Purge and Exhaust System The gaseous effluents discharged by the Containment Purge and Exhaust Systems and I Instrumentation Room Purge and Exhaust System will be monitored by the plant vent radiation I monitor noble gas channels (VRS-1505 for Unit 1, VRS-2505 for Unit 2); and alarms and trip actions will occur prior I to exceeding the Technical Specifications 3.3.3.10 and 3.11.2.1.

l For the Containment System, continuous air sample from the f Containment atmosphere is drawn through a closed, sealed system to the radiation monitors (Tag No. ERS-1300/1400 for I Unit 1 and ERS-2300/2400 for Unit 2).

constantly mixed in the fixed, The sample is I .

shielded volume, where it is viewed by the monitor detector.

The sample is then returned I

Page 32 of 41 I .

Revision 1

I l'

PMP 6010.OSD.001 .

back to the Containment. Grab sample analysis is also performed for a Containment purge before release.

The Upper Containment area is also monitored by normal range I

area gamma monitors (Tag No.

VRS-1101/1201 for Unit 1 and VRS-2101/2201 for Unit 2),

which also give Purge and Exhaust Isolation Trip signals upon actuation of their high alarm.

For the Containment Pressure Relief System, no sample is routinely taken.

The Containment airbcrne and area monitors, upon actuation of their high alarm, will automatically initiate closure of the Containment and Instrument Room purge supply and exhaust duct valves and Containment pressure relief system valves.

Complete trip of all isolation control devices requires high alarm of one of the two Train A monitors (ERS-1300/2300 or VRS-1101/2101) and one of 3 the two Train B monitors 5 (ERS-1400/2400 or VRS-1201/2201).

4.2.3.2 Condenser Air Ejector System I The gaseous effluents from the Condenser Air Ejector System 3

i discharged to the environment are E

continuously sampled by radiation monitor (Tag No. SRA-1900 for Unit 1 and SRA-2900 for Unit 2). The monitor will alarm prior to exceeding the

. Technical Specifications 3.3.3.10 and 3.11.2.1. The alarm setpoint for the Condenser Air Ejector System monitor will be based on the maximum air ejector exhaust flow rate, by design (200 cfm). The alarm setpoint value will be established using the following equations:

Page 33 of 41 E Revision 1 E

i PMP 6010.OSD.001 I

(SF)(MRP)(DL3 ) (22)

~

CMS = Fp X7@ I (Wi x DCF i ))

where:

S' M3 = the maximum setpoint for the Condenser Air Ejector System radiation monitor, based on the most limiting organ, in pCi/cc.

and where the other terms are as previously defined. See equations 17 through 21.

4.2.3.3 Gland Seal Condenser Exhaust (GSCE)

I The gaseous effluents from the Gland Seal Condenser Exhaust discharged to the environment are continuously I sampled by radiation monitor (Tag No. SRA-1800 for Unit 1 and SRA-2800 for Unit 2). The radiation monitor will trip an alarm prior to exceeding I the Technical Soecifications 3.3.3.10 and 3.11.2.1. The alarm setpoint for the GSCE monitor will be based on I the maximum condenser exhaust flow rate (1260 CFM Unit 1, 2754 CFM each for the two Unit 2 vents). The alarm setpoint value will be established l using the following equations:

(SF)(MRP(DL3 ) (23) 3 F X, Q p (Wg x CCFij) where:

S the maximum setpoint for I GSCE =

the Gland Seal Condenser Exhaust radiation monitor, based on the most limiting organ, in pCi/cc.

and where the other terms are previously defined. See Equations 17 through 21.

I Page 34 of 41 Revision 1

r g

PMP 6010.OSD.001

4. 2 . 4' Gaseous Effluent Dose Calculations (10CFR50)

For the purpose of implementing Technical -

Specification 3.11.2.2, 3.11.2.3 and 3.11.2.4, E the cumulative dose' commitment due to gaseous B effluents will be determined using the following methodology.

4.2.4.1 Noble Gases Air Ocse The air dose in unrestricted areas l due to noble gases, for gamma and W beta emitters, D AG and D AB' respectively, will be determined as E follows: B a) Gamma Radiation DAG

  • 3*17
  • 1c"* Z Mi X/Q Q ic I 4}

b) Sota Radiation Dg = 3.17 x 10 8 IN i X/Q Qg (25) where:

M 1 = a:.: dose factor due to gamma emissions for each identified noble gas radionuclide, in mrad /yr per pC1/m3 See 3 Attachment 3.19. g N. = air dose factor due to beta 1

emissions for each identified l noble gas radionuclide in mrad /yr per pCi/m3 See Attachment 3.19.

l X/Q= the annual average relative l concentration in the applicable section or area, in sec/m3 See Attachment 3.17 for those critical sector locations.

Q.ic = the cumulative release of noble gas radionuclide in gaseous effluents from all release points over the calendar g:arter or year, in pCi.

Page 35 of 41 Revision 1 1

PMP 6010.OSD.001 I

3.17 x 10 s = inverse of the number of seconds per year.

The air doses due to either gamma or beta emissions, once calculated I using equation (24) and (25) will be compared for compliance to the limiting condition for operation as I specified in Technica'. Specification 3.11.2.2 for the current calendar quarter and calendar year.

I 4.2.4.2 Radiciodine and Radioactive Particulate Doses The dose, D 7p to an in&Mual from I radioiodines, radioactive materials in particulate form, and radionuclides other than noble gases with half-lives I greater than 8 days in gaseous, effluents released to unrestricted I areas will be determined as follows:

D7p = 3.17 x 10 a I Rg WQ ic (26) where:

Ri = dose factor for each identified I -

radionuclide i, in m2 (mrem /yr) per pCi/sec (for food and ground pathway) or mrem /yr per yCi/m3 ( for inhalation pathway),

I for the appropriate pathway.

For sectors with existing pathways within 5 miles from I the site, use the values of R g for these real pathways. If no real pathway exists within 5 I miles from the site, use the cow milk R g for the critical age group, infant or child, assuming that this pathway I exists at the 4 to 5 mile distance in the worst sector.

I If the R g value for an existing pathway within 5 miles is less than the cow milk pathway at 4 to 5 miles, then use the cow I milk pathway R value at 4 to 5 1

miles. See Attachments 3.21 I Page 36 of 41 Revision 1

PMP 6010.OSD.001 I through 3.24 for each specific age group and exposure pathway.

Attachment 3.25 presents maximum Rg values for the most controlling age group for selected radionuclides. Rg values generated by computer code PARTS, see NUREG-0133, Appendix D. l w= the atmospheric dispersion I parameters for estimating doses to an individual at the worst case location, and where W is further defined as:

in = X/Q for the inhalation W.

pathway, in sec/m3 W

g9 = D/Q for the food and ground pathways, in 1/m2, I See Attachments 3.17 and 3.18 for those critical receptor locations.

I and Q,_ is as previously defined above-'

The individual doses from radiciodines and radioactive materials in particulate forms, and radionuclides other than noble gases, once calculated using I equation (26), for the appropriate exposure pathway, will be compared I for compliance to the limiting condition for operation as specified in Technical Specification 3.11.2.3 for the current calendar quarter and calendar year.

4.2.4.3 Steam Generator Blowdown System (Start-up Flash Tank Vent)

.The release of radiciodine(s) via the Start-up Flash Tank Vent must I comply with Technical Specification 3.11.2.3. The estimation of the dose to be released must be I calculated once every 31 days prior to the use of the Start-up Flash Tank, for the next 31 day period.

Page 37 of 41 Revision 1 l -

I PMP 6010.OSD.001 I

The dose estimate will be derived g from the measured concentration of M I-131 in the secondary coolant system. The concentration of I-131 g will be determined using equation g (27). The concentration will be set to the quarterly dose available for the calendar quarter, and a continuous use of the Start-up Flash Tank for a period of 31 days. The allowable concentration of I-131 will be recalculated after the 31 day cumulative dose summary as per Technical Specification 4.11.2.3.

The secondary coolant will be sampled as per Technical Specification 4.7.1.4. The calculation of the I-131 concentration (C7 ) is used to verify that the annual average concentration in air for I-131, in unrestricted areas, will not 3

exceed the dose limit. For a specific release pathway, the g

equation (26) is rewritten as follows:

DL7 = 3.17 .x 10J R 7 Q IC I I j where:

DL = the dose limit to an I

individual from radiciodines, i.e., 7.5 mrem per calendar quarter or 15 mrem per calendar year to any organ.

3.17 x 10 8 = inverse of the number of second per year.

R = inhalation dose factor of I

I-131 for infant or child in (mrem /yr) per pci/m3 g for this specific pathway. W See Attachments 3.21 and 3.22.

W = X/Q for the inhalation pathway sec/m3 See Attachment 3.17.

l I Page 38 of 41 Revision 1

s PMP 6010.OSD.001 I =

Q IC the cumulative release of I I-131 in gaseous effluents from this release point over the calendar quarter or year, in pci. The value of Q IC is computed as follows:

Qge = (C7)(IPF)( M )(RSGB)( ) (28) where:

=

C 7 the I-131 concentration of the secondary coolant in pCi/ml.

MRP = a multiple release point factor, such that when all gaseous releases are I integrated, the applicable dose rates w:.11 not be I exceeded.

4.2.3.1.

See Section IPF = the iodine partition I factor for the Start-up Flash Tank. A va ue ci 0.05 is assumed as per NUREG-0017.

R RGB = the Steam Generator Blowdown rate to the I Start-up Flash Tank, in ml/sec.

I T = duration of release through the Start-up Flash Tank Vent, in seconds.

To calculate the allowable I-131 concentration (C7), the equation is rewritten as follows:

C =. I I 3.17 x 10 5 R7 ( IP F ) ( MRP ) ( RSGB ) ( T ) ( W )

(29)

I Page 39 of 41 Revision 1

PMP 6010.OSD.001 I

4.2.5 Dose Projection I

Doses due to gaseous releases into unrestricted areas will be projected once per calendar month. Equations (24, 25 and 26) of Sections 4.2.4.1 and 4.2.4.2 are used to project E monthly doses based on anticipated or planned 3 gaseous effluent discharges. Anticipated

~

gaseous effluent discharges are those discharges which are based on past operations experience and are recurrent. The gaseous effluent concentrations for such discharges E are based on historical operational experience. E Planned gaseous effluent discharges are those discharges for which the actual effluent a concentration is known, for example, in the g, case of batch releases. With the anticipated or known effluent concentration, the projected dose is derived using equations (24, 25 and g 26). When projected doses exceed 0.2 mrad for 5 gamma radiation, or 0.4 mrad for beta radiation or 0.3 mrem to any organs, that effluent g stream will be treated prior to discharge. g 4.3 Radioactive Effluents Total Dose For the purpose of implementing Technical Specifica".icn 3.11.4, the cumulative dose contributions from liquid and gaseous effluents will be determined by summing the g i

cumulative doses as derived in Sections 4.1.4 and 4.2.4 of this procedure. Dose contribution from direct g radiation exposure will be based on the results of the direct radiation monitoring devices located at the environmental monitoring stations. See NUREG-0133, Section 3.8.

4.4 Radiological Environmental Monitoring For the purpose of implementing Technical Specifications, 4.12.1, Surveillance Requirements, the radiological environmental monitoring samples will be collected at the locations as shown in Attachments 3.34-3.36 and location codes shown in Attachment 3.33. .

4.5 Meteorological Model l

The meteorological model used to estimate the atmospheric dispersion and deposition parameters at the Donald C.

Cook Nuclear Plant is based on the guidance provided in Regulatory Guide 1.111 for routine release. More 3 specifically, each release point is considered separately 5 so that the height of release, level, building wake conditions and vent characteristics are accounted for.

All calculations use the Gaussian plume model.

Page 40 of 41 Revision 1

. 3 l

PMP 6010.OSD.001 4.6 Reporting / Management Review 4.6.1 Any changes to this procedure must be incorporated in the semi-annual effluent report. .

4.6.2 This procedure must be updated when the Radiation Monitoring System, its instruments, I or the specifications of instruments are changed.

4.6.3 This procedure must be reviewed or revised as I appropriate based on the results of the land use census and Environmental Radiological Monitoring Program.

I ~

I I .

I I

I" '

I I .

I '

~

~

Page 41 of 41 Revision 1

PMP 6010.0SD.001 ATTACHMENT 3.2 CHARACTERISTICS AND FUNCTIONS OF THE RADIATION MONITOR DRA-300 (R-19)

ALARM LOCATION I

CONTROL ROOM MONITOR DESCRIPTION S . OR BLOWOW EFFME LINE INLINE LIQUID SAMPLE DETECTOR LOCATION ESW - EFFLUENT LINE j

120 VAC, DIST. CABINET CCRP-2, POWER SOURCE CIRC-20 CHECK SOURCE, ASSEMBLY SUPPLIED FROM CCRP-2, CIRC.22

( for each unit) l W

SCALE 5 DECADES RANGE 2.4E-6 to 2.4E-1 pCi/cc l

IDENTIFICATION NUMBER (R-19)  ;

~"UENT ISOLATICN

- .:. " B G. ISO ION DCR-310, DCR-320, COEROL DEWCE DCR-330, DCR-340, DRV-350; S.G.BLDN SAMPLE ISO. VL7. 301,302,303,304 LOCATION OF DEVICE S.G. BLDN EFFLUENT LINE PO%T:.R SCURCE N 'A IDENTIFICATION NUMBER l

I I

I I

I I

Page 1 of 1 I

Revision 1

.-:- . . . . . . ~ . . . . .

X I

PMP 6010.OSD.001 ATTACEMENT 3.3 CHARACTERISTICS AND FUNCTIONS OF THE. RADIATION MONITOR DRA-353 (R-24)

ALARM LOCATION CONTROL ROOM I MONITOR DESCRIPTION STEAM GENERATOR BLOWDOWN TREATMENT EFFLUENT LINE INLINE LIQUID SAMPLE DETECTOR I LOCATION SG BLDN TREATMENT EFFLUENT LINE*

120 VAC, DIST. CABINET CCRP-2, O m SOMCE CIRC-20 CHECK SOURCE, ASSEMBLY I SCALE SUPPLIED FROM CCRP-2, CIRC.22.

(for each unit) 5 DECADES RANGE 1.4E-6 to 1.3E-1 pCi/cc IDENTIFICATION NUMBER (R-24)

BLDG. ISOLATION DCR-310, DCR-320, EFFLUENT ISOLATION DCR-330, DCR-340, DRV-350 S.G.

CONTROL DE*/ ICE BLDN SAMPLE ISO. VLV. DCR-301, 302. 303. 304 LOCATION OF DEVICE POWER SOURCE PNEUMATIC IDENTIFICATION NUMBER I

  • NOTE:

Placed inline between the second and third blowdown waste treatment demineralizers.

I I

~

I I

Page 1 of 1 Revision 1

.g g.

. , i:. . . ; ;- ,

PMP 6010.OSD.001 ATTACHMENT 3.4 CHARACTERISTICS AND FUNCTIONS OF THE RADIATION MONITOR WRA-713 and WRA-714 (R-20)

ALARM LOCATION CONTROL ROOM MONITOR DESCRIPTION SERVICE WATER SYSTEM EFFLUENT LINE (ESSENTIAL SERVICE WATER)

LOCATION ESW - EFFLUENT LINE I TEE INLINE LIQUID SAMPLE DETECTOR 120 VAC, DIST. CABINET CCRP-2, OER SOHCE CIRC-20 CHECK SOURCE, ASSEMBLY g SUPPLIED FROM CCRP-2, CIRC.22.

( for each unit) 3 SCALE 5 DECADES RANGE g

W _5 2.4E-6 to 2.2E-1 pCi/cc h

IDENTIFICATIGN NUMBER (R-20)

EFFLUENT ISOLATION CCNTROL DEVICE NOE LOCATION OF DEVICE POWER SOURCE N/A IDENTIFICATION NUMBER --

I I

I I

I I

I Page 1 of 1 g Revision 1 5

T PMP 6010.OSD.001 I ATTACHMENT 3.5 CHARACTERISTICS AND FUNCTIONS OF THE RADIATION MONITOR WRA-717 and WRA-718 (R-28)

ALARM LOCATION CONTROL ROOM I MONITOR DESCRIPTION SERVICE WATER SYSTEM EFFLUENT LINE (ESSENTIAL SERVICE WATER)

TEE INLINE LIQUID SAMPLE DETECTOR LOCATION ESW LINE 120 VAC, DIST. CABINET CCRP-2, CIRC-20 CHECK SOURCE, ASSEMBLY I POWR SOWCE SUPPLIED FROM CCRP-2, CIRC.22.

( for each unit)

SCALE , 5 DECADES RANGE 2.4E-6 to 2.2E-1 pCi/cc IDENTIFICATION NUMBER (R-23)

EFFLUENT ISOLATICN CON'RCL DEVICE NONE LOCATION OF DEVICE --

PCWER SOCRCE N/A IDENTIFICATICN NUMBER I

I I

I I

I Page 1 of 1 Revision 1 iI

,.  : ~+ -

.;..., -~. .

PHP 6010.0SD.001 ATTACHMENT 3.6 CHARACTERISTICS AND FUNCTIONS OF THE UNIT VENT EFFLLT.NT MONITOR VRS-1500 (UNIT #1)

VRS-2500 (UNIT #2)

Alarm Location Control Room and Local Monitor Type, Location SPING-4, El. 650' Power Source 120 Vac. Dist. Cabinet CCRP-2, CJRC-1 Sample Pump Supplied from 120 Vac. Dist. Pan. 1-AFV (2-A W for Unit 2), CKT #5 Scale CRT or Control Terminal Printout Channel No., Type (Range) #01, Beta Particulate, (1.5E-4 to 1.5 pCi)*

  1. 02, Alpha Particulate Subtract 903, Iodine-131, (2.3E-4 to 2.3 pCi)*
  1. 04, Iodine Subtract
  1. 05, Noble Gas-Low Range, (IE-7 to 4E-2 l

=

pCi/cc)*

  1. 06, Local Area Monitor, (2E-3 to 2E2 mR/hr) 407, Noble Gas-Mid Range, (2.5E-2 to IE3 E pCi/ce) 3
09, '!ccle 3as-Hi4.. Range, (1 to IE5 pCi,cc) d10, Unit Vent Eff'.uent Flow Rate (CFM)

Standard Sample Flow Rate 50 LPM (low), 60 LPM (normal), 70 LPM (high)

Automatic Trip Functions + Channel 45 Trips, Close Valve 12-RRV-306 (High Alarm)

Location of Isolation Waste Gas Decay Tank Discharge Control Device Technical Specification Table 3.3-13 (Items 3a, 3b 3c, Sa)

References Diagram References 5104F, 5148, 98818, 98820

  • Channel setpoints are calculated using this manual methodology.

Page 1 of 1 g Revision 1 3

1 PMP 6010.0SD.001 ATTACHMENT 3.7 I CHARACTERISTICS AND FUNCTIONS OF THE LOWER CONTAINMENT AIRBORNE MONITOR ERS-1300 (UNIT #1) i ERS-2300 (UNIT #2)

Alarm Location Control Room and Local Monitor Type, Location SPING-4, El. 591', Train A I Power Source 120 Vac. Dist. Cabinet CRID II, CKT #13 Sample Pump Supplied from 120 Vac. Dist. Pan. 1-AFW (2-AW for Unit 2), CKI #3 Scale CRT or Control Terminal Printout Channel No., Type (Range)

I #01, Beta Particulate, (1.5E-4 to 7.5 pCi)*

  1. 02, Alpha Particulate Subtract
  1. 03, Iodine-131, (2.3E-4 to 2.3 pCi) 404, Iodine Subtract I #05, Noble Gas-Low Range, (IE-7 to 4E-2 pCi/cc)*

406, Local Area Monitor, (2E-3 to 2E2 mR/br) 107, Noble Gas-Mid Range, (2.5E-2 to IE3 pCi/cc) 109, Noble Gas-Hizh Range. (1 to IES uCi/cc) 410, Containment Hign Rande Area denttar, Ei.

650' (R/hr)t Standard Sample Flow Rate 50 LPM (low), 60 LPM (normal), 70 LPM (high)

Automatic Trip Functions Channels #1, 3 and 5 Trips, Close Valves (High Alarm) VCR-101, 102, 103, 104, 105, 106, 107; Fan HV-CIPS-1 off Location of Isolation Containment Purge, Containment Relief Control Device Exhausts Technical Specification Table 3.3-3 (Item 3.c.2); Table 3.3-6 (Items References 1.b . i, 1.b . ii, 2. a . u. , 2. a . iii) ; Table 3. 3- 13 (Items 4.a, 4.b); 3.a.6.1.a; 3.4.6.1.c; 3.9.9 Diagram References 5104F, 5147A, 98817 I

  • Channel setpoints are calculated using this manual methodology.

I Page 1 of 1 I Revision 1

r PMP 6010.0SD.001 AITACHMENT 3.8 CHARACTERISTICS AND FUNCTIONS OF THE LOWER CONTAINMENT AIRBORNE MONITOR ERS-1400 (UNIT #1)

ERS-2400 (UNIT #2)

Alarm Location Control Room and Local Monitor Type, Location SPING-4, El. 573', Train B Power Source 120 Vac. Dist. Cabinet CRID III, CKT #14 Sample Pump Supplied from 120 Vac. Dist. Pan. g 1-ELSC (2-ELSC for Unit #2), CKT #7 g Scale CRT or Control Terminal Printout Channel No., Type (Range) 401, Beta Particulate, (1.5E-4 to 7.5 pCi)*

102, Alpha Particulate Subtract I

403, Iodine-131, (2.3E-4 to 2.3 pCi) g 404, Iodine Subtract 405, Noble Gas-Low Range, (IE-7 to 4E-2 3

pCi/cc)*

406, Local Area Monitor, (2E-3 to 2E2 mR/hr) d07, Noble Gas-Mid Range, (2.5E-2 to IE3 pCi/cc) voy, .iooie tias-Hign Range, (1 to 1E5 pCuc ,

410, Containment High Range Area Monitor l a

9 El. 612' (R/hr>*

Standard Sample Flow Rate 50 LPM (low), 60 LPM (normal), 70 LPM (high)

Automatic Trip Functions Channels 1, 3 and 5 Trips, Close Valves (High Alarm) VCR-201, 202, 203, 204, 205, 206, 207; Fans HV-CPS-1, CPS-2, CPX-1, CPX-2, CPR-1; CIPX-1 Off Location of Isolation Containment Purge, Containment Relief Control Device Exhausts Technical Specification Table 3.3-3 (Item 3.c.3); Table 3.3-6 (Items References 1.b.i, 1.b.ii, 2.b.ii, 2.b.iii); Table 3.3-13 (Items 4.a, 4.c); 3.4.6.1.a; 3.4.6.1.b; 3.9.9 Diagram References 5104F, 5147A, 98817

  • Channel setpoints are calculated using this manual methodology.

I Page 1 of 1 Revision 1

~ - ~ - - -

.y. . . , . .

I PMP 6010.0SD.001 ATTACNMENT 3.9 CHARACTERISTICS AND FUNCTIONS OF THE CONTAINMENT AREA RADIATION MONITOR (NORMA.L RANGE) i VRS-1101 (UNIT #1)

VRS-2101 (UNIT #2)

I Alarm Location Control Room and Local I Monitor Type, Location Upper Containment Area Monitor, El. 650',

Train A Power Source 120 Vac. Dist. Cabinet CRID II, CKT #13 Scale CRT or Control Terminal Printout Channel No., Type (Range) 401, Normal Range, (0.1 to IE4 mR/hr)

Automatic Trip Functions Trips Close Valves VCR-101, 102, 103, 104, (Hign Alarm) 105, 106, 107; Fan HV-CIPS-1 off Location of Isolation Containment Purge, Containment Relief Control Device Exhausts Technical Specification Table 3.3-3 (Item 3.c.2); Table 3.3-6 (Items

.-;=. aces 4.t,  ;...)

. .a.t;;

Diagram References 5104F, 98815, 988;6 I

I I

I I

I Page 1 of 2 Revision 1

PMP 6010.0SD.001 ATIACEMENT 3.9 CHARACTERISTICS AND FUNCTIONS OF THE CONTALNMENT AREA RADIATION MONITOR (NORMAL RANGE)  !

VRS-1201 (UNIT #1)

VRS-2201 (UNIT d2)

I.

Alarm Location Control Room and Local I

Monitor Type, Location Upper Containment Area Monitor, El. 686',

Train B Power Source 120 Vac. Dist. Cabinet CRID III, CRT #14 Scale CRT or Control Terminal Printout Channel No., Type (Range) #01, Normal Range, (0.1 to IE4 mR/hr)

Automatic Trip Functions Trips Close Valves VCR-201, 202, 203, 204, Cligh Alarm) 205, 206, 207; Fans HV-CPS-1, CPS-2, CPX-1, CPX-2, CPR-1, CIPX-1 Off Location of Isolation Containment Purge, Containment Relief C:n:rol Device Exhausts c

T: '-i ni e;e:ift:n i n Tale 2.0-2 G em 3.e.3); Table 3.3-o (Icems References 1.1.i, 2.a.i); 3.9.9 Diagram References 5104F, 98815, 98816 I

I I

I I

I Page 2 of 2 Revision 1

. .y i , . . - - - . .

' PHP 6010.0SD.001 ATTACHMnrT 3.10 I CHARACTERISTICS AND FUNCTIONS OF THE STEAM JET AIR EJECTOR VENT MONITOR SRA-1900 (UNIT #1)

SRA-2900 (UNIT #2)

Alarm Location Control Room and Local Monitor Type, Location SPING-4, El. 609' I Power Source 120 Vac. Dist. Cabinet CCRP-2, CIRC-1.

Sample Pump Supplied from 120 Vac. Dist. Pan.

1-ELSC (2-ELSC for Unit 2) CKT #6 Scale CRT or Control Terminal Printout -

Channel No., Type (Range)

I #05, Noble Gas-Low Range, (IE-7 to 4E-2 pCi/cc)*

  1. 06, Local Area Monitor (2E-3 to 2E2 mR/hr) rt07, Noble Gas-Mid Range (2.5E-2 to IE3 I pCi/cc) 5/09, Noble Gas-High Range (1 to IES pCi/ce)

!A10, Steam Jet Air Ejector Flow Rate (CFM)

Automatic Trip Functions None t.nga .darmj j l Location of Isolation None m Control Device Technical Specification I References Table 3.3-13 (Item 2.a. 2.b)

Diagram References 5104F, 5109A, 98818 I

  • Channel setpoints are calculated using this manual methodology.

I.

I Page 1 of 1 I .

Revision 1

r

-;w -n .. . ..

PMP 6010.0SD.001 AITACHMENT 3.11 CHARACTERISTICS AND FUNCTIONS OF THE GLAND STEAM CONDENSER VENT MONITOR SRA-1800 (UNIT #1)

SRA-2800 (UNIT #2)

Alarm Location Control Room and Local Monitor Type, Location SPING-4, El. 609' (Unit 1), El. 591' (Unit 2)

Power Source 120 Vac. Dist. Cabinet CCRP-2, CIRC-1.

Sample Pump Supplied from 120 Vac. Dist. Pan.

1-ELSC (2-EI.SC for Unit 2) CKT #9 Scale CRT or Control Terminal Printout Channel No., Type (Range) #05, Noble Gas-Low Range, (IE-7 to 4E-2 pCi/ce)*

  1. 06, Local Area Monitor (2E-3 to 2E2 mR/hr) r/07, Noble Gas-Mid Range (2.5E-2 to IE3 pCi/cc) 109, Noble Gas-High Range (1 to IE5 pCi/:c) 1r10, Gland Steam Condenser Vent Flow Rate g (CFM) g Aut..aa a e !.. , .m .s...i.. .sae (High Alarm)

Location of Isolation None Control Device Technical Specification Table 3.3-13 (Item 6.a 6.b)

References Diagram References 5104F, 5122, 98818

  • Channel setpoints are calculated using this manual methodology.

I I

I Page 1 of 1 3

Revision 1 g

.. p -

PMP 6010.0SD.001 ATTACHMENT 3.12 PLANT LIQUID EHLUENT PARAMETERS 373 g COMPONENTS CAPACITY FLOW PATE~

TANKS PUMPS (EACH) (EACH)

I Waste Disposal System

+ Chemical Drain Tank 1 1 600 GAL. 20 GPM

+ Laundry & Hot Shower Tanks 2 1 600 GAL. 20 GPM

+ Monitor Tanks 2 2 21,600 GAL. 150 GPM I + Waste Holdup Tanks

+ Waste Evaporators 2

1 25,000 GAL.

30 GPM OR

+ Waste Evaporator Condensate Tanks 15 GPM 2 6,450 GAL.

, 2 150 GPM II Steam Generator Blowdown and Bl;wd:wn Trea t.:ent 5:. s tems

+ Start-up Flash Tank (Vented) 1 1,800 CAL. 500 GPM

+ Normal Flash Tank (Not Vented)

+

1 525 GAL. 100 GPM 21cwdown Treatment Pump I + Blowdown Heat Exenanger (One)

+ 5-ir.eralizer: P.r:2 ,'

1 60 GPM 60 GPM v; CT:

III Essantisi Service Wt ter Syste i

  • Water Pumps 4 10,000 GPM

+ Heat Exchanger Valve (One)*

I I'l Circulating Water Pumos 3,300 GPM

." 230,000 GPM f))

l I

  • NOTE:

This is an automatic throttle position, may be adjusted as required.

I I

I I Page 1 of 1 Revision 1

. . . e y- -  ;,. . .. ..

PHP 6010.0SD.001 ATIACIDfENT 3.13 PLANT GASEOUS EFFLUENT PARAMETERS SYSTEM CAPACITY NO. OF TANKS I PLANT UNIT VENT: UNIT 1 159,600 UNIT 2 123,500

+ WASTE GAS DECAY TANKS UNIT 1 600 FT3 8

+ WASTE GAS COMPRESSORS 125 2

+ AUXILIARY BUILDING UNIT 1 72,600 EXHAUST UNIT 2 64,500

+ENG. SAFETY FEATURES VENT UNIT 1&2 25,000

+ETEL HANDLING AREA VENT UNIT 1 30,000 SYSTEM

+ CONTAINMENT PURGE SYSTEM UNIT 1&2 32,000

- 2:T AI:,r';T PRE 33LTC REI.IE7 L7?IT 1&2 1,.sv SYSTEM

+ INSTRUMENT ROOM PURGE SYSTEM UNIT 1&2 1,000 II CONDENSER AIR EJECTOR SYSTEM UNIT 1&2 200 2 Release Points I

One for Each Un III TURBINE SEALS SYSTEM L3IT 1 1,260 UNIT 2 5,508 2 Release Pointsg l for Unit 2 E I

I I

Page 1 of 1 Revision 1

.n., .

I PMP 6010.OSD.001 ATTACEMENT 3.14 i

EFFECTICE GAMMA ENERGY PER DISINTEGRATION AND MPC OF SELECTED RADIONUCLIDES EFFECTIVE y-ISOTOPE MPC ENERGY / DIS I-131 3_x 10d _ O.367 Cs-137 2_x_10 5 0.561 Cs-134 9_ x_10 - s 1.580 Co-60 3 x 10.s 2.510 Co-58 9_x_10 s o,977 Cr-51 2_x_10-! 0.029 Mn-54 l_x_10. 4_ 0.835 Zn-65 0.565

_1_ _x_ _1_0_ _4 H-3 3_x_10-1 -

I-133 l_x_10 8 0.472 Na-24 3 x 10 5 0.413 Co-57 x 0.121 Nb-95 _1_ _x_ _1_0_ _4 0.766 Zr-97 2_x_10 5 0.687 Cs-136 9_x_10-1 2.140 Aq-110M 3_x_10-! 2.500 Zr-95 0.725 6_ x_10_-1 GROSS ALPHA I 3_x_10_a .

GROSS BETA 3_x_10 8 ,

Page 1 of 1 I Revision 1

'PMP 6010.OSD.001 ATTACHMENT 3.15 BIOACCUMULATION FACTOR FOR FRESHWATER FISH TpCi/Kg PER pCi/ LITER)1 ELEMENT BF f ELEMENT (con't) BF i

H 9.0E-01 Nb 3.0E 04 C 4.6E 03 Mo 1.0E 01 Na 1.0E 02 Tc 1.5E 01 P 1.0E 05 Ru 1.0E 01 Cr 2.0E 02 Rh 1.0E 01 Mn 4.0E 02 Te 4.0E 02 Fe 1.0E 02 I 1.5E 01 Co 5.0E 01 Cs 2.0E 03 Ni 1.0E 02 Ba 4.0E 00 Cu 5.05 01 La 2.5E 01 On 2.0E 03 Ce 1.0E 00 Br 4.2E 02 Pr 2.5E 01 Rb 2.0E 03 Nd 2.5E 01 Sr 3.0E 01 W l.2E 03 Y 2.SE 01 Np 1.0E 01 Zr 3.3E 00 1 Extracted from Table A-1 of Regulatory Guide 1.109, Rev. 1, 1977.

I I

I l

I Page 1 of 1 E Revision 1 5

"~

I PMP 6010.OSD.001 ATTACEMENT 3.16 SITE RELATED INGESTION DOSE COMMITMENT FACTOR 1 (MREM /HR. PER pCi/ML)

I RADIONUCLIDEa W-BODY CRITICAL ORGAN H-3 3.59E0 3.5950 ALL Cr-51 1.36E0 3.42E2 Mn-54 GI-LLI l 8.63E2 1.39E4 GI-LLI Fe-55 1.20E2 7.46E2 Fe-59 BONE 1.06E3 9.23E3 GI-LLI Co-58 2.53E2 2.29E3 GI-LLI I Co-60 Zn-65' Rb-86 7.16E2 3.35E4 4.74E4 6.10E3 7.42E4 1.02E5 GI-LLI LIVER LIVER Sr-89 8.19E2 I Sr-90 Y-91 Zr-95 1.93E5 3.46E-1 3.20E4 7.87ES 7.13E-3 BONE BONE GI-LLI 2.63E-1 1.23E3 GI-LLI I Zr-97 Nb-95 Mo-99 6.13E-3 1.34E2 4.59El 4.19E3 1.51E6 5.59E2 GI-LLI GI-LLI GI-LLI Ru-103 I Ru-106 Ag-110M 4.46E0 1.95El 3.23E0 1.21E3 9.96E3 2.22E3 GI-LLI GI-LLI GI-LLI Te-125M 3.55E2 1.08E4 KIONEY I Te-127M Te-131M Te-132 8.16E2 6.98E2 1.51E3 2.72E4 8.31E4 7.63E4 KIDNEY GI-LLI GI-LLI I-131 2.32E2 1.32E5 THYROID I-133 5.11El 2.47E4 THYROID Cs-134 5.83E5 7.13E5 LIVER Cs-136 8.92E4 1.24E5 LIVER I Cs-137 Ba-140 La-140 3.44E5 5.53El 3.06E-2 5.25ES 1.74E3 LIVER GI-LLI 8.50E3 GI-LLI I -

Ce-141 Ce-143 Ce-144 2.47E-2 4.64E-3 9.01E-1 8.23E2 1.57E3 5.68E3 GI-LLI GI-LLI GI-LLI Np-239 3.61E-3 1.34E3 GI-LLI I

1 Derived from Equation (1-14). Parameters obtained from Tables A-1 & E-ll or R-G 1.109.

2 Radionuclides with half-lives <8 days decayed 12 hr. and 24 hr. for the water & fish / invertebrate ingestion pathways, respectively.

Page 1 of a Revision 1

~'

. o. .

. -~ - - -

\

PMP 6010 OSD.001 ATTACHMENT 3.17 5/Q GRCCND AVERAGE (sec/m ) 3 OlJAN85 - 31DEC85 DIS?8Mtt O!stc7 tom 194 3488. 4449. 5430. 1844.

(WIhD Fe048 es t.4M-M t.37t e? 7.gM 48 4.14C-08 3.20C-08 twit 2. eM *e6 8 486-41 8.848-e? 8.5M ee 4.8at e8 M 3. S M 86 4. !M *e? 2.eM e? 1. J M -e? 8.8?t-04 (pt 3.944 06 3.4H e? t.8M e? 9.996 48 7.e68 48 E 4. 9M -46 S.8M e? 4.848-47 1.711-47 1.2tt-47 CSC 8.048 06 7.ett e? 3. 3M-49 3.99t-e? 1 49t-07 SE 5.188 86 8. cat-e? 3.988-47 1.?SE*e? 1.2M-e?

SSC 4. t W-M 4.99(*e? 3.358-41 1.4 07 1.est-e? -47 9 5. det *M S.878 07 3.t M-47 L.5 47 1.

$$W 5. t M-ee 6.4 47 3.eM e? 1. 47 3. -47 SW S . Set -M 6. e? 3.3M e? t.8 47 1.3 47 WSW 4.6M-M l.444 47 8.848-07 1.5M 4? 1. t M e?

W 2.4M M 2. 8M

  • e ? 1.304 09 1.87t-e4 s.34t 08 Wiw 2.21t-46 2.498-47 1.198 e1 8.?M 48 4.?M 40 Me 3. A?t 48 4.5M-47 1.418-47 7.884-48 6.488-48 pouW t.478 M 1 44C-47 4.?t& M 3.9E -40 8. ?M-40 BIS?anct 81stt?tC# 14M7. 34 35. 44445. 55315. 805M.

iWIme F90R8 Pi 1. 8M-98 8.4M 80 3.848 99 3.9M 49 1.3M*49 W 3.3tt M 8. 9M-09 4.448 00 4.844-48 1. 4M-49 at 4.388 e4 1.?4C ee 8.854 49 S.546-es 3.let 49

(=C 3.5M 48 3.4M 40 4.8?t-ee 4.4M 49 3.8tt*e9 E 4.ett-e4 R.4eC-96 1.3M-ee 7.?tt-49 4.888-40 (St 7.JM-ee 3.8M es 1.43 04 9.t?t-49 5.8M-te 58 4.24( 04 4.44C-99 1.31t*49 7.??t e9 4.8 M -49 33E 5.121 40 2.84t-48 1.321 99 S.54t-49 4.tSt-49 5 4.94C-e8 3.??t 48 L.394 04 8.NE 48 f.45C 09 SSW 6. 4 M et 3.571 48 1. 2M-et S.Rit 49 S.2tt 49 fW 8. lM-44 8.5 M-ee 1.4M ee 7. sM-49 4. *M-ee wSW S.4?t-06 4. t M-ee 1 498 08 8. 4.2 X-89 W  !. 4 X-es 1.818-99 s. set ee 3.a'58 49et3.ceset-et WeW 3.3X-00 8.90E-09 4.348-06 a.8M 49 1.788-49 MW 3.548-e0 9.8?t 90 4. Sit-et 3.JM 09 1.848-99

'wed 1.3M -48 5.304 M 3.688 99 1.746-09 1. t M-09 OIRECTION - SECTOR WORST SITE 90t'NDARY N=A a) Previous worst ./Q is NNE = B 8.44E-6 sec/m 3 at Sector Q.

NE = C ,

ENE = D b) Current year worst (/Q is l E=E 6.04E-6 sec/m 3 at Sector P.

ESE = F '

SE = G Thus, the worst i/Q and Sector SSE = H has not been changed. '

S=J '

SSW = K l SW = L l WSW = M i

W=N WNW = P NW = Q ,

NNW = R Page 1 of 1 Revision 1 i

,yp -

I. . . . . . . . .

PMP 6010.0SD.001 ATTACHMENT 3.18 D/Q DEPCSITION (1/M*)

OlJAN95 - 31DEC95 l

l l

81$7anct '

O!st C71M 104 2416. seet. $430, 7846.

I (WIMe F00M7 m

Pong Mt

8. set 04 1.79( 04 1.318 64
8. 5M- t e 3.8e8 10 3.04(-10 1.3eC-10
1. 7 M aet 7.038-38 4.tti-te 4.64C-te
4. t ?t-Go S. 30ta t e 4.?M-te 1.7?C-te (MC 1.4M ee 1.068-08 4.754-1e 4.4e(-10 1.50C=to I E

($t SC 96(

4.84(*44 3.79C te 8.

t.90E te t.Saf-ee 2.eN*ee 4.088 40 9.

t. Sit-ce 1.*M -ee 6.9 t.784*48 1.78t**$ 7.7 4M- t e 4.5M te 3.Stt-Le t.A -ee 8.5M te 4.t7t*te

-le 4. M -te 3.04(-10 10 3.44E-10 3.41C=le le 4.054 10 4.14C te t3.218

. 9M80ee t . SM M 8.7tt te 8.57t-te 2.9tt 18 I

$9W

$w WSW 3.37t ce

3. t ei ce 1.4et ce 7.3M te 4.7et-te 3.36 -40 w 2.84t 00 1.4ei-ee 7.714-10 4.99C-14 4.SS{s-ee 3.19( 00 6.844-10 3.37t-te WhW 3.348-00 2.4N 44 1.eX ee 5.841-te 3. *M- t e NW 2.tet 04 04 S.30E- 4. SM t e 3.t45 10 seg, g,34g.og 2.07t.gg 1.gg 3.37g.te te 3.geg.ge g.373.go Bl$fentt SINCfla 12o01. 34139. *etas. S4315. 0060s.

I shine 800Ms N

    • (

h(

5. **( 11 t.77t 81 6.S4E-13 3.*N -13 1.7M 12 t.! Male 3.57t 41 t.Jtt tt 7.018 12 3.54E 13

' *tt it 4.4tt-tt 8. Set-ta 4.74(-14 4.18t-18 E1 8.444 11 3. t M-I t 7.9M ta 4.25t-ta 3. t M-t a t

E ff 1.dat te 3.94E-st t.44E tt 7.7?t-13 3.94t-td 1.744 18 S . 87t -i t 2.848-st t.111-11 S. Set-12 ft t.2't te 4. tat 11 1.521 11 1.'*I

4.332-12

$lt 5

9.Jat-61 3.4M sl 1.11E 11 S. Set 34 3.SM-13

$5W 1.006 103.3.11t-tt 5M- t i 1.24t il 8.9et 14 3.*ef=12 Sw t.22t te 1.444 14 7.79(-t4 3. tit-ta b5W 1.ett-te e.*et-tt 3.34(-st 1.28t-tt 8.3tt-ta w 4.07t te 4.7X-tt 4.40t=11 1.32t-it 8.83C-18 t . 6M- t e 3.364-11 1.84C 11 WNW 4.708-11 t.0M-t t 5.19(-14 t.**C-te 1.?M t t 9.2*( 12 4.e4(-14 MW mes l.3tE*te 4.37t-st t.l?t-st 8.38E 14 4. Alt la 8 418 11 4.475 11 9.8*(-11 5.264-88 4.4M*ta DIRECTIDN - SECTDR WORST SITE BOUNDARY N=A a) Previous worst D/C is NNE = B NE = C 3.29E-8 (1/m ) at Sector D. 3 l

ENE = 0 b) Current year worst D/Q is E=E 3.37E-8 (1/m ) at Sector D. 3 I ESE = F SE = G SSE = H Thus, the worst D/Q is 3.37E-8 S=J (1/m ) at Sector D.

3 SSW = K SW = L WSW = M j

I W=N WNW = P NW = Q

( NNi f =R

(

Page 1 of 1 Revision 1 I

PMP 6010.0SD.001 ATTACHMENT 3.19 DOSE FACTORS FOR NOBLE GASES AND DAUGHTERS

  • TOTAL BODY SKIN DOSE GAMMA AIR BETA AIR DOSE FACTOR FACTOR DOSE FACTOR DOSE FACTOR K

i L. M. N.

i t 1 (mrem /yr (mrem /yr (mrad /yr '

(mrad /yr RADIONUCLIDE per pC1/m 3) per pCi/m 3) per pCi/m 3) per pCi/m 3)

Kr-83M 7.56E-02** --

1.93E+01 2.88E+02 Kr-85M 1.17E+03 1.46E+03 1.23E+03 1.97E+03 Kr-85 1.61E+01 1.34E+03 1.72E+01 1.95E+03 Kr-87 5. 92E+03 9.73E+03 6.17E+03 1.03E+04 Kr-88 1.47E+04 2.37E+03 1.52E+04 2.93E+03 Kr-89 1.66E+0a 1.01E+04 1.73E+04 1.06E+04 Kr-90 1.56E+04 7.29E+03 1.63E+04 7.83E+03 Xe-131M 9.15E+01 4.76E+02 1.56E+02 1.11E+03 Xe-133M 2.51E+02 4.94E+02  ! 2'E*02 1.a8E*03 Xe-133 2.) E+02 3.GoE+02 3.o3E+02 1.05E+03 Xe-135M 3'.12E+0 3 7.11E+02 1.36E+03 7.39E+02 Xe-135 1.SIE+03 1.86E+03 1.92E+03 2.46E+03 l

Xe-137 1.42E+03 1.22E+04 1.51E+03 1.27E+04 l Xe-138 8.33E+03 4.13E+03 9.2'E+03 4.75E+03 Ar-41 8.84E+03 2.69E+03 9.30E+03 3.2SE+03 I

  • The listed dose factors are for radionuclides that may be detected in gaseous effluents.
  • 7.56E-02 = 7.56 x 10 2 I

Page 1 of 1 Revision 1

~

PMP 6010.0SD.001 i ATTACIDfENT 3.20 I DOSE PARAMETERS FOR RADIOIODINES AND

)

t I RADIOACTIVE PARTICULATE, GASEOUS EFFLUENTS * '

'i i i i INHALATION FOOD & GROUND INHALATION FOOD & GRCUND PATHVAY PATHWAYS PATHVAY PATHVAYS (mrem /yr (m2 mrem /yr (mrem /yr RADIONUCLIDE per pC1/m 3)

(ma . mrem /yr per pCi/sec) RADIONUCLIDE per pCi/m 3) per pCi/sec)

H-3 6.5E+02 2.4E+03 Cd-115M 7.0E+04 4.8E+07 I P-32 Ma-54 Fe-59 2.0E+06 2.5E+C4 2.4E+04 1.5E+11 1.1E+09 7.0E+08 Sn-123 Sn-126 Sb-124 2.9E+05 1.2E+06 5.9E+04 3.4E+09 1.1E+09 1.1E+09 Co-58 1.1E+04 5.7E+08 Sb-125 I Co-60 Zn-65 Rb-86 3.2E+04 6.3E+04 1.9E+05 4.6E+09 1.7E+10 Te-127 Te-129M 1.5E+04 3.8Et04 3.2E+04 1.1E+09 7.4E+10 1.3E+09 1.6E+10 .

Cs-134 7.0E+05 5.3E+10 I Sr-89 Sr-90 Y-91 4.0E+05 4.1E+07 7.0E+04 1.0E+10 9.5E+10 1.9E+09 Cs-136 Cs-137 Ba-140 1.3E+05 6.1E+05 5.6E+04 5.4E+09 4.7E+10 2.4E+08 Zr-95 2.2E+04 3.5E+08 Ce-141 2.2E+04 8.7E+07 Nb-95 1.3E+04 3.6E+08 Ce-144 1.5E+05 6.5E+08 Ru-103 1.6E+04 3.4E+10 I-131 1.5E+07 1.1E+12 Ru-106 1.6E+05 4.;E-11 I-133 3.6E+06 9.6E+09 Ag-110M 3.3E+04 1.5E+10 UNIDENTIF:ED* 4.1E+07 9.5E+10 I

I *The listed dose parameters are for radionuclides that may be detected in gaseous effluents.

  • If SR-90 analysis is performed, use P ggiven in RU-106 for unidentified components.

If SR-90 and RU-106 analyses are performed, useg P given in I-131 for unidentified components.

If SR-90, RU-106 and I-131 analyses are performed, useg P given in P-32 for unidentified components. .

I Page 1 of 1 Revision 1 I ~

g 3

' PMP 6010.OSD.001 ATTACHMENT 3.21

( __ . . . ._ . . _ _ . _ ._ _

Zlllllllll3 ?49LE !! . Ul .4 e tt ), petNT 84fMWAf 9038 pae6Ptf tes 704 4 A0!CNyck1983 OfNie fM4m 408LE 6Asts gaste. INMALAf!04 180uhe *L4NE Cav.atLE 3 0 A f =e t t,g 4 4t aaL* eta f vittfA8(t3 gutt ga t tests /vs (g2.seterte (=2. nets /fe (et.*statta (s2.setstve (et.setsiva n888444888888888 3ee 4.58 +0288888 88888888888888

3. 348888 88888888 88 88884448883AL84888 8888888888888888e88 s s 48 2.6t+03 E 4.9t+03 0. O.

C 16 2.e t +C6 3. 3,2g.M 3,2g .4 8 0* 3.

44 24 1.1 ( *CI- 1 .21*.37 t If*07 2.cg.ca S. c.

p 32 2.0E *Ce 0. l.etett C4 51 3.44*02 1.9tett 3. O.

6.Tt+06 6.2s+06 S .Ct +0 5 O. G.

. se 14 2.St+C4 1.68+09 1 it*07 3.7t+0a S- 0-og ge 1.2 t *C6 9.0t+05 2.9t*00 3.3t=01 3. Q. -

Pt 15 2.3 8 +C 4 0. 1.1 t +C 8 1.6t+04 3. G.

w t_33 2,.6(see 7.7t+2a 1 as+as 62 6 t +g a 3. a. -

CS S 8 1.18 *C 6 3.8t*08 5.3t+0F 4.CE*04 t ' O. c.

C4 80 3.2t*C6 2.2 t *13 1.7t*08 2.Ct*07 N 0. O.

E

_g g ,61 1.6.5,+c t 3. 1 Sa+10 1.3 t .0 9 .

c. a.

3 41 45 5 .3 t +0 6 3.QE*05 3.Jt*01 3.44 00 3. Q.

tu $6 1.1t+04 $.*t+35 3.8t*04 6.2t+35 3. Q.

tw 45 4. St *C6 7.5t*de t 7t+10 2.tt+C9 3- O.

14 49 f . 3 t +C 6 Q. 3.68 09 14 6 94 1.3t+06 6.It=10 3. G. E 6.lt+06 6.9t*07 1.9t*C6 3. G.

to $6 _ . 6.3t *02 2.CE*35 1.3t.22 1.st 23 5. G.

et le 1. 9t +01 9.CE*04 2.tt+10 2. !t *0 9 3. 3.

e9 58 1.et+C2 3.3t*06 J. O. 3. C.

a9 19 . _ I . 2 t +02 1.21*35 3 S. 3. O.

S e 19 6.38+05 2.2f*36 f.tt*13 2.2t+10 3. Q.

~

i se 80 6. I t +0 F 3. 1.3t+11 2.f t *11 3. C.

91_,,,,. ,_F . 3 t *C 6 2.11+36 Se se 42 1.6 t +01 1_dI +J 1 4.7t*C5 3m. O. E f 30 f.3t+0S F.8t*05 4.5t*03 5.1E*01 9.6t+01 1.tt*C2 f.ft*05 3.

3.

Q.

3.

g t 91 __ P .3 t *0 6 9 dt?34 4 . .J

  • 0 s 1. 3 t *01 3. O.

f 91 4 2.6 t +C3 1.Qt*05 2.38-15 2.64-14 3. C.

f 92 1.38+01 1.8t+35 1.Ct+01 1. 3t + C C 0. Q.  ;

f 91 f . lt,+0 S 1dtM) t.7t+04 2. t t *01 *

  • 3. O. '

to 91 2.25*06 2.3 t *0 8 4.9t*03 0.3E+06 3. C. '--

to 97 1.6 t +C1 2.9t+08 4.3t+06 f .2t +03 - O. 3. '

48 91 _. .. t . 3 t +0 6 t.6t+08 f..J rS 8 1.,2 t + 0 7 7. S.

so 99 2.et+C2 6.Ct*Ce 3.tt*08 3. 7t*C F 0. C.

FC 39e 2.0t+C3 1.8t*J3 1.Tt+06 2.CE*03 "', 3. O.

f t .101 9. .t +02 L.0 tt06 1- 3. _,. 3. O. *

  • eu 133 1.4(*C6 1.1t*18 8.28*C6 8.1t*06 3. 3.
  • eu 105 6.8t +C6 4.6t*05 1.2t*CQ 3 . 94 -0 1 0. C. 3 4u.104 1.48101 4. 2t*08 1.2t*04 1. 6t +0 5 3. 3. M 48 110m 1.3 E +C6 3.St*39 1.2t+10 1.3t +0 9 < 3. 4. E C3 113 m 2.3 t +06 6.8t+0E 6.3560F S.1E*04 3. O.

C3 1 118 _,., F .3 t *06 0, 1.2 t$ F 4. 2t *0 6 0. O.

Su 123 2. 9 t +0 S 0. . 3.1t+Q9 4.6t*08 3. Q.

34 128 1.2 t +C6 2.et*10 9.9t+09 f.ts*Q9 1. O.

34 126 . l.9t*C4 4.Lt*38 1.6 t +0 9 4.St*07 3. O.

se 125 1.3 t +04 2.3t+09 1.4t+08 t.9t+0F 3. Q.

ft 1218 6.88 *C3 1.et+0e 1.4t*08 1.7t+07 0. C.

ft 127 f t 1274

. 2.6t+06 3.88 +04 8.3ttOS s_

1.a t*C8 1.0 f*0 9 f ._8 t

  • C 7 C. O. E 9.2t*36 1.28+08 3. C.

ft 129 2.4 t *0 6 f.8t*01 1.2t+08 1.6t+0F 0. O. E f t 12H 1.2 t *C 4 _. 2 . C t + 0 ? _,,,._ .t.3t*09 1.et*08 3. O.

ft 131 1.2 t *G 3 2.1E*34 1.et*Ce 1.9t*GS 0. C.

f t 13t p 1.2 t +0 S t.CE*04 2.3t+0F 2.8t*C4 3. Q.

f t 132 6.6 s +C6 , . _ 6 . 2 t *0 4 _.,,,,,, _,6 .0 E

  • 0 7 6.1t*G4 3. 0. . . , _ _ _ , .

C3 136 f.* t +C5 4.8t*19 5..t*t0 1.et*tt 3. O.

' l l

I

( Page 1 of 2 m Revision i g

( '-o

  • * ~ * *

~

__ . .~. . . . _ ,

PMP 6010.0SD.001 M ATTACHMENT 3.21 C3 134 1. 3t *01 1 '. 5 t *18 $.5t+49 1.Ft+10 3. C.

Elll3 C3 137 4.1 t +C5 1.0t*10 4.9t*10 1.38 11 3. O.

CS 138 F . 8 t +0 2.-- 3.et*05.., t.3t=22_ 3.9t=22 0 Q.

I en 139 1.1t*06 1.1t*15 2.Ft-JS 3.3t.c4 3. Q.

g6 360 1.4 t +06 2.it*JF Z.3t+04 2.4t*CF 0. C.

ea 16: 1.48-01. _ 4.2t*06 _ 3. 3. O. O. .

en 162 . 6.3 E -02 6.3t+J6 3. 3. Q. Q.

Le 164 8.St+06 f.9t*0F 1.94+01 2. 3t *c 6 3. O.

_ L4 162 4.3 t +06 F.Fl*01 t .3 t.a 3 t.et.C6 3- 5. .

CE 141 2.2 *06 1.6t*3F 1 .28 CF t . 4t +G e 3. C.

CE 163 S.J a *06 2.3t*06 1.St+04 1.It*0s 0. O.

_ . C f . t 44 _. 1.S t +05 7.C t.*_9 F 9 .181.Q E t.3t+0F 0. O.

pe 143 3.F t +06 0. P.St+0$ 9.Ct+06 3. Q.

pt t 64 6.38 +03 1.St+33 3. O. O. Q.

_ ge_14F 3.1 t +0 4 8..a r +o a 1.5L101 4.Flet4 e- -

  • o.

pa 167 8.1 t +0 3 0. 2.9t*05 3.!E*C4. 3. G.

pe toes 6. 7 t *f1 1.$t+08 1.4t+06 1. Ft +C S- **5[, 0. O.

_ .34,111 6.8 t +01 1-3r+an 1-ated1 2 28 04 3. O.

s 18 F 3.et +06 2.6t*06 2.38 04 3.Ct+0S , O. O.

=* 239 2.f t +G6 1.Ft+04 8.1E*06 f.it*06

~

0. Q.

. I130 1.4t*0e 1.1E107 F .18 2.13 9.Ct+to 3- 0 1 III 1.$t*07 1.7t+3F 1.0t*12 1.2t+12 3. 3.

I 132 f . P t +01 1.2 *06 1.4t*02 1.et+02 , 3. Q.

. I 133 __ _ 1.et+0e 2.4tige 3.6t.09 1. 2t.tc 3. S.

I 134 6. 3 t +06 6.5t+05 9.64-13 1.tt-of 3. C.

I 131 F .

  • t +01 2.St+04 2.:t+0F 2..t+17 3. O.

um-tae 6 .1 t +0 F__ __3. '-38121 1.it+11 3- 3.

+t* 16 90 444Letts !$ *teFoset), utt ett) 3tvit 14 t a131 800 J4t344ft7tte C38PONf4?S.

  • 1 '!*'j+'t!, . ** **** ._ !'t!* !' *! =' ! ? ' R')4 t S tjff t t tLf t'+ a *f 9 ' t .

, J .8; .e:  ; !!* u a L .*

  • I *

[F te=43, !=131. 49e C3=1!? 444Letts nae attsotets. ust otti stvig to In=estae Watet=f!Ftta Co**catgfs.

I f l

ee83 8 f at tt[a, Y J4tf3 37 f.t 3:11 84448tf241 Aft _*stwette ett u g/of 800 4LL 84?4W4?S.

448 fulf au17 et autttpttge if t/o 14 sptCIFttef!348 3.11.2.3.6 44 8 e. ,

= .

f

  • sy ,
. i 1

1 t

1 Page 2 of 2 Revision 1

.O

PMP 6010.OSD.001

' ATTACHMENT 3.22 '

fasta !! . F b etts, gygt3 safavat oost saatatf tet f oe san toguchtets of ete twas gotLt casts esota. t=wata f f 34 secume *Laut c3W-atte so n f-a t t s antgat.staf vestfaatts *3 nu cL ts t tast*/ft (*2.sete/Te (*2.=*tette ist.aeteste (*2.asts/fs tel.netssta 64 4846448s86e8880ll44888e5044488464488840444884644880404684818688444848868654448488444s844 ..

e lee 8.tt*C3 0. 1.48*43 3.2t+03 2.3t+02 6.Ct+C3 c 16 1.et +C4 c. 1.7t#8 1 . 7ts6 5.3 Ed1 3.5 (M6 ga 26 1.e t +06 . 1. 2 t

  • 0 F _... 8.it+34. _ _ t.11 34 -- t.et-03 .._ 3.Ft+C3 _. ~ ~

p 12 2.et+06 0. F.6t*10 9.It*10 P .3 t +0 9 3.Ft+C9 Ce St 1.1 t +03 6.Ft*04 4.st+C4 1.It+05 6 . 2 t + 01 4.1t*C4 su 16 6.3 t +C6 _. 1.6t+C9 . 1. F t + 0 7.. 2.CE*0a 6.6t+C4 t.$t+08 IE og to 1.2 t +C1 9.Gi+03 f.9t*00 2.38 01 3. 2.Ft+03 ft SS 6.F t +C6 3. S.Ft*CF 1. t t *0 6 3.et+08 F.eE+C8 f t 5 9 .._, 3.3 t +06_ _2.Ft+0 8 f. 7t+08 2.2t*06 1.2 t +0 8 .,_ _ e .3 t +c s C 3 18 3.6t*06 3.4t +0 8 1.9t*JF F.tt+C4 S.0t+0F 3.1t+0s Co 40 9.48 +C6 2.28*10 1.9t*08 2.3t+0F 3.0t+08 2.1t*09 48 63 . _ 8.2t +01 0. 2.3t+13 1. C t.* 0 9 2 4F t.tj 6.6t*10 et 65 4.6t+C6 3.Ct+31 1'.ft*01 2. 3 t +00 3. 1.2E+03 -'

Cu 46 3.Ft+06 4.Ct+05 3.St+04 3. 9t +0 3 1.3t*01 1.1t+01 14 41_ . 1.1 t *C1 F.5t*0s 8.9E*09 _f.2t*0* t.CE+0B 2.Ft+Cf -

14 69 1.3 t +0 6 0. 1.0E-09 1.2t-10 3. 8.Ft C6 E 19 4 9e f .J t *05 1.3t*26 6.1t*37 S.SE*de 1.ft=03 2.2t*04 4 Se 16 ... 1.5t+02 2.:t*31 $. 9 td 3 1. !t s2 6 3. 3.St tt 49 $4 2.Ct*C1 8.0t+39 S.2t+09 9. 4t +0 S 1.4 t *0 4 4.et+C8 89 48 1.48 +C2 1.3t*26 3. Q. 3. 3.64-22 at l' . 3.$t+02 _ _ . 1.2t*01 _. _1. 3. 0._ 3.38124 .

1e 19 6.3E+01 2.2t*J6 1.st*Q9 1. 2 t

  • 10 6.1 t +0 8 3.5t*10 EE to to 1.3 t +08 3. 9.3t*10 1.9tett s.et+09 1.6t*12 to 81 1.F t +01 . 2.1I*Q6  !.9%*J5 6.Ct*03 1. C t =.3.0 t .1( *C 4 to 8 2 2.6t+C1 F.at+C1 6.2t+31 l.it*01 3. 1.3t*C6 f to 2.7t +0S +.!!+J3 8.21 05 1.14.C1 6.8t+0$ t.et*CF f 31 1.S t +C 1 f.tt+34 . . 6.6t*14 1.2t*C1 2.Ct+04 2.6t*09 f 81
  • 1. F t +C l 1.Ct+35 f.atals 4.71-17 . t.it-Cf f 92 2.6 t *01 1.Ft*01 7.6t*03 4.9t=01 8.1t*15 6.3t*C6 7 83 3.8t+C5 1.4t+35 _. t.St*16 t.It*03 1 2t*07 .

6.6t+C6 E 14 91 s .18 +0 4 2.3t+38 F.+t+JS 8. f t *C 6 1.2t+09 4.f t *C 4 E

to 97 3.5 8 *C1 2.9 t*0 6 6.tt*06 6.9t+03 1.8t=01 1.2 t +C F g1 91 1.Ft+06 t . 6 t +01. . . . 2.38*08 , 2.6t*07 2.0 t *f 9 2.9t*08

=0 to 3.98+C2 6.Cl*26 1.Ft*u8 2.tt*07 2.64+C1 1.Ft*CF ft 89e 6 . 4 t +0 3 1.4t*01 1.5t*06 1.4E+03 1.0E=18 1.3t*03 ft 101 .. 1.4 t +0 9 2.CI+0 6 3. 3. 3_. I.et?!O -.

eu 103 6. $ t +0 6 1.t t +0 8 8.4t*06 1. 2 t +0 6 1.St+09 3.9t+0E 89 101 1.3 t *C1 6.6t+C3 2.3 t +0C 3.Ct-91 t.ef=25 f.ft*C6 au 1:4 6. 3 t +C1. _ 6. 2 t *C I t.2t*C6 '.68+C1 1.et+10 1.2t*1C em at 1109 1.0 8 *C1 3.St+39 1.6t+10 1.Ft*J8 1.st*09 2.tt *0 9 3 C3 113e 4.3 t +06 6.4t+04 6.2t+0F 1. t+04 2.3t*01 e.5t*C9 . ., 3 03 1 tie f . I t +01_ ., 3 . J .t.t t0 F t.tt*C4 2.tt*07 2.C t +0 9 i 14 1 23 6.4 8 +0 5 3. 2.Q t +09 2.64+04 F.it+C9 s. 3t +0 9 14 126 2.31*04 2.et*10 1.6t+09 6.6t*06 2.1t*10 2.6t+10 m Se 126 f.et*03 6.0t+38 1.71108 4.st+CF 1.S t +0 s 2,. 2 t ? 0 9 E 1e 121 6.3 t *06 2.3t*39 1.et*08 2.0t+0F 1.6 t +0 F t .2t *0 9 5 ft 125 m e.Fr *03 1.et+34 6.9t*07 9.3t*06 1.3t+0g 6.6t+C8 f t 127 _.. 1.e t *C6 1.3t?31 1.3t+44 1.et*CF ' . t. t

  • C 1 1,.2 t ?C 9 __

ft 1 Ifs 4.6 8 +C6 9.2t+0 6 5.ft*09 F.Ct+0F 1.3t*09 1.68*C9 ft 129 2.St+06 1.f t *0 7 6.64+0F 1.34*04 2. 9 t +0 7 1.Ft+09 ft 1285 1.3 8 +0 6 _. 2.Qt*31 F .5 t *18 9.Ct*?? . 6.9t+09 2 .18

  • C 9 .. . _. .

ft 1 31 1. 3 t *0 3 2.1?*26 9.9 t +0 6 1.21*06 6.38*01 9.St*06 ft t 31

  • 1.t t *C5 1.Cl*4 2.31*01 2.FleC4 1.*t*C6 2.3t+CF ft 1 12 f .
  • t .01 6.2t+16 6.7t*0F ....., . 1.48+04 ._ , 9.Fl*06 f.3t*07 _

CS ! !6 1.;t *C s S.at*38 2.85 10 f.ft+1C t .2 t *C # 2.st +t; Page 1 ef 2 Rev3.ston i

s PMP 6010.osD.001 ATTACHMENT 3.22 C3 ? !e 1. F t +01 f.St*J1 f.et+09 C3'37 4.38*C1 1.Cteic F .9t +2 9 6.2t+0F 2.2t+cs 2.5t*t3 F.1t*1C t.Ct+09 ts 138 f. 6 t *( 2 3.et+01 . 2.64+1C f.3t-2! 1.44 22 3..

I ga 1 39 1. 8 8 +C6 1.ts+31 r.st-ft 1.2t*01 as 160 1.4t=04 3. 2.7t*CC "

i 7.6 4 +06 2.tt+0F t.tt+08 1. 3t +0 F 6.2t*01 2.84 +( 8 84 tot 2." t *01 6.2t*36

.l sa 162 1. C I -C 2 6.St*06 3...

3.

C. . 3.

_,t.et-21 _ ' ' - * ~

LA 16J 2.3 t *01 C. 3. 4.64-19 f .9 t+0 F l.9t+01 2.3t+u6 1.6t+02 I LA 162 P . 4 f +C 6 f.f t *Q 1 3.2 t +0 F C t 161 .s.21=Cs ... P.St=uF _3 . 2.2t+01 1.f t *C6 1.*E*37 f.2t*47 f.6t+0e 1.2t+0F

~ ~ ~

CE 143 1.3 t *45 2.3t+04 1.St+G4 4.Ct+04 ~

CE t 66 3.8t*G3 1.It*C1 2.1t+02 1.64 +0 F F.Ct+0F 1.38+18 ..t.!t+0F 1.3Et08 se 163 9.f t +06 3. F.6t*01 8.9t+44 1.A L+.t C se 166 2.3 t +02 3.6t*07 1.et*cs 1.4t+03 3. O. G. 2.9t-23

. go 147 9.2t+G6_. . l.4.t*04 Pu 147 1.1t*01 4.et*C6 t .1 t +0 F _ -9.2t+0F

2. I t +C6 0. 2.9t*01 3.1t*06 ~~~

es t 6am t . 3 t +0 g 1.st+0L 1.38 04 1.gte05

1. 6 t +0 F 4.1t*08 14 1 51 1.3 t *06 1.3E+04 1.3t 0 9 I t..tt*06 1 11 +0 8 ta8.L*05 f.28*0F e tSF 9.1 t *C 6 2.6t*34 2.6t*04 6sCt+0s go 239 t .6 t +06 2.9t*05 2.Ft+00 1. !1 *C e f.ft+34 3.2t+J6 t.tt+06 2.3t+03 1. 6 t +C F
1 ! *,

1.3t+Ca_ ).St+31 3.3t+1C __3.it+1C t.ft*00 3.ft*C9 j t 131 f .e t +0F 1.Ft*3F 6.3t*t1 f.1tett 1.4t*09 6.4t +10

, t 132 1.ft+C1 f.2t+3e 1.9t+01 f.it*G1 3.

t133 3.at+C$ 2.6t+04 F.et*C3 3.3:*09 6.78 09 s.tg*Ga I 136 I 'll 1.18 *C6 .. . 1t+31 6.Ita'C s.9t=10 f . 3 t +0.2 3.

e.64-C3

' .11 +01 2.!E*Ce 1.!(+36 1.Cl*07 1.2taff 9.at*Ce e=ti+ 1.3 t +08 1. . . . . . 1.!!*10 1. . t t

  • t t . l . e t
  • 0 9 . .__ _ 1. . t + 12 , . ._ _

I ets te.43 awaLfsts It steenoegs, ,jtg et'$ 1!vtb 19 t a l !'

tt 39 43 age

  • * * *! ? t * ' t '!11 ** * *1914 *t .

(=ttt awaLf f t1 a s g sg ease ogs, g*g a til s is t w 16 3=137 Poe ugtst4ftp183 C **3=Ett!.

to 18 41, !=t*$ t 31,*s* W a u s ct.t !' a g at e tt s se E e t a p:e et s, Jt t e t !! itste tw Ig.sts3e Jmtstgftstt3 :3.eggtg*

I *e#0 e f et ?! Jo,. fwl J4 t f1 a f fat actt Peeastftet act setspee afe utt?81 foe.444 84tuteft, 443 f4tf *ulf 18 'ubf!Pkita af 4/4 (N $PECIf!Caf!34s 3.11.2.3.4 448 8.

I -- - . . _ _ _ .

  • er

. .> 4.+

-. e m . *_ +me .. me m I

I Page 2 of 2 Revision 1 .

I .

PMP 6010.oSD.001 ATTACHMENT 3.23 i . - _ _ . .__

l.

fai48 !! . M C etti , TE! W ER$ estuvat eas t pasa rtiges FQs asetomuCL!sts of 4te f uan ocesa satts easta. tuna 6af tsu secuss H. ant tow-atte' 's c a f -s t ti antea 6. t6f vestfae6ts

' quCL te t testerte (=2.peteswe te2.setos,e (*2.seemtve (=2.rotests (=2.neteste assss4884644sess498stssssas8ssssssstsess48ssss48sstatstests8ssassassssssssssssssssastas sts ~~

a See 1.3t +C3 0. 9.9t*C2 2.CE+C3 1.9t*02 2.4g+C3 c 16 2.4 t *06 0. 4.7E*05 6.7E *C5 2.8 EMS 1.$6 *C6 44 26 1.64+06 .t.2t*07 ___ 6 .31 3 4 . .. 5.2t+C5 1.2 t *0 3 2.4 t *0 5 -~

8 52 f . f t +0 4 0. 3.It*to 3.1t*10 3.8t+09 t.31*09

. Ce St 5.48*03 6.FE*04 F.St*04 9.CE*05 9.6t*05 1.CE*CF l mg 56 4.F E *06 . 1.6t+09 _._2.3t+0F.. _ 2.st+04 .t.tt+07 9.2E +0 p og 54 5.Ft+06 9.CE*C5 6.ft-Of 5.9t=02 3. 9.2t+02 i 72 55 3.3t*06 0. 3.St+0F 6.St+05 1.9t+08 3.tt+C8 78 59 . 1.8teg5 2.Fl*38 2.St+ca '3.2t+C4 1.Ct*09 9.Fe*C8 CS S8 9.5 E +v4 3.8t*08 9.1t+0F 1.tt+0F 1.4t+08 5 . 9 t +4 8 um CO 40 2.4t*05 2.2t+13 2.9t*06 3.6t*0F 4.0t*08 3.2t*09 41 43 . 5.8 t +05 0. l .c t, *.10 1.2t tOS t .1010 ,t.sg.10 gr 45 3.Ft+06 3.0t*35 4.FE*00 5.et=01 0. 1.9t+C2 E tu 44 4.tt*C6 4.CE*35 3.3t*04 3.et+05 f . e t-0 5 4.6t*C5 g 14 45 f.!E*05 F.!t*08 . __4.st*09 F.9t+0s P . S.t +0 9 1.9t*09 It l' 9. 2 t -C 2 . 3. 5.St-92 t.Ct=12 3. 9.st-04 14 4 9e 1.F t *0 5 1.3t*24 6.64*0F 5.2t+34 2.28-03 2.8t+04 9e 86 6.38 02 2.Ct+35 . _ _3.1t-23_ 1. f t 2 6 1 2.1t-11 E 48 le 1.9t*05

9. t+34 =.6t*G9 5.3t+G4 3.88*08 2.st*C8 g
    • $8 1.5 8 +C2 1.3t*34 3. O. 3. 2.54-22 ee 49 3.S t *C2 1.2t+*5 .3. 3 .. . _ 2.78-24.___

se 19 6.3t*C5 2.2f+36 2.3t+39 6.f t *0 9 2.2t+0s 1.5t+10 58 90 1. t f *C 5 C. 5.5t*1C 1.21*11 4.?t+C9 f.3t*11 Se 91 2.44*C5 2.1t*24 _ _._ 2.6t+05- 5.*t.01 5.5E-1C

._1. 3 t

  • 0 4 __ .

8.tt*C3 Se 92 1.21 05 7.48.J5 2.38+31 .. !.;1 .

e 90 5 . 4 8 *C 5 6.St+33 1.1(+04 1.!t.35 1.5t*05 1.C a *01 f at . . t E +C 5 1.t(*34 5.64 44 . 4.!!.C5 1.3t+18 _3.tt*09 m I

f it s 3.Qt *C1 f.Ct+35 1.54-18 4.Ft-19 3. 2. 2 t-G F E f 12 1. 4 t +0 5 1.8t*35 2.9t*40 3.54-01 6.It*15 2.35*06 5 f e5 5.8 t *C 5 _ .t.8t*35 1.3 t +0 6 .t.5t+03 1.68-07 _6.9t+04 to 95 1. I t +C5 2.St+0 6 1.0t+04 1.2t+05 9.2t+08 1.2t*09 to 97 4.3 t +C5 2.9t*04 6.tt+06 6.9t+03 1.48-01 1.et*CF 4e 95 9. F t +06 1.4t+C8 1. f t + 0 s _, 3.St+CF 1.Ft+09 4. 51t08 9.28*0F =

  • 1 99 6.t t *C2 6.CE*04 1.Qt*09 t.9t*05 1. 3 t +0 F fC 99a 4.t t *C3 1.8t*C5 1.tt+06 1.3t+C3 F.St=18 5.Ct+G3 ft 131 1.5t-C3 . . . . 2.Ct+36 3.. 3 . __ 3 .._ t.58-29 eu 103 1.11 05 9.tt+34 1.3 t + 0 5 1.4t+C6 s.21*09 5.Ft*C8 ou 105 9.01 +0 6 4.64*05 1.3tedQ t.58-01 6.68-25 6.Ca+Q6 su 134 9.4 t +C5 6.2 f *18 1.6.t*04 1.Ftt05 ___9.tE*to _f.St+16 as it3s 2.F t *C 5 3.5t*39 2.ttet0 2.4t*09 f . t t +0 9 6.38*09 6.at*34 5.3t+37 4.3t*04 3.8t+0F 4.2t*09 Cs illa C3 1158
1. 3 t *0 5 6 . l t + 0 5 _ .. . . . . C . __ 4.6t*0F 7,4t+C4 3.St+07 2.4t*C9 E su 123 5.3t ool 0. 1.2t+09 1.44*08 5.FE*09 6.CliO9 3 14 124 1.1 t +04 2.et*10 2.3t*09 2.FE*C8 1.2f+f0 f.Ct+10 7.4t*08 9.3t*01 2.f t +0 8 1.CE*09 19 126 6.J e +05 ~~ 4.0t*19 2.2t*08" '2.FE*07 9.et*0F l '. 4 t *C 9 se 125 9. 9 8 +0 6 2.3t*39 5.5t*0s ft 125e F.5t*06 1.et+04 4.3t*JF 1.CE*01 8.6t*J8 '

f t 12F 5. t t +06. . 1.3t*35 1. C E

  • 0 8_,,_ 1.3t+37 t.2t*09 1.CI'09 f t 127e 4.S t +0 6 s.21 36 1.3t*38 6.C E *C F._ 3.Ft*09 3.2t *C 9 f t 129 2.ft-C1 1.f t +0 F 1.21*04 1.6t+f5 1.0 t *0 F 6.H +C 4
1. 2 t *C 6 2.Ct+JP 6.3t*38 . 5. 2 t *C F . 1. F l *0 9 , ,_ , . t . s t +( 9 ft 129* 6.5t*C6 1.9t*01 ft 111 9.2 8 -C 2 2.tt+34 3..t*J6 6.Cl*C1 ft '3t* s .21.C 5 f.CI'34 1.$t*JF 3.'t*04 1.St*06 3.6t *C F 6 2t+34 1.1t*07 2.64*01 1.64*CF ft 132 6.4 t *C 5 ~ ~ 4.48'd? -

cs t 36 i .i e *C4 $.84 39 t.8t+t0 ~5 .!:+10 '9.Fe*08 t.atetc Page 1 of 2 Revision i l

1 1

e

te pip 6010.0S0.001 ATTACHMENT 3.23 ..

I C1 13e CS 137 C 1 38 sa 137 1.9 t *C1 8.5 t +0 5 8.48*02 4.at *03 1.!t+38 1.6t+t3 3.et*C5 1.tt+05

1. / t + 't9 1.67+tC 3.0t-23 7.3t*u?

1.CE*C1 6.!!*t3 9.ft-23 t.at*38 3.!t*07 F.4L+C8 3.

3.

1.Ft*C8 f.68+tc 5.st tt 2.3t.G1

-~

44 1 60 2.38*05 2.tt+CF F.21*CF 4.et+34 1.5t+0F I s a 161 e6 162 L6 16J La 162 1.6t=C1 5.Ft-C2 6.9t +05 1.2 t +06 6.2t+G6

+.3E+36 f.9t*GF 7.Fe*JS 3

3.

2.3t*01 5.38-07

__ Q.

Q.

2.?t*06 e.et=08

_ _ . . . . 3.

G.

4.et+02 C.

2.ft+C8 8.48-22 3.5t=59 -

5.tt+cF

~

l CE 161 . . _ , 2 . e t + 0 C , . .,,_ .  ;

1.3 t +C1 1.64+37 f.St+0F 1.4t+0e 2.CE*07 3.3t+04 Ct 163 2.3 t +C5 2.3t*34 1.Ft*64 2.Ca*05 3.Ft+02 2.L t +c 7 I

C t 166 9.et*C5 F.C t +0 F t.3E+08 1.eE+07 __ ..Z.6t+08 _. 1.!t+1C pe 143 2.1t*05 O. 9.It+05 f.tt+03 1.5t+0F 2.3t+C8

-- )

se 164 6.3t=12 1.ft+03 3. C. Q. 2.3t-24 to 167 1.tE*05 8.6t*34 4. 7t +0 5 . _ f.2t+06 2.6 t+0 7_ 1.6t+C8 se 167 6.Fg+06 0, .

3.et+al 6.st+06 3.et+0F F.gt+0g --

pa t 6se 3.3 t +03 1.$t*08 2.1t+0e 2.5t+05 2.6t+08 1.4t+09 sn 151 2.1 t +06 1.2 t +0 8 ___ .J.2t*05 2.Ft+06 3.et+0F S.Ct+08 w 147 1.88 +0S 2.6t+34 2.et+04 3.2t*01 3.al+C0 7.at+C4

I up 239 f .3 t +05 1.Ft+G4 1.It+05 1.It*C6 3.St+03 2.tt c7 I t 130 . 1. 3 t +04._, . 1.S t + 3 7_ t.St+13 1.QE*08 t 131 1.5 t *0 F 1.Ft+0F 1.ft+10 2.tt+C9 2.2t*tt 2.4t *11 3. e t +0 9 3.tt*to

! 132 1.5t+0$ t.2t+3e 2.et+01  !.tt+01 3. 6.6t+03 t 133... 2.ft+0e J+6t+04 2 Ct109 7.2t+01 I

9 . F_L*.0 9 6.et+0s t 136 6.3 8 +06 6.St+35 1.st-10 2.1t-tQ 3. 1. F t -C 3 t 13 5 e.2 t +C5 2.St+0e 3.Ft+0e 6.5E+te 1.3t-11 5.Ft+Ce um. t se 9.tt+C8 C . __ _. 5.!E*10 1.2t+11 e.F_t*09_ ._ _t.3t.+11 ett 1s.e3 4 4 aLf 185 !! 8t#808*tt, ust ettt StVt4 14 t =131 814 U4fet4ftf!!B Cas*0444f5.

I IF steel age tot 31 444Lfsts att 8t4f18883. g$t 4(!! 3!vtg 14.CS*I3F Foe W9t aggf tr tte Conocetets. ...

18 10.e3, !=131, ag e C$*t 37 aw aLf st s as t st af 0est e, og g a( g eggtg gm gnatStot unteE4f tstle Corp 09tw+

se: Car:cm

.**Qt fit + Ja..fwl welft 3F 'dt 20fg sea sst f te s se t met e/ ve 8tt JC!/83 808 4LL gafweaft.

age f dt f +utf St "ubf!*Ltt3 av s/1 tw sFtC!Ft: aft 3=s 3.11.2.3.4 44 3 3.

I e . e e.. .m oe. -- e . .u m. _

4 me __e..m M**

W I

g m.2e2 Revis 3.c n 1 I .

~

~ dWd 90T0*OSO001 Y11YDEH2NI C*Et

' 41013 ::

  • iL 5 .I g)3(* NCTI stanatA COSI sysvslA3aS sG4 a t0 3 Dhn 31183 $ C An 3 a anv = hCB13 tf533 i

atSIC* !hMTSV AICh taCnmO sith3 3CP=.193 .. 50:4= 213 skle 7= elta

' hn37303 )ma a m t at - )mt*selesAs gggggggggggggggggggggggggggggggggggggggg'selasAa

)m! )at*esledAa )st'esnesAa 33333333g93g33333333333333333333333333331t983t!t391._ ._.

D531'0735

) er 'ess et ae .I m1** s 't 3 +01 O' t '93 +02 *03+01 t*23 02 r*t3+01 3 69 6

  • 5 3 +09 0* !r3 +sE IV wh  ! * :3 p5 L n= .5 ht tg & D3 39 6'23 04
  • t*53+09 t '13 0 5 ~ e
  • 5 5 =& 1 - 2*43+35 I d !! 6 '* t 3 +0 5 1*t3+60 - l ' 3 3
  • 6 0 -- 9*93+04 t'53+06 m 3s 58 t 'f 3,01 O'43*t9 9* S 93+09 4*13*D1 4*93+09 6*23*34 ah 59 4 ' 4 3 +0 9 6*93*[4 t83+D4 t'53+09 --' t'23+02= 6*93+08 eh 59 6*rB=04 '

t '0 3 +09 6*D3+S5 6*93=32 '"5*33+02 sa 55 r*53+39 0* r'31 04 r*53+35 O'E1+03 2* t*13*38 83 54 4*63+05 '*-- "~ t

  • 4 3 + 0 0 2*03*08 6
  • 4 3 +3 0 30 53 8
  • 8 3 +D 5 f
  • 4 3 +0 8 J*63+04 s' t'53+099 n + 0t *9- g 3~ +0 *3 8
  • 8 3+ 0 6 ----"

9*63+03 30 90  ?'t 3 *05 2*23*60 96+03 t

  • 63 +O J 6*63+06  !*63+D6 nI 9E **r3+05 l'43+06 l' *9*t3+06 ~ ~ 6 ' 9 3,+ 6 0 6*t1+43 i

h1 95 & '2 3 +39

  • O'0'3+0$'---

C* &'23+CO l'53-06 0* r*D3+02 6

2n 99 9

  • 6 3 +09 6*0I*05 2*03+09 2*r3+05 r*23-05 4*33+05 1h 95 s'03+05 4'53+cs t'63+04 9*43+03 6*03+06 6*t1+06 26 96 5*53-02 O*
  • P3-62 5'53=!! C' -"1*11-35 t h 9 6# 8*t3+ 9 t*23+OJ t 2*63-0(

sa 39 6 '9 3 +3 5 t*t3+02 r*03*05 6 737!! t'23+09 83=29 c' 1 93 +0 9 9'13-66 I,

aS 69 t'9W+05 e'03+t9 t'+3*04 r '* 6 3 +0 8 9 ' 5 3 +0 3 t*23+03 se tI 1

  • e 3 +0 2 t*II*C9 C* C* C* t JlatI se 54 i'G 3 +02 6*23+05 ~ t' ~ O* O' 503729 u ta ie  !* 3 +3 5 '!*?I*t9 n'r3+04  ?*91*06 t*t3+08 e*03*06 SU 40 6'tI+34 C*  !*63*lC r*23*60 8'33+60 9*23*LL la 66 4
  • t 3 +3 5 " ~ ~ r*63.*9 ~~ 93+C5 t'63+05 6*t3;60 6*93+39 ta 62 + tI +39 4'53+DS L't3+DC t* 2*43+D& l'tI+DE t'63+DS I

A 40 1'* 13 +3 5 s'53+C1 4'53+05 e'J1+39 6 93+09 A 66 l ' 5 3 +) 5 6*61+t9 6'23*38 I* ~ I '* 4 3 + 3 6

  • 6e m 6*t8+3C s'33+C5 9
  • 2 3 + 0 9 ' ~~

6*t3-46  ?*t3=ib~ t*R3b5 - ~'C' a'93-08 A 62 t '9 3 +3 9 l t3+tS t'el=CL l'23=ts t'&3-15 6*93+09 l A 61 9

  • t1 +0 5 6 '* d 3 + 0 5 ~ ' 4*ti+fI S'93.!! 6
  • t 1 =0 4 5't3+99 24 65 6*53 05 t'53+tS i'C3+05 6*41+09 "6'93+06 23+36 f a id 5*t3 SS 2*e3+09 t'93*09 t
  • 23 NI L*L3+00 '6't3+02 r* I'-

ht 65 l *C3 +DS '6*93+03 93+CS  !*e1+DJ 6 3 3 +0 6 9'73308 eD ot  !

  • e 3 +02 **03+t9 = *l'93+D4 5* G*23+09 'r '* t 3 +0 5 6'93*3 4 43 66e 9
  • r3 +01 &*63+05 5'13*0E **t3*02 l'93-63 5'23+01 43 604 l'43=>f ~ ~ " 2*D3+39 0* 6'93-24 86 60E 6
  • 6 3 +35 6'63+03' Cl* '0' ~3 + 0 5 O'r3+09 t' t*laelO S ' 5 3 +0 3' sn 6DS *
  • t a +0 9 8'93+05 f*t3=01 6*'3=D2 9*03=ts t*t2+09 an 6DG 6*63+3$ 9*r3+CB 6*63*09 6 '!B 05 6*53766 6 ' t iT6 0

'D 6LOm $

  • 0 3 +D E -

!*53+t6 t3+60 r

  • 23 +0 6 43*36 **t1+36 3C 461m 6
  • II +3 5 9*t3+t9 s!*'t 3+02 9*t3+D9  ?'03+04 9* 9*63*06 30 Ltse 5h 6 !!

I ' 5 3 +0 $

t '13 +31

~~0' 9 '93 +0 4 t 53+DI l'93+09~

4*83+69 S'53 04 t ' 6 3 +0 6

!'!3704 t 9 3 + 0 6 I

l 5h 625 l ' t 3 +0 9 t'93*60 n t 3 +0 4 s '53 +0 0 4*53*60 e'93 06 1 58 629 63*05 ' ~' 9*13*CB 9 *L 3 *08 d 93+34 9*4B+00  !*63+06 i 1'0I*3$ t'53+06 " ~ ~

~

i 58 nrE  !*  !*t3+t6 &'t3+03 43*02 43+DS 43 6 25e J 13 +39 93+t9 9*13*OJ t4 ! 3 + 0 9l'!3*D6 6' 9

  • 43 *D B I

13 424 5d3 09 t't3+05 5' l'J3i04 6*63+09 6*93+06 s'53+00 "

43 L!dn 9 ' 9 3 +3 9 ~ ~ '8'23+09 l't3*68 2*t4+02 * * ' 3 '+ 0 6~ 2*3t+)6

{ al 6 26 6 *43 -08 4 *53N5 4*t3+D* s'23+34 g

'-~(

s ' iib J t'93+39 1

, AB lits 1'43+39 * !*93+Cd

  • 93+08 =?*33*04 9*93+06 4*23*06
  • 3 lit 9*93-02  ?*43+t9 t't3+09 6* t 't3 +01 t3+01 9*83+39 43 614 e 5
  • f 3 +0 5 s'13*09 &'lleD4  !*63*39 r'r3+09 2* 9'43+04 43 l it 6*65+05 9*24+t9 4'53+04 9'f3*0 4 6'93+33

'i w eie~~-6'J3+09

'l'

~ '

35 ot s sI 3$ + tibe l ti* 3 " i 23+0 i w +63 l

dEhD I O; Z gsATsicu I

-[

s I -

PMP 6010.OSD.001 ATTACHMENT 3.24 I C5 lle 1 5t+C1 1.3t+08 3.9t+08 1.CI+C9 1

CS t 3F 4.25 *C1 4.$t*CF 1.Ft+C8 I

1.Ct+1C 9.1t+09 2.6t*10 Cs 138 6.2 t *C2 4.et*C5 1.Fl*23 9.et*04 e.it*C9 en 133 a.Ge +C2 1.tt+C1

_ 5.11-23 0. 4.4t-11 to 1 60 2.2t+C1 F.*t-04 S.64-09 1. "

~~

2.1 t es ? 1.3t+0F t.3t+04 6.ft-C2 sa 16 1.J 2 -O t 6.2t+G6 1.7t+17 2.at+0s 94 142 2.48-02

3. 3. 3. ... .._ 9.2t-22 .

I 6.$t.06 3. S.

La 140 6.es *C5 1.9t+0F 3. 3.at-39 LA 142 1.Pt*05 2.Ct*06 1.4t+03

l. 2.t t +C l F . F t* 31 F.51-08 F.3t+GF

' C E 141 1.2t+05 1.4t+37 1.tt+0F _. 9.CE*Q9 _ ____0. _..... F.1t-C1 Ct '143 1. 3 t +0 4 1.2t+0F _

2 .3 t *0 5 2.3t+Je 1.2t+04 1.6t+CS 5.Ct+Cs 5.et+02 I

C E t 46 8.2 t *01 F.Ct+37 2. f t +0 F se 141 2 3 t +C1 C.

8.St+0? .. __.1.1t+C7 _ 1.9t*14 .___._t.1t*t0__ ___

se 164 3.QE-42 1.4t+03 t.et+05 F.9t+06 3.tt+0F 2.Ft+03 j

go 167 1.Ft+C5 4.6 t+C 4
3. 1. 2. 2.38 26 i

Se 167 ___ 5.11+05 _ 6.11+04 _ _ 3.a t +0 F . , _ .,t . 9 t +C 8 i 6.6t+C6 0. 2.Fl*Q3 3.2t+04 I

i as $ 44, 3 3 t +0 s 8.9t*0F , ,_

1.$t+C8 1.et+06 1.9t+05 4.St+04 l g to t$1 . 2.et +C4 3.9t+08 1.F t +C 9

  • i e 14 7 f.et*01

__..t.3t+08 1.et+05 1.91 06 3.et+07 mp 239 2.4t*06 1.4t*06 2.1t*Q1 S.Ft+00 6.. i t + C 8 1.2t+05 1.Ft+Je F.6t+36 1.Ct+GF i 133 t . t t +C 4 1.1t+0F E.9t+03 1.3t+C3 2.9t+0F

' .2 t *0F _ e .Q t + 0 9 _ _,_, . 1.tt*to 1.6t+08

! 131 1.Ft+3F 1..t+11 _. 2.St+C9

'8 i ,

! t 32 I t33 t t 34 f .t t +C f 2.2 t *Ct .

1.2t+G4

.._,t.4t+01 1.St+C1 8.lt+33 1.et*ti 1.at+01

1. 2t *C 0 6.98+49 3.

9.3t+01 3.3t*1C 3.2t+C3 I t!!

3.J a *C6 6.58+31 1.11-10 1.3t.1C 3.

1. 3 uc t _

6 . 5 E *C 3 2.5t+34 2.2t+16 6.68-G3 ug-ts+ 8.9t+CF , 2.4t*Ce t.Ft=15 4.4 8 *C 4 3.. . .__,3.lt+1C  !.2t+1C lI 1.Gi t.1 G 4 1.t+ft .

ett It it.93 te.93agatvsts ago 11 ott'Ce*t). Jtt ett i 314t% 11 ! = 131 818 uttat9ftFtta C3"81484f1.

i tp te=43, !*t31t.t31 anattsts set stesteett, Jtt 4t!) S!'dt4_tw (1.t37 see Jgtstuftp!E3 CC'*1984ft.

i 494 Caetem 440 C5 13 7 4NaLftts act ste80tatt. J11 St!) 31Vt1 tie 14=41708 untatef!Pitt C3=804tgtt, _ . .

! .8)* + 4 t T! J* Jat J5t?1 28 fat l

a=0 f,t* eytt it syLftp(!g: 1,3Jtt eseamtflat s/g gg set: at t +et e/ 3.11.2 tat:Arg:gt ,e ele WC 3.4 ags t/ mi3.808 ALL fathweft,...

l l ,

\

l l . . _ . .. ..  :. _ . _ . . .-.

I l "

l '..

I Page 2 of 2 X

r .-

pt.

Rev 3.s 3.c n 1 I e:

  • -.1

PMP 6010.0SD.001 I ATTAC1DfEr 3.25 I PATWAY DOSE FACTORS DUE TO RADIONUCLIDES OTHER THAN NOBLE GASES (MAXIMUM DOSE CONVERSION FACTOR, AGE INDEPENDENT I.EAFY INHALATION MEAT GROUND PLANE COW-MILK VEGETABLES PATHWAY PATHWAY PATHWAY PATHWAY PATHWAY GOAT-MI Rg Rg Rg R R R '

t (mrem /yr (ma mrem /yr (ma mrem /yr (ma mrem /yr 3 (ma mrem /yr (ma mrem /yr RADIONUCLIDE per pCi/m ) per pCi/sec) per pCi/sec) per pCi/sec) per uCi/sec) per pCi/ss)_

H-3 1.3 (3)* 3.2 (2) 0. 2.4 (3) 4.0 (3)

Cr-51 3.3 (3) 1.6 (6) 4.9 (3) 4.7 (6) 7.5 (6) 1.2 (7) 9.0 (5) tb-54 7.7 (4) 2.2 (7) 1.4 (9) 3.1 (7) 9.4 (8)

Fe-59 1.9 (5) 1.8 (9) 3.7 (6) 2.7 (8) 3.4 (8) 9.7 (8) 4.4(6)E 3 Co-58 1.1 (5) 3.1 (8) 3.8 (8) 9.1 (7) 6.1 (8) 1.1 (7)

Co-60 2.8 (5) 1.1 (9) 2.2 (10) 2.9 (8) 3.2 (9)

Zn-65 1.3 (5) 1.0 (9) 3.4 (7) 7.5 (8) 1.7 (10) 2.7 (9) 2.1 (9)

Sr-89 6.0 (5) 2.6 (8) 2.2 (4) 1.1 (10)

St-90 1.1 (8) 3.5 (10) 2.2 (10; 1.0 (10) 0. 1.0 (11) 1.4 (12) 2.1 (11)

Zr-95 1.5 (5) 1.6 (9) 2.5 (8) 1.0 (6)

I-131 1.2 (9) 1.2 (5) E 1.6 (7) 5.4 (9) 1.7 (7) 1.0 (12) 4.8 (10)

I-133 3.8 (6) 1.3 (2) 1.2 (12)E 2.4 (6) 9.6 (9) 8.1 (S) 1.2 (10)

Cs-134 1.1 (6) 1.2 (9) 6.8 (9) 5.4 (10) 2.6 (10) 1.6 (11)

Cs-136 1.9 (3) 4.5 (7) 1.5 (3) 5.5 (9) 2.2 (8) 1.7 (10; Cs-137 8.5 (5) 1.0 (9) 1.0 (10) 4.1 (10) 2.4 (10) 1.5 (11i 82-140 2.3 (5) 5.7 (7) 2.1 (7)

Ce-141 2.3 (8) 2.8 (8) 2.3 (1) 1.3 (5) 3.2 (7) 1.4 (7) . 5 (7) 5.3 (5) 1.3 46)

I

  • 1.3 (3) = 1.3 x 103 I

I Page 1 of 1 I

Revision 1

~ - - -

+

i -

r, -

~.

.s.,. .:r u. : .,. w . .

V. s,s n

.d msg g'Wd.y.

~

.; e :.. .* . t

b. . PMP 6010.0SD.001 l .&

n1*dH .

- [* ish.W%:...h*C' meR p"I.. [.s' :.Q'y". .

h. . Q. . o S
.s*u.. . . %.ky.m...

ATTACHMENT 3.26 p~. -

e W5: . e.f '?4;.

.y(,(** .,,, Q=

a . %,,

-u. . . .

e- ..

p.-.:..-

e. 4 . . .

. ~ ' .,

)llt. T

.M C,, . ".?.. . .*l *

.%. 45

. . .- . M.*h:L' .s'.

. . T..6' .,

E .

.4m'*k.h.fi .w ...-

-y

. . .....g

. * ' f vc'"..; '

.. . _,  ?,

.,,%.....~..- _

Y - - -

l

!L;=-- $*'% % ....-..-

___ /

-....,..s.,,,., 4.F.~.p "LP ykIi;ii:::.-=j _. n .

  • (6  ?:::"-P
j. .a,k.,*m -

, , . , . - .y i Hii?:Y . , y

.Q. . ..... ..

t

. a p. . m i . -. '. *,M m.% y - -.s---- ..,.29-

. ;T. up .. q'

.grg , A.6..a --a-

-f .x .

=.....

l 1

4 4_. - . -.. .

6... >

....:- m,

......$.......-............-........Q...a

  • Q' :. . .*[w.

. .. A.

x x

. b , ...% \

.W .

' .m

. .,,,. =. _

- e....f.n I

,, .g. n . g.

w- 0

.1 . . ,,.,.,.f.: . .=&:* 9..

. .. =-

.t,

-- I........_.

.p. .. . . . _

o.$,J*;W.g..p.......?s., pd , - - :- (.y . : L . .r ' . p 3 i i fe t ., - - - .....- - -. ...... - - -

. .s..,A1 s ......p...... .

., . :.E.] - .i  :.- " '--

. . i. rLi., r.-. ( ), p w f;d: E E,ig

.. d . .

.4. . -. . .....:. ....

. ,i,.,.,.. .. t- ru.u m. r -

,,**[e .[8"" ' 3. .. it.

.m _M . . ,. ., . . , y ,3 i l .. .4. .

  • [-..4...! .,

.'b ..,,.4u

...a** t P. . 1. - . . ..

%., . . 6 k

. G _ 4. . _ .;;. { [

g

.. ..e.bs,. d.

. .a .> . e.t .9

e. 4.. __ ... ._. .. .

.e '

. i.g, af - . - - - .x, A B ..s6

-**. .*s;r + ..gl

. , . . . . . ..C......

... . . . . . ....t..... .... . ..

~ =-

j, e.  ; i"fei .~f 1- : . . . . . .

. ._ . -'g,

. u - : 2 -- _. - ml p .. . .. .. .. . . ..... ... . , _ . .

I _ . . _ _ .- ._

e,Gy.

  • r T..,m:r=',3 m.pl .r ' 4- .. - .'. i :i Q $ .-. @ i.= 3  ;. g . -

- e. ... ' -

' * ' -

  • i . :. b.~ ' bi: ; ' ' : D. .J ri:HJ ij rJ isi g' ' ~

~ - + - -

'-u d - ' - " ~ ' '

.' - . ' - e-. - -

. . . . .. .'. .. . . . . . . . E fl'U.#,

.....!:--" p 7% .h . i . . .. . .

. 3. .. . .. a , . ; .. - ..v-1.ai. . . . ; . .*

.~ . . . . . .

..3... . . .

w -'

I g .." .c. . . .. .. . . ..

t

......~....a*

' ,. i

. . . _ _ . , __ i

. w. m 4,..A

.. ....g...

\ -

.Q N .  : .. -.._~%.-.

~ ,...1....t-*-,.~I-....._

x2 .

., t . . . '

as 93 m ,,,_ . 7.,,.: ~_  :. ...g. .

. ~--- ~-

t... o.. t..-

. ...; : ,,,* .V,,

a 6.

... . . . "2

. l'a . ,. .

. . a. ._:. :. : :\a,a.:..,::m:

. . . . . . '. ?, -

\

..a. .m. . . - ;. i ,..

. . . .. . .s: .a: ...... i .

r:s, mm , - uit ,. .

N.s.

I

. . 1 -

a i i -~..i ,,

W~U C" "'~_

.. . ..N .p . . . . - - -

)

. .*.g.]Q..:q* ..

i **' .,g .. v, a _. ! . . l J. ;.a  !

\. .... 4. - - . . . . . ( -

. .! _w . . e.4

.....,.?,;.c.....

m  :..n..,. C .. .5 .M. . i 4.X.. . . . . .:

ig

. .gr, . .. .. 3 .g . .-

. . . . . . = - -

. .mm.c

., s.

7.k

.m

.d* . - . - -e

. ,=9 c .m .[<\. g% .%-a~an....q...........

.. s E . ,.,,

o

.=.  % 1 .o C......----m....... m:

- : = . _.. - . ,.. _.

. . :. - i --- r . ... . --: .

  • . ~

. /. .:

I

.. C3 ..-.....q .:=.! : : -r.r :.

l g . m,g a _

1_= t - - r :.- - .. ..

L -..- :: -. . . ..._... ..

3

..A.-.

y . . ,.

f. , 1

.n .

. . . . . . .g . .

. . sa

{

I. . .en.eg" m _ .,. -

0 - - -- - -***-- -

1 -'***- * -

\

- ' . ' . * * . - .e*' .. .

,,,.,,vw..

)

.= M M W 3. ... . . . . . . . _ . .

_........\

M-". '* '""* -"'M 3 1 E .

._a -

t

.w 1

_ ,,,,,4

'a q =.,..&.=%.~... P-- '

s ~*

\

l

,,, m,

.. ..a - - . .

  • I

,. :=1 --

k ... .._ .._..

. ,' * .-".. .,. . e r O,

, a .-.

~

. - . . g;;

. . g. .

- - - -~-

=.

_-*{f,o at ,, . , $ _. e. ,. ,.m,

, * .7 i c ., .

^

---~-

  • * * '.. ,p , I.j , ...-..(* *

. .g.. 4.: .r. :!}. g g 3 . .( % . . .

..4.. ..

.. . e. O , . - . . . - . . . - ....n.

....== ,*. . s

  • 4m1

, , i

- C . . . . . ..

- {..+

. - ....... 3 ..

1, y . . . . . . . . . . . . .

. . . - . . . ==

...3....e-.

M .... .. 4 l

......C_.--

...."4.. _

-..+

=

p...... . ~ - . ~~- 1.* - . - ,.

~. ~~-

s...,

. , . . . . - - . - - - = - =

. ... .- -- - - - ~ - ~ * * ~ ~ - - ~

,.... m._. , . . .. . . . ..

1

.. - =.

-- ..-- . ~ . . - *- - .

. ~ .-~- .- -- --

  • g

'Ss. x w .ucr.; .s w >

ccif e r*, w. cWes -

)

p d -l'-l P39e 1 of I

I . . - .

Revision. 1 l'

. .. . . , 3 . .. ... . .- .-

i

\

PMP 6010.OSD.001 E

.. ATTACHMENT 3.27 ,

I I'

100 * . . . - .

1

- \

- . v ...e .

  • J& . *

. ..b 2: ...J.;2i. g.

~

. . ..: a r .- - .a

. *. . . * .' *.. .. ... . . . ~ .

..ar- .aa-z.._ .

.r s a m. a . . . .

l 1

. . . . ~ * %.

M. ."**=*J.

......... =......."."***m_,,,

_.-.,,,;g,~.5 M

I .

.. .... . ~ . .... ......

l .

. . . ......._.W.J_..*~'..........._.4'.

.t..... ... .... .. . . ...

~ -

t ..

_ = _

. . . ... ... . .-. . .~... . . . . ... . . .

4 e

=

1 I

l

...=.._ . ... . ... . .. ........_.. . .... .. .. ..- .. ..._ .....

. . _....,._. ......2_._. . ._....

f g

a .

4 ..

3 as. .. e ==. *

c e -.

. = . . . . . . . _ =* * " . " *

  • _ ' *._.

i

/

/

3 ,

1 -

I F .. . I 1 w- .-

t .. ,

4 j ,ss.. I

. s %. 4 a a- ' s s* 4 - sm l .

]

i **T. .1s ' .4:s...-. .. I g- ~ ._

......m..__.,_-...c.

t l

l --

n_=w- .

- .  :: .-h

- ~ -

ft ..:.,~g..J.....=

l .. .. .

..p. .... ..

.. I' . _

.... .. ... .. . )

1 i

.. 1 4

l s . . . . . ... .. ............. ... .... .

. . . . . . . . . . . . . . . _ ..-.=

b ~

l l

g .

i

. i 0.1 e4 e.g 4.0 t.L l.i ok 14 2.s 2, g 2.V 1.4

- .m c w..,L, . N-.m

. . . ./ ,,m , .. . . . .o... .w. ,i. ..u . . y ( ye pi Page 1 of 1 Revision 1

i 5 .

- ~.' ' ..g, , .v.,. .::: . . . # - ".- : e . - ..

-PMP_6010.OSD.001 E 9 , , .

1 4

. .. <:'.e,p g: . m [ ATTACHMENT 3.28

g
  • P's. r

%,y,r .mrt?  :.

) ~

, .; gy . - .

. s.n ee. n vp,.,.3 .; < y. , m- ~.: 'V.* +jess - a.1fs :m .;:

).I

. .%_.e-

.% *s.

t. . .*gt +:

.. . ..nu$

.. ~. 1 . n s

W y 4 =:f....9

,m:.'~. * .

~..

..;. L r * ...i?.,:.. ..-. ..:.*.. ..D;&.

m.nv. .. .;. :c:? ,,,i- f.

~:: 2. .~_

_ ' ' : =:. . ._

u....__

j , n. ::. : . :mu qs--g :u. n _. . , . :f: , ..p

. . :. . .m . == - .: r. . -m=-

. : ..p..

-- g_

4. . ., ,<s.~ m! la ril - Q4 , r 1 *
J!k :-H :

.. m  !-M --SE . W.f4 _ .a i - C , =E X , . .ia . aus . y; i r r' T HI .. c 448 f.d.& m.s 4 r p_e.m.p_qs

's +. " 4

p. .,

.3...,-- y. .

.. ,., 4 . . .

. J.;. ,

. -4.ru.

Ig4 J. ,%

6. . . . ,. .X -

. N N

w

.i 6

. -..-.p i -

s

3. ., w

.. p . u A~ qL.

,.g.q l

e= 1

  • x '
  • r w

.- 1;*

c.

.t .- . .--

,.4. .

% . . :.;" .; ..- _fr"  ; &,1

_==_ -

.w

.::.g.,, ..,:.-==..

. , . _... .q.- .-._

,. ,.,.0.,

. , .~.c. * .-

T.

-. =. _ ;, :.:= Gl.:::n .. - .

,... : =. . =_ :=. . . .: ..-

n;;

i

.. =_ .;..s g ,

. = . . _

r==.. , .

. . .. - ,s. .=l L , 1.4

.s..... _ . .

t ::. .n. a.

et~ . 9 . r.3 ..=e.

-. .an I

. . ...t. 4. .:q .- .

..t p..s . .

e

., 4.

4 -m. ..

. r_

. ('O. .. ,;

.q

. 2 y3 m.

,1 , .... ,, . 3 1

,.,4 ,..... .

.. .. .. . g .9 . \. . .

. . .. .i g .. 4 4. - .

.._., ,? .. 3* g ..... . . . , -4

- . ~A _. .

...).... .

.\ .. .-.

I -

. . _ - . ~ . x .

- .,n

.p e .,..

l . ..m~ . ' *.... ~ = .

. .. N -Q

..... .~.._ .-

i ,.%..,.. .. g.J . - . . .- ..,..- - -. . . . . . . _ _ ._ .._

i

. g < .-  : g .. . . . . _ . . ... r-

-.-s--- -

- m =a

_ _.__ . ------ - - - =_-_ - ..g.

.= . : .:. -. . ~:=: c. -

i. .

1 - _ _ _ . _ _

.2.3 .--. .=.a..

I , ,c F...

  • . .. . .3 .t . =_= - =: .)-.::. . . .._ . __. ..-- . . t. _ ..__ .

. _ . .a =

  • i a

.. f'T i -

f. . . . _; ;., e , ;; g 9. .
  • a.d
  • A8

._t_ 1*- Yt

  • j- *--.

_m . .. ? k.

' . .us-Q

._M"F._.

?

s- *8 6j" =. , ,

.....~3.

m..

.g. ' yg ,... .1 .

e

.-f Q 6 [ ,-

(, **g 6. .J.$.

. 1

.g . _ , py

- i . k _.

. .4 .. '* ..a .

._  !* a*.3 - .a . ' .4 - .

4 . > . ... ._i . = . - . =- .-

  • . IJ.j t." .- - *= =

. . . .g

\- __.p.

as-cc.. u t

. )= =

s o .

.[

g ._ - -

.I

< ,z:

1

> . :r. .

_:: ..:a--- . 17 .

__r.a 5.a -

o mp -

j

, r. . 2, . . . g'::r . .

;r. . ;; .. . . .
4. . ;,,<==. __.Q.3 a,,, y_.. .y--. e ; -
7. ...* h.

.s

.: .; , .e.:.:

. -T.: s oym

~.

a,.

v...

. -J( , 4 " t 2 -4 _ c.g '

.: .:.g i

. 3 .J.-

4  ; ..  : ..; -_ L,.m

..a.: %_ ./ . .-.';..~._..

i

. > 6. .

_ _ . _s2.w.'T< .4 .

. .-t . ..e _.-.  :

y $$. ....m.,__...._

. ..f . ;..%g .;g.s ._.-

_4

. .- re- g - . . . - .. -

i

. . . , ., .. a. - .

.. ,9 , ._ _ , .. . __ . ..

E.__s. ._. _,. .

_. _,e

- , , . 4., ..

, . . _.,, .o a. _,_

s. '.

3

...-- g . . a s. - - J .. .. .. .. . . .. . . ..

4

.m

= .:. - .

. .u. ,N.

o . c _=._.

g _=__,,

._ . g ..m..--_....:._..=_

I

. . . . s. .,

u-_ _ . _ . _...

.- - _..: . =-

.4 . . -,as .

.c.,.. . ._.,.i. ,...

-e

. .. N

.. =

m, ~. %

x ... . m

. l e _.~ 3._._..:.

=

, ... , w. . t.- ,.

x-  :

.. w. . ... n . . . . . . _ _ . . . . - . _ _ _ . . . . . . . .

_.N-. . .:_2 .

. . .w.. __.

l , . ...:.q. b.

.- -g-ic-J U_., - -\s '- q,.

w - > -m m -

% ; .a _.,. ,- --

. i - ::= 5. c

- < -

  • __ .___.= :_

j

. .s. -

j . . . . . .

c_ . _2.. _ _a . . . . _ . . . - _

.]g[-

m:.. m_:a - 8 _. d.. '""..=._ - : - -- -

. _- -=_ . = - --  :  : s .-- : .

) , ,

- . t .d'"* C ' .? __. .a :' * " -

"'T * "* . """.-*

..  :=.

g 1;- 4* .;

l" . ? -"" *T*M o . s. .:. . . , m

.m -_

  • _M "" M_ . .

... u., ,- . . , 5 -o.n_... __

u ... ,o . . _ . __ . .. _.. _

'd

,t* J;: : . _..

,,,,P .--

i --"

. ..-. ..=_ _ . . ~ " --. -* - _

keb, on gec G EE WS pyg, 3 3g 3 g -

W . p A g . % e M . ~ 4 . W e. Revisicn 1 - - --

o

. E-r.n .. .. ~. ..

,, .).l7$254 -

PMP~~6010.OSD.001 g

.4' r% .Jg'?M &** % - [ e. ATTACHMENT 3.29 g

?.,.

y ;j . . .... . a

,, g..yD.*..;.n**S.s..

s. .,7 '> . .t. . v, 7%- . '.4
g. .i.t. p .. :.er. .1. 3.G; ,. g p ,p..-;,

.A..:;:

. g .;Q; . e d '.

. . Q $ -

3  :..

[

.g

4. [.. .'

. i M:'..~.._*

3.:3; M ' d.iiliiM"$- f .- - .'.~.7 N N
  • 9~'5 . :" .

- - - .,.;m m

. , ... i ' ~r 7.;.. .

_: . ] :  ;. , g...

... ,,_ , . ,e -4ag. # ,w.++..

.r..,, . . r .- - : : . , 1 '-- Fm i4 i

, - vm -

m,a L.( .D-%.

g i c. + . - r . ;- .

3

. . 4 6 ..N . . . - .

. F . .._ l  ;. - >

4........... g . . ....... _ . ~ . . - . - . . . -

a1 _ .

..,.g L 4,g N e W,

~ . . . 3, tg U

~

w .--

.c 'x ._

.. ,.. . .e .t . . . h. . ..

+ .

q..............

t. - - _c ;;g -

n

- i

.,,, 2 ._. -

....:--..- . ....L.-

. .g;-

.}.- . *: " i J.: f~r-3 ! r'd : i t. U : .1.3 *

= f.I ~ _ - Q:
;f."=p. : ; *.:j l

- t :-

ae. ,

. , gyg ,,.j. .r..t. .s ... .. .=

s . ..+ .2 :t i a

-. g-

. . . . -..t -r := p , .

l .. .

.g,., ., .._.~,3 :y ear

- y , .

a ,' . . g i... . j. . .

a. - - - o .

.. p%.g

,.... g' , . .. .} .4.;  ;. y . . .. :.. . 3 -

,,.4

.......- N._.., _ . .

y. %

a.-

.g

+

, s.Ml rW , _ _, :

\-- \ -

.,,  %. .r . ..

_.4e ,.

..t E.w m

. . . . . . -,4 s . . . . . .

. -C . . .

~ ..--- . .

4. .I4 '~i! .

. . . . . _.. M._.

, -! ..: ..;... + ;ii:.~ g .. G E" .. -

  • ~.

...g.. ' i . r : e ;.H;. ;5i_. l 2 . . .

.a.. _.

. - . . ; .!t

. ._ ..+ p i pi (f.2 41 B:e

....c

.4-

-. .. ..)i

a. i ,. 4 l;. .

g_

. 4

. . _ _- . ._ ._ _x. __:..,...:.-......_. .. ; a

.w

v. .. . .. ... .

. . _ _- . .... .. .x......., . . . . . . .. .. .

.% e

... A .g ,

.. ._ g,..

A  :

  • i

. .' ' =_" * =_= = - - ..- .. __ A

.- _ _ =

g --- __-

E ja . >u . . . . . _ .. ... .

g .

tas - . .. . . . . . ,

(- . .. .

l Q.  ;

-is -s ,.: --

---+ .------.: - .

. . . fg

.g

,. . _= ."3 . .iw r1., _ .

, l .. _6 M. .4 . . q .. . . . . : *.;

- . - - :4:-- - :

8 y

*3 g ..[.p

-e. .

q 3 e o g .....g .g . ..s.{ ..-

r, . r, g y m.

4 g . . 7.a. 4, - y .g.. .-..4 '

A. ....! . , n Q Q Q gs y _ _ .

j a s . p. O.. . .o - ** - i---I 4 *~b'

. ; =r . L.

3. CD E .- .'... . . . ..._. ..- ; '-" - e. . ' "4

-~

~ D.td9_ E F -*'-*-'4 H

. . =to -.cem-

- w . %"" 6..-. . ';a -.. . . . . . .

    • . y t.. . . ,, , >d.

v... .%M C. ,. ;

(5 ft 4/1

,K. . ..

s .w . \. , . .. *O .. ,.- ... ...

(A _.

m ..A. ..._- ...

q ,- M g,

.s=.t p %g -g .. .

._.e -

. =

.;.t -- . E.

. -...; -.: =

, . . ... 2 N

~ - .- ..

.%g,'% &...

. . , 3. ~ . . . . --'=- t . 1.-- .

~~ . . . .. :--- -_ . . - ._

=~

...?.- ?- -ty W

2 :-. t -

.::::s
  • c 7 -.

. - ..t -

r i.* . j

  • . t .a -@ .

, , l

. , 4 4"d

.=

4 i t..  :=7. .

...t...........m_.... ...

.s..- . . . .

\ 4 4

.T,.=.. =

. . . -. . . . . g ... ma p"t 1

a' ." "-<

r' P.fr{""'

a

= . - -

  • \- W4

. 1

,. v- - w. F \

y

.I

.., ) - _ -

,1, -a

.- p _ .o. u- .. . .

..._ ....a.. ..

w

-m: e.,i . .. ,s ;_- . . . . . _ . .- -

. .: .. . m. . .=.: . .  :

=_ - . .: .-------- -~

=.; ::

] .c, - -- Oc=5

.' - =

g .' - - -

  • _....~~~~~

' - " ' ' - " ~ ~~ : - ~

. . . .I , -

.s .s . . e ..

l g .. .,.s . .. ,. ..-.

g 5

. g .4. . .

..j - . - - . ...m.-.. - * - ' = - - - . . t

==*==.t =4-

. _ i. ., =_ . . - . - - -.

g L. ... ._

$. g .... . .. s.... . ). . _ . . . - . , . . . ~ . . - - = . - . . -* ,l..-t b,  ! .. .l ,

q,

.. .i...~.......-.a - * *

~~.i.e.==.

-*- ^ 6 6 . 4 6 I e ed

e. .g ===* = = - * *

. ...=.=- .

,w..,. ' . . . . . . . . . - _ . . . . . . . _ . ~ . - . . . . . .

. .-_-. ~. -~= .= ..=_- ._.- =- -.= .-. .. -. .. .=. -= - - - -

.... . - . - . - - . . = . . . . . -

g e--- t :: . .

r._r := . . . . . . . . - . . . _ .

  • ~ ~

Sul e$ geche.h3 c.ahbc.hix ad.

y m c.csadt~ d O l (nsk -

Page 1 of 1 4

Revision 1 (^ -l

j

!I b.tM;7,.

s -.. e; M p .r%, e

' % .R.

& ,H.

PMP 6010.OSD.001 5. e

%.;'i w r ATTACHMENT 3.30

.. .s 2. yu .s. , ,.

n.. 4 w.nq ..

.. u-

, , e, .s '.. .

.f.n.. K. $$. * .*. *. . ,,e_ .,o v.: r f.. . ..w 6.c

  • c"'

i

, . % . . .l'T .,

. . . = .. . ***%..s.*C.'=*.*.. . ., , antt .- 2** -*.

- b Y, . "

1 u - -

. _.:---- : =:=_ . . . . . . . .

1

'-.L .

__ . -- : _..:. _ uu::--_ _.. .: . _._.

+-M........-.._--.-_r.....::.

$. . .m.i.. . =-i -__. - 14 .: e.m.- . .4 : : .  :.= :te- m . __

___.. ,.....f:_  ::::

...p.., e- , . %

m- . :r.. :: r.=: _. . _m -

e-m -n - .

,. . ,. m . , - ..

.. ..1 . .ts

-- u u--- .

t.- . w.

6.c..rnes ;Ln -

2 .. x

- _ _.,s.3.ng l

-l u v.

. . .N. s . , . -.- t . -. . . -

_ -< _. m., - _.. g; y ~

.,c : e . s .

. _ . . .......,n._..  :-

....._ m . ,.,s

( \ ,, m.

j

}

j5

. . ~.~.

<E - .- m :... .- .- .- .- .. _ . . . .. . _ . _ . .

. .a .- _- -.

.;  ;,* ._m.2 ----- .

y Q . . t.- -- - :

. s ,' sy 4 t.:,,.4 4.:r: u .

m . _-f .r- .__

. s . ..

. m,

.  : =.e 3 . :.. : : ..r. : .-r:. . ..

i- ', - U ::-:::

s... 4 . , g.

,...y.... .v;, . . p.. g. . . ..

.,++ 2 .

. g .,

. ,O,e. map . . _.. .

< .. ._ . . . . .. e

_,,,.a..

.I  :.,.,

w,.;.&r- .

... ;,.: ; . . . . . . , . ., p.,,.,- _

- e

..2 q...,

3,,... . , ygg

..=

E : p. . .,. . . . ... . .....- .. . . . . . . . .

v "a, ?.-* : .. , . . . . .

m. q:

. ...y. s.,,o *o,..,  ;.; . ~ ~ x, ,

G, . .

i

_,g

, ..p.

1 t

j .. s.. w p- .

l

. v.7. g. - g . .:g.... .

- .;-.--- -. . .. ?*~  :. . ... .. ,

?.:. t .- - :N _ _ -

~ -

.r-.  ? == -

-t -r- ._ - ..- -

i

=.%. :r :% . *

-..  : i. w- 2. - -....- . -.;

Y a .:. :.:..::.4.!

- u P: r. i.:_3

........L..s

..- .si.

3... . = . , _ =. .-.

.- . nd y l q , , e- *

.. Y. x :g " 4 4,

..i - ' .

- . . . . _ _4 . . . .

. . . - - - . .. .; ..N  ;

. is

-4 .;.. . - . ..t.

J.J . &

a.

. g. v ,,

..A--._..-.... . '.

8 A, .a. N-

~ w. w_.

J .

.. 7.,-- _

- , . 6 D .. .h..s - ,,,, .;; . L.

- a

_ . :L - , _

~3 t -1 wI g"'? g .g ...

===*nt _- - 1 g= ...,.y..-

.e. . y---

-='...

  • S _. -=
  • . - t -

=u-

. f*1_ .~. i . ft

.u: :ilr ,

.g. , -....- - :. =;  ! , c.

-4.. .

..-.Q .-?p . , . . .

. V. -.,.

G Q Q ., . u_4 I4 ..

.e c M ..- ..-..i.  : .. . i ,4

_gy I

03 * .+6 - , . . . .

...i..i.

_.. g

.'. 5 .g-,.;.+...",-  : H ;.'r.;.. \.. ..e..... .

.4

. , g' ..

7 i

..y j .g........._...-...4 -------

,g,

  • .. ... , m ., ,, ...... --

,,.k

~

e, ... .

_ :;g- \.s 6 . . . . . .. a - . _ ._A . -

S . ,- -

g. ..

(J g

m - - ->

m.e - -

.. , . -._.I .

. . . . .g .. . ... . ..._ .

,..g... .. .

. - (4 :.:.

..-- "~.

I u,  :- tt:

. \..- t-  : m :--

.. . . . . i.

g ,.:,, : ,

0"* g*

..,1. . . . -

- ai . . . . . . . _ ... , .. ., , - . .

'... .. __ . m. .

r

} y% . f. ..--.._..... - -a . - .

b...

\ .. ;3 . tri se . (

\ - .. a; I

1 s .m m ce - . . . . . . . . . . . - - . - . . .. . . . . . . . -.... ..'g--....

.. m- ' ,, r v . N .t,

. , , - , .m .,

.,.,& v N '. .

. ,[""" _ :". , 1.,. s. i -

Y-

,=

.... . . ....;-- . ... -.. r.. .. .

I d,,.

. .S.. .(,,3 i-C. "- .

a.

. .'.q. .-

. r; ._ - --

. -_:-. ---?.-..:::. .""-*:-:

,' s y ..

,.= .. .  :....

g

. .- . N.=-. . .

4

. g r .. . . . J... .

  • i

.t. -a'.. .l "n a - .

<f Tg

  • a . = .
4-.

iI

,h..Q'w . la . .

,, o _ . ..

i.....=

(- , - . . . . - .. .

- .. 9

.- e .

i - -= ..

=. _ ..

3 -._ ..._ .. .. ..

4 *

.M OA 4: g,o 0.+ ] O.i M E .'.

Ech c, ecoa M m drie. Ne I of I Revision 1 '

i (p[,: ~.f .

PMP 6010 OSD.001 ATTACEMENT 3.31 x i -

img j $.se6.n

. . M e .u W.n n . .

assas sun a cu.=a.

u 4 143 g euas .13,

. +=F1.

tvi .i.= i,g..

- Sam.M.tres s ,1 seus,usst g

-Q* #ft. C=f t Ist FA

)

esot.t.a sa as.844 L36

  • uurt. sts. pye
a. .e l

_'"'",,','8*

.I

  • m itsa.aael n t ..

.. . . . *a-

=

y

. . . [.

3 i

s i , , , 1 i .~

% ""' ass,e,ea,re.p tas :. -. I I.

. a.,

m

! m .. . .

r e- l ',,_,, L. v.at.e.s

.g' sp;, {t 9,sen . i rge .

.,ge

( .r m,res I it .a u _

M 8.

<1f s .t'- N.* ****

x. ~~s ~

lCIACw=

= g u.,.u.n.,.

. .. t s i c -

'= i . .. . , , .

/i - .arros

.c. ..' . . . -

g r=m .,!. M,,,.y o.

  • -.*~ ,,a 33.

- "t _ ns g. m.sa.

rnu,. *** l

. .<,3. .

n..

==1

.=

o= = r. u u. . o m . .., . . . . . I...,..,... u,, l ,u

" ,- ". '."T'l n

-r-tn....,,..n,.,.wn ,, u ,--- i ";u

,a, -u t

. . .. , 2r a,, e.

i .C...'.,j E .g.. . l: r.r.a. u u.u..u..n. nurn..u--,.. i . -.i u ua ' ts- . , I ,u ,,,.. .ren. ~ a . - .. m,. ("iate- :a ~-o N a.-.# M m','.'lo. d, ,, "#' . ,,, , , , 8 : n . a _.'~ , .  :, , u ..iD ** . crassar:n g, , ,i i i . . . . t = =. r sy/ ..9. . .. "."'x . . ( usn,, r.*- ~e n.. .--.1 .u - ug. ,,,,, i m . .. .== r .a.u.u a , , , , , . .,. un. . ~i.a . ...u no. 5.. - . . g.- . . . . ,.>us.~" l un..u,n, o l_m.. l .ma l ..a Y tBT.f'84 It . ur L.5  ; . emur l n,,. u,..u. . ,. , I magaj Jg g. I .a 6 %..urum.nWCt

v. .

-~"" m'"'.',a l n.,%~' l ue="* I o , .. l. , , , . .n -I '"i'" l - u.. n - .. 4.u r.e . . ~ ..c eu uzas.ussa

1. . . . .

. ;c. .r=r ia.: .=-- , . . . ,- 3'-

- nn.

m \ . .m.

> _ w, n,
. . ,"i,gyu l e,* . e.:

e  ! .mst ... ,,,,, .:ves.r i .. .: . m .. , r . nt , ,t ., - l

u . l J.a

..- l p. .s- ns..n..c . c.E

s. E 1.:C'J'3 E.~8'.'J E'lI It' - I
  • II SIIIM S
Page 1 of 2 Revision i

PMP 6010.OSD.001 ATTACEMENT 3.31 NOTES Il NOTE 1: Drawings: OP-12-5119, -5123B, -5138A, 1-5661, 5661. -5133, -5134, -5138, System Descriptions: SD-DCC-CH113, -NE101, -HP119. 4

I NOTE 2
Drawings: OP-12-5105, -5105B, -5141, -5141A, -5119,

-5125, 5661,. 5661. { System Descriptions: SD-DCC-CH114, -NE101, -HP119. NOTE 3: Drawings: OP-12-5113, -5119, 5661, 5661. System Descriptions: SD-DCC-HP102, -HP119, NE101. NOTE 4: Drawings: OP-12-5125, -5125A, 5160. System Descriptions: SD-DCC-CH117. 5 I I I I I I uSE TsE NOST cusmENT DRAM No - SxS m DeSCs1 m CNS 5 Page 2 of 2 Revision 1 I PMP 6010.OSD.001 3 ATTACH!!ENT 3.32 5 ' ^ - louaC13 l MM i 3I'.f,@ e . ..e .. t..ul, - . ,. w , ... , , . a.. . . . . - . u 3 ii t .',' $,. s' g*"" E ['~ - "I 8 6?t' '$8, . ' -, .o .t , .u. ase tet?tvt u. amagHts .m. a . m '** m.. ' .a ,.a ,1 i .va. es; . - *I* an, sesures staf gar ase 8 o I 1 " ' "u u , - MIM """g*'.. Kw - Faa b ,.e, an .iu ue esets a~u " - u,e u.,t. _

s. i'.

tuf:stI naf. ryttti udJElst3l j .taf l i f"?"" , sag lastte ese { anus asse 8 'taII*tt . d, Id' +8 - ( ACittte tti ltaash -i3 = t,aa.n .g ,a 8 L e ) 8 tat *  !"9 y 3l ialt: aster"- Q u2 tytt easet.ag :ift = l'""'* i natur'es nieisru, 7,,gre,, .ste 5 pu,s m , ,t. ,6 7t itse see de h,

  • g . 'S httf jh '

. r t i k ens i 3 ..- = ,4 , c.e

V?S aut
18:09e bet *

,:/ . avo 1t u t'Go.44 fit .tp ers tts AN t3atsisst et 1 f""I Q g _ _ 'vaca ae , .,/ I(L,17t'TT11 6 .-c -t.. N ..: a . 1:3fsiettaf P.Em , d -*= ag 3 l .. c. ,,,g

,gg _, ,

i - .v. - - 3s t .2 n. . ,,.) - 19uMt takitt M.-f. g3 I l tat sts.47 ta.ast ~ attL- M ' 'If' I d a d.f.ic.Isd rus ears tassee eff. Rose y,grg t eegg u aussa itnfi seurses

    • a=*

i,,n,,n. . ,n r..,, nu" : s $_- g.1:- -a.a; usw.e n,. usu. - A'?ECR;E ~ ~ ~ '+=' e t-t ttu IGG'R CO .**'A. ' MEN"' ' I +

i n..n .- ""," . % - -c_t,00/1400 t.re:s FAOIA~"N 'C C ES *M i t ur-uurn::avai sur mu typs typ:s 2300/2400 '

"u"n"u* "t u".", :,'.'c"a' : ,,,, tent-- GM tI.ag3i1 :a .ut. au a e iu 9f"l3 , p[*[1'"[, k trueuu.eu.aru ',"d,' t.SStatesTe I tu,g,,a*, i *aw?vt e e.f 2101 u0t t fetet.g at !?fft31 '"*"** ' '8 _g, g,gg, 3C:!. a.,us II a v sf f 1 1 '"* ' . r scu'. '

  • 3 ? 8 La '*f . F 3 *1 C4 ligt 1,su I .ess.ai s, . , :rs t, et a.: .

. u ,,t . . , c:annu ... i , t.s:nsinru irua .af , FA::, s......- _ _,. . C,... ..R , .::26 .

i. tuna

) . . t. : :n . s l SPA-1900 i ."3: ., - 'a: e t.c. 1 i g5FA- 900 "Dw".,:,:,',!.t"

u.e :us ! ,u.c ,. ::.

I I uses. u I' '.. sm EJaagtf . ......!  ::t.. ..e c. j i '. !!' *IT l u..a r c  ; 's?A-13C0 u -.,t. e., , spa 23co , . n.t.yn,, ., i-  ; j oAstcu: 1. *'."I'i * ::' :A!E SYST:.'.is . Page 1 of 2 _ Rovi9 ion 1 1 PMP 6010 OSD.001 ATTACHMENT 3.32 I NOTE 1: Erawings: OP-12-5139, -5148, -5162, 5661, 2-5661, 5141, 01-5104F, 02-5104F, 98818, 98820. System Descriptions: SD-DCC-CHil3, -NE101, IC-105. NOTE 2: Drawings: OP-12-5148, 5148A. System Descriptions: SD-DCC-FM104, -NE101, -CH113. NOTE 3: Drawings: OP-12-5148, -5148A. System Descriptions: SD-DCC-FM104. I NOTE 4: Drawings: OP-1-5147A, OP-12-5148, 1-5611, 2-5611, 01-5147A, 01-5104F, 02-5147A, 02-5104F, 98815, 98816, 98817. System Descriptions: SD-DCC-FM102, IC-105. NOTE 5: Drawings: OP-l&2-5105B. System Descriptions: SD-DCC-CHil4. NOTE 6: Drawings: CP-1-5109A, OP-2-5109A, 5661, 5661, I 01-5109A, 01-5104F, 02-5109A, 02-5104F, 98818. System Descriptions: SD-DCC-EP110, IC-105. NOTE 7: Drawings: OP-1-5122, OP-2-5122, 5661, 5661, 01-5122, 02-5104F, 98819. System Descriptions: SD-DCC-TB102, TB103 and IC-105. j I l Use the most current drawing and system descriptions. 4 5 Page 2 of 2 Revision 1 I i PMP 6010.0SD.001 ATTACHMENT 3.33 4 ENVIRONMENTAL SAMPLING LOCATIONS CGDES LOCATION CODE DESCRIPTTON* SAMPLE TYPE 5 ONS-1 (A 1) 0.4 mi NNE, Meteorological Tower Air, TLD ONS-2 (A2) 0.4 mi NE, Visitors Center road Air, TLD ONS-3 (A3) 0.5 mi ENE,765 KV Yard Air, TLD ONS 4 (A4) 0.4 mi ESE, Cnsite Air, TLD ONS-3(A3) 0.4 mi SW, Cnsite Air, TLD ONS-6 (A 6) 0.4 mi SS T, Shoreline and Fence Line Junction Air, TLD NSF 16.0 mi SST. Town of New Suffalo, M! Air, TLD SBN 24.0 t SE, C.ty :f Sout- Send ID Air, TLD OCT 26.; m. 5.NC. Town of Dowagtac, MI 2:r, TLD CCL 20. mi NNE, Town of Coloma, MI Air, TLD CNS-7 (A 7) C.4 mi NNE, Cnstte TLD ONS-3 (A3) 0.4 mi ENE, Cnsite TLD CNS-9 (A9) 0.3 mi SSE, Cnsite - TLC CFS-I 3.5 mi NNE, Intersection of Red Arrow Hi;;nway and Varquette Toods Road, Pole // S294.44 TLD OFS-2 3.0 mi NNE, Stevensville Substation - TLD CFS-3 4.0 mi NE, Pole //B296-13 TLD OFS-4 3.2 mi ENE, Pole // S330-72 TLD OFS-3 3.2 mi ESE, Intersectten of Shawnee anc Cleve!anc, Po'e // S 337-32 TLD OFS-6 3.5 mi SE, Intersection of Snow Road and Holden Pole // S426-70 TLD C FS-7 2.0 mi 5, Bridgman Substation TL C. OFS-3 3.0 mi SSE, California Road, Pole // B424-20 TLD Page 1 of 3 Revision 1 l = l . l- . _ . . .. -. PMP 6010.05D.001 ATTACHIENT 3.33 E ENVIRONMENTAL SAMPLING LOCATIONS CODES ig LOCAT10N i3 CODE DESCRUPT10No SAMPLE TYPE 5 CFS-9 3,25 mi E. Riggles Road, Pole # B369-214 TLC I I CFS 10 2.6 mi SST, Intersection of Red Arrow Highway 1 and Hildeerant Road, Pole # S422152 TLC ) Tl 0.4 mi NNE, Rosemary Beach

  • Tell Tater L T2 0.5 mi NE, Scrapyard Telt Water T3 0.7  : ENE, 3.'S L' Trai!er Tell Tater T4 0.0 I  : NT, Cnsite Te!! Tater T3 0.01 mi T. Cnsite 't e!!' Tater

'V 4 0.0 ! -i S S "', C site  ;!! Tater l W7 0.4 mi S, Livtrgston Beacn Te!! t' ster S TV (M) 2.5 mi NE, To tzke Far::t Milk CCT (M) 13.0 mi E, Tyant Farm Milk C AL (M) 9.0 mi SE, Lozmack Farm Milk 3RC (M) 4.25 m t ESE Shuler Far:2 Hilk SBN (M) 20 mi S South Bend Area Dairy Farm Milk CNS-S 0.5 mi 5 (maximum), Lake Michigan Fish CNS-N 0.5 mi N (maximum), Lake .\'ichigan Fish CFS-S 0.5 mi 5 (minimum), Lake Michigan Fish CFS-N 0.5 mi N (minimum), Lake Michigan Fish LS-2 0.25 mi N, North Shoreline, Lake Michigan Seciment . LS-3 0.25 mi S, South Shoreline, Lake Michigan Sediment LI Condenser cooling water intake Lake Water ! Page 2 of 3 Revision 1 { E - PMP 6010.0SD.001 ATIAC1 DENT 3.33 ENVIRONMENTAL SAMPLING LOCATIONS CCDES LOCATION CODE DESCRIPTION

  • SAMPLE TYPE 5 L2 0.1 mi SSW, from point of discharge Lake '.'.'ater L3 0.1 mi NNE, from point of discharge Lake Tater VI Cnsite Vegetation V2 Cnsite Vegeta tion ST3 (D) S t. Joseph S tation Cr:nking Tater LTT (C) Lake Townsnip 5 tat:en Cranking Tater 8

l l 8 l I E I i I

  • All distances are measured from the center line between Unit I and Unit 2.

Page 3 of 3 Revision 1 se es W W 15e e gh m en W W W W W W mm me , , ,,7 UN R E STRICTED AREA NORTH NORTH PROPERTY LINE s. u77Thkp' ~r ,i -,u.., lMg3f%c - 8 " / ' 'A2

;g' fv 3,w,2 nkm~ y' /7 l <

's ~ kj -l / jff.: '

)

iW6F kWW ~ .s l[ ' . s g., s  :/ / . , , j A3 'N N .//- h# /- PLANT i 5L2h ./ // fi.!l [ t 765 kV ! I YARD il

SME LINEq 4 ' ;7 /~N T

f E A9 ,/ .[ h/ t/ g8 8 /gg W7'/ (2,000 ' FOOT j/ , ,5 , 4 " i.my,C. E RADIUS f/ g i %# .y Y. ~j Y@ g-1.%vd "c-s A Air, Precipitolion, TLD Stations g Well Water Seent.le Stations 53 O ~ o sooo 2000 3000 ---w..--. 4000rctr L Lake wa'er so,nple Sionions fitat ions A7. 8 and 9 are van l l "ma # :::t I lh' } , gy ? /~' ) ) u __ z f <g g W } ' . 11 /t !L [3 -. _ _ . . l = = = - - - - fffh . .: g l I i ^~ - . . . .- - - a a i

i. i
e

. .'.'- I l 7, , eu em .eaa - - j / /,,,,;"_ m g w / l_ l _ l  !.

- - N 4w // rill s . _c _ > I I

m 5 i 'I .e .l m ] , p ?/ i R I *i a i b/ e, - I  : Tr - ~ i Page 1 of 1 Revision 1 ~

l .

PMP 6010.osD. col ATTA N 3.36 I 4

I l A air o$oc 'nert'oulate,TLD,-

radio / I M milk ' ' """~ g T TLD s' D Driang Wste r - = A CofomaAf13, yne,# 6~ ' , \ \ I BENTON HARBORE.- \

y ,

ST. JOSEPHf g \ i \ E Stevensvde T ,,, \ 5 D.C. COCK r*?T i b4 cioi,e ! xwamc4 5 "'*"'gM ~ T V_i~ Bernen l .- idgm'en M S " ' ' Mjj / s g / y / NILES / f i - New Buffclo h =w vienican ) . ______ _ _ / f _._._ V IN0iANA / / New s / s Carlisle __m f l NM ' }I N 8 9 , , e SCALE OF MILES Page 1 of 1 I Revision 1 l PMP 6010.OSD.001 ATTACHMENT 3.37 W AL EVALUATION OF X/O VALUES FOR ALL SECTORS j

1. Received annual update of X/Q values from Environmental Section. l I

Signature R.P. Section (print name, title)

2. Worst X/Q value and sector determined. PMP 6010.OSD.001, 12 THP 6010. RAD.335 (Gaseous Releases) and Computer Program have been updated. NTS file updated.

Signature R.P. Section (print name, title)

3. Approved and verified by:

signature I R.P. Section I (print name, title) t I E I I I Page 1 of 1 Revision 1 PMP 6010.OJD.001 ATIACEMENT 3.38 DEZINITIDNS dF TEAMS / VARIABLES USED IN PMP 6010.OSD.001 I c = the setpoint, in pCi/ml, of the radioactive monitor measuring the radioactivity concentration in the effluent line pri.or to dilution and subsequent release. I f = the effluent monitor flow rate location, in volume as measured per unitattime. the radiation F = the dilution water flow rate as measured prior to the I release point, in volume per unit time (gpm) . The minimum available dilution water flow rate (F) is 230,000 gpm for one circulation pump in operation. For I two or more pumps, the available dilution flow rates are: 2 circulation pumps - 460,000 gpm I 3 circulation pumps - 690,000 gpm 4 circulation pumps (Unit 2 only) - 920,000 gpm B C = effluent concentration limit, Technical Specification 3-11.1, implementing 10CFR20 for the site, in pCi/ml. C f = tank concentration for radionuclide i. MPC, = maximum permissible concentration for radionuclide i. SF = an administrative operation safety factor, 11.0. MRP = a weighed multiple release point factor, 11.0, such that when all site releases are integrated, the I applicable MPC will not be exceeded. The MRP for each of all gaseous or liquid effluent release points will be based on past operational experience. E = Relative detector efficiency = I Efficiency for y-energy, G Efficiency for the equivalent radionuclide I G = is the weighted Y-energy per disintegration for the mixture. -_ (Isotoce concentration)(Effective y-enerqv/dist.) Total Concentration D a = the cumulative dose commitment to the total body or any organ, o, from the liquid effluents for the total time 5 period at, in mrem. 5 Page 1 of 5 Revision 1 I PMP 6010.OSD.001 ' ATTACIDENT 3.38 at y = 4the length of the lth time period over which Ciy and Fy are averaged for all liquid. releases, in hours C yy = the average concentration of radionuclide, i, period t, from any liquid release, in pCi/ml. i O A.1 = the site related ingestion dose commitment factor to 3 the whole body or any organ, o, for each identified principal gamma and beta emitter. g Fy = the near Field average dilution factor for C *y duriny 4 any liquid effluent release. K = units conversion factor = 1.14 x 105 = los pCi/pCi x g 103 ml/Kg/8760 hr/yr. 3 U.g = maximum adult water consumption, 730 kg/yr. Table E-5 of R.G. 1.109. , U, - = maximum adult fish consumption, 21 kg/yr. T.tble E-5 of R.G. 1.109. BF. = bioaccumulation factor for radionuclide, i, in fish for 1 fresh water site. DF. 1 = dose conversion factor for radionuclide, i, for adults I and critical organ, o, in mrem /pC1. From Taole E-11 of R.G. 1.109. D, = dilution factor at the nearest potable water intake. D = dose due to shoreline activities from deposited SL radionuclides, in mrem. Ty = radiological' half-life of nuclide i, in days. C yy = the average concentration of radionuclide, i, in undiluted liquid effluent, in pci/ml, during that time period, at. Wg = lakeshore width factor accounting for the gemoetry of exposure, 0.3, from the Table A-2 R.G. 1.109. U = shoreline usage factor specifying the exposure time for "E the maximum exposed individual 67 hr/yr, for the teenager, from Table E-5, R.G. 1.109. OF = external dose factor for standing on contaminated ground for radionuclide i, in mrem /hr per pCi/m2, from Table E-6, R.G. 1.109. Page 2 of 5 Revision 1 s PMP 6010.05D.001 ATTACEMENT 3.38 I Mp = M xing ratio expressed as the reciprocal of the I dilution facter, D y, at the point of exposure, dimensionlessa. t b = time period for which sediments are exposed to the I contaminated water, in hours, 1.31 x 105 hrs (15 years), from Table E-15, R.G'. 1.109. Ag = radioactive decay constant of nuclide i, in hr 1 S p = the maximum setpoint of the monitor in pCi/cc for release point p, based on the most limiting organ. F = the maximum volmetric flow rate of release point p, p at the time of the release in ml/sec. DL. = dose rate limit organ j in an unrestricted area 3 requi=ed to limit the dose to the applicable limit (mrem /yr). X/Q = the annual average relative concentration in the applicable sector or area, in sec/m3 DCF..= dose conversion factor which is used to relate 13 radiation dose to crgan j, from exposure to radionuclide i. K, = whole body dose factor due to gamma emissions for each identified noble gas radionuclide in mrem /yr per I pCi/m a, L.1 = skin dose factor due to beta emissions for each identified noble gas radionuclide, in mrem /yr per pCi/m3 1.1 = the ratio of tissue to air absorption coefficient over I the energy range of photons of interest. This ratio converts dose (mrad) to dose equivalent (mrem). M = the air dose factor due to gamma emissions for each t identified noble gas radionuclide in mrad /yr per pCi/m3 P. = the dose parameter, for radionuclides other than noble 1 gas, for the inhalation pathway in mrem /yr per pCi/m3 D 3g = the air dose in unrestricted areas due to noble gases. D = the air dose in unrestricted areas due to noble gases AB ror beta emitters. I Page 3 of 5 Revision 1 I f " PMP 6010.OSD.001 ATTACIDENT 3.38 Ni = 4 air dose factor due to beta emissions for each identified pci/m a, noble gas radionuclide in mrad /yr per D IP

the dose to an individual from radiciodines, radioactive materials in particulate form, and radionuclides other than noble a greater than 8 days in gaseous, gases with effluents half-lives released to unrestricted areas. g Rg

dose factor for each MenMed radionucWe i, in m2 g (mrem /yr) per pCi/sec (for food and ground pathway) or W mrem /yr per pCi/m3 (for inhalation pathway), for the appropriate pathway.

Q.1C =

the cumulative release of noble gas radionuclide in gaseous effluents from all release points over the calendar quarter or year, in pCi.

3.17 x 10 s = inverse of the number of seconds per year.

1 w =

the atmospheric dispersion parameters for estimating doses to an individual at the controlling location, and where W is further defined as:

Win = X/Q f r the inhalation pathway, in sec/m3 gg = D/Q for the food and ground pathways, in 1/m2.

W DL 7

=

The dose rate limit to an individual from radiciodines, i.e., 7.5 mrem per calendar quarter or 15 mrem per calendar year to any organ.

R I

=

inhalation dose factor of I-131 for infant or child in (mrem /yr) per pCi/m3 for this specific pathway.

W = X/Q for the inhalation pathway sec/m3 Q IC =

the cumulative release of I-131 in gaseous effluents from this release point over the calendar quarter or year, in pCi.

C I

=

the I-131 concentration of the secondary coolant in pCi/ml. ,

1 IPF = the iodine partition factor for the Start-Up Flash l Tank. A value of 0.05 is assumed as per NUREG-0017. l RGB Tank, in ml/sec.

T = duration of release through the Start-Up Flash Tank Vent, in seconds. EI g i Page 4 of 5 l Revision 1

_ _ a

I

'.e' PMP 6010.OSD.001 ATTACHMENT 3.38 I

fLWS = is the sum of actual release effluent path (s) flow rate trom all liquid waste management systems discharging into Lake Michigan.

Fy =

Circulating water system discharge flow rate based on the number of operating circulating water pumps.

AF =

Applicable Factor reflecting the mixing effect of the I discharge structure. For once-thru-cooling systems, the AF Factor is set equal to 1, from NUREG-0133.

8 I '

I I

I I -

3 I

I I ~

I I

I Page 5 of 5 Revision 1 E -

. . . ,I .. '. '

~_

PMP 6010.OSD.001 ATTACHMENT 3.1 CHARACTERISTICS AND FUNCTIONS OF THE RADIATION MONITOR RRC-285 (R-18)

ALARM LOCATION CONTROL ROOM MONITOR DESCRIPTION LIQUID RADWASTE EFFLUENT LINE INLINE LIQUID SAMPLE DETECTOR LOCATION STN. LIQUID WASTE 1

120 VAC, DIST. CABINET CCRP-2, POWER SOURCE CIRC-20 CHECK SOURCE, ASSEMBLY SUPPLIED FROM CCRP-2, CIRC.22 i SCALE 5 DECADES RANCE 3E-5 to 3E0 pCi/cc

)

IDENTIFICATION NUMBER (R-18)

EFFLUENT ISOLATION D G ComOL DWICE A APO C kTE TANK PUMPS AND MONITOR TANK PUMPE LOCATION OF DEVICE LIQUID WASTE DISCHARCE LINE emR mmCE N,A IDENTIFICATION NUMBER RRV-285 I

I I

g i

I I

Page 1 of 1 Revision 1

__ _. _