ML17258A311: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 18: Line 18:


=Text=
=Text=
{{#Wiki_filter:),!'3r.!,g...I',!>,!,*gv~,'gK!,',yes>'!>,!TAN~!~','*ANALYSISOFTHEDECOMPOSITION EFFECTSOFINYLCELINSULATION INADESIGNBASISACCIDENTNUCLEARENYIRtINMENTAL
{{#Wiki_filter:),!'3r.!,g...I',!>,!,*g v~,'gK!,',yes>'!>,!TAN~!~','*ANALYSIS OF THE DECOMPOSITION EFFECTS OF INYLCEL INSULATION IN A DESIGN BASIS ACCIDENT NUCLEAR ENYIRtINMENTAL
'-QUALIEICATION
'-QUALIEICATION
.::!Il!4!!!8111130591 81110bPDR@DOCK05000244PPORhD!!!!!!'\'p!
.::!Il!4!!!8111130591 81110b PDR@DOCK 05000244 P POR h D!!!!!!'\'p!
C.f  
C.f  
%PIFLIE'IPGRKBSCIENTIFIC SERVICESANDSYSTEMSGROUPHUNTSVILLE, ALABAMAilIRochester GasandElectricCorporation 89EastAvenueRochester, NewYork14649REPORTNO.17490WYLEJOBNO.N-BU-17089 YOURP.O.NO.OATESeptember 28,1981ANALYSISOFTHEDECOMPOSITION EFFECTSOFVINYLCELINSULATION INADESIGNBASISACCIDENTbyJ.F.Gleason,M.Bruce,R.ThomersTATE0FALABAMA$ssCaliforniaProfessional
%PIFLIE'IPGRKB SCIENTIFIC SERVICES AND SYSTEMS GROUP HUNTSVILLE, ALABAMA il I Rochester Gas and Electric Corporation 89 East Avenue Rochester, New York 14649 REPORT NO.17490 WYLE JOB NO.N-BU-17089 YOUR P.O.NO.OATE September 28, 1981 ANALYSIS OF THE DECOMPOSITION EFFECTS OF VINYLCEL INSULATION IN A DESIGN BASIS ACCIDENT by J.F.Gleason, M.Bruce, R.Thome r sTATE 0F ALABAMA$ss Cal i fornia Professional
"""'"""""""
"""'""""""" J Engineering Reg.No.2635 James F.Gleason.being dulysworn, i deposes and says: The information contained in this report is the result of complete and carefully conoucted analyses and is Jo the best of his knowledge true and correct in all ,19 Notary Public in ar(d for the S'tate nf rttTabamaat large.My cornmrssror empires~n Wyte shall have no liability for darnagcs ot any kind to person or property.including special or conscrtucntiat damages.resulting from Wyie's providing the services covered by this rcporh--.;u'~PREPARED BY J.6'leason,M.Bruce,R.
JEngineering Reg.No.2635JamesF.Gleason.beingdulysworn, ideposesandsays:Theinformation contained inthisreportistheresultofcompleteandcarefully conoucted analysesandisJothebestofhisknowledge trueandcorrectinall,19NotaryPublicinar(dfortheS'tatenfrttTabamaat large.Mycornmrssror empires~nWyteshallhavenoliability fordarnagcsotanykindtopersonorproperty.
Thome~/a..r.//v.Mur'vin J.Kimbrell Report No.17490-1 Page No.ii 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 TABLE OF CONTENTS PURPOSE SCOPE APPLICABLE VINYLCEL TEST REPORTS TEST RESULTS 4.1 Water Vapor Permeability and Humid Aging 4.2 Effects of Heat and Pressure 4.3 Resistance to Flame Exposure 4.4 Thermogravimetric Analysis 4.5 Radiation ANALYSIS 5.1 Analysis Including Data for Similar Materials.5.2 Determination of Radiation Sensitivity EVALUATION OF GINNA ACCIDENT CONDITIONS CALCULATIONS CORROSIVE EFFECTS Page Number'6 8.1 8.2 8.3 Effects on RHR Components Effects on Carbon Steel Panel Liner Effects on the 19-Nil Stainless Steel Insulation Facing Panels 9.0 10.0  
including specialorconscrtucntiat damages.resulting fromWyie'sproviding theservicescoveredbythisrcporh--.;u'~PREPAREDBYJ.6'leason,M.Bruce,R.
Thome~/a..r.//v.Mur'vinJ.Kimbrell ReportNo.17490-1PageNo.ii1.02.03.04.05.06.07.08.0TABLEOFCONTENTSPURPOSESCOPEAPPLICABLE VINYLCELTESTREPORTSTESTRESULTS4.1WaterVaporPermeability andHumidAging4.2EffectsofHeatandPressure4.3Resistance toFlameExposure4.4Thermogravimetric Analysis4.5Radiation ANALYSIS5.1AnalysisIncluding DataforSimilarMaterials
.5.2Determination ofRadiation Sensitivity EVALUATION OFGINNAACCIDENTCONDITIONS CALCULATIONS CORROSIVE EFFECTSPageNumber'68.18.28.3EffectsonRHRComponents EffectsonCarbonSteelPanelLinerEffectsonthe19-NilStainless SteelInsulation FacingPanels9.010.0


==11.0CONCLUSION==
==11.0 CONCLUSION==
S REFERENCES APPENDIX12WYLELABORATORIES Huntsville FaCility  
S REFERENCES APPENDIX 12 WYLE LABORATORIES Huntsville FaCility  


ReportNo.17490-1PageNo.=11.0PURPOSEThisanalysiswaspreparedbyWyleLaboratories forRochester GasandElectricCompany.Thepurposeofthisreportistoprovideanswerstothefollowing NRCquestions:
Repor t No.17490-1 Page No.=1 1.0 PURPOSE This analysis was prepared by Wyle Laboratories for Rochester Gas and Electric Company.The purpose of this report is to provide answers to the following NRC questions:
1.Estimateoftheamountsofeachgas,suchashydrogen, organicgases,andhydrogenchloride, whichwouldbeproducedbyradiation fromthedecomposition ofthefoamduringaDBA.2'.Theresultsofananalysisoftheeffectofthehydrogenchloridegenerated duringaDBA,including corrosion ofcomponents inthe,containment building.
1.Estimate of the amounts of each gas, such as hydrogen, organic gases, and hydrogen chloride, which would be produced by radiation from the decomposition of the foam during a DBA.2'.The results of an analysis of the effect of the hydrogen chloride generated during a DBA, including corrosion of components in the, containment building.2.0 SCOPE 3.0 The scope of this investigation includes literature search and analysis of applicable data for Johns-Manville Vinylcel insulation.
2.0SCOPE3.0Thescopeofthisinvestigation includesliterature searchandanalysisofapplicable dataforJohns-Manville Vinylcelinsulation.
Test data for Vinylcel, and for a number of similar polyvinyl chloride materials is considered.
TestdataforVinylcel, andforanumberofsimilarpolyvinyl chloridematerials isconsidered.
The effects of'the"Robert E.Ginna plant normal and accident environments on Vinylcel are evaluated.
Theeffectsof'the"RobertE.Ginnaplantnormalandaccidentenvironments onVinylcelareevaluated.
APPLICABLE VINYLCEL TEST REPORTS 4.0 3.1 Johns-Manville Research and Engineering Center,"Test Report Vinylcel (4PCF)-Water Vapor Permeability and Humid Aging Tests," Report No.E455-T-268, December 20, 1967 3.2'ohns-Manville Research and Engineering Center,"Test Report, Vinylcel (4PCF)-Effect of Heat and Pressure," Report No E455-T-266, November 3, 1967 3.3 Johns-Manville Research and Engineering Center,"Test Report, Vinylcel-Resistance to Flame Exposure", Report No.E455-T-258, September 21, 1967 TEST RESULTS.4.1 Water Va or Permeabilit and Humid A in Per Report 3.1, Vinylcel with 4PCF nominal density was tested for water permeability at 90oF, for 50%relative humidity, and for dimensional changes at 120oF and 100%relative humidity.The results are as follows: o Results indicate that the water permeability of a 1-inch thick specimen was 0.06 perm-in.o After six (6)months at 120oF and 100%relative humidity, the volume change was only 1.2%and length and width changes only 0.3%.WYLE LABORATORlES Huntsville Facility Report No.17490-1 Page No.2 4.0 4.2 TEST RESULTS (CONTINUED)
APPLICABLE VINYLCELTESTREPORTS4.03.1Johns-Manville ResearchandEngineering Center,"Test ReportVinylcel(4PCF)-Water VaporPermeability andHumidAgingTests,"ReportNo.E455-T-268, December20,19673.2'ohns-Manville ResearchandEngineering Center,"TestReport,Vinylcel(4PCF)-Effect ofHeatandPressure,"
Effect of Heat and Pressure Per Report 3.2, Vinylcel of 4 PCF nominal density, l-l/2 inches thick, was subjected to a combined heat and compression test to simulate an"incident" in a nuclear reactor containment vessel.The results are as follows: The 30-'minute test included a maximum temperature of 334oF at 90 PSI.Eighty six (86)percent of the test time was at a temperature greater than the 286oF maximum.accident temperature at the Ginna plant." Maximum permanent loss of thickness was 29 percent.Weight loss was not measured so decomposition could not be evaluated.
ReportNoE455-T-266,November3,19673.3Johns-Manville ResearchandEngineering Center,"TestReport,Vinylcel-Resistance toFlameExposure",
4.3 4.4 Resistance to Flame Ex osure Per Report 3.3, unfaced and metal-faced Vinylcel were subjected to a number of flame tests, including building tests, vertical panel test, tunnel test, and flame penetration.
ReportNo.E455-T-258,September 21,1967TESTRESULTS.4.1WaterVaorPermeabilit andHumidAinPerReport3.1,Vinylcelwith4PCFnominaldensitywastestedforwaterpermeability at90oF,for50%relativehumidity, andfordimensional changesat120oFand100%relativehumidity.
'The metal-faced Vinylcel passed all tests, whereas, the unfaced performed satisfactorily in all but the flame penetration.
Theresultsareasfollows:oResultsindicatethatthewaterpermeability ofa1-inchthickspecimenwas0.06perm-in.oAftersix(6)monthsat120oFand100%relativehumidity, thevolumechangewasonly1.2%andlengthandwidthchangesonly0.3%.WYLELABORATORlES Huntsville Facility ReportNo.17490-1PageNo.24.04.2TESTRESULTS(CONTINUED)
Attempts were made to'ignite'the'evolved gases.Only trace quantities of combustible gases (possibly'H2 or short chain hydrocarbons) were found.Thermo avimetric Anal sis The complete test report, Johns-Manville Test Report E455-T-142, was not.available, but the.test conditions and graphic results are provided in Report 3.3.The results are as follows: The Vinylcel was subjected to a heating rate of 8oC per minute, and the air flow was 0.5 liters per minute.Initial weight loss occurred at 140oC (284oF), and rapid weight loss was observed at"225oC'('437oF).'
EffectofHeatandPressurePerReport3.2,Vinylcelof4PCFnominaldensity,l-l/2inchesthick,wassubjected toacombinedheatandcompression testtosimulatean"incident" inanuclearreactorcontainment vessel.Theresultsareasfollows:The30-'minute testincludedamaximumtemperature of334oFat90PSI.Eightysix(86)percentofthetesttimewasatatemperature greaterthanthe286oFmaximum.accidenttemperature attheGinnaplant."Maximumpermanent lossofthickness was29percent.Weightlosswasnotmeasuredsodecomposition couldnotbeevaluated.
38 percent weight loss was observed at 300oC (572oF).Decomposition was continued at a lower rate between 300o and 600oC (1112oF)to a 94.5 percent weight loss.No direct analysis of evolved gases was reported (see Figure 2).4.5 Radiation Ex osure Reference 8, notes"Radiation exposure of 8 x 106 Roentgens within 6 hours will not change the physical properties of Yinylcel significantly but 108 Roentgens within.-10, hours" will cause some progressive deterioration'." This radiation resistance was apparently based on generic data for PVC.No information on the radiation resistance of Vinylcel was located.WYLE LABORATORIES Huntsville Feality Q Report No.17490-1 Page No.3 5.0 ANALYSIS 5.1 Anal sis Includin Data for Similar Materials Since no specific data was available for irradiated Vinylcel, and since synergistic effects of temperature, radiation, and oxidizing conditions are known for some polyvinyl chloride-based materials, this analysis is based on data for generically similar materials.
4.34.4Resistance toFlameExosurePerReport3.3,unfacedandmetal-faced Vinylcelweresubjected toanumberofflametests,including buildingtests,verticalpaneltest,tunneltest,andflamepenetration.
The following significant information is noted: o At temperatures below 200oC, the only volatile product from degradation of pure, unirradiated PVC is HCl;neither H2 or C12 has been detected, Reference 16.o For foamed or plasticized PVC based materials, HC1 is the only volatile released in significant quantities.
'Themetal-faced Vinylcelpassedalltests,whereas,theunfacedperformed satisfactorily inallbuttheflamepenetration.
Reference 6 identifies products released in small quantities (less than 1%by weight)from three (3)PVC-based insulations at elevated temperatures in air.These constituents wer e CO2, CO, aldehydes, ammonia, cyanides and nitrogen oxides.o Irradiation also results in dehydrochlorination of PVC materials.
Attemptsweremadeto'ignite'the'evolved gases.Onlytracequantities ofcombustible gases(possibly
This apparently occurs at doses as low as 5xl05 rads for some PVC materials, Reference 12.5.2 Determination of Radiation Sensitivit No datawas found for exposure of Vinylcel to irradiation.
'H2orshortchainhydrocarbons) werefound.Thermoavimetric AnalsisThecompletetestreport,Johns-Manville TestReportE455-T-142, wasnot.available, butthe.testconditions andgraphicresultsareprovidedinReport3.3.Theresultsareasfollows:TheVinylcelwassubjected toaheatingrateof8oCperminute,andtheairflowwas0.5litersperminute.Initialweightlossoccurredat140oC(284oF),andrapidweightlosswasobservedat"225oC'('437oF).'
Data available for exposure of other irradiated PVC materials was therefore considered.
38percentweightlosswasobservedat300oC(572oF).Decomposition wascontinued atalowerratebetween300oand600oC(1112oF)toa94.5percentweightloss.Nodirectanalysisofevolvedgaseswasreported(seeFigure2).4.5Radiation ExosureReference 8,notes"Radiation exposureof8x106Roentgens within6hourswillnotchangethephysicalproperties ofYinylcelsignificantly but108Roentgens within.-10, hours"willcausesomeprogressive deterioration'."
I The lowest radiation threshold value indicated in the referenced data for any PVC material was Sx105 rads (References 7 and 12).This value is 20 percent greater than the 3x105 rads requirement indicated for 40 years normal ser vice at Ginna, Reference 14.The normal radiation dose of 3xl05 rads is, therefore, concluded to be insignificant.
Thisradiation resistance wasapparently basedongenericdataforPVC.Noinformation ontheradiation resistance ofVinylcelwaslocated.WYLELABORATORIES Huntsville Feality QReportNo.17490-1PageNo.35.0ANALYSIS5.1AnalsisIncludinDataforSimilarMaterials Sincenospecificdatawasavailable forirradiated
: Vinylcel, andsincesynergistic effectsoftemperature, radiation, andoxidizing conditions areknownforsomepolyvinyl chloride-based materials, thisanalysisisbasedondataforgenerically similarmaterials.
Thefollowing significant information isnoted:oAttemperatures below200oC,theonlyvolatileproductfromdegradation ofpure,unirradiated PVCisHCl;neitherH2orC12hasbeendetected, Reference 16.oForfoamedorplasticized PVCbasedmaterials, HC1istheonlyvolatilereleasedinsignificant quantities.
Reference 6identifies productsreleasedinsmallquantities (lessthan1%byweight)fromthree(3)PVC-based insulations atelevatedtemperatures inair.Theseconstituents wereCO2,CO,aldehydes, ammonia,cyanidesandnitrogenoxides.oIrradiation alsoresultsindehydrochlorination ofPVCmaterials.
Thisapparently occursatdosesaslowas5xl05radsforsomePVCmaterials, Reference 12.5.2Determination ofRadiation Sensitivit NodatawasfoundforexposureofVinylceltoirradiation.
Dataavailable forexposureofotherirradiated PVCmaterials wastherefore considered.
IThelowestradiation threshold valueindicated inthereferenced dataforanyPVCmaterialwasSx105rads(References 7and12).Thisvalueis20percentgreaterthanthe3x105radsrequirement indicated for40yearsnormalserviceatGinna,Reference 14.Thenormalradiation doseof3xl05radsis,therefore, concluded tobeinsignificant.


==6.0 EVALUATION==
==6.0 EVALUATION==
OFGINNAACCIDENTCONDITIONS TheGinnaaccidentcondition isindicated as286oF(141.11oC) and60psigfor2.8hours,followedby219oF(103.89oC) forupto24hours,and152oF(66.67C)fortheremainder,'of 180days.FromReference 6,itwasnotedthatnoneofthethreePVC'stestedevolvedHC1untiltemperatures exceeded160oC.Theweightlossnotedinallthreesamplesrangedfrom2.1to4%beforeHClwasdetected.
OF GINNA ACCIDENT CONDITIONS The Ginna accident condition is indicated as 286oF (141.11oC) and 60 psig for 2.8 hours, followed by 219oF (103.89oC) for up to 24 hours, and 152oF (66.67 C)for the remainder,'of 180 days.From Reference 6, it was noted that none of the three PVC's tested evolved HC1 until temperatures exceeded 160oC.The weight loss noted in all three samples ranged from 2.1 to 4%before HCl was detected.A comparison of TGA curves for those materials and Vinylcel indicates that Vinylcel has significantly better temperature resistance so the Ginna accident temperatures would not be expected to cause HCl evolution.
Acomparison ofTGAcurvesforthosematerials andVinylcelindicates thatVinylcelhassignificantly bettertemperature resistance sotheGinnaaccidenttemperatures wouldnotbeexpectedtocauseHClevolution.
WYLE LABORATORIES Huntsvtlla Facility report No.i'(68v-l Page No.4 6.0 EVALUATION OF GINNA ACCIDENT CONDITIONS (CONTINUED)
WYLELABORATORIES Huntsvtlla Facility reportNo.i'(68v-lPageNo.46.0EVALUATION OFGINNAACCIDENTCONDITIONS (CONTINUED)
Then for the Ginna accident scenario, the important parameter'with regard to generation of HCl is the integrated radiation dose.The 180 day accident dose is 2 x 108 rads.The accumulated radiation dose at the end of 2.8 hours will be less than 2 x 107 rads per Regulatory Guide 1.89 Proposed Rev.1, Appendix D.The 19-mil stainless steel facing will provide significant Beta shielding, stopping all Beta radiation with an energy'less than approximately 1 KIEV.Therefore, the radiation dose to the Vinylcel is calculated to be less than 5 x 106 rads at the end of the initial 2.8 hour phase of the accident.Reference ll states that no HC1 was found in mass spectrometer analysis of polyvinyl chloride irradiated to 5 x 106 rads.It appears that the initial design basis event transient within the first 2.8 hours of high temperature regime.would not generate HC1.This is further supported by data from Reference 3.Pure PVC resin irradiated to 5.8 x 10" rads and exposed to 150oC in a pure oxygen atmosphere showed negligible weight loss after 3 hours Reference,.3.
ThenfortheGinnaaccidentscenario, theimportant parameter
demonstrated the well recognized fact that oxygen acceler-ates loss of HC1.It is also certain that elevated temperatures accelerate loss of HCl.It is apparent that the test conditions were more severe than the accident requirements at Ginna.Reference 24.states that pure PVC resins are not as'resistant to dehydrochlorination as PVC based materials.
'withregardtogeneration ofHClistheintegrated radiation dose.The180dayaccidentdoseis2x108rads.Theaccumulated radiation doseattheendof2.8hourswillbelessthan2x107radsperRegulatory Guide1.89ProposedRev.1,AppendixD.The19-milstainless steelfacingwillprovidesignificant Betashielding, stoppingallBetaradiation withanenergy'less thanapproximately 1KIEV.Therefore, theradiation dosetotheVinylceliscalculated tobelessthan5x106radsattheendoftheinitial2.8hourphaseoftheaccident.
Vinylcel may be significant+
Reference llstatesthatnoHC1wasfoundinmassspectrometer analysisofpolyvinyl chlorideirradiated to5x106rads.Itappearsthattheinitialdesignbasiseventtransient withinthefirst2.8hoursofhightemperature regime.wouldnotgenerateHC1.Thisisfurthersupported bydatafromReference 3.PurePVCresinirradiated to5.8x10"radsandexposedto150oCinapureoxygenatmosphere showednegligible weightlossafter3hoursReference,.3.
more resistant to loss of HCl than the material tested.~Reference.3 also'provides useful data in determining a maximum rate at which decomposition might proceed.Samples of PVC irradiated to various doses in oxygen were exposed to 150oC for durations up to approximately 17 hours.Figure 1 shows that after approximately 17 hours at 150oC, the weight loss of PVC was as follows: Radiation Dose (Rads)0""" 5.8 x 106 17.4 x 106 29 x 106 52.2 x 106 Weight Loss at 150 C at 17 hours (%)2.5 7 11 12 14 WYLE LABORATORIES Huntsville Facilt ty port No.17490-1 Page No.5 6.0 4 EVALUATION OF GINNA ACCIDENT CONDITIONS (CONTINUED) 54 The rate of HCl evolution, at Ginna accident temperatures should be slower than the values above.HCl could be neutralized by the containment spray system as it is released from the Vinylcel.The total amount of HCl formed is also of concern.Reference 12, discusses total HCl generated from irradiation of PVC.The generation of HCl is defined by the chemical term of GHCI, which is the number of HCl molecules produced per 100 electron volts of radiation absorbed by the PVC.Reference 12 notes a GHCI of 22.6 at 160OF for PVC exposed to 2 x 107 rads in vacuum.A calculation"'assuming an absorbed dose to Vinylcel of 2 x 108 rads (see appendix)indicates that Vinylcel would be required to have GHCL=75.65 for total loss of HCl to occur.This is more than three (3)times the highest value found but since no value was found for a radiation dose of 2 x 108 it was assumed that the calculated value was achievable.
demonstrated thewellrecognized factthatoxygenacceler-ateslossofHC1.Itisalsocertainthatelevatedtemperatures accelerate lossofHCl.Itisapparentthatthetestconditions weremoreseverethantheaccidentrequirements atGinna.Reference 24.statesthatpurePVCresinsarenotas'resistant todehydrochlorination asPVCbasedmaterials.
The following calculations and the evaluation of corrosive effects is based on the assumption that total'decomposition occurs.7.0 CALCULATIONS t Reference 13 provides an approximate structural formula for Vinylcel.The weight percent of the crosslinking agent was not identified, but since that ag'ent,would serve to reduce the percent chlorine it is adequate, for this treatment, to make the.assumption that the material is PVC.From the empirical formula (CH2 CH CL)the material is 56.8 percent chlorine by weight.For Ginna insulated wall, an area of 36,181 ft of l-l/4" (4 PCF)Vinylcel, the total material weight is approximately 6,838,000 gms, of which approximately 3,884,000 gms is chlorine.The applicable parameters for Ginna, Reference 14, indicate that the total dehydrochlorination would, release 1.0956 x 105 moles of HCl.If-the HCl were uniformly distributed in the containment volume, the concentration would be 4.22 x 10 6 moles/cm3, as shown below: I Concentration
Vinylcelmaybesignificant+
=Moles/volume Concentration of HCl=1.0956 x 105 moles/(917,000 ft3 x 28316.847 cm3/ft3)Concentration of HCl=4.22 x 10 6 moles/cm3 (2)(3)The HCl will not remain in the atmosphere, but will be condensed and dissolved in the borated water solution recirculated through the Reactor Heat Removal (RHR)System.WYLE LASORATORIES Huntsville Facility v v ssvo k~'X 4'V J Page No.6, 7.0 CALCULATIONS (CONTINUED)
moreresistant tolossofHClthanthematerialtested.~Reference.3 also'provides usefuldataindetermining amaximumrateatwhichdecomposition mightproceed.SamplesofPVCirradiated tovariousdosesinoxygenwereexposedto150oCfordurations uptoapproximately 17hours.Figure1showsthatafterapproximately 17hoursat150oC,theweightlossofPVCwasasfollows:Radiation Dose(Rads)0"""5.8x10617.4x10629x10652.2x106WeightLossat150Cat17hours(%)2.57111214WYLELABORATORIES Huntsville Faciltty portNo.17490-1PageNo.56.04EVALUATION OFGINNAACCIDENTCONDITIONS (CONTINUED) 54TherateofHClevolution, atGinnaaccidenttemperatures shouldbeslowerthanthevaluesabove.HClcouldbeneutralized bythecontainment spraysystemasitisreleasedfromtheVinylcel.
.The total volume of solution available'for dilution is 1,079,604 liters, as shown below: S ra S stem Tank 230,000 gal (2,000 ppm borated): 870.5 x 103 liters.Reactor Flood Tanks 6,250 ft3 (50-100 ppm borated): 1',134 ft3 (2,000 ppm borated): Total 176.95 x 1Q3 liters 32.1 x 103 liters 1.08 x 106 liters The final maximum concentration in the solution recirculated through the RHR System could be 0.105 molar in HCl.If unbuffered, the pH would be approximately 1.The solution is actually a dilute boric acid buffered with NaOH to a pH of 8.5-1Q.O.A 5,100-gallon tank of 30 percent NaOH is maintained on site'with'1'."4'476'x'1'05 moles of NaOH.The capability to monitor and adjust the pH of the solution is available after accident initiation.
ThetotalamountofHClformedisalsoofconcern.Reference 12,discusses totalHClgenerated fromirradiation ofPVC.Thegeneration ofHClisdefinedbythechemicaltermofGHCI,whichisthenumberofHClmolecules producedper100electronvoltsofradiation absorbedbythePVC.Reference 12notesaGHCIof22.6at160OFforPVCexposedto2x107radsinvacuum.Acalculation"'assuming anabsorbeddosetoVinylcelof2x108rads(seeappendix) indicates thatVinylcelwouldberequiredtohaveGHCL=75.65fortotallossofHCltooccur.Thisismorethanthree(3)timesthehighestvaluefoundbutsincenovaluewasfoundforaradiation doseof2x108itwasassumedthatthecalculated valuewasachievable.
Since the HC1 will be added gradually, the solution pH can be maintained in the required range of 8.5-10.0 by addition of NaOH solution.The solution would become about 0.1 molar'in NaCl.Corrosive effects for the RHR,System would then'be those of salt solutions.
Thefollowing calculations andtheevaluation ofcorrosive effectsisbasedontheassumption thattotal'decomposition occurs.7.0CALCULATIONS tReference 13providesanapproximate structural formulaforVinylcel.
The'Vinylcel stainless steel facing and the carbon steel liner will be exposed to HCl as it evolves from the insulation.
Theweightpercentofthecrosslinking agentwasnotidentified, butsincethatag'ent,would servetoreducethepercentchlorineitisadequate, forthistreatment, tomakethe.assumption thatthematerialisPVC.Fromtheempirical formula(CH2CHCL)thematerialis56.8percentchlorinebyweight.ForGinnainsulated wall,anareaof36,181ftofl-l/4"(4PCF)Vinylcel, thetotalmaterialweightisapproximately 6,838,000 gms,ofwhichapproximately 3,884,000 gmsischlorine.
Some portion of this HCl will be absorbed by the insulation and remain in contact with the metal walls.Moisture may penetrate the insulation along the panel joints in the humid post'-accident
Theapplicable parameters forGinna,Reference 14,indicatethatthetotaldehydrochlorination would,release1.0956x105molesofHCl.If-theHClwereuniformly distributed inthecontainment volume,theconcentration wouldbe4.22x106moles/cm3, asshownbelow:IConcentration
=Moles/volume Concentration ofHCl=1.0956x105moles/(917,000 ft3x28316.847 cm3/ft3)Concentration ofHCl=4.22x106moles/cm3 (2)(3)TheHClwillnotremainintheatmosphere, butwillbecondensed anddissolved intheboratedwatersolutionrecirculated throughtheReactorHeatRemoval(RHR)System.WYLELASORATORIES Huntsville Facility vvssvok~'X4'VJPageNo.6,7.0CALCULATIONS (CONTINUED)
.Thetotalvolumeofsolutionavailable'for dilutionis1,079,604 liters,asshownbelow:SraSstemTank230,000gal(2,000ppmborated):
870.5x103liters.ReactorFloodTanks6,250ft3(50-100ppmborated):
1',134ft3(2,000ppmborated):
Total176.95x1Q3liters32.1x103liters1.08x106litersThefinalmaximumconcentration inthesolutionrecirculated throughtheRHRSystemcouldbe0.105molarinHCl.Ifunbuffered, thepHwouldbeapproximately 1.ThesolutionisactuallyadiluteboricacidbufferedwithNaOHtoapHof8.5-1Q.O.
A5,100-gallon tankof30percentNaOHismaintained onsite'with
'1'."4'476'x'1'05 molesofNaOH.Thecapability tomonitorandadjustthepHofthesolutionisavailable afteraccidentinitiation.
SincetheHC1willbeaddedgradually, thesolutionpHcanbemaintained intherequiredrangeof8.5-10.0byadditionofNaOHsolution.
Thesolutionwouldbecomeabout0.1molar'inNaCl.Corrosive effectsfortheRHR,System wouldthen'bethoseofsaltsolutions.
The'Vinylcel stainless steelfacingandthecarbonsteellinerwillbeexposedtoHClasitevolvesfromtheinsulation.
SomeportionofthisHClwillbeabsorbedbytheinsulation andremainincontactwiththemetalwalls.Moisturemaypenetrate theinsulation alongthepaneljointsinthehumidpost'-accident
'enviionment.
'enviionment.
Thisactionwouldresultinexposureofthecarbonsteellinerand'theinteriorofthestainless steelfacingtoaqueousHCl.Itisassumedthatthestainless facingwillbeexposedtosignificant moisture; thecarbonsteellinerwillbepartianyprotected bytheinsulation.
This action would result in exposure of the carbon steel liner and'the interior of the stainless steel facing to aqueous HCl.It is assumed that the stainless facing will be exposed to significant moisture;the carbon steel liner will be partiany protected by the insulation.
8.0 CORROSION EFFECTS Effects are considered separately for the RHR System components, the carbon steel liner of the insulation, and the 19 mil stainless insulation facing since they will be'exposed to"differ'ent environments, as noted in Paragraph 7.0.8.1 Effects For RHR Com onents As indicated in the preceding section, these components may be exposed to a 0.1 molar salt solution (approximately 0.6 percent salt).The corrosive effects should be similar to those of sea water and the data for sea water will be assumed applicable.
Components in the system are all stainless steel or stainless steel clad.WYLE LABORATORIES Huntsville Facility
~~O Report No 17490-1 Page Vio.7 8.0 CORROSION EFFECTS (CONTINUED) 8.1 Effects For RHR Com onents (Continued)
Reference 20 indicates that a maximum rate for general corrosion of 316 stainless steel by sea water is 0.00063 inch per year.Low carbon and copper-bearing steels show higher corrosion rates of 0.004-0.005 inch per year.These'ow values indicate that significant corrosion should not occur in the 180day post-accident period-Reference 19 indicated that sea water induced pitting and crevice corrosion can occur for stainless steels, but these actions would not become'significant in less than 1.5-2 years.8.2 Effects For Carbon Steel Panel Liner The entire carbon steel liner (both insulated and non insulated surfaces)is protected from direct contact with the environment by a Carbo Zinc-11/Pheno-line 305 coating system.This would retard or prevent direct contact between HCl and the carbon steel.Phenoline 305 is indicated by the manufacturer as having"very good" resistance to acid splashes and spills and Carbo Zinc-ll is rated"good".Reference 19 indicates good acid resistance for phenolic coatings at temperatures up to 300oF.If the top coat is penetrated the zinc based primer (approximately 86%zinc)provides an additional physical barrier and may be preferentially attacked by the HCl if it is penetrated.
Though the effect may be reversed under some environmental conditions, temperatures below 140oF and the presence of Cl ions would probably cause the zinc to act as a sacrificial anode (Reference 20)providing further protection of the steel liner.Eg Since no'est data was available to determine the amount of protection provided (or whether zinc would act as a sacrificial anode at the Ginna specified 152oF ambient)the effects of direct HCl/carbon steel contact will be considered.
If moisture does not penetrate the insulation and the liner so that the carbon steel is exposed only to~dr HCl gas, the corrosion effects would not be significant.
Reference 21 indicates a corrosion rate of 0.00003 inch per year for carbon steel exposed to dry HCl at 500oF.Carbon steel is, however, sensitive to aqueous HC1 in air environments.
If moisture penetrates the degraded insulation, or passes through joints between panels, corrosion would occur.Reference 20 indicates corrosion rates for mild steel (carbon steel)exposed to 0.4 percent and 4.0 percent HCl in air at room temperatures.
These rates were 0.39 inch and 0.48 inch per year, respectively.
Higher temperatures would also accelerate corrosion.
As indicated in Reference 19, corrosion rates greater than 0.05 inch per year, result in short service life for the specified material.WYLE LABORATORIES Huntsv>lie Facility Report No.17490-1 Page No.8 8.0 CORROSION EFFECTS (CONTINUED) 8.3 Effects for the 19-'Mil Stainless Steel Insulation Facin Panels While more resistant than carbon steel, all stainless steels have poor resistance to aqueous HCI.Also direct aqueous HCl/stainless steel contact is more probable;moisture may not penetrate the insuIation per paragraph 3.1 or the Carbo Zinc-ll/Phenoline 305 but could penetrate along panel joints and around retaining bolts.Corrosion could occur along panel joints and around retaining bolts.9,0'ONCI'USIONS'"'.1 In response to NRC letter.dated 1-17-81, Question No.2: Question An estimate of the amounts of each gas as hydrogen, organic gases and hydrogen chloride, which would be provided by radiation from the decomposition of the foam during DBA.Answer The only gas produced in more than trace quantities would be, HC1.No HC1 gas would be expected until the radiation level exceeds 5 x 106 rais.The postulated peak temperature during the DBA of 286oF occuring within the first 2.8 hours would probably not produce and HCl as long'as the radiation level did not exceed 5 x 10>rads during this time.The postulated total integrated dose of 2 x 108 rads would result in generation of HC1.The total amount generated is uncertain.
A'orst case-"of''otal" dehydrochlorination is assumed although the actual loss is likely to be significantly less.9.2 In response to NRC letter dated 1-17-81;Question No.5: question The results of an analysis of the effect of the hydrogen chloride generated during a DBA including corrosion of components in the containment building.Answer The HCl gases which would be released into the containment would become neutralized by the chemical spray.Minor corrosion to the reactor heat removed system may result.The corrosion effects of dry HCl gas are insignificant.
WYLE LABORATORIES Huntsvtlte Facility port No.17490-1 Page No.9 9.0 9.2'ONCLUSIONS (CONTINUED)
Answer (Continued) h ri Corrosion of the carbon steel liner could occur if aqueous HCI contacts its surface.This contact will be delayed and may not occur at all.The Vinylcel provides protection from the moist containment atmosphere.
The Carbo Zinc 11/Phenoline 305 coating system is a barrier to direct HC1/Carbon Steel Contact.If penetrated, the Carbo Zinc 11 may act as a sacrificial anode further protecting the carbon steel.Corrosion of the 19-mil facing is expected along panel joints and around retaining bolts.


==8.0 CORROSION==
==10.0 REFERENCES==
EFFECTSEffectsareconsidered separately fortheRHRSystemcomponents, thecarbonsteellineroftheinsulation, andthe19milstainless insulation facingsincetheywillbe'exposed to"differ'ent environments, asnotedinParagraph 7.0.8.1EffectsForRHRComonentsAsindicated inthepreceding section,thesecomponents maybeexposedtoa0.1molarsaltsolution(approximately 0.6percentsalt).Thecorrosive effectsshouldbesimilartothoseofseawaterandthedataforseawaterwillbeassumedapplicable.
Components inthesystemareallstainless steelorstainless steelclad.WYLELABORATORIES Huntsville Facility
~~OReportNo17490-1PageVio.78.0CORROSION EFFECTS(CONTINUED) 8.1EffectsForRHRComonents(Continued)
Reference 20indicates thatamaximumrateforgeneralcorrosion of316stainless steelbyseawateris0.00063inchperyear.Lowcarbonandcopper-bearingsteelsshowhighercorrosion ratesof0.004-0.005 inchperyear.These'owvaluesindicatethatsignificant corrosion shouldnotoccurinthe180daypost-accident period-Reference 19indicated thatseawaterinducedpittingandcrevicecorrosion canoccurforstainless steels,buttheseactionswouldnotbecome'significant inlessthan1.5-2years.8.2EffectsForCarbonSteelPanelLinerTheentirecarbonsteelliner(bothinsulated andnoninsulated surfaces) isprotected fromdirectcontactwiththeenvironment byaCarboZinc-11/Pheno-line305coatingsystem.ThiswouldretardorpreventdirectcontactbetweenHClandthecarbonsteel.Phenoline 305isindicated bythemanufacturer ashaving"verygood"resistance toacidsplashesandspillsandCarboZinc-llisrated"good".Reference 19indicates goodacidresistance forphenoliccoatingsattemperatures upto300oF.Ifthetopcoatispenetrated thezincbasedprimer(approximately 86%zinc)providesanadditional physicalbarrierandmaybepreferentially attackedbytheHClifitispenetrated.
Thoughtheeffectmaybereversedundersomeenvironmental conditions, temperatures below140oFandthepresenceofClionswouldprobablycausethezinctoactasasacrificial anode(Reference 20)providing furtherprotection ofthesteelliner.EgSinceno'estdatawasavailable todetermine theamountofprotection provided(orwhetherzincwouldactasasacrificial anodeattheGinnaspecified 152oFambient)theeffectsofdirectHCl/carbon steelcontactwillbeconsidered.
Ifmoisturedoesnotpenetrate theinsulation andthelinersothatthecarbonsteelisexposedonlyto~drHClgas,thecorrosion effectswouldnotbesignificant.
Reference 21indicates acorrosion rateof0.00003inchperyearforcarbonsteelexposedtodryHClat500oF.Carbonsteelis,however,sensitive toaqueousHC1inairenvironments.
Ifmoisturepenetrates thedegradedinsulation, orpassesthroughjointsbetweenpanels,corrosion wouldoccur.Reference 20indicates corrosion ratesformildsteel(carbonsteel)exposedto0.4percentand4.0percentHClinairatroomtemperatures.
Theserateswere0.39inchand0.48inchperyear,respectively.
Highertemperatures wouldalsoaccelerate corrosion.
Asindicated inReference 19,corrosion ratesgreaterthan0.05inchperyear,resultinshortservicelifeforthespecified material.
WYLELABORATORIES Huntsv>lie Facility ReportNo.17490-1PageNo.88.0CORROSION EFFECTS(CONTINUED) 8.3Effectsforthe19-'MilStainless SteelInsulation FacinPanelsWhilemoreresistant thancarbonsteel,allstainless steelshavepoorresistance toaqueousHCI.AlsodirectaqueousHCl/stainless steelcontactismoreprobable; moisturemaynotpenetrate theinsuIation perparagraph 3.1ortheCarboZinc-ll/Phenoline 305butcouldpenetrate alongpaneljointsandaroundretaining bolts.Corrosion couldoccuralongpaneljointsandaroundretaining bolts.9,0'ONCI'USIONS'"
'.1InresponsetoNRCletter.dated1-17-81,QuestionNo.2:QuestionAnestimateoftheamountsofeachgasashydrogen, organicgasesandhydrogenchloride, whichwouldbeprovidedbyradiation fromthedecomposition ofthefoamduringDBA.AnswerTheonlygasproducedinmorethantracequantities wouldbe,HC1.NoHC1gaswouldbeexpecteduntiltheradiation levelexceeds5x106rais.Thepostulated peaktemperature duringtheDBAof286oFoccuringwithinthefirst2.8hourswouldprobablynotproduceandHClaslong'astheradiation leveldidnotexceed5x10>radsduringthistime.Thepostulated totalintegrated doseof2x108radswouldresultingeneration ofHC1.Thetotalamountgenerated isuncertain.
A'orstcase-"of''otal" dehydrochlorination isassumedalthoughtheactuallossislikelytobesignificantly less.9.2InresponsetoNRCletterdated1-17-81;QuestionNo.5:questionTheresultsofananalysisoftheeffectofthehydrogenchloridegenerated duringaDBAincluding corrosion ofcomponents inthecontainment building.
AnswerTheHClgaseswhichwouldbereleasedintothecontainment wouldbecomeneutralized bythechemicalspray.Minorcorrosion tothereactorheatremovedsystemmayresult.Thecorrosion effectsofdryHClgasareinsignificant.
WYLELABORATORIES Huntsvtlte Facility portNo.17490-1PageNo.99.09.2'ONCLUSIONS (CONTINUED)
Answer(Continued) hriCorrosion ofthecarbonsteellinercouldoccurifaqueousHCIcontactsitssurface.Thiscontactwillbedelayedandmaynotoccuratall.TheVinylcelprovidesprotection fromthemoistcontainment atmosphere.
TheCarboZinc11/Phenoline 305coatingsystemisabarriertodirectHC1/Carbon SteelContact.Ifpenetrated, theCarboZinc11mayactasasacrificial anodefurtherprotecting thecarbonsteel.Corrosion ofthe19-milfacingisexpectedalongpaneljointsandaroundretaining bolts.


==10.0REFERENCES==
1.Letter from V.S.Noonan, Assistant Director for Material and Qualification, Division of Engineering, U.S.Nuclear Regulatory Commission,  
 
1.LetterfromV.S.Noonan,Assistant DirectorforMaterialandQualification, DivisionofEngineering, U.S.NuclearRegulatory Commission,


==Subject:==
==Subject:==
GinnaSEPonOrganicMaterials, January17,1981(Enclosed) 2e3.')"TheUseofPlasticsandElastomers,"
Ginna SEP on Organic Materials, January 17, 1981 (Enclosed) 2e 3.')"The Use of Plastics and Elastomers," W.W.Parkinson and O.Sisman, Nuclear En ineerin and Desi n, Vol.17 (1971), pp.247-280, Wyle Library Code 438-81 I"Thermal'Analysis of Polyvinyl Chloride," R.Salovey and R.G.Badger, Journal of A lied Pol mer Science, Vol.16 (1972), Wyle Library Code 430-81 4, 5.6."Radiation Resistance of Cable-Insulating Material for Nuclear Power"Generating Stations," S.Kawata, J.Ogura, K.Kasai, and T.Onishi, IEEE Transaction, Electrical Insulation, Vol.EI-13, No.3, pp.164-171, June, 1978, Wyle Library Code 214-79"Effects of Radiation on Electrical Insulating Materials," C.L.Hanks and D.J.Hammon, REIC Report No.46, Wyle Library Code 299-80 s"Test Report', Thermal Decomposition Products and Burning Characteristics'f Some Syhnthetic Low-Density Cellular Material," Bureau of Mines Investigation 04777, January, 1951 7e"Gamma Ray Dosimetry with Polyvinyl Chloride Films," Ernest J.Henley and Arthur Miller, Nucleonics, Vol.9, No.6, pp.62-66, December, 1951 8.Letter from C.E.Ernst, Chief Engineer, Johns-Manville Indus-trial Insulations Division, to Gilbert Associates, Inc., Reading, Pennsylvania,  
W.W.Parkinson andO.Sisman,NuclearEnineerinandDesin,Vol.17(1971),pp.247-280,WyleLibraryCode438-81I"Thermal'Analysis ofPolyvinyl Chloride,"
R.SaloveyandR.G.Badger,JournalofAliedPolmerScience,Vol.16(1972),WyleLibraryCode430-814,5.6."Radiation Resistance ofCable-Insulating MaterialforNuclearPower"Generating Stations,"
S.Kawata,J.Ogura,K.Kasai,andT.Onishi,IEEETransaction, Electrical Insulation, Vol.EI-13,No.3,pp.164-171,June,1978,WyleLibraryCode214-79"EffectsofRadiation onElectrical Insulating Materials,"
C.L.HanksandD.J.Hammon,REICReportNo.46,WyleLibraryCode299-80s"TestReport',ThermalDecomposition ProductsandBurningCharacteristics'f SomeSyhnthetic Low-Density CellularMaterial,"
BureauofMinesInvestigation 04777,January,19517e"GammaRayDosimetry withPolyvinyl ChlorideFilms,"ErnestJ.HenleyandArthurMiller,Nucleonics, Vol.9,No.6,pp.62-66,December, 19518.LetterfromC.E.Ernst,ChiefEngineer, Johns-Manville Indus-trialInsulations
: Division, toGilbertAssociates, Inc.,Reading,Pennsylvania,


==Subject:==
==Subject:==
BMContainment Insulation, SP-5290GinnaPlant,December22,1967(Enclosed)
BM Containment Insulation, SP-5290 Ginna Plant, December 22, 1967 (Enclosed)
WYLELABORATORIES Huntsville Facility aeporr.No.iv~~u-iPageNo.10REFERENCES (Continued) 9.LetterfromJackMiner,Manager,Engineering andTechnical
WYLE LABORATORIES Huntsville Facility aeporr.No.iv~~u-i Page No.10 REFERENCES (Continued) 9.Letter from Jack Miner, Manager, Engineering and Technical Services, Johns-Manville Sales Corporation, Denver, Colorado,  
: Services, Johns-Manville SalesCorporation, Denver,Colorado,


==Subject:==
==Subject:==
VinylcelPhysicalProperties andRadiation Resistance, April7,198110.ContactReports,RayThometoJ.Richardson, Johns-Manville ProductCoordinator, datedJuly31,1981,
Vinylcel Physical Properties and Radiation Resistance, April 7, 1981 10.Contact Reports, Ray Thome to J.Richardson, Johns-Manville Product Coordinator, dated July 31, 1981,  


==Subject:==
==Subject:==
VinylcelInsulation Technical DataandReports(Enclosed) 11.'Effects'f'adiation onMaterialandComponents,"
Vinylcel Insulation Technical Data and Reports (Enclosed) 11.'Effects'f'adiation on Material and Components," J-F.Kir cher and R.E.Bowman, Reinhold Publishing Corporation 12.Radiation Chemistr of Pol meric S stems, A.Chapiro, John Wiley 4 Sons, Chapter 7 13."Rigid PVC Foam Process Attracts Phillips," Article from International, not dated (Enclosed) 14.<t, Contact~Report, M.Bruce to G.Wrobel, Rochester Gas dc Electric Corporation, dated August 7, 1981,  
J-F.KircherandR.E.Bowman,ReinholdPublishing Corporation 12.Radiation ChemistrofPolmericSstems,A.Chapiro,JohnWiley4Sons,Chapter713."RigidPVCFoamProcessAttractsPhillips,"
ArticlefromInternational, notdated(Enclosed) 14.<t,Contact~Report,M.BrucetoG.Wrobel,Rochester GasdcElectricCorporation, datedAugust7,1981,


==Subject:==
==Subject:==
ObtainContainment Information (Enclosed) 15.-ContactReport,RayThometoG.Eichele,Johns-Manville SalesCoordinator, datedJuly30,1981,
Obtain Containment Information (Enclosed) 15.-Contact Report, Ray Thome to G.Eichele, Johns-Manville Sales Coordinator, dated July 30, 1981,  


==Subject:==
==Subject:==
VinylcelInsulation (Enclosed) 16.,"Mechanism
Vinylcel Insulation (Enclosed) 16.,"Mechanism
'fPVCDegradation,"
'f PVC Degradation," W.C.Giddes, Rubber Chemistr and Technolo, 164, pp.177-216 17."Thermal Decomposition of Poly (Vinyl Chloride)," R.Stromberg; S: Straus, and B.G.Achkammer, Journal of Pol mer Science, Vol.35, pp.355-368 (1959)18."Vinylcel Structural Core Rigid Crosslinked PVC Foam Physical Properties (Average Values)," Johns-Manville (Enclosed) 19.20...e 21.NACE Basic Corrosion Course, National Association of Corro-sion Engineers, Houston, Texas, Eighth Printing, 1977 Corrosion and Corrosion Control, H.H.Unlig, John Wiley ttt: Sons, Inc., Second Edition, 1971"Properties and Selection of Metals," Metals Handbook, Ameri-can Society for Metals, 8th Edition, Vol.I, 1961 22.Radiolo ical Health Handbook, U.S.Department of Health, Education, and Welfare, Rockville, Maryland, Revised Edition, p.122, January, 1970 WYLE LABORATORIE5 Huntsville Feetttty eport No.17490-1~~Page No.11 REFERENCES (CONTINUED) 23.24.Carboline Product Data Sheets, Carboline Company, St.Louis, Missouri Enclosed"Determination of the Stability of PVC Compounds Against High Temperature", J.Novak, American Chemistry Series, Advances in Chemistry, Vol 85, pp 45-46.WYLE LABORATORIES Hunlswlla Facility Report No.17490-1 Page No.12 APPENDIX The theoretical yield of HCl is 56.8%by weight or 1.5S83 x 10-2 moles/gm PVC substituting this value in the equation below and solving for GHCL identifies the G value required for total dehydrochlorination.
W.C.Giddes,RubberChemistrandTechnolo, 164,pp.177-21617."ThermalDecomposition ofPoly(VinylChloride),"
Moles HCl=G moles HCl/100 eV x 2 x 1010 ergs/gm PVC x 6.2 x 1011 eV/erg x 1 mole HCL/6.02 x 10 molecules Therfore, 1 1 G=1.5583"x 10-2"'x 100 x 2 x 1010 x 6.2 x 1011 x 6.02 x 1023 G,=7.5.65.Where, G=molecule HCl/100 eV Radiation Dose=2 x 108 rads or 2 x 1010 ergs/gm PVC 1 erg=6.2 x 1011 eV Avogardo Constant=6.02 x 1023 molecules/mole WYLE LABORATORIES Huntsville Facility Q Report No.17490-1 Page No.13 lBBADlATl'.D l'OLY(VINYL CllLORID:-.
R.Stromberg; S:Straus,andB.G.Achkammer, JournalofPolmerScience,Vol.35,pp.355-368(1959)18."Vinylcel Structural CoreRigidCrosslinked PVCFoamPhysicalProperties (AverageValues),"
3267 O 6&#xc3;IR I/~'llA'E Md4llTKS 40 FIGURE l.ISOTHERMAL THERMOGRAVIMETRY OF IRRADIATED PVC-150'C OXYGEN ATMOSPHERE:
Johns-Manville (Enclosed) 19.20...e21.NACEBasicCorrosion Course,NationalAssociation ofCorro-sionEngineers, Houston,Texas,EighthPrinting, 1977Corrosion andCorrosion Control,H.H.Unlig,JohnWileyttt:Sons,Inc.,SecondEdition,1971"Properties andSelection ofMetals,"MetalsHandbook, Ameri-canSocietyforMetals,8thEdition,Vol.I,196122.RadioloicalHealthHandbook, U.S.Department ofHealth,Education, andWelfare,Rockville,
(0)CONTROL;(<)5.8 M RADS;(D)17.4 M RADS;(9)29.0 M RADS;(X)52.2 N RADS;(~)52.2 N RADS IN NITRDGEN Report No.17490-1 Page No.14 TGA Curve of'INYLCEL Temperature (oP)6oo 8oo 8o 70 50 30 20 10 3oo 4oo Temperature (C)-FIGURE 2
: Maryland, RevisedEdition,p.122,January,1970WYLELABORATORIE5 Huntsville Feetttty eportNo.17490-1~~PageNo.11REFERENCES (CONTINUED) 23.24.Carboline ProductDataSheets,Carboline Company,St.Louis,MissouriEnclosed"Determination oftheStability ofPVCCompounds AgainstHighTemperature",
~I V Report No.17490-1 Paqe No.15 20$.7a=-res.its,of.an,ana>ysis of the effect of the hydr~en chloride~arete" chris.a QBA, inc)udina corrosion of ccvconants
J.Novak,AmericanChemistry Series,AdvancesinChemistry, Vol85,pp45-46.WYLELABORATORIES Hunlswlla Facility ReportNo.17490-1PageNo.12APPENDIXThetheoretical yieldofHClis56.8%byweightor1.5S83x10-2moles/gmPVCsubstituting thisvalueintheequationbelowandsolvingforGHCLidentifies theGvaluerequiredfortotaldehydrochlorination.
$r the coo-iMn~i bU'l1dlny~
MolesHCl=GmolesHCl/100eVx2x1010ergs/gmPVCx6.2x1011eV/ergx1moleHCL/6.02x10molecules
~4e can cxo1ete our revi~Qf Top.ic V5-1., Orw~ic 4;rich four weeks after xe receive the requ s e" informiian.
: Therfore, 11G=1.5583"x10-2"'x100x2x1010x6.2x1011x6.02x1023G,=7.5.65.Where,G=moleculeHCl/100eVRadiation Dose=2x108radsor2x1010ergs/gmPVC1erg=6.2x1011eVAvogardoConstant=6.02x1023molecules/mole WYLELABORATORIES Huntsville Facility QReportNo.17490-1PageNo.13lBBADlATl'.D l'OLY(VINYL CllLORID:-.
A5 s EQT.Mt&>,rector'm" KxEeriats 6 Qaa3i4icatiorIs Engine rmg Oivisian.of inain~ring-CZrQ'E LYi J~8EC.REFERENCE 1 g).'.Q{&#xc3;S, i iUi'<~La'loas~, P4'5>st&:~
3267O6&#xc3;IRI/~'llA'EMd4llTKS40FIGUREl.ISOTHERMAL THERMOGRAVIMETRY OFIRRADIATED PVC-150'COXYGENATMOSPHERE:
Zfzre w;.~~g far 5afety Assm~t..'"'.crt RVISLM Gf L'fcBAS(np
(0)CONTROL;(<)5.8MRADS;(D)17.4MRADS;(9)29.0MRADS;(X)52.2NRADS;(~)52.2NRADSINNITRDGEN ReportNo.17490-1PageNo.14TGACurveof'INYLCEL Temperature (oP)6oo8oo8o70503020103oo4ooTemperature (C)-FIGURE2
~~.'':~~QQJ QQp-g pf4j'~~FisLYz.'gncen+
~IVReportNo.17490-1PaqeNo.1520$.7a=-res.its,of.an,ana>ysis oftheeffectofthehydr~enchloride~arete"chris.aQBA,inc)udina corrosion ofccvconants
<g~~.gjs~zar~Qire'c.Qr, P~~.for NateriaQs 4~'3H'zcaticers Knq'.reer>r~>
$rthecoo-iMn~ibU'l1dlny~
gP<g 7CP~<-Oivisim of B'gineering SURJz.l:T"."'" Giga'A'KP M QRcQtIC FATERNI.S C I~~~~er u, Sp:stmatic
~4ecancxo1eteourrevi~QfTop.icV5-1.,Orw~ic4;richfourweeksafterxereceivetherequse"informiian.
A5sEQT.Mt&>,rector
'm"KxEeriats 6Qaa3i4icatiorIs EnginermgOivisian.of inain~ring-CZrQ'ELYiJ~8EC.REFERENCE 1g).'.Q{&#xc3;S,iiUi'<~La'loas~,
P4'5>st&:~
Zfzrew;.~~gfar5afetyAssm~t..'"'.crtRVISLMGfL'fcBAS(np
~~.'':~~QQJQQp-gpf4j'~~FisLYz.'gncen+
<g~~.gjs~zar~
Qire'c.Qr, P~~.forNateriaQs 4~'3H'zcaticers Knq'.reer>r~>
gP<g7CP~<-OivisimofB'gineering SURJz.l:T"."
'"Giga'A'KP MQRcQtICFATERNI.S CI~~~~eru,Sp:stmatic
.""va3uat$
.""va3uat$
cnProc.rm,mare'~ie"in" Tcpic,.VK-0"0;.oxidic
cn Proc.rm, m are'~ie"in" Tcpic,.VK-0"0;.oxidic
~aerials"fortheBiminiP4~~Thisylang'h.s
~a erials" for the Bimini P4~~This ylang'h.s.~uzi~feats.hat the inner so~face of the'ontairaxnt hxHd<ng:.is.
.~uzi~feats.hattheinnerso~faceofthe'ontairaxnt hxHd<ng:.is.
>nat$aM:.>.in.'thick shmts crf Y<qRce>2'fam enc'psulated nc'0.039 in."=aio$ess steel.To c~'1ete ej.renew, we need tfse foHming'nfot~J'.The:cuba)we..ch".o.insu1atfm fern in the.etc;tain~C buHding.':
>nat$aM:.>.in.'thickshmtscrfY<qRce>2'fam enc'psulated nc'0.039in."=aio$esssteel.Toc~'1eteej.renew,weneedtfsefoHming'nfot~J'.The:cuba) we..ch".o.insu1atfm ferninthe.etc;tain~C buHding.':
-.'a estimate of the amounts e, ca%gas, sod a.s, hyiroa&, aria.ic~>se: and hydro~~n 6;3oride,'shich~ld be pea~uced-~.ractia4te:
-.'aestimateoftheamountse,ca%gas,soda.s,hyiroa&,aria.ic~>se:andhydro~~n6;3oride,
fro-,'.he de cepcs i+ion of the EM'uring a.KA.octqs~lf Mp's hp'hlcf'c'ese oa5es Rig5t eschp f poR,Ucc stp)nless sb&#x17d;3 Boxes a&~enter the cajMi~nt und~.ac i~t;~(time.
'shich~ldbepea~uced-
~, J'.~be z-esu1ts'o.'an ana1ysis of the ccetribu0ion uf.hyarom and other asks g nera 0-.rem the:.fear to the.scents of@~Rib'le gases.~duce~fr~otser scarcer during a D'"'4.cc: h'ex'age EXHIBIT A REFERENCE 8 PACiE 1 of 2 i RePort No.1749Q-~.Page No.16 JOHN S-MAN VILLE SAl.ES CORPORATlOH INDUSTRIAL INSULATIONS DIVISION~'EA5T 4Q<h 5TREET~NEW YORK, N.Y.10016'E.Y, 10016'ELEPHONE:
~.ractia4te:
532.MS AREA'CODE DE 212~w December 22, 1967 l Gi"lbe r't"'A's s oc'i'a t es, Inc~.525 Lancaster Avenue Read ing, Pa.19603.Attention:
fro-,'.hedecepcsi+ionoftheEM'uringa.KA.octqs~lfMp'shp'hlcf'c'ese oa5esRig5teschpfpoR,Uccstp)nless sb&#x17d;3Boxesa&~enterthecajMi~ntund~.aci~t;~(time.
Mr.K.T.Momose Re: BM Containment Insulation SP-5290'irma Plant
~,J'.~bez-esu1ts'o.'anana1ysisoftheccetribu0ion uf.hyaromandotherasksgnera0-.remthe:.fear tothe.scents of@~Rib'legases.~duce~fr~otserscarcerduringaD'"'4.cc:h'ex'ageEXHIBITA REFERENCE 8PACiE1of2iRePortNo.1749Q-~.PageNo.16JOHNS-MANVILLESAl.ESCORPORATlOH INDUSTRIAL INSULATIONS DIVISION~'EA5T4Q<h5TREET~NEWYORK,N.Y.10016'E.Y,10016'ELEPHONE:
532.MSAREA'CODEDE212~wDecember22,1967lGi"lber't"'A'ssoc'i'ates,Inc~.525Lancaster AvenueReading,Pa.19603.Attention:
Mr.K.T.MomoseRe:BMContainment Insulation SP-5290'irmaPlant


==DearMr.Momose:==
==Dear Mr.Momose:==
.OnNovemb~oeber29,atyourrenuestMr.'hefollowing reports'.I~'LReportE455-T-258 Vinylcel.eparrE4$$-T-266",vinylcelSubseouent tothi'hi'ourqueseengnyl'ce1similartothatpreviouslyThisisasfollows:EDCoxsenttoyourattention ccesistance toFlameExposure(4pcf)EffectofHeatandPressureineeringdataonthe4pcffurnished for6pcfVinylce1.
.On Novemb~o e ber 29, at your renuest Mr.'he following reports'.I~'L Re port E 455-T-258 Vinylcel.eparr E 4$$-T-266", vinylcel Subseouent to thi'hi'ou r ques e eng nyl'c e 1 s imilar to tha t pre vi ou sly This is as f ollows: E D Cox sent to your attention ccesistance to Flame Exposure (4pcf)Effect of Heat and Pressure ineering data on the 4 pcf furnished f or 6 pcf Vinylce1.2:0'7.2 Ba sed on.pressure"cycling tests of'om ('R t S 455-T-238) as tie moduli of 6 pcf a m def lee'o of pc~, and the residual deformation to be 0.8+c.3:01.2 n a.Thermal conductivity (BTU/hr sq ft Heat Flow Me,ter.cali'brated e a'a ed per ASTN C>>177 Guarded got Plate.Mean Temperature, F.100~12~10 0~22 0~23 0 25 0~27'-Compressive yield-.stren th-g-per ASTM D1621---E 0 psi at the n on stress-strain curve.c.Maximum operating t t 175F, bQt may vary with s emperature for c ontinuous service specific application re ui requ rements d.Maximum allowable temperature f'r s ecifi tt h d R o t No El45--266 U" C bi d H t d P e'a an res sure Test.53-2 Report No.17490-1 Page No.17 REFERENCE 8 Page 2 of 2 e.Mois ture vapo'r permeability per ASTh!C-355.See attached Report No.E455-T-268, Appendix I, Table 3.f.'Shear strength per ASTM C-273-68 ps'i ultimate.Shear'modulus per ASTM C-Z73-3510 psi.h,.Compressive modulus ner ASTM~-1621-2300 osi.Density per ASTM D-1622-4.0 lbs/cu f t.nominal, 3.7 lbs/cu f t.minimum.Average coefficient of linear expansion-9.4 x 10 in/in/F.k.Curves for the Case IXI sho~ing temperature.
2:0'7.2Basedon.pressure"cycling testsof'om('RtS455-T-238) astiemoduliof6pcfamdeflee'oofpc~,andtheresidualdeformation tobe0.8+c.3:01.2na.Thermalconductivity (BTU/hrsqftHeatFlowMe,ter.cali'brated ea'aedperASTNC>>177GuardedgotPlate.MeanTemperature, F.100~12~100~220~230250~27'-Compressive yield-.stren th-g-perASTMD1621---E0psiatthenonstress-strain curve.c.Maximumoperating tt175F,bQtmayvarywithsemperature forcontinuous servicespecificapplication reuirequrementsd.Maximumallowable temperature f'rsecifitthdRotNoEl45--266U"CbidHtdPe'aanressureTest.53-2 ReportNo.17490-1PageNo.17REFERENCE 8Page2of2e.Moisturevapo'rpermeability perASTh!C-355.SeeattachedReportNo.E455-T-268, AppendixI,Table3.f.'ShearstrengthperASTMC-273-68ps'iultimate.
before and after accident plotted against.time.See Report No.E 455-T-266, Analogue Study of Vinylcel used as Containment'nsulation.
Shear'modulusperASTMC-Z73-3510psi.h,.Compressive modulusnerASTM~-1621-2300osi.DensityperASTMD-1622-4.0lbs/cuft.nominal,3.7lbs/cuft.minimum.Averagecoefficient oflinearexpansion
1.Test results of permeability tests per ASTM C-355~See ,.attached Report'E 455-T-268 Predicted curve,for 6 month test as reauirod under 2:07.9.See attached Report No.E455-T-268.
-9.4x10in/in/F.k.CurvesfortheCaseIXIsho~ingtemperature.
Dimensional rather than weight change is given as explained under Humid Aging (Results)of the report.m.Radiation, exposure of'8 x 10 roentgens within 6 hours will not chan e'he h i g'ys cal properties of Vinylcel significantly but'0 roentgens within 10 hours will cause some progressive de ter iora tion..-', r The 4 p:f Vinylcel will be supplied 44'84" x 1-1/4" thick.Len th and,.wid.th~,tolerance will be+1/32" x-ck.Length Ve ry,tru3 y~ours, r~~CEE/ca C~E~ERNST-Ch ie f=%ng inc er P.S.As I advised your secretary on 4'ednesday, Research is sending 6 copies of report E455T238 directly to you.5B-3 Contact Report Of: RePovt Ho.17e)0-1~YNDKR CONTACT REPORT REFERENCE 10 Telephone R Date of Contact: L-8l Follow Up Date'gency Or Company and Addreaa Phone Pcraon(a}Contacted and Title uctrfAj+rara rLLE JPua~ii p HA/e'tran+~~re DEUTER'i COt 4 e~~<o~-0 l't-boo 48o4 W~E'&~4~, Pr~;<~M!tern(s)and'Part,Number(a) a'Rod~~++8 A/0 i74 Q 0 lnfonnation rr ceded 0 Temperature Limita 0 Hcyabilty Oata (Mil Spec)0 Time/Temperature Octa~diction 0 Catalogue 0 Ltatcrlai'Oissuaaion+
beforeandafteraccidentplottedagainst.time.SeeReportNo.E455-T-266, AnalogueStudyofVinylcelusedasContainment'nsulation.
Aire" pi+art~~~M1''.Ere Vi E~,~er 4 d.rcWuicA gree,~e..cornre i~we~~+L4iU~~a~Aro.C cgss'-7=a.eB'Z p,.~~e~M+.L~)'ps., Qo (aa1e~.t4+p~.g AMMun DM~Hen Action'O<g~Reer.ad'~reeor;I bloc.~Q n p~aliL Q a (-m (dree,den Copica To D.SNi45a4 R~By-<c.q 6 I/r" P-I=r~..~>>.J,'.tr,>
1.Testresultsofpermeability testsperASTMC-355~See,.attachedReport'E455-T-268 Predicted curve,for 6monthtestasreauirodunder2:07.9.SeeattachedReportNo.E455-T-268.
Dimensional ratherthanweightchangeisgivenasexplained underHumidAging(Results)ofthereport.m.Radiation, exposureof'8x10roentgens within6hourswillnotchane'hehig'yscalproperties ofVinylcelsignificantly but'0roentgens within10hourswillcausesomeprogressive deterioration..-',rThe4p:fVinylcelwillbesupplied44'84"x1-1/4"thick.Lenthand,.wid.th~,tolerance willbe+1/32"x-ck.LengthVery,tru3y~ours,r~~CEE/caC~E~ERNST-Chief=%ngincerP.S.AsIadvisedyoursecretary on4'ednesday, Researchissending6copiesofreportE455T238directlytoyou.5B-3 ContactReportOf:RePovtHo.17e)0-1~YNDKRCONTACTREPORTREFERENCE 10Telephone RDateofContact:L-8lFollowUpDate'gency OrCompanyandAddreaaPhonePcraon(a}
Contacted andTitleuctrfAj+rararLLEJPua~iipHA/e'tran
+~~reDEUTER'iCOt4e~~<o~-0l't-boo48o4W~E'&~4~,Pr~;<~M!tern(s)and'Part,Number(a) a'Rod~~++8A/0i74Q0lnfonnation rrceded0Temperature Limita0Hcyabilty Oata(MilSpec)0Time/Temperature Octa~diction0Catalogue 0Ltatcrlai
'Oissuaaion+
Aire"pi+art~~~M1''.EreViE~,~er4d.rcWuicAgree,~e..cornre i~we~~+L4iU~~a~Aro.Ccgss'-7=a.eB'Zp,.~~e~M+.L~)'ps.,Qo(aa1e~.t4+p~.gAMMunDM~HenAction'O<g~Reer.ad'~reeor;Ibloc.~Qnp~aliLQa(-m(dree,den CopicaToD.SNi45a4R~By-<c.q6I/r"P-I=r~..~>>.J,'.tr,>
j.,-..
j.,-..
INTEAfJ~TIOnIAL
INTEAfJ~TIOnIAL
~I~~~~~i~IRepottNo.17490-1.PageNo.19REFERENCE 13PI-IdPVCfoam.processat'Irac<s Phijllips jMinorityinterestinFrerichplasticsfirmgivesitacaptiveoutletforjointventure's resinproduction PhiBipsPetroleum doesn'tproducepolyvi>>yl chlorideintheU.SirbutinwesternEurope,thecompanyshowskeen"interest intliatlarge-volume plas-~tic.Earlierthisyear,PhillipsteameduptvithWestGermany's BASFtoformIIadische PhillipsPetroleum, N.V.'(Badiphil)"
~I~~~~~i~I Repot t No.17490-1.Page No.19 REFERENCE 13 PI-Id PVC foam.process at'Irac<s Phijllips j Minority interest in Frerich plastics firm gives it a captive outlet for joint venture's resin production PhiBips Petroleum doesn't produce polyvi>>yl chloride in the U.Sir but in western Europe, the company shows keen"interest in tliat large-volume plas-~tic.Earlier this year, Phillips teamed up tvith West Germany's BASF to form IIadische Phillips Petroleum, N.V.'(Badiphil)" ,in Antwerp in its first venture to make PVC resins (ChEN, June 20, page 23).It fol-lowed that move last month by'acquir-ing a 35%interest in the Paris-based Kleber-.cojombes pictures bridges of amide groups between chains F'Vc",-i-tooc-'(-coo H,:.1 Boo(;-Y-co-Z niH 1 NH OC'-'(-'oop
,inAntwerpinitsfirstventuretomakePVCresins(ChEN,June20,page23).Itfol-lowedthatmovelastmonthby'acquir-inga35%interestintheParis-based Kleber-.cojombes picturesbridgesofamidegroupsbetweenchainsF'Vc",-i-tooc-'(-coo H,:.1Boo(;-Y-co
'l HoOC-'(-COSH-I x PVC X Is segmeni of uinyridenic monomer in Iho la I e rally g ra tl ed chain v (wiih I~o earbosyl groups)Is sagmeni oi~tnylenic anhydride aller hydrolysis in Iho I~le>ally gralled chain Z I~carrier grouping of isoeyanale tunclions ln dl or po>yisocyana>e used urC~i U.S.Pa>ant 3,90O,OS9 plastic fabricator Kl>cber-Colombes Pia'stiques, S.A.The minority holdingin Klcber-Co-lombes Plastiques gives Phillips a cap-tive outlet for Badiphil's PVC.KI>c-her-Colombes Plastiques has a partic-ularly strong position in rigid PVC foams.Its process for producing a cross-linked PVC foam has been li-censed by 14 companies in 12.coun-tries (including B.F.Goodrich and Johns-hfanville in the U.S.).At the same time that Phillips bought,35%
-ZniH1NHOC'-'(-'oop
of Kleber-Colombes Plas-tiques, the West German Bnn', Reno-lit-lVcrke, GmbH, Worms, acquired 14%.This left a 51%interest in the hands of the parent tire and rubber goods manufacturer, Klcber-colombes, S.A.Phillips and Renolit are linked in the U.S.With Nation J Distdiers they own American Renolit, which produces PVC calendered goods.Kll':ber-Colombes Plastiques will post'ales of about$15 million this year.IRIgid PVC foam has been one of its major products for 15 years.But the cross-linked znaterial, Klegecell G 300, has only been offered for about a year and a haIE..KII':bcr-Colombcs Plas-tiques pins its hopes for increased sales on better dimensional stability at teinpcratures to 120 C.and Iugher mechanical strengths for the cross-linked foams.'n its older process (U.S.Patent 2,578,749), Kllcbcr-Colombcs used a two-step process, i>>ivliicli tllc rcac:tio>>of wiitcr with a diiso<<y;matc prociui~d carbon dioiide to give a hardened, cel-lular structure.
'lHoOC-'(-COSH-IxPVCXIssegmeniofuinyridenic monomerinIholaIerallygratledchainv(wiihI~oearbosylgroups)Issagmenioi~tnylenicanhydride allerhydrolysis inIhoI~le>allygralledchainZI~carriergroupingofisoeyanale tunclions lndlorpo>yisocyana>e usedurC~iU.S.Pa>ant3,90O,OS9 plasticfabricator Kl>cber-Colombes Pia'stiques, S.A.Theminorityholdingin Klcber-Co-lombesPlastiques givesPhillipsacap-tiveoutletforBadiphil's PVC.KI>c-her-Colombes Plastiques hasapartic-ularlystrongpositioninrigidPVCfoams.Itsprocessforproducing across-linked PVCfoamhasbeenli-censedby14companies in12.coun-tries(including B.F.GoodrichandJohns-hfanville intheU.S.).AtthesametimethatPhillipsbought,35%
This product has tcics relatively serious drawbacks,.accord-ing to Dr.Yvan La>>dier, manager of the Paris research center of Kleber-Co-lombes.It costs too much, since the process caii't produre ro:ims wirth den-sities bcloiv 2.5 pounds pcr cu.ft.Secondly, it has poor tliernial dimen-sional stability.
ofKleber-Colombes Plas-tiques,theWestGermanBnn',Reno-lit-lVcrke, GmbH,Worms,acquired14%.Thislefta51%interestinthehandsoftheparenttireandrubbergoodsmanufacturer, Klcber-colombes, S.A.PhillipsandRenolitarelinkedintheU.S.WithNationJDistdiers theyownAmericanRenolit,whichproducesPVCcalendered goods.Kll':ber-Colombes Plastiques willpost'alesofabout$15millionthisyear.IRIgidPVCfoamhasbeenoneofitsmajorproductsfor15years.Butthecross-linked znaterial, Klegecell G300,hasonlybeenofferedforaboutayearandahaIE..KII':bcr-Colombcs Plas-tiquespinsitshopesforincreased salesonbetterdimensional stability atteinpcratures to120C.andIughermechanical strengths forthecross-linkedfoams.'nitsolderprocess(U.S.Patent2,578,749),
At 90s C.the foam shrinks about 40 c.At 150 to 160 C., tliese foams collapse.Cross-linking, lioii'c'vcr, makes pos-sible a I'oain ivhidi I>as a density of 1.5 poundc per cu.ft.with correspond-ingly loivcr'osti.
Kllcbcr-Colombcs usedatwo-stepprocess,i>>ivliiclitllcrcac:tio>>
Also, temperature stabilit>is imprc>v<<d.
ofwiitcrwithadiiso<<y;matc prociui~d carbondioiidetogiveahardened, cel-lularstructure.
At 904 C., shrinkage'c only 5":r.At 150'o 160 C., criyis-linked rn:ims rrt;iin t)icir cellular siriicture.
Thisproducthastcicsrelatively seriousdrawbacks,
In lid dit'ion, inc-Kleber-Colombes'andier 14 licensees, 12 countries chanical strengths and solveiit resist ance are Improved.The new process (U.S.Paten 3,200,089), issued to Dr.LandIcr imc Pierre Lebel, also has tivo steps.Ad dition of a vinylidcnic monomer, ai ethylcnic anhydride, a>>d a free-raclic".i catalyst to PVC rcsi>>anil isocmil>vite ii tlie first or moldi>>g step.I>>tlie scc.ond step, a reaction with iv:iter pro duces the Bnished cross-linked foam.Dr.La>>dier proposes a meclianisn to explain the formation of tile ciois linked fo:mi (sec ciriiivi>>g).
.accord-ingtoDr.YvanLa>>dier,manageroftheParisresearchcenterofKleber-Co-lombes.Itcoststoomuch,sincetheprocesscaii'tprodurero:imswirthden-sitiesbcloiv2.5poundspcrcu.ft.Secondly, ithaspoortliernial dimen-sionalstability.
Iic.iir scl'll)cis tllc proc:ess les o>><<111 ivlll<<l amide group~from tlic iso<<yon;>I<<
At90sC.thefoamshrinksabout40c.At150to160C.,tliesefoamscollapse.
bridge grafted PVC macrumol<<cuies In the heat and pressure of molding i: the first step, the eth>'Icnic:>>Ihydrid:
Cross-linking, lioii'c'vcr, makespos-sibleaI'oainivhidiI>asadensityof1.5poundcpercu.ft.withcorrespond-inglyloivcr'osti.
and vinvlidenic monomer cc>poly>ner ize.Tile copolymer thc>>grartc o>>tc the PVC molecule.In tlic scelnii step, tile anhydride units on tile gr:i hydrolyze to acids imd re>i<<t ivitli icv cyanate molccules to cross.li>>k I 1 i.PVC.Solubility studies hear oiit tliis liy-pothesis.Accordi>>g to Dr.L:inilll'I' U:S.patent, tlic Klcher-Ci>li>:>>L<<-
Also,temperature stabilit>
products arc insol>>blc in dimctliyi~form:imide, v.hicli can i7iccolvc nilirl types or PVC-Lose cl e<<lliil:ir ni:il<<ri.ils.
isimprc>v<<d.
Tiic eonclucion is tliat Iiie Kli'lll>-Co.ion>lies products arc diitin<<ily diiicli n!and ni:iy I>ave a rciie>>IairrI ciru<<I>>le ivjtli:i Iridiincnsion.ii i>l'Iivuik.
At904C.,shrinkage'c only5":r.At150'o160C.,criyis-linked rn:imsrrt;iint)icircellularsiriicture.
Contact Report Of: Date Of Contact: 8--8 l Report No.17490-1 CONTACT REPORT Page No.20 REFERENCE 14 Telephone Q Visit Q Page 1 of 3 Follow Up Date: Agency Or Company and Address Phone Person(s)Contacted and Title PogeS~QkS f CMcZR<C (.~if)rl4-~oo Purpose~F0RAIL6.~
Inliddit'ion,inc-Kleber-Colombes'andier 14licensees, 12countries chanicalstrengths andsolveiitresistanceareImproved.
~+~~~e g a p g year Discussion H ,v.mcnab 1~c.~H~f t(owing o Cmv+~~0 b44ws&Q dpace)t5 gl 7 ohio.(coAlsirdchiis fl'M~'ol-vck~cs M're 505)hauC.hatP,~2.~~4.gg;tli8*.,<p~.B.+a~<.vid~Iv~ging~~<Ru.RHI2 s.~i~l4 A~~I,S'X Io Cg~>>~i%~~3>mW+(~ts wed.'"F~e.~gy.gD~s gtqeP'~Qcf ll~oL~4GCC~~/iM~~
Thenewprocess(U.S.Paten3,200,089),
~~(~g 0-'op (80~g Action.Copies To: 549 Rev.
issuedtoDr.LandIcrimcPierreLebel,alsohastivosteps.Additionofavinylidcnic monomer,aiethylcnic anhydride, a>>dafree-raclic".i catalysttoPVCrcsi>>anilisocmil>vite iitliefirstormoldi>>gstep.I>>tliescc.ondstep,areactionwithiv:iterproducestheBnishedcross-linked foam.Dr.La>>dierproposesameclianisn toexplaintheformation oftilecioislinkedfo:mi(secciriiivi>>g).
Contact Report Of: fA~cue@Date Of Contact: 8-7-8 l O Nk'5 CI R 50 RT Page No.21 REFERENCE 14 Page 2 Of 3 Telephone~Visit g Follow Up Date: I Agency Or Company and Address Phone Person(s)Contacted and Title 6Cf(&mr g~~p'/Mjic Purpose Discussion Action.o@~~~~~on~>>~~R.D~a azgyyo 8(~4l((~(s~~I Sc((s(Q)gc/,~r~~M a (((~+P~@e~M~~s.,'W]g~~)d]~~~: (e~M Ltd'~c5el~~~r//<~~~~~o/zoo ceps (&mgw((~~o~~~)pB&y 8I 4~~~~~~g'g+~I(~hajji~~~~c~(75gw (s~+p M (s'lo o r-(((rr wi'ooIcs (lc~r zc~Q~o((rg WAh~Hw pe<+~~~+f>f~-(de pp~So@a M, ,~mo~~ls)3WP ig aOoa Wp~r(l Ec rec((cu(~-pg~g~h~~~+~~~PH~~~~e~~(a~Copies To: 549 Rev.
Iic.iirscl'll)cis tllcproc:essleso>><<111ivlll<<lamidegroup~fromtliciso<<yon;>I<<
Contact Report Of: RePilrt No.'l7$90-1~CONTACT REPORT REFERENCE 14 Page 3 of 3 Telephone~Visit Q Date Of Contact: Follow Up Date: Agency Or Company and Address l Phone Person(s)Contacted and Title.epoch u5v" Cp/rs-M>Purpose.Vl A)pence~yQSg~dA3 QQP 4O/7Mfd Discussion o~~imps~~~&(~),, 4-mC p a~5~pcecl+~~QtfM~Cog (PA y(4.-der-/d~~l+9 A~~giaXo.bed'~o~~~~~.Action.hgu-~+a<~~C'~4~Nd ckcNK~~s~+anC~Copies To: 549 Rev.
bridgegraftedPVCmacrumol<<cuies Intheheatandpressureofmoldingi:thefirststep,theeth>'Icnic:>>Ihydrid:
0~~-~~~~~~~~I I~~~a 0.(~e~P g.~f Report No.17490-1':i''-"..lq t..JJgfl/I,/!Q i:j<<~'" REFERENCE 18 RIGID CROSS-I INK ED PVC I=0AM UINXLCEL FiiYSZCAL PROPERTIES" (average values)TEST 1KTHOD NORMAL DENSlTX, PCF Compressive Strength (ultimate)~
andvinvlidenic monomercc>poly>ner ize.Tilecopolymer thc>>grartco>>tcthePVCmolecule.
psi Rt 70F at 175F at 212F Laminar Tensile Strength, psi Shear Strength (ultimate), psi Flexural Strength-';.Modulus of.Rupture, psi'"'.Fodulus of, Elasticity, psi Coefficidnt of Lingar Expansion in/in/F x 10 (up to 110F)Linear, Shrinkage,, C 100 days 175F dry soa3d.ng heat 100days 158F, 100$RH 63 days 120F, 100+~RH Water Vapor Permeability, perm-inch Water.,Absorption,~volume 48 hrs at 10'ead." Pl~bili.ty, 1", thick..-.Tunnel Flame Spread Smoke Developed Thermal Conductivity (Btu in.per sq ft per F per hr)75F me BI1 OF mean ASTM D1621&4 ASTM.0297-61 ASTM C273&1 ASTM C203-58.ASTM 0355-64 HH I-524 ASTM E84-61 ASTM 05183T 45 38 33 50 30 70 3000 8 2$3$g1$0.1 20 80-1 00.20.16 158 113 106 165'75.190 7000 10 1.7$2$<1$0.04.'A NA'-22.18 265 185 175 123 310 9000 0.5$0.5$(1%0.001 36 (3/4~tk.)P 200-23.19 Test Data.values shown are averages as tested by standard methods.These values.are, provided.as guides for product evaluation and are given without liability to J'ohns->~ville.
Intlicscelniistep,tileanhydride unitsontilegr:ihydrolyze toacidsimdre>i<<tivitliicvcyanatemolccules tocross.li>>k I1i.PVC.Solubility studieshearoiittliisliy-pothesis.
0.,,.~RePoI<"0 U4go+(aC:,LtC'~~=-"I.'a=."..'et Page No.25 gpRgo z)NQ tt REFERENCE 23 r C=~I, thCZfll(I~f
Accordi>>g toDr.L:inilll'I' U:S.patent,tlicKlcher-Ci>li>:>>L<<-
'350 HANLEY INDUSTRIAL COURT~ST.LOUIS, MO.63144~314-644-1000 SELECTION DATA GENERIC TYPE: Self curing, inorganic zinc primer.The coating consists of a basic zinc silicate complex.Base and~zittc filler mixed prior to application.
productsarcinsol>>blc indimctliyi
GENERAL PROPERTIES:
~form:imide, v.hiclicani7iccolvc nilirltypesorPVC-Losecle<<lliil:ir ni:il<<ri.ils.
An inorganic zinc base coat that protects steel galvanically, eliminating sub-film corrosion.
Tiiceonclucion istliatIiieKli'lll>-Co.ion>liesproductsarcdiitin<<ily diiiclin!andni:iyI>avearciie>>IairrI ciru<<I>>le ivjtli:iIridiincnsion.ii i>l'Iivuik.
Has outstanding application properties.
ContactReportOf:DateOfContact:8--8lReportNo.17490-1CONTACTREPORTPageNo.20REFERENCE 14Telephone QVisitQPage1of3FollowUpDate:AgencyOrCompanyandAddressPhonePerson(s)
Can be applied at the recommended thickness in one coat.RECOMMENDED USES: Carbo Zinc 11 (the first selfeur-ing inorganic zinc primer)is used as a single coat protection of steel structures in weathering exposure and as a base coat for organic and inorganic topcoats in more severe services.Excellent for the interiors and exteriors of storage tanks containing fuels and organic solvents.Has many uses as a maintenance primer, with or without topcoats, depending on exposure.Used widely in chemical plants, paper mills, refineries and coastal or salt atmospheres including offshore structures.
Contacted andTitlePogeS~QkSfCMcZR<C(.~if)rl4-~ooPurpose~F0RAIL6.~
Carbo Zinc 11 meets the stringent performance requirements of the American National Standards Institute, ANSI N101.2-1972 and ANSI N5.1 2.1974.NOT RECOMMENDED FOR: Immersion or indirect ex-'osure to acids or alkalies without suitable topcoat.CHEMICAL RESISTANCE GUIDE: (with proper topcoat)Heavy Fumes or Outside Light Splash Weathering Exposure immersion,~and Spiiio e or Miid Fumes Acids NR Very Good Excellent Alkalies NR Very Good Excellent Solvents Excellent Excellent Excellent Salt Excellent Excellent Excellent Water-Excellent Excellent Excellent TEMPERATURE RESISTANCE: (non-immersion)
~+~~~egapgyearDiscussion H,v.mcnab1~c.~H~ft(owingoCmv+~~0b44ws&Qdpace)t5gl7ohio.(coAlsirdchiis fl'M~'ol-vck~csM're505)hauC.hatP,~2.~~4.gg; tli8*.,<p~.B.+a~<.vid~Iv~ging~~<Ru.RHI2s.~i~l4A~~I,S'XIoCg~>>~i%~~3>mW+(~tswed.'"F~e.~gy.gD~sgtqeP'~Qcfll~oL~4GCC~~/iM~~
~~(~g0-'op(80~gAction.CopiesTo:549Rev.
ContactReportOf:fA~cue@DateOfContact:8-7-8lONk'5CIR50RTPageNo.21REFERENCE 14Page2Of3Telephone
~VisitgFollowUpDate:IAgencyOrCompanyandAddressPhonePerson(s)
Contacted andTitle6Cf(&mrg~~p'/MjicPurposeDiscussion Action.o@~~~~~on~>>~~R.D~aazgyyo8(~4l((~(s~~ISc((s(Q)gc/,~r~~Ma(((~+P~@e~M~~s.,'W]g~~)d]~~~:(e~MLtd'~c5el~~~r//<~~~~~o/zooceps(&mgw((~~o~~~)pB&y8I4~~~~~~g'g+~I(~hajji~~~~c~(75gw(s~+pM(s'loor-(((rrwi'ooIcs(lc~rzc~Q~o((rgWAh~Hwpe<+~~~+f>f~-(depp~So@aM,,~mo~~ls)3WPigaOoaWp~r(lEcrec((cu(~
-pg~g~h~~~+~~~PH~~~~e~~(a~CopiesTo:549Rev.
ContactReportOf:RePilrtNo.'l7$90-1~CONTACTREPORTREFERENCE 14Page3of3Telephone
~VisitQDateOfContact:FollowUpDate:AgencyOrCompanyandAddresslPhonePerson(s)
Contacted andTitle.epochu5v"Cp/rs-M>Purpose.VlA)pence~yQSg~dA3QQP4O/7MfdDiscussion o~~imps~~~&(~),,4-mCpa~5~pcecl+~~QtfM~Cog(PAy(4.-der-/d~~l
+9A~~giaXo.bed'~o~~~~~.Action.hgu-~+a<~~C'~4~NdckcNK~~s~+anC~CopiesTo:549Rev.
0~~-~~~~~~~~II~~~a0.(~e~Pg.~f ReportNo.17490-1':i''-"..lqt..JJgfl/I,/!Qi:j<<~'"REFERENCE 18RIGIDCROSS-IINKEDPVCI=0AMUINXLCELFiiYSZCAL PROPERTIES" (averagevalues)TEST1KTHODNORMALDENSlTX,PCFCompressive Strength(ultimate)~
psiRt70Fat175Fat212FLaminarTensileStrength, psiShearStrength(ultimate),
psiFlexuralStrength-';.Modulus of.Rupture, psi'"'.Fodulus of,Elasticity, psiCoefficidnt ofLingarExpansion in/in/Fx10(upto110F)Linear,Shrinkage,,
C100days175Fdrysoa3d.ngheat100days158F,100$RH63days120F,100+~RHWaterVaporPermeability, perm-inch Water.,Absorption,~volume 48hrsat10'ead."Pl~bili.ty, 1",thick..-.TunnelFlameSpreadSmokeDeveloped ThermalConductivity (Btuin.persqftperFperhr)75FmeBI1OFmeanASTMD1621&4ASTM.0297-61ASTMC273&1ASTMC203-58.ASTM0355-64HHI-524ASTME84-61ASTM05183T453833503070300082$3$g1$0.12080-100.20.16158113106165'75.1907000101.7$2$<1$0.04.'ANA'-22.1826518517512331090000.5$0.5$(1%0.00136(3/4~tk.)P200-23.19TestData.valuesshownareaveragesastestedbystandardmethods.Thesevalues.are,provided.asguidesforproductevaluation andaregivenwithoutliability toJ'ohns->~ville.
0.,,.~RePoI<"0U4go+(aC:,LtC'~
~=-"I.'a=."..'etPageNo.25gpRgoz)NQttREFERENCE 23rC=~I,thCZfll(I~f
'350HANLEYINDUSTRIAL COURT~ST.LOUIS,MO.63144~314-644-1000 SELECTION DATAGENERICTYPE:Selfcuring,inorganic zincprimer.Thecoatingconsistsofabasiczincsilicatecomplex.Baseand~zittcfillermixedpriortoapplication.
GENERALPROPERTIES:
Aninorganic zincbasecoatthatprotectssteelgalvanically, eliminating sub-filmcorrosion.
Hasoutstanding application properties.
Canbeappliedattherecommended thickness inonecoat.RECOMMENDED USES:CarboZinc11(thefirstselfeur-inginorganic zincprimer)isusedasasinglecoatprotection ofsteelstructures inweathering exposureandasabasecoatfororganicandinorganic topcoatsinmoresevereservices.
Excellent fortheinteriors andexteriors ofstoragetankscontaining fuelsandorganicsolvents.
Hasmanyusesasamaintenance primer,withorwithouttopcoats, depending onexposure.
Usedwidelyinchemicalplants,papermills,refineries andcoastalorsaltatmospheres including offshorestructures.
CarboZinc11meetsthestringent performance requirements oftheAmericanNationalStandards Institute, ANSIN101.2-1972 andANSIN5.12.1974.NOTRECOMMENDED FOR:Immersion orindirectex-'osuretoacidsoralkalieswithoutsuitabletopcoat.CHEMICALRESISTANCE GUIDE:(withpropertopcoat)HeavyFumesorOutsideLightSplashWeathering Exposureimmersion,
~andSpiiioeorMiidFumesAcidsNRVeryGoodExcellent AlkaliesNRVeryGoodExcellent SolventsExcellent Excellent Excellent SaltExcellent Excellent Excellent Water-Excellent Excellent Excellent TEMPERATURE RESISTANCE:
(non-immersion)
Continuous:
Continuous:
750'(399'C)Non.continuous:
750'(399'C)Non.continuous:
800F(427'C)FLEXIBILITY:
800 F (427'C)F LEXIBILITY:
Fair.GoodWEATHERING:
Fair.Good WEATHERING:
Excellent ABRASIONRESISTANCE:
Excellent ABRASION RESISTANCE:
Excellent.
Excellent.
Abrasionresistance increases withage.SUBSTRATES:
Abrasion resistance increases with age.SUBSTRATES:
Applyoverproperlypreparedsteel,castiron,orothersurfacesasrecommended.
Apply over properly prepared steel, cast iron, or other surfaces as recommended.
TOPCOATREQUIRED:
TOPCOAT REQUIRED: May be topcoated with epoxies, phenolics, vinyls, acrylics, silicones, chlorinated rubbers or others as recommended.
Maybetopcoated withepoxies,phenolics, vinyls,acrylics, silicones, chlorinated rubbersorothersasrecommended.
NOTE: Under certain conditions a mist coat or tie coat may be desirable to prevent topcoat bubbling.COMPATIBILITY WITH OTHER COATINGS: Apply di-rectly over substrate, Carbo Weld 11 or other inorganic zincs as recommended.
NOTE:Undercertainconditions amistcoatortiecoatmaybedesirable topreventtopcoatbubbling.
SPECIFICATION DATA THEORETICAL SOLIDS CONTENT OF MIXED MA.TE RIAL:~BWri hs Carbo Zinc 11 7%k~2%Percent zinc in dry film 86%RECOMMENDED DRY FILM THICKNESS PER COAT: 2-3 mils (50 to 75 microns)THEORETICAL COVERAGE PER MIXED GALLON: 1000 mil sq.ft.(24.5 sq.m/1 9 25 microns)333 sq.ft.at 3 mits (8.2 sq.m/1 8 75 microns)'NOTE: Material losses during mixing and application will vary and must be taken into consideration when estimating job requirements.
COMPATIBILITY WITHOTHERCOATINGS:
SHELF LIFE: Base: 12 months minimum Zinc Filler: 24 months minimum COLORS: Gray or Green only.GLOSS: Mane finish.ORDERING INFORMATION Prices may be obtained from Carboline Sales Representative or Main Office.Terms-Net 30 days.SHIPPING WEIGHT: 1'$5's Carbo Zinc 11 23 lbs.{10.4 kg)113 lbs.(51.3 kg)Carboline Thinner t",33 9 lbs.(4.1 kg)41 lbs.(18.6 kg)Carboline Thinner~21 8 lbs.{3,6 kg)36 lbs.(16.3 kg)FLASH POINT: (Pensky.Martens Closed Cup)Carbo Zinc 11 Base 56 F (13 C)Carboline Thinner 433 101 F (38 C)Carboline Thinner n21 53 F (12 C)Feb.81 Replaces Jan.80 To the best of oui knowledge the technical data contained herein we true and accurate at the date of'Issuance and are sublect to change without pnor notice.User must conlact carboline to verity correctness before soecifying or ordering.No guarantee of accuracy is given or imolied.we guwantee our products to conform to carboline duality control.we assume no resoonsibility for coverage, performance or inluries~esulting from use.Liability.
Applydi-rectlyoversubstrate, CarboWeld11orotherinorganic zincsasrecommended.
it any, is limrced co reolacement of nroducts.Prices and cost'data it shown, are sublect lo change without nrior notice.NO QTHER WAR RAN'ry QR QUARANTFF OF ANY KIND IS MADE=BY TfsE SELLER, ExPRESS QR IMPLIED.STATUTORY.
SPECIFICATION DATATHEORETICAL SOLIDSCONTENTOFMIXEDMA.TERIAL:~BWrihsCarboZinc117%k~2%Percentzincindryfilm86%RECOMMENDED DRYFILMTHICKNESS PERCOAT:2-3mils(50to75microns)THEORETICAL COVERAGEPERMIXEDGALLON:1000milsq.ft.(24.5sq.m/1925microns)333sq.ft.at3mits(8.2sq.m/1875microns)'NOTE:Materiallossesduringmixingandapplication willvaryandmustbetakenintoconsideration whenestimating jobrequirements.
ey OPERATION QR LAW, QR QTHERWISE, INCLUDING MERCHANTAOILI TY AND FITNESS FOR A PARTICULAR PURPOSE.  
SHELFLIFE:Base:12monthsminimumZincFiller:24monthsminimumCOLORS:GrayorGreenonly.GLOSS:Manefinish.ORDERINGINFORMATION PricesmaybeobtainedfromCarboline SalesRepresentative orMainOffice.Terms-Net30days.SHIPPINGWEIGHT:1'$5'sCarboZinc1123lbs.{10.4kg)113lbs.(51.3kg)Carboline Thinnert",339lbs.(4.1kg)41lbs.(18.6kg)Carboline Thinner~218lbs.{3,6kg)36lbs.(16.3kg)FLASHPOINT:(Pensky.Martens ClosedCup)CarboZinc11Base56F(13C)Carboline Thinner433101F(38C)Carboline Thinnern2153F(12C)Feb.81ReplacesJan.80Tothebestofouiknowledge thetechnical datacontained hereinwetrueandaccurateatthedateof'Issuance andaresublecttochangewithoutpnornotice.Usermustconlactcarboline toveritycorrectness beforesoecifying orordering.
'6 Report No.17490-'t.'age No.26 PHENOL!IIEo 305 FINISH REFERENCE 23 350 HANLEY INDUSTRIAL COURT~ST.LOUIS, MO.63144~314-644-109 5 ELECTI 0 N D ATA GENERIC TYPE: Modified phenolic.Part A and Part B mixed prior to application.
Noguarantee ofaccuracyisgivenorimolied.weguwanteeourproductstoconformtocarboline dualitycontrol.weassumenoresoonsibility forcoverage, performance orinluries~esulting fromuse.Liability.
GENERAL PROPERTIES:
itany,islimrcedcoreolacement ofnroducts.
A heavy duty topcoat, Phenoline 305 Finish sets to a hard, tough;smooth finish having very gdod abrasion resistance.
Pricesandcost'dataitshown,aresublectlochangewithoutnriornotice.NOQTHERWARRAN'ryQRQUARANTFF OFANYKINDISMADE=BYTfsESELLER,ExPRESSQRIMPLIED.STATUTORY.
The surface is glossy and easily cleaned.Has excellent resistance to a wide range of solvents, caustics, cleaning solutions and acid entrained vapors of high concentration.
eyOPERATION QRLAW,QRQTHERWISE, INCLUDING MERCHANTAOILI TYANDFITNESSFORAPARTICULAR PURPOSE.  
Phenoline 305 Finish has outstanding chemical, physical and application properties.
'6ReportNo.17490-'t.'age No.26PHENOL!IIEo 305FINISHREFERENCE 23350HANLEYINDUSTRIAL COURT~ST.LOUIS,MO.63144~314-644-109 5ELECTI0NDATAGENERICTYPE:Modifiedphenolic.
Phenoline 305-Finish is easily repaired, has excellent resistance to hydraulic fluids and meets the applicable performance criteria of the American National Standards Institute ANSI 101.2-1972 and ANSI NS.12-1974.It has performed satis.factorily in radiation resistance and decontamination testing at Oak Ridge National Laboratory.
PartAandPartBmixedpriortoapplication.
RECOMMENDED USES: Phenoline 305 Finish is an ex.cellent coating for the protection of steel and concrete sur.faces in-nuclear power plants:"Because of its glossy appear-'ance and excellent physical properties, Phenoline 305 Finish is an excellent topcoat for use by manufacturers of industrial equipment and components.
GENERALPROPERTIES:
Also used in chem-ical processing plants, pulp and paper mills for the protec.tion of structural steel and concrete against severe splash, spillage and fumes.Makes an excellent floor coating, addi~tion of Special Silica n 2 provides a non.skid surface.NOT.RECOMMENDED FOR: Immersion service or con-tinuous spillage of hot or concentrated acids.CHEMICAL RESISTANCE GUIDE: COMPATIBILITY WITH OTHER COATINGS: May be g applied over inorganic zincs, catalyzed epoxies, modified phenolics or others as recommended.
Aheavydutytopcoat,Phenoline 305Finishsetstoahard,tough;smoothfinishhavingverygdodabrasionresistance.
Acceptable primers are Carbo Zinc 11, Carbo Zinc 12, Carboline 195 Sur.facer, Carboline 295 WB Surfacer, Phenoline 305 Primer, Phenoline 305 Concrete Primer, Phenoline 307 or others as recommended.
Thesurfaceisglossyandeasilycleaned.Hasexcellent resistance toawiderangeofsolvents,
A mist coat may be required when applied over inorganic zinc.SPECIFICATION DATA THEORETICAL SOLIDS CONTENT OF MIXED MA-TERIAL: By Volume 64+2~o Phenoline 305 Finish RECOMMENDED DRY FILM THICKNESS PER COAT: 4 6 mils (100-150 microns)THEORETICAL COVERAGE PER MIXED KIT': 1 gal.kit (yields 1.25 gal.)1283 mil sq.ft.(25.6 sq.m/I 9 25 microns)320 sq.ft.at 4 mils (6.4 sq.m/I 8 100 microns)5 gal.kit (yields 6.25 gal.)6416 mil sq.ft.(25.6 sq.m/I 8 25 microns)1603 sq.ft.at 4 mils (6.4 sq.m/I 8 100 microns)NOTE: Material losses during mixing and application will vary and must be taken into consideration when estimating job requirements.
: caustics, cleaningsolutions andacidentrained vaporsofhighconcentration.
SHELF LIFE: 2 years minimum Exposure Acids Alkalies Solvents Salt Water Splash and Spillage Very good Excellent Excellent Excellent Excellent Fumes Excellent Excellent Excellent Excellent Excellent COLORS: Phenoline 305 Finish: Standard colors are White C800, Gray C705, Gray C703.Consult Carboline Color Chart.I GLOSS: Glossy ORDERING INFORMATION TEMPERATURE RESISTANCE:
Phenoline 305Finishhasoutstanding
: chemical, physicalandapplication properties.
Phenoline 305-Finishiseasilyrepaired, hasexcellent resistance tohydraulic fluidsandmeetstheapplicable performance criteriaoftheAmericanNationalStandards Institute ANSI101.2-1972andANSINS.12-1974.Ithasperformed satis.factorily inradiation resistance anddecontamination testingatOakRidgeNationalLaboratory.
RECOMMENDED USES:Phenoline 305Finishisanex.cellentcoatingfortheprotection ofsteelandconcretesur.facesin-nuclear powerplants:"Because ofitsglossyappear-'anceandexcellent physicalproperties, Phenoline 305Finishisanexcellent topcoatforusebymanufacturers ofindustrial equipment andcomponents.
Alsousedinchem-icalprocessing plants,pulpandpapermillsfortheprotec.tionofstructural steelandconcreteagainstseveresplash,spillageandfumes.Makesanexcellent floorcoating,addi~tionofSpecialSilican2providesanon.skidsurface.NOT.RECOMMENDED FOR:Immersion serviceorcon-tinuousspillageofhotorconcentrated acids.CHEMICALRESISTANCE GUIDE:COMPATIBILITY WITHOTHERCOATINGS:
Maybegappliedoverinorganic zincs,catalyzed epoxies,modifiedphenolics orothersasrecommended.
Acceptable primersareCarboZinc11,CarboZinc12,Carboline 195Sur.facer,Carboline 295WBSurfacer, Phenoline 305Primer,Phenoline 305ConcretePrimer,Phenoline 307orothersasrecommended.
Amistcoatmayberequiredwhenappliedoverinorganic zinc.SPECIFICATION DATATHEORETICAL SOLIDSCONTENTOFMIXEDMA-TERIAL:ByVolume64+2~oPhenoline 305FinishRECOMMENDED DRYFILMTHICKNESS PERCOAT:46mils(100-150microns)THEORETICAL COVERAGEPERMIXEDKIT':1gal.kit(yields1.25gal.)1283milsq.ft.(25.6sq.m/I925microns)320sq.ft.at4mils(6.4sq.m/I8100microns)5gal.kit(yields6.25gal.)6416milsq.ft.(25.6sq.m/I825microns)1603sq.ft.at4mils(6.4sq.m/I8100microns)NOTE:Materiallossesduringmixingandapplication willvaryandmustbetakenintoconsideration whenestimating jobrequirements.
SHELFLIFE:2yearsminimumExposureAcidsAlkaliesSolventsSaltWaterSplashandSpillageVerygoodExcellent Excellent Excellent Excellent FumesExcellent Excellent Excellent Excellent Excellent COLORS:Phenoline 305Finish:StandardcolorsareWhiteC800,GrayC705,GrayC703.ConsultCarboline ColorChart.IGLOSS:GlossyORDERINGINFORMATION TEMPERATURE RESISTANCE:
Continuous:
Continuous:
200F(93.3C)Noncontinuous:
200 F (93.3 C)Non continuous:
250F(121C)FLEXIBILITY:
250 F (121 C)FLEXIBILITY:
FairWEATHERING:
Fair WEATHERING:
VerygoodABRASIONRESISTANCE:
Very good ABRASION RESISTANCE:
VerygoodSUBSTRATES:
Very good SUBSTRATES:
Applyoversuitablyprimedmetalorce.mentitious surfaces.
Apply over suitably primed metal or ce.mentitious surfaces.Surfacer normally required for poured vertical surfaces.TOPCOAT REQUIRED: Normally none SHIPPING WEIGHT: 1 Gal.Kit~i).26~I.)17 lbs.(7.7 kg)9 lbs.(4.1 kg)9 lbs.(4.1 kg)Phenoline 305 Finish Phenoline Thinner Caibolifte Thinner Q 5 Gal.Kit (6.26 isl.)66 iki.(36.3 26)~45 lbs.(20.5 kg)45 lbs.(20.5 kg)FLASH POINT: (Pensky.Martens Closed Cup)Phenoline 305 Finish Part A 68'F (20.0 C)Phenoline 305 Finish Part B 60 F (15.6 C)Phenoline Thinner 77'F (25 C)Carboline Thinner W 30'F (~1 C)Prices may be obtained from Carboline Sales Representative or Main Office.Terms-Net 30 days.May 80 Replaces Jan.80 To the best of our know)edge the technical data contained herein are true and accurate st the date of issiiance and aie 5ubleot IO Change w'thout prior notice.User must contact carboline to verily cotrectno55 beforo 5oecifying or ordering.No guarantee of accuracy i5 gwen or'molted.we guarantee our products to confotm lo cstboline uuaiity control.we assume no responsibility for coverage, per lotmsnce or inlutie5 re~ulting from use.Liability, if sny.)s limited to replacement of oroducts, pticos snd co52 dale if shown, sre sub)act to chango without pr'ot nett<<, No OTHFR WaRRANTY OR GUARANTEE OF ANY KINO IS VADE BV THE SELLER.EXPRESS OR lltPLIEO.STATUTORY.
Surfacernormallyrequiredforpouredverticalsurfaces.
BY OPERATION OR LAW OR OTHERWISE INCI UOING x ERCHANTABILITY ANO FITNESS FOR A PARTICULAR PURPOSF~}}
TOPCOATREQUIRED:
NormallynoneSHIPPINGWEIGHT:1Gal.Kit~i).26~I.)17lbs.(7.7kg)9lbs.(4.1kg)9lbs.(4.1kg)Phenoline 305FinishPhenoline ThinnerCaibolifte ThinnerQ5Gal.Kit(6.26isl.)66iki.(36.326)~45lbs.(20.5kg)45lbs.(20.5kg)FLASHPOINT:(Pensky.Martens ClosedCup)Phenoline 305FinishPartA68'F(20.0C)Phenoline 305FinishPartB60F(15.6C)Phenoline Thinner77'F(25C)Carboline ThinnerW30'F(~1C)PricesmaybeobtainedfromCarboline SalesRepresentative orMainOffice.Terms-Net30days.May80ReplacesJan.80Tothebestofourknow)edge thetechnical datacontained hereinaretrueandaccuratestthedateofissiiance andaie5ubleotIOChangew'thoutpriornotice.Usermustcontactcarboline toverilycotrectno55 beforo5oecifying orordering.
Noguarantee ofaccuracyi5gwenor'molted.weguarantee ourproductstoconfotmlocstboline uuaiitycontrol.weassumenoresponsibility forcoverage, perlotmsnceorinlutie5re~ulting fromuse.Liability, ifsny.)slimitedtoreplacement oforoducts, pticossndco52daleifshown,sresub)acttochangowithoutpr'otnett<<,NoOTHFRWaRRANTYORGUARANTEE OFANYKINOISVADEBVTHESELLER.EXPRESSORlltPLIEO.STATUTORY.
BYOPERATION ORLAWOROTHERWISE INCIUOINGxERCHANTABILITY ANOFITNESSFORAPARTICULAR PURPOSF~}}

Revision as of 13:47, 7 July 2018

Analysis of Decomposition Effects of Vinycel Insulation in Dba.
ML17258A311
Person / Time
Site: Ginna Constellation icon.png
Issue date: 09/28/1981
From: BRUCE M, GLEASON J P, THOME R
WYLE LABORATORIES
To:
Shared Package
ML17258A310 List:
References
TASK-06-01, TASK-6-1, TASK-RR 17490-1, NUDOCS 8111130591
Download: ML17258A311 (31)


Text

),!'3r.!,g...I',!>,!,*g v~,'gK!,',yes>'!>,!TAN~!~','*ANALYSIS OF THE DECOMPOSITION EFFECTS OF INYLCEL INSULATION IN A DESIGN BASIS ACCIDENT NUCLEAR ENYIRtINMENTAL

'-QUALIEICATION

.::!Il!4!!!8111130591 81110b PDR@DOCK 05000244 P POR h D!!!!!!'\'p!

C.f

%PIFLIE'IPGRKB SCIENTIFIC SERVICES AND SYSTEMS GROUP HUNTSVILLE, ALABAMA il I Rochester Gas and Electric Corporation 89 East Avenue Rochester, New York 14649 REPORT NO.17490 WYLE JOB NO.N-BU-17089 YOUR P.O.NO.OATE September 28, 1981 ANALYSIS OF THE DECOMPOSITION EFFECTS OF VINYLCEL INSULATION IN A DESIGN BASIS ACCIDENT by J.F.Gleason, M.Bruce, R.Thome r sTATE 0F ALABAMA$ss Cal i fornia Professional

"""'""""""" J Engineering Reg.No.2635 James F.Gleason.being dulysworn, i deposes and says: The information contained in this report is the result of complete and carefully conoucted analyses and is Jo the best of his knowledge true and correct in all ,19 Notary Public in ar(d for the S'tate nf rttTabamaat large.My cornmrssror empires~n Wyte shall have no liability for darnagcs ot any kind to person or property.including special or conscrtucntiat damages.resulting from Wyie's providing the services covered by this rcporh--.;u'~PREPARED BY J.6'leason,M.Bruce,R.

Thome~/a..r.//v.Mur'vin J.Kimbrell Report No.17490-1 Page No.ii 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 TABLE OF CONTENTS PURPOSE SCOPE APPLICABLE VINYLCEL TEST REPORTS TEST RESULTS 4.1 Water Vapor Permeability and Humid Aging 4.2 Effects of Heat and Pressure 4.3 Resistance to Flame Exposure 4.4 Thermogravimetric Analysis 4.5 Radiation ANALYSIS 5.1 Analysis Including Data for Similar Materials.5.2 Determination of Radiation Sensitivity EVALUATION OF GINNA ACCIDENT CONDITIONS CALCULATIONS CORROSIVE EFFECTS Page Number'6 8.1 8.2 8.3 Effects on RHR Components Effects on Carbon Steel Panel Liner Effects on the 19-Nil Stainless Steel Insulation Facing Panels 9.0 10.0

11.0 CONCLUSION

S REFERENCES APPENDIX 12 WYLE LABORATORIES Huntsville FaCility

Repor t No.17490-1 Page No.=1 1.0 PURPOSE This analysis was prepared by Wyle Laboratories for Rochester Gas and Electric Company.The purpose of this report is to provide answers to the following NRC questions:

1.Estimate of the amounts of each gas, such as hydrogen, organic gases, and hydrogen chloride, which would be produced by radiation from the decomposition of the foam during a DBA.2'.The results of an analysis of the effect of the hydrogen chloride generated during a DBA, including corrosion of components in the, containment building.2.0 SCOPE 3.0 The scope of this investigation includes literature search and analysis of applicable data for Johns-Manville Vinylcel insulation.

Test data for Vinylcel, and for a number of similar polyvinyl chloride materials is considered.

The effects of'the"Robert E.Ginna plant normal and accident environments on Vinylcel are evaluated.

APPLICABLE VINYLCEL TEST REPORTS 4.0 3.1 Johns-Manville Research and Engineering Center,"Test Report Vinylcel (4PCF)-Water Vapor Permeability and Humid Aging Tests," Report No.E455-T-268, December 20, 1967 3.2'ohns-Manville Research and Engineering Center,"Test Report, Vinylcel (4PCF)-Effect of Heat and Pressure," Report No E455-T-266, November 3, 1967 3.3 Johns-Manville Research and Engineering Center,"Test Report, Vinylcel-Resistance to Flame Exposure", Report No.E455-T-258, September 21, 1967 TEST RESULTS.4.1 Water Va or Permeabilit and Humid A in Per Report 3.1, Vinylcel with 4PCF nominal density was tested for water permeability at 90oF, for 50%relative humidity, and for dimensional changes at 120oF and 100%relative humidity.The results are as follows: o Results indicate that the water permeability of a 1-inch thick specimen was 0.06 perm-in.o After six (6)months at 120oF and 100%relative humidity, the volume change was only 1.2%and length and width changes only 0.3%.WYLE LABORATORlES Huntsville Facility Report No.17490-1 Page No.2 4.0 4.2 TEST RESULTS (CONTINUED)

Effect of Heat and Pressure Per Report 3.2, Vinylcel of 4 PCF nominal density, l-l/2 inches thick, was subjected to a combined heat and compression test to simulate an"incident" in a nuclear reactor containment vessel.The results are as follows: The 30-'minute test included a maximum temperature of 334oF at 90 PSI.Eighty six (86)percent of the test time was at a temperature greater than the 286oF maximum.accident temperature at the Ginna plant." Maximum permanent loss of thickness was 29 percent.Weight loss was not measured so decomposition could not be evaluated.

4.3 4.4 Resistance to Flame Ex osure Per Report 3.3, unfaced and metal-faced Vinylcel were subjected to a number of flame tests, including building tests, vertical panel test, tunnel test, and flame penetration.

'The metal-faced Vinylcel passed all tests, whereas, the unfaced performed satisfactorily in all but the flame penetration.

Attempts were made to'ignite'the'evolved gases.Only trace quantities of combustible gases (possibly'H2 orshort chain hydrocarbons) were found.Thermo avimetric Anal sis The complete test report, Johns-Manville Test Report E455-T-142, was not.available, but the.test conditions and graphic results are provided in Report 3.3.The results are as follows: The Vinylcel was subjected to a heating rate of 8oC per minute, and the air flow was 0.5 liters per minute.Initial weight loss occurred at 140oC (284oF), and rapid weight loss was observed at"225oC'('437oF).'

38 percent weight loss was observed at 300oC (572oF).Decomposition was continued at a lower rate between 300o and 600oC (1112oF)to a 94.5 percent weight loss.No direct analysis of evolved gases was reported (see Figure 2).4.5 Radiation Ex osure Reference 8, notes"Radiation exposure of 8 x 106 Roentgens within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> will not change the physical properties of Yinylcel significantly but 108 Roentgens within.-10, hours" will cause some progressive deterioration'." This radiation resistance was apparently based on generic data for PVC.No information on the radiation resistance of Vinylcel was located.WYLE LABORATORIES Huntsville Feality Q Report No.17490-1 Page No.3 5.0 ANALYSIS 5.1 Anal sis Includin Data for Similar Materials Since no specific data was available for irradiated Vinylcel, and since synergistic effects of temperature, radiation, and oxidizing conditions are known for some polyvinyl chloride-based materials, this analysis is based on data for generically similar materials.

The following significant information is noted: o At temperatures below 200oC, the only volatile product from degradation of pure, unirradiated PVC is HCl;neither H2 or C12 has been detected, Reference 16.o For foamed or plasticized PVC based materials, HC1 is the only volatile released in significant quantities.

Reference 6 identifies products released in small quantities (less than 1%by weight)from three (3)PVC-based insulations at elevated temperatures in air.These constituents wer e CO2, CO, aldehydes, ammonia, cyanides and nitrogen oxides.o Irradiation also results in dehydrochlorination of PVC materials.

This apparently occurs at doses as low as 5xl05 rads for some PVC materials, Reference 12.5.2 Determination of Radiation Sensitivit No datawas found for exposure of Vinylcel to irradiation.

Data available for exposure of other irradiated PVC materials was therefore considered.

I The lowest radiation threshold value indicated in the referenced data for any PVC material was Sx105 rads (References 7 and 12).This value is 20 percent greater than the 3x105 rads requirement indicated for 40 years normal ser vice at Ginna, Reference 14.The normal radiation dose of 3xl05 rads is, therefore, concluded to be insignificant.

6.0 EVALUATION

OF GINNA ACCIDENT CONDITIONS The Ginna accident condition is indicated as 286oF (141.11oC) and 60 psig for 2.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, followed by 219oF (103.89oC) for up to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, and 152oF (66.67 C)for the remainder,'of 180 days.From Reference 6, it was noted that none of the three PVC's tested evolved HC1 until temperatures exceeded 160oC.The weight loss noted in all three samples ranged from 2.1 to 4%before HCl was detected.A comparison of TGA curves for those materials and Vinylcel indicates that Vinylcel has significantly better temperature resistance so the Ginna accident temperatures would not be expected to cause HCl evolution.

WYLE LABORATORIES Huntsvtlla Facility report No.i'(68v-l Page No.4 6.0 EVALUATION OF GINNA ACCIDENT CONDITIONS (CONTINUED)

Then for the Ginna accident scenario, the important parameter'with regard to generation of HCl is the integrated radiation dose.The 180 day accident dose is 2 x 108 rads.The accumulated radiation dose at the end of 2.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> will be less than 2 x 107 rads per Regulatory Guide 1.89 Proposed Rev.1, Appendix D.The 19-mil stainless steel facing will provide significant Beta shielding, stopping all Beta radiation with an energy'less than approximately 1 KIEV.Therefore, the radiation dose to the Vinylcel is calculated to be less than 5 x 106 rads at the end of the initial 2.8 hour9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> phase of the accident.Reference ll states that no HC1 was found in mass spectrometer analysis of polyvinyl chloride irradiated to 5 x 106 rads.It appears that the initial design basis event transient within the first 2.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> of high temperature regime.would not generate HC1.This is further supported by data from Reference 3.Pure PVC resin irradiated to 5.8 x 10" rads and exposed to 150oC in a pure oxygen atmosphere showed negligible weight loss after 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> Reference,.3.

demonstrated the well recognized fact that oxygen acceler-ates loss of HC1.It is also certain that elevated temperatures accelerate loss of HCl.It is apparent that the test conditions were more severe than the accident requirements at Ginna.Reference 24.states that pure PVC resins are not as'resistant to dehydrochlorination as PVC based materials.

Vinylcel may be significant+

more resistant to loss of HCl than the material tested.~Reference.3 also'provides useful data in determining a maximum rate at which decomposition might proceed.Samples of PVC irradiated to various doses in oxygen were exposed to 150oC for durations up to approximately 17 hours1.967593e-4 days <br />0.00472 hours <br />2.810847e-5 weeks <br />6.4685e-6 months <br />.Figure 1 shows that after approximately 17 hours1.967593e-4 days <br />0.00472 hours <br />2.810847e-5 weeks <br />6.4685e-6 months <br /> at 150oC, the weight loss of PVC was as follows: Radiation Dose (Rads)0""" 5.8 x 106 17.4 x 106 29 x 106 52.2 x 106 Weight Loss at 150 C at 17 hours1.967593e-4 days <br />0.00472 hours <br />2.810847e-5 weeks <br />6.4685e-6 months <br /> (%)2.5 7 11 12 14 WYLE LABORATORIES Huntsville Facilt ty port No.17490-1 Page No.5 6.0 4 EVALUATION OF GINNA ACCIDENT CONDITIONS (CONTINUED) 54 The rate of HCl evolution, at Ginna accident temperatures should be slower than the values above.HCl could be neutralized by the containment spray system as it is released from the Vinylcel.The total amount of HCl formed is also of concern.Reference 12, discusses total HCl generated from irradiation of PVC.The generation of HCl is defined by the chemical term of GHCI, which is the number of HCl molecules produced per 100 electron volts of radiation absorbed by the PVC.Reference 12 notes a GHCI of 22.6 at 160OF for PVC exposed to 2 x 107 rads in vacuum.A calculation"'assuming an absorbed dose to Vinylcel of 2 x 108 rads (see appendix)indicates that Vinylcel would be required to have GHCL=75.65 for total loss of HCl to occur.This is more than three (3)times the highest value found but since no value was found for a radiation dose of 2 x 108 it was assumed that the calculated value was achievable.

The following calculations and the evaluation of corrosive effects is based on the assumption that total'decomposition occurs.7.0 CALCULATIONS t Reference 13 provides an approximate structural formula for Vinylcel.The weight percent of the crosslinking agent was not identified, but since that ag'ent,would serve to reduce the percent chlorine it is adequate, for this treatment, to make the.assumption that the material is PVC.From the empirical formula (CH2 CH CL)the material is 56.8 percent chlorine by weight.For Ginna insulated wall, an area of 36,181 ft of l-l/4" (4 PCF)Vinylcel, the total material weight is approximately 6,838,000 gms, of which approximately 3,884,000 gms is chlorine.The applicable parameters for Ginna, Reference 14, indicate that the total dehydrochlorination would, release 1.0956 x 105 moles of HCl.If-the HCl were uniformly distributed in the containment volume, the concentration would be 4.22 x 10 6 moles/cm3, as shown below: I Concentration

=Moles/volume Concentration of HCl=1.0956 x 105 moles/(917,000 ft3 x 28316.847 cm3/ft3)Concentration of HCl=4.22 x 10 6 moles/cm3 (2)(3)The HCl will not remain in the atmosphere, but will be condensed and dissolved in the borated water solution recirculated through the Reactor Heat Removal (RHR)System.WYLE LASORATORIES Huntsville Facility v v ssvo k~'X 4'V J Page No.6, 7.0 CALCULATIONS (CONTINUED)

.The total volume of solution available'for dilution is 1,079,604 liters, as shown below: S ra S stem Tank 230,000 gal (2,000 ppm borated): 870.5 x 103 liters.Reactor Flood Tanks 6,250 ft3 (50-100 ppm borated): 1',134 ft3 (2,000 ppm borated): Total 176.95 x 1Q3 liters 32.1 x 103 liters 1.08 x 106 liters The final maximum concentration in the solution recirculated through the RHR System could be 0.105 molar in HCl.If unbuffered, the pH would be approximately 1.The solution is actually a dilute boric acid buffered with NaOH to a pH of 8.5-1Q.O.A 5,100-gallon tank of 30 percent NaOH is maintained on site'with'1'."4'476'x'1'05 moles of NaOH.The capability to monitor and adjust the pH of the solution is available after accident initiation.

Since the HC1 will be added gradually, the solution pH can be maintained in the required range of 8.5-10.0 by addition of NaOH solution.The solution would become about 0.1 molar'in NaCl.Corrosive effects for the RHR,System would then'be those of salt solutions.

The'Vinylcel stainless steel facing and the carbon steel liner will be exposed to HCl as it evolves from the insulation.

Some portion of this HCl will be absorbed by the insulation and remain in contact with the metal walls.Moisture may penetrate the insulation along the panel joints in the humid post'-accident

'enviionment.

This action would result in exposure of the carbon steel liner and'the interior of the stainless steel facing to aqueous HCl.It is assumed that the stainless facing will be exposed to significant moisture;the carbon steel liner will be partiany protected by the insulation.

8.0 CORROSION EFFECTS Effects are considered separately for the RHR System components, the carbon steel liner of the insulation, and the 19 mil stainless insulation facing since they will be'exposed to"differ'ent environments, as noted in Paragraph 7.0.8.1 Effects For RHR Com onents As indicated in the preceding section, these components may be exposed to a 0.1 molar salt solution (approximately 0.6 percent salt).The corrosive effects should be similar to those of sea water and the data for sea water will be assumed applicable.

Components in the system are all stainless steel or stainless steel clad.WYLE LABORATORIES Huntsville Facility

~~O Report No 17490-1 Page Vio.7 8.0 CORROSION EFFECTS (CONTINUED) 8.1 Effects For RHR Com onents (Continued)

Reference 20 indicates that a maximum rate for general corrosion of 316 stainless steel by sea water is 0.00063 inch per year.Low carbon and copper-bearing steels show higher corrosion rates of 0.004-0.005 inch per year.These'ow values indicate that significant corrosion should not occur in the 180day post-accident period-Reference 19 indicated that sea water induced pitting and crevice corrosion can occur for stainless steels, but these actions would not become'significant in less than 1.5-2 years.8.2 Effects For Carbon Steel Panel Liner The entire carbon steel liner (both insulated and non insulated surfaces)is protected from direct contact with the environment by a Carbo Zinc-11/Pheno-line 305 coating system.This would retard or prevent direct contact between HCl and the carbon steel.Phenoline 305 is indicated by the manufacturer as having"very good" resistance to acid splashes and spills and Carbo Zinc-ll is rated"good".Reference 19 indicates good acid resistance for phenolic coatings at temperatures up to 300oF.If the top coat is penetrated the zinc based primer (approximately 86%zinc)provides an additional physical barrier and may be preferentially attacked by the HCl if it is penetrated.

Though the effect may be reversed under some environmental conditions, temperatures below 140oF and the presence of Cl ions would probably cause the zinc to act as a sacrificial anode (Reference 20)providing further protection of the steel liner.Eg Since no'est data was available to determine the amount of protection provided (or whether zinc would act as a sacrificial anode at the Ginna specified 152oF ambient)the effects of direct HCl/carbon steel contact will be considered.

If moisture does not penetrate the insulation and the liner so that the carbon steel is exposed only to~dr HCl gas, the corrosion effects would not be significant.

Reference 21 indicates a corrosion rate of 0.00003 inch per year for carbon steel exposed to dry HCl at 500oF.Carbon steel is, however, sensitive to aqueous HC1 in air environments.

If moisture penetrates the degraded insulation, or passes through joints between panels, corrosion would occur.Reference 20 indicates corrosion rates for mild steel (carbon steel)exposed to 0.4 percent and 4.0 percent HCl in air at room temperatures.

These rates were 0.39 inch and 0.48 inch per year, respectively.

Higher temperatures would also accelerate corrosion.

As indicated in Reference 19, corrosion rates greater than 0.05 inch per year, result in short service life for the specified material.WYLE LABORATORIES Huntsv>lie Facility Report No.17490-1 Page No.8 8.0 CORROSION EFFECTS (CONTINUED) 8.3 Effects for the 19-'Mil Stainless Steel Insulation Facin Panels While more resistant than carbon steel, all stainless steels have poor resistance to aqueous HCI.Also direct aqueous HCl/stainless steel contact is more probable;moisture may not penetrate the insuIation per paragraph 3.1 or the Carbo Zinc-ll/Phenoline 305 but could penetrate along panel joints and around retaining bolts.Corrosion could occur along panel joints and around retaining bolts.9,0'ONCI'USIONS'"'.1 In response to NRC letter.dated 1-17-81, Question No.2: Question An estimate of the amounts of each gas as hydrogen, organic gases and hydrogen chloride, which would be provided by radiation from the decomposition of the foam during DBA.Answer The only gas produced in more than trace quantities would be, HC1.No HC1 gas would be expected until the radiation level exceeds 5 x 106 rais.The postulated peak temperature during the DBA of 286oF occuring within the first 2.8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> would probably not produce and HCl as long'as the radiation level did not exceed 5 x 10>rads during this time.The postulated total integrated dose of 2 x 108 rads would result in generation of HC1.The total amount generated is uncertain.

A'orst case-"ofotal" dehydrochlorination is assumed although the actual loss is likely to be significantly less.9.2 In response to NRC letter dated 1-17-81;Question No.5: question The results of an analysis of the effect of the hydrogen chloride generated during a DBA including corrosion of components in the containment building.Answer The HCl gases which would be released into the containment would become neutralized by the chemical spray.Minor corrosion to the reactor heat removed system may result.The corrosion effects of dry HCl gas are insignificant.

WYLE LABORATORIES Huntsvtlte Facility port No.17490-1 Page No.9 9.0 9.2'ONCLUSIONS (CONTINUED)

Answer (Continued) h ri Corrosion of the carbon steel liner could occur if aqueous HCI contacts its surface.This contact will be delayed and may not occur at all.The Vinylcel provides protection from the moist containment atmosphere.

The Carbo Zinc 11/Phenoline 305 coating system is a barrier to direct HC1/Carbon Steel Contact.If penetrated, the Carbo Zinc 11 may act as a sacrificial anode further protecting the carbon steel.Corrosion of the 19-mil facing is expected along panel joints and around retaining bolts.

10.0 REFERENCES

1.Letter from V.S.Noonan, Assistant Director for Material and Qualification, Division of Engineering, U.S.Nuclear Regulatory Commission,

Subject:

Ginna SEP on Organic Materials, January 17, 1981 (Enclosed) 2e 3.')"The Use of Plastics and Elastomers," W.W.Parkinson and O.Sisman, Nuclear En ineerin and Desi n, Vol.17 (1971), pp.247-280, Wyle Library Code 438-81 I"Thermal'Analysis of Polyvinyl Chloride," R.Salovey and R.G.Badger, Journal of A lied Pol mer Science, Vol.16 (1972), Wyle Library Code 430-81 4, 5.6."Radiation Resistance of Cable-Insulating Material for Nuclear Power"Generating Stations," S.Kawata, J.Ogura, K.Kasai, and T.Onishi, IEEE Transaction, Electrical Insulation, Vol.EI-13, No.3, pp.164-171, June, 1978, Wyle Library Code 214-79"Effects of Radiation on Electrical Insulating Materials," C.L.Hanks and D.J.Hammon, REIC Report No.46, Wyle Library Code 299-80 s"Test Report', Thermal Decomposition Products and Burning Characteristics'f Some Syhnthetic Low-Density Cellular Material," Bureau of Mines Investigation 04777, January, 1951 7e"Gamma Ray Dosimetry with Polyvinyl Chloride Films," Ernest J.Henley and Arthur Miller, Nucleonics, Vol.9, No.6, pp.62-66, December, 1951 8.Letter from C.E.Ernst, Chief Engineer, Johns-Manville Indus-trial Insulations Division, to Gilbert Associates, Inc., Reading, Pennsylvania,

Subject:

BM Containment Insulation, SP-5290 Ginna Plant, December 22, 1967 (Enclosed)

WYLE LABORATORIES Huntsville Facility aeporr.No.iv~~u-i Page No.10 REFERENCES (Continued) 9.Letter from Jack Miner, Manager, Engineering and Technical Services, Johns-Manville Sales Corporation, Denver, Colorado,

Subject:

Vinylcel Physical Properties and Radiation Resistance, April 7, 1981 10.Contact Reports, Ray Thome to J.Richardson, Johns-Manville Product Coordinator, dated July 31, 1981,

Subject:

Vinylcel Insulation Technical Data and Reports (Enclosed) 11.'Effects'f'adiation on Material and Components," J-F.Kir cher and R.E.Bowman, Reinhold Publishing Corporation 12.Radiation Chemistr of Pol meric S stems, A.Chapiro, John Wiley 4 Sons, Chapter 7 13."Rigid PVC Foam Process Attracts Phillips," Article from International, not dated (Enclosed) 14.<t, Contact~Report, M.Bruce to G.Wrobel, Rochester Gas dc Electric Corporation, dated August 7, 1981,

Subject:

Obtain Containment Information (Enclosed) 15.-Contact Report, Ray Thome to G.Eichele, Johns-Manville Sales Coordinator, dated July 30, 1981,

Subject:

Vinylcel Insulation (Enclosed) 16.,"Mechanism

'f PVC Degradation," W.C.Giddes, Rubber Chemistr and Technolo, 164, pp.177-216 17."Thermal Decomposition of Poly (Vinyl Chloride)," R.Stromberg; S: Straus, and B.G.Achkammer, Journal of Pol mer Science, Vol.35, pp.355-368 (1959)18."Vinylcel Structural Core Rigid Crosslinked PVC Foam Physical Properties (Average Values)," Johns-Manville (Enclosed) 19.20...e 21.NACE Basic Corrosion Course, National Association of Corro-sion Engineers, Houston, Texas, Eighth Printing, 1977 Corrosion and Corrosion Control, H.H.Unlig, John Wiley ttt: Sons, Inc., Second Edition, 1971"Properties and Selection of Metals," Metals Handbook, Ameri-can Society for Metals, 8th Edition, Vol.I, 1961 22.Radiolo ical Health Handbook, U.S.Department of Health, Education, and Welfare, Rockville, Maryland, Revised Edition, p.122, January, 1970 WYLE LABORATORIE5 Huntsville Feetttty eport No.17490-1~~Page No.11 REFERENCES (CONTINUED) 23.24.Carboline Product Data Sheets, Carboline Company, St.Louis, Missouri Enclosed"Determination of the Stability of PVC Compounds Against High Temperature", J.Novak, American Chemistry Series, Advances in Chemistry, Vol 85, pp 45-46.WYLE LABORATORIES Hunlswlla Facility Report No.17490-1 Page No.12 APPENDIX The theoretical yield of HCl is 56.8%by weight or 1.5S83 x 10-2 moles/gm PVC substituting this value in the equation below and solving for GHCL identifies the G value required for total dehydrochlorination.

Moles HCl=G moles HCl/100 eV x 2 x 1010 ergs/gm PVC x 6.2 x 1011 eV/erg x 1 mole HCL/6.02 x 10 molecules Therfore, 1 1 G=1.5583"x 10-2"'x 100 x 2 x 1010 x 6.2 x 1011 x 6.02 x 1023 G,=7.5.65.Where, G=molecule HCl/100 eV Radiation Dose=2 x 108 rads or 2 x 1010 ergs/gm PVC 1 erg=6.2 x 1011 eV Avogardo Constant=6.02 x 1023 molecules/mole WYLE LABORATORIES Huntsville Facility Q Report No.17490-1 Page No.13 lBBADlATl'.D l'OLY(VINYL CllLORID:-.

3267 O 6ÃIR I/~'llA'E Md4llTKS 40 FIGURE l.ISOTHERMAL THERMOGRAVIMETRY OF IRRADIATED PVC-150'C OXYGEN ATMOSPHERE:

(0)CONTROL;(<)5.8 M RADS;(D)17.4 M RADS;(9)29.0 M RADS;(X)52.2 N RADS;(~)52.2 N RADS IN NITRDGEN Report No.17490-1 Page No.14 TGA Curve of'INYLCEL Temperature (oP)6oo 8oo 8o 70 50 30 20 10 3oo 4oo Temperature (C)-FIGURE 2

~I V Report No.17490-1 Paqe No.15 20$.7a=-res.its,of.an,ana>ysis of the effect of the hydr~en chloride~arete" chris.a QBA, inc)udina corrosion of ccvconants

$r the coo-iMn~i bU'l1dlny~

~4e can cxo1ete our revi~Qf Top.ic V5-1., Orw~ic 4;rich four weeks after xe receive the requ s e" informiian.

A5 s EQT.Mt&>,rector'm" KxEeriats 6 Qaa3i4icatiorIs Engine rmg Oivisian.of inain~ring-CZrQ'E LYi J~8EC.REFERENCE 1 g).'.Q{ÃS, i iUi'<~La'loas~, P4'5>st&:~

Zfzre w;.~~g far 5afety Assm~t..'"'.crt RVISLM Gf L'fcBAS(np

~~.:~~QQJ QQp-g pf4j'~~FisLYz.'gncen+

<g~~.gjs~zar~Qire'c.Qr, P~~.for NateriaQs 4~'3H'zcaticers Knq'.reer>r~>

gP<g 7CP~<-Oivisim of B'gineering SURJz.l:T"."'" Giga'A'KP M QRcQtIC FATERNI.S C I~~~~er u, Sp:stmatic

.""va3uat$

cn Proc.rm, m are'~ie"in" Tcpic,.VK-0"0;.oxidic

~a erials" for the Bimini P4~~This ylang'h.s.~uzi~feats.hat the inner so~face of the'ontairaxnt hxHd<ng:.is.

>nat$aM:.>.in.'thick shmts crf Y<qRce>2'fam enc'psulated nc'0.039 in."=aio$ess steel.To c~'1ete ej.renew, we need tfse foHming'nfot~J'.The:cuba)we..ch".o.insu1atfm fern in the.etc;tain~C buHding.':

-.'a estimate of the amounts e, ca%gas, sod a.s, hyiroa&, aria.ic~>se: and hydro~~n 6;3oride,'shich~ld be pea~uced-~.ractia4te:

fro-,'.he de cepcs i+ion of the EM'uring a.KA.octqs~lf Mp's hp'hlcf'c'ese oa5es Rig5t eschp f poR,Ucc stp)nless sbŽ3 Boxes a&~enter the cajMi~nt und~.ac i~t;~(time.

~, J'.~be z-esu1ts'o.'an ana1ysis of the ccetribu0ion uf.hyarom and other asks g nera 0-.rem the:.fear to the.scents of@~Rib'le gases.~duce~fr~otser scarcer during a D'"'4.cc: h'ex'age EXHIBIT A REFERENCE 8 PACiE 1 of 2 i RePort No.1749Q-~.Page No.16 JOHN S-MAN VILLE SAl.ES CORPORATlOH INDUSTRIAL INSULATIONS DIVISION~'EA5T 4Q<h 5TREET~NEW YORK, N.Y.10016'E.Y, 10016'ELEPHONE:

532.MS AREA'CODE DE 212~w December 22, 1967 l Gi"lbe r't"'A's s oc'i'a t es, Inc~.525 Lancaster Avenue Read ing, Pa.19603.Attention:

Mr.K.T.Momose Re: BM Containment Insulation SP-5290'irma Plant

Dear Mr.Momose:

.On Novemb~o e ber 29, at your renuest Mr.'he following reports'.I~'L Re port E 455-T-258 Vinylcel.eparr E 4$$-T-266", vinylcel Subseouent to thi'hi'ou r ques e eng nyl'c e 1 s imilar to tha t pre vi ou sly This is as f ollows: E D Cox sent to your attention ccesistance to Flame Exposure (4pcf)Effect of Heat and Pressure ineering data on the 4 pcf furnished f or 6 pcf Vinylce1.2:0'7.2 Ba sed on.pressure"cycling tests of'om ('R t S 455-T-238) as tie moduli of 6 pcf a m def lee'o of pc~, and the residual deformation to be 0.8+c.3:01.2 n a.Thermal conductivity (BTU/hr sq ft Heat Flow Me,ter.cali'brated e a'a ed per ASTN C>>177 Guarded got Plate.Mean Temperature, F.100~12~10 0~22 0~23 0 25 0~27'-Compressive yield-.stren th-g-per ASTM D1621---E 0 psi at the n on stress-strain curve.c.Maximum operating t t 175F, bQt may vary with s emperature for c ontinuous service specific application re ui requ rements d.Maximum allowable temperature f'r s ecifi tt h d R o t No El45--266 U" C bi d H t d P e'a an res sure Test.53-2 Report No.17490-1 Page No.17 REFERENCE 8 Page 2 of 2 e.Mois ture vapo'r permeability per ASTh!C-355.See attached Report No.E455-T-268, Appendix I, Table 3.f.'Shear strength per ASTM C-273-68 ps'i ultimate.Shear'modulus per ASTM C-Z73-3510 psi.h,.Compressive modulus ner ASTM~-1621-2300 osi.Density per ASTM D-1622-4.0 lbs/cu f t.nominal, 3.7 lbs/cu f t.minimum.Average coefficient of linear expansion-9.4 x 10 in/in/F.k.Curves for the Case IXI sho~ing temperature.

before and after accident plotted against.time.See Report No.E 455-T-266, Analogue Study of Vinylcel used as Containment'nsulation.

1.Test results of permeability tests per ASTM C-355~See ,.attached Report'E 455-T-268 Predicted curve,for 6 month test as reauirod under 2:07.9.See attached Report No.E455-T-268.

Dimensional rather than weight change is given as explained under Humid Aging (Results)of the report.m.Radiation, exposure of'8 x 10 roentgens within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> will not chan e'he h i g'ys cal properties of Vinylcel significantly but'0 roentgens within 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> will cause some progressive de ter iora tion..-', r The 4 p:f Vinylcel will be supplied 44'84" x 1-1/4" thick.Len th and,.wid.th~,tolerance will be+1/32" x-ck.Length Ve ry,tru3 y~ours, r~~CEE/ca C~E~ERNST-Ch ie f=%ng inc er P.S.As I advised your secretary on 4'ednesday, Research is sending 6 copies of report E455T238 directly to you.5B-3 Contact Report Of: RePovt Ho.17e)0-1~YNDKR CONTACT REPORT REFERENCE 10 Telephone R Date of Contact: L-8l Follow Up Date'gency Or Company and Addreaa Phone Pcraon(a}Contacted and Title uctrfAj+rara rLLE JPua~ii p HA/e'tran+~~re DEUTER'i COt 4 e~~<o~-0 l't-boo 48o4 W~E'&~4~, Pr~;<~M!tern(s)and'Part,Number(a) a'Rod~~++8 A/0 i74 Q 0 lnfonnation rr ceded 0 Temperature Limita 0 Hcyabilty Oata (Mil Spec)0 Time/Temperature Octa~diction 0 Catalogue 0 Ltatcrlai'Oissuaaion+

Aire" pi+art~~~M1.Ere Vi E~,~er 4 d.rcWuicA gree,~e..cornre i~we~~+L4iU~~a~Aro.C cgss'-7=a.eB'Z p,.~~e~M+.L~)'ps., Qo (aa1e~.t4+p~.g AMMun DM~Hen Action'O<g~Reer.ad'~reeor;I bloc.~Q n p~aliL Q a (-m (dree,den Copica To D.SNi45a4 R~By-<c.q 6 I/r" P-I=r~..~>>.J,'.tr,>

j.,-..

INTEAfJ~TIOnIAL

~I~~~~~i~I Repot t No.17490-1.Page No.19 REFERENCE 13 PI-Id PVC foam.process at'Irac>yl chloride in the U.Sir but in western Europe, the company shows keen"interest in tliat large-volume plas-~tic.Earlier this year, Phillips teamed up tvith West Germany's BASF to form IIadische Phillips Petroleum, N.V.'(Badiphil)" ,in Antwerp in its first venture to make PVC resins (ChEN, June 20, page 23).It fol-lowed that move last month by'acquir-ing a 35%interest in the Paris-based Kleber-.cojombes pictures bridges of amide groups between chains F'Vc",-i-tooc-'(-coo H,:.1 Boo(;-Y-co-Z niH 1 NH OC'-'(-'oop

'l HoOC-'(-COSH-I x PVC X Is segmeni of uinyridenic monomer in Iho la I e rally g ra tl ed chain v (wiih I~o earbosyl groups)Is sagmeni oi~tnylenic anhydride aller hydrolysis in Iho I~le>ally gralled chain Z I~carrier grouping of isoeyanale tunclions ln dl or po>yisocyana>e used urC~i U.S.Pa>ant 3,90O,OS9 plastic fabricator Kl>cber-Colombes Pia'stiques, S.A.The minority holdingin Klcber-Co-lombes Plastiques gives Phillips a cap-tive outlet for Badiphil's PVC.KI>c-her-Colombes Plastiques has a partic-ularly strong position in rigid PVC foams.Its process for producing a cross-linked PVC foam has been li-censed by 14 companies in 12.coun-tries (including B.F.Goodrich and Johns-hfanville in the U.S.).At the same time that Phillips bought,35%

of Kleber-Colombes Plas-tiques, the West German Bnn', Reno-lit-lVcrke, GmbH, Worms, acquired 14%.This left a 51%interest in the hands of the parent tire and rubber goods manufacturer, Klcber-colombes, S.A.Phillips and Renolit are linked in the U.S.With Nation J Distdiers they own American Renolit, which produces PVC calendered goods.Kll':ber-Colombes Plastiques will post'ales of about$15 million this year.IRIgid PVC foam has been one of its major products for 15 years.But the cross-linked znaterial, Klegecell G 300, has only been offered for about a year and a haIE..KII':bcr-Colombcs Plas-tiques pins its hopes for increased sales on better dimensional stability at teinpcratures to 120 C.and Iugher mechanical strengths for the cross-linked foams.'n its older process (U.S.Patent 2,578,749), Kllcbcr-Colombcs used a two-step process, i>>ivliicli tllc rcac:tio>>of wiitcr with a diiso<<y;matc prociui~d carbon dioiide to give a hardened, cel-lular structure.

This product has tcics relatively serious drawbacks,.accord-ing to Dr.Yvan La>>dier, manager of the Paris research center of Kleber-Co-lombes.It costs too much, since the process caii't produre ro:ims wirth den-sities bcloiv 2.5 pounds pcr cu.ft.Secondly, it has poor tliernial dimen-sional stability.

At 90s C.the foam shrinks about 40 c.At 150 to 160 C., tliese foams collapse.Cross-linking, lioii'c'vcr, makes pos-sible a I'oain ivhidi I>as a density of 1.5 poundc per cu.ft.with correspond-ingly loivcr'osti.

Also, temperature stabilit>is imprc>v<<d.

At 904 C., shrinkage'c only 5":r.At 150'o 160 C., criyis-linked rn:ims rrt;iin t)icir cellular siriicture.

In lid dit'ion, inc-Kleber-Colombes'andier 14 licensees, 12 countries chanical strengths and solveiit resist ance are Improved.The new process (U.S.Paten 3,200,089), issued to Dr.LandIcr imc Pierre Lebel, also has tivo steps.Ad dition of a vinylidcnic monomer, ai ethylcnic anhydride, a>>d a free-raclic".i catalyst to PVC rcsi>>anil isocmil>vite ii tlie first or moldi>>g step.I>>tlie scc.ond step, a reaction with iv:iter pro duces the Bnished cross-linked foam.Dr.La>>dier proposes a meclianisn to explain the formation of tile ciois linked fo:mi (sec ciriiivi>>g).

Iic.iir scl'll)cis tllc proc:ess les o>><<111 ivlll<<l amide group~from tlic iso<<yon;>I<<

bridge grafted PVC macrumol<<cuies In the heat and pressure of molding i: the first step, the eth>'Icnic:>>Ihydrid:

and vinvlidenic monomer cc>poly>ner ize.Tile copolymer thc>>grartc o>>tc the PVC molecule.In tlic scelnii step, tile anhydride units on tile gr:i hydrolyze to acids imd re>i<<t ivitli icv cyanate molccules to cross.li>>k I 1 i.PVC.Solubility studies hear oiit tliis liy-pothesis.Accordi>>g to Dr.L:inilll'I' U:S.patent, tlic Klcher-Ci>li>:>>L<<-

products arc insol>>blc in dimctliyi~form:imide, v.hicli can i7iccolvc nilirl types or PVC-Lose cl e<<lliil:ir ni:il<<ri.ils.

Tiic eonclucion is tliat Iiie Kli'lll>-Co.ion>lies products arc diitin<<ily diiicli n!and ni:iy I>ave a rciie>>IairrI ciru<>le ivjtli:i Iridiincnsion.ii i>l'Iivuik.

Contact Report Of: Date Of Contact: 8--8 l Report No.17490-1 CONTACT REPORT Page No.20 REFERENCE 14 Telephone Q Visit Q Page 1 of 3 Follow Up Date: Agency Or Company and Address Phone Person(s)Contacted and Title PogeS~QkS f CMcZR<C (.~if)rl4-~oo Purpose~F0RAIL6.~

~+~~~e g a p g year Discussion H ,v.mcnab 1~c.~H~f t(owing o Cmv+~~0 b44ws&Q dpace)t5 gl 7 ohio.(coAlsirdchiis fl'M~'ol-vck~cs M're 505)hauC.hatP,~2.~~4.gg;tli8*.,<p~.B.+a~<.vid~Iv~ging~~<Ru.RHI2 s.~i~l4 A~~I,S'X Io Cg~>>~i%~~3>mW+(~ts wed.'"F~e.~gy.gD~s gtqeP'~Qcf ll~oL~4GCC~~/iM~~

~~(~g 0-'op (80~g Action.Copies To: 549 Rev.

Contact Report Of: fA~cue@Date Of Contact: 8-7-8 l O Nk'5 CI R 50 RT Page No.21 REFERENCE 14 Page 2 Of 3 Telephone~Visit g Follow Up Date: I Agency Or Company and Address Phone Person(s)Contacted and Title 6Cf(&mr g~~p'/Mjic Purpose Discussion Action.o@~~~~~on~>>~~R.D~a azgyyo 8(~4l((~(s~~I Sc((s(Q)gc/,~r~~M a (((~+P~@e~M~~s.,'W]g~~)d]~~~: (e~M Ltd'~c5el~~~r//<~~~~~o/zoo ceps (&mgw((~~o~~~)pB&y 8I 4~~~~~~g'g+~I(~hajji~~~~c~(75gw (s~+p M (s'lo o r-(((rr wi'ooIcs (lc~r zc~Q~o((rg WAh~Hw pe<+~~~+f>f~-(de pp~So@a M, ,~mo~~ls)3WP ig aOoa Wp~r(l Ec rec((cu(~-pg~g~h~~~+~~~PH~~~~e~~(a~Copies To: 549 Rev.

Contact Report Of: RePilrt No.'l7$90-1~CONTACT REPORT REFERENCE 14 Page 3 of 3 Telephone~Visit Q Date Of Contact: Follow Up Date: Agency Or Company and Address l Phone Person(s)Contacted and Title.epoch u5v" Cp/rs-M>Purpose.Vl A)pence~yQSg~dA3 QQP 4O/7Mfd Discussion o~~imps~~~&(~),, 4-mC p a~5~pcecl+~~QtfM~Cog (PA y(4.-der-/d~~l+9 A~~giaXo.bed'~o~~~~~.Action.hgu-~+a<~~C'~4~Nd ckcNK~~s~+anC~Copies To: 549 Rev.

0~~-~~~~~~~~I I~~~a 0.(~e~P g.~f Report No.17490-1':i-"..lq t..JJgfl/I,/!Q i:j<<~'" REFERENCE 18 RIGID CROSS-I INK ED PVC I=0AM UINXLCEL FiiYSZCAL PROPERTIES" (average values)TEST 1KTHOD NORMAL DENSlTX, PCF Compressive Strength (ultimate)~

psi Rt 70F at 175F at 212F Laminar Tensile Strength, psi Shear Strength (ultimate), psi Flexural Strength-';.Modulus of.Rupture, psi'"'.Fodulus of, Elasticity, psi Coefficidnt of Lingar Expansion in/in/F x 10 (up to 110F)Linear, Shrinkage,, C 100 days 175F dry soa3d.ng heat 100days 158F, 100$RH 63 days 120F, 100+~RH Water Vapor Permeability, perm-inch Water.,Absorption,~volume 48 hrs at 10'ead." Pl~bili.ty, 1", thick..-.Tunnel Flame Spread Smoke Developed Thermal Conductivity (Btu in.per sq ft per F per hr)75F me BI1 OF mean ASTM D1621&4 ASTM.0297-61 ASTM C273&1 ASTM C203-58.ASTM 0355-64 HH I-524 ASTM E84-61 ASTM 05183T 45 38 33 50 30 70 3000 8 2$3$g1$0.1 20 80-1 00.20.16 158 113 106 165'75.190 7000 10 1.7$2$<1$0.04.'A NA'-22.18 265 185 175 123 310 9000 0.5$0.5$(1%0.001 36 (3/4~tk.)P 200-23.19 Test Data.values shown are averages as tested by standard methods.These values.are, provided.as guides for product evaluation and are given without liability to J'ohns->~ville.

0.,,.~RePoI<"0 U4go+(aC:,LtC'~~=-"I.'a=."..'et Page No.25 gpRgo z)NQ tt REFERENCE 23 r C=~I, thCZfll(I~f

'350 HANLEY INDUSTRIAL COURT~ST.LOUIS, MO.63144~314-644-1000 SELECTION DATA GENERIC TYPE: Self curing, inorganic zinc primer.The coating consists of a basic zinc silicate complex.Base and~zittc filler mixed prior to application.

GENERAL PROPERTIES:

An inorganic zinc base coat that protects steel galvanically, eliminating sub-film corrosion.

Has outstanding application properties.

Can be applied at the recommended thickness in one coat.RECOMMENDED USES: Carbo Zinc 11 (the first selfeur-ing inorganic zinc primer)is used as a single coat protection of steel structures in weathering exposure and as a base coat for organic and inorganic topcoats in more severe services.Excellent for the interiors and exteriors of storage tanks containing fuels and organic solvents.Has many uses as a maintenance primer, with or without topcoats, depending on exposure.Used widely in chemical plants, paper mills, refineries and coastal or salt atmospheres including offshore structures.

Carbo Zinc 11 meets the stringent performance requirements of the American National Standards Institute, ANSI N101.2-1972 and ANSI N5.1 2.1974.NOT RECOMMENDED FOR: Immersion or indirect ex-'osure to acids or alkalies without suitable topcoat.CHEMICAL RESISTANCE GUIDE: (with proper topcoat)Heavy Fumes or Outside Light Splash Weathering Exposure immersion,~and Spiiio e or Miid Fumes Acids NR Very Good Excellent Alkalies NR Very Good Excellent Solvents Excellent Excellent Excellent Salt Excellent Excellent Excellent Water-Excellent Excellent Excellent TEMPERATURE RESISTANCE: (non-immersion)

Continuous:

750'(399'C)Non.continuous:

800 F (427'C)F LEXIBILITY:

Fair.Good WEATHERING:

Excellent ABRASION RESISTANCE:

Excellent.

Abrasion resistance increases with age.SUBSTRATES:

Apply over properly prepared steel, cast iron, or other surfaces as recommended.

TOPCOAT REQUIRED: May be topcoated with epoxies, phenolics, vinyls, acrylics, silicones, chlorinated rubbers or others as recommended.

NOTE: Under certain conditions a mist coat or tie coat may be desirable to prevent topcoat bubbling.COMPATIBILITY WITH OTHER COATINGS: Apply di-rectly over substrate, Carbo Weld 11 or other inorganic zincs as recommended.

SPECIFICATION DATA THEORETICAL SOLIDS CONTENT OF MIXED MA.TE RIAL:~BWri hs Carbo Zinc 11 7%k~2%Percent zinc in dry film 86%RECOMMENDED DRY FILM THICKNESS PER COAT: 2-3 mils (50 to 75 microns)THEORETICAL COVERAGE PER MIXED GALLON: 1000 mil sq.ft.(24.5 sq.m/1 9 25 microns)333 sq.ft.at 3 mits (8.2 sq.m/1 8 75 microns)'NOTE: Material losses during mixing and application will vary and must be taken into consideration when estimating job requirements.

SHELF LIFE: Base: 12 months minimum Zinc Filler: 24 months minimum COLORS: Gray or Green only.GLOSS: Mane finish.ORDERING INFORMATION Prices may be obtained from Carboline Sales Representative or Main Office.Terms-Net 30 days.SHIPPING WEIGHT: 1'$5's Carbo Zinc 11 23 lbs.{10.4 kg)113 lbs.(51.3 kg)Carboline Thinner t",33 9 lbs.(4.1 kg)41 lbs.(18.6 kg)Carboline Thinner~21 8 lbs.{3,6 kg)36 lbs.(16.3 kg)FLASH POINT: (Pensky.Martens Closed Cup)Carbo Zinc 11 Base 56 F (13 C)Carboline Thinner 433 101 F (38 C)Carboline Thinner n21 53 F (12 C)Feb.81 Replaces Jan.80 To the best of oui knowledge the technical data contained herein we true and accurate at the date of'Issuance and are sublect to change without pnor notice.User must conlact carboline to verity correctness before soecifying or ordering.No guarantee of accuracy is given or imolied.we guwantee our products to conform to carboline duality control.we assume no resoonsibility for coverage, performance or inluries~esulting from use.Liability.

it any, is limrced co reolacement of nroducts.Prices and cost'data it shown, are sublect lo change without nrior notice.NO QTHER WAR RAN'ry QR QUARANTFF OF ANY KIND IS MADE=BY TfsE SELLER, ExPRESS QR IMPLIED.STATUTORY.

ey OPERATION QR LAW, QR QTHERWISE, INCLUDING MERCHANTAOILI TY AND FITNESS FOR A PARTICULAR PURPOSE.

'6 Report No.17490-'t.'age No.26 PHENOL!IIEo 305 FINISH REFERENCE 23 350 HANLEY INDUSTRIAL COURT~ST.LOUIS, MO.63144~314-644-109 5 ELECTI 0 N D ATA GENERIC TYPE: Modified phenolic.Part A and Part B mixed prior to application.

GENERAL PROPERTIES:

A heavy duty topcoat, Phenoline 305 Finish sets to a hard, tough;smooth finish having very gdod abrasion resistance.

The surface is glossy and easily cleaned.Has excellent resistance to a wide range of solvents, caustics, cleaning solutions and acid entrained vapors of high concentration.

Phenoline 305 Finish has outstanding chemical, physical and application properties.

Phenoline 305-Finish is easily repaired, has excellent resistance to hydraulic fluids and meets the applicable performance criteria of the American National Standards Institute ANSI 101.2-1972 and ANSI NS.12-1974.It has performed satis.factorily in radiation resistance and decontamination testing at Oak Ridge National Laboratory.

RECOMMENDED USES: Phenoline 305 Finish is an ex.cellent coating for the protection of steel and concrete sur.faces in-nuclear power plants:"Because of its glossy appear-'ance and excellent physical properties, Phenoline 305 Finish is an excellent topcoat for use by manufacturers of industrial equipment and components.

Also used in chem-ical processing plants, pulp and paper mills for the protec.tion of structural steel and concrete against severe splash, spillage and fumes.Makes an excellent floor coating, addi~tion of Special Silica n 2 provides a non.skid surface.NOT.RECOMMENDED FOR: Immersion service or con-tinuous spillage of hot or concentrated acids.CHEMICAL RESISTANCE GUIDE: COMPATIBILITY WITH OTHER COATINGS: May be g applied over inorganic zincs, catalyzed epoxies, modified phenolics or others as recommended.

Acceptable primers are Carbo Zinc 11, Carbo Zinc 12, Carboline 195 Sur.facer, Carboline 295 WB Surfacer, Phenoline 305 Primer, Phenoline 305 Concrete Primer, Phenoline 307 or others as recommended.

A mist coat may be required when applied over inorganic zinc.SPECIFICATION DATA THEORETICAL SOLIDS CONTENT OF MIXED MA-TERIAL: By Volume 64+2~o Phenoline 305 Finish RECOMMENDED DRY FILM THICKNESS PER COAT: 4 6 mils (100-150 microns)THEORETICAL COVERAGE PER MIXED KIT': 1 gal.kit (yields 1.25 gal.)1283 mil sq.ft.(25.6 sq.m/I 9 25 microns)320 sq.ft.at 4 mils (6.4 sq.m/I 8 100 microns)5 gal.kit (yields 6.25 gal.)6416 mil sq.ft.(25.6 sq.m/I 8 25 microns)1603 sq.ft.at 4 mils (6.4 sq.m/I 8 100 microns)NOTE: Material losses during mixing and application will vary and must be taken into consideration when estimating job requirements.

SHELF LIFE: 2 years minimum Exposure Acids Alkalies Solvents Salt Water Splash and Spillage Very good Excellent Excellent Excellent Excellent Fumes Excellent Excellent Excellent Excellent Excellent COLORS: Phenoline 305 Finish: Standard colors are White C800, Gray C705, Gray C703.Consult Carboline Color Chart.I GLOSS: Glossy ORDERING INFORMATION TEMPERATURE RESISTANCE:

Continuous:

200 F (93.3 C)Non continuous:

250 F (121 C)FLEXIBILITY:

Fair WEATHERING:

Very good ABRASION RESISTANCE:

Very good SUBSTRATES:

Apply over suitably primed metal or ce.mentitious surfaces.Surfacer normally required for poured vertical surfaces.TOPCOAT REQUIRED: Normally none SHIPPING WEIGHT: 1 Gal.Kit~i).26~I.)17 lbs.(7.7 kg)9 lbs.(4.1 kg)9 lbs.(4.1 kg)Phenoline 305 Finish Phenoline Thinner Caibolifte Thinner Q 5 Gal.Kit (6.26 isl.)66 iki.(36.3 26)~45 lbs.(20.5 kg)45 lbs.(20.5 kg)FLASH POINT: (Pensky.Martens Closed Cup)Phenoline 305 Finish Part A 68'F (20.0 C)Phenoline 305 Finish Part B 60 F (15.6 C)Phenoline Thinner 77'F (25 C)Carboline Thinner W 30'F (~1 C)Prices may be obtained from Carboline Sales Representative or Main Office.Terms-Net 30 days.May 80 Replaces Jan.80 To the best of our know)edge the technical data contained herein are true and accurate st the date of issiiance and aie 5ubleot IO Change w'thout prior notice.User must contact carboline to verily cotrectno55 beforo 5oecifying or ordering.No guarantee of accuracy i5 gwen or'molted.we guarantee our products to confotm lo cstboline uuaiity control.we assume no responsibility for coverage, per lotmsnce or inlutie5 re~ulting from use.Liability, if sny.)s limited to replacement of oroducts, pticos snd co52 dale if shown, sre sub)act to chango without pr'ot nett<<, No OTHFR WaRRANTY OR GUARANTEE OF ANY KINO IS VADE BV THE SELLER.EXPRESS OR lltPLIEO.STATUTORY.

BY OPERATION OR LAW OR OTHERWISE INCI UOING x ERCHANTABILITY ANO FITNESS FOR A PARTICULAR PURPOSF~