ML17264A868
| ML17264A868 | |
| Person / Time | |
|---|---|
| Site: | Ginna |
| Issue date: | 04/23/1997 |
| From: | ROCHESTER GAS & ELECTRIC CORP. |
| To: | |
| Shared Package | |
| ML17264A865 | List: |
| References | |
| NUDOCS 9705020092 | |
| Download: ML17264A868 (87) | |
Text
Desi.gn Analysi.s Gi.nna Stati.on EVALUATION OF GINNA RCS COOLANT TEMPERATURE TO SUPPORT LTOPS REQUIREMENTS Rochester Gas and Electric Corporation 89 East Avenue Rochester, New York 14649 DA-ME-97-031 5
g l,
Revision 0
~ ~
April 14, 1997 Prepared by:
Reviewed by:
Respon e Engineer-,:.
f zyPgp EIN RRC01 KEYWORDS CROSS REF PSSL 01 COMMENT TECHNICAL"INPUT FORM EWR/
OTHER PROPRIETARY YES Brittle Fracture, 10CFR50 Appendix G
LTOPS NO X
SUPERSEDES Page 1'705020092 970424 PDR ADQCK 05000244 P
Revision Status Sheet tE 14 Page Latest Revision 0
Page Latest Revision Page Latest Revision 1
1 11 11 14 El I II I II 14 I ~
11 Ek I
kI 11
,I4 El E
E II 1
Design Analysis DA-ME-97-031 l3 Page 2 of P'evision 0
4 II
Revision St:atus Sheet Page Latest Revision 0
Page Latest Revision Page Latest Revision Design Analysis DA-ME-97-031 l3 Page 2 of p'evision 0
Date 04 15 97
TABLE OF CONTENTS SECTION TITLE PAGE NO.
1.0 2.0 OBJECTIVE CONCLUSIONS 3.0 4.0 DESIGN INPUT REFERENCES 5.0 ASSUMPTIONS 6.0 7.0 COMPUTER CODES ANALYSIS-8.0
SUMMARY
OF RESULTS 13 Design Analysis DA-ME-97-031 Revision 0
l3 Page 3 of g Date 04 15 97
TABLE OF CONTENTS SECTION TITLE PAGE NO.
1.0 2.0 OBJECTIVE CONCLUSIONS 3.0 DESIGN INPUT 4.0 5.0
6.0 REFERENCES
ASSUMPTIONS COMPUTER CODES 7.0 8.0 ANALYSIS-
SUMMARY
OF RESULTS 13 Design Ana1ysis DA.-ME-97-031 Revision 0
13 Page 3 of )f Date 04 15 97
..0 OBJECTIVE This evaluation will calculate the RCS coolant temperature such that corresponding metal temperature at a distance one-fourth. of the RV section thickness from the inside surface will not be less that RTndt
+
50 F. This is needed to protect the reactor vessel from being exposed to conditions of fast propagating brittle fracture per requirements of 10CFR50 Appendix G.
2.0 CONCLUSION
S This analysis showed that for a vessel beltline weld material RTndt of 232 F,
an instrumentation uncertainty of 21.1 F,
and consideration of conser'wative heat transfer parameters, the temperature difference;,between coolant and 1/4 thickness is 3.2 F and.corresponding RCS coolant tempexature is 306.3 F.
3.0 DESIGN INPUT j
j ~ M 10 CFR.Part 50 Appendix G
ASME Code Case N-514, "Low Temperature Overpressure Protection",
Section XI, Division 1 3.3 3.4 WCAP-14864, "RE E. Ginna Heatup and Cooldown Limit Curves For Normal Operation",
June 1996.
dP USNRC RG 199, Rev. 2;."Radiation Embrittlement of Reactor Vessel Material!',.May 1988
4.0 REFERENCES
4.1 4 '
RGEE Analysis, DA-EE-93-154, "Uncertainty Of Cold Leg Temperature Recording",
EWR 10106
- CEO, P.
Bamford to A. Rochino, "RV Annulus Temperatures",
4/2/97..
4.3 Marks'tandard Handbook For Mechanical Engineers, 9th Edition, by E. A. Ayallone, and T. Baumeister 4.4 4.5 V. M. Faires, "Thermodynamics",
4th Edition Westinghouse Dwg No.
- 117804E, Rev.
7, "Material List Reactor Vessel!'esign Analysis DA-ME-97-031
.Q Page 4 of g Revision 0
Date 04 15 97
..0 OBJECTIVE This evaluation will calculate the RCS coolant temperature such that corresponding metal temperature at a distance one-fourth. of the RV section thickness from the inside surface will not be less that RTndt
+
50 F. This is needed to protect the reactor vessel from being exposed to conditions of fast propagating brittle fracture per requirements of 10CFR50 Appendix G.
2.0 CONCLUSION
S 3.0 This analysis showed that for a vessel beltline weld material RTndt of 232 F, an instrumentation uncertainty of 21.1 F,
and consideration of conserVative heat transfer parameters, the temperature difference, between coolant and 1/4 thickness is 3.2 F and,corresponding RCS coolant temperature is 306.3 F.
V gC DESIGN INPUT 10 CFR.Part 50 Appendix G
-3
~ 3 3.4 ASME Code Case N-514, "Low Temperature Overpressure Protection",
Section XI, Division 1 WCAP-14864, "R. E. Ginna, Heatup and Cooldown Limit Curves For Normal Operation",
June 1996.
?
USNRC RG 199, Rev. 2;;"Radiation Embrittlement of Reactor Vessel Material,",;May 1988
4.0 REFERENCES
4.1 RGEE Analysis, DA-EE-93-154, "Uncertainty Of Cold Leg Temperature Recording",
Bamford to A, Rochino, "RV Annulus Temperatures",
4/2/97..
4.3 Marks'tandard Handbook For Mechanical Engineers, 9th Edition, by E. A. Avallone, and T. Baumeister 4.5 V.
MD Faires, "Thermodynamics",
4th Edition Westinghouse Dwg No.
- 117804E, Rev.
7, "Material List Reactor Vessel!'esign Analysis DA-ME-97-031 lS Page 4 of g Revision 0
Date 04 15 97
4.6 4.7 Westinghouse Dwg No.
- 117849E, Rev.
2, "General Outline Of Reactor Vessel".:
TRANSCO, Inc.
Dwg No.
TP, 3609-1, "Elev. of Reactor Vessel (Typical Panel Sections).
e
.-Design Analysis DA.-ME-97-031 13 Page 5 of P'evision 0
Date 04 15 97
5.0 ASSUMPTIONS
~
- 5. 1 5.2 Assumptions, if used, to simplify analysis and/or provide conservative results are fully documented in the body of this design analysis and do not require verification at a later date.
Since the results of this calculation will be utilized to justify Ginna LTOP Enable Temperature, conservative values of heat transfer parameters will be used in the calculation so as to give a higher RCS coolant temperature.
6.0 COMPUTER CODES 6 '
None 7.0 ANALYSIS The temperature of the RCS coolant will be determined, based on a known temperature at a point 1/4 of the RV section thickness from,the inside surface of the vessel.
Steady state:.heat transfer methodology is then employed since'he air annulus temperature outside of vessel is also known.
The film coefficients at the inside and outside surfaces are conservatively taken to represent typical conditions as listed in heat transfer textbooks.
7.1 Heat Transfer From 1/4 Thickness To Outside By definition, resistance to heat transfer in cylindrical solid walls. is given by the equation, (Reference 4.4)
Where:
Rw =
DT/Q
.-= Ln(Do/Di)/2 ll ZK (1)
DT = Temperature difference between the wall
- surfaces, deg F
Q = Heat Transfer, Btu/hr Do
= Outside surface diameter, ft Di = Inside surface diameter, ft Z = Length of cylinder, ft Design Analysis DA-ME-97-031 IS Page 6 of f Revision 0
Date 04 15 97
K = thermal conductivity of cylindrical wall, Btu ft/hr-sq ft-F Resistance of films at surfaces of the cylindrical walls is expressed by the relation, Ri = 1/AiHi Ro
= 1/AoHo (2)
Where:
Ri = Resistance of film inside cylinders, (deg F-hr)/Btu Ro Ai Ao Ho Hi Resistance
-.of, film outside cylinders, (deg F-hr)/Btu Inside surface -area, sq ft
~ ftl
= Outside surface
- area, sq ft
= Outside film coefficient,Btu/(hr sq ft F)
Inside film coefficient,Btu/(hr sq ft F)
The heat transfer path from the 1/4 thickness section to the outside is made up.*of composite cylinders representing the remaining part of the reactor vessel and the insulation, each cylinder having its own resistance.
This is shown in Figure 1 below.
In addition, there will be a film resistance at the outside surface.
l '3)~
ZPI 1I
'k55<1.
~g t>C Q~ g,p~p,cp l
I.
~
Thlc.at'~t'-SS ~~
+
Figure 1.
Composite Cylinders From 1/4Thickness To Outside Design Analysis DA-ME-97-031 t3 Page 7 of g Revision 0
Date 04 15 97
The heat transfer through the series of resistances is expressed as follows:
Q
=
DT/(Sum of Resistances in Path)
(3)
Where DT is the temperature difference between 1/4 thickness section and the outside annulus temperature.
The resistances in series consist of the remaining vessel thickness, the insulation, and the outside film. Details of Equation 3 is shown below.
Q
=
(Ts Tair)
Ln (Do/Ds)
Ln (Di/Do)
+
2T)
ZKv 2 P ZKi AiHa (4)
Where:
Ts
= Temperature at 1/4 thickness section
= 282 F-(Design Input 3.3)
Tair' Annulus temperature surrounding the
- vessel, 50F (Reference 4.2)
Do
= Outside diameter of the vessel 145" or 12.0833'Reference 4.6)
Ds
= Diameter of 1/4 thickness section 135.25" or 11.2708'Reference 4.6)
Di
= Outside diameter of insulation, 3"
thick per Reference 4.7 151" or 12.5833'i
= t7ZDi = Insulation Surface area, sq ft 12.5833 Ll Z sq ft Kv Thermal conductivity of vessel'aterial which is ASTM A508 (Ref. 4.5)
Btu ft/hr-sq ft-F; From Table 4.4.1 of Reference 4.3, conductivity of steel is given as 26.2 Btu ft/hr-sq ft-F Design Analysis DA-ME-97-031 I3 Page 8 of g Revision 0
Ki Thermal'conductivity of vessel insulation, which is Kaowool (Ref.4.7) 0.059 Btu ft/hr-sq ft-F from Table 4.4;3 of Reference 4.3.
Ha film coefficient at the surface of the insulation with the annulus room.
From Table 4.4.9 of Reference 4.3 a
typical value for air outside of tubes is given as 7.5 Btu/hr-sq ft'-F. This This will be increased to 10 Btu/hr-sq ft-F for conservative value.
10 Btu/hr-sqft-F Length of Cylinder, which will be assumed equal to 1 ft.
Substituting the above values into Equation 4, we have:
~
~
(282 '- 50)
Ln (12. 0833/11. 2708);
Ln~(12. 5833/12. 0833) 1
+.
+
2 8 (1) (26.2) 2ll(1) (0. 059) 1~ (12
~ 5833) (10) 0 232
~
0.000422848
+ 0.1093822
+ 0.0025296 232/0.1123347 2065.2573 Btu/hr for 1 'ft vessel length (5) 7.2 Heat Transfer From 1/4 Thickness To RCS Coolant The heat transfer path from the 1/4 thickness section to the inside part of the vessel, containing the RCS coolant is also made up of composite cylinders representing the cladding, and the 1/4 section of the vessel.
In addition, there is also a film resistance at the inside surface.
This is shown in Figure 2, which is depicted in the next page.
Design Analysis DA-ME-97-031 I
~.)3 Page 9 of/
Revision 0
Date 04 15 97
Vr II L93)4 -
Wrcst I,
I
~ v'>
0 I
Figure,.2 Composite Cylinders From '.1/4Thickness'To Inside I
I'I I
'; P "a
vo ~
C The heat transfer through'-the series of resistances in Figure 2 is expressed below.
Q = DT/(Sum of Resistances in Path)
(3)
~w W-hV 2
I< ZKv
-Where DT is the temperature difference between coolant temperature, Tres and.the metal temperature at 1/4 thickness, Ts which is l.qual to 282 F (Design Input 3'). Considering the;,resistance formulations, in.
Equations (1) and (2),>> the, heat transfer equation in (3)
- becomes, (Tres..;=Ts)
Q ------
(6)
Ln (Ds/Dv)
..- Ln (Dv/Dclad)
+
+
- 2 ll ZKclad Aclad Hrcs Design Analysis DA-ME-97-031
>>i -.
gw JJ 1 'k r
.l3 Page..10'ofg fIpa~'evision 0
, 7
Where:
Ts
= Temperature at 1/4 thickness section
= 282 F (Design Input 3.3)
Tres Temperature of coolant inside the
- vessel, F. This will be calculated.
Ds Diameter of 1/4 thickness section 135.25" or 11.2708'v Inside diameter of the vessel 132" or 11.0'v Kclad Thermal conductivity of vessel material which is ASTM A508(Ref. 4.5),
Btu ft/hr-sq ft-F.
From Table 4.4.1 of Reference 4.3, conductivity of steel is given as 26.2 Btu. ft/hr-sq ft-F ~
4*)
Thermal conduct ivity of cladding material which is Type 3 0 4 SS, Btu ft/
hr-sq
,ft-F.
From Table 4. 4. 1 of Ref.
4. 3, conductivity of stainless steel is also equal to 2 6. 2 Btu ft/hr-sq ft-F ;
Dclad Inside diameter of cladding 131.688" or 10.974'clad
= (lZDclad'..
=, Surface area inside clad
=. 10.974'Tl Z
sq ft hclad
= Film coefficient at the inside surface of the vessel clad.
From Table 4.4.9 of Reference 4.3, a typical value for water inside pipe is 1260 Btu /hr-sq ft-.F.-For conservative results, we will,use a film coefficient value of 1000 Btu/hr-sq ft-F.
Z
= Length of vessel, which will be assumed equal to 1 ft.
Substituting the above values into Equation (6),
we obtain, Design Analysis DA-ME-97-031
',":. l3 Page 11 of p' t.
Revxsxon 0
Date 04 15 97
Q
=
(Tres 282)
Ln(11.2708/11.0) 2 ~l(1) (26.2)
Ln(11.0/10.974) 1 2ll (1) (26. 2) ll10. 974 (1000)
Tres - 282 0.000147735
+ 0.000014375
+ 0.000029006 (7)
Q
=
Tres 282 0.000191116 (7')
The heat flow in Equation-7's equal to that in Equation 5. Consequently, we have r
Q
= 2065.2573(0.00019116)"=,
Tres
-282 Solving for Tres, Tres
= 282
+ 0.395
= 282.395 F
A conservative assumption will be now be considered where the vessel insulation resistance decreases by an order of magnitude, i.e., by a factor of 10. In Equation (4) this will increase the heat flow to, Q = 232/(0 '00422848
+ 0.01093822
+ 0.0025296) 232/0 '13890668 16701.86 Btu/hr per ft length of vessel Substituting this value into Equation (7'),
we can solve for the coolant temperature, Tres
= 282
+ 16701.86(0.00019116)
= 285.2 F
(8)
Design Analysis Revision 0
DA-ME-97-031
, IS Page 12 ofp'ate 04 15 97
8.0
SUMMARY
OF RESULTS For a vessel beltline weld material RTndt of 232 F, and a corresponding metal temperature at a distance one-fourth of the vessel thickness from the inside surface of 282 F, and an instrumentation uncertainty of 21.1 F (Reference 4.1), this calculation has shown the following results:
Temperature Difference Between Coolant and 1/4 Thickness
= 3.2 F
RCS Coolant Temperature
= 285 '
+ 21.1 306.3 F
Design Analysis DA-ME-97-031
)0 Page 13 of g Revision 0
Date 04 15 97
WWCCI
~ -
~
~
~
~
~
~
~
~
e
~
~ I ~
~
~
~
~
~
~
~
~
~
~ ~
~
~
~ ~
~
~
~
~
~
~
I
~ i
- ~
- ~
~
~
~
~
~
~ ~ ~
~
- ~
~
4 0
4t ga
gQ'
.Yh "F(
Y e
3N" ;3 '~; +.-"-gm = '.~, '.,*,ep Document Control Sheet Re ir s o
irma Check a lic l b x S"poin.s (Instrument, Relief Valve, Time Delay, Other)
Operating Parameters (Flow, Pressure, Temperature, Volume, Other)
Operational Restrictions UFSAR changes are required Section (s)
NUCLEAR SAFETY
& LICENSING INQUIRY DATA BLOCK Safety Class Changed or New Equipment/System Information From GMEDB Requires copy to Ginna if any box is checked below.
Review by NS&L
~YN See (¹2)
~8e
(¹3>
~ee
(¹3)
(¹4)
NOTES:
(¹1) Zf any box is checked, consult the GMEDB records to determine the component safety c)ass, t:hen enter "sR" Jf '3(hfpI'y l<p)ill:p()3 or NREM" if Safety S'igrxificant or "HSR" if Non-Safety ReXated.
(¹2) Zf Safety Class is "SR" or "SS" review by NS&L is required.
(¹3) If box is checked, review by NS&L is required.
(¹4) Responsible NES Engineer shall complete the UFSAR section.
Zf UFSAR changes are required, review by NS&L is required.
DOCUMENT CONTROL DATA FORM PLANT SYSTEMS AND STRUCTURES LIST (Ref. 2.3; PSSL Numeric Zdentifiers)
KEY WORDS:
(',(',(3Cold Leg CROSS REFERENCED TO:
N/A SUPERSEDED, REFERENCE DATA:
N/A EZN DESZGNATORS(S):
RK-3 h
Design Analyszs DA-EE 154 Page ii Reveeee>>
((
ig*
(I W4 r
Page Latest Revision Page Latest Revision Page Latest Revision 0
0 Attach.
A 0
Attach.
B 0
Design Analysis DA-EB-93-154 Page ~
I 4
I'I
')
Ut
<<+'tt<<) 'Aa
<<)
),
t
"~
U.
I
0
~
~
0
~
~
~
~
~ ~
~ 0
~ ~ ~
~ ~ ~
~
~
~
~
~
~ ~
~ ~
~
~
~ 0
~
~
~
~
~
~
0 0 0
~
~
~
~
~ 0
~ I
~
~
~
~
~ 0
~
~
~
~
~ 0 0
~
~
~
~
~
~
0
~
~
~
s
~ l
~
~ ~
~
~
I
~
~ ~
~
~
~
~
~
ci 4
e I
N t
I 4
,r 1!
'4a
5.0 Assum talons None 6.0 Com uter Coaes 7 '
RCST409B (Refer to Attachment B)
A~nal sls The basis uncertainty of the existing RCS A&B cold leg temperature indication on MCB chart, recorder RK-3 is
+ 21.1 'F (Ref. 4.1).
The instrument uncertainty for the proposed modification as calculated in Attachment A to this analysis is
+
20.25
'F which is less than the existing design basis uncertainty.
8.0 Results A comparison of the existing basis uncertainty to the uncertainty of the proposed modification shows that the proposed modification uncertainty is less than the that of the existing basis.
Therefore, there is no impact on existing setpoints or operational requirements as a
result of this modification.
DA-EE-93-154 Page g Revision 0
Date
F
- ~hi
~h+h 'jh~
'h'gP 'lg+~hth,3hh I g
", y ~4', o 'g/$ Yah' ll jj$~ +
~$
~ '~h'k>>g~ gh
' 4+~ ~h' Whhh Wgh~h~p~p Proposed Modification Instrument Uncertainty Impact
==
Description:==
The proposed instrument modification is shown diagramatically in Figure 1.
Existing Instrument Basis Uncertainty:
21.1 OF The basis for the existing cold leg recorder uncertainty is the "Ginna Instrument Channel Uncertainty Report",
RCS Temperature (Cold Leg Recorder),
Channel TR-458A, Volian Enterprises, July 89.
The existing loop is not qualified for accident environments.
Proposed Instrument Modification Uncertainty:
2 2.893527 8 span The instrument span used in the proposed modification is 788 'F.
This yields a temperature uncertainty of, 28.25469 oF Since the total loop uncertainty for the proposed modification is less than the basis uncertainy of the existing configuration there is no impact on existing setpoints, or operating requirements.
i 0
P,
- ~ (1(4)
N I
g>>
$ Tet'>At Nt r >IIII (Ottg 4 0<<%
Agjjg~IPjit ",,',
'L>>
I>>4, 4,( (
I~Q ~~U-..;
P HP
~ VI COSA'IHL tLTHTHTA 404 D44 TLATII4JI ATO
- ~. NNO-IOXO tO4OTIH
~4'I
~
~
400
~ I
~Nlvl (1)
IOLO ITIS (IVAAIINITA
~44OT tl41 ID I OISCI V/I CCHVTIIIIN t'4 OO HA)
N/OI ICNICAO (SAIC tOO)
IOOTLI N OA(NVAI Ol'SCT TTLNIAATIHC IIDICATCN CT COLO)
(4 SO HA, O-TOO Q
~BCI IMltttHTIOIHLINST IQIXL(1IS~ V 0 TO
~41 0
~
', OIOCI IHSISTAN(0 TD VOLT(AC COHVIMCO (0 10/)
C/CA TLATIIAAIIITO SOHSOHS)
~ IWCI IOIOOIO (AHA OOOO
, HSAI H tAI /TV 400 OIOC V/I CXHIVIAtLA (4.20 NA)
NICI tCHAOAO (TOT(
NSOTLI N 2AO VAI TINAIAAIITHIIOCOOIAA CT COLA (4 tO HA4 0 SOO 4 N/O'DSSIAVA W 100
~OOCLI 41ST t PCH
~OO 0 T OCOCI V/ ~ COAVIAIIA
( ~
0 HA)
INC.
ICNCCAO CSACC IOC>
ASCII,I tl OHNVAI CCT/C 'IALOC (t COLO) 4 OOVICC IHT IOT A/IOCT LOCA ACCIOWCT LtC(H)
~ 4 OOVICO ON(PI/I IO IITT WITHIN THC OS(PC Ctt AIIAl'IIIIO SOOAC ICNHONN tOTCI MIS LCOA IO CALIOAATIO'WITH TIO AWlS IT AIOO/COS THC OCIHWtAATIHTOOCNItIITOA IOA /LOIO TAICTIOH OILCILATID( OIJNIA TIO IAHNI PLOW, ACS Tl098 BLOCK 0 I AGLEAM (I)l)LO LLIC TO4(I(A@TV(IL It()I CATICTII At(S TTT.'(OROI TC )
StCCT 1
TC 40801
~ (NCT Figure 1
P
~"
1 "l
l1 l
f l
f I
~
1
O'-DP
~TABB.I PMU SU ReU DU M5ITEU TU AEU CLU+AB SU TE409B 1 T04MB.1 TY40ETB
'1 ERK 3 RESULTA 0.1 0
0.75 0,
0 a01 a5825 08 ae 0.72 0
0 01 41421 4 0.2 0
1 0.1 41421 4 0
0 0
0 0
0 TEMPERATURE(DEG~TCO COURTER~M/A RMD ERR ~23333233 BIAS ~O SVOU N/A
+/-
N/A 0
+/.
2.8835273 2
3
'I 2
1I I
I 3
t 3
I, k4Chmenk A+ DA-EF-'lS-;)5<,,QCV.:.C,...
1,::',g~~~.j~T,'j,.',.";:.,",:;,;.
.IA j'3
J
~) y,
~
a
'l 2p
\\'
t P
~
A
. E k ~
LOOP TeeeTL1 McoLAE 1EcaeB 1
MCOEL 21et2 10000 PRESRHE WA EFFECT ET E2 ES Ei H
RESLATAN ai 0
0 F.FFECT E.1 E2 ES Ee ES RESLATAN RACKA AM)PAWL lKXPTTED Res Re Rpse Rme Red Bet Rce 0
0 EFFECT Gee Re Te ACCGENT RELATED SCe AB TS S1 Pl TS CQ E2 CROLF'ffLI SU ReU OU MATE U TU AEU AB4 CLU SU a1 0
0 0
0 0
0 0
0 0
eI.
I
~V
'I II I
"I I
lI 3, 7
- FI IV)
'I 7
)0.'v'IT e
v
\\-t% I c, ~a+
V A/4 C
~:
a gp'P'/
I' 4
J j pl vr, J>>
TO446 1 PnE$ $1FrE wA EFFECT Er E2 Es Ec E$
AETNA.TAN nrs e~
Eco 01 EFFECT Er E2 E2 E4 E$
FrEQl.TAN f%CKA AFC) PArkL WXWTED 0
0 0
ACCCENT f%lATED E1 E2 Es 0
0 0
0 0
0 0
r 9
0 ars 0
aNN2120 1
0 0
0 MOD%E EMOR 0
41 12$ 29r458
ff L
'I y/~'4
LOOP T4400 '1 MCKXAE ZYeees 1
50-6 FOXBOAO MOCEL N 2AO.VAI EFFECT Pie Vee E1 E2 ES Ee E5 REMI.TAN EFFECT EI E2 EI E5
~STAN ae RICKA AM)PA2KL MOLPIIEO 0
0 0
02 ACCIDENT REIATED EFFECT Cree Re Te Pe SCe AIL CI SI PI TB CSI EI E2 E5 0
0 0
0 0
0 0
GfIP PIAJ SU ReU OU MATEU TU 0
AEU ABtCLU SU 0
0 Oe 0
02 1
0 0
0 e/
1.10221500
~
"l '
'I
i
.8 WLI.
<Lf u" J
~SSLFQ WA fk0'Q YOILOGAwA MCOEL IIA100 4 113 3 PEN EFfECT PIne Pee EI E2 ES RE%I,TAN Se Sepe See Spec Seee Sd Q
Sce ke EFFECT E1 E2 E2 Ee EC RE SATAN oa RAQCA AM)PANEL MOL24TED CLI CL1 aee Ie 212e ACCOENT fKLATEO EfFECT Cree Re 1 ~
Pe SCCe AB Q
0 0
0 0
GROL2'MLJ QJ ReU OU MAT EU TU AEU ABICLU SU 0
0 OAI 1
CLeeee2130 2
0 0
0 MOOLAEEITOR 0
I/.
24191821 k
L k"
k Lk k
t k k k I k
k k
k'k f
X.
k'1 lk
4 ~,
P
)'
II 0 Al I'
SPAN ?r ERROR ?r 6GO 625 550 675 700 RK-3 CALTOL % SP 1 254631 1 256065 1 260357 1 267478
'7738 129 1 3.05259 1 3.2ZX5 1 3. 4331 7 1 3. 65906 1 3.9071 9 1 4.1 7639 1 4. 46548 1 4.77329 1 5.09868 1 544053 15.79778 1 61 6942 1 6.55446 1 6.951 99 1 7.361 1 6 1 3.06908 1 3.08401 1 3.1 2872 1 3.20289 1 3.3C604 1 3.4375 1 3.59644 1 3.781 92 1 3.99288 1 4.2281 9 1 4. 48666 1 4.76707 1 5.0682 1 5.38884 1 5727?9 1 608389 1 6. 45RX3 1 68431 4 1 7.24422 1 7.65832 1 808455 1 3.5R 84 1 3. 60737 1 3.65387 1 3.7R 01 1 3.83828 1 3.975 1 4.1 403 1 4.3332 1 4.5526 1 4.79732 1 5. 0661 3 1 5. 35775 1 567033 1 6.00439 1 BM69 1 6.72724 1 7.1 1 427 1 7.51 687 1 7.93399 1 836466 1 880793 1 4.1 1 46 1 4.1 3073 1 4.1 7902 1 4.2591 3 1 4.37053 1 4.51 25 1 4.6841 6 14.~
1 5.1 1 2Z 1 5.36645 1 564559 15L94844 1 627366 1 6.R 995 1 6.986M 1 7.3706 1 7.77251 1 R1 9059 1 862376 1 9.07099 1 4.63737 1 4 65409 1 4.7041 7 1 4.78724 1 4 90277 1 5.05 1 5.22802 1 643575 1 567203 1 593557 1 622506 1 65391 2 1 687639 1 7.2355 1 7.61 51 2 1 801 395 1 843075 1 886432 1 9.31 353 1 9.77732
<<1 9.5R 31 20.25469 0
- 0. 1 0.2 0.3
- 0. 4 0.5 0.6 0.7
- 0. 8 0.9 1
1.1 1.2 1.3 1.4 1.5 1.6 7
1.8 1.9 2
t j'4 I '.kj
~ Ver
<0 E 53 154<< 'V. 0 P
p>>~e *
,P,V,, 'e t.
l e
r I
~+egg p>> wet '1g i4>>,,%'.
t4
< y'0 '~s~~'gt e I I
Q.~g+g't>>~
+SAV '
f, ilf
~,
'4 a
22 21 u
20 P
19 18 17 16 15 14 13 12 0 Temperature Error (Deg F) vs RK-3 calibration Tolerance (% Span)
BASIS LOOP ERROR-
-- 21.1 DEG F 700 DEG F 675 DEG F 650 DEG F 625 DEG F 600 DEG F f'(dA 4.. -:PI e
I RK-3 Calibration Tolerance (% Span),
Span. '
'I II t.-
- I
'Pay(" O'E(I "'~
Q'o DA-EE-'I'3- )5M I
lr
Computer Software Documentation The compu er programs utilized in this analysis are classified as type 4 in accordance with Appendix B of QE 330, Rev.
0.
Type 4:
Computer Software Package Documentation Summary 2.
Title of Report or Analysis RCS-T409B-1 DA-EE-93-154 Author Geor e Daniels et al 3.
Verification of Program (a)
(1)
Name of Program:
RCST409B (2)
Description (include source code location)
The principal program consists oi.'inked spreadsheet files written using QUATTRO PRO 3.0 (Borland International, Inc.)
Cell algorithms and code are attached.
(3)
Algorithm Bases 0
Found in text, page
~N A 0
Reference (4)
Numerical Methods Used
~NA (ii)
I(iii)
Description I
Reference Other
~NA
~NA
~NA I
W e
'I "I
I I
Design Analysis DA,EE-93-154 I
Page, l,of.24 I
Eh 1
I N
I
'I I
1 F
I~, ~
Attachment,.B,'..
Date, 11/18,'/93,,
Ee
,Ia
9 Ol Instrument Uncertaint Data Processin S stem In order to accommodate instrument uncertainties with significant variability related to process state parameters, a computer program us-ng an advanced spreadsheet environment (QUATTRO PRO) is utilized.
A typical file structure is shown in Figure 1 below.
TCTCUI NSTALM6MT LOOP:
SATIW FJCD84 PC4004
~Y
~QH A
~ 4 404H 0
~ 4 4004 0
ICO
~'I
~044 fi TCCCUSYSTEM FILE STRUCTURE PLOP PATC IPAP040IH.OCT Pll IHINf CLCHNT PICCCCC CTATC IPCC ATAIkfI00 IPAJIT4004. OOT
'IAANOJITT CA
~PAJOACAI,OOT
~IHCTION C NXJAAC POOTJ CPICCNTAINTY TVIJICPCPAJ HAPY4004A OCT
~CAJVIC WOT VCCVLC IPCCJlfAIMIY
~PVP44 ICO CC ICOAT ON HVPT4004C,OAT IICPCA'TCIV I SXATOO HIP I4 004C.OCT YCAT ICAL SCALE IIAJICATOO IPAJTLV.OCT IPICCATAINIY ACCIAAAATON CNAPNI CC OPHAATON
~i I
l,4 SYS 4084.TJPO I
. 'I I
,";t I
!,'1 I
, 'JX
'I I,
I I',I IIJ'0 4 ~
I Attachment,B Date 11/18'/93I'i I
'igure 1
I-4 I
4 44 4
,Page 2 of 24 Design Analysis DA EE-93-154
I I
I I ~
I 4 '
4 I
'I I
I I,
'+.'
complete listing of files used for this analysis is provided in the following pages.
0
,I 1
,L F
0
eee er
$P;",j <<.'
Gra hics Generation The graphics documented in the Analysis text are intended to provide sufficient insight into complex parametric uncertainty effects to verify conformity with performance requirements.
However the software system provides the capability for generating additional graphics, either to check existing calculations, or for providing additional data related to instrument performance during normal or emergency conditions.
Each,uncertainty accumulator file uses cells C30-I30 as the graphics variable block.
The macro "GRAPHMAC" is used to generate text files for the selected parameter set.
GRAPHMAC is located in the LIB.QST file. It must be configured for the limits, range, and desired granularity of the parameters being graphed.
Text files produced by GRAPHMAC are then imported to a QUATTRO PRO spreadsheet for use by the graphics utility. An example of this capability is shown in Figure 2 be1ow.
ee<<
.e 250 LEAD/LAG RAMP RESPONSE PM-429-B e
3
)r 200
~ 150 L'J g 100
,50 0
0 1
2 3
4 5
6' 8
9 10 TIME (SECONDS)
'4 e
p e' INPUT ~- OUTPUT Figure 2
I, e
evp
'esign Analysis DA EE-93-154 e
e e
~,,
~
e e
I e.
r>>
Page 3 of 24 e
e e'K e
P lP e
Attachment'.
B;..~<<
~
Date 11/18/93 ee
COLD LKCv TKNPKRATURK
XNDXCATOR LOOP W
C Design Analysis DA EE-93-154 f
l R
Page 4 of 24 tI M
(
'I I pl W
I II t~
t 4
~
,,(
, ~jgt e
Attachment 8
Date 11'/18l93,, '*;.,".
j ll
LIB.QST B3:
F3:
J3:
N3:
R3:
B4 F4:
J4:
N4:
R4:
B5:
F5:
J5:
N5'5:
B8:
F8:
J8:
N8:
R8:
B10:
E10:
F10:
J10:
N10:
R10:
B11:
F11'11:
Nll:
R11:
20
'l 5
1 20 980 100 200 100 1000 20 1
5 1
20 FOR E10, B3, B4, B5, B10)
FOR E10, F3, F4, F5, F10 )
'{FOR E10,J3,J4,J5,J10)
'(FOR E10,N3,N4,N5,N10)
'(FOR E10 R3 R4 R5.R10}
'{/ Print;Block)C20..E20 1020'/ Print; Block}C22..E22"
'f/ Print;Block}C24..E24"
'(/ Print;Block}C26..E26
'/ Print; Block)C30..G30
'/ Print;Go)
'{/ Print;Go)
'{/ Print;Go)
'{/ Print;Go}
'(/ Print;Gol Design Analysis DA EE-93-154 Page 5 of 24 Attachment B
Date 11/18/93
~C p 4
a L
t
TE409B 1.QST Al:
Bl:
Dl:
El:
A2:
B2:
D2:
E2:
A4:
B4:
C5:
I5:
A6:
B6:
C6:
D6:
E6:
F6:
G6:
H6:
Z6:
J6:
K6:
L6:
A7 r B7:
C7:
D7:
E7:
G7:
H7:
J7:
K7:
L7:
A8:
B8:
C8:
E8:
A9:
B9:
A10:
Blo:
All:
Bll:
A12:
B12:
C12:
D12:
'LOOP
'MFG
'CONAX
'MODULE
'TE409B-1
'MODEL
'PRESSURE (PERCENT)
'N/A PROCESS
'SENSOR (NORMAL)
I
'EFFECT Pma Pea Sa Sspe Ste Spse Sme Sd St Sce I
'El I
0.1
'E2 I
'E3
'4,.
I
=W Design Analysis DA EE-93-154 Page 6 of 24 1
E 1
t E5.
~
'RESULTANT
@SQRT(C7"2+C8"2+C9"2+C10"2+Cll"2)
SSQRT(D7"2+D8"2+D9"2+D10"2+Dll"2)
, Vr 1
o'I
, 1 a.~.
'ttach
~, Date 11/18/93 I
'e
"'p P
0 II
E12:
F12:
G12:
H12:
I12:
J12:
K12:
L12:
SQRT (E7 "2+E8" 2+E9" 2+E10" 2+E11" 2)
@SQRT ( F7" 2+F8" 2+F9" 2+F10" 2+ F11" 2)
QHQRT(G7"2+G8"2+G9"2+G10"2+G11"2)
SQRT(H7"2+H8"2+H9"2+H10"2+H11"2)
SSQRT(I7"2+X8"2+I9"2+X10"2+I11"2)
SQRT(J7"2+J8"2+J9",2+J10"2+J11"2)
@SQRT(K7"2+K8"2+K9"2+K10"2+K11"2)
SSQRT(L7"2+L8"2+L9"2+L10"2+L11"2)
D14:
E14:
F14:
B15:
C15:
D15:
E15:
F15:
G15:
H15:
X15:
B16:
B17:
B18:
B19:
B20:
B21:
C21:
D21:
E21:
F21:
G21 H21:
I21:
F23:
N23:
B24:
C24:
D24:
E24:
F24:
G24:
H24:
F, v
v vvi'V X20"2)
I v7 v) v t
Attachment
'BE Date 11/18/93, Wv v
Design Analysis DA EE-93-154 Page 7 of 24 RACK AND PANEL
'AND PANEL MOUNTED
'EFFECT Rea Rte Rpse Rme Red Ret Rce
'E1
'E2
~ E3
'E4
'E5
'RESULTANT QSQRT(C16 2+C17 2+C18 2+C19 2+C20"2)
SQRT(D16"2+D17"2+D18"2+D19"2+D20"2)
SSQRT(E16"2+E17"2+E18"2+E19"2+E20"2)
QSQRT(F16"2+F17"2+F18"2+F19"2+F20"2)
SQRT(G16"2+G17"2+G18"2+G19"2+G20"2)
SQRT(H16"2+H17"2+H18"2+H19"2+H20"2)
SSQRT(I16"2+I17"2+I18"2+X19"2+
'ACCXDENT RELATED
'SEISMIC
'EFFECT Crae Re Te Pe S/Ce AB
, i
~'r vi' v
I
>> ~
~
~I V~
j, "Jj
I24:
J24:
K24:
L24:
M24:
N24:
B25:
C25:
I25:
B26 B27:
B28:
B29:
B30:
C30:
D30:
E30:
F30:
G30:
H30:
I30:
J30:
K30:
Cl Sl Pl TBl CS1 Se
'E1 0
0'E2
'E3
'E4
'E5
'RESULTANT 8SQRT(C25"2+C26"2+C27"2+C28"2+C29"2)
SSQRT(D25"2+D26"2+D27"2+D28"2+D29"2)
SSQRT(E25"2+E26"2+E27"2+E28"2+E29"2)
SSQRT(F25"2+F26"2+F27"2+F28"2+F29"2)
RSQRT(G25"2+G26"2+G27"2+G28"2+G29"2)
@SUM(H25..H29)
SUM(I25..I29)
@SUM(J25..J29)
@SUM(K25..K29)
L30:
M30:
N30:
B34:
C34:
D34:
E34:
F34:
G34:
H34:
I34:
J34:
K34:
C35:
D35:
E35:
F35:
G35:
@SUM(L25..L29)
@SUM(M25..M29)
SSQRT(N25"2+N26"2+N27"2+N28"2+N29"2)
'GROUP PMU SU ReU DU M&TEU TU AEU AB+CLU SU SSQRT(C12"2+D12"2)
SSQRT(E12"2+F12"2+G12"2+H12"2+I12"2)
SSQRT(C21"2+D21"2+E21"2+F21"2)
SQRT(J12"2+G21"2)
'SQRT(L12"2+I21"2)
Design Analysis DA EE-93-154 Page 8 of 24 Attachment B
Date 11/18/93
(>>>>>>i=:+'>>r>> 4"p-'!>>>>rr>>,
'%>>>> ~:r "
~
>><<, w )'~S'~'~ ~m,
+@29+'-+
@OI+~f~>>~
. l(35:
SSQRT ( K12"2+ H21" 2) 135:
0 SQRT (C30" 2+D30" 2+E30" 2+F30" 2+G30" 2)
J35:
@SUM(H30..N30)
K35: QSQRT(N30"2)
Design Analysis DA EE-93-154 Page 9 of 24 Attachment 8
Date 11/18/93
0 0
'E
TI4090 1.QST Al:
Bl:
Dl:
El:
A2:
B2:
D2:
E2:
A4:
B4:
C5:
I5:
A6:
B6:
C6:
D6:
E6:
F6:
G6:
H6:
I6:
J6:
K6:
L6:
A7:
B7:
C7:
E7:
G7:
H7:
J7:
K7:
L7:
A8:
B8:
C8:
E8:
A9:
B9:
A10:
Blo:
All:
Bll:
A12 B12:
C12:
D12:
E12:
'LOOP
'MFG
'INTL INST
'MODULE
'TI409B-1
'MODEL
'1151 V"B
'PRESSURE (P
'N/A PROCESS
'SENSOR (NOR I
ERCENT)
MAL)
'EFFECT Pma Pea Sa Sspe Ste Spse Sme Sd St Sce I
'El I
I I
'E2
'E3
'E4 I
'E5 I
'RESULTANT QSQRT(C7 2+
SSQRT(D7"2+
SSQRT(E7"2+
C8" 2 D8"2 E8"2
+C9"2+C10"2+Cll"2)
+D9"2+D10"2+Dll"2)
+E9"2+E10"2+Ell"2)
C
~
Design Analysis DA EE-93-154 Page 10 of 24 Attachment, B
Date 11/18/93 II
41
F12:
G12:
H12:
I12:
J12:
K12:
L12:
D14:
O'SQRT(F7"2+F8"2+F9"2+F10"2+F11"2)
SSQRT(G7"2+G8"2+G9"2+G10"2+G11"2)
@SQRT(H7"2+H8"2+H9"2+H10"2+H11"2)
QSQRT(I7"2+I8"2+I9"2+I10"2+111"2)
SSQRT(J7"2+J8"2+J9"2+J10"2+J11"2)
SQRT(K7"2+K8"2+K9"2+K10"2+K11"2)
QSQRT(L7"2+L8"2+L9"2+L10"2+L11"2)
RACK AND PANEL E14:
F14:
B15:
C15:
D15:
E15:
F15:
G15:
H15:
I15:
B16:
C16:
F16:
G16:
H16:
I16:
B17:
B18:
B19:
B20:
B21:
C21:
D21:
E21:
F21:
G21:
H21 I21:
'23:
N23:
B24:
C24:
D24:
'AND PANEL MOUNTED
'EFFECT Rea Rte Rpse Rme Red Ret Rce
'E1 1.5 0.7 1
10.1
'E2
'E3
'E4
'E5
'RESULTANT SSQRT(C16"2+C17"2+C18"2+C19"2+C20"2)
SSQRT(D16"2+D17"2+D18"2+D19"2+D20"2)
SSQRT(E16"2+E17"2+E18"2+E19"2+E20"2)
SSQRT(F16"2+F17"2+F18"2+F19"2+F20"2)
SSQRT(G16"2+G17"2+G18"2+G19"2+G20"2)
SQRT(H16"2+H17"2+H18"2+H19"2+H20"2)
@SQRT(I16"2+I17"2+I18"2+I19"2+I20"2)
'ACCIDENT RELATED
'SEISMIC
'EFFECT Crae Re I
c
~t Design Analysis DA EE-93-154 Page 11 of 24
'I Attachment B
Date 11/18/93
0
E24:
F24:
G24:
H24:
I24:
J24:
K24:
L24:
M24:
N24:
B25:
N25:
B26:
B27:
B28:
B29:
B30:
C30:
D30:
E30:
F30:
G30:
H30:
Te Pe S/Ce AB Cl Sl Pl TBl CSl Se
'E1 0'E2
'E3
'E4
'E5
'RESULTANT SSQRT(C25"2+C26"2+C27"2+C28"2+C29"2)
SSQRT(D25"2+D26"2+D27"2+D28"2+D29"2)
QSQRT(E25"2+E26"2+E27"2+E28"2+E29"2)
SSQRT(F25"2+F26"2+F27"2+F28"2+F29"2)
QSQRT(G25"2+G26"2+G27"2+G28"2+G29"2)
@SUM(H25..H29)
I30:
J30 K30:
L30:
M30:
N30:
B34:
C34:
D34:
E34:
F34:
G34:
H34:
I34:
J34 K34:
C35:
D35:
@SUM ( I25.. I29)
SSUM(J25..J29)
SUM(K25..K29)
@SUM(L25..L29)
@SUM(M25..M29)
SQRT(N25"2+N26"2+N27 2+N28"2+N29"2)
'GROUP PMU SU ReU DU M&TEU TU AEU AB+CLU SU SSQRT(C12"2+D12"2)
SSQRT(E12"2+F12"2+G12"2+H12"2+I12"2)
Design Analysis DA EE-93-154 Page 12 of 24 Attachment B
Date 11/18/93
E35:
OSQRT(C21" 2+D21" 2+E21" 2+F21" 2)
'F35:
@SQRT (J12" 2+G21" 2)
G35:
QSQRT(L12"2+X21"2)
H35: QSQRT(K12"2+H21"2)
I35-8SQRT(C30"2+D30"2+E30"2+F30"2+G30"2)
J35:
SUN(H30..N30)
K35: 8SQRT(N30"2)
Design Analysis DA EE-93-154 Page 13 of 24 Attachment B
Date 11/18/93
TLU.QST Al:
Bl:
A3:
C3:
.D3:
E3:
F3:
G3:
H3:
I3:
J3 K3:
84:
C4:
D4:
E4:
F4:
G4:
H4:
I4 J4:
K4:
85:
C5:
D5:
E5:
F5:
G5:
H5:
I5:
J5 K5:
86:
C6:
D6:
E6:
F6:
G6:
H6:
I6:
J6:
K6:
87:
C7:
D7:
E7:
F7:
G7:
'LOOP
'T4098-1
'PMU I $ 'U
'ReU
'DU
'ME(TEU
'TU
'AEU
'CLU+AB
'SU
'TE4098-1
+[TE4098 1]C35
+[TE4098 1]D35
+[TE4098 1]E35
+[TE4098 1]F35
+[TE4098 1]G35
+[TE4098 1]H35
+[TE4098 1)I35
+[TE4098 1]J35
+[TE4098 1]K35
'TQ4098-1
+[TQ4098 l]C35
+[TQ4098 1]D35
+[TQ4098 1]E35
+[TQ4098 1]F35
+[TQ4098 1]G35
+[TQ4098 1]H35
+[TQ4098 l]I35
+[TQ4098 1]J35
+[7Q4098 1]K35
'TY4098-1
+[TY4098 1]C35
+[TY4098 1]D35
+[TY4098 1]E35
+[TY4098 1]F35
+[TY4098 1]G35
+[TY4098 1]H35
+[TY4098 1]I35
+[TY4098 1]J35
+[TY4098 1]K35
'TI4098-1
+[TI4098 1]C35
+[TI4098 1]D35
+[TI4098 1]E35
+[TI4098 1]F35
+[TI4098 1]G35 Design Analysis DA EE-93-,154 Page 14 of'4 Attachment 8
Date 11/18/93
H7:+[TI409B 1]H35 I7: +[TI409B 1]T35 J7:
<[TI409B 1]J35 K7: +[TI409B 1]K35
'8 B8:
'RESULTANT C8: %IF(ROC=1,0,+C4"2+C6"2+C7"2+C5"2)
D8: +D4"2+D6"2+D7"2+D5"2 E8: -+E4" 2+E6" 2+E7" 2+E5" 2 F8: eXF(ROC=1,0,+F4"2+F6"2+F7"2+F5"2)
G8: %IF(ROC=1,0,+G4"2+G6"2+G7"2+G5"2)
H8: @IF(ROC=1,0,+H4"2+H6"2+H7"2+H5"2)
I8: +I4"2+X6"2+I7"2+I5"2 J8:
+J4+J6+J7+J5 K8: +K4"2+K6"2+K7"2+K5"2 E9:
A10:
'PRESSURE (PERCENT)
C10: '/A D10:
'OUNTER E10: '/A G10:
'RATE OF CHANGE I10:
1 010:
N11:
1 A12:
B12:
'RND ERR, C12:
SSQRT(OSUM(CB..I8)+K8)
D12: 'IAS E12:
+JS N12:
100 K13:
N13:
1 A14:
B14:
'SUOU C14: '/A D14 '/-
E14: '/A B15:
G15:
+BIAS+RANDOM A16:
B16:
'TLU Design Analysis DA EE-93-154 Page 15 of 24 Attachment B
Date 11/18/93
~,
C16:
+E12 D16: '/-
E16:
RSQRT(C12"2)
G17:
+BIAS-RANDOM B18:
'SYSTEM STATE SPECXFXCATXON BLOCK N18:
B19:
'NORM OPS D19:
1 E19:
F19:
+NORMffAND¹,(¹NOTffACCHX)ffANDff(¹NOTffACCLO)
N19:
')FOR E10,N11,N12,N13,N21)
D20:
E20:
L20:
N20 B21:
'ACC HX C21:
D21' E21 F21:
+ACCHX¹AND¹(¹NOTffNORM)¹AND¹(¹NOT¹ACCLO)
K21:
N21: '(/ Print; Block) E14..E14" A22:
D22:
E22:
N22: '(/ Print';Go)
B23:
'ACC LO D23:
0 F23:
+ACCLO¹AND¹(¹NOT¹NORM)ffAND¹(¹NOT¹ACCHI)
B 2
@IF ( (¹NOT¹ACCHI) ¹AND¹ (¹NOT¹ACCLO) ¹AND¹ (¹NOT¹NORM) =1, "SYSTEM STATE SPECIFICATION ERROR", " ")
B 2
5 SXF ( (NORM¹AND¹ACCHI)¹OR¹ (ACCHX¹AND¹ACCLO)¹OR¹ (ACCLO¹AND¹NORM),"SY STEM STATE SPECIFICATION ERROR", B24)
'f>>')
Design Analysis DA EE-93-154 Page 16 of 24 Attachment B
Date 11/18/93 I
TQ4098 1.QST Al:
'LOOP B1:
'T409B-1 Dl
'MFG El:
'FOYBORO A2:
'MODULE 02:
'TQ409B-1 D2:
'MODEL E2:
'N-2AI-P2V A4:
'PRESSURE (PERCENT)
B4:
'N/A C5: 'ROCESS Z5:
'SENSOR (NORMAL)
A6:
B6:
'EFFECT C6: 'ma D6: 'ea E6: 'a F6: 'spe G6: 'te H6: 'pse Z6: 'me J6: 'd K6:'t L6: 'ce A7:
B7:
'E1 C7:
E7 0 75 G7:
0 H7:
0 J7:
0 K7:
1 L7: 0.1 AS:
BS:
'E2 C8:
ES:
0 LS: 0.1 A9:
B9:
'E3 A10 B10:
'E4 A11:
B11
'E5 A12:
812:
'RESULTANT C12:
SSQRT(C7"2+C8 '2+C9"2+C10"2+C11"2)
D12: SSQRT(D7"2+DS"2+D9"2+D10"2+D11"2)
Design Analysis Page 17 of 24 DA EE-93-154 Attachment B
Date 11/18/93
E12:
F12:
G12:
){12:
I12:
J12:
K12:
L12:
SSQRT ( E7 "2+E8"2+E9" 2+El0"2+El1" 2)
RSQRT ( F7" 2+F8" 2+F9" 2+F10" 2+F11" 2)
C~SQRT (G7"2+G8" 2+G9" 2+G10" 2+Gll"2)
SQRT(H7"2+H8"2+H9"2+H10"2+H11"2)
C4SQRT{I7"2+I8"2+I9"2+I10"2+Ill"2)
SSQRT(J7"2+J8"2+J9"'2+J10"2+Jll"2)
SSQRT(K7"2+K8"2+K9"2+K10"2+Kll"2)
SSQRT(L7"2+L8"2+L9"2+L10"2+L11"2)
D14:
E14:
F14:
B15:
C15:
D15:
E15:
F15:
G15:
H15:
I15 B16:
B17:
B18:
B19 B20:
B21:
C21:
D21'21:
F21:
G21:
H21:
X21:
F23:
N23:
B24:
C24:
D24:
E24:
F24:
G24:
H24:
RACK AND PANEL
'AND PANEL MOUNTED
'EFFECT Rea Rte Rpse Rme Red Ret Rce
'E1
'E2
'E3
'E4
'E5
'RESULTANT SQRT(C16"2+C17"2+C18"2+C19"2+C20"2)
SQRT(D16"2+D17"2+D18"2+D19"2+D20"2)
SSQRT(E16"2+E17"2+E18"2+E19"2+E20"2)
SQRT(F16"2+F17"2+F18"2+F19"2+F20"2)
SSQRT(G16"2+G17"2+G18"2+G19"2+G20"2)
SQRT(H16"2+H17"2+H18"2+H19"2+H20"2)
SQRT{I16"2+X17"2+I18"2+X19"2+X20"2)
'ACCIDENT RELATED
'SEISMIC
'EFFECT Crae Re Te Pe S/Ce AB Design Analysis DA EE-93-154 Page 18 of 24 Attachment B
Date 11/18/93'-
II
~(
H J
t
'I tt W
I
I24:'l J24: '1 K24:'l L24: 'Bl i~l24: 'S1 N24: 'e B25:
'E1 C25: O'IF([TLU]NORM=0,0.56,0)
I25: OIF([TLU]ACCLO=1,-0.43,0)
N25:
0 B26:
'E2 B27:
'E3 B28:
'E4 B29:
'E5 B30:
'RESULTANT C30:
SQRT(C25"2 C26"2+C27"2+C28"2+C29"2)
D30: SQRT(D25"2+D26"2+D27"2~D28"2+D29"2)
E30:
SSQRT(E25"2+E26"2+E27"2+E28"2+E29"2)
F30:
QSQRT(F25"2+F26"2+F27"2+F28"2+F29"2)
G30:
SSQRT(G25"2+G26"2+G27"2+G28"2+G29"2)
H30:
QSUM'(H25..H29)
I30: %SUM(I25..I29)
J30:
@SUM(J25..J29)
K30: @SUM(K25..K29)
L30: @SUM(L25..L29)
M30: 8SUM(M25..M29)
N30: SQRT(N25"2+N26"2+N27"2+N28"2+N29"2)
B34:
'GROUP C34: 'MU D34: 'U E34: 'eU F34: 'U G34: '&TEU H34: 'U I34: 'EU J34
'B+CLU K34: 'V C35:
8SQRT(C12 2+D12"2)
D35: SSQRT(E12"2+F12"2+G12 2+H12"2+I12"2)
E35:
SSQRT(C21"2+D21"2+E21 2+F21"2)
F35:
SSQRT(J12"2+G21 2)
Design Analysis DA EE-93-154 Page 19 of 24 Attachment B
Date 11/18/93
"I t't
G35:
H35:
I35:
J35:
K35:
QSQRT (L12"2+Z21" 2)
SSQRT(K12"2+H21"2)
SQRT(C30"2+D30"2+E30"2+F30"2+G30"2)
QSUH(H30..H30)
C'SQRT(N30"2) 2 Design Analysis DA EE-93-154 Page 20 of 24 Attachment B
Date 11/18/93
\\
TY409B 1.QST A1:
'MFG El:
'FOXBORO A2:
'MODULE B2:
'TY409B-1 D2
'MODEL E2:
'N-2AO-VAX A4: PRESSURE (PERCENT)
B4:
'N/A C5: 'ROCESS Z5:
'SENSOR (NORMAL)
A6 B6:
'EFFECT C6: 'ma D6: 'ea E6:
Sa F6: 'spe G6: 'te H6: 'pse Z6: 'me J6: 'd K6:'t L6: 'ce A7:
B7: 'El
'C7:
E7:
G7 H7:
J7
~
I K7:
L7:
A8:
) B8:
'E2 C8:
E8:
A9:
B9:
'E3 A10:
B10:
'E4 All:
Bll
'E5 A12:
B12:
'RESULTANT C12: CSQRT(C7"2+C8"2+C9"2+C10"2+Cll"2)
D12: 8SQRT(D7"2+D8"2+D9"2+D10"2+D11"2)
E12: SSQRT(E7"2+E8"2+E9"2+E10"2+Ell"2)
Design Analysis DA EE-93-154 Page 21 of 24 Attachment B
Date 11/18/93
J 4h "V1 a
I
F12:
G12:
H12:
I12:
J12:
K12:
L12:
D14:
@SQRT ( F7" 2+F8" 2+ F9" 2+F10" 2+F1 1"2)
%SQRT(G7"2+G8"2+G9"2+G10"2+Gll"2)
OSQRT(H7"2+H8"2+H9 2+H10"2+Hll"2)
QRT(I7"2+X8"2+X9"2+I10"2+I'll"2)
SSQRT(J7"2+J8"2+J9"2+J10"2+Jll"2)
SSQRT(K7"2+K8"2+K9"2+K10"2+K11"2)
SSQRT(L7"2+L8"2+L9"2+L10"2+Lll"2)
RACK AND PANEL E14:
F14:
B15:
C15:
D15:
E15:
F15:
G15:
H15:
X15:
B16:
C16:
G16:
H16:
I16:
B17:
B18:
B19:
B20:
B21:
C21:
D21:
E21:
F21:
G21:
H21 X21:
F23:
N23:
B24:
C24:
D24:
E24:
'AND PANEL NOUNTED
'EFFECT Rea Rte Rpse Rme Red Ret Rce
'El 0.6 0
10.2
'E2
'E3
'E4
'E5
'RESULTANT SSQRT(C16"2+C17"2+C18"2+C19"2+C20"2)
SSQRT(D16"2+D17"2+D18"2+D19"2+D20"2)
SSQRT(E16"2+E17"2+E18"2+E19"2+E20"2)
SQRT(F16"2+F17"2+F18"2+F19"2+F20"2)
RSQRT(G16"2+G17"2+G18"2+G19"2+G20"2)
QSQRT(H16"2+H17"2+H18"2+H19"2+H20"2)
SQRT(X16"2+I17"2+I18 2+I19"2+X20 2)
'ACCXDENT RELATED
'SEISNIC
'EFFECT Crae Re Te Design Analysis DA EE-93-154 Page 22 of 24 Attachment B
Date"'l/18/93
F24:
G24:
H24:
I24:
J24:
K24:
)L24:
M24:
N24:
B25:
N25:
B26:
B27:
B28:
B29:
B30:
C30:
D30:
E30:
F30:
G30:
H30:
I30:
Pe S/Ce AB Cl Sl Pl TBl Csl Se
'E1 0'E2
'E3
'E4
'E5
'RESULTANT QSQRT(C25"2+C26"2+C27"2+C28"2+C29"2)
SQRT(D25"2+D26"2+D27"2+D28"2+D29"2)
SQRT(E25"2+E26"2+E27"2+E28"2+E29"2)
SSQRT(F25"2+F26"2+F27"2+F28"2+F29"2)
SSQRT(G25"2+G26"2'+G27"2+G28"2+G29"2)
@SUM(H25..H29)
@SUM(I25..I29)
J30:
K30:
L30:
H30:
N30:
934:
C34:
D34:
E34:
F34:
G34:
H34:
I34:
J34:
K34:
C35:
D35:
E35:
@SUM(J25..J29)
@SUM(K25..K29)
@SUM(L25..L29)
SUM(M25-.M29)
SSQRT(N25"2+N26"2+N27"2+N28"2+N29"2)
'GROUP PMU SU ReU DU M&TEU TU AEU AB+CLU SU 8SQRT(C12 2+D12"2) 8SQRT(E12"2+F12"2+G12"2+H12"2+I12"2) 8SQRT(C21"2+D21"2+E21"2+F21"2)
Design Analysis DA EE-93-154 Page 23 of 24 Attachment B
Date 11/18/93
F35:
SSQRT (J12" 2+G21 "2)
G35: 8SQRT(L12"2+121"2)
H35: SSQRT(K12"2+H21"2)
I35: SSQRT(C30"2+D30"2+E30"2+F30"2+G30"2)
J35:
@SUM(H30..M30)
K35: 6'SQRT(N30"2)
Design Analysis DA EE-93-154 Page 24-of 24 Attachment B
Date 11/18/93
0
Attachment VIII WCAP-14684 (First use of P/T limitmethodology.
No change from that provided-in September 13, 1996 RG&E letter to NRC.)