ML20212A705

From kanterella
Jump to navigation Jump to search
Proposed Tech Specs 3/4.6.5 Re Ice Weight & Surveillance Requirement
ML20212A705
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 10/21/1997
From:
AMERICAN ELECTRIC POWER CO., INC.
To:
Shared Package
ML17333B091 List:
References
NUDOCS 9710240207
Download: ML20212A705 (67)


Text

.-. - _ _ _ - . - _ _ _ _ _ . _ _ _ - - _ . .

ATTACI! MENT 2 TO AEP:NRC 0900L CURRENT PAGES MARKED-UP TO. REFLECT PROPOSED CHANGES-TO TECHNICAL SPECIFICATIONS 9

N10240207 971021 FDR ADOCK 05000315 P PDR 9

. CONTAINMENT SYSTEMS 3/4.6.5 ICE CONDENSER ICE BE0 I

_ LIMITING CONDITION FOR OPERATION 3.6.5.1 The ice bed shall be OPERABLE with:

a. The stored ice having baron concentration of at least 1800 ppm (the boron being in the form of sodium tetraborate), and a pH of. 9.0 to 9.5 at 25'C,
b. Flow channels through the ice condenser,
c. A maximum ice bed temperature of $ 27'F, 1333
d. Each ice basket containing at leastw lbs of ice, and
e. 1944 ice baskets.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION: '

With the ice bed inoperable, restore the ic'e bed to OPERABLE status within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> or be in at least HOT STANDBY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLO SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

- (

SURVEILLANCE REQUIREMENTS 4_.6.5.1 The ice condenser shal1~ be determined OPERABLE:

a. At least ones per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> by using the ice bed temperature monitoring system to verify that the maximum ice bed temperature is 0 27'F.
b. At least once per 18 months by:
1. Chemical analyses which verify that at least 9 representative samples of stored ice have a boron concentration of at least 1800 ppm (the baron being in the form of sodium tetraborate), and a pH of 9.0 to 9.5 at 25'C.
2. Weighing a representative sr.mple of at least 144 ice baskets and verifying that each basket contains at least DJ3 4aet'Ibs of ice. The re)resentative sample shall include 6 baskets from each of tie 24 ice condenser bays and l
0. '. COOK - UNIT 1 3/4 6-26 Amendment No. E7,180

(

C CONTAINMENT SYSTEMS SURVEILLANCE REQUIRDiENTS (Continued) shall be constituted of one basket each from Radial Rows 1, 2, 4, 6, 8 and 9 (or from the same row of an adjacent bay if a basket from a designated row cannot be obtained for veighing) within each . If any basket is found to contain less than p unds of ice, a representative sample of 20 additional baskets from the same bay shall be' weighed. The minimum average wei 6 ht of ice from the 20 additional baskets and the discrepant basket shall not be less than 1440 pounds / basket at a 954 level of confidence.

13 5) l The ice condenser shall also be subdivided into 3 groups of baskets, as follows: Group 1 bays 1 through 8. Group 2, -

bays 9 through 16, and Group 3 - bays 17 through 24. The minimum average ice weight of the sample baskets from Radial Rows 1, 2, 4, 6, 8 and 9 in each group shall not be less pounds / basket at a 954 level of confidence.

thanj The minimum total . ice condenser ice weight at a 954 level of confidence shall be calculated using all ice basket weights determined during this weighing program and shall not be less than 4,371, L50 pounds.

2g74 00'0 l

3. Verifying, by a visual inspection of at least two flow passages per ice condenser bay, that the accumulation of frost or ice on the top deck floor grating, on the intermediate deck and on flow passages between ice baskets and past lattice l

frames is rese.ricted to a nominal thickness of 3/8 inches. If one flow passage per bay is found to have an accumulation of frost or ice greater than this thickness, a representative sample of 20 additional flow passages from the same bay shall be visually inspected. If these additional flow passages are found acceptable, the surveillance program may proceed considering the single deficiency as 2nique and acceptable. More than one restricted flow passage per bay is evidence of abnormal degradation of the ice condenser,

c. At least once per 18 months by verifying, by a visual inspection, each ice condenser bay, that the accumulation of frost or ice on the lower inlet plenum support structures and turning vanes is restricted to a nominal thickness of 3/8 inches. An accumulation of frost and ice greater than this thickness is evidence of abnormal degradation of the ice condenser.

d.

4 At least once per 40 months by lifting and visually inspecting the accessible portions of at least two ice baskets from each 1/3 of the ice condenser and verifying that the ice baskets are free of detrimental structural wear, cracks, corrosion or other damage. The ice baskets shall be raised at least 12 feet for this inspection.

COOK NUCLEAR PLANT - UNIT 1 3/4 6-27 AMENDMENT NO, 108, 121, 133, 144

-____________u

CONTAlm'.ENT SYSTEMS

(

MSES 3/4.6.5 ICE CONDENSER The requirements associated with each of the components of the ice ,

condenser ensure that the overall system will be available to provide sufficient pressure suppression espability to limit the containment peak pressure transient to less than 12 psig during LOCA conditions. ,

3/4.6.5.1 ICE BED The OPERABILITY of the ice bed ensures that the required ice inventory will 1) be distributed evenly through the containment bays, 2) contain su'ficient boron to preclude dilution of the containment sump following the LOCA and 3) contain sufficient heat removal capability to condense the rear. tor system volume released during a LOCA. These conditions are corsistent with the assumptions used in the accident analyses.

1333 r% The minimum weight figure of 4tto pounds of ice per basket contains a 34" conservative allewance for ice loss through sublimation,which is a .

fccter cf 10 highcr ther, eas m d for the ice cende65ei desiv n .' In the event tnat observed sublimation rates are equal to or lower than design (

predictions after three years of operation, the minimum ice baskets \

weignt may be adjusted downward. In addition, the number of ice baskets required to be weighed each 18 months may be reduced after 3 years of operation if such a reduction is supported by observed sublimation data.

h 3 / t. . E . E . 2 ICE BED TEMPERATURE MONITORING SYSTEM Tne OPERABILITY of the ice bed temperature monitoring system ensures that the capability is available for monitoring the ice temperature. In the event the monitoring system is inoperable, the ACTION requirements provide assurance that the ice bed heat removal capacity will be retained within the specified time limits.

D. C. COOK-UNIT 1 B3/4 6-4 Amendment No. 180 k.

CONTAINMENT SYSTEMS

'[ 3/4.6.5 ICE CONDENSER ICE BE0

._ LIMITING CONDITION FOR OPERATION

=

3.6.5.1 The ice bed shall be OPERABLE with:

a. The stored ice having boron concentration of at least 1800 ;

ppm (the boron being in the form of sodium tetraborate), and a pH of 9.0 to 9.5 at 25*C,

b. Flow channels through the ice condenser,
c. A maximum-ice bed temperature of s 27'F, I3.33
d. Each ice basket.containing at least 4tto lbs of ice, and
e. 1944 ice baskets.

APPLICABILITY: MODES 1, 2, 3, and 4.

ACTION: .

With the ice bed in' operable, restore the ice bed to OPERABLE status

(

within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> or be in at least HOT STAN08Y within the next 6 hou'rs and-in COLD SHUT 00WN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

SU'RV'EILLANCE REQUIREMENTS

. 4.'6,5.1

. The ice condenser'shall be determined: OPERABLE:

-a.

o At 1 east once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> by using the ice-bed-tempersture o' monitoring system to verify that the maximum ice bed k

temperature is s 27'F.

b. - At least once per 18 months by:

k

1. Chemical analyses which verify that at least 9 representative samples of stored ice have a baron concentration of at least 1800 ppm (the boron being in the form of sodium tetraborate), and a pH of 9.0 to 9.5

-at 25'C.

2. Weighing a repr,esentative sample of at-least 144 ice baskets and verifying that each basket contains at least 1333 -tete lbs of ices The representative sample shall include l 6 baskets' from each' of the 24 ice conCanser bays and

( 0. C. COOK - UNIT 2 3/4 6-35 Amendment No pp,164

)

CONTAINMENT STSTIMS StTRVEII.IANCE REQUTKZXENTS (Continued) shall be constituted of one basket each from Radial Rovs 1. 2. 4, 6, 8 and 9 (or from the same row of an adjacent bay if a basket from a designated row cannot be obtained for weighing) within each bay. If any basket is found to contain less than-14te/JJJ pounds of ice, a representative sample of 20 additional baskets from the same bay shall be weighed. The minimum average weight of ice from the 20 additional baskets and the discrepant basket shall not be less than 44M pounds / basket at a 95% level of confidence. IJJ3 The ice condenser shall also be subdivided into 3 groups of baskets, as follows: Group 1 bays 1 through 4. Group 2 - bays 9 through 16, and Group 3 . bays 17 through 24. The minimum average ice weight of the sample baskets from Radial Lovt 1, 2 4, 6, 8 and 9 in each group shall not be less than tito-pounds / basket at a 95% level of confidence. /133 The minimum total ice condenser ice weight at a 95% level of confidence shall be calculated using all ice basket weights determined durin?, this weighing program and shall not be less

'than 2.U L 4'O pounds. l

  • 1pto, opp
3. Verifying, by a visual inspection of at least two flow passages

~

per les condenser bay, that the accu =ulation of frost or ice on the top deck floor grating, on the intermediate deck and on flow d

([

passages between ice baskets and past tactice frames is restricted to a nominal chic h ess of 3/8 inches. If one flov

' {

, passage per bay is found to have an accumulation of frost or ice greater than this chich ess, a representative sample of 20 additional flow passages from the same bay shall be visually inspected. If these additional flow passages are found acceptable, the surveillance program may proceed considering the single deficiency as unique and acceptable. More than one restricted flow passage per bay is evidence of abnormal degradation of the ice condenser. .

c. At least once per 18 months by verifying, by a visual inspection, of f/

each ice condenser bay, that the accumulation of frost or ice on the q

lower plenua supporc structures and turning vansa is restricted to a nominal thickness of 3/8 inches. An accumulation of frost or ice ,

greater than this chickness is evidence of abnormal degradation of the 3 ice condenser.

d. At least once per 40 months by lif ting and visually inspecting the accessible portions of at least evo ice baskets from each 1/3 of the ice condenser and verifying that the ice baskets are free of detrimental structursi vear, cracks, corrosion or other damage. The .

ice baskets shall be raised at least 12 feet f'or this inspection. I COOK NUCI. EAR PIAIT UNIT 2 3/4 6 36 k AMENDKENT NO.90 125 1

}CONTA1NNENTSYSTEMS

_ BASES

(

2/4.6.4 COMBUSTIBLE GAS CONTROL The OPERABILITY of the equipment and systems required for the detection and control of hydrogen gas ensures that this equipment will be available to maintain the hydrogen ccacentration within containment below its flamaable limit during post-LOCA conditions.

Either recombiner unit *.

is capable of controlling the expected hydrogen generation associated with

1) zirconium-water reactions, 2) radiolytic decomposition of water and 3) corrosion of metals within containment. These hydrogen control systems are consistent with the recomendations of Regulatory Guide 1.7, " Control of Combustible Gas concentratiou in Containment Following A LOCA," March 1971.

3/4.6.5 ICE CONDENSER The requirements associated with each of the components of the ice condenser ensure that the overall system will be available to provide sufficienttransient pressure pressuretr.,suppression capability to limit the containment peak less than 12 psig during LOCA conditions.

3/4.6.5.1 ICE BE0 .

will 1) be distributed evenly through the containment bays, 2) c -

the LOCA and 3) contain sufficient heat removal capability ( to co the reactor system volume released during a LOCA.

These conditions are consistent with the assumptions used in the accident analyses.

S ')* 1533

\ The minimum weight figure of 4420 pounds of ice per basket contains - '

f=ter cf M Maker the . ers" ed 'e- +ha M% conservative allowance for ice loss thr event that observed sublimation rates are ee ice ee-de zer ded y In the predictions after three years of operation, qual to or lower than design weight may be adjusted downward. the minimum ice baskets required to be weighed each 18 months may be reduced after 3 years ofIn a operation if such a reduction is supported by observed sublimation data. $

3/4.6.5.2 1CE BED TEMPERATURE MONITORING SYSTEM that the capability is available for monitorir.g the In ice temperatur the event the monitoring system is inoperable, the ACTION requirements provide within the assurance specifiedthattimethe limits. ice bed heat removal capacity will be retained D. C. COOK - UNIT 2 B 3/4 6-4 Amendment No. J 164

(-

3/4 UASES 3/4.5 EMERGENCY CORE COOLING SYSTEMS

( When c

,,,o nsb an e d t 0 T CT W 4 f w 3/4.5.5 REFUELING WATER STORAGB TANA .fr e,,,, , /6,cl fe e cyg gcy, a nal Vie A ce sto u k ten's The OPERABILITY of the RWST as part d the ECCS ensures that sufficient egative reactivity is injected into the core to wunteract any positive increase in reactivity caused by RCS syst m cooldown, and emures that a sufficient supply of borated water is available for injection by the ECCS in the vent of a LOCA. Reactor coolant system cooldown can be caused by inadvertent depressurization, a loss of coolsat accident or a steam line rupture.

Af,he limits on RWST minimum volume and boron concentration ensure that 1) sufficient water is available within f containment to permit recirce.tation cooling flow to the core, and 2) the reactor will remain subcritical in the cold condithn following a LOCA assuming mixing of the RWST, RCS, ECCS water, and other source -watet.igt may eventually reside in the sump, with all control rods assumed to be out. P=:gm as asistent widp

- ~ - -

the[pitakigOCA at analyses) f De contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics, he limits on contained water volume and boron concentration of the RWST also ensure a pH value of between i.6 and 9.5 for the solution recirculated within containment after a LOCA, his pH band minimizes the evolution of iodine atid minimizes the effect of chloride and caustic stress corrosion on mechanical systems and components.

The ECCS analyses to determine Po limits in Specifications 3.2.2 and 3.23 assumed a RWST water temperature of 70*F. This temperature value of the RWST water determines that of the spray water initially delivered to the containment following LOCA. It is one of the factors which determines the containment back-pressure in the ECCS analyses, performed in accordance with the provisions of 10 CFR 50.46 and Appendix K to 10 CFR 50. ,

c l

4 COOK NUCLEAR PLANT-UNIT 1 Page B 3/4 S-3 AMENDMENT 83,130, M8, 214 o

. 3/4 BASES 3/4.5 EMERGENCY CORE COOLING SYSTEMS 3/4,5.5_REFUELINO WATER STOB A0li TANK A cm i a e cl e 34 ue Ce r-

,6rm meIt;ed lCe On e itCS, an d ne OPERABILITY of the RWST as part of the !!CCS casures t .at sufficient tac occus negative uletors,i reactivity # s injected into the core to counteract any positive increase in reactivity caus by RCS syste.m cooldown, and ensures that a sufficient supply of borated water is available for irdectbn by tb ECCS in the event of a LOCA. Reamne mnjgit system cooldown can be caused by inadvertent depressurizatio , a LOCA or steam line rupture. hic limits o RWST minimum volume and boror. concentration ensure that 1) sufScient water is available within containment to i permit recirculation cooling now to the core, and 2) Qe reactor will remain suberitical in the cold condition following a LOCA assuming miaing of the RWST, RCS, ECCS water, and other sources y

> ter that mav ventualJy reside in the sump, with all control rods assumed to be out. P = rempth p Consistent with Th7 I

c,ff sc4/e LOCA anaTyier;-- --

The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics.

De limits on contained warrr volume and boron concentration of the RWST also ensure a pH value of between 7.6 and 9.5 for the solution recirculated within containment after a LOCA. This pH band minimizes the evolution of iodine and minimizes the effect of chloride and caustic stress corrosion on mechanical. systems and components.

The ECCS analyses to etettnine Fq limits in Specifications 3.2.2 and 3.2.6 assumed a RWST water temperature of 70'F. This temperature value of the RWST water determines thst of the spray water initially delivered te the containment following LOCA. It is one of the factors which determines the containment back-pressure la the ECCS p.

analyses, performed in accordance wi t h the provisions of 10 CFR 50.46 and Appendix K to 10 CFR 50.

i l 1(

l I

l

{

{

I COOK NUCLEAR PLANT 4TNTT 2 Page B 3/4 5-3 AMENDMENT M7, 442,199 j

{

i

, u .

ATTACHMENT. 3 70 AEP4NRC 0900L PROPOSED CHANCES TO TECHNI W , SPECIFICATIONS i

4 4

L a

.3/4 3/4.6 LIMITING CONDITIONS FOR OPERATION AND EURVEILLANCE REQUIREMENTS CONTAINMENT SYSTEMS 3/4.6.5 IQE CONjlENJER LCE DED LjhilTING CQNDITION FOR OPERATION 3.6.5.1 The ice bed shall be OPERABLE with:

a.

The stored ice having boron concentration of at least 1800 ppm (the boron being in the form of sodium tetraborate), and a pH of 9.0 to 9.5 at 25'C.

b. Flow channels through the ice condenser,
c. A maximum ice bed temperature of s 27'F,
d. Each ice basket containing at least 1333 lbs of ice, and l
e. 1944 ice baskets.

APPLICABILITY. MODES 1, 2, 3 and 4.

ACTIOM:

With the ice bed inoperable, restore the ice bed to OPERABLE status within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> or be in at least HOT STANDBY within the next 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SHUTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

SURVEILLANCE REOUIREMENTS 4.6.5.1 The ice condenser shall be determined OPERABLE:

a.

j At least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> by using the ice bed temperature monitoring system to verify that the maximum ice bed temperature is s 27'F.

b. At least once per 18 months by:

1.

Chemical analyses which verify that at least 9 representative samples of stored ice have a boron concentration of at least 1800 ppm (the boron being in the form of sodium tetraborate), and a pH of 9.0 to 9.5 at 25'C.

2.

Weighing a representative sample of at least 144 ice baskets and verifying that each basket contains at least 1333 lbs of lee. The representative sample shall include 6 baskets from each of the 24 ice condenser bays and l '

COOK NUCLEAR PLANT-UNIT I Page 3/4 6 26 AMENDMENT 83, 480,

. _ . _ . . - _ _ _ . _ __ _ . _ . _ . _ _ . _ _ _ _ . _ . . __m ___ _ ___ .. ,

, 3/4 LIMITING LONDITIONS FOR OPERA;'lON AND SURVEILLANCE REQUIREMENTS 3M.6 CONTAINMENT SYSTEMS

$ prvellianAntsthrintUll.iCutt'dilWA)

shall be constituted of one buket each front Radial Rows I,2,4,6,8 and 9 (or from the saine row of an Milacent bay if a basket from a designated row ca.umt j be obtained for weighing) within each bay, if any basket is found to contain less than 1333 pounds of lec, a representative sample of 20 additional baskets l

from the same bay shall be weighed. The minimum average weight of ice from the 20 additional baskets and the discrepant basket shall not be less than 1333 pounds /buket at s 95% level of confidence. l ,

The ice condemer shall also be subdivided into 3 groups of bukets, u follows:

Group I bays i through 8. Group 2. bays 9 tieugh 16, and Group 3 bays 17 through 24. The mhl'num average ice welgra el the sample bukets frorn Radial Rnws 1,2,4,6,8 and 9 in each group shall not be less than 1333 pounds / basket at a 95% level of confidence, l The mininsum total ice condenser Ice weight at a 9$% level of con 0dence shall be calculated using all ice basket welghts determined during this wel,hing t program md shall not be less than 2,590,000 pounds.

l

3. Verifying by a visual impcetion of at least wo now pusages per ice condemer bay, that the accumulatloa of frost or ice oa the top deck Door r,tating, on the inte mediate deck and on flow passages between Iw bask;ts and past lattice frames in restricted to a nominal thickness of 3/8 inches. If one now pesage pe bay is found to have an accumJation of frost or ice strater than this thickness, a representative sample of 20 additional now pasages from the saine bay shall be visually inspected. if thest additional now passages ase found acceptable. the surveillance program may proceed consirlering the single deficiency as unlque and acceptable. More than one restricted now passage per bay is eviderce of abnormal degradation of the ice cot. denser.
c. At least once per 18 months by verifying, by a visual inspecthn, each ice conder.ser bay, that the accumulation of fro:t or ice on the lower inlet plenum support attwtures and turning vanes is restricted to a nominal thickness of 3/8 inches. An ecumulation of frost and ice greater than this thickness is evidc.nc. cf r.bnonnal destadation of the ice condenser,
d. At least once per 40 months by lifting and visually inspectir's the. accessible portions of at least two ice baskets frorn each 1/3 of the ice condenser and verifying that the Ice baskets are free of detrimental stnictural wear, cracks, corroston er other danage. The ice baskets shall be rahed at least 12 fee' t for .'his inspection.

COOK NUCLEAR PLANT. UNIT I Page 3/4 6 27 AMENDMENT 448, 444, 448, 444, b

-3/4 BASES  ;

3/4.6 CONTAINMENT SYSTEMS '

1/4,6.5 ICF, CONDENSER The requirements assoelate1 with each of the components of dw los condemer ensure that the overall system will ,

, be available to provide sufficient preasure suppreanion <;apability to limit the contalnuwnt peak prenure transient '

to lean than 12 psig during LOCA conditions.

IL4.6.5.1 ICE BQ The OPERABillTY of the lee bed emures that the requhed ice inventony will 1) be distributed er nly thrcugh the containment bays,2) contain sufficient boron to preclude dilutioa of the containment sump following the LOCA and

3) contain sufficient heat removal capability to tendense the reactor sysicm volume releamt duiing a LOCA. Thene condillom are consistent with the suumptions used in the nocident analyses, i

1he minimum weight figure of 1333 poumis of ice per basket contalm a $% comersative allowance for lec loss through sublimation. In the event that observed sublimation rates are equal to orlower dan design predletions after three years of operation, the minimum ke baskets weight iney be adjuted downward, la addition, tie number of

' Ice baskets required to le weighed each 18 months rney be reduced after 3 yeam of operation if such a reduction

, is supported by observed sublimation data.

1!i4,111C0 BED TEMPEIMIltRILM0ElIQEING SY1Tf41 j The OPERABILITY of the lee bed temperature rnonitoring system ensures that the capability is available for monitorhig the ice temperature. In the event the monitoring system is !aoperable, the ACTION reqmrenrnts pmvide assurance that the lee bed heat removal capacity will be retained within the specified thne limits.

5 I

i 4

l l

1 l

COOK NUCLEAR PLANT-UNIT 1 Page B 3/4 6 4 AMENDMENT 480,

)

3/4 BASES 3/4.5 EMERGENCY CORE COOllNG SYSTEMS 3/4.5.5 REF(! FLING WATER STORAGE TANK ne OPERABILITY of the RWST as part of the ECCS ensures that sufficient negative reactivity is injected into the core to counteract any positive incr+ase in teactivity caused by RCS system cooldown, and ensures that a sufficient supply of borated water is avausble for injection by the ECCS in the event of a LOCA. Reactor coolant system cooldown can be caused by inadvertent depressurtration, a loss of coolant accident or a steam line rupture.

Consistent with the applicable LOCA analyses the limits on RWST minimum volume and boron concentration ensure i that 1) when combined with water from melted ice, the RCS, and the accumulators, sufficient water is available within containment to permit recirculation cooling flow to the core, and 2) the reactor will remain suberitical in the cold condition following a LOCA assuming mixing of the RWST, RCS, ECCS water, and other sources of water that may eventually reside in the sump, with all control rods assumed to be out.

The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other p),ysical characteristics.

ne limits on contained water volume and boron concentration of the RWST also ensure a pl{ value of between 7.6 and 9.5 for the solution recirculated within containment after a LOCA. This pli band minimires the evolution of lodine and minimizes the effect of chloride and caustic stress corrosion on mechanical systems and components.

The ECCS analyses to determine Po limits in Specifications 3.2.2 and 3.2.6 assumed a RWST water temperature of 70'F. Als temperature value of the RWST water determines that of the spray water initially delivered to the containment follorcing LOCA. It is one of the factors which determines the containment back-pressure in the ECC5 analyset, performed in accoidance with the provisions of 10 CFR $0.46 and Appendix K to 10 CFR 50, t

+

l COOK NUCLEAR Pl.AN1' UNIT 1 Page B 3/4 5 3 AMENDMENT $3,430,148, 244, i

._ _ _ _ _ ~ _ _.____ -___ -.____. ____. _ _ ___. _ __ _ _

. 3/4 LIMITING CON.')lTIONS l'OR OPERATION AND SURVEILLANCE REQUIREMENTS 3/4.6 CONTAINMENT SYSTEMS 3/4.6.5 ICE CONDENSER 4

ICE BED LIMITINO CONDITION FOR OPERATION 3.6.5i The lee bed shall be OPERADLE with: l

} a. The stored Ice having a boron concentration of at least 1800 ppm (the boron being in the

! form of sodium tetraborate), a;,d a pit of 9.0 to 9.$ at 2$'C,

b. Flow channels through the ice condenser,
c. A maalmum lee bed temperature of s 27's',
d. Each ic
basket containing at least 1333 lbs of lee, and l

e, 1944 lee baskets.

APPLICABILITY: MODES 1, 2, .1, and 4.

I ACTION:

e With the ice bed inoperable, restore the ice bed to OPERABLE status within 48 hours5.555556e-4 days <br />0.0133 hours <br />7.936508e-5 weeks <br />1.8264e-5 months <br /> or be in at least flOT STANDBY within the neat 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and in COLD SilOTDOWN within the following 30 hours3.472222e-4 days <br />0.00833 hours <br />4.960317e-5 weeks <br />1.1415e-5 months <br />.

$1lRXE[LL.ANCE REOUIREMENTS 4.6,$.1 The ice condenser shall be determined OPERABLE:

4

a. At least once per 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> by using the ice bed temperature monitoring system to verify that the masimum ice bed temperature is 5 27'F.

i

b. At least once rer 18 months by

i j l. Chemical analyses which verify that at lent 9 representative samples of stored ice have a boror coricentration of M least 1800 ppm (the bomn being in the fonn

, of sodium tetrabo.4te), arid a pH of 9.0 to 9.5 at 25'C.

2. Weighing a representative sample of at least 144 ice baskets md verifying that each basket contains w leut 1333 lbs of lec. The representative sample shall l include 6 baskets from erb of the 24 ice condenser bays and COOK NUCLEAR PLANT UNIT 2 Page W4 6 35 AMENDMENT 66, M4,
  • 3/4 LIMITING CONDITIONS l'OR OPERATION AND SIIRVEILLANCE RE.QUlHEMENTS 3/4.6 CONTAINMENT SYSTEMS SURVEILI.ANCE REOUIREMENTS (Continued) shall be constituted of one basket each from Radial Rom s 1,2,4,6, 8 and 9 (or from the same row of an adjacent bay if a basket from a designated row cannot be obtained for weighing) within each bay, if any basket is found to contain less than 1333 pounds of ice, a iepresentative sample of 20 additional baskets l

from the same bay shall be weighed. The minimum average wdght of ice from the 20 additional baskets and the discrepant basket shall not be less than 1333 l

pounds /buket at a 95 % level of confidence.

The ice condenser shall ah,o be sutxlivided into 3 groups of baskets, as follows:

Group'l bays I through 8. Group 2. bays 9 through 16, and Group 3. bays 17 through 24. The minimum average ice weight of the temple baskets from Radial Rows I, 2,4,6,8 and 9 in each group shall not be less than 1333 pounds / basket at a 95% level of mnfidence. l The minimum total ice condemer ice weight at a 95 % level of confidence shall be calculated using all ice basket weights determined during this welghing program and shall not be less than 2,590,000 pounds.

l

3. Verifying, by a visual inspection of at least two flow passages per ice condenser bay, that the accumulation of frost or ice on the top deck floor grating, on the intermediate deck and on flow passages between ice baskets and past lattice frames is restricted to a nominal thickness of 3/8 inches, if one flow pusage per bay is found to have an accumulation of frost or ice greater than this thickness, a representative simple of 20 additional flow passages from the same bay shall be visually inspected, if these additional flow passages are found acceptable, the surveillance program may proceed considering the single deficiency as unique and acceptable. More :han one restricted flow passage per bay is evidence of abnormal degradation of the ice condenser,
c. At least once per 18 months by verifying, by a visual inspntion, of each ice condenser bay, that the accumulation of frost or ice on the lower plenum support structures and tuming vanes is restricted to a nominal thickness of 3/8 inches. An accumulation of frost or ice greater than this thickness is evidence of abnormal degradation of the ice condenser,
d. At least once per 40 months by lifting and visually inspecting the accessible portions of at least two ice baskets from each 1/3 of the ice condenser and verifying that the ice baskets are free of detrimental structural wear, cracks, corrosion or other damage. The ice baskets shall be raised at least 12 feet for this inspection.

COOK NUCLEAR PLANT UNIT 2 Page 3/4 6-36 AMENDMJ,NT 90, 448,

o 3/4 BASES 3/4.6 COff!'AIEtENT SYSTEMS 3/4.6.4 COMBQSTIBil GAS CONTROL The OPERABILITY of the equipment and systems required for the detection and control of hydrogen gas ensures that this aquipment will be available to maintain the hydrogen concentration within containment below its flammable limit during post LOCA conditions. Either recombiner unit is capable of controlling the expected hydrogen generation associated with 1) r.irconlum-water reactions,2) radiolytic decomposition of water and 3) corrosion of metals within containment. These hydrogen control systems are comistent with the recot~nendation of Regulatory Oulde 1.7, ' Control of Combustible Oas Concentrations in Containment Following a LOCA,' March 1971.

3/4.6.5 ICE CONDENS'E The requirernents associatec. 4'1 each of the components of the ice condenser ensure that the overall system will be available to provide sufficient pressure suppression capability to limit the containment peak pressure transient to less than 12 psig during LOCA conditions.

3/4.6.5.1 ICE BED The OPERABILITY of the ice bed ensures that the required ice inventory will 1) be distributed evenly th40 ugh the containment bays,2) contain sufficient boron to preclude dilution of the containment sump following the LOCA and

3) contain sufficient heat removal capability to condense the reactor system volume released during a LOCA. These conditions are consistent with the assumptions used in the accident analyses.

The elnimum weight figure of 1333 pounds of ice per basket contains a 5% conservative allowance for ice loss through sublimation, in the event that observed sublimation rates are equal to or lower than design predictions after three years of operation, the minimum Ice baskets weight may be adjusted downward, in addition, the number of ice baskets required to be weighed each 18 months may be reduced after 3 years of operation if such a reduction is supported by observed lublimation data.

3/4.6.5.2 ICE BED TEMPERATURE MONITORING SYSTEM The OPERABILITY of the ice bed temperature monitoring system ensures that the capability is available for monitoring the ice temperature, la the event the monitoing system is inoperable, the ACTION requirements provide assurance that the ice bed heat removal capacity will be retained within the specified time limits.

COOK NUCLEAR PLANT UNIT 2 Page B 3/4 6 4 AMENDMENT 4, 444, J

o 3/4 BASES 3/4.5 EMERGENCY CORE COOLING SYSTEMS 3/4.5.5 REFURIING WATER STORAGE TANK The OPERABILITY of the RWST as part of the ECCS casures that sufficient negative reactivity is lidected into the core to counteract any positive increase in reactivity caused by RCS system cooldown, and ensures that a sufficient supply of borated water is available for (rdection by the ECCS in the event of a LOCA. Reactor coolant sys;em cooldown can be caused by inadvertent depressurization, a LOCA or steam line rupture. Consistent with the applicable LOCA analyses the limits of RWST minimum volume and boron concentration emure ; hat 1) when combined with water from melted ice, the RCS, and the accumulators, sufficient water is available within containment to permit recirculation cooling flow to the core, and 2) the reactor will remain subcritical in the cold i condition following a LOCA assuming mixing of the RWST, RCS, ECCS water, and other sources of water that rney eventually reside in the sump, with all control rods assumed to be out.

The contained water volume limit includes an allowance for water not usable because of tank discharge line location or other physical characteristics.

ne limits on contained water volume and boron concentration of the RWST also ensure a pH value of b tween 7.6 and 9.5 for the solution recirculatd within containment after a LOCA. This pH band minimizes the evolution of lodine and minimizes the effect of chloride and cat,6 tic stress correston on mechanical systems and components.

The ECCS analyses to determine F, limits in Specifications 3.2.2 and 3.2.6 assumed a RWST water temperature ,

of 70'F. His temperature value of the RWST water determines that of the spray water initially delivered to the containment following LOCA. It 1: one of the factors which determines the contalmnent back-pressure in the ECCS analyses, performed in accordance with the provisions of 10 CFR 50.46 and Appendix K to 10 CFR 50.

COOK NUCLEAR PLANT. UNIT 2 Page B 3/4 5-3 AMENDMENT 447, 44,199,

i e I r

ATTACHMENT 4 TO AEP:NRC 0900L t

DATA SUPPORTING SUBLIMATION RATES 4

I

UNIT 1 ICE CONDENSER - ICE BED SUBUMATION RATES -

As-l.et As-1. oft Delm As-LeftTotal As.Found As-Found Date As-FoundTotal Intenrol Changein Average MontMy Change

  • Chengein File Nemo (MoNr) IceMoss(MS) File Name (MofYr) Ice Moss (MS) (Mor. dis) Im Mass (Mf9 In Ice Maes(%#Mo.) Ice Moss (%)

311285 i Deo85 2.823 S10686 Jun-86 2.781 6 0.042 0.25 1.50 S10686 Jun-86 2.781 S10687 Jul-87 2.755 13 0.026 0.07 0.91 S10687 Aug47 2.798 S10388 Mar 48 2.707 7 0.081 0.31 2.17  ;

S10388 Mar-88 2.707 S10389 Mar.89 2.685 12 0.022 0.07 0.84 1

S10589 May49 2.748 S10190 Jen40 2.716 4 0.032 0.15 1.20 l S10190 JarH10 2.716 S11090 Oct-90 2.707 9 0.009 0.04 0.36 S11290 Dec40 2.762 S10991 Sep-9? 2.727 9 0.035 0.14 1.26 L10991 Sep41 2.727 S10892 Jun42 2.746 9 -0.019 -0.06 -0.72 S10992 Se W 2.785 S10294 Feb-94 2.719 17 0.066 0.14 2.38 S10394 Mar-94 2.795 S10895 Aug-95 2.719 17 0.076 0.16 2.72 S10995 Sep-95 2.753 S10297 Mer47 2.861 18 0.092 0.19 3.42 Isum l l l l l 125 l l l 13.04 Ilr.1 Weighted Average Changein Ice Mass = 0.12832  % / Month r.1 Weighted Average Changein Ice Mass = 2.31 % /18 months overan 18 month period L-____--_-_ - --

- - - - - - - - - - - - - - - - - - - ~ - -

o UpW72 ICE CONDENSER -ICE BED SUBUMATION RATES ~

A*4.st As4.at Date As4*ATeest As-Found As-FoundDuen As-FoundTeeml trennui Changein AmongeRdontdy Change Changein F!be Name {temMQ lostAssepdf) Fgeplano gam &G ke RAsse985) SAgnes) IceRAmmeSAS) hiceRAmesOWths.) lesIAugs(%)

821284 Doo44 2.008 S20005 .Aug45 1000 8 0.006 0.03 0.24 i S20805 Aug-86 2.000 S20308 Rear 48 2.508 7 0.002 0.49 3.43 S20588 BAmy-88 2.778 S20087 Sep47 2.725 16 0.051 0.11 1.75 i S20e87 Sep47 2.744 S204ee stay 4s 2.717 8 0.027 0.12 0.ss S201ao Jan.as 1 811 S211so Novas 2.7eo 1o o.oez 0.1s 1.so S21189- Nov-80 2.749 S20790 Jul40 2.730 8 0.03 0.14 1.11 S20990 Sep-90 2.775 S20891 Jus 41 2.728 9 0.067 0.19 1.71 S02891 Jun-91 2.728 S20302 RAer42 2.717 9 0.011 0.04 0.38 S20992 Adey-92 2.838 S20193 Jon43 2.827 8 0.011 0.05 0.M S201s3 Jan-es 2.a27 S20est Sep.e4 2.742 20 c0es 0.15 3.00 S21094 Oct-94 2.821 S20206 RAer48 2.790 17 0.081 0.13 2.21-S20406 Apr48 2.833 S20097 Sep47 2.727 17 0.108 022 3.74 ISum i I J l l l 137 I I I 20.43 I wegheed Average Changeinlos RAmes = 0.14912419Whoone Weighted Average Change in ice AAmos = 2.68 W18 monks overan 18 mont penod

ATTACHMENT 5 TO AEP:NRC 0900L

SUMMARY

OF SUMP 2NVENTORY CALCU1ATIONS

I i .

l l

ATTACiD4ENT $ TO AEP:NRC 0900L StM4ARY OF SUMP 2NVENA)RY CALCULATIONS I

g __

i Attachment 5 to AEP:NRC 0900L Summary of Sumo Inventerv Calculations The studies performed conclude that, under dssign basis large break loss-of-coolant accident and a spectrum of snall break loss-of-coolant accidents (SBLOCAs), the proposed increase in total ice mass along with the other existing water sources (refueling water storage tank (RWST), the reactor coolant system (RCS) and accumulators) provide sufficient water volume in the active sump area to meet the minimum sump level requirement (602' 10"). The SDLOCA cases in which the RCS inventory remains virtually intact, are the most limiting cases, and are, therefore, the only or.es presented here.

The 602' 10" minimum sump level requirement was established from scale model testing conducted in 1977. The results indicated that, at this elevation, vortexing was not observed a': the sump entrance when both the emergency core cooling system (ECCS) and containment spray trains operate at run out flow conditions from the sump.

This 602' 10" was adopted as the minimum sump level regardless of flow rate of the ECCS and containment spray pumps.

The analytical technique employed included consideration for containment spray diversion to the dead ended containment areas, and for trr*. sport time from the containment spray nostles to the active sump. Figure 4-1 is a simplified flow diagram of the ECCS and containment spray (cts) systems, and figure 4-2 is a simplified diagram of the lower containment sumps. The MAAP4 computer code that was used is an integral plant representation and includes models fort the reactor core responses the coolant system responses the containment responses the contributions of the emergency safeguard featuress and the response of adjacent plant building (auxiliary building, etc.) where appropriate. As an integral system model, the focus of MAAP4 is on the total plant response to postulated accident conditions, with particular emphasis on accident management evaluat'ons.

Tables 1 and 2 provide lists of some of the inputs used in the MAAP analyses of SBLOCA. Figures 2-1 through 2 19 provide comparisons between MAAP4 and other codes such as LOTIC and NOTLUMP, and figures 3-2 through 3-13 provide comparisons with Waltz Mill ice condenser test results.

The general sequence of SBLOCA progression is as follows. The RCS break results in a portion of the RCS inventory blowing down to containment with RCS liquid conservatively assumed to flow to the reactor cavity rather than the active sump. Operation of the ECCS in the injection mode results in the RWST water being transferred to the RCS. A portion of the RCS break steam flow enters the ice condenser, and the mixture of condensed steam and ice melt is added to the containment sump.

For SBLOCAs of 2" diameter or greater, the accumulators will inject water to the RCS and add inventory to the containment sump, and containment sprays will be actuated. With the CTS pumps in either injiction or recirculation mode, some spray water will be directed to the inactive sump. The ice melt rate, however, exceeds the removal rate, so that the active sump level increases until all of the ice is melted, even during the recirculation mode of operation.

1

j >

Attachment 5 to AEP:NRC 0900L ,,

After all of the ice has melted, the active sump level decreases

)

I until the inactive sump is filled and begins to spill over to the active sump. As indicated in figures 5-1 through 5-3, the 2" SBLOCA bounds larger loss-of coolant accidents (LOCAs) . The final active sump equilibrium level for the 2" SBLOCA (shown in figure 5-

4) io 604' 0" (14" above the required level).

The analyzed SBLOCAs smaller than- 2" (1* and 1/2") behave dif ferently in that, 1) the RCS does not depressurize sufficiently

- to allow the accumulators to inject, and - 2) the CTS does not actuate until all of the ice mass is melted. The operator's isolation of. the accumulators (according to existing emergency operating procedures) deprives the active sump of- inventory-deposited in the analyses of the larger-LOCAs. However, the-CTS behavior of not actuating until all of the ice mass is melted and cyclic operation thereafter result in a much slover draw down cf the active sump. Even with continuous-operation of the CTS, the sump minimum level is not reached until twenty hours after the break occurs. The minimum sump level obtained with these small breaks that do not allow accumulator-injection is 603' _0"-(2" above -

- the required level) (figures 5-5 and S-6).

- Finally, it is ianportant to acknowledge the numerous conservatisms that exist in the analysis. These include an actual ice mass in the containment and RWST volume that exceed the amount:. assumed in

- the analysis, a conservative holdup volume in the refueling canal, and an assumption that the recirculation sump . is - empty at the beginning of the accident. Taken collectively, removal of the above conservatisms would increase the active sump hvel.

2 5

.____..y i

l

) Tahic 1. Input Variables Used for the Donald C. Cook Nuclear Plant Containment Sump inventory M A AP Analysis )

MAAP Variable Description Value

) MICEO Initial ice mass 2.43E6 lbm l

VR13LK(2,3) Volutnc of pipe annulus up to cl. 612' 44,915 cu. A.

(335,960 gal) 1 XRilLK(2,3) lleight of pipe annulus from floor up to cl. 612' 13.2 ft XWJUNC(5) Width of pipe annulus weir 15.1 ft i

AJUNCO(5) Total flow area of the keyway to the pipe annulus 302.1 sq fl. _ _ _ _

i XLJUNC(5) Flow length over the pipe annulus weir (i c., weir 1.0 fl.

1 thickness)

{ XRf3LK(1,2) lleight of the bottom of the sump 7.7 ft.

j VRDLK(l.2) Volume of sump at XRBLK(1,2) O cu.11.

{ XR13LK(2,2) licight of the top of the sump 0 ft.

j VRBLK(2,2) Volume of the sump al XRBLK(2.2) 954 cu. ft.

(7,136 gal)

XRBLK(3,'t) licight up to cl. 602' 10" 4.05 n, VRBLK(3,2) Cutuulative sump volume up to Elev,602* 10" 15,684 cu. fl.

(l17,320 gal)

XRBLK(4,2) llei6t up to el. 610' 11.2 fl.

VRBLK(4,2) Cumulative sutop volume up to Elev 610' 40,689 cu. R, (304,350 gal)

XRBLK(5,2) licight up to elev. 612' 13 2 ft VRBLK(5,2) Cumulative sump volume up to Elev,612' 48,734 cu. fl.

(364,530 gall XRBLK(6,2) licight up to the top ofIhe lower coinpartment 50.9 ft VRBLK(6,2) Total volume of the lower compartment. 304,269 cu. ft.

XRBLK(1,1) licight of reactor cavity Door O. ft.

VRBLK(1,1) Vohune of reactor cavity at XRBLK(1,1) 0. cu. ft XRBLK(2,1) licight up to elev. 610' in the reactor cavity 43.0 fl VRBLK(2,1) Vohuue of reactor cavity at el. 610' 15,748 cu fl.

XRBLK(3.1) lleight up to cl. 612' in the reactor cavity 450ft.

VRBLK(3,1) Volume of reactor cavity at el 612' 16,797 cu. fl.

XRBLK(4,1) licight up to cl. 621' in the reactor cavity 54 ft.

VRBLK(4,1) Volume of reactor cavity at cl. 621' 20,019 cu. ft VOLRB(6) Vohime of cylindrical section of the upper volume. 336,665 cu. ft.

VOLRB(7) Volume oflower portion dome in the upper volume. 334,285 cu. ft.

VOLRB(8) Volume of upper portion of dome in the upper volume.

63,879 cu. fl.

VO! RB(4) Free volume in the ice bed and lower plenum. 108,725 cu. ft VOLRB(5) Free volume in the ice condenser upper plenum. 54,988 cu. ft.

VOLRB(3) Total free dead.cnded volume 61,340 cu. ft.

VOLRB(1) Free vohune of the reactor cavity up to cl. 610' 15,748 cu. Il VOLRB(2) Free volume of the lower compartment 254,821 cu.fl.

VOLRB(9) Free volume of the pressuriier doghouse 2,700 cu. ft.

VOLRB(10) Total free solume of the four steam generator doghouses 31,000 cu. fl AJUNCO(3) Flow area through the refueling cavity drains 2 2 sq fl.

AJUNCO(7) Miscellaneous leakage area from the lower volume to 2,8 sq ft.

upper volume MRWSTO initial RWST water mass 2.897E6 lbm 3

4 Table 1. Input Variables Used for the Donald C. Cook Nuclear Plant Containment Sump inventory MAAP Analysis -

M A AP Variatile Descripilon Value ZWRWST Initial level of HWST 25.86 ft ZWRWST Level at start of suitchover 6 924 ft ikfined/n the input RWST volume injected al start of switchover 256.281 gal. I deck IVor trtformation unh',

Not a ALA.4P vareable)

ZWRWST Level at end of sulichover 4.074 A.

thfinedin the input

~ ~ ~

RWST volume injected at end of suitchover 294,862 gal dec k l I

(For information ontv.

Not a AIAAP variable)

MACUM0 Initial water mass per acemnulator. 56,9P lbm i PACUMt. Inillal accumulator pressure 600 pela TACUM Temperature of the accunmlator water 120 F Composite of several Composite volume of RCS and pressuriter 11159 cu. f).

MAAP4 parameters VPZ Total pressurifer vohuue 1800 f)"3 APZ Pressurifer cross sectional nrea 38.484 A"2 ZWPZO Initlal pressuriier collapsed level 19.49 fl ZSPA _

Fall height through upper dome 2.125 fl "

,XHSPRB(7) Fall height through lower dome 32 4 ft XHSPRB(6) _

Fall height through eslindrical section 45.7 ft XHSPRB(2) Fall height through active sump 50 0 fl.

XHSPRB(3) Fall height through fan /accum Rooms 36 75 il TWICE lec hed temperature IS F TEXITI Ice condenser esit temperature 105F TGRB0(l) Upper compartment volume initial temperatures 100 F TGRB0(2)

TGRB0(3)

TGRB0(4) lec condenser volume initial temperatures 15 F TGRB0(5)

TGRB0(6) Lower volume initial temperatures 120 F TGRB0(7)

TGRB0(8)

TGRB0(9)

TGRB0(10)

PRB0(l) through Upper volume (1,2,3) and lower volume (6,7,8,9,10) initial 14,7 psia PRB0(3), and PRB0(6) pressures through PRB0(10)

PRB0(4) Ice condenser volume initial pressures 13.85 psia PRB0(5) -

FRHB0(1) through initial relative humidity in all containment volumes 0%

FRHB0(10)

=

4 l

., . . . - _ , . . , . . ~ . .m.-,,_ - , _, ~ , , , , . . . .--..- ..-_4,_-. - , - _ . .m .,_ _ - ,,-e

4

! Table 2. Additional inputs identified for flie Donald C. Cook Nuclear Plant Containment Sump inventory MA AP Analysis Description Value j Ice condenser Door drain area 13 sq ft.

Ice condenser Door drain pipe height from Happer valve centerline to ice 5.2 ft condenser Door lec condenser Hoor drain pipe volutne to flapper valve 181 cu ft i Spray Cow lost to pipe annulus through a lower containment stairwell 146 apm l
Readability error on containment pressure indication 0 25 psig j Volume of liquid held up in the RiiR spray header piping 449.14 cu ft. i Total Containment Spray Flow Rate per train 3600 rpm i

Upper Containtnent Spray Flow Rate per train 2284.5 apm ,

Lower Containment Spray Flow Rate per train 1096.3 upm Annular Containment Spray Flow Rate per train 219.3 gpm Accumulator state Not blocked Blocked i

a-I s

5

~

Containment Spray & ECCS Simplified Flow Schematic Containment Spray (CTS) i

,r u Accumulators u

O Lower Upper Ice steam b Cont.

Nozzles Cont.

Nozzles Condenser %

8 RCS h ><N RWST

_l j -

V Uquid ^

, , , 8 ,'

,r ,r Nozzle

" U, r Break

via via -

u Flow Ice f Flo w Fan stairwell via M elt 'r Accumulator Refueling and Rooms Canal Condensed Drains Steam Reacter Inactive Sump Active Sump Cavity I

I Figure 4-1 Water flow paths to the active and inactive sump regions.

9 Lower Containment Simplified Schematic r

612'-O" d

' ~ ~ ~~ ~~~

~ ~~

~~~~~~~ ~~~~~~~

(336,0db~gabo~n's~)~ ~ ~ ~ ~ ~ ~ ~

~(37

~ ~ ~ ~5,b'Od ~g~a'I exci.~ ~c~a~v~ih)~ I' ~ ~

(304,000 gallons) (118,000 gall l '2 Inactive Sump P

Active Sump  :

Reactor -

(Pipe Annulus) 7 602'-10~  :

3: ----------------------------

(117,000 gallons)

Cavity -

o E

u U 598'-9" -

Figure 4-2 Important levels and volumes for the active and inactive sumps. .

i { [ ,

1 1 3

M

- - h ~ ~ _ _ ~ -

__ 2 _ _

T__W W

R A

i C O

L t

' I c

' d l

t o c

am

  • a A g i

d C

  • O L

C d_

m 1 a H r C ,

fo N

I 0 s

- n 6

i o

, t

, i c

p K , e d

O , E e c

O ,

O M I

i 4

C -

T P A

C ,

A D

M d

n a

O

, 3

. C-

. O u f

n

. ~ ~ ~ _~-  : - d 3

0m<% O_

m>s;. pO a

, i t

l n by D.C. COOK 6 -IN C H LOCA y _....i. i ii..iii ii1 ii i....

....g...

j ,

.g .. _

g  : MAAP4 (TEXITi=. )  :

S LOTIC-3 (NOMIN AL ICE MELT) C

~

r__ -

o  : ,  :

- c U

o ___ .

m I M Z _~

= -

m 4

x -

a. -

o o, y t

. H

a.  :

2 , _

o _

O  :

E 7 I' m  : ,

n. - '

a -._

D  :

~

r

! ,I,,,,I,,,,I e,,,,Ii,,,l ,,,;e, ,,,I ,,,Ii,,,l ,,,2 TIME

[

I Figure 2-2 Comparison of the calculated D.C. Cook Unit 2 containment pressure for LOTIC-3 and MAAP4. He RCS j blowdown is common to each analysis and is calculated for a six-inch diameter cold Ieg break usirg NOTRUMP.

I

i i

l U

m h D.C. COOK 2-IN CH 'OCA _

T .... ........ i ...v. ... .g ...'.. .

. . f MAAP4 zw. (T E XITI-j

) .}.. ~

, LOTIC-3 (N OMIN AL ICE MELT) '.+

i o .

i _

u. ~

~

us ~

cn -

4" -

3 -

i o

w

o

~

,)

',,,,li,e,I ,e', ,-.I,,,,l, ,i l,,,,l,,,,f,,, I,.,,

i TIME (SECONDS) j Figure 2-3 Comparison of the IDTIC-3 ice depletion rate for a two4nch diameter cold leg LOCA with the MAAP4 calculation using the same mass and energy inputs from the NOTRUMP calculation.

I i f

1 n

h

$ D.C. COOK 2-INCH LOCA

,$ 4 4 i4

  • 4 6 g4 . -4 g6 i.4 g6 . 6

,i. .l4 6 ig6 . .

.g.6 .6 g6 4 6 6_ ,

w  :  :

t q

o  : 4  :

Ef8

o g MAAP4 (T E XITI-LOTIC-3 (NOMIN AL ICE MELT)

)

O 7

E ,

? -

e --o  : i m g  :

  • e r E co o o oco<xsp:tococanoe%go\ Q ,y

[

1 - r 2 -

4 a_ _

. s _

o 1 7 i

, o  : E m n m -

-. x - -

n. ' -

s  :

I  ?

i _ i l

2 ,,i,,,,1 ..-I , , ,,,, I,,,,1.,,,1,, , 1,,,- , , ,:

TIME t

Figure 2-4 A comparison of the LOTIC-3 containment pressure calculation, biased for maximum containment pressure, with

! the nominal MAAP4 calculation with the saident initiator being a two-inch diameter cold leg LOCA as agited by NOTRUMP.

f

m D

g D.C. COOK 2-INCH LOCA g _

.. 4 ge a4 egi. >g.6 4 6 : .

  • ..g.*4 .;.4 6 6 3i4 . g. 6 .g. .i a og ,

k^^^^

~

,x, na aa a aaa % % , ,

? . ._ ,.!- - .

w "

T .'  ?.*-

3 ,

s-

< 4

.-~~......,

t

,3 .:---~~------...................-..-

,j _

- - - - . . . . . . . . . . . . . .. -j::

]

w n_ ~

2 _ __

w ,

__.:=_,pvvv v v c I -: -" ~"

cND

  • 4 _

< <* UPPER COMPARTMENT -

c -

MAAP4 (TEXITI- ~)

LOTIC-3 (NO MIN AL ICE MELT) O -

LOWER COMPARTMENT -

MAAP4 (TEXIT!= ) -------- -

l LOTIC-3 (NOMIN AL ICE MELT) A

, 1,...!...,I,...i..,,i ,,,!....i,,, i , ,,,1 .,.,

TIME Figure 2-5 Comparison of the upper and lower containment conipartment tempdwd for a LOTIC-3 calculation biased for maximum containment pressme and the MAAP4 rep;esmtatica with the accident initiator being a tve-inch diameter cold leg LOCA as rep;esented by NOTRUMP.

cI 0 *^#H M  ! )PL6\lYd 31 N ,

9 m

E' > BRE AK FLOW RATE LBM/SEC x 10' Pr p 0 1 2 3 4 5 6 O

316666666l166i6311 1 t i g !j:  ; i i n i g i iv i l 4166l46661 fill ag I

O, -

. .% !l l p #  ::

Jg es f n -

g- v- *ttij!l :;I E

til:

.iii[iii

.n il,gtl' 33 i *
il

-~

le .

o -q.

o

~

!"2.!!, I d'liii 13* ,,,,,

)

a ;s g 1 -

gis 1 3 8 .

.1

-i 1)  : ..

S, El 17 a

+ ..

g m ,

[ ,

v m -

n m .

n - i -

4 -

O O ~ ~

o -

,e g -

z -

g gi g - -

g g g o ,,,,,li,,,n o ,1,,,,,,,,,Ini,,,,,,l,,,,,,,,,f,n,,,,.

@. o N

E9 9

e

-n,na, -.--,<,-.,-.-.,~,--e--~-,,e--,..---,------,-----,-,-,-,e , , - - - - , - - - - - - - - - - - - , - - - - - - - - - - - . . - - - - - - - - -- - - - - - - - - - ~ - - - - - - <

M 0 *^8H !?01-L6\IYd i

31

']Fw I1 a R ATE OF ENERGY ADDITION BTU /SEC x10 s i l

0 .5 1.5 2.5 l jg

. 1 2 3 3.5 o ii i

n i u n j u u n u o p-s p  ; i , , p m o m p u i n u qi n u i n i an -

- l i

3 . . <

R-2E

. ijjl));i -  !

go -  :..i..

E' ' attggji -  ;

i

-lG-a 22:=s -

s-gi isi,jts:: _

m a i=i M, p  : gin.!- -

Qag -

e j ll*

e e3 le -

15 o

  • 38 88 r

e I --

. 2*'st.

tm Q. o _ , t.=i

- t.]

Q" O a 33 1

a.Q ra i

il -

, W

.I g H

~

  • D 3 -

[

g !E - ,> 1 -

i

. tg m  ;

l .

l 6 m .

I

g. m .

n a _. l .

^

Y ~

h t

a O

3 0 -"

d .

l q- -

.. 1 e

2 9 _

w .

n W

a.

a _

g  ;

2 n ii n i! r n i t r i e . l u n i t i e :, liii . iiiiilurr i n iiiliii i md.u i t i t i, a

4a.

I q@ --.

I i r l

I, .n M

a 4

o a TTf, i i i i i j i i i i v i s s i g i n i i i i i i i g i i i i i i i i i j i i i i i i i i i g s i s i i r s i i C, T s - - E a

a t

, - - E a

s

. m TJ O

~ ~

E o

- t

- . o z

o a u

~

I w t -

m y

~

I m E y . -

1 y G a 8

3

-- ,5 . . .

3 #

o 1.:l ,. .

o _

in

- I.l 53, 5 . -

et

!!Dili ligi!!!

l

== 5

i.l.tti

. ,\}

~

es:i!!! f

\g% , .

_ -d 3

.I..;!!!!!! -

m.

's ,tf gg

. ,1 i n n o n i n i n ii,il n i n n o li,, n ,,,il, n . n i n .. . i ;,  ; 4 a ,g.

9 i t E  ! l 0 <.g

,0 l X M 8'1 SSYN 4

N o

b e

II:

FAI\97-104; Rev. 0 0

i I 4

)

6

.6

d J o te kilililligilllillt :llililli lIll illii1llil il ill i g illilil li g il 411111ll116 6 l11 Illll i 611111 n ,

.i 1 .

. - a 0

x i - -

! t

] .

~

.c

, o t

.- _ o e}

S Tg j

o

I m l

5 m

i g . z t * -

3 5 r, . - s y

,e . - u

- ,5! .

p:  :

e -

o

'lc o 8

- 53i;' I: . ..

c 9

, . 3

.n; 11 :

!g4 .

I: 1l * -

:a a

i jilt N

.m.

cip -.

iiilli

~

    • e

- - c*e., 9 kg i,nn uilininnilnnin ninino nlinonntninoninon niln n n ni i. .

, .s ;

s't t 5t i s't t s't I s- o N8

,01 X 018 N011100V A0W3N3 ,

N H

ifo g

FAl\97-104; Rev. 0 16 l

7 a LI O 'AMI !M)I-L6\IVd m

  • 2 8 BRE AK FLOW R ATE I.BM/SEC 9

$ 0 100 200 300 400 $00 600 700 ir' -

a uiu.ielnii n n-

- _1  ; 9 ,;; . . . ii n ii m iiliii n u ivl n i m tr_r _

B  :

g*\

33- o  :  :

o r .Eg::::!:t  : .

g o -

3 , .!.!!..:

  • =

m o

e, # * :::::t
1 ::

n w

o

- A

/  ::::::  :

lii 5 o -

.: :!::ngE o -

,t,.

E  :

m -

o  : 3

.31:lig.  :

w o - e ..

o

.: !* :..a:1-::

a _

2: -

$3  :

o  : =_  :

o ;- * -

o 3;

--4 Em mo  :

5, o . 3- .-:

m o  : I -

i E" m -

3  :

h Om 0 '

E o -

8 o 7 * -

6 o -

y -

o 4  :

3 o T l --

k 3 [

g I aa -

o o 4 o b  !

u  : --

e -

E o  :  :

o -

N. C h _

8 o i t 8 l o 1 f f f I Ll ! I lr i f I I I I l ! I f f I I f.!! ! I f t i l f f f f f I l If f f I I I f f f l I' ! t f i t I t 1,11 I 1 i f 1 t I t-

- o '

c-

91 0 'ADH !MH-L6\IVd m

S 9

A.

~

RATE OF ENERGY ADDITION BTU /SEC x10' S.9 a, p 0 .5 1 1.5 2 2.5 3 3.5 TTTT g tT ti niil r ;jn ,.o. 7 ui.iiip uisinijnio.iq g}g -

=

E

. g.

y o :

o -

o : -

s*)

.. sin

i- m :

tt:I:::!

  • tt -

ra o

4 O F._

- iiitii E

ca :  : ...g: -

4 -

,i;..:- -

"  : g.g.s Z o

. I'gj.i.  :

o  ;-

  • s o 3 a..s i: ---

- I !*-i!! -

34 E m.

g i -E m* -

=  ; 's E u  :  !

, mo  :

. o .- ,

' C/) O :

m I  :

a O e i  :

E o  :

e 0 7 7 68 o -

@ a I

a  :

~

& o : '

5 m o : /  :

o _ l I

( .

I h O I g- o r

  • 7

[ 0 4 i

I a o 91 g ..

' o -

!  : i W **

o - -

%a o ,n ,,,,,3li,'u nii n l, u n i n ,l,. n i n ,,l,u n n n l n o i,,,, mlum.'a h w 0

. O O

IJ' w

e

- m___ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ _ _ . _ _ . . _ . _ _ _ _ _ _ _ _ _ . _ _ . . _

- _ _ _ . _ - . _ _ - - . _ _ _ _ _ _ - - - _ _ _ - - _ _ _ _ . ~ ,

1

- _e,; -

o M O .t.ba l.

6 .6 1 i i a *\ i 6 I e ii i T* I lf f i i 6 I I I e i i ii( i4 4 6 6- O 't) l l -

o.

8 e

- - a u

- ~. O *~

o 6 l

f 2 o o a" o

1 en j

o w o p o O 6

-  : e. Z l

- *O*

i . .

,c,;

- o i  :- 6 o l -

o l

L-

- o o j  ?  : IU  %

'~

E o W gi U

3 i d. O tM 6

u a

~

1 -

3e  : 2

- (

M I

.a.

.- o W

- a g ,, o

  • M, -

o \.

s -

- 6*

*. Q ,

e $ d I,

b).[{

  • r;e 5 -

O o

l C

'.2:n*!

t
1

- - m .

]

d

.:.st 1 - M

-  ::I.

.. m.. A o

o 4

.n

.m
- o o

- .". "II E d w

- %m. ... -

n h!:::

n c

n
ue:,
.a,  :

... o o , .

g r:

< ,.g -.

i . . - E-o

-! t t 1 1 t t I t tt t 1 i t '

s t t I t ; eit i i ! [lrit i f t t ;o y I s1 I s- o c4

'O I X W81 M0'id >lV399 di

.u.

m

.= - . - .

FAI\97-104; Rev. 0 19

02 0 ~^ 4 ft01-46\IVd e

..o. ,

a e e .

3 ENERGY ADDITION BTU x10' 9i G 0 1 2 3 4 5 6 7 8 r 16l461666 11}lllll1 lilllilli Illilil64 466666666 6 t i4 4 6 6 6 L y e  : 644lll1611ll616 a  :  :

g..a.

o :  ::::::: :

o - . .

. ::wrg:::::t  : i o :  :

g  : i o

d3 w

~ i..

l.::::= :I li:::

M o :  ; *t** ~~I m o 7 s t:$"$,*,*

P- o ;  : {:2  :

- g .

- t

= . : .. - :

w - 3 9::e + . ,

g o o r *  : :i:::5 --: .

G- o -

  • 3.~.z::

- :..:5

~

t 0 -

2  : .8 323 een - t a

g 5

o :

-  ::3 s

t o ~~" 8

  • g. t  !

3 - -4 ' 3-  :. '_

g

- r m 2

& mo - i T

p'  :

n o 7

'# m0 1 I  :  !

5 m  :

.1 o

e

~

N ,

O 7 O i '

5 O -

4 I

l .

2 4 o .

O

~~

K - .

l o .

U S ,

S m  :  :  ;

% e .

O o -

M -. ,

N o .

~  :

g -

MW h

9 O -

=

~

O -

( W O e 0 l g

I '

o tttIffIt! I i t fji I t t f I t t I1 t t i t t i U l f f i f i f I I f f LLLull ul} l1111.1 allt i i Ll i .l iIf Iit '

M o o

l I

9

  1. n

- _ . _ . _ _ _ . _ _ _ _ . _ . . ~. . .._. . _ . . , _ , , ., ,, - , . , , . , , - - . . , , , . . . . . . . , , ,

i i I ,

9'n b

.6

. o 4

a

-LlililitigiindililjillinilllIllillilllillinflijinuitlijliiiiiiiijiiulillllIllulinjiinirg; m

- o.

o y

- o 0 o ci

_ O

- o ., .5

?--

i

- O 0 E8 a

i 1'

~ c- 5 o 5 3 -

o 0$ 'I j i o ._: o g

; cs i

a

o  : j 2 0 -

4 O

O -

bJ *

~

I o W tn

- o -

n1 0

0 E o r o g _

i!

0 -

S

- i o

'z c:

1. w

~

o o

e  :

e u _

-a *

- t;;  :

A

- 10 D b oO ~_

0 0 00 o

e oo o _ g

,2 oo _ 'Sy n'r n nin nh tumu,- n,n-nninnoinininnolninoninnninininnnh nnnI g gg 01 6 9 L 9 G b E 2 I O w

,0l* COJS/W8 D 3.LUB MU IJ MY388 Z o

4 FAI\97-104; Rev. 0 21

zz o 'Aou 'mi-L6uva m

i n

w b

RATE Of F.NERGY ADDillON CBTU/SEC) x10' 8g 0 1 2 t

3 4 3 6 g, o 3 -

jiininiliiiiiinigio uiii;Lw.ptu p +rujiiiiiiiit o

Q8

=

- d)n o

s.

o

- o o co o

{ UI -

0 -

FI -

24 -

o. -

E' 51

g. - _

m, _.

- o  ? -

Do O m m -

,1 3 -

{ - g -

2 - o- -

d

  • Vt -

I l

e 2 - .

E5' m - -

a M T ~

  • tn . _

n - O .

E o -

C

$ ~

g _ o  :

n M o

g

~

o .

. o _

. U -

- O E -

g y o

o

(/) 7 ~

5' _

0 6 _

n O.

9 -o O

w .0, i , , , i i i I i i t i e i i i t l i i i i i i i i l i i e i i , , i n I r i i i t i i i i l i i , , i i i i i' R

C E'

t 6

8 a

- o jifitiflig14:441 4ijasitiiiiijaiiisii,4giii;,6,,

,i,,i;gi, m "$

N 8

o  : -l U .D o

~

O -

0 B 'O 1

a - nn v o N U 1

9 s,

O - g

- 0 -

y S

o i g

_- ~ o :s u

_ o

o - -

- g 0 - g 2 o

() g

- I t) 'fl

- 0 - (f) c o tn' 8 tg r

a o - - S e o i e

~

0 0 - 5 a o o

- C t o -

c o w o .. O

~

$ O D T o ~

J o

%E o

- t= o s

- *S

- O - u 7 -

vi 5 0*

o  : o

. o,%g -

c S

0 - P E

e

$i,ii,,,l,,,,,,,,,liiiii,iiil,,,,,,,,,l,,,,,,,,,l,,,,,k o 6 9 9 E E , 7. I o e j

sol* CW8 D MO~13 NV388 0319dD31NI e

5:

FAl\97-104; Rev. 0 23

n 0 'A W !)CT-L6\IVd 5.

m c

3 a.

]NTEGRATED [NERGY ADDITION (BTU) xld Ci 0 .5 1 l.5 2 2.5 3 3.5 O

g y u i r. p i n i o nj o u u nij niu n o j u in u n p io i u u p . n o u t 9 -

O . -

i a

%o O .

a O -

(11 -

9 a

O s- .

o gg -

g -

.o .

n - o 22 -

D ~

o K -

1 . A

~

o 6 _

y -

o 3 .

x  :  ?  :

3- .. E, -

v -

d -

- O =..

g -

6 m_ 0 _-

~

8 n

vi - o -

U., _- .

f. n - O _

j O - -

r 0 - ,

"p - O .

() I O .

_ r o  !

. l g - O -

a.

!o  :

9 0 '

1

, o y -

o -

[ c. tJi

~"*

O i

g -

-- i r

g -

o -

- o ..

- p g i ,,,u.,,1,,,,,,,,,l,,o,u,,In,,,,,,,im,,,,,,,I,n,u ,,,ini,,,,,i b

g ,

E O .

? '

i 1,__ _ _ _ . _ , _ _ . . . _ . _ _ _ _ _ _ _ _ _ _ , - . . .

_ . - - - - . - - - , - _ _ . _ - . . _ _ _ _ . . - . - - _ . _ _ _ . _ _ ~ . , . - , - - - -, _

4 M

h a

o 6 ioin n p ninin;oioioip n n n nl n u o oip n,o n.p nio o p E 1

- 4

- .I -

I

o I _

o

.- l m

- e ..

O  ;,  ; 5

~ -

u l 'E a B L es -

m p o ,'  : N a

o ,,  : U

- E g g i

w a o

a,

- oo a n -

o2 -

SS*
.5 0l.  : N Oo 'Q e

8 3!!{"

- tti.:.,

E / 5

i.i i

ow mv I' EEff '- C l

1  :

El l - wdY

St as
8 x!

.-W o tE 9: e

.-- eti.~ 7 -

o

EEyv a .r.

,eo

,i -

o ou a

- ] .g ,

I 00

I i

2 6 o o o

- D sa o a on ao ac o o 4

gr Q@Pooo o o 0000 c .s N'

gg 3 '

Ti n i n n i m , ,s, 71 J ,1 ,,,!=  : 1. wu n l u , , n n ,1,r n . , , , ,3 13 FB 63 380SS38d 1N3WNIV1NDO 9 n

H

.,h FAl\97-104; Rev. 0 25 l

__j

t u SS S9 g.S O O

_iiaiiiii!

l iiiiiiiij.ieii iii4 l i i i i i i i i i_ '[j j

gx 6$

gev 1 ,

i
n o I o

p I o

m 5 I .

p "

o l

i

@ ag 0

__ u I n suo o 1 0 o -

o g

, o - e

, n -

m n E8 gm

~ o ,

O S o

o o

i a 60 I

11 -

(J i Gf g

o ~

OO i, n 3c y"-

.o, o i o7 WO O o

- 66%a, Wv 0 1

1 O  : O W

DE gp - o o S'd

- - et i

o  : (n =o I

o n -

'o %

- tier o

I a -

ow M.g

-~ $$vi.

wo,d n i

i o n. .r. u u ..

- "

  • a o 1 0 -

U

}((55 @

s i n 2e

- ye o 'o

_ g6u

- d:a o 'o _

- O e E 7 EEUU l

. crza 0

o 0 C

'O 1

~~

2 y=.

C d O a _ w 0

'0

  • E i o 8

.. d -

- ,. o3&e gg b _ p occ000" U 5 )

m p
l  :

, m ,,,' .a .a !

  1. , , . w , , , , , , , , ,:

c pg 68$

3Mf11UM3dW31 SUD IN3WN161 NO') e n

2 o

no E

FAl\97-104; Rev. 0 '6

. . _b

  • 11

@ W EXP (TEXITl= )

~ . a a a i4 4 -

gi i g 6 4 a g 4 g a a e i j . 6 6 4 .

-. i LOWER COMPARTMENT i i MAAP4  ;

j s_

i DATA

-5

[

C

  • i UPPER COMPARTMENT 5

= ----

MAAP4  ?

w

=

(  % ---- DATA {

t c: l 1 m  :

g

= ,_ __- 3 m .[ in i

  • res7 d

?

-- [ \ , sj-V4 -Ne' m r  ;

m _____

~ w n,fl ,- - - --- -___ __ _

e 1 i

= u a i W lt 5

> it i E

W f- I

> i i 5

iL l i o #

l m -;

5 e $-

2 i i l i. . i , , , , l , , , I , ,  ! ,, , .  ! ,i . 3 0 5 ID 15 20 25 30 TIME (SECGNDS) 1 Figure 3-2 Com;r.rison of the upper (solid lines) and lower compartment pressures (da:hed lines) for the MAAP4 ccritainment model with an ice condme exit temperature of and the experimental data from Test A (large break LOCA) of the Westinghouse ice condenser experiments.

m

>c 9

W EXP (TEXIit= )

2 gii.ijiiiiji i il 4 e i i l

. i ;ii i i ,i; w { MAAP4 2 h

4 7 ----

DATA  ;

O h *

-s 4 \,

i-- _.E '

3 J- _i l

a l

w k~ -i i

w m i m < i &

2 l-

_i7 m i o -

1 t  :

r 1 i

5- 4s 9
TEsr a j

=

, , i , , , , l,,i I.,,,!, , , , ,,f,,,.;

s TIME Figure 3-3 Comparison of the calculation ofice melting for the MAAP4 model with an ice condenser exit temperature of and the end point rer. mining ice mass for Test A (large bmak LOCA).

i T i 8 W EXP (TEXITI= F)

--g g. w;..a .. p .sj.au. u.wp. 3. .. p.u. p .mp my.. .a$ . m 1 .). . 4 pa..y. i.. pm p. .-

N I q

~

C 3 8 i E e _ TC E  !

w 5.-

l m.

l CC D

5 iOWER CCEPARTMSN1 _ _ _ - - - - ~ ~ ~ - - ~ - -il

M4AP4  :  !

M I DATA en .- =

II g f 5 p UPPER COSAPARTMENT


MAAP4 E i t- l, ----. DATA  : '

o s

- r -

e  :  :

w  :.  :

us =

m E w - --

i cc 5 w ,

w  :  : t o ,:

: t w

> cc  : ,

E  : _ >

i l - .

r  : _

re m h ,m>. b b m L.,m,,,,,m.,-,. h ,,,,4 4m J ~ mJ,, ,J ,.-.6 ,4c.fm ,-.!,.,,,J.,,- t I

TIME l

P m [

Figure 3-4 Comparison of the upper ed lower compartment puures fo. the MAAP4 model using an ice ccadenser ed. ,

temperature of with :he measurai behavior of Test C (medium LOCA).

t r

l

_ _ _ _ _ _ _ - = _ _ - --m - -. m - -m .a- __a _. -_ m ___+ ___ _ _ _ . _ -- _ _ _ - _ _ _ _ _ _ _ . _ _ _ _ _ - _ _ _ _ _ _ _. _

r . n.</ - , .-. _

~ ~ _

~

a

'- s Pf}

P y

W EXP (TEXITI- )

l5 3 f 5 5 0 0 0 I i A $ d 4

l. 0 5 d l 1 E*

g i MAAP4 i DATA E

{

.g - -

I

'3 E

E 7 4

= E

5 E

.= u k

i  ?

2 k 3 E I 5 h i u M f- 5i

~

O $ b- h 2 .i i td o

e: 7 ni k p07 h' i O 5 i

+

W. a i

-3 I t.

1 &

$ ~- -__-___, ___ --_______.__ _ _.___ _______ h

=

3 8 i t t  ? f f f f f f f f f I TIME digure 3-5 Comparison of the MAAP4 ice melt h: r- with an ice condenser exit temperature of with the meast: red ice at the cod of Test C (medium LOCA).

llIil llll1 ,Il  !

i e

c i

n a o g

i n

s u

.E: E_  :: l

y [:J::: E E = = E_ : _ : : : _ : _:

5, d e

g

, o i.,. - m 4,, t

a. n e

r - _, ).

q n. mA

a. - , i nC q

w -

,r taO

- t, nL .

4

, o 2

, cm g - e 4 u i

a. - l, Pd a -

, Ae

)

w g - - Am u.

~ 4 M( C

~ ,. et

. ht s

. 4, e w..

~ ,-

rT o

f r u

o cf l

= a.

g 4 .~

4, rt an re T

I s

w .w's s

er e m

X y. u pr u

E . l, t s na e e T .q mm

( t u.

4, E r e ah pt P 7 M md a 6,. I X T on T

,. c a E a 4

G -

N T N

r e

E E b, w W w w.

q T-s ~"MR4 T M T 4 m l o

f a APA RPA 6, dn o

- PAT AAT , aer

. MAA PAA ,

r OMD MMD et u 4

r.

a C O C

1 pa pr e g R -

,- up w.,

E R-E hteme r.

W P - - ,m t 9 O P - - . f t

  • r L U- - A oi x

p u r n e

n o e ise r

'/

A, i

a r s a

an a

g.5: 3 5 LI3:~ f:5:- - -

_ : :E:::i-m pe md o n Cc o 3

wE2 W g awmmm> xw>_wowe 6-3 e

r u

g i

F m>s@- [< O -

i111 l jl1) 1 ilil' I i l e

t u

a r

e p

m t

e t

xe i

I [ 4 5 5 t + 4 ? e i I- E+? tIi ,i!i?srE i+ y

- - r 4

s e

n e

d e

n

_ o c

a e

c i

a n

a

_ ht

_ i w

)

_ n o

6

_ i t

_ l a

4

_ u .

_ l c )A

_ aC c

= _ kOrL l _ a mm

_ T e _

h u c

I X ci

_ r _ nde e

E l

  1. p b m T r# _

4(

( a _

PC E

At P

Ase X

i M

I MT

_ T ein E e _ ht d

4 _ r e PA _ o r W 4 AT AA

_, f u ya s MD _ r e l _ tom s

q i e h ci a -

_, l t

eg a

minn i

cei am 6

_, ee ht r 0 _ f e

  • _ ot h

_ nd i

iji55iiii3i$i= ii_i$i &ii -

~ - _ on s a iiIi i1j i r

a p

m of

= oo<*

st w0-- Co 7-3 e

r u

g i

F m>MGy 3" f O u" 2 c .!

lll

4IllIs'IIlllIIIIIIIlII4Ill44IllllIIIl54 li 5IIIIlI$$lIillIIdlI IIIII4II i  %< O k b N

                                                    .3                                                                       E

[ E D

                                                     =                                                                       E           W
                                                    =-                                                                    .=
g
                                               -     e                                                                       E             o 32 3W E

y

3  :- A O
                                                    .. t-5,,. CC
  • Q
(A4 d g3 l a. 4 >"  : O i

ll 344 2 '"

                                               =     3 ozo                                                                   :             a
                                               >=   30                                                                       -
                                               ~

f b $ W W 3m E H jo 5

                                                                                                                                          .h v     : d                                                                     :
c 3

3 m e A I 2 U 1 E - >

                                                    }-
                                                                   ~
                                               ><                                                                                h w     3                                                                     "[               h
                                                                                                                                            =

E f ' 5 $ w - M i a

                                                     .:        m                                                             E             A T         &                                                           ~

3

b 1 1 _ w l i O C
E C I

T E . 3 n ~ d 7 3- !3 C

                                                     $           \                                                           !

iin n i nin nl7I,71 Trita mh .,,< >

                                                                                                  - lm , , , n l o n , , , , i ao e

N N SWASSSHd 1 S S S S A tf 3 A 13 0 3 8 g 5: fan 97104; Rev. 0 33 A

llaj56il i'tittiflisiittilai sladatIdilttiiiiiIl leilitisillilitieel IlliilliliiI500&a s 64ililatiiii6itati4 ej.,dttilljeliiijs4 lilijsile68-lillid i e l

             -                                                                                                                                            i                _

l I

              ~

l i .,4 11 i q t. i

              ~

8 M - ,  % W g i o g

        &     .                                                                                                                    o H

v g i g i W a l E e x , & m m - i - 2 i E g n i l s

u. < g
              -<s                                                                                                                                          ,            _

so 1

              -                                                                                                                                            i l

_ I i, I - t ' i i .

                                  .                                                                                                                         I i
                 ,,,,,,i. .., x,i i . .,, ,,, ,,, ,,, ,,4,,,,, ,,. . . ,,, ni ,1,,v ii. ,n ,,,,,,,, ,l ,, ,,,,n, ,,, ,,,,4,,, ,,,,,, ,,,,,,,,1,,,, ,, ,,,,,,, , ,, ,,,1l,,, ,,,,,, ,, n,y, .

SSYM 301 FAI\97-104; Rev. 0 34

                                                                                                                                                                                      -      ___ __A
                                                                                                                      .t A

o E v wrm o I n i n u n I u u n n iI u n u u iIi n u u n I u n i o n I u i n i n e

                                                                                                =

5 5

_ g l- i g ia E
                                                                                                =

w m 3 3 h-r 8

       ^       !.-                                                                               i                     0
                 -=                                                                              =

E I: =2 r<m< 5 a<r E m o ii m<<  : b

       -        2    030                                                                           :

G

       &        i o                                                                                i 2,                                                                                 E                    E M        5w                                                                              3                        E.

l W sW i EL F 5Os 00 i 3 / i E tu 3 oj k l n. 3 f E - SE x P -i z 8. m 5 - E EE wa _ m 2 3 ! E kN "E E 5 r

                          *f E

_ gn5 i i n8 5 1 5 O8 5 E G~ i i o 5-  ? E @a

                  !=         -

I= e$ a o

E
                   -             ~~                                                                                      .R ao htttI!ItI!ttiItIt      U        r>1
                                                                   . btLLi t i t ! t ' ' t t t I t _k a3 d3 3HnSS3Bd 13SS3 A H3 Al303U C

7 m 2 ifo E FAI\97-104; Rev. 0 35

ll II) ,l lI' f r e s m so c e

               ,EIis;kE         s h :=.    !s ~ iF_I5?         :E           tiF              i c

n a

                                                                                    ,          a g

a i n s u i

             -                                                                                 e w

a m 4

       )

g w M a e a m

           =

e w l T w I a

                                                                                    .         s. .

X _ c E g . I s t F T . a ( e

                                                            ?

m - _ E m i P a _ , M w X - I T s s a E e m

                                                                         ~
                                                                         -                       e c

W a 4 i g PA jAT AA MD m, i

                                                                         -                        e.

de

               ,    -                                                    -                        r m
                    -                                                    -                        a e

i m f' eo e mer i5I A 4jY= ?= = 31 3Li - ii!i

                                                                         ~                      etua
  1. _ :1*

mr s p e i r m a e pt

                                          .WCM      wo-                                            mt oi cex n_

3 e u g i F N y2** N2 o ue j

                                                                                                                                                      !2
                                                                                                                                                      ~

e a r u n o r j r u n n o j o u n i n j u n u u i j u o u i n j u u n i n g u i n u u j u i o n n j o .u u u j u o n ni c x

: o i E
           =
           =                                                                                                                                  E
                                                                                                                                                      }o
                                                                                                                                              =        c E

P i - g 1 - e xw wo

       .-s  ?
                                                                                                                                              =        8e
                                                                                                                                                       *2 E

L-- -E S

.~.....
uE ga u  : c 1
                                                                                                                        .,                     :       s'b
       -                                                                                                                 l       l             5 x
i  :

6" h C w = 3

                                                                                                                          \                    =           m a

H 2 i I l38 5

i 5 m 18
;g
       %    :                                                                                                              i i
- 6 --g X }g i E bu m :.w = i -

E..E g 7 gg B !$ , 2 5 8m

<<a o< m  :
1 m3 E
s<< k 3 002 ij i
             -o
~ ~0 5-m i

a _w i ,s  : . 5* 8

                                                                                                                                                 -       E e
o i -

E

             =a          i  .                                                                                     <
8 I -: g w
                                                                                                                                                           *a.
             ]                                                                                                                                   i       *
             -ninnlo      n.nolnu n ,nln o.n nl"",-                 1.

t._ M _ . . . . . . . . i o n n n, ,6 <, 5o tL s 3HOSS3Hd 13SS3A H3 Al3038 Eo 0S n 7 m x FAl\97-104; Rev. 0 37 _9

ir 1! l-ll!JJ\ifl f g l' Tel= EiIai= !ii;ai_eti 1Ii;_ iiEI*Ei o e r t u

                 .                                                                            a r

e p

               ,                                                        I                      m
  • t e

t i x e r

               .                                                              ,                e s
                .                                                       I                      n e
                .                                                                            d n
           )
                                                                               ,                o c

e c # - . , i g I n a - g l

             =    .

e i n s T . y , u I . s , K X

  • 4 i t

s E e T i , T

                  .                                                                              r o

(

                 .                                                              ,        E     f M       y P      .                                                             ,

I r o X  : T t s i E . . h g n W . 4 i l t e

                     . P                                                                          m lA                                                       l A                                                                          s i M                                                                             s a

i , m i i e c i i d j I t e i l a i , u c l i

                                                                                  ,                 a C

jj=:rj:@i! ~ - - a:!; i+iiL!$i3 iib i;1,

                                               ~

3 1 3 e m= m' d U$ E L i d$ E m m O m I l m y l

           .      L                                              -         u                                                                  !                        -.

e,- x- i t z-O 1 0 4

                                                                                                                                              !.                       i+

c j  ; 6 kn 5 f ~! c$ i ~f

                   ,                                                        i w                                     w                U L                                                                            .

N  : 1 I i e 1 ~ l .  ;

z.  ; <.I. i.

, . i l i i i i l t l s s

                                                                                                                                                                   . l
*d D                                                    I                         DCC00K $8 NODE 3* COLD LEO LOC A. COOLO O W N AT 30 FfMR
-                                                                                                                    sensys Row continuousty ( Los_sisi e

4s W - g

                                      .     ,. .,_                                                                                                                  m                ,.                                           .

O- a N ~~ 2 c - . - O ,  ;

                                                 *                                                                                                             =

W h

                ..                                                                                                                                                  w       .

en 3 "' ens U ~

                                                                                                                                                           ~

m" *

                              .I I.                                                                                                                                          ,

I~ O 4

  • o, -
                =8                                                                                                                                                     -

4

                                                                                                                                                                ,.                                                                                                                                      l
                                                                                                                                                                                                                                                         ..F..,
                                                                                                                                  ...t...   '

g . . . ..*..

                                                                                                                                                                                                                      . f . . . f. . . f        -f..                 i
                         =         .. J . ..f..      ,_f...          ...!..                                           .                         ...t  .

59 69 79 38 .6 I.9 it. "9 se 28 3. 4. p *$ se IS 30 at 50 68 7. 89 9 N TIME (HO1)R S) ftWE (HOURS) ...,. ..y.

                                                                                                                     . 3. . . . , . .       g.. ...,..                        . . og .    ..y.

m .3 , .og . .- -.g..- . . . .

                                                                                                                                                                                                                                       ..y.
                                   ...g.. .
                                                     .g              ...g..                       . .p.                                                         -

e

                >-                                                                                                                                              D a  2                                                                                                                                      =

ma

                 >                                                                                                                                              5*                                                                                                 -

sr g . w ene *

                 <                                                                                                                                               E B                                                                                                                                              w o       .       -

3 3.

                                                                                                                                                                 =>

a ese E a o E .. .r. ..f . ..f_..

  • 4
                                                                                                                                                                                 . ..f. . f. .              '
                                                                                                                                                                                                                       ..e _ . .. n
f. - .. .f . f. . . ..a . ..! . i .
                         .                                                                        .f                                                                 ,
                                                                                                                                                                                     ,.      3. 3.         .. .. ..                  1.        .. .. i.
                             .       i. 3.         3.                 ..                        3.                 ..           v. s.     .. ...                  .

IlkE (H OUpt s) flalE (Houst s) Figure 5-4 Summary of the containment system response for a two inch diameter cold leg LOCA with containment sprays operating continuously once they are activatexi.

DCCODE 10 NODE l* COLD LEO LOC A W7 SPRAYS JTAT ON AFTER TRST START SLO 3_13 Y E

 ..                                                    -,.s m     "           a ga 5 a gI                   3 g

u ga ,

                                                                                                                                                                                          .         I u . s    gu    a g

3 3 E 3 g s

  • o
  *)(1 Q
  .                                                    a-                                                                                                                             t*
                                                                                  '                                                                                                   N

_ D ** at ? " 2 ~ " a - - u -

                                                       .a
  • a .- 2 .

se - o f _ d

                                                             .                                                                                                                        :                                                                                                                l
  • e . t.. .t. 1. . t.
                                                             -.    ..               t.      . f.                                                    .
                                                                                                                                                           . f,      i     ..             _

3 *e s. to sa se s. 4e 'e as se se .o se se w TtW e souar 7twa souns . ,

                                                                                                                                                                                                                 , z . . .

S a i 21

                                                                                                                                                                                      ~
                                                       ~                                                                                                                                  .                                                                                           .

a

                                                       --                                    s                                                                                  _
                                                       =
                                                       ~                                                                                                                              =
  • 2 a a

5: m

                                                             -                                                                                                                        x 4
                                                                                                                                                                                                                                              .               .                  i.
                                                                                                                                                                                 . .E      ,.
                                                                                    ,         ,                                . .                                   e                                      .
                                                                                                                                    ..                       .. se                                        i.             i.          3.                  ..                 s.      ..
                                                                 .                io         3.

TIW E 50 gas TlWE ROURS l it Figure 5-5 Summary of the cor'ainment system response for a one indi d:ameter wld leg LOCA with the accumulators asumed to be blocked and the sprays operating continuously once they have been started.

o~

                                                                                                                                                                                        ~.

t

       'I!

OCCODE 10 NODE 0.P COLD LEO LOCA k' $ PRATS ST AY ON AFTEE THEY STAET 4 SLO 2_31 -. 9

                                 ; ,e              i'             '3-                  6                               -

o 3-m

       =                         a-                                                                                   ~ ;

o e

                                                                                                                      =

es SS

                                 < 9                                                                                  o 3 -
                                 ~

U* - _ - ~

                                                                                                                                                                               ~

an e- ~ 1 a

  • l; se . . . 2 o -- --

4 . a u ~ a . -

  • I
                                                                                                                      "                 .f.  ..f.      .I      *
                                      -           1.      f.,       s  ...f...                  ..
        $                             *f e      s. 3.          3.        es      so                          6.       *.             se    ze       3.

TIM E ROUIS

4. 3. 4.

TIM E ' MOURS p g g g. . g, ,

                                                                                                           ..    ,CO
  • g ..;g g  ; . . g.. .
                                .                                                                                     w
                                                                                                                     "                                                            l e                                                                                     '

a o - 8' m - e. D=

  • D
                               ,     e N                                                                                     y   m
                               "                                                                                     =

w. as

                                     **                                                                              E v                                                                                     <

0 na a-u. 4 e 6 l. . . .f. , t 2.

                                                                                                                                                  .  ..f..

3.

                                                                                                                                                             .f.

l.. se ..

                                        .      i. 1.          i.        4.       is                       ..             .          i.

TI M E EOURS TIME 50 DES Figure 5-6 Summzry of the con:aintnent system response for a one-half inch <fimeter cold leg IDCA assuming the accurnuhtors are blocked and wibs the containment sprays operating continuously once they have been started. \_ _ _ _ __}}