ML17297A738: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
 
(Created page by program invented by StriderTol)
 
(2 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 08/25/1981
| issue date = 08/25/1981
| title = Forwards Responses to Questions 281.5-281.8,requested in NRC 810813 Ltr.Also Forwards marked-up FSAR Pages Which Will Be Incorporated Into Future Amend
| title = Forwards Responses to Questions 281.5-281.8,requested in NRC 810813 Ltr.Also Forwards marked-up FSAR Pages Which Will Be Incorporated Into Future Amend
| author name = VAN BRUNT E E
| author name = Van Brunt E
| author affiliation = ARIZONA PUBLIC SERVICE CO. (FORMERLY ARIZONA NUCLEAR
| author affiliation = ARIZONA PUBLIC SERVICE CO. (FORMERLY ARIZONA NUCLEAR
| addressee name = TEDESCO R L
| addressee name = Tedesco R
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| docket = 05000528, 05000529, 05000530
| docket = 05000528, 05000529, 05000530
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:REGUL RY INFORMATION DISTRIBUT SYSTEM (RIDS)1 ACCESSION NBR: 8109010110DOC
{{#Wiki_filter:REGUL               RY   INFORMATION DISTRIBUT             SYSTEM   (RIDS) 1 ACCESSION NBR: 8109010110DOC                         DATE'! 81/08/25       NOTARIZKD!'ES                             DO~>>>>
~DATE'!81/08/25 NOTARIZKD!
FACIL>>:STN~50 528 Palo Verde Nucl
'ES FACIL>>:STN~50 528 Palo Verde Nucl cari Statfonr Unft ii Ar izona Publi STN-50-529 Palo Verde Nuclear Statfoni Unit 2R Arizona Publi STN-50-530 Palo Verde Nuclear Stations Unit 3i Ar.fzona Publi AUTH>>, NAME" AUTHOR AFFILIATION VAN BRU>>4TR Kr, K", Ar i zona Publ f c Service Co.REC IP~>>4AMKr RECIPIENT AFFIL>>I ATION TEDESCO RL>>, Assistant Director i for Licensing DO~>>>>05000529 05000530
                                                        ~
cari Statfonr Unft STN-50-529 Palo Verde Nuclear Statfoni Unit 2R Arizona Publi ii  Ar izona Publi 05000529 STN-50-530 Palo Verde Nuclear Stations Unit 3i Ar.fzona Publi                                               05000530 AUTH>>, NAME"           AUTHOR             AFFILIATION VAN BRU>>4TR Kr, K",           i Ar zona             Publ f c Service Co.
REC IP ~ >>4AMKr         RECIPIENT AFFIL>>IATION TEDESCO RL>>,               Assistant Director i for Licensing


==SUBJECT:==
==SUBJECT:==
" For wards responses to Questions" 2815 281,8Rr equested in>>NRCr 810813 ltr~Also forwards marked up FSAR pages which will be'ncorporated into future'mend
" For wards       responses to Questions" 2815 281,8Rr equested in>>                           NRCr 810813     ltr   ~ Also         forwards marked up FSAR pages which will into future'mend                                               be'ncorporated
~DISTRIBUTION CODEi: B001S COPIES RECEIIVED!
                                                                    ~
L>>TR" ENCL>>~SIZE':: TITLKi: PSAR/FSAR AMDTS and Related Correspondence NOTES:Standardized Plant.1 cy1.C Grimes Standardized Plant,1 cy!C Grimes Standardized Plant F 1 cy:Ci Grimes 05000528 05000529 05000530 RECIPIENT ID CODE/NAME)
DISTRIBUTION CODEi: B001S COPIES RECEIIVED! L>>TR                             "
ACT'ION: A/D LI CEi4SNG L>>IC" BR¹3 LA INTERNAL>>;
ENCL>>   ~ SIZE'::
ACCXD E>>VAL BR26'HEM E>>4G BR 11 CORE PERF BR 10.EMRG PRP DEV 35 EQUIP QUAL BR13>>GEOSCIENCES 28 HYD'/GKO BR 30.ILKI 06" LIC, QUAL BR 32", MECH E>>4G BR 18 OELD POINTER SYS BR 19 QA BR 21 REAC SYS BR 23>>SIT'NAL BR 24 COPIES LTTR ENCL'1 0 1 1 1 1 1 1 1 3 3 2 2 2 2 3 3 1 1 1 0 1 1 1 1 1 1 1 1 RECIPIENT ID COOK/NAME L>>I C BR¹3 BC KKRRIGANr J~04 AUX SYS BR 27 CONT SYS BR 09 EFF TR SYS BR12 EMRG PRP LIC 36 FEMA REP DIV 39 HU>>>>l FACT KNG 40 ILC SYS BR 16 L>>I C GU ID BR 33 MATLI ENG BR 17 MPA OP LZC BR 34 PROC/TST REV 20 SS 8R22'FILE 01 ST ENG BR25 COPIES LTTR ENCL 1 0 1 1.-1 1 1 1 1 1 3 3-1 1 1 1 1 1 1 1 1 1 1 0.1 1~1 1 1 1 1 1.1 1 EXTERNAl.i:
TITLKi: PSAR/FSAR AMDTS and Related Correspondence NOTES:Standardized         Plant. 1 cy1.C Grimes                                                                     05000528 Standardized       Plant,1 cy!C Grimes                                                                       05000529 Standardized       Plant         F 1 cy:Ci Grimes                                                         05000530 RECIPIENT                       COPIES              RECIPIENT              COPIES ID CODE/NAME)                     LTTR ENCL'        ID COOK/NAME            LTTR ENCL ACT'ION:     A/D LI CEi4SNG                                     L>>I C  BR ¹3    BC            1    0 L>>IC" BR ¹3 LA                     1      0      KKRRIGANrJ      ~  04        1    1.-
ACRS NRC PDR NTIS 41 02~16 16 1 1 1 1 LPDR i4S I C 03 05 1 1 1 1&~sr TOTAL NUHBER OF COPIED REQUIRED:', LiTTR P1 ENCL'.
INTERNAL>>; ACCXD E>>VAL                             1      1      AUX SYS BR          27        1    1 09 BR26'HEM E>>4G BR         11         1            CONT SYS BR                  1    1 CORE   PERF BR           10.         1      1      EFF TR SYS BR12              1    1 EMRG PRP     DEV 35                 1      1      EMRG PRP LIC 36              3    3-EQUIP QUAL BR13>>                     3     3     FEMA REP DIV 39               1    1 GEOSCIENCES              28          2      2      HU>>>>l FACT KNG 40           1    1 HYD'/GKO BR              30.        2      2      ILC SYS BR         16       1    1 ILKI                    06"        3      3      L>>I C GU ID BR     33       1    1 LIC, QUAL    BR          32",              1      MATLI ENG BR       17       1    1 MECH E>>4G    BR          18          1            MPA                           1    0.
L STA.I g rmnazm mswvmeaa amzmmmr P.o.BOX 21666 PHOENIX, ARIZONA 85036 A'ugust 25, 1981 ANPP-18740
OELD                                  1      0      OP   LZC BR       34       1    1 ~
-JMA/KWG Mr.R.L.Tedesco Assistant Director for Licensing Division of Licensing Office of Nuclear Reactor Regulation U.S.Nuclear Regulatory Commission Washington, D.C.20555  
POINTER  SYS BR 19                  1      1      PROC/TST REV 20               1     1 QA BR                    21          1     1                 SS 8R22'          1     1 REAC SYS BR              23>>        1     1             FILE        01        1     1.
SIT'NAL      BR          24          1     1     ST        ENG    BR25        1     1 EXTERNAl.i: ACRS                       41         16     16     LPDR                03        1     1 NRC    PDR                02~        1     1     i4S IC              05       1     1 NTIS                                  1     1
                                                                  &~               sr TOTAL NUHBER OF       COPIED REQUIRED:', LiTTR               P1     ENCL'.
 
L I
g rmnazm             mswvmeaa amzmmmr PHOENIX, ARIZONA 85036 STA.                          P.o. BOX 21666 A'ugust 25, 1981 ANPP-18740 JMA/KWG Mr. R. L. Tedesco Assistant Director for Licensing Division of Licensing Office of Nuclear Reactor Regulation U. S. Nuclear   Regulatory Commission Washington, D. C. 20555


==Subject:==
==Subject:==
Palo Verde Nuclear Generating Station (PVNGS)Units 1, 2 and 3 Docket Nos.STN-50-528/529/530 File:.81-056-026'.1.10
Palo Verde Nuclear Generating Station (PVNGS) Units 1, 2 and 3 Docket Nos. STN-50-528/529/530 File:. 81-056-026'.1.10


==Reference:==
==Reference:==
Letter from  R. L. Tedesco to E. E. Van Brunt, Dated August 13, 1981,
==Subject:==
Chemical Engineering Branch Questions
==Dear Mr. Tedesco:==
Please find attached a copy of our responses to the questions 281.5  281.8. Also included are marked up FSAR pages which show this information which will be incorporated in a future amendment.
If you  have any questions,  please contact me.
Very  truly  our euu          &~~4 E. E. Van  Brunt, Jr.
APS Vice President Nuclear Projects ANPP Project Director EEVBJr/KWG/pc Attachment cc: J. Kerrigan (w/a)                                                      goo/
P. Hourihan                                                            5 A. C.'Gehr i/(
Bi090iOiiO 8i0825 PDR ADOCK    05000528' IPDR~
ll I
Vp I. t  H l      V U
f II I
(
Mr. R. L. Tedesco August 25, 1981 Page Two I, Edwin E. Van Brunt, Jr., represent that I am Vice President Nuclear Projects of Arizona Public Service Company, that the foregoing document has been signed by me on behalf of Arizona Public Service Company with full authority so to do, that'I have read such document and know its contents, and that to the best of my knowledge and belief, the statements made therein are true.
i+,~C  +
Edwin "E. Van Brunt, Jr.;;,'~
0      w Sworn  to before  me thfs~tu+day of                                    1981.
otary Public My Commission  expires:
    '1 I
1 r*
FSAR  UESTION 6A.62 281.5        In your response to our request for information 281.1,                you (6.1.1, 6.5.2)      stated that no surveillance of the trisodium phosphate                  (TSP) baskets  will be conducted other        than to assure that the baskets are  full. It is our position,          as stated    in  CE-PWR    Standard Technical    Specification (3/4.5.2), that this            ECCS  subsystem shall  be demonstrated    operable at least once per 18 months by (1)  verifying that    a minimum    total  volume  of solid granular TSP  dodecahydrate    is contained within the        TSP  baskets, and (2) verifying that    when a  r'epresentative    sample    of  TSP  from a  TSP basket    is  submerged,  without agitation, in borated water from the Refueling Water Tank, the        pH  of the mixed solution is raised to an acceptable    level within    4  hours. Indicate that these sur-veillance requirements        will be    met.
Also, provide the minimum total volume of              TSP  to be stored in the  TSP  basket and state the basis for the stored quantity.
===RESPONSE===
The response    is given in the    amended  response    to Question 6A.4.
The minimum    total  volume  of TSP  is  154  ft  (12 tons anhydrous trisodium phosphate). This minimum volume was calculated by          CE  to result in      a "worst case" minimum sump solution pH of approximately 7.0.                PVNGS  has  installed (in each  unit)  9  baskets of dimensions 2'          2'    2'nd    8  baskets of 4'        4'    4'.
The  available volume of these baskets is          684  ft  .
PVNGS FSAR APPENDIX 6A sodium hydroxide  solutions to preclude iodine evolution do not apply to PVNGS.. Initial spray pH levels are about 5.3, and within two hours of spray initiation, sump pH levels are stipulated to be maintained between 7.0 and 8.5. (See sections 6.1.1 and 6.5.2.) Even with sump pH of less than 7.0, iodine does not evolve from the sump.
        ="Ki3scW
              +l    (>>  =S~Q    '
Q ~Qq Q Q"  *'    "    !"" Q"""""
Indicate the  total amount of protective        coatings, paints, and organic materials (including uncovered cable insulation) used inside the containment that do not meet ANSI N101.2 (1972) and Regulatory Guide 1.54.
RESPONSE:    Within the containment of Unit 1, there are cur-rently less than 4000 ft2 (of a total of about 393,600            ft )
of coated surfaces documented not to conform with ANSI N101.2 and  Regulatory Guide 1.54. Exceptions taken to Regulatory Guide 1.54 are given in section 1.8 and include:
    ~    About 4,000 sq. ft. of insulated piping
    ~    About 140,480  sq. ft. enclosed within cabinets          or enclosures.
Q"    *'  "! N"    Q""  ''"*                            (1.8 and 6.5)
In Section 1.8 of the FSAR which deals with 'Conformance to NRC Regulatory Guides', reference is made to Regulatory Guide 1.52, Rev. '0 (June"1973 ) and Rev. 1 (July 1976) versions.          Since Regulatory Guide 1.52, Revision 2, (March 1978), "Design, Testing and Maintenance Criteria for Post-Accident Engineered-Safety-Feature Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants" Amendment  4                        6A-2                        May 1981
1 I A
Insert  A  to Pa e 6A-2 The. following surveillance of the trisodium phosphate baskets shall      be conducted at least once per 18 months:
a)  Verifying that  a minimum  total of g),ggr,'ubic feet of solid gran-ular trisodium phosphate    dodecahydrate (TSP) is contained within TSP  storage baskets.
b)  Verifying that  when a  representative sample of  TSP from a TSP storage basket  is submerged,  without agitation, in borated water from the Refueling Water Tank (RWT), the      pH of the mixed solution is raised to greater    than or equal to 6.0  within 4 hours.
FSAR    Question 6A.63 281.6      In Table  6 ~ 1-4  of the  FSAR, you    indicate that there are 259,560    pounds
/ il', 'l of cable insulation inside the containment building.              Indicate what fraction of thi's weight consists of organic materials. We also need the following additional information for estimating the generation rate of combustible gases from organic materials in cable insulation under  DBA  conditions:      (1)  The  quantity (weight  and volume)  of uncovered cable and cable          in closed metal conduit or closed cable trays'e      will give credit for beta radiation shielding for that portion of cable that is indicated to          be  in closed conduit or trays, (2) A breakdown    of cable diameters      and associated  conductor cross section, or    an  equivalent cable diameter      and  conductor cross section that is representative of total cable surface area associated with the quantity of cable      identified in    1) above.  (3) The major organic polymer or    plastic'aterial in the cables. If this information is not  provided, we will assume the cable insulation to be polyethylene and assume    a  G  value for combustible gas of 3.
===Response===
Table 6.1-4 has been revised          in  Amendment 5    to indicate 39,500 (37600 +    5%)
pounds    of cable insulation within the containment.
(1)  The  quantity of covered/uncovered        cable  is not readily available.
Therefore,    all  cable  is  assumed  exposed.
(2)  'A breakdown    of cable diameters      and conductor cross    section is attached as Table 281.6-1.
(3) The major organic polymer in the cable insulation is flame-retardant ethylene propylene rubber and chlorinated polyethylene.              (Other organic polymers  in various insulation types are listed in Table 6.1-4.)
l K r
1
  @SAN~ 28 l.s l
2h/SCfL  044K y/t oF Tel c4 t.AS~
(DOOF+
lH)  I0
    +tg1 1 C
I p          <4)p h
Q~c'<vs        uc.
7%)CA. ~  T$ 4l cLc w% <P
                                            ~c.A ~~
F+
577  .03o      ~s          0  +3o
(                                  o-+3~
            ,03 o    pts                    lob gO                    g 430 f753                ,04o go        ,06 m
      )wq2 ,d3o zq~l                          l i~5
: l. i)YS
                                              /7'70o Yurt                              / /VS 5550 aA
              ')Ls                          =l7oo g<Z3
f P I
      ~  &
P P
L P  I, v
1
f<  8-0& >
2A/5ciC.                            utf  aP
                                                                    ~PPc-.
W4>Ca .
g T441 CLc            oD    ~A 8, Le Iooo Ft          ~~.uL w~      i>)
20723 d2.g        o  o't5          o  548  78 g      gq.g    >os%      ~
C.~11              ,4.5'        a~5        o - ~5  b'g.z.
cs82              ,g. 5    . o.o't5 o y5'g              7g  2. 2a g c  s5E      ps->    2-e-$
caged
: c. yA- 8o2        ,tR 5                            6 g  y'g.2    gq.g      3q,  o c+4                e2,5'.o        H5        o 3Z7      qP2. g7g      3e +
2.L7 t9  ~5        a  n'l$        g  $ /0    @.7      gl.+      q  ep. o csee'.Et,
        'l                                    0  Ho      A)7 21+          ]gal. o
                                          '2-5 o.o95          o 39.~
                                                  ~                          i8'I  ~
o~              ggo    6'7      ~~+
t  6<3    9.2 89 9 3>a o2.g OZ5' o
o%
c 7'd7            2 I. 9
                                                                            )o3 7 Io 6'
r787  ,O2.5      n  ~go        o                    7o . 6'    ) 8. o  .
                                                                                ~o18L 3788'7
I I
I
2usvc.                                  g4 oF Qg+c        VQICk.                      eD      C~fl LF
                      ~
R      TesuL      4~
        $ 5@  0 tFA    Jog              0            53. +
25''ad
  ~SV)
T5'2. h l2  o  e/9-                  y.266                    '3  3E 63+ a~A g.bd            d          ~
25 0                p. q-o ob'2    P.dg)          g 262                  287 QSVI  Jj7+  0 Db 2    a.o33'              2+2      88.2  l7 3~$ '    od2. u >83    o            29Z                  7t 2 K e~3                  o 4'$P y          ~ 2. t 2-          l7
. glue        o.ok  2. o b)g  0 2-I~                        lP  )3. 2 Lrr          o 12.l    d O3O
                                >+Op''2.7 78 if' PIE'        p c)q)                  o l l5 8'-7 plCw1 L B    ~oui      y o27        o      l'l5 o78L. I/5 o
~ i Fh
2hlSVL                  QPf o$
                      'Tki c4      c.BELLS (nba p f (oyp Ff 774IC4c. ~
ZNE'UL vvp.
(yu                          gpss l3z I dl a            ,1+~    Z$ 7 5,  A@3  2 ggy      g..1
c 2 A/S CIC                            ak ~F              op f ~ice      TQl CLc.                C~F}      LG  6s    5 IA                      lA7D      R )oo~ F-0  ieEoL vA-QS'V                      b CPIP~      D  ~ 0'-$          Q. g3'.    +    3+      Q ~
gg 3'+
25'5V>
                                                    .2-5'>
ee(f      ~ ozg      c                                    p Ys v2.          La 2. o nS9-    y-og        q.gpss                                    6'.+
Q-9'.oM 63+ o~A                                y. 2.g o o o(2. g  og      e)  262      $ $ '2.        i7    287 gaul                    o-o(2      o  e)p    e    2+2                      t7 ICsu2                    a ~d'2- u F83        o.2        848 BES'.zu3 ll    )8 ~
glue                    e.eh    2. eo)y      c    2<>
Lrr    tong              o l2-l    ~  ohio  ~'+45' NEW                      o  ofl      o27      o    l'l5 PfCWl-      1,      $ '>            o o2T      o 155 Wc    'QL 12-~ ~
~
J'I
far( OC  (
I DAISY                  Off Op w
        %WC'..  %441  C4    oD cbBL6  c.n pPS aJ
                                /oo~H  ioo~Ft  TNE OL p& gc 7o o o e5,025
          ~
2o    8'5
                                                'BS'o 4
          'C l:t " r
6 r+i-o 3 S 2usuc.    ~h~                  g/4 oF
                                          <8!KE    coppek
  ~QC      %WC~  ~  ls4> c4      eD                /dPoFt pJ                IP<PF P'
          ,5Q  o    .68b      c  'I35      7d        7E    I 37. A AebtbF    qpLg'88 s/n.Z.                X~7    3 Pl&LQ
            ,0 30    .Oco                  /lS                      ~~ ~g.p-Q Es+      ,03 p    ngs          c.58      jl 3 ping,g/o 9o3                            ge            888
          ,09. o                o'  [ c'gI          (>I'5 ld  2 1+~7 ~
I
  ~      I Qgjoa                        Tillc4. oD            tonntt
( gJ 8'i H  7~29'1                        c    $    72            Q 1) j-          3/27 ,o55              o                772    A3
                                                          'g8 7ES'.oo 32 48                                    P  122-+  1o &'t 8I L imps                  .e46'.      Isg 829                                                      ffo 7s7    og g  (Rg      o 518
                                              ~
goI 839lC tb3LI-              o3u  pH5        o 5t$          2ol
  $ 3>2.c 1tq.~                                              9 ol
      '13C          ii5 P3'1%    c              ,Olo  PH        a O'I8 83    I3        385I    ,o%5  go      o    725 839IC            )gg      y.s  .of~      e    725
-                                  ok      e 725 8>82C 8gc                1 old      ,ohio c 7E8 83    E          $ 86' l5'
0 0 II P
l


Letter from R.L.Tedesco to E.E.Van Brunt, Dated August 13, 1981,  
2 A/8c/L                      Luf'o f-  at Qp>r          VW)Ca.  ~    Ta4>
H c4    oD  EhBLE    ~~@ R~~
                                                <>ooFt loooFf    7~sot.  ~
              ,03 >        ,ohio    g. go 6 2.07.07 8~73                        ohio    v.go $  Jo7-07            13. 3 N7<                        ,o/o      b.(O5'~7      ~7
$ 77          .03 o                  o Po5 R77l            oE c,od o            o. 7e5'83.6'I
/I7D. Iz>8                            o. 7~ 5 z.zz.A' 1tE 387            03 0      .oEa          -PIg 92~'              9'I 3 h87I  139 tie pe@          Ogo      0 z8'5 gag pq            zan. 8 a<>> A          ,0$ 0        ,Ogo      b  /85  32'.p'f 9%8L 2~>8 ~


==Subject:==
0,      ))I 4 1a I 1
Chemical Engineering Branch Questions
  % Jl
 
2 AISCIL      <h~                  LVto F
                                                    <8&LE ul'f L~oP E
            <        vuie~. YQl C4        eD ZAJYOL 827 7+F7,o3            ~                o    '9>>  A'o3          2g        Qc}    'l~
~>71 30~5                              g  ~    f?0  g5.o3                  Qadi >
8'6'. u3 8272 '312 o pro                        ~ ~
                                            $ 2.c                        ) 8+.~
I I 5'q @3'18'5 o    t ops    ~ +2a      g $ . o3'
                                          .Lt2.e    86.o )
            .R o            P5        o    '+<5  lo>    ~o    9.1    2 12 'I    ~
            ,p3 o          dI-5      ~.~g      o  ~~y.y        p~      65- 'i
            .o3o
: 0.    ~6    to<.e zq            ~8'<
                                            'tOo A372  q go,dZ          o    p9<                    l~3 89        R5      9Z 9 Ae7  112.'1  .o3o                    o W8o        i~< 6 g't~      g. yean      )Q. ~          62.  )  oa. u Rgqi 13$ '1 tgo                      o 0<o        lib'.6'z 8q73        p3 0                      o  08o      (g~.g        g2. P
      )>5
                            ,d}-g    '98o                              la-7 l~~
l>>8      Qo            o/o      o    (7o    2.15.9      131          6'aD 7ol                      Qo        o.7] 0      3g/7c      /ok      120 5
                            ,e8o        l.o7o      ggg    Pg  5.2g    85 Rtl7  7o3    Bo            .o/o      o    l 5'or.o7                    al 4 A57I  ~76'7 ,63o                      O (j op      go 7.+/          1 ]
32o oo Wo7h'l 2c 8d o
 
  ~ ~
t
 
w+ o F ZA/5'%IC4c.                          c./1 SLK c4      oD 5'44l
                            ~
iona  F        /ceo+    Tier vL t'~d pg            on  V5'o ops                                57.      l t5      o  yT9                            7E-: 0 UR d2  'I 23                  o  O95 o p f'5                                          Lfg. o Ugb 3  g2p V34$  Ply                'oR6                    qz-8 UVi                          o' 04 g              7g    2.                  t gg.o USE  )glil  @25            y a'I6                                          9-43.3 U7V3  lay I+                g do                                78'2        > ~64.'
U714  96'7g                  .o,bo                                78 2.      q)o o'-I5'o 8'in 277                            I  o2$
o    'I53  5'oo        g2. 8    (g~g,g p26',aF~                    o $~
5'  Geo uR/z                                                              g 2- 9  Z gpss-o
; URN                                          'igg                q2-  9. ~  l3 3c        +
 
P
  ~ ~
 
Insert  A to Pa e 9A-'22 The  fuel pool cleanup    filter cartridges will be    replaced when the pressure drop across the    filters  exceeds  25 psid during operation of the system, or the  gamma  radiation reading    on the  outside of the  filter housing  exceeds a  reading to be determined, when normal system radiation levels have been measured  in order to maintain radiation      exposures ALARA.
Fuel pool cleanup ion exchanger performance        will be  monitored by determining a decontamination factor from ion exchange        inlet to outlet  samples  for gross activity  and gross  iodine. Ion exchanger resin    will be replaced when the decontamination factor drops below a minimum efficiency level, as determined by examining  initial operating    decontamination factors,    for  3 consecutive samples taken 2 hours apart or when the gamma        radiation readings    on the outside of the  filter housing    exceeds  a reading to be determined when normal system  radiation levels    have been measured    in order to maintain radiation exposures ALKQ..
 
Your response  to our previous Question 281.2 did not indicate  any chemical or radionuclide  limits for initiating  replacement of  filters and ion exchange  resins. It is our position that chemical and radionuclide    limits in the spent fuel pool water,  such as  conductivity, gross  gamma and  iodine activity, demineralizer differential pressure, pH,.and crude level, are needed for initiating corrective action to enable safe operating conditions in the pool. Verify that you will meet this position and provide the above information.
 
===RESPONSE===
The response  is given in the amended  response  to Question 9A.34.
 
                                        . PVNGS FSAR APPENDIX 9A Q""                                      (9.1.3)
For the  fuel pool cleanup system, indicate that chemical analyses    at least weekly and continuous radiological monitor-ing will be made for measuring the efficiency of the filters and ion exchange resins to remove impurities and radioactive materials from the pool water.                    State what    criteria      (chemical parameters, decontamination factors, etc.) will be used to determine replacement of the filters and ion exchange resins.
RESPONSE:       For the fuel pool cleanup system, chemical analysis down stream of the filters and ion exchangers is done via batch sampling only. These samples as a minimum are to be taken at one week intervals.
Continuous radiological in-line monitoring is not a
    . requirement for the system as outlined in Regulatory Guide 1.45 (also, see section 11.5.1 and table 9.3-3).
High  electrical conductivity or radiation levels in the batch sample are the criteria used to determine replacement of the resin bed for the ion exchangers.
The cleanup      filters          are provided with pressure differential indicator switches which give local indication of pressure drop across the filters and alarm to the lo~cal anel on high pressure drop.',,!,                      -    >',      . r    i op Jw~.'i      =,!",..'  '41.b        CndViging      C lr4r3.f, )<","-
F
            .:l~ I
[ Mda-A!A >
9    .              (      Q                                        (9.3.2)
Describe the provisions to meet the requirements of post-accident sampling of the primary coolant and containment atmosphere.        The description should address all the require-ments outlined in Section II.B.3 of Enclo'sure 3 in NUREG-0737 Amendment      4                              9A-22                              Nay 1981
 
~ C ~ ~
FSAR    uestion 9A.60 281.8        Provide information that satisfies the attached proposed license (9.3.2, II.B.3)      conditions for post-accident sampling.
NUREG-0737,    II.B. 3  Post  Accident  Sam lin  Ca  abilit Provide a capability to obtain and quantitatively analyze reactor coolant and containment atmosphere      samples, without  radiation exposure to    any individual exceeding    5 rem  to the whole body or    75 rem  to the extremities (GDC-19)  during and following an accident in which there is core degradation.
Materials to be analyzed      and quantified include certain radionuclides that are indicators of severity of core damage (e.g., noble gases,            iodines, cesiums and    non-volatile isotopes), hydrogen in the containment atmosphere and  total dissolved    gases  or hydrogen, boron and chloride in reactor coolant samples  in  accordance with the requirements of NUREG-0737.
To  satisfy the requirements, the applica nt .'hould (1) review          and modify  his sampling, chemical analysis and radionuclide determination capabilities as necessary    to comply with  NUREG-0737,  II.B.3,  (2) provide the  staff with information pertaining to system design, analytical capabilities            and procedures in sufficient detail to demonstrate that the requirements          have been met.
EVALUATION AND FINDINGS The  applicant has committed to    a post-accident sampling system that meets the requirements of NUREG-0737, Item      II.B.3 in  Amendment  ''  ,  but has not provided, the technical information required by      NUREG-0737  for our evaluation.
 
Implementation of the requirement      is not  necessary prior to  low power operation because only small quantities of radionuclide inventory          will exist in the reactor coolant    system and, therefore,  will not affect    the health  and  safety of the public. Prior to exceeding  5% power operation, the applicant must demonstrate      the capability to promptly obtain reactor coolant samples in the event of an accident in which there is core          damage consistent with the conditions stated below:
: 1. Demonstrate compliance with      all requirements of NUREG-0737,    II.B.3, for sampling, chemical    and  radionuclide analysis capability, under accident conditions.
: 2. Provide  sufficient shielding to    meet the requirements  of  GDC-19, assuming Reg. Guide 1.4 source terms.
: 3. Commit  to meet the sampling    and analysis requirements of    Reg. Guide 1.97, Rev. 2.
: 4. Verify that    all electrically  powered components associated    with post-accident sampling are capable of being supplied with power and operated, within thirty minutes of    an  accident in which there  is  core degradation, assuming loss of    offsite  power.
: 5. Verify that valves which are not accessible for repair after          an  accident are environmentally qualified      for the conditions in which they      must operate.
: 6. Provide a procedure for relating radionuclide gaseous and ionic species to estimated core damage.
: 7. State the design or operational provisions to prevent high pressure carrier  gas from  entering the reactor coolant system from      on  line  gas analysis equipment,    if it is  used.
: 8. Provide a method for verifying that reactor coolant dissolved oxygen is at C O.l  ppm  if reactor  coolant chlorides are determined to be 0.15      ppm.
: 9. Provide information on (a) testing frequency and type of testing to ensure long term operability of the post-accident sampling system, and (b) operator training requirements for post-accident sampling.
In addition to the above licensing conditions, the staff is conducting            a generic review of accuracy and      sensitivity for analytical procedures and on-line instrumentation to      be  used for post-accident analysis.      We will require that the applicant submit data supporting the applicability of each selected analytical chemistry procedure or on-line instrument along with documentation, demonstrating compliance with the licensing conditions four, months  prior to  exceeding  5%  power  operation, but review and approval of these procedures    will not  be a  condition for  full power operation.      In the event our generic review determines a specific procedure          is  unacceptable, we  will require  the applicant to    make  modifications  as determined by our generic review.
 
===RESPONSE===
The PVNGS design uses    in-line  chemical and radionuclide analyses with backup grab sample  capability to  meet the requirements    of NUREG-0737. These analyses fully meet  the ranges and accuracies specified in Reg. Guide 1.97, Rev. 2.
The  capability exists to sample'nd analyze the required          samples over the required ranges within the allotted three hour time span.            Table  1 provides further information    on sample    points  and analyses. All samples, including grab samples, may be taken without exposing any        individual to radiation levels in  excess of  GDC  19 criteria. Isotopic analysis is      provided to identify and
 
quantify the isotopes of the nuclide categories corresponding to the source terms given  in  Reg. Guide 1.4 and  1.7. A manually loaded Class IE power source  is'vailable within 30 minutes of an accident that assumes loss of offsite power. All equipment in the post-accident sampling system (PASS),
including valves, piping, cabling, motors      and  analyzer electronics,  is qualified to the environment      it would  experience under accident conditions.
The PASS computer    will determine  estimated core  damage by comparing  the fraction of the core inventory in the      RCS against the known core isotopic inventory. All listed  analyses can be performed on any sample taken.        This provides  a complete    picture of radiological    and chemical data  for historical comparison. Carrier gases are not    used  in the analyses.
The  entire  PASS  system  will be  operated from a central computer which directs a  controller to  sample through valve and pump operation sequences.      All data will be  analyzed, stored and displayed on the computer.        Ma-ual control    will 1 be  available  on  loss of the automatic functions.      Grab samples can be taken remotely during post-accident conditions to minimize operator'exposure.
During normal operations, grab samples      will be  taken locally at  the analyzer module.
Dissolved oxygen    is verified to  be below 0.1 ppm by the  dissolved oxygen analyzer.
The PASS  will provide    weekly data during normal operations to meet various chemical and radiological technical specification sample times.          Grab samples


==Dear Mr.Tedesco:==
will be taken on a routine basis to assure technician    familiarity. Testing frequency  will be determined by   manufacturers requirements to maintain reliability. Operator training    requirements will be determined at  a later date.
Please find attached a copy of our responses to the questions 281.5-281.8.Also included are marked up FSAR pages which show this information which will be incorporated in a future amendment.
Refer to Section 9.3.2 and   PVNGS  LLIR Section II.B.3 for further details of the PASS.
If you have any questions, please contact me.Very truly our euu&~~4 E.E.Van Brunt, Jr.APS Vice President Nuclear Projects ANPP Project Director EEVBJr/KWG/pc Attachment cc: J.Kerrigan (w/a)P.Hourihan A.C.'Gehr goo/5 i/(Bi090iOiiO 8i0825 PDR ADOCK 05000528'IPDR~
Refer to PVNGS LLIR Section  II.B.2 for further details  on  plant shielding.
ll l U V p I.t V f II I I H (
Mr.R.L.Tedesco August 25, 1981 Page Two I, Edwin E.Van Brunt, Jr., represent that I am Vice President Nuclear Projects of Arizona Public Service Company, that the foregoing document has been signed by me on behalf of Arizona Public Service Company with full authority so to do, that'I have read such document and know its contents, and that to the best of my knowledge and belief, the statements made therein are true.Sworn to before me thfs~tu+day of Edwin"E.Van Brunt, Jr.;;,'~0 w i+,~C+1981.otary Public My Commission expires:
'1 I 1 r*
FSAR UESTION 6A.62 281.5 (6.1.1, 6.5.2)In your response to our request for information 281.1, you stated that no surveillance of the trisodium phosphate (TSP)baskets will be conducted other than to assure that the baskets are full.It is our position, as stated in CE-PWR Standard Technical Specification (3/4.5.2), that this ECCS subsystem shall be demonstrated operable at least once per 18 months by (1)verifying that a minimum total volume of solid granular TSP dodecahydrate is contained within the TSP baskets, and (2)verifying that when a r'epresentative sample of TSP from a TSP basket is submerged, without agitation, in borated water from the Refueling Water Tank, the pH of the mixed solution is raised to an acceptable level within 4 hours.Indicate that these sur-veillance requirements will be met.Also, provide the minimum total volume of TSP to be stored in the TSP basket and state the basis for the stored quantity.RESPONSE The response is given in the amended response to Question 6A.4.The minimum total volume of TSP is 154 ft (12 tons anhydrous trisodium phosphate).
This minimum volume was calculated by CE to result in a"worst case" minimum sump solution pH of approximately 7.0.PVNGS has installed (in each unit)9 baskets of dimensions 2'2'2'nd 8 baskets of 4'4'4'.The available volume of these baskets is 684 ft.
PVNGS FSAR APPENDIX 6A sodium hydroxide solutions to preclude iodine evolution do not apply to PVNGS..Initial spray pH levels are about 5.3, and within two hours of spray initiation, sump pH levels are stipulated to be maintained between 7.0 and 8.5.(See sections 6.1.1 and 6.5.2.)Even with sump pH of less than 7.0, iodine does not evolve from the sump.="Ki3scW+l (>>=S~Q'Q~Qq Q Q"*'"!"" Q""""" Indicate the total amount of protective coatings, paints, and organic materials (including uncovered cable insulation) used inside the containment that do not meet ANSI N101.2 (1972)and Regulatory Guide 1.54.RESPONSE: Within the containment of Unit 1, there are cur-rently less than 4000 ft (of a total of about 393,600 ft)2 of coated surfaces documented not to conform with ANSI N101.2 and Regulatory Guide 1.54.Exceptions taken to Regulatory Guide 1.54 are given in section 1.8 and include:~About 4,000 sq.ft.of insulated piping~About 140,480 sq.ft.enclosed within cabinets or enclosures.
Q"*'"!N" Q""''"*(1.8 and 6.5)In Section 1.8 of the FSAR which deals with'Conformance to NRC Regulatory Guides', reference is made to Regulatory Guide 1.52, Rev.'0 (June"1973
)and Rev.1 (July 1976)versions.Since Regulatory Guide 1.52, Revision 2, (March 1978),"Design, Testing and Maintenance Criteria for Post-Accident Engineered-Safety-Feature Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants" Amendment 4 6A-2 May 1981 1 I A Insert A to Pa e 6A-2 The.following surveillance of the trisodium phosphate baskets shall be conducted at least once per 18 months: a)Verifying that a minimum total of g),ggr,'ubic feet of solid gran-ular trisodium phosphate dodecahydrate (TSP)is contained within TSP storage baskets.b)Verifying that when a representative sample of TSP from a TSP storage basket is submerged, without agitation, in borated water from the Refueling Water Tank (RWT), the pH of the mixed solution is raised to greater than or equal to 6.0 within 4 hours.
FSAR Question 6A.63 281.6 In Table 6~1-4 of the FSAR, you indicate that there are 259,560 pounds/il','l of cable insulation inside the containment building.Indicate what fraction of thi's weight consists of organic materials.
We also need the following additional information for estimating the generation rate of combustible gases from organic materials in cable insulation under DBA conditions:
(1)The quantity (weight and volume)of uncovered cable and cable in closed metal conduit or closed cable trays'e will give credit for beta radiation shielding for that portion of cable that is indicated to be in closed conduit or trays, (2)A breakdown of cable diameters and associated conductor cross section, or an equivalent cable diameter and conductor cross section that is representative of total cable surface area associated with the quantity of cable identified in 1)above.(3)The major organic polymer or plastic'aterial in the cables.If this information is not provided, we will assume the cable insulation to be polyethylene and assume a G value for combustible gas of 3.Response Table 6.1-4 has been revised in Amendment 5 to indicate 39,500 (37600+5%)pounds of cable insulation within the containment.
(1)The quantity of covered/uncovered cable is not readily available.
Therefore, all cable is assumed exposed.(2)'A breakdown of cable diameters and conductor cross section is attached as Table 281.6-1.(3)The major organic polymer in the cable insulation is flame-retardant ethylene propylene rubber and chlorinated polyethylene.(Other organic polymers in various insulation types are listed in Table 6.1-4.)
l K r 1
.@SAN~28 l.s-l


2h/SCfL 044K Tel c4 lH)I 0 y/t oF t.AS~(DOOF+
TABLE 1 FOR NRC QUESTION    281.8 (9.32 and  II.B.3)
+tg1 1 C I p<4)p h (Q~c'<vs uc.7%)CA.~577.03o ,03 o gO T$4l cLc~s pts 0+3o o-+3~g 430 w%<P~c.A~~F+lob f753 go ,04o ,06 m)wq2 zq~l ,d3o l i~5 Yurt g<Z3 5550 aA')Ls l.i)YS//VS/7'70o=l7oo f P I~&P P L P I, v 1 2A/5ciC.W4>Ca.g f<8-0&>T441 CLc oD utf aP~A 8, Le~PPc-.Iooo Ft~~.uL w~i>)C.~11 cs82 caged c.yA-c+4 csee'.Et,'l t 6<3 20723 8o2 2.L7 t9 9.2 89 9 3>a r787 d2.g o o't5 ,4.5'a~5 ,g.5.o.o't5 ,tR 5 e2,5'.o H5~5 a n'l$'2-5 o.o95 o2.g o o~OZ5'o%,O2.5 n~go o 548 78 g gq.g>os%~o-~5 b'g.z.o y5'g 7g 2.2a g g$/0@.7 gl.+q ep.o 0 Ho A)7 21+]gal.o o~39.~c ggo o 7'd7 6'7 i8'I~~~+)o3 7 2 I.9 I o 6'7o.6')8.o.~o18L 3788'7 c s5E ps->2-e-$6 g y'g.2 gq.g 3q, o o 3Z7 qP2.g7g 3e+
Post Accident Sampling System
I I I Qg+c~SV)T5'2.QSVI K e~3.glue Lrr PIE'plCw1 2usvc.VQICk.~63+a~A o ob'2 Jj7+0 Db 2 3~$'od2.o.ok 2.o 12.l p c)q)L B~oui$5@0 tFA h l2 o e/9-eD Jog 0 25''ad y.266 g.bd d~25 0 P.dg)g 262 a.o33'2+2 u>83 o 29Z o 4'$P y~2.t 2-o b)g 0 2-I~d O3O>+Op''2.7 o l l5 y o27 o l'l5 g4 oF C~fl L F R 53.+88.2 TesuL 4~'3 3E p.q-287 l7 7t 2 l7 lP)3.2 78 if'8'-7 o78L.I/5 o
~In  uts
~i Fh l3z I dl a 2hlSVL 774IC4c.~'Tki c4 (yu ,1+~QPf o$c.BELLS (nba p f (oyp Ff Z$7 5, A@3 2 ggy ZNE'UL vvp.gpss g..1 c
      ~Lt u1d Containment Recirculation Sump, Reactor Coolant System, Containment Radwaste Sump, Safety      Injection A, Safety Injection B, Auxiliary Building Sumps, Letdown System Gas Containment    Air, Volume Control Tank
2 A/S CIC f~ice TQl CLc.IA ak~F C~F}LG lA7D R op 6s 5)oo~F-0 ieEoL vA-QS'V 25'5V>Ys v2.La 2.63+glue Lrr tong NEW PfCWl-1,$'>gaul ICsu2 BES'.zu3 848 b CPIP~ee(f o nS9-o~A o o(2.o-o(2 a~d'2-e.eh 2.o l2-l o ofl D~0'-$Q.g3'.+~ozg c.2-5'>y-og q.gpss Q-9'.oM y.2.g o g og e)262$$'2.o e)p e 2+2 u F83 o.2-92-eo)y c 2<>~ohio~'+45'o27 o l'l5 o o2T o 155 3+3'+Q~gg p 6'.+i7 287 t7 ll)8~Wc'QL 12-~~
~Out  uts
~J'I far(OC (I DAISY%WC'..%441 C4 aJ oD Off Op cbBL6/oo~H w c.n pPS ioo~Ft TNE OL p&gc 7o o~o e5,025 2o 8'5'BS'o 4
      ~LL udd Equipment Drain Tank, Reactor Drain Tank Gas Containment    Air
'C l:t" r*
~Anal ses
~QC 2usuc.%WC~~6 r+i-o 3 S~h~ls4>c4 pJ eD g/4 oF<8!KE IP<PF P'coppek/dPoFt Es+9o3 ,5Q o.68b Pl&LQ ,0 30 ,03 p AebtbF.Oco ngs ping,g/o c'I35 qpLg'88 c.58 ge 7d s/n.Z./lS jl 3 7E 888 I 37.A X~7 3~~~g.p-Q ,09.o o'[c'gI (>I'5 ld 2 1+~7~I
      ~LX uld Gamma  Spectrum                  10    uCi/ml to  10  Ci/ml Isotopic Gross  Gamma                      10    uCi/ml to  10  Ci/ml Gross Boron                              0 to 6000 ppm pH                                1  to 13 (temperature compensated)
Dissolved Oxygen                  0  to 20 ppm Dissolved Hydrogen                0 to 2000 cc (STP)/Kg Chlorida                          0 to 20 ppm Gas
                                            -3               -1 Gamma    Spectrum                  10    uCi/ml to 10 Ci/ml Isotopic Gross  Gamma                      10    uCi/ml to 10 Ci/ml Gross Gaseous  Oxygen                  0 to 30%
Gaseous  Hydrogen                0 to 10% (provided by the Containment Hydrogen Control System)
Chemical analyses      are done  in parallel. Chemical analyses    are performed while the radiological analyses are being performed.


~I Qgjoa Till c4.(gJ oD tonntt 8'i H 7~29'1 j-3/27 32 48 8I L imps 829 7s7 839lC tb3LI-$3>2.c 1tq.~'13C ii5 P3'1%c 83 I3 385I 839IC)gg ,o55 c$72 o 7ES'.oo P.e46'.Isg ,Olo PH a O'I8 ,o%5 go o 725 y.s.of~e 725 og g (Rg o~518 o3u pH5 o 5t$'g8 772 122-+ffo goI 2ol 9 ol Q 1)A3 1o&'t-8>82C 8gc 1 old ok ,ohio e 725 c 7E8 83 E$86'l5' 0 0 P II l Qp>r 2 A/8 c/L VW)Ca.~Ta4>c4 H oD Luf'o f-EhBLE<>ooFt at~~@R~~loooFf 7~sot.~8~73 N7<$77 R77l 387 h87I 139 tie a<>>A/I7D.Iz>8 ,03>,ohio ohio ,o/o.03 o oE c,od o 03 0.oEa ,0$0 ,Ogo pe@Ogo g.go 6 2.07.07 v.go$Jo7-07 b.(O5'~7~7 o Po5 o.7e5'83.6'I o.7~5 z.zz.A'-PIg 92~'0 z8'5 gag pq b/85 32'.p'f 1tE 13.3 9'I 3 zan.8 9%8L 2~>8~
  % ~
0,))I 1a I 4 1%Jl 2 AIS CIL<vuie~.<h~YQl C4 eD LVto F<8&LE ul'f L~oP E ZAJYOL 827~>71 8272 7+F7,o3~30~5@3'18'5.R o'312 o pro I I 5'q o o'9>>A'o3 2g g~f?0 g5.o3~~$2.c 8'6'.u3 ops~+2a t g$.o3'.Lt2.e 86.o)P5 o'+<5 lo>~o 9.1 Qc}'l~Qadi>)8+.~2 12~'I A372 Ae7 Rgqi 8q73 ,p3 o.o3o q go,dZ o 112.'1.o3o 13$'1 tgo)>5 p3 0 l~~dI-5~.~g o~~y.y p~65-'i 0.~6 to<.e zq~8'<p9<'tOo l~3 89 R5 9Z 9 o W8o i~<6 ,d}-g'98o la-7 g't~g.yean)Q.~62.)oa.u o 0<o lib'.6'z o 08o (g~.g g2.P 6'aD Rtl7 A57I l>>8 7ol 7o3~76'7 Qo Bo ,63o o/o o (7o 2.15.9 131 Qo o.7]0 3g/7c/ok 120 5 ,e8o l.o7o ggg Pg 5.2g 8 5.o/o o l 5'or.o7 al 4 O (j op go 7.+/1]32o oo Wo7h'l 2c 8d o
l)}}
~~t ZA/5'%IC4c.
~pg 5'44l c4 on V5'o t5 oD ops o yT9 w+o F c./1 SLK iona F t'~d/ceo+Tier vL 57.l 7E-: 0 UR d2'I 23 Ugb 3 g2p V34$Ply UVi USE)glil U7V3 lay I+U714 96'7g 277 uR/z;URN o O95 o p f'5'oR6 o'04 g@25 y a'I6 g do.o,bo o'-I5'o p26',aF~I o2$o'I53 o~$5''igg qz-8 7g 2.5'oo Geo Lfg.o t gg.o 9-43.3 78'2>~64.'78 2.q)o 8'in g2.8 (g~g,g g 2-9 Z gpss-o q2-9.~l3 3c+
P~~
Insert A to Pa e 9A-'22 The fuel pool cleanup filter cartridges will be replaced when the pressure drop across the filters exceeds 25 psid during operation of the system, or the gamma radiation reading on the outside of the filter housing exceeds a reading to be determined, when normal system radiation levels have been measured in order to maintain radiation exposures ALARA.Fuel pool cleanup ion exchanger performance will be monitored by determining a decontamination factor from ion exchange inlet to outlet samples for gross activity and gross iodine.Ion exchanger resin will be replaced when the decontamination factor drops below a minimum efficiency level, as determined by examining initial operating decontamination factors, for 3 consecutive samples taken 2 hours apart or when the gamma radiation readings on the outside of the filter housing exceeds a reading to be determined when normal system radiation levels have been measured in order to maintain radiation exposures ALKQ..
Your response to our previous Question 281.2 did not indicate any chemical or radionuclide limits for initiating replacement of filters and ion exchange resins.It is our position that chemical and radionuclide limits in the spent fuel pool water, such as conductivity, gross gamma and iodine activity, demineralizer differential pressure, pH,.and crude level, are needed for initiating corrective action to enable safe operating conditions in the pool.Verify that you will meet this position and provide the above information.
RESPONSE The response is given in the amended response to Question 9A.34.
.PVNGS FSAR Q"" APPENDIX 9A (9.1.3)For the fuel pool cleanup system, indicate that chemical analyses at least weekly and continuous radiological monitor-ing will be made for measuring the efficiency of the filters and ion exchange resins to remove impurities and radioactive materials from the pool water.State what criteria (chemical parameters, decontamination factors, etc.)will be used to determine replacement of the filters and ion exchange resins.RESPONSE: For the fuel pool cleanup system, chemical analysis down stream of the filters and ion exchangers is done via batch sampling only.These samples as a minimum are to be taken at one week intervals.
Continuous radiological in-line monitoring is not a.requirement for the system as outlined in Regulatory Guide 1.45 (also, see section 11.5.1 and table 9.3-3).High electrical conductivity or radiation levels in the batch sample are the criteria used to determine replacement of the resin bed for the ion exchangers.
The cleanup filters are provided with pressure differential indicator switches which give local indication of pressure drop across the filters and alarm to the lo~cal anel on high pressure drop.',,!,->',.r i op Jw~.'i=,!",..''41.b CndViging C lr4r3.f,)<","-F.:l~I[Mda-A!A>9.(Q (9.3.2)Describe the provisions to meet the requirements of post-accident sampling of the primary coolant and containment atmosphere.
The description should address all the require-ments outlined in Section II.B.3 of Enclo'sure 3 in NUREG-0737 Amendment 4 9A-22 Nay 1981
~C~~
FSAR uestion 9A.60 281.8 Provide information that satisfies the attached proposed license (9.3.2, II.B.3)conditions for post-accident sampling.NUREG-0737, II.B.3-Post Accident Sam lin Ca abilit Provide a capability to obtain and quantitatively analyze reactor coolant and containment atmosphere samples, without radiation exposure to any individual exceeding 5 rem to the whole body or 75 rem to the extremities (GDC-19)during and following an accident in which there is core degradation.
Materials to be analyzed and quantified include certain radionuclides that are indicators of severity of core damage (e.g., noble gases, iodines, cesiums and non-volatile isotopes), hydrogen in the containment atmosphere and total dissolved gases or hydrogen, boron and chloride in reactor coolant samples in accordance with the requirements of NUREG-0737.
To satisfy the requirements, the applica nt.'hould (1)review and modify his sampling, chemical analysis and radionuclide determination capabilities as necessary to comply with NUREG-0737, II.B.3, (2)provide the staff with information pertaining to system design, analytical capabilities and procedures in sufficient detail to demonstrate that the requirements have been met.EVALUATION AND FINDINGS The applicant has committed to a post-accident sampling system that meets the requirements of NUREG-0737, Item II.B.3 in Amendment'', but has not provided, the technical information required by NUREG-0737 for our evaluation.
Implementation of the requirement is not necessary prior to low power operation because only small quantities of radionuclide inventory will exist in the reactor coolant system and, therefore, will not affect the health and safety of the public.Prior to exceeding 5%power operation, the applicant must demonstrate the capability to promptly obtain reactor coolant samples in the event of an accident in which there is core damage consistent with the conditions stated below: 1.Demonstrate compliance with all requirements of NUREG-0737, II.B.3, for sampling, chemical and radionuclide analysis capability, under accident conditions.
2.Provide sufficient shielding to meet the requirements of GDC-19, assuming Reg.Guide 1.4 source terms.3.Commit to meet the sampling and analysis requirements of Reg.Guide 1.97, Rev.2.4.Verify that all electrically powered components associated with post-accident sampling are capable of being supplied with power and operated, within thirty minutes of an accident in which there is core degradation, assuming loss of offsite power.5.Verify that valves which are not accessible for repair after an accident are environmentally qualified for the conditions in which they must operate.6.Provide a procedure for relating radionuclide gaseous and ionic species to estimated core damage.7.State the design or operational provisions to prevent high pressure carrier gas from entering the reactor coolant system from on line gas analysis equipment, if it is used.
8.Provide a method for verifying that reactor coolant dissolved oxygen is at C O.l ppm if reactor coolant chlorides are determined to be 0.15 ppm.9.Provide information on (a)testing frequency and type of testing to ensure long term operability of the post-accident sampling system, and (b)operator training requirements for post-accident sampling.In addition to the above licensing conditions, the staff is conducting a generic review of accuracy and sensitivity for analytical procedures and on-line instrumentation to be used for post-accident analysis.We will require that the applicant submit data supporting the applicability of each selected analytical chemistry procedure or on-line instrument along with documentation, demonstrating compliance with the licensing conditions four, months prior to exceeding 5%power operation, but review and approval of these procedures will not be a condition for full power operation.
In the event our generic review determines a specific procedure is unacceptable, we will require the applicant to make modifications as determined by our generic review.RESPONSE The PVNGS design uses in-line chemical and radionuclide analyses with backup grab sample capability to meet the requirements of NUREG-0737.
These analyses fully meet the ranges and accuracies specified in Reg.Guide 1.97, Rev.2.The capability exists to sample'nd analyze the required samples over the required ranges within the allotted three hour time span.Table 1 provides further information on sample points and analyses.All samples, including grab samples, may be taken without exposing any individual to radiation levels in excess of GDC 19 criteria.Isotopic analysis is provided to identify and quantify the isotopes of the nuclide categories corresponding to the source terms given in Reg.Guide 1.4 and 1.7.A manually loaded Class IE power source is'vailable within 30 minutes of an accident that assumes loss of offsite power.All equipment in the post-accident sampling system (PASS), including valves, piping, cabling, motors and analyzer electronics, is qualified to the environment it would experience under accident conditions.
The PASS computer will determine estimated core damage by comparing the fraction of the core inventory in the RCS against the known core isotopic inventory.
All listed analyses can be performed on any sample taken.This provides a complete picture of radiological and chemical data for historical comparison.
Carrier gases are not used in the analyses.The entire PASS system will be operated from a central computer which directs a controller to sample through valve and pump operation sequences.
All data will be analyzed, stored and displayed on the computer.Ma-ual control will 1 be available on loss of the automatic functions.
Grab samples can be taken remotely during post-accident conditions to minimize operator'exposure.
During normal operations, grab samples will be taken locally at the analyzer module.Dissolved oxygen is verified to be below 0.1 ppm by the dissolved oxygen analyzer.The PASS will provide weekly data during normal operations to meet various chemical and radiological technical specification sample times.Grab samples will be taken on a routine basis to assure technician familiarity.
Testing frequency will be determined by manufacturers requirements to maintain reliability.
Operator training requirements will be determined at a later date.Refer to Section 9.3.2 and PVNGS LLIR Section II.B.3 for further details of the PASS.Refer to PVNGS LLIR Section II.B.2 for further details on plant shielding.
TABLE 1 FOR NRC QUESTION 281.8 (9.32 and II.B.3)Post Accident Sampling System~In uts~Lt u1d Containment Recirculation Sump, Reactor Coolant System, Containment Radwaste Sump, Safety Injection A, Safety Injection B, Auxiliary Building Sumps, Letdown System Gas Containment Air, Volume Control Tank~Out uts~LL udd Equipment Drain Tank, Reactor Drain Tank Gas Containment Air~Anal ses~LX uld Gamma Spectrum Gross Gamma Boron pH Dissolved Oxygen Dissolved Hydrogen Chlorida 10 uCi/ml to 10 Ci/ml Isotopic 10 uCi/ml to 10 Ci/ml Gross 0 to 6000 ppm 1 to 13 (temperature compensated) 0 to 20 ppm 0 to 2000 cc (STP)/Kg 0 to 20 ppm Gas Gamma Spectrum Gross Gamma Gaseous Oxygen Gaseous Hydrogen 10 uCi/ml to 10 Ci/ml Isotopic-3-1 10 uCi/ml to 10 Ci/ml Gross 0 to 30%0 to 10%(provided by the Containment Hydrogen Control System)Chemical analyses are done in parallel.Chemical analyses are performed while the radiological analyses are being performed.
%~l)}}

Latest revision as of 06:37, 4 February 2020

Forwards Responses to Questions 281.5-281.8,requested in NRC 810813 Ltr.Also Forwards marked-up FSAR Pages Which Will Be Incorporated Into Future Amend
ML17297A738
Person / Time
Site: Palo Verde  Arizona Public Service icon.png
Issue date: 08/25/1981
From: Van Brunt E
ARIZONA PUBLIC SERVICE CO. (FORMERLY ARIZONA NUCLEAR
To: Tedesco R
Office of Nuclear Reactor Regulation
References
RTR-NUREG-0737, RTR-NUREG-737, TASK-2.B.3, TASK-TM ANPP-18740-JMA, NUDOCS 8109010110
Download: ML17297A738 (49)


Text

REGUL RY INFORMATION DISTRIBUT SYSTEM (RIDS) 1 ACCESSION NBR: 8109010110DOC DATE'! 81/08/25 NOTARIZKD!'ES DO~>>>>

FACIL>>:STN~50 528 Palo Verde Nucl

~

cari Statfonr Unft STN-50-529 Palo Verde Nuclear Statfoni Unit 2R Arizona Publi ii Ar izona Publi 05000529 STN-50-530 Palo Verde Nuclear Stations Unit 3i Ar.fzona Publi 05000530 AUTH>>, NAME" AUTHOR AFFILIATION VAN BRU>>4TR Kr, K", i Ar zona Publ f c Service Co.

REC IP ~ >>4AMKr RECIPIENT AFFIL>>IATION TEDESCO RL>>, Assistant Director i for Licensing

SUBJECT:

" For wards responses to Questions" 2815 281,8Rr equested in>> NRCr 810813 ltr ~ Also forwards marked up FSAR pages which will into future'mend be'ncorporated

~

DISTRIBUTION CODEi: B001S COPIES RECEIIVED! L>>TR "

ENCL>> ~ SIZE'::

TITLKi: PSAR/FSAR AMDTS and Related Correspondence NOTES:Standardized Plant. 1 cy1.C Grimes 05000528 Standardized Plant,1 cy!C Grimes 05000529 Standardized Plant F 1 cy:Ci Grimes 05000530 RECIPIENT COPIES RECIPIENT COPIES ID CODE/NAME) LTTR ENCL' ID COOK/NAME LTTR ENCL ACT'ION: A/D LI CEi4SNG L>>I C BR ¹3 BC 1 0 L>>IC" BR ¹3 LA 1 0 KKRRIGANrJ ~ 04 1 1.-

INTERNAL>>; ACCXD E>>VAL 1 1 AUX SYS BR 27 1 1 09 BR26'HEM E>>4G BR 11 1 CONT SYS BR 1 1 CORE PERF BR 10. 1 1 EFF TR SYS BR12 1 1 EMRG PRP DEV 35 1 1 EMRG PRP LIC 36 3 3-EQUIP QUAL BR13>> 3 3 FEMA REP DIV 39 1 1 GEOSCIENCES 28 2 2 HU>>>>l FACT KNG 40 1 1 HYD'/GKO BR 30. 2 2 ILC SYS BR 16 1 1 ILKI 06" 3 3 L>>I C GU ID BR 33 1 1 LIC, QUAL BR 32", 1 MATLI ENG BR 17 1 1 MECH E>>4G BR 18 1 MPA 1 0.

OELD 1 0 OP LZC BR 34 1 1 ~

POINTER SYS BR 19 1 1 PROC/TST REV 20 1 1 QA BR 21 1 1 SS 8R22' 1 1 REAC SYS BR 23>> 1 1 FILE 01 1 1.

SIT'NAL BR 24 1 1 ST ENG BR25 1 1 EXTERNAl.i: ACRS 41 16 16 LPDR 03 1 1 NRC PDR 02~ 1 1 i4S IC 05 1 1 NTIS 1 1

&~ sr TOTAL NUHBER OF COPIED REQUIRED:', LiTTR P1 ENCL'.

L I

g rmnazm mswvmeaa amzmmmr PHOENIX, ARIZONA 85036 STA. P.o. BOX 21666 A'ugust 25, 1981 ANPP-18740 JMA/KWG Mr. R. L. Tedesco Assistant Director for Licensing Division of Licensing Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D. C. 20555

Subject:

Palo Verde Nuclear Generating Station (PVNGS) Units 1, 2 and 3 Docket Nos. STN-50-528/529/530 File:. 81-056-026'.1.10

Reference:

Letter from R. L. Tedesco to E. E. Van Brunt, Dated August 13, 1981,

Subject:

Chemical Engineering Branch Questions

Dear Mr. Tedesco:

Please find attached a copy of our responses to the questions 281.5 281.8. Also included are marked up FSAR pages which show this information which will be incorporated in a future amendment.

If you have any questions, please contact me.

Very truly our euu &~~4 E. E. Van Brunt, Jr.

APS Vice President Nuclear Projects ANPP Project Director EEVBJr/KWG/pc Attachment cc: J. Kerrigan (w/a) goo/

P. Hourihan 5 A. C.'Gehr i/(

Bi090iOiiO 8i0825 PDR ADOCK 05000528' IPDR~

ll I

Vp I. t H l V U

f II I

(

Mr. R. L. Tedesco August 25, 1981 Page Two I, Edwin E. Van Brunt, Jr., represent that I am Vice President Nuclear Projects of Arizona Public Service Company, that the foregoing document has been signed by me on behalf of Arizona Public Service Company with full authority so to do, that'I have read such document and know its contents, and that to the best of my knowledge and belief, the statements made therein are true.

i+,~C +

Edwin "E. Van Brunt, Jr.;;,'~

0 w Sworn to before me thfs~tu+day of 1981.

otary Public My Commission expires:

'1 I

1 r*

FSAR UESTION 6A.62 281.5 In your response to our request for information 281.1, you (6.1.1, 6.5.2) stated that no surveillance of the trisodium phosphate (TSP) baskets will be conducted other than to assure that the baskets are full. It is our position, as stated in CE-PWR Standard Technical Specification (3/4.5.2), that this ECCS subsystem shall be demonstrated operable at least once per 18 months by (1) verifying that a minimum total volume of solid granular TSP dodecahydrate is contained within the TSP baskets, and (2) verifying that when a r'epresentative sample of TSP from a TSP basket is submerged, without agitation, in borated water from the Refueling Water Tank, the pH of the mixed solution is raised to an acceptable level within 4 hours. Indicate that these sur-veillance requirements will be met.

Also, provide the minimum total volume of TSP to be stored in the TSP basket and state the basis for the stored quantity.

RESPONSE

The response is given in the amended response to Question 6A.4.

The minimum total volume of TSP is 154 ft (12 tons anhydrous trisodium phosphate). This minimum volume was calculated by CE to result in a "worst case" minimum sump solution pH of approximately 7.0. PVNGS has installed (in each unit) 9 baskets of dimensions 2' 2' 2'nd 8 baskets of 4' 4' 4'.

The available volume of these baskets is 684 ft .

PVNGS FSAR APPENDIX 6A sodium hydroxide solutions to preclude iodine evolution do not apply to PVNGS.. Initial spray pH levels are about 5.3, and within two hours of spray initiation, sump pH levels are stipulated to be maintained between 7.0 and 8.5. (See sections 6.1.1 and 6.5.2.) Even with sump pH of less than 7.0, iodine does not evolve from the sump.

="Ki3scW

+l (>> =S~Q '

Q ~Qq Q Q" *' "  !"" Q"""""

Indicate the total amount of protective coatings, paints, and organic materials (including uncovered cable insulation) used inside the containment that do not meet ANSI N101.2 (1972) and Regulatory Guide 1.54.

RESPONSE: Within the containment of Unit 1, there are cur-rently less than 4000 ft2 (of a total of about 393,600 ft )

of coated surfaces documented not to conform with ANSI N101.2 and Regulatory Guide 1.54. Exceptions taken to Regulatory Guide 1.54 are given in section 1.8 and include:

~ About 4,000 sq. ft. of insulated piping

~ About 140,480 sq. ft. enclosed within cabinets or enclosures.

Q" *' "! N" Q"" "* (1.8 and 6.5)

In Section 1.8 of the FSAR which deals with 'Conformance to NRC Regulatory Guides', reference is made to Regulatory Guide 1.52, Rev. '0 (June"1973 ) and Rev. 1 (July 1976) versions. Since Regulatory Guide 1.52, Revision 2, (March 1978), "Design, Testing and Maintenance Criteria for Post-Accident Engineered-Safety-Feature Atmosphere Cleanup System Air Filtration and Adsorption Units of Light-Water-Cooled Nuclear Power Plants" Amendment 4 6A-2 May 1981

1 I A

Insert A to Pa e 6A-2 The. following surveillance of the trisodium phosphate baskets shall be conducted at least once per 18 months:

a) Verifying that a minimum total of g),ggr,'ubic feet of solid gran-ular trisodium phosphate dodecahydrate (TSP) is contained within TSP storage baskets.

b) Verifying that when a representative sample of TSP from a TSP storage basket is submerged, without agitation, in borated water from the Refueling Water Tank (RWT), the pH of the mixed solution is raised to greater than or equal to 6.0 within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

FSAR Question 6A.63 281.6 In Table 6 ~ 1-4 of the FSAR, you indicate that there are 259,560 pounds

/ il', 'l of cable insulation inside the containment building. Indicate what fraction of thi's weight consists of organic materials. We also need the following additional information for estimating the generation rate of combustible gases from organic materials in cable insulation under DBA conditions: (1) The quantity (weight and volume) of uncovered cable and cable in closed metal conduit or closed cable trays'e will give credit for beta radiation shielding for that portion of cable that is indicated to be in closed conduit or trays, (2) A breakdown of cable diameters and associated conductor cross section, or an equivalent cable diameter and conductor cross section that is representative of total cable surface area associated with the quantity of cable identified in 1) above. (3) The major organic polymer or plastic'aterial in the cables. If this information is not provided, we will assume the cable insulation to be polyethylene and assume a G value for combustible gas of 3.

Response

Table 6.1-4 has been revised in Amendment 5 to indicate 39,500 (37600 + 5%)

pounds of cable insulation within the containment.

(1) The quantity of covered/uncovered cable is not readily available.

Therefore, all cable is assumed exposed.

(2) 'A breakdown of cable diameters and conductor cross section is attached as Table 281.6-1.

(3) The major organic polymer in the cable insulation is flame-retardant ethylene propylene rubber and chlorinated polyethylene. (Other organic polymers in various insulation types are listed in Table 6.1-4.)

l K r

1

@SAN~ 28 l.s l

2h/SCfL 044K y/t oF Tel c4 t.AS~

(DOOF+

lH) I0

+tg1 1 C

I p <4)p h

Q~c'<vs uc.

7%)CA. ~ T$ 4l cLc w% <P

~c.A ~~

F+

577 .03o ~s 0 +3o

( o-+3~

,03 o pts lob gO g 430 f753 ,04o go ,06 m

)wq2 ,d3o zq~l l i~5

l. i)YS

/7'70o Yurt / /VS 5550 aA

')Ls =l7oo g<Z3

f P I

~ &

P P

L P I, v

1

f< 8-0& >

2A/5ciC. utf aP

~PPc-.

W4>Ca .

g T441 CLc oD ~A 8, Le Iooo Ft ~~.uL w~ i>)

20723 d2.g o o't5 o 548 78 g gq.g >os% ~

C.~11 ,4.5' a~5 o - ~5 b'g.z.

cs82 ,g. 5 . o.o't5 o y5'g 7g 2. 2a g c s5E ps-> 2-e-$

caged

c. yA- 8o2 ,tR 5 6 g y'g.2 gq.g 3q, o c+4 e2,5'.o H5 o 3Z7 qP2. g7g 3e +

2.L7 t9 ~5 a n'l$ g $ /0 @.7 gl.+ q ep. o csee'.Et,

'l 0 Ho A)7 21+ ]gal. o

'2-5 o.o95 o 39.~

~ i8'I ~

o~ ggo 6'7 ~~+

t 6<3 9.2 89 9 3>a o2.g OZ5' o

o%

c 7'd7 2 I. 9

)o3 7 Io 6'

r787 ,O2.5 n ~go o 7o . 6' ) 8. o .

~o18L 3788'7

I I

I

2usvc. g4 oF Qg+c VQICk. eD C~fl LF

~

R TesuL 4~

$ 5@ 0 tFA Jog 0 53. +

25ad

~SV)

T5'2. h l2 o e/9- y.266 '3 3E 63+ a~A g.bd d ~

25 0 p. q-o ob'2 P.dg) g 262 287 QSVI Jj7+ 0 Db 2 a.o33' 2+2 88.2 l7 3~$ ' od2. u >83 o 29Z 7t 2 K e~3 o 4'$P y ~ 2. t 2- l7

. glue o.ok 2. o b)g 0 2-I~ lP )3. 2 Lrr o 12.l d O3O

>+Op2.7 78 if' PIE' p c)q) o l l5 8'-7 plCw1 L B ~oui y o27 o l'l5 o78L. I/5 o

~ i Fh

2hlSVL QPf o$

'Tki c4 c.BELLS (nba p f (oyp Ff 774IC4c. ~

ZNE'UL vvp.

(yu gpss l3z I dl a ,1+~ Z$ 7 5, A@3 2 ggy g..1

c 2 A/S CIC ak ~F op f ~ice TQl CLc. C~F} LG 6s 5 IA lA7D R )oo~ F-0 ieEoL vA-QS'V b CPIP~ D ~ 0'-$ Q. g3'. + 3+ Q ~

gg 3'+

25'5V>

.2-5'>

ee(f ~ ozg c p Ys v2. La 2. o nS9- y-og q.gpss 6'.+

Q-9'.oM 63+ o~A y. 2.g o o o(2. g og e) 262 $ $ '2. i7 287 gaul o-o(2 o e)p e 2+2 t7 ICsu2 a ~d'2- u F83 o.2 848 BES'.zu3 ll )8 ~

glue e.eh 2. eo)y c 2<>

Lrr tong o l2-l ~ ohio ~'+45' NEW o ofl o27 o l'l5 PfCWl- 1, $ '> o o2T o 155 Wc 'QL 12-~ ~

~

J'I

far( OC (

I DAISY Off Op w

%WC'.. %441 C4 oD cbBL6 c.n pPS aJ

/oo~H ioo~Ft TNE OL p& gc 7o o o e5,025

~

2o 8'5

'BS'o 4

'C l:t " r

6 r+i-o 3 S 2usuc. ~h~ g/4 oF

<8!KE coppek

~QC %WC~ ~ ls4> c4 eD /dPoFt pJ IP<PF P'

,5Q o .68b c 'I35 7d 7E I 37. A AebtbF qpLg'88 s/n.Z. X~7 3 Pl&LQ

,0 30 .Oco /lS ~~ ~g.p-Q Es+ ,03 p ngs c.58 jl 3 ping,g/o 9o3 ge 888

,09. o o' [ c'gI (>I'5 ld 2 1+~7 ~

I

~ I Qgjoa Tillc4. oD tonntt

( gJ 8'i H 7~29'1 c $ 72 Q 1) j- 3/27 ,o55 o 772 A3

'g8 7ES'.oo 32 48 P 122-+ 1o &'t 8I L imps .e46'. Isg 829 ffo 7s7 og g (Rg o 518

~

goI 839lC tb3LI- o3u pH5 o 5t$ 2ol

$ 3>2.c 1tq.~ 9 ol

'13C ii5 P3'1% c ,Olo PH a O'I8 83 I3 385I ,o%5 go o 725 839IC )gg y.s .of~ e 725

- ok e 725 8>82C 8gc 1 old ,ohio c 7E8 83 E $ 86' l5'

0 0 II P

l

2 A/8c/L Luf'o f- at Qp>r VW)Ca. ~ Ta4>

H c4 oD EhBLE ~~@ R~~

<>ooFt loooFf 7~sot. ~

,03 > ,ohio g. go 6 2.07.07 8~73 ohio v.go $ Jo7-07 13. 3 N7< ,o/o b.(O5'~7 ~7

$ 77 .03 o o Po5 R77l oE c,od o o. 7e5'83.6'I

/I7D. Iz>8 o. 7~ 5 z.zz.A' 1tE 387 03 0 .oEa -PIg 92~' 9'I 3 h87I 139 tie pe@ Ogo 0 z8'5 gag pq zan. 8 a<>> A ,0$ 0 ,Ogo b /85 32'.p'f 9%8L 2~>8 ~

0, ))I 4 1a I 1

% Jl

2 AISCIL <h~ LVto F

<8&LE ul'f L~oP E

< vuie~. YQl C4 eD ZAJYOL 827 7+F7,o3 ~ o '9>> A'o3 2g Qc} 'l~

~>71 30~5 g ~ f?0 g5.o3 Qadi >

8'6'. u3 8272 '312 o pro ~ ~

$ 2.c ) 8+.~

I I 5'q @3'18'5 o t ops ~ +2a g $ . o3'

.Lt2.e 86.o )

.R o P5 o '+<5 lo> ~o 9.1 2 12 'I ~

,p3 o dI-5 ~.~g o ~~y.y p~ 65- 'i

.o3o

0. ~6 to<.e zq ~8'<

'tOo A372 q go,dZ o p9< l~3 89 R5 9Z 9 Ae7 112.'1 .o3o o W8o i~< 6 g't~ g. yean )Q. ~ 62. ) oa. u Rgqi 13$ '1 tgo o 0<o lib'.6'z 8q73 p3 0 o 08o (g~.g g2. P

)>5

,d}-g '98o la-7 l~~

l>>8 Qo o/o o (7o 2.15.9 131 6'aD 7ol Qo o.7] 0 3g/7c /ok 120 5

,e8o l.o7o ggg Pg 5.2g 85 Rtl7 7o3 Bo .o/o o l 5'or.o7 al 4 A57I ~76'7 ,63o O (j op go 7.+/ 1 ]

32o oo Wo7h'l 2c 8d o

~ ~

t

w+ o F ZA/5'%IC4c. c./1 SLK c4 oD 5'44l

~

iona F /ceo+ Tier vL t'~d pg on V5'o ops 57. l t5 o yT9 7E-: 0 UR d2 'I 23 o O95 o p f'5 Lfg. o Ugb 3 g2p V34$ Ply 'oR6 qz-8 UVi o' 04 g 7g 2. t gg.o USE )glil @25 y a'I6 9-43.3 U7V3 lay I+ g do 78'2 > ~64.'

U714 96'7g .o,bo 78 2. q)o o'-I5'o 8'in 277 I o2$

o 'I53 5'oo g2. 8 (g~g,g p26',aF~ o $~

5' Geo uR/z g 2- 9 Z gpss-o

URN 'igg q2- 9. ~ l3 3c +

P

~ ~

Insert A to Pa e 9A-'22 The fuel pool cleanup filter cartridges will be replaced when the pressure drop across the filters exceeds 25 psid during operation of the system, or the gamma radiation reading on the outside of the filter housing exceeds a reading to be determined, when normal system radiation levels have been measured in order to maintain radiation exposures ALARA.

Fuel pool cleanup ion exchanger performance will be monitored by determining a decontamination factor from ion exchange inlet to outlet samples for gross activity and gross iodine. Ion exchanger resin will be replaced when the decontamination factor drops below a minimum efficiency level, as determined by examining initial operating decontamination factors, for 3 consecutive samples taken 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> apart or when the gamma radiation readings on the outside of the filter housing exceeds a reading to be determined when normal system radiation levels have been measured in order to maintain radiation exposures ALKQ..

Your response to our previous Question 281.2 did not indicate any chemical or radionuclide limits for initiating replacement of filters and ion exchange resins. It is our position that chemical and radionuclide limits in the spent fuel pool water, such as conductivity, gross gamma and iodine activity, demineralizer differential pressure, pH,.and crude level, are needed for initiating corrective action to enable safe operating conditions in the pool. Verify that you will meet this position and provide the above information.

RESPONSE

The response is given in the amended response to Question 9A.34.

. PVNGS FSAR APPENDIX 9A Q"" (9.1.3)

For the fuel pool cleanup system, indicate that chemical analyses at least weekly and continuous radiological monitor-ing will be made for measuring the efficiency of the filters and ion exchange resins to remove impurities and radioactive materials from the pool water. State what criteria (chemical parameters, decontamination factors, etc.) will be used to determine replacement of the filters and ion exchange resins.

RESPONSE: For the fuel pool cleanup system, chemical analysis down stream of the filters and ion exchangers is done via batch sampling only. These samples as a minimum are to be taken at one week intervals.

Continuous radiological in-line monitoring is not a

. requirement for the system as outlined in Regulatory Guide 1.45 (also, see section 11.5.1 and table 9.3-3).

High electrical conductivity or radiation levels in the batch sample are the criteria used to determine replacement of the resin bed for the ion exchangers.

The cleanup filters are provided with pressure differential indicator switches which give local indication of pressure drop across the filters and alarm to the lo~cal anel on high pressure drop.',,!, - >', . r i op Jw~.'i =,!",..' '41.b CndViging C lr4r3.f, )<","-

F

.:l~ I

[ Mda-A!A >

9 . ( Q (9.3.2)

Describe the provisions to meet the requirements of post-accident sampling of the primary coolant and containment atmosphere. The description should address all the require-ments outlined in Section II.B.3 of Enclo'sure 3 in NUREG-0737 Amendment 4 9A-22 Nay 1981

~ C ~ ~

FSAR uestion 9A.60 281.8 Provide information that satisfies the attached proposed license (9.3.2, II.B.3) conditions for post-accident sampling.

NUREG-0737, II.B. 3 Post Accident Sam lin Ca abilit Provide a capability to obtain and quantitatively analyze reactor coolant and containment atmosphere samples, without radiation exposure to any individual exceeding 5 rem to the whole body or 75 rem to the extremities (GDC-19) during and following an accident in which there is core degradation.

Materials to be analyzed and quantified include certain radionuclides that are indicators of severity of core damage (e.g., noble gases, iodines, cesiums and non-volatile isotopes), hydrogen in the containment atmosphere and total dissolved gases or hydrogen, boron and chloride in reactor coolant samples in accordance with the requirements of NUREG-0737.

To satisfy the requirements, the applica nt .'hould (1) review and modify his sampling, chemical analysis and radionuclide determination capabilities as necessary to comply with NUREG-0737, II.B.3, (2) provide the staff with information pertaining to system design, analytical capabilities and procedures in sufficient detail to demonstrate that the requirements have been met.

EVALUATION AND FINDINGS The applicant has committed to a post-accident sampling system that meets the requirements of NUREG-0737, Item II.B.3 in Amendment , but has not provided, the technical information required by NUREG-0737 for our evaluation.

Implementation of the requirement is not necessary prior to low power operation because only small quantities of radionuclide inventory will exist in the reactor coolant system and, therefore, will not affect the health and safety of the public. Prior to exceeding 5% power operation, the applicant must demonstrate the capability to promptly obtain reactor coolant samples in the event of an accident in which there is core damage consistent with the conditions stated below:

1. Demonstrate compliance with all requirements of NUREG-0737, II.B.3, for sampling, chemical and radionuclide analysis capability, under accident conditions.
2. Provide sufficient shielding to meet the requirements of GDC-19, assuming Reg. Guide 1.4 source terms.
3. Commit to meet the sampling and analysis requirements of Reg. Guide 1.97, Rev. 2.
4. Verify that all electrically powered components associated with post-accident sampling are capable of being supplied with power and operated, within thirty minutes of an accident in which there is core degradation, assuming loss of offsite power.
5. Verify that valves which are not accessible for repair after an accident are environmentally qualified for the conditions in which they must operate.
6. Provide a procedure for relating radionuclide gaseous and ionic species to estimated core damage.
7. State the design or operational provisions to prevent high pressure carrier gas from entering the reactor coolant system from on line gas analysis equipment, if it is used.
8. Provide a method for verifying that reactor coolant dissolved oxygen is at C O.l ppm if reactor coolant chlorides are determined to be 0.15 ppm.
9. Provide information on (a) testing frequency and type of testing to ensure long term operability of the post-accident sampling system, and (b) operator training requirements for post-accident sampling.

In addition to the above licensing conditions, the staff is conducting a generic review of accuracy and sensitivity for analytical procedures and on-line instrumentation to be used for post-accident analysis. We will require that the applicant submit data supporting the applicability of each selected analytical chemistry procedure or on-line instrument along with documentation, demonstrating compliance with the licensing conditions four, months prior to exceeding 5% power operation, but review and approval of these procedures will not be a condition for full power operation. In the event our generic review determines a specific procedure is unacceptable, we will require the applicant to make modifications as determined by our generic review.

RESPONSE

The PVNGS design uses in-line chemical and radionuclide analyses with backup grab sample capability to meet the requirements of NUREG-0737. These analyses fully meet the ranges and accuracies specified in Reg. Guide 1.97, Rev. 2.

The capability exists to sample'nd analyze the required samples over the required ranges within the allotted three hour time span. Table 1 provides further information on sample points and analyses. All samples, including grab samples, may be taken without exposing any individual to radiation levels in excess of GDC 19 criteria. Isotopic analysis is provided to identify and

quantify the isotopes of the nuclide categories corresponding to the source terms given in Reg. Guide 1.4 and 1.7. A manually loaded Class IE power source is'vailable within 30 minutes of an accident that assumes loss of offsite power. All equipment in the post-accident sampling system (PASS),

including valves, piping, cabling, motors and analyzer electronics, is qualified to the environment it would experience under accident conditions.

The PASS computer will determine estimated core damage by comparing the fraction of the core inventory in the RCS against the known core isotopic inventory. All listed analyses can be performed on any sample taken. This provides a complete picture of radiological and chemical data for historical comparison. Carrier gases are not used in the analyses.

The entire PASS system will be operated from a central computer which directs a controller to sample through valve and pump operation sequences. All data will be analyzed, stored and displayed on the computer. Ma-ual control will 1 be available on loss of the automatic functions. Grab samples can be taken remotely during post-accident conditions to minimize operator'exposure.

During normal operations, grab samples will be taken locally at the analyzer module.

Dissolved oxygen is verified to be below 0.1 ppm by the dissolved oxygen analyzer.

The PASS will provide weekly data during normal operations to meet various chemical and radiological technical specification sample times. Grab samples

will be taken on a routine basis to assure technician familiarity. Testing frequency will be determined by manufacturers requirements to maintain reliability. Operator training requirements will be determined at a later date.

Refer to Section 9.3.2 and PVNGS LLIR Section II.B.3 for further details of the PASS.

Refer to PVNGS LLIR Section II.B.2 for further details on plant shielding.

TABLE 1 FOR NRC QUESTION 281.8 (9.32 and II.B.3)

Post Accident Sampling System

~In uts

~Lt u1d Containment Recirculation Sump, Reactor Coolant System, Containment Radwaste Sump, Safety Injection A, Safety Injection B, Auxiliary Building Sumps, Letdown System Gas Containment Air, Volume Control Tank

~Out uts

~LL udd Equipment Drain Tank, Reactor Drain Tank Gas Containment Air

~Anal ses

~LX uld Gamma Spectrum 10 uCi/ml to 10 Ci/ml Isotopic Gross Gamma 10 uCi/ml to 10 Ci/ml Gross Boron 0 to 6000 ppm pH 1 to 13 (temperature compensated)

Dissolved Oxygen 0 to 20 ppm Dissolved Hydrogen 0 to 2000 cc (STP)/Kg Chlorida 0 to 20 ppm Gas

-3 -1 Gamma Spectrum 10 uCi/ml to 10 Ci/ml Isotopic Gross Gamma 10 uCi/ml to 10 Ci/ml Gross Gaseous Oxygen 0 to 30%

Gaseous Hydrogen 0 to 10% (provided by the Containment Hydrogen Control System)

Chemical analyses are done in parallel. Chemical analyses are performed while the radiological analyses are being performed.

% ~

l)