ML17258A179: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 12: Line 12:
| document type = Fuel Cycle Reload Report, Letter, License-Application for Facility Operating License (Amend/Renewal) DKT 50
| document type = Fuel Cycle Reload Report, Letter, License-Application for Facility Operating License (Amend/Renewal) DKT 50
| page count = 91
| page count = 91
}}
=Text=
{{#Wiki_filter:Exelon Generation September 15, 2017 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Peach Bottom Atomic Power Stations, Units 2 and 3 10 CFR 50.90 10 CFR 50, Appendix K Renewed Facility Operating License Nos. DPR-44 and DPR-56 NRC Docket Nos. 50-277 and 50-278
==Subject:==
Measurement Uncertainty Recapture Power Uprate License Amendment Request -Supplement 5, Supplemental Reload Licensing Report
==Reference:==
Exelon letter to the NRC, "Request for License Amendment Regarding Measurement Uncertainty Recapture Power Uprate," dated February 17, 2017 (ADAMS Accession No. ML 17048A444) In accordance with 10 CFR 50.90, Exelon Generation Company, LLC (Exelon) requested amendments to Renewed Facility Operating License Nos. DPR-44 and DPR-56 for Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, respectively, in the referenced letter. Specifically, the proposed changes would revise the Renewed Operating Licenses to implement an increase in rated thermal power from 3951 Megawatts-Thermal (MWt) to 4016 MWt. This supplement provides a copy of the Supplemental Reload Licensing Report (SRLR) for PBAPS Unit 3, Cycle 22, in accordance with Section 1.2.1 of Attachment 5 of the referenced license amendment request. The only differences between the SRLR at the requested uprated conditions for each unit will be typical unit-specific differences unrelated to the implementation of the uprate license amendment. Exelon has reviewed the information supporting a finding of no significant hazards consideration and the environmental consideration provided to the U.S. Nuclear Regulatory Commission in the referenced letter. The supplemental information provided in this submittal does not affect the bases for concluding that the proposed license amendment does not involve a significant hazards consideration. Further, the additional information provided in this submittal does not affect the bases for concluding that neither an environmental impact statement nor an environmental assessment needs to be prepared in connection with the proposed amendment. In accordance with 10 CFR 50.91, "Notice for public comment; State consultation," paragraph (b), Exelon is notifying the Commonwealth of Pennsylvania and the State of Maryland of this application for license amendment by transmitting a copy of this letter and its attachments to the designated State Officials.
MUR LAR Supplement 5 Supplemental Reload Licensing Report September 15, 2017 Page 2 There are no regulatory commitments contained in this letter. Should you have any questions concerning this request, please contact Mr. David Neff at (610) 765-5631. I declare under penalty of perjury that the foregoing is true and correct. Executed on the 15th day of September 2017. Respectfully, .._: J I ..¢_., d yv-oavid T. Gudger Manager -Licensing & Regulatory Affairs Exelon Generation Company, LLC
==Attachment:==
Supplemental Reload Licensing Report for Peach Bottom Unit 3 Reload 21 Cycle 22 cc: USNRC Region I, Regional Administrator USNRC Senior Resident Inspector, PBAPS USNRC Project Manager, PBAPS R. R. Janati, Pennsylvania Bureau of Radiation Protection S. T. Gray, State of Maryland GNi= Global Nuclear Fuel A Joint Venture of GE Toshiba, & H1tach1 Supplemental Reload Licensing Report for Peach Bottom Unit 3 Reload 21Cycle22 Copyright 2017 Global Nuclear Fuel-Americas, LLC All Rights Reserved 003N1452 Revision 0 Class I (Public) September 2017 Peach Bottom Unit 3 Reload 21 Important Notice Regarding Contents of This Report Please Read Carefully 003Nl452 Revision 0 This report was prepared by Global Nuclear Fuel -Americas, LLC (GNF-A) solely for use by Exelon Corporation ("Recipient") in support of the operating license for Peach Bottom Unit 3 (the "Nuclear Plant"). The information contained in this report (the "Information") is believed by GNF-A to be an accurate and true representation of the facts known by, obtained by or provided to GNF-A at the time this report was prepared. The only undertakings of GNF-A respecting the Information are contained in the contract between Recipient and GNF-A for nuclear fuel and related services for the Nuclear Plant (the "Fuel Contract") and nothing contained in this document shall be construed as amending or modifying the Fuel Contract. The use of the Information for any purpose other than that for which it was intended under the Fuel Contract, is not authorized by GNF-A. In the event of any such unauthorized use, GNF-A neither (a) makes any representation or warranty (either expressed or implied) as to the completeness, accuracy or usefulness of the Information or that such unauthorized use may not infringe privately owned rights, nor (b) assumes any responsibility for liability or damage of any kind which may result from such use of such information. Page 2 Peach Bottom Unit 3 Reload 21 Acknowledgement 003Nl452 Revision 0 The engineering and reload licensing analyses, which form the technical basis of this Supplemental Reload Licensing Report, were performed by GNF-A/GEH Nuclear Analysis personnel. The Supplemental Reload Licensing Report was prepared by Rachel Shapiro. This document has been verified by Jin Su. Page 3 Peach Bottom Unit 3 Reload 21 1. Plant Unique Items 2. Reload Fuel Bundles 3. Reference Core Loading Pattern Table of Contents 4. Calculated Core Effective Multiplication and Control System Worth 5. Standby Liquid Control System Shutdown Capability 6. Reload Unique AOO Analysis -Initial Condition Parameters 7. Selected Margin Improvement Options 8. Operating Flexibility Options 9. Core-wide AOO Analysis Results I 0. Rod Withdrawal Error AOO Summary 11. Cycle SLMCPR and OLMCPR Summary 12. Overpressurization Analysis Summary 13. Fuel Loading Error Results 14. Control Rod Drop Analysis Results 15. Stability Analysis Results 16. Loss-of-Coolant Accident Results Appendix A Analysis Conditions Appendix B Thermal-Mechanical Compliance Appendix C Decrease in Core Coolant Temperature Event Appendix D Off-Rated Limits Appendix E TRACG04 AOO Supplementary Information 003N1452 Revision 0 5 5 6 6 6 7 11 12 13 18 19 24 25 25 26 31 65 66 67 68 75 Appendix F Interim Methods LTR (NEDC-33173P-A Revision 4) Supplemental Information 76 Appendix G MELLLA+ LTR (NEDC-33006P-A Revision 3) Supplemental Information 80 Appendix H Application to Current Licensed Thermal Power (CL TP) 83 Appendix I Peach Bottom Unit 3 Cycle 22 Contingency TCV/TSV Delay Analysis 84 Appendix J End of Cycle Power Coastdown Restrictions 85 Appendix K List of Acronyms 86 Page 4 Peach Bottom Unit 3 Reload 21 003Nl452 Revision 0 The basis for this report is General Electric Standard Application for Reactor Fuel, NEDE-24011-P-A-25, August 2017; and the U.S. Supplement, NEDE-24011-P-A-25-US, August 2017. A proprietary Fuel Bundle Information Report (FBIR) supplements this licensing report. The FBIR references the thermal-mechanical linear heat generation rate limits and also provides a description of the fuel bundles to be loaded. The document number for this report is 003N 1453. 1. Plant Unique Items Appendix A: Analysis Conditions Appendix B: Thermal-Mechanical Compliance Appendix C: Decrease in Core Coolant Temperature Event Appendix D: Off-Rated Limits Appendix E: TRACG04 AOO Supplementary Information Appendix F: Interim Methods L TR (NEDC-33173P-A Revision 4) Supplemental Information Appendix G: MELLLA+ L TR (NEDC-33006P-A Revision 3) Supplemental Information Appendix H: Application to Current Licensed Thermal Power (CLTP) Appendix I: Peach Bottom Unit 3 Cycle 22 Contingency TCV/TSV Delay Analysis Appendix J: End of Cycle Power Coastdown Restrictions Appendix K: List of Acronyms 2. Reload Fuel Bundles Fuel Type Cycle Loaded Irradiated: GNF2-PI ODG2B400-13GZ-1 OOT2-150-T6-4232 (GNF2) 20 GNF2-PI ODG2B393-4G8.0/8G7.0/2G6.0-1 OOT2-150-T6-4233 (GNF2) 20 GNF2-PI ODG2B393-15GZ-1 OOT2-150-T6-4235 (GNF2) 20 GNF2-P10DG2B403-8G7.0/4G6.0-IOOT2-150-T6-4236 (GNF2) 20 GNF2-P10DG2B417-12G7.0-100T2-150-T6-4366 (GNF2) 21 GNF2-PI ODG2B402-15GZ-1 OOT2-150-T6-4367 (GNF2) 21 GNF2-PI ODG2B424-12G7.0-1 OOT2-150-T6-4368 (GNF2) 21 GNF2-PI ODG2B408-14GZ-1 OOT2-150-T6-4369 (GNF2) 21 GNF2-PI ODG2B403-14GZ-1 OOT2-150-T6-4370 (GNF2) 21 GNF2-PI ODG2B409-14GZ-1 OOT2-150-T6-4365 (GNF2) 21 New: GNF2-P I ODG2B403-14GZ-1 OOT2-150-T6-4505 (GNF2) 22 GNF2-PI ODG2B419-15GZ-1 OOT2-150-T6-4507 (GNF2) 22 GNF2-Pl ODG2B406-14G6.0-1OOT2-l50-T6-4506 (GNF2) 22 GNF2-PI ODG2B404-6G7 .0/8G6.0-1 OOT2-150-T6-4504 (GNF2) 22 Total: Number 28 24 16 40 64 144 32 16 16 72 88 64 48 112 764 Page 5 Peach Bottom Unit 3 Reload 21 3. Reference Core Loading Pattern Nominal previous end-of-cycle exposure: Minimum previous end-of-cycle exposure (for cold shutdown considerations): Assumed reload beginning-of-cycle exposure: Assumed reload end-of-cycle exposure (rated conditions): Core Average Exposure 36017 MWd/MT (32674 MWd/ST) 35687 MWd/MT (32374 MWd/ST) 16683 MWd/MT (15134 MWd/ST) 34292 MWd/MT (31109 MWd/ST) 003N1452 Revision 0 Cycle Exposure 19843 MWd/MT (18002 MWd/ST) 19513 MWd/MT (17702 MWd/ST) 0 MWd/MT (0 MWd/ST) 17609 MWd/MT (15975 MWd/ST) Reference core loading pattern: Figure 1 4. Calculated Core Effective Multiplication and Control System Worth Beginning of Cycle, keffective Uncontrolled (20&deg;C) 1.102 Fully controlled (20&deg;C) 0.942 Strongest control rod out (most reactive condition, 60&deg;C) 0.979 R, Maximum increase in strongest rod out reactivity during the cycle 0.001 Cycle exposure at which R occurs 15432 MWd/MT (14000 MWd/ST) 5. Standby Liquid Control System Shutdown Capability Boron (ppm) Shutdown Margin (at 160&deg;C, Xenon Free) (at 20&deg;C) Analytical Requirement Achieved 660 0.032 Page 6 Peach Bottom Unit 3 Reload 21 6. Reload Unique AOO Analysis -Initial Condition Parameters 1 Operating domain: ICF (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.38 1.32 0.97 7.304 118.6 Operating domain: ICF and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.43 1.37 0.96 7.517 116.6 Operating domain: MELLLA+ (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.38 1.25 0.97 7.301 91.3 Operating domain: MELLLA (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.47 1.26 0.97 7.778 105.5 003N1452 Revision 0 Initial MCPR 1.64 Initial MCPR 1.66 Initial MCPR 1.45 Initial MCPR 1.46 1 Exposure range designation is defined in Table 7-1. Application condition number is defined in Section 11. Page 7 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.41 1.37 0.96 7.395 107.6 Operating domain: ICF (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.33 1.24 0.96 6.966 121.9 Operating domain: ICF and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.33 1.26 0.96 7.012 122.3 Operating domain: ICF (HBB) Exposure range : MOC to EOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.34 1.37 0.97 7.065 123.1 Operating domain: ICF and FWTR (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.32 1.35 0.96 6.938 124.7 003N1452 Revision 0 Initial MCPR 1.63 Initial MCPR 1.73 Initial MCPR 1.76 Initial MCPR 1.58 Initial MCPR 1.68 Page 8 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA + (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.32 1.23 0.96 6.941 92.4 Operating domain: MELLLA+ (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.36 1.32 0.98 7.174 92.8 Operating domain: MELLLA(UB) Exposure range : MOCtoEOC ( Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.32 1.23 0.96 6.922 110.2 Operating domain: MELLLA and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.33 1.25 0.96 6.973 112.4 003N1452 Revision 0 Initial MCPR 1.57 Initial MCPR 1.41 Initial MCPR 1.69 Initial MCPR 1.73 Page 9 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.35 1.35 0.97 7.110 110.8 Operating domain: MELLLA and FWTR (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.33 1.34 0.97 6.975 114.1 003N1452 Revision 0 Initial MCPR 1.53 Initial MCPR 1.62 Page 10 Peach Bottom Unit 3 Reload 21 7. Selected Margin Improvement Options 2 Recirculation pump trip: Rod withdrawal limiter: Thermal power monitor: Improved scram time: Measured scram time: Exposure dependent limits: Exposure points analyzed: Table 7-1 Cycle Exposure Range Designation Name Exposure Range 3 BOC to MOC BOC22 to EOR22 -4316 MWd/MT (3915 MWd/ST) MOC to EOC EOR22 -4316 MWd/MT (3915 MWd/ST) to EOC22 BOC to EOC BOC22 to EOC22 Yes No Yes Yes (Option B) No Yes 2 003N1452 Revision 0 2 Refer to the GESTAR basis document identified at the beginning of this report for the margin improvement options currently supported therein. 3 End of Rated (EOR) is defined as the cycle exposure corresponding to all rods out, I 00% power/100% flow, and normal feedwater temperature. For plants without mid-cycle OLMCPR points, EOR is not applicable. Page 11 Peach Bottom Unit 3 Reload 21 8. Operating Flexibility Options 4 s 6 003N1452 Revision 0 The following information presents the operational domains and flexibility options which are supported by the reload licensing analysis. Extended Operating Domain (EOD): EOD type: Maximum Extended Load Line Limit Plus (MELLLA+) Minimum core flow at rated power: Increased Core Flow: Flow point analyzed throughout cycle: Feedwater Temperature Reduction: Feedwater temperature reduction during cycle: Final feedwater temperature reduction: ARTS Program: Single Loop Operation: Equipment Out of Service: Safety/relief valves Out of Service: (credit taken for 10 valves) 1 MSIVOOS 1 TCV and/or 1 TSVOOS JSRVOOS 2 TBVOOS TB SOOS RPTOOS PROOS PLUOOS Yes 85.2 % Yes 110.0 % Yes 55.0&deg;F 90.0&deg;F Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 4 Refer to the GEST AR basis document identified at the beginning of this report for the operating flexibility options currently supported therein. 5 Single Loop Operation is prohibited in the MELLLA+ domain. 6 Feedwater Temperature Reduction is prohibited in the MELLLA+ domain. Page 12 Peach Bottom Unit 3 Reload 21 9. Core-wide AOO Analysis Results 7 8 Methods used: TRACG04, GEXL-PLUS Operating domain: ICF and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Uncorrected ACPR/ICPR Event Flux STP GNF2 (%rated) (%rated) FW Controller Failure 307.0 114.4 0.185 Operating domain: MELLLA+ (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Uncorrected ACPR/ICPR Event Flux STP GNF2 (%rated) (%rated) Load Rejection w/o Bypass 243.8 106.1 0.161 Operating domain: MELLLA and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1,2,3,4) Uncorrected ACPR/ICPR Event Flux STP GNF2 (%rated) (%rated) FW Controller Failure 290.4 113.6 0.183 Operating domain: ICF and FWTR with TBSOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2) 003N1452 Revision 0 Fig. 2 Fig. 3 Fig. 4 Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 346.8 115.7 0.206 7 Exposure range designation is defined in Table 7-1. Application condition number is defined in Section 11. 8 The Heat Flux (Q/A) (%rated) output is not available from TRACG04, so the Simulated Thermal Power (STP) (% rated) is shown. 5 Page 13 Peach Bottom Unit 3 Reload 21 003Nl452 Revision 0 Operating domain: MELLLA+ with TBSOOS (HBB) Exposure range : BOCtoMOC (Application Condition: 2 ) Uncorrected .ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Inadvertent HPCI /LS 238.l 117.8 0.180 6 Operating domain: MELLLA and FWTR with TBSOOS (HBB) Exposure range : BOCtoMOC (Application Condition: 2) Uncorrected .ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 330.3 115.0 0.205 7 Operating domain: ICF and FWTR with RPTOOS (HBB) Exposure range : BOCtoMOC (Application Condition: 3) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 397.0 116.3 0.208 8 Operating domain: MELLLA+ with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition: 3) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Load Rejection w/o Bypass 293.3 107.6 0.165 9 Operating domain: MELLLA and FWTR with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition: 3 ) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 358.4 115.2 0.199 10 Page 14 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 Operating domain: ICF with PROOS and/or PLUOOS (HBB) Exposure range : BOC to MOC (Application Condition: 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 141.5 105.2 0.113 11 Operating domain: MELLLA+ with PROOS and/or PLUOOS (HBB) Exposure range : BOC to MOC (Application Condition: 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 140.4 104.5 0.108 12 Operating domain: MELLLA with PROOS and/or PLUOOS (HBB) Exposure range : BOC to MOC (Application Condition: 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 140.8 104.7 0.108 13 Operating domain: ICF and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 332.8 115.4 0.193 14 Operating domain: MELLLA+ (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Load Rejection w/o Bypass 301.4 108.2 0.181 15 Page 15 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 Operating domain: MELLLA and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 313.7 114.8 0.194 16 Operating domain: ICF and FWTR with TBSOOS (UB) Exposure range : MOCtoEOC (Application Condition: 2) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 369.3 116.8 0.213 17 Operating domain: MELLLA+ with TBSOOS (HBB) Exposure range : MOCtoEOC (Application Condition: 2 ) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Inadvertent HPCI /LS 293.5 118.9 0.196 18 Operating domain: MELLLA and FWTR with TBSOOS (UB) Exposure range : MOCtoEOC (Application Condition: 2 ) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 367.8 116.2 0.214 19 Operating domain: ICF and FWTR with RPTOOS (UB) Exposure range : MOCtoEOC (Application Condition: 3) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 415.2 117.2 0.214 20 Page 16 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 Operating domain: MELLLA+ with RPTOOS (UB) Exposure range : MOCtoEOC (Application Condition: 3) Uncorrected L\CPR/ICPR Event Flux STP GNFl Fig. (%rated) (%rated) Load Rejection w/o Bypass 319.7 108.2 0.177 21 Operating domain: MELLLA and FWTR with RPTOOS (UB) Exposure range : MOCtoEOC (Application Condition: 3) Uncorrected L\CPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 378.6 116.3 0.208 22 Operating domain: ICF and FWTR with PROOS and/or PLUOOS (UB) Exposure range : MOCtoEOC (Application Condition: 4) Uncorrected L\CPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 139.3 106.2 0.162 23 Operating domain: MELLLA+ with PROOS and/or PLUOOS (HBB) Exposure range : MOCtoEOC (Application Condition: 4) Uncorrected L\CPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 142.5 105.8 0.131 24 Operating domain: MELLLA and FWTR with PROOS and/or PLUOOS (UB) Exposure range : MOCtoEOC (Application Condition: 4) Uncorrected L\CPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 139.0 105.4 0.152 25 Page 17 Peach Bottom Unit 3 Reload 21 10. Rod Withdrawal Error AOO Summary 003N1452 Revision 0 The Rod Withdrawal Error (RWE) event was analyzed in the GE BWR Licensing Report Maximum Extended Load Line Limit and ARTS Improvement Program Analyses for Peach Bottoms Atomic Power Station Unit 2 and 3, NEDC-32162P, Rev. 2, March 1995. RWE Results: Base, Base + RPTOOS, Base + PROOS and/or PLUOOS RBM Setpoint (%) ACPR 110.0 0.21 113.0 0.23 115.5 0.28 118.5 0.33 Base + TBSOOS RBM Setpoint (%) ACPR 110.0 0.28 113.0 0.29 115.5 0.29 118.5 0.33 The more limiting of the cycle specific and the generic L'.1CPR values are reported in the table above. The RWE OLM CPR is determined by adding the L'.1CPR for the desired RBM setpoint from the table above to the SLMCPR in Section 11. The RBM setpoints provided in the table above are for an unfiltered RBM response. The ARTS RWE analysis validated that the following MCPR values provide the required margin for full withdrawal of any control rod during this cycle: For Power< 90%: MCPR 1.83 For 90%: MCPR 1.50 The RBM operability requirements have been evaluated and shown to be sufficient to ensure that the SLM CPR and cladding strain criteria will not be exceeded in the event of a RWE. Page 18 Peach Bottom Unit 3 Reload 21 11. Cycle SLMCPR and OLMCPR Summary 9 10 11 Two Loop Operation (TLO) safety limit: 1.15 Single Loop Operation (SLO) safety limit: 1.15 Stability MCPR Design Basis: See Section 15 ECCS MCPR Design Basis: See Section 16 (Initial MCPR) Non-pressurization Events: Exposure range: BOC to EOC All Fuel Types 003N1452 Revision 0 Rod Withdrawal Error 1.38 (Base, Base+ RPTOOS, Base+ PROOS and/or PLUOOS) (113.0 % RBM Setpoint) 1.44 (Base + TBSOOS) Loss of Feedwater Heating 1.32 Fuel Loading Error (Mislocated) Not Limiting Fuel Loading Error (Misoriented) 1.34 Rated Equivalent SLO Pump Seizure 12 1.43 9 Exposure range designation is defined in Table 7-1. 10 For SLO, the MCPR operating limit is 0.03 greater than the two loop value. 11 The safety limit values presented include a 0.02 adder in accordance with Interim Methods L TR Safety Evaluation Report Limitation and Condition 9.5, as noted in Appendix F. 12 The cycle-independent OLMCPR for the recirculation pump seizure event for GNF2 is 1.60 based on the specific SLO SLM CPR. When adjusted for the off-rated power/flow conditions of SLO, this limit corresponds to a rated OLMCPR of 1.43. This limit does not require an adjustment for the SLO SLMCPR. Page 19 Peach Bottom Unit 3 Reload 21 Limiting Pressurization Events OLMCPR Summary Table: 13 14 Appl. Exposure Range Option A Cond. GNF2 I Base (lMSIVOOS, 1 TCV and/or 1 TSVOOS, lSRVOOS, 2TBVOOS) BOC to MOC 1.48 MOCtoEOC 1.50 2 Base + TBSOOS BOC to MOC 1.53 MOC to EOC 1.56 3 Base + RPTOOS BOC to MOC 1.60 MOCtoEOC 1.62 4 Base + PROOS and/or PLUOOS BOC to MOC 1.48 MOC to EOC 1.50 Pressurization Events: 15 Operating domain: ICF and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Option A GNF2 FW Controller Failure 1.45 Operating domain: MELLLA+ (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Option A GNF2 Load Rejection w/o Bypass 1.46 003N1452 Revision 0 Option B GNF2 1.40 1.42 1.44 1.47 1.43 1.45 1.40 1.42 Option B GNF2 1.37 Option B GNF2 1.38 13 Each application condition (Appl. Cond.) covers the entire range of licensed flow and feedwater temperature unless specified otherwise. The OLMCPR values presented apply to rated power operation based on the two loop operation safety limit MCPR. 14 Note that Base (Base Case) includes I MSIVOOS, I TCV/TSVOOS, I SRVOOS, 2 TBVOOS, and FWHOOS/FFWTR. These Base Case EOOS conditions are included in all other application conditions. Refer to Appendix D for power levels supported for I MSIVOOS and I TCV/TSVOOS. 15 Application condition numbers shown for each of the following pressurization events represent the application conditions for which this event contributed in the determination of the limiting OLMCPR value. Page 20 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA and FWTR (HBB) Exposure range : BOC to MOC ( Application Condition: 1, 2, 3, 4) Option A GNF2 FW Controller Failure 1.48 Operating domain: ICF and FWTR with TBSOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2 ) Option A GNF2 FW Controller Failure I.SO Operating domain: MELLLA + with TBSOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2 ) Option A GNF2 Inadvertent HPCI /LS I.SO Operating domain: MELLLA and FWTR with TBSOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2 ) Option A GNF2 FW Controller Failure l.S3 Operating domain: ICF and FWTR with RPTOOS (HBB) Exposure range : BOC to MOC ( Application Condition: 3 ) Option A GNF2 FW Controller Failure I.SS Operating domain: MELLLA+ with RPTOOS {HBB) Exposure range : BOC to MOC (Application Condition: 3 ) Option A GNF2 Load Rejection w/o Bypass I.SS Option B GNF2 1.40 Option B GNF2 1.41 Option B GNF2 1.41 Option B GNF2 1.44 Option B GNF2 1.41 Option B GNF2 1.38 003N14S2 Revision 0 Page 21 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA and FWTR with RPTOOS (BBB) Exposure range : BOC to MOC ( Application Condition: 3 ) Option A GNF2 FW Controller Failure 1.60 Operating domain: ICF with PROOS and/or PLUOOS (BBB) Exposure range : BOC to MOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.36 Operating domain: MELLLA+ with PROOS and/or PLUOOS (BBB) Exposure range : BOC to MOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.40 Operating domain: MELLLA with PROOS and/or PLUOOS (BBB) Exposure range : BOC to MOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.39 Operating domain: ICF and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Option A GNF2 FW Controller Failure 1.46 Operating domain: MELLLA+ (BBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Option A GNF2 Load Rejection w/o Bypass 1.49 Operating domain: MELLLA and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Option A GNF2 FW Controller Failure 1.50 Option B GNF2 1.43 Option B GNF2 1.24 Option B GNF2 1.28 Option B GNF2 1.27 Option B GNF2 1.38 Option B GNF2 1.41 Option B GNF2 1.42 003NI452 Revision 0 Page 22 Peach Bottom Unit 3 Reload 21 Operating domain: ICF and FWTR with TBSOOS (UB) Exposure range : MOCtoEOC ( Application Condition: 2 ) Option A GNF2 FW Controller Failure 1.51 Operating domain: MELLLA+ with TBSOOS (HBB) Exposure range : MOCtoEOC (Application Condition: 2 ) Option A GNF2 Inadvertent HPCI /LS 1.53 Operating domain: MELLLA and FWTR with TBSOOS (UB) Exposure range : MOCtoEOC (Application Condition: 2 ) Option A GNF2 FW Controller Failure 1.56 Operating domain: ICF and FWTR with RPTOOS (UB) Exposure range : MOC to EOC (Application Condition: 3 ) Option A GNF2 FW Controller Failure 1.59 Operating domain: MELLLA+ with RPTOOS (UB) Exposure range : MOC to EOC (Application Condition: 3 ) Option A GNF2 Load Rejection w/o Bypass 1.58 Operating domain: MELLLA and FWTR with RPTOOS (UB) Exposure range : MOC to EOC (Application Condition: 3 ) Option A GNF2 FW Controller Failure 1.62 Operating domain: ICF and FWTR with PROOS and/or PLUOOS (UB) Exposure range : MOCtoEOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.44 Option B GNF2 1.42 Option B GNF2 1.44 Option B GNF2 1.47 Option B GNF2 1.42 Option B GNF2 1.41 Option B GNF2 1.45 Option B GNF2 1.32 003N1452 Revision 0 Page 23 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA+ with PROOS and/or PLUOOS (HBB) Exposure range : MOCtoEOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.45 Operating domain: MELLLA and FWTR with PROOS and/or PLUOOS (UB) Exposure range : MOCtoEOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.46 12. Overpressurization Analysis Summary16 Event Pdome Pv (psig) {psig) MSIV Closure (Flux Scram) -ICF (HBB) 1322 1352 MSIV Closure (Flux Scram)-MELLLA+ (HBB) 1324 1349 MSIV Closure (Flux Scram) -MELLLA (HBB) 1323 1351 16 Overpressure calculated at an initial dome pressure of I 035 psig. Option B GNF2 1.33 Option B GNF2 1.34 003Nl452 Revision 0 Plant Response Figure 26 Figure 27 Figure 28 Page 24 Peach Bottom Unit 3 Reload 21 13. Fuel Loading Error Results Variable water gap misoriented bundle analysis: Yes 17 Misoriented Fuel Bundle GNF2-Pl ODG2B404-6G7.0/8G6.0-1 OOT2-150-T6-4504 (GNF2) GNF2-Pl ODG28406-14G6.0-1 OOT2-150-T6-4506 (GNF2) GNF2-Pl ODG2B419-15GZ-1 OOT2-150-T6-4507 (GNF2) GNF2-P 1 ODG28403-14GZ-1 OOT2-150-T6-4505 (GNF2) GNF2-Pl ODG28417-12G7.0-1 OOT2-150-T6-4366 (GNF2) GNF2-P 1 ODG28402-15GZ-1 OOT2-150-T6-4367 (GNF2) GNF2-P 1 ODG28424-12G7 .0-1 OOT2-150-T6-4368 (GNF2) GNF2-Pl ODG28408-14GZ-1 OOT2-150-T6-4369 (GNF2) GNF2-P10DG28403-14GZ-1OOT2-150-T6-4370 (GNF2) GNF2-P10DG28409-14GZ-1 OOT2-150-T6-4365 (GNF2) 14. Control Rod Drop Analysis Results 003N1452 Revision 0 .6.CPR 0.15 0.14 0.16 0.13 0.14 0.19 0.12 0.19 0.19 0.17 This is a banked position withdrawal sequence plant; therefore, the control rod drop accident analysis is not required. NRC approval is documented in NEDE-24011-P-A-US. 17 Includes a 0.02 penalty due to variable water gap R-factor uncertainty. Page 25 Peach Bottom Unit 3 Reload 21 15. Stability Analysis Results 003Nl452 Revision 0 Peach Bottom Unit 3 is licensed to operate in the MELLLA+ operating domain. Implementation of MELLLA+ operating domain requires the use of the Detect and Suppress Solution -Confirmation Density (DSS-CD) stability solution. Stability results for operation at EPU with MELLLA+ and DSS-CD are contained in this section. 15.1 Stability DSS-CD Solution Peach Bottom Unit 3 implements the stability DSS-CD solution using the Oscillation Power Range Monitor (OPRM) as described in Reference 1 in Section 15.4. Plant-specific analyses for the DSS-CD solution are provided in Reference 2 in Section 15.4. The Detect and Suppress function of the DSS-CD solution based on the OPRM system relies on the Confirmation Density Algorithm (CDA), which constitutes the licensing basis. The Backup Stability Protection (BSP) solution may be used by the plant in the event that the OPRM system is declared inoperable. The CDA enabled through the OPRM system and the BSP solution described in Reference I in Section 15.4 provide the stability licensing bases for Peach Bottom Unit 3 Cycle 22. The safety evaluation report for Reference I in Section 15.4 concluded that the DSS-CD solution is acceptable subject to certain specific limitations and conditions. These cycle-specific limitations and conditions are met for Peach Bottom Unit 3 Cycle 22. 15.2 Detect and Suppress Evaluation A reload DSS-CD evaluation has been performed in accordance with the licensing methodology described in Reference I in Section 15.4 to confirm the established Amplitude Discriminator Setpoint (SAo) of the CDA in Reference 2 in Section 15.4. The Cycle 22 DSS-CD evaluation and the results for the DSS-CD Reload Confirmation Applicability Checklist documented in Table 15-1 demonstrate that: I) the DSS-CD Solution is applicable to Peach Bottom Unit 3 Cycle 22; and, 2) the established SAD=l.10 in Reference 2 in Section 15.4 is confirmed for operation of Peach Bottom Unit 3 Cycle 22. The SAo=l.10 setpoint is applicable to TLO and to SLO. The SAO=l.10 setpoint is adequate to bound a variation in normal feedwater temperature of+/- I 0.0 &deg;F in the MELLLA+ domain per Reference 2 in Section 15.4. Page 26 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 Table 15-1 DSS-CD Reload Confirmation Applicability Checklist Parameter DSS-CD Criterion Peach Bottom 3 Acceptance Cycle 22 BWR Product Line BWR/3-6 design BWR/4 Confirmed AtriumlOXM, GNF2, Fuel Product Line GE 14, and earlier GE GNF2 Confirmed designs TPO/MELLLA + TPO/MELLLA + Operating Domain including currently including currently Confirmed (TLO) licensed operational licensed operational flexibility features flexibility features TPO/MELLLA TPO/MELLLA Operating Domain including currently including currently Confirmed (SLO) licensed operational licensed operational flexibility features flexibility features 120 &deg;F Rated TFw Reduction (TPO/MELLLA) 90&deg;F Reduction Confirmed No TFw Reduction (TPO/MELLLA) (MELLLA+ Extension) TLO DSS-CD Licensing Margin for TLO Basis MCPR Margin Cycle 22 Results Confirmed criterion in Reference 2 in DSS-CD Criterion Section 15.4 SLO DSS-CD Licensing Margin for SLO Basis MCPR Margin Cycle 22 Results Confirmed criterion in Reference 2 in DSS-CD Criterion Section 15.4 15.3 Backup Stability Protection Reference 1 in Section 15.4 describes two BSP options that are based on selected elements from three distinct constituents: BSP Manual Regions, BSP Boundary, and Automated BSP (ABSP) setpoints. The Manual BSP region boundaries and the BSP Boundary are calculated for Peach Bottom Unit 3 Cycle 22 for normal feed water temperature operation and reduced feedwater temperature. The endpoints of the regions are defined in Table 15-2 and Table 15-3. The Scram Region boundary, the Controlled Entry Region boundary, and the BSP Boundary are shown in Figure 29 and in Figure 30 for the normal and reduced feedwater temperature, respectively. The Manual BSP region boundary endpoints are connected using the Modified Shape Function (MSF). Page 27 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 The ABSP Average Power Range Monitor (APRM) Simulated Thermal Power (STP) setpoints associated with the ABSP Scram Region are confirmed for Cycle 22 and are defined in Table 15-4. These ABSP setpoints are applicable to both TLO and SLO. The BSP Boundary and the Manual BSP region boundaries for normal feedwater temperature operation are adequate to bound a variation in normal feedwater temperature of +/-10.0 &deg;F. The regions currently implemented at Peach Bottom Unit 3 (Reference 3 in Section 15.4) are bounding of the Cycle 22 proposed regions. Table 15-2 BSP Endpoints for Normal Feedwater Temperature Endpoint Power Flow Definition (%) (%) Al 73.1 49.2 Scram Region Boundary, HFCL Bl 40.0 31.0 Scram Region Boundary, NCL Controlled Entry A2 63.5 50.0 Region Boundary, HFCL B2 27.6 30.1 Controlled Entry Region Boundary, NCL Note: The BSP Boundary for Normal Feedwater Temperature is defined by the MELLLA boundary line, per Reference 1 in Section 15.4. Page 28 Peach Bottom Unit 3 Reload 21 Table 15-3 BSP Endpoints for Reduced Feedwater Temperature Endpoint Power Flow Definition (%) (%) Al' 63.0 49.4 Scram Region Boundary, HFCL Bl' 33.8 30.6 Scram Region Boundary, NCL Controlled Entry A2' .65.3 52.4 Region Boundary, HFCL B2' 27.6 30.l Controlled Entry Region Boundary, NCL 003N1452 Revision 0 Note: The BSP Boundary for Reduced Feedwater Temperature is defined by the MELLLA boundary line, per Reference 1 in Section 15.4. Table 15-4 ABSP setpoints for the Scram Region Parameter Symbol Value Slope of ABSP APRM flow-mTRIP 1.37 biased trip linear segment. ABSP APRM flow-biased trip setpoint power intercept. Constant Power Line for Trip PssP-TRIP 39.3 %RTP1 from zero Drive Flow to Flow Breakpoint value. ABSP APRM flow-biased trip setpoint drive flow intercept. WssP-TRIP 46.5 %RDF2 Constant Flow Line for Trip. Flow Breakpoint value WssP-BREAK 20.0 %RDF2 1. RTP -Rated Thermal Power 2. RDF -Recirculation Drive Flow Page 29 Peach Bottom Unit 3 Reload 21 15.4 References 003Nl452 Revision 0 I. GE Hitachi Boiling Water Reactor, Detect and Suppress Solution -Confirmation Density, NEDC-33075P-A, Revision 8, November 2013. 2. Project Task Report: Exelon Nuclear, LLC, Peach Bottom Power Station Units 2 and 3, Thermal Power Optimization Project, Task T0202: Thermal Hydraulic Stability, 003N6203, Revision I, December 20 I 6. 3. DIR Transmittal of APRM Flow-Biased STP Scram SLO Setpoints and EPU+TPO Manual BSP Regions, ES I 700004, Revision I, March 20 I 7. Page 30 Peach Bottom Unit 3 Reload 21 16. Loss-of-Coolant Accident Results 16.1 10CFR50.46 Licensing Results 003N1452 Revision 0 The ECCS-LOCA analysis is based on the SAFER/PRIME ECCS-LOCA methodology. NRC approval of the PRIME methodology is found in the Final Safety Evaluation of the PRIME model Licensing Topical Report (Reference 2 for GNF2 in Section 16.4 ). The licensing results applicable to the GNF2 fuel type in the new cycle are summarized in the following table. Table 16.1-1 Licensing Results Licensing Local Core-Wide Metal-Water Fuel Type Basis PCT Oxidation Reaction (oF) (%) (%) GNF2 1920 <4.00 < 0.10 The SAFER/PRIME ECCS-LOCA analysis results for the GNF2 fuel type are documented in Reference I for GNF2 in Section 16.4. Page 31 Peach Bottom Unit 3 Reload 21 16.2 lOCFRS0.46 Notification Letters 003N1452 Revision 0 The 1 OCFR50.46 Notification Letters applicable to the GNF2 Licensing Basis PCT are shown in the following table. Number 2014-01 2014-02 2014-03 2014-04 2017-01 2017-02 Table 16.2-1 Impact on Licensing Basis Peak Cladding Temperature for GNF2 lOCFRS0.46 Notification Letters Subject SAFER04A E4 Revision-Code Changes of Neutral Impact SAFER04A E4 Revision-Mass Non-Conservatism SAFER04A E4 Revision-Minimum Core DP Model SAFER04A E4 Revision-Lower Plenum CCFL Restriction GNF2 Lower Tie Plate-Finger Spring Removal and Bypass Flow Hole Change Fuel rod plenum temperature modeling update, lOx 10 geometry and getter removal Total PCT Adder (&deg;F) PCT Impact {&deg;F) 0 +10 -10 +5 0 0 +5 After accounting for the 1 OCFR50.46 Notification Letters impact, the GNF2 Licensing Basis PCT with the total PCT adder remains below the 10CFR50.46 limit of 2200 &deg;F. Page 32 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 16.3 ECCS-LOCA Operating Limits The ECCS-LOCA MAPLHGR operating limits for all fuel bundles in this cycle are shown in the following table. Table 16.3-1 MAPLHGR Limits Bundle Type(s): GNF2-P10DG2B404-6G7 .0/8G6.0-1 OOT2-150-T6-4504 (GNF2) GNF2-P10DG2B406-14G6.0-100T2-150-T6-4506 (GNF2) GNF2-P 1 ODG2B419-15GZ-1 OOT2-150-T6-4507 (GNF2) GNF2-P 1 ODG2B403-14GZ-1 OOT2-150-T6-4505 (GNF2) GNF2-P I ODG2B400-13GZ-1 OOT2-150-T6-4232 (GNF2) GNF2-Pl ODG2B393-4G8.0/8G7.0/2G6.0-1 OOT2-150-T6-4233 (GNF2) GNF2-Pl ODG2B393-I 5GZ-1 OOT2-150-T6-4235 (GNF2) GNF2-PI ODG2B403-8G7.0/4G6.0-I OOT2-150-T6-4236 (GNF2) GNF2-P10DG2B417-12G7.0-IOOT2-l 50-T6-4366 (GNF2) GNF2-Pl ODG2B402-15GZ-I OOT2-150-T6-4367 (GNF2) GNF2-PI ODG2B424-12G7 .0-1OOT2-I50-T6-4368 (GNF2) GNF2-Pl ODG2B408-14GZ-1 OOT2-150-T6-4369 (GNF2) GNF2-PIODG2B403-14GZ-1OOT2-l50-T6-4370 (GNF2) GNF2-P I ODG2B409-I 4GZ-I OOT2-150-T6-4365 (GNF2) Average Planar Exposure MAPLHGR Limit GWd/MT GWd/ST kW/ft 0.00 0.00 13.78 19.31 17.52 13.78 67.00 60.78 7.50 70.00 63.50 6.69 The power and flow dependent LHGR multipliers are sufficient to provide adequate protection for the off-rated conditions from an ECCS-LOCA analysis perspective. The MAPLHGR multipliers can either be set to unity or set equal to the LHGR multipliers, which remain compliant with the basis of the LOCA analysis with no loss of ECCS-LOCA margin. The single loop operation multiplier on LHGR and MAPLHGR and the ECCS-LOCA analytical initial MCPR value applicable to the GNF2 fuel type in the new cycle core are shown in the following table. Page 33 Peach Bottom Unit 3 Reload 21 003Nl452 Revision 0 Table 16.3-2 Initial MCPR and Single Loop Operation Multiplier on LHGR and MAPLHGR Single Loop Operation Fuel Type Initial MCPR Multiplier on LHGR and MAPLHGR GNF2 1.25 0.73 The GNF2 SLO multiplier applies to the MELLLA/EPU operating domain only, and SLO operation in the MELLLA+ domain is not permitted. 16.4 References The SAFER/PRIME ECCS-LOCA analysis basis reports applicable to the new cycle core are: References for GNF2 1. Project Task Report, Exelon Generation Company LLC, Peach Bottom Atomic Power Station, Units 2 & 3 MELLLA+ Task T0407: ECCS-LOCA Pe1formance, 0000-0162-2354-RO, Revision 0, (PLM OOON0296 Revision 0), December 2013. 2. The PRIME Model for Analysis of Fuel Rod Thermal-Mechanical Pe1formance, Part 1 -Technical Bases -NEDC-33256P-A, Revision 1, Part 2 -Qualification -NEDC-33257P-A, Revision 1, and Part 3 -Application Methodology -NEDC-33258P-A, Revision 1, September 2010. Page 34 Peach Bottom Unit 3 Reload 21 60 25 26 3 3 26 25 3 3 25 29 3 3 26 25 58 25 29 38 36 32 32 32 38 38 32 32 32 36 38 29 25 56 3 30 26 32 35 32 36 33 7 32 32 7 33 36 32 35 32 26 30 3 54 26 34 36 7 7 7 7 7 6 6 6 6 7 7 7 7 7 36 34 26 52 25 35 36 7 7 6 34 6 35 5 34 34 5 35 6 34 6 7 7 36 35 25 003Nl452 Revision 0 50 25 26 35 33 9 6 6 31 9 34 9 37 9 9 37 9 34 9 31 6 6 9 33 35 26 25 48 29 34 36 9 34 9 31 9 35 5 34 9 35 35 9 34 5 35 9 31 9 34 9 36 34 29 46 25 29 36 7 6 9 31 9 34 5 39 9 31 5 5 31 9 39 5 34 9 31 9 6 7 36 29 25 44 3 25 32 7 7 6 31 9 31 9 35 9 35 5 31 31 5 35 9 35 9 31 9 31 6 7 7 32 25 3 42 26 38 35 7 6 31 9 34 9 35 5 34 5 35 5 5 35 5 34 5 35 9 34 9 31 6 7 35 38 26 40 30 36 32 7 34 9 35 5 35 5 31 5 37 5 39 39 5 37 5 31 5 35 5 35 9 34 7 32 36 30 38 3 32 36 7 6 34 5 39 9 34 5 35 5 31 5 5 31 5 35 5 34 9 39 5 34 6 7 36 32 3 36 3 32 33 7 35 9 34 9 35 5 37 5 34 5 35 35 5 34 5 37 5 35 9 34 9 35 7 33 32 3 34 3 32 7 6 5 37 9 31 5 35 5 31 5 33 5 5 33 5 31 5 35 5 31 9 37 5 6 7 32 3 32 29 38 32 6 34 9 35 5 31 5 39 5 35 5 31 31 5 35 5 39 5 31 5 35 9 34 6 32 38 26 30 26 38 32 6 34 9 35 5 31 5 39 5 35 5 31 31 5 35 5 39 5 31 5 35 9 34 6 32 38 26 28 3 32 7 6 5 37 9 31 5 35 5 31 5 33 5 5 33 5 31 5 35 5 31 9 37 5 6 7 32 3 26 3 32 33 7 35 9 34 9 35 5 37 5 34 5 35 35 5 34 5 37 5 35 9 34 9 35 7 33 32 3 24 3 32 36 7 6 34 5 39 9 34 5 35 5 31 5 5 31 5 35 5 34 9 39 5 34 6 7 36 32 3 22 30 36 32 7 34 9 35 5 35 5 31 5 37 5 39 39 5 37 5 31 5 35 5 35 9 34 7 32 36 30 20 26 38 35 7 6 31 9 34 9 35 5 34 5 35 5 5 35 5 34 5 35 9 34 9 31 6 7 35 38 26 18 3 25 32 7 7 6 31 9 31 9 35 9 35 5 31 31 5 35 9 35 9 31 9 31 6 7 7 32 25 3 16 25 29 36 7 6 9 31 9 34 5 39 9 31 5 5 31 9 39 5 34 9 31 9 6 7 36 29 25 14 29 34 36 9 34 9 31 9 35 5 34 9 35 35 9 34 5 35 9 31 9 34 9 36 34 29 12 25 26 35 33 9 6 6 31 9 34 9 37 9 9 37 9 34 9 31 6 6 9 33 35 26 25 10 25 35 36 7 7 6 34 6 35 5 34 34 5 35 6 34 6 7 7 36 35 25 26 34 36 7 7 7 7 7 6 6 6 6 7 7 7 7 7 36 34 26 6 3 30 26 32 35 32 36 33 7 32 32 7 33 36 32 35 32 26 30 3 4 25 29 38 36 32 32 32 38 38 32 32 32 36 38 29 25 2 25 26 3 3 29 25 3 3 25 29 3 3 26 25 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 Fuel Type 3=GNF2-P I ODG28403-8G7.0/4G6.0-I OOT2-150-T6-4236 (Cycle 20) 31 =GNF2-P I ODG2B409-14GZ-I OOT2-150-T6-4365 5=GNF2-P I ODG28404-6G7.0/8G6.0-1OOT2-l50-T6-4504 (Cycle 22) 32=GNF2-PI ODG2B417-I 2G7.0-1OOT2-I50-T6-4366 6=GNF2-P I ODG28406-14G6.0-I OOT2-l 50-T6-4506 (Cycle 22) 33=GNF2-PIODG2B417-12G7.0-IOOT2-l 50-T6-4366 7=GNF2-P I ODG2B419-15GZ-1OOT2-I50-T6-4507 (Cycle 22) 34=GNF2-PIODG2B402-15GZ-IOOT2-150-T6-4367 9=GNF2-P I ODG28403-14GZ-1OOT2-I50-T6-4505 (Cycle 22) 35=GNF2-PI ODG2B402-15GZ-I OOT2-150-T6-4367 25=GNF2-P I ODG28400-I 3GZ-1 OOT2-150-T6-4232 (Cycle 20) 36=GNF2-PI ODG2B424-12G7.0-IOOT2-150-T6-4368 26=GNF2-P I ODG28393-4G8.0/8G7.0/2G6.0-1OOT2-l50-T6-4233 (Cycle 20) 37=GNF2-PI ODG2B408-14GZ-I OOT2-150-T6-4369 29=GNF2-P I ODG28393-I 5GZ-1OOT2-I50-T6-4235 (Cycle 20) 38=GNF2-P I ODG2B403-I 4GZ-1OOT2-I50-T6-4370 30=GNF2-P I ODG28403-8G7.0/4G6.0-1OOT2-l50-T6-4236 (Cycle 20) 39=GNF2-P I ODG2B409-I 4GZ-1OOT2-I50-T6-4365 Figure 1 Reference Core Loading Pattern Page 35 (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21)
Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 ,, .. BO 1ii "' .. 0 IF-60 40 20 0 0 2 4 160 140 120 100 80 ,, .. 1ii 60 "' at 40 20 0 -20 -40 0 2 4 TAACG_CASE_IO 16'1093 6 6 FWCF ICF _TRM1*EIS ore Inlet Flow 420 40 Simulated Thermal Power Neutron Flux 360 30 300 '6' .. 1ii 240"' ,, .. )( 20 :::J u: at 180 s .. z 120 10 60 0 0 8 10 12 14 16 0 Time (sec) -.-Feedwater Flow 100 40 -r-Steam Flow --Turbine Steam Flow 90 35 --+--NRlevel 3.0 80 25 :;;: 70 ..
* 20 i! ... 60 .. c Q. ! 1 5 .. " 0 .. a. 50 > s 1 0 0 .c (.) .. .. 0.5 40 ! > :: 0.0 30 ii "' > -0.5 .. ... 20 -1.0 r 10 -1.5 -I 0 -2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 ------8 003N1452 Revision 0 RV. SV, and/or SRV Flow Bypass Valvo Flow Vessel Come Pressure 1300 1200 -.. 'ii S: ! :::J " " ! 1100 Q. 1000 10 12 14 16 Time (sec) ---.-Tatel eectivity -..-Scram Reactivity -+-Doppler Temperature Reactivity -.-Void Reactiv* 6 8 10 12 14 16 Time (sec) Figure 2 Plant Response to FW Controller Failure (MOC ICF and FWTR (HBB) ) Page 36 Peach Bottom Unit 3 003N 1452 Reload 21 Revision 0 HEJ 22 120 100 80 ,, ., 1'il ti: 60 .... 0 .,. 40 20 0 0 160 120 80 ,, ., 1'il 40 ti: .,. 0 -40 -80 0 Tl\.l.CG_CASE_IO 16J73M LRNBP LCF _TNM1*EIS ----Co"' Inlet Flow 360 60 --RV. SV, and/or SRV Flow Simulated Thermal Power Bypass Valve Flow Neutron Flux Vessel Dome Pressure 300 50 240 'ti 40
* 1'il ti: ,, ., 180 1'il 30 u:: ti: .,. c f 120 20 60 10 0 0 2 3 4 5 6 0 2 3 4 5 Time (sec) Time (sec) Feedwater Flow 60 4.0 Steam Flow Turbine Steam Flow 3.5 _.... NRlevel 50 3.0 ;:-2.5 :;;: .. 2.0 40 s I! .. .. c Q. 1.5 ., .. .. Q. 30 1.0 .c 0 .. ,.. .. 0.5 .. .r:. u 20 :&sect;. : 0.0 ;; ti: > -0.5 .. ... 10 -1.0 -1.5 0 -2.0 2 3 4 5 6 0 2 3 4 Time (sec) Time (sec) Figure 3 Plant Response to Load Rejection w/o Bypass (MOC MELLLA+ (HBB) ) 5 1300 1250 1200 ii ;; .9: 1150 .. .. &#xa3; 1100 1050 1000 6 6 Page 37 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'C 80 .. ,. ... 0 ;;e. 60 40 20 0 0 2 4 160 140 120 100 80 'C .. ,. 60 #-40 20 0 -20 -40 0 2 4 Tl\ltCG_C."-SE_fO 1:1110IOl1 ... lO:* 6 6 FWCF MEL_TRM1*EIS Core Inlet Flow 420 40 Simulated Thermal Power Neutron Flu* 360 30 300 ,, .. ,. 240 'C .. >< 20 ::s ii: #-180 s .. z 120 10 60 0 0 8 10 12 14 16 0 Time (sec) Feedwater Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 NR level 3.0 80 ;:' 2.5 :;: 70 .. 20 .. 0 i! ... 60 .. c: Q, .. 1.5 .. c .. 0 .. Q, 50 > E 1.0 0 0 "' u .. "' 40 .. 0.5 0 .c tl u :&sect;. : 0.0 30 a; > -0.5 .. --' 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 ----8 003N1452 Revision 0 RV, V, and/or SRV Flow Bypass Valve Flow Vessel Dome Pressure 1300 1200 -.. Oi f ::s .. .. f 1100 Q. 1000 10 12 14 16 Time (sec) --Total Reactivity ----Scram Reactivity --+--Doppler Temperature Reactivity -...-Void Reectivi 6 8 10 12 14 16 Time (sec) Figure 4 Plant Response to FW Controller Failure ( MOC MELLLA and FWTR (HBB) ) Page 38 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'a BO .. 1' "' 'O 'a' 60 40 20 0 0 2 4 160 140 120 100 80 'a Cl 1' 60 0:: 'a' 40 20 0 -20 -40 0 2 4 1Qlro&;)l 16'12*5' 6 6 FWCF ICF _TRM1-NBP ore Inlet Flow 420 60 Simulated Thermal Power --Neutron Flux 360 50 300 '6" 40 .. 1' 240"' 'a .. .. 30 :I ii: 'a' 180 '5 .. 20 z 120 10 60 0 0 B 10 12 14 16 0 Time (sec) Feedwoter Flow 100 4.0 Steam Flow Turbine Stl!am Flow 90 3.5 NR level 3.0 80 2.5 70 i 2.0 .. 0 .. 60 .. c Q. 1.5 .. .. 0 .. Q. 50 > g 1.0 0 "' 0 .. ... 40 .. 0.5 .. .c ti " :&sect;. :.'! 0.0 30 'ii 0:: > -0.5 Cl ..J 20 -1.0 -10 -1.5 0 -2.0 8 10 12 14 16 0 Time (sec) 2 4 6 2 4 -------8 10 12 14 003N1452 Revision 0 1300 1250 1200 ii ii .9: 1150 e :I .. .. e CL 1100 1050 1000 16 Time (sec) --+-Total Reactivily ---Scram Reactivity Doppler Temperature Reactivity -r-Void Reectivi 6 8 10 12 14 16 Time (sec) Figure 5 Plant Response to FW Controller Failure ( MOC ICF and FWTR with TBSOOS (HBB) ) Page 39 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 "O BO "' ..... 0 ';fl. 60 40 20 0 0 10 120 100 80 60 "O .. 1;j 40 "' ';fl. 20 0 -20 + -40 0 10 L'""'"""'*"" ....... .,, ... HPCIL8 LCF _ TNM1-NBP --Cora In at low 2BO 60 Simulated ThelTTlBI Power 1--Neutron Flux 240 50 200 '6' 40 .. 'Ii 160"' "O .. " 30 :i ii: ';fl. 120 '5 .. 20 z 80 10 40 -. 0 0 20 30 40 so 0 --+-----10 20 003Nl452 Revision 0 RV, SV, end/or SRV Flow 1350 Bypass Valve Flow Vessel Oom1 Pressure 1300 1250 ii ;; .9: 1200 ! :i " .. ! a. 1150 1100 1050 30 40 50 Time (sec) Time (sec) 20 -.--Faedwater Flow BO 4.0 --+-Total Reecbv11y -w-Steam Flow Turbine Steam Flow 3.5 + -----Scram Raacbvity --+-Doppler Temperature Rel!llctrv1ty ----HPCI Flow 70 Void Reectivi --.-NRlevol 30 60 2.5 ... .. 20 l .. 0 t 50 .. c Q. 1 5 .. .. 0 .. Q. 40 1.0 .Q u .. .. 05 .. *;; 30-;; ll :&sect;. g: 0 0 Ci "' 20 ..J -05 + -1.0 ... 10 -1.5 0 -2.0 30 40 50 0 10 20 30 40 Time (sec) Time (sec) Figure 6 Plant Response to Inadvertent HPCI /LS ( MOC MELLLA+ with TBSOOS (HBB) ) Page 40 Peach Bottom Unit 3 Reload 21 HEJ 22 140 120 100 ,, .. 80 1'il a: .... 0 ;!! 60 40 20 0 0 2 4 160 140 120 100 80 ,, 0 1'il 60 a: ;!. 40 20 0 *20 -40 0 2 4 Tlv.CG_C.i.sf_D 6 6 FWCF MEL_TRM1*NBP ----Core Inlet Flow 420 60 Simulated Thermal Power Neutron Flux 360 50 300 :;; 40 " 1'il 240 a: ,, " >C 30 ::J ii: ;!! 180 " 20 z 120 60 10 0 0 8 10 12 14 16 0 Time (sec) -+-Feedwater Flow 100 4.0 Steam Flow ---r-Turbine Steam Flow 90 3.5 -+--NRlevel 3.0 80 2.5 :;;: 70 "' 20 15 i! ... 60 .. c Q, 1.5 " .. 0 " Q, 50 > 1.0 0 .a 0 .. ... 40 .. 'i 0.5 Cl ll u :&sect;. :E 0.0 30 ii a: > *0.5 " ... 20 *1.0 10 *1.5 0 *2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 ----8 003N1452 Revision 0 RV, SV, and/or SRV Flow 1300 Bypass Valve Flow Vessel Dome Pressure 1250 1200 ii ii .S: 1150 ! ::J .. .. 1100 1050 1000 10 12 14 16 Time (sec) -+--Total Reactivity -----Scram Reactivity Doppler Temperature Reactivity -r-Void Reectiv* 6 8 10 12 14 16 Time (sec) Figure 7 Plant Response to FW Controller Failure ( MOC MELLLA and FWTR with TBSOOS (HBB) ) Page 41 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'C .. 80 '16 a: 'O .... 60 40 20 0 0 2 4 160 140 120 100 80 'C D '16 60 a: .... 40 20 0 -20 -40 0 2 4 6 6 FWCF ICF _TRM1*NRPT Core Inlet Flow 420 40 Simulated Thermal Power Neutron Flux 360 30 300 :;;-.. '16 240 a: 'C .. " 20 :I ii: .... 180 f ! .. z 120 10 60 0 0 8 10 12 14 16 0 Time (sec) Feedwater Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 --NR level 3.0 80 2.5 :;;: 70 .. Vt -;; 2.0 '!! 60 " c Q. ! 1.5 .. .. 0 .. Q. 50 > 1.0 0 .c CJ " ... 40 .. 0.5 D .s: u " :&sect;. : 0.0 30 Ci a: > -0.5 .. ..... 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 --+---8 10 12 14 003N1452 Revision 0 1300 1200 -" -;; .a .. .. e 1100 11. 1000 16 Time (sec) --Total Reactivity --Scram Reactivity -+-Doppler Temperature Reactivity ---.-Void Reactivi 6 8 10 12 14 16 Time (sec) Figure 8 Plant Response to FW Controller Failure ( MOC ICF and FWTR with RPTOOS (HBB) ) Page 42 Peach Bottom Unit 3 Reload 21 HE3 22 120 100 80 'ti .. 'ii a: 60 .. 0 .... 40 20 0 0 160 120 80 'ti * 'ii 40 a: .... 0 -40 -80 0 TIUGG_C"S( 0 1iUU1i LRNBP LCF _TNM1-NRPT Core Inlet Flow 360 60 Simulated Thermal Power --Neutron Flux 300 50 240 ;;-40 .. 'ii a: 'ti .. 180 30 ii: .... c e s 120 20 60 10 0 0 2 3 4 5 6 0 Time (sec) --+-Feedwater Flow 60 4.0 -----Steam Flow Turbine Steam Flow 3.5 --+--NRlevel 50 3.0 2.5 :;;: ..
* 20 40 &#xa3; l! ... .. 'C Q. 1.5 ., .. 0 .. Q. 30 g 1.0 .a u .. 05 .. .. .c 1i u 20 :&sect;. :g 0.0 'ii a: > -0.5 .. ..... 10 -1.0 -1.5 0 -2.0 2 3 Time (sec) 4 5 --+--Total Reactivity 003N1452 Revision 0 6 1250 1200 ti Ui ..!!; 1150 ! ::J .. .. ! "-1100 1050 --Scram Reectivity -+--Doppler Temperature Reactivity ---r--Void Reectivit 2 3 4 5 6 0 2 3 Time (sec) 4 5 6 Time (sec) Figure 9 Plant Response to Load Rejection w/o Bypass (MOC MELLLA+ with RPTOOS (HBB)) Page 43 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'ti BO .. 'ii a: ... 0 ..... 60 40 20 0 0 2 4 160 140 120 100 80 'ti .. 'ii 60 a: ..... 40 20 0 -20 -40 0 2 4 T"IVGG_c.:.Sl_IO l01f;)40016'111T1 6 6 FWCF MEL_ TRM1-NRPT --Core lnkll Flow 420 40 Simulated Thermal Power Noulron Flux 360 30 300 '6" .. 'ii 240 a: 'ti .. " 20 ::> u:: ..... 180 '! .. z 120 10 60 0 0 8 10 12 14 16 0 Time (sec) Feedwater low 100 4.0 Sleam Flow Turbine Steam Flow 90 3.5 NR level 3.0 80 'i: 2.5 :;;: 70 ..
* 20 .. 0 1! ... 60 .. 1: Q. ! 1.5 D .. 0 .. Q. 50 > 1.0 0 .a u .. ... 40 .. 0.5 .. .t:. ; u u &sect;. : 0.0 30 ;; a: > -0.5 .. ... 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 0 Time (sec) 2 4 6 2 4 ----8 003Nl452 Revision 0 RV, SV, and or SRV Flow Bypass Valve Flow Vessel Dome Pressure 1300 1200 -.. ii .S: e ::> .. .. e 1100 CL 1000 10 12 14 16 Time (sec) -+--Total oactivily Scram Reactivity --+--Doppler Temperature Reactivity -....--Void Reactiv' 6 B 10 12 14 16 Time (sec) Figure 10 Plant Response to FW Controller Failure ( MOC MELLLA and FWTR with RPTOOS (HBB) ) Page 44 Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 -----PRFDS ICF _TNM1-NPR HE3 22 140 -----Coro Inlet Flow 280 60 --+-RV, SV, and/or SRV Flow 1300 Simulated Therrnal Power -----Bypass Valve Flow --+-Neutron Flux Vessel Dome Pressure 120 240 50 1250 100 200 40 1200 Cl 'Iii ii 'ti 80 160 a:: 'i .. 'ti .s 'Iii .. a:: " 30 11so e ::> ... ii: ::> 0 .,_ .. .,_ 60 120 .. Cl 20 1100 z 40 80 20 40 10 . 1050 0 0 0 1000 0 2 3 5 6 7 8 0 2 3 4 5 6 7 8 Time (sec) Time (sec) 120 Feedwater low 60 40 --+-Total eacbv1ty Steam Flow --tt-Scram Reactivity Turbine Steam Flow 35 --+---Doppler Temperature Reactivity NR level -.-Void Reactivi 100 50 30 "E 25 :;;: ..
* 20 80 .,. 40 .e ; ... '!: "-! 1.5 Cl 'ti .. 0 .. .. "-'Iii 60 + 30 g 1 0 a:: .,_ Jl u .. ... .. 05 Cl " " 40 20 :&sect;. ii': 0 0 ii a:: > -0 5 .. ... 20 10 -1.0 .,. -1 5 -0 0 -2 0 ++ l 0 2 3 4 5 6 7 8 0 2 3 4 5 6 8 llUCG C:.sl () T;)l\)l 16J&l57 Time (sec) Time (sec) Figure 11 Plant Response to Pressure Regulator Failure Downscale (MOC ICF with PROOS and/or PLUOOS (HBB)) Page 45 Peach Bottom Unit 3 Reload 21 HEJ 22 120 100 BO ,,
* 1i ..: 60 'O .,. 40 Cora lnlel Flow Simulated Thermal Power Neutron Flux PRFDS LCF _TNM1-NPR 240 60 200 50 160 '6" 40 ., 1i ..: ,, ., 120 30 Li: .,. 80 0 20 z 20 40 10 L---0 0 0 2 3 4 5 6 7 B Time (sec) 120 60 --r-Steam Flow ,, 0 BO 60 .,. 40 20 0 0 2 3 4 _,_ Turbine Steam Flow -+--NRlevel 5 6 7 Time (sec) B 50 E' :;;: .. 40 :s f .. .. ., 30 i .. ! " 20 ,&sect;. 10 0 'ii > ., _, 0 0 4.0 3.5 3.0 2.5 E 2.0 ., 1.5 c 0 a. E 1.0 0 CJ l;-0.5 ti .. 0.0 .. ..: -0.5 -1.0 -1.5 -2.0 0 2 3 2 ----4 5 6 7 Time (sec) -+--Tolal eacbvily 003N1452 Revision 0 8 1200 ... ii .9: 1150 !! 1100 1050 " .. .. !! CL -----Scram Reactivity 3 --+--Doppler Temperature Reactivity --r-Void Reactiv' 4 Time (sec) 5 6 7 8 Figure 12 Plant Response to Pressure Regulator Failure Downscale (MOC MELLLA+ with PROOS and/or PLUOOS (HBB)) Page 46 Peach Bottom Unit 3 Reload 21 HEJ 22 120 100 BO '1:1 .. 1i a: 60 ... 0 ..... 40 20 0 0 2 120 100 BO '1:1 Cl 1i 60 a: ..... 40 20 0 0 2 flUCG_CJ.Sl_Jtl 101:'>>;)11622251 3 4 5 Time (sec) 3 4 5 Time (sec) PRFDS MEL_TNM1-NPR 240 60 200 50 160:;; 40 Cl 1i a: '1:1 .. 120 ; 30 ii: ..... BO .. 20 z 40 10 0 0 6 7 B 0 Faedwater Flow 60 4.0 Steam Flow Turbine Steam Flow 3.5 NR level 50 3.0 2.5 :ii ..
* 2.0 40 .2 I!! .. .. c Q. ! 1.5 Cl .. 0 .. Q. 30 i; 1.0 i CJ >-.. 0.5 .. .s:: " u 20 : 0.0 'ii a: > -0.5 .. _, 10 -1.0 -1.5 0 -2.0 6 7 B 2 3 0 2 003N1452 Revision 0 1300 --1250 1200 ii iii ..!!: 1150 f " .. .. f CL 1100 1050 1000 4 5 6 7 B Time (sec) --+-Total Reactivily --Scram Reactivily --Doppler Temperature Reactivity -r-Void Reactiv* 3 4 5 6 7 B Time (sec) Figure 13 Plant Response to Pressure Regulator Failure Downscale (MOC MELLLA with PROOS and/or PLUOOS (HBB)) Page 47 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'C 80 .. "iii a:: ... 0 60 40 20 0 0 2 4 160 140 120 100 80 'C .. "iii 60 a:: "a"-40 20 0 -20 -40 0 2 4 flUCG_C-'.st:_IO 6 6 FWCF ICF _BREO*EIS ----Core Inlet Flow 420 40 Simulated Thermal Power Neutron Flux 360 30 300 '6' .. "iii 240 a:: 'C .. )( 20 :i ii: ;if. 180 '5 .. z 120 10 60 0 0 8 10 12 14 16 0 Time(sec) Feedwater Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 NR level 3.0 80 2.5 :;< 70 ..
* 20 .. 0 i! ... 60 .. c Q. ! 1.5 .. .. 0 .. Q. 50 > 1.0 0 ..0 CJ " "' 40 .. 0.5 .. .s: u " :&sect;. : 0.0 30 'ii a:: > -0.5 .. ... 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 Time(sec) 2 4 6 0 2 4 --8 003N1452 Revision 0 RV, SV, and/or SRV Flow Bypass Valve Flow Vessel Come Pressure 1300 1200 ii Ui .!!: ! :i .. .. ! 1100 a.. 1000 10 12 14 16 Time (sec) -+-Total Reactivity -e-Scram Reactivrty --+-Doppler Temperature Reactivity -....-Void Reactiv* 6 8 10 12 14 16 Time (sec) Figure 14 Plant Response to FW Controller Failure ( EOC ICF and FWTR (UB) ) Page 48 Peach Bottom Unit 3 Reload 21 HEJ 22 120 100 80 'ti Cl 7i er: 60 ... 0 ;;e 40 20 0 0 160 120 80 'ti .. 'iii 40 er: ;;e 0 -40 -80 0 TIViCG_o.sf}D XUl':>809 1621fill LRNBP LCF _ TNEO*EIS ---Core Inlet Flow 360 60 Simulated Thermal Power Neutron Flux 300 50 240 40 er: 'ti Cl 180 !l 30 ii: ;;e c e '! 120 20 60 10 0 0 2 3 4 5 6 0 Time (sec) --+-Feadwater Flow 60 4.0 ---e-Steam Flow ---r-Turbine Steam Flow 3.5 -+-NR level 50 3.0 2.5 :;;: .. 20 40 s [! ... .. c CL 1.5 Cl .. 0 .. CL 30 1.0 "' 0 .. ... .. 0.5 .. .c u 20 :&sect;. 0.0 1i er: > -0.5 Cl ..J 10 -1.0 -1.5 0 -2.0 2 3 4 5 6 Time (sec) 2 0 3 Time(sec) 4 5 -+-Total Reactivity 003N1452 Revision 0 6 1300 1250 ii iii s 1200 ; 1150 1100 .. .. &#xa3; ----Scram Reactivity 2 --+---Doppler Temperature Reactivity -.....-Void Reectiv* 3 Time (sec) 4 5 6 Figure 15 Plant Response to Load Rejection w/o Bypass ( EOC MELLLA+ (HBB)) Page 49 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'ti " BO 'li II: ..... 0 60 40 20 0 0 2 4 160 140 120 100 BO 'ti " 'li 60 II: 40 20 0 -20 -40 0 2 4 TIUCG_CJ.SE_IO 16311S4 6 6 FWCF MEL_BREO*EIS --Core Inlet Flow 420 40 Simulated Thennal Power Neutron Flux 360 30 300 .. 'li 240 II: 'ti .. IC 20 " ii: 1BO " z 120 10 60 0 0 B 10 12 14 16 0 Time (sec) Feedwater Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 NR level 3.0 BO E" 2.5 :;;: 70 ..
* 2.0 l5 i! .. 60 .. c: Q. 1.5 " .. " Q. 50 > 1.0 0 .Q u .. 0.5 40 .. " .J:. u u ,&sect;. : 0.0 30 'ii II: > -0.5 .. -' 20 -1.0 10 -1.5 0 -2.0 B 10 12 14 16 Time (sec) 2 4 6 0 2 4 ----B 003N1452 Revision 0 RV. SV. and/or SRV Flow Bypass Valve Flow Vessel Dome Pressure 1300 1200 -II ii .9: .. .. e 1100 a. 1000 10 12 14 16 nme (sec) --otal Raacbvily Scram Reactivity -+--Doppler Temperature Reactivity ---.-Void Reactiv* 6 B 10 12 14 16 Time (sec) Figure 16 Plant Response to FW Controller Failure ( EOC MELLLA and FWTR (UB) ) Page 50 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 .,, .. 80 'ii a: ... 0 ..,,. 60 40 20 0 0 2 4 160 140 120 100 80 .,, ., 'ii 60 a: ;f. 40 20 0 -20 -40 0 2 4 TIUCG_C'.$E_ID 16ttwl 6 6 FWCF ICF _BREO-NBP --Core Inlet Flow 420 60 Simulated Thermal Power Neutron Flux 360 so 300 '6" 40 .. 'ii 240 a: .,, .. >< 30 :i iL ;f. 180 .. 20 z 120 60 10 0 0 8 10 12 14 16 0 Time (sec) Feedwater Flow 100 4.0 StoamFlow Turbine Steam Flow 90 3.S --NR level 3.0 80 2.S :;;: 70 " 20 :; e ... 60 .. c Cl. 1.S .. .. Cl. " so > 8 1.0 0 ii 0 40 .. o.s ! " &sect;. .. 0.0 30 ;; a: > -0.S .. ... 20 -1.0 10 -1.S 0 *2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 ----8 10 12 14 003N1452 Revision 0 1300 12SO 1200 ii ii 11so e :i .. .. f CL 1100 10SO 1000 16 Time (sec) --Total Reactivity -e-Scram Reactivity -.......-Doppler Temperature Reactivity -.-Void Reactivi 6 8 10 12 14 16 Time (sec) Figure 17 Plant Response to FW Controller Failure ( EOC ICF and FWTR with TBSOOS (UB) ) Page 51 Peach Bottom Unit 3 Reload 21 HEJ 22 140 120 100 ,, " BO ti rr: .. 0 .... 60 40 20 0 0 10 120 100 80 60 ,, 0 ti 40 rr: .... 20 0 -20 -40 0 10 tlUCG C:..sl 10 lt.2l01S 003N1452 Revision 0 l HPCILS LCF _TNEO-NBP Cora net F ow 420 80 low 1400 1::= Simulated Thermal Power Neutron Flux 360 70 1350 60 1300 300 1250 -" iii .9: " 50 ti 240 rr: ,, D 1200 e ::i .. .. e 1150 II. " 40 ::i ii: .... 1BO ! 30 " z 120 20 1100 60 10 1050 0 0 1000 20 30 40 50 0 10 20 30 40 50 Time (sec} Time (sec) Feedwater Flow BO 4.0 --Total Reactivity Steam Flow Turbine Steam Flow 35 ---Scram Reactivity -.-Doppler Temperature Reactivity --HPCIFlow 70 --.-Vold Reectivi -....-NR level 30 2.5 .. 20 .. 0 50 i! ... c 1\ 40 t 1 5 0 II. 1.0 I .8 u .. ... .. 05 .. 30 ii ti ,g :,, 0 0 ;; rr: 20 -0 5 .... -1 0 .l. 10  5 -+ ___._---r-- 2.0 ----+ ----+---20 30 40 0 10 20 30 40 50 Time (sec) Time (sec) Figure 18 Plant Response to Inadvertent HPCI /LS ( EOC MELLLA+ with TBSOOS (HBB) ) Page 52 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 ..., D 80 16 a: 'O .,. 60 40 20 0 0 2 4 ----Core Inlet Flow Simulated Thermal Power Neutron Flux 6 8 10 12 14 16 Time (sec) FWCF MEL_BREO-NBP 420 60 360 50 300 40 .. 16 240 a: ..., .. >< 30 :J ii: .,. 180 '5 D 20 z 120 10. 60 0 0 0 160 100 Steam Flow 4.0 ..., .. 140 120 100 80 60 .,. 40 20 .o Turbine Steam Flow --NRlevel 90 80 t: :;;: 70 0 60 ... D .. .. 50 ... .. 40 .! u &sect;. 30 'i > j 20 3.5 3.0 2.5 20 ... c ! 1.5 &. 1.0 u ... 0.5 ti : 0.0 a: -0.5 -1.0 2 4 6 003N1452 Revision 0 --RV, SV, and or SRV Flow 1300 ----Bypass Valve Flow Vessel Dome Pressure 1250 1200 ti ii .S: 1150 ! :J .. .. ! ... 1100 1050 1000 8 10 12 14 16 Time (sec) --Tolal Reactivity ----Scram Reactivity --+-Doppler Temperature Reactivity -.--Void Reactivi __ __ 1_: _____ Figure 19 Plant Response to FW Controller Failure ( EOC MELLLA and FWTR with TBSOOS (UB) ) Page 53 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'O BO Cl 'iii "' 0 ;i! 60 40 20 0 0 2 4 160 140 120 100 80 'O .. 'iii 60 "' ;/! 40 20 0 -20 l -40 0 2 4 6 6 FWCF ICF _BREO-NRPT ----Cora Inlet Flow 560 60 Simulated Thermal Power Neutron Flux 480 50 400 'ti 40 Cl 'iii 320..: 'O Cl " 30 :I ii: ;i! 240 " 20 z 160 10 BO o o B 10 12 14 16 0 Time (sec) Feedweter Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 NR level 3.0 BO 2.5 :;;: 70 .. E 2.0 :s i! .. 60 .. c Q. ! 1.5 " .. 0 .. Q. 50 > 1.0 0 i CJ ,., 40 .. 0.5 .. .::. u u :&sect;. 0.0 30 'ii "' > -0.5 .. ... 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 --B 003N1452 Revision 0 RV, SV, and/or SRV Flow 1300 Bypass Valve Flow Vessel Dome Pressure 1250 1200 ii 'ii .s 1150 ! :I .. " ! ... 1100 1050 1000 10 12 14 16 Time (sec) -+-Total Reactivity -..-Scram Reactivity Doppler Temperature Reactivity -....-Void Reactivi 6 B 10 12 14 16 Time (sec) Figure 20 Plant Response to FW Controller Failure ( EOC ICF and FWTR with RPTOOS (UB) ) Page 54 Peach Bottom Unit 3 Reload 21 HE3 22 120 100 j 80 "O ., 1ii II: 60 .... 0 ..,.,_ 40 20 0 0 160 120 80 "O .. 1ii 40 II: ..,.,_ 0 *40 *BO 0 YRACG_c.:.sl It) 16l011T LRNBP LCF BNEO*NRPT -ore Inlet Flow 360 60 Simulated Thermal Power --Neutron Flux 300 50 240 :s 40 .. 1ii a: "O ., 180 30 ii: i.e. 120 20 60 10 0 0 2 3 4 5 6 0 Time (sec) Faedwater Flow 60 4.0 Steam Flow Turbine Steam Flow 3.5 --NR level 50 3.0 2.5 .. 2.0 40 .2 l!! .. .. c Q. 1.5 .. .. 0 .. Q. ......___ 30 1.0 .c u .. " 0.5 .. > u 20 :&sect;. 0.0 c; II: > -0.5 .. _, 10 *1.0 *1.5 0 *2.0 2 3 4 5 6 0 Time (sec) 2 ------3 003Nl452 Revision 0 RV, SV, and/or SRV Flow 1350 Bypass Valve Flow Vessel Dome Pressure 1300 1250 .... 'ii .s 1200 e :I " .. e CL 1150 1100 1050 4 5 6 Time (sec) 2 --Total Reacbvlty Scram Reactivity --+--Doppler Temperature Reactivity -r-Void Reactiv' 3 Time (sec) 4 5 6 Figure 21 Plant Response to Load Rejection w/o Bypass ( EOC MELLLA+ with RPTOOS (UB) ) Page 55 Peach Bottom Unit 3 Reload 21 HEJ 22 140 120 100 ,, .. 80 1i ... 0 ';;'. 60 40 20 0 0 2 4 160 140 120 100 80 ,, .. 1i 60 'If. 40 20 0 -20 -40 0 2 4 flUCG_CloSl_rtl r.llrolOll6JlllS 6 6 FWCF MEL_BREO-NRPT --Core Inlet Flow 420 60 Simulated Thermal Power Neulrcn Flux 360 50 300 40 ., 1i 240 ,, D " 30 ::l ii: ';f. 180 ! ., 20 z 120 60 10 0 0 8 10 12 14 16 0 Time (sec) --+-Feedwater Flow 100 4.0 Sleam Flow Turbine Steam Flow 90 3.5 NR level 3.0 80 2.5 :;;: 70 ..
* 20 .. 0 i! ... 60 .. c a. ! 1.5 .. .. 0 .. a. 50 > !5 1.0 0 .Cl (J .. ... 40 .. 0.5 " .c u u :&sect;. : 0.0 30 ii > -0.5 ., ..J 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 0 Time (sec) 2 4 6 2 4 --8 003N1452 Revision 0 R , SV, and/or SRV Flow 1300 Bypass Valve Flow Vessel Dome Pressure 1250 1200 ii u; .a 1150 ; .. .. e a. 1100 1050 1000 10 12 14 16 Time (sec) -+--Total Reactivity --Scram Reactivity -+-Doppler Temperature Reactivity -a-Void Reactiv' 6 8 10 12 14 16 Time (sec) Figure 22 Plant Response to FW Controller Failure ( EOC MELLLA and FWTR with RPTOOS (UB) ) Page 56 Peach Bottom Unit 3 Reload 21 I HEJ 22 140 120 100 ,, 0 80 ,. a: .. 0 ';/!. 60 40 20 0 0 2 120 100 80 ,, " 1ii 80 a: lJf. 40 0 2 rol0a1611&1' PRFDS ICF _BREO-NPR Core Inlet Flow 280 60 Simulated Thennel Power Neutron Flux 240 50 200 'S 40 .. ,. 160 a: ,, .. )( 30 :i ii: lJf. 120 5 .. 20 z 80 40 10 0 0 3 4 5 6 7 0 Time (sec) -+--Fee water Flow 60 40 1 ___ Steam Flow -Turbine Steam Flow I 35 -+-NR level i 50 30 25 :;;: ..
* 20 40 .2 + l! ... .. 1: a. ! 1 5 -.. .. 0 .. Q. 30 g 1,0 .c u .. ... .. 0.5 .. .c ti u 20 :&sect;. : 0 0 Ci a: > " ...J 10 *1.0 -1 5 0 *2 0 3 4 5 6 7 0 Time (sec) 2 2 3 4 5 6 003N1452 Revision 0 7 1250 1200 .... "i .& 1150 e ::J .. .. e Q. 1100 1050 Time (sec) ...-Total Reacbvrty - Scram Reactivrty -Doppler Temperature Reactivity Void Reacl!Vrt -----1 3 4 Time (sec) 5 6 7 Figure 23 Plant Response to Pressure Regulator Failure Downscale ( EOC ICF and FWTR with PROOS and/or PLUOOS (UB)) Page 57 J Peach Bottom Unit 3 Reload 21 HEJ 22 120 100 BO ,, .. ,. &deg;' 60 ... 0 .... 40 20 0 0 2 120 100 BO ,, .. ,. 60 &deg;' .... 40 20 0 0 2 flUGG_Cl..Sl_ID 2'01l'Ol.ll 16J'lDTt Con1 Inlet Flow Simulated Thermal Power Neutron Flux 3 4 5 6 7 B Time (sec) Feedwater Flow Steam Flow Turbine Steam Flow --NR level --3 4 5 6 7 Time (sec) PRFDS LCF TNEO-NPR -003Nl452 Revision 0 240 60 1350 200 50 160 'S 40 ., ,. &deg;' ,, ., 120 30 ii: .... c f 5 BO ., 20 z 40 10 0 0 0 60 4.0 3.5 50 3.0 2.5 :x ..
* 20 40 ;; i! ... .. ;: a. ! 1.5 0 .. 0 ., a. 30 E 1.0 0 .Q u .. ... .. 0.5 .. .c u u 20 :&sect;. : 0.0 "i &deg;' > -0.5 .. ...J 10 -1.0 -1.5 0 -2.0 B 2 3 0 2 Bypass Valve Flow Vessel Dome Pressure 4 5 6 7 Time (sec) --Total Reacbvity ------Scram Reactivity 1300 1250 ii "i ..!!: 1200 f ::J .. .. f Q. 1150 . 1100 B -.-Coppler Temperature Reactivity 3 --r-Void Reacfri 4 Time (sec) 5 6 7 B Figure 24 Plant Response to Pressure Regulator Failure Downscale ( EOC MELLLA+ with PROOS and/or PLUOOS (HBB)) Page 58 Peach Bottom Unit 3 Reload 21 I HE3 22 140 120 100 ,, 80 a: ... 0 ;fl. 60 40 20 0 L +---0 1 2 120 100 80 ,, .. 'iii 60 a: "" 40 20 0 0 2 PRFDS MEL_BREO*NPR --ore Inlet Flow 280 60 Simulated Thermal Power Neulton Flux 240 50 200 :;; 40 .. 'iii 160 a: ,, .. .. 30 :I ii: ;fl. 120 15 .. 20 z 80 40 10 003N1452 Revision 0 1250 1200 " Ui 1150 ; 1100 1050 .. .. i 0 0 ..... 1000 3 4 5 6 7 Time (sec) -+-Fee water Flow 60 --.-Steam Flow -Turbine Steam Flow 1--NRlevel 50 :;c .. ... 40 .2 I! .. a. .. .. .. 30 .c .. .. " u 20 :&sect;. c; > " _, 10 0 3 4 5 6 7 Time (sec) 0 2 4.0 35 3.0 25 20 .. c 1.5 0 a. g 1 0 u ... 0.5 u i.'l 0 0 a: *05 -1 0 *1 5 -2.0 0 2 3 4 5 6 Time (sec) -...-otal eacbvity _...._ Scram Reactivrty 7 -+-Doppler T empereture Reactivity --.-. Void ReeclN 3 4 5 Time (sec) Figure 25 Plant Response to Pressure Regulator Failure Downscale ( EOC MELLLA and FWTR with PROOS and/or PLUOOS (UB)) Page 59 Peach Bottom Unit 3 Reload 21 HEJ 22 140 120 100 ,, 0 80 ,. a: .. 0 .,. 60 40 20 0 0 120 100 80 ,, * ,. 60 a: .,. 40 20 0 0 2 2 Cora Inlet Flow Simulated Thermal Power --+-Neutron Flux 3 4 5 6 7 Time (sec) Faedwnter Flow Steam Flow Turbine Steam Flow --+-NR level 3 4 5 6 Time (sec) MSIVF ICF _ TNEO-EIS 003N1452 Revision 0 420 80 1400 360 70 60 300 :g .. 50 ,. 240 a: ,, .. " 40 ::i ii: .,. 180 ! 30 ., z 120 20 60 10 0 0 0 60 4.0 3.5 50 3.0 2.5 .. .. 20 40 E ... .. c Q. ! 1.5 .. .. 0 .. Q. 30 1.0 .c CJ .. .. " 0.5 " u " 20 :&sect;. : 0.0 'ii a: > -0.5 .. _, 10 -1.0 -1.5 0 -2.0 7 2 0 2 ----Bypass Valve Flow Vassel Dome Pressure 3 4 5 6 7 1350 1300 1250 -.. ;; .a 1200 " .. f 1150 a. 1100 1050 nme (sec) --+-Total Reacbvity -e-Scram Reactivrty Doppler Temperature Reactivity -.--Void Reactiv* 3 4 5 6 Time (sec) 7 Figure 26 Plant Response to MSIV Closure (Flux Scram) ( EOC ICF (HBB) ) Page 60 Peach Bottom Unit 3 Reload 21 I HEJ 22 140 120 100 ,, 0 BO ,. II:: ..... 0 'ii-60 -40 20 --Core Inlet F ow Simulated Thermal Power --Neutron Flux MSIVF LCF _TNEO*EIS 003N1452 Revision 0 420 eo 360 70 60 300 '6" .. 50 ,. 240 II:: ,, ., )( 40 :J u:: 'ii-1BO '! 30 .. z 120 20 60 10 --Bypass Velve Flow --.-Vessel Dome Pressure 1350 1300 1250 _ II -; .!: 1200 ! :J .. .. ! 1150 0.. 1100 1050 0 -+-....... -+------+ 0 o 0 1 2 3 4 5 6 7 0 2 3 4 5 6 7 Time (sec) Time (sec) 120 SO 40 -+-Total Reacbvity ,, 0 BO 60 'ii-40 --Steam Flow -Turbine Steam F1ow --+-NRlevet 3 5 6 Time (sec) 50 :;;: ID 40 ls c. ., ID ., 30 .g ID .! u + 20 :&sect;. 'ii > .. _, 10 0 7 ----Scram Reactivity 35 --+-Doppler Temperature Reactivity -.-Void Reactiv' 30 2.5
* 20 ... c .. 1 5 c: 0 c. E 1.0 0 0 ,. '; o 5 "ii :g 0 0 II:: -0 5 -1 o -1 5 ---+---;--__.--j4f-'---; * --+6___,_ 7 I -2.0 0 2 Time (sec) I -------' Figure 27 Plant Response to MSIV Closure (Flux Scram) ( EOC MELLLA+ (HBB)) Page 61 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'O 80 Cl 1i II: 'ii ...,. 60 40 20 0 0 120 100 80 'O 0 1i 60 II: ...,. 40 20 0 0 1619Ci<I 2 2 Cora Inlet Flow Simulated Thermal Power --Neutron Flux 3 4 5 6 7 Time (sec) Feedwater Flow Steam Flow Turbine Sleam Flow --NR level 3 4 5 6 Time (sec) MSIVF MEL_TNEO-EIS 003Nl452 Revision 0 420 80 ** 1400 360 70 60 300 ;; .. 50 1i 240 II: !. 'O Cl .. 40 :::J ii: ...,. 180 :; 30 Cl z 120 20 60 10 0 0 0 60 4.0 3.5 50 3.0 2.5 :;: ..
* 20 40 .2 l! ... .. ;: Q. ! 1.5 Cl .. 0 Cl Q. 30 8 1.0 "' u .. ... .. 0.5 D u u 20 :&sect;. : 0.0 ;; II: > -0.5 .. .J 10 -1.0 --1.5 0 -2.0 7 0 2 2 -.-Bypass Valve Flow Vessel Dome Pressure 3 4 5 6 Time (sec) ...... Total Reactivity ----Scram Reactivity 7 1350 1300 1250 -.. a; E: 1200 ; "' .. e 1150 a. 1100 1050 -+---Doppler Temperature Reactivity -r-Void Reactiv* 3 4 5 6 7 Time (sec) Figure 28 Plant Response to MSIV Closure (Flux Scram) ( EOC MELLLA (HBB) ) Page 62 Peach Bottom Unit 3 Reload 21 120 I 110 100 90 t 80 t ==-"' f----t-=: 70 ... 60 :. "; 50 E " i: 40 30 20 10 10 I ;-.. ... L _.)_ I --t t Bl B2 20 30 40 --,---+ ,___ T t +-50 003Nl452 Revision 0 I -r r-1 l +-I --t + 1 +---j----r---I---+ I -t-----+----+ I t--+---t---I--+--_J_ _j__ ---+ -t ---MELLLA+ EXfENSlON --l -NFWT Manual BSP Scram Region Boundary --NFWT Manual BSP Controlled Entry Region Boundary -* NFWT BSP Boundary 60 70 80 90 100 110 120 Core Flow (% Figure 29 Manual BSP Regions and BSP Boundary for Normal Feedwater Temperature Operation Page 63 Peach Bottom Unit 3 Reload 21 120 I 110 t-100 -+ 90 80 +-:;:;-" i:i: 70 + .. 60 + lo ] 50 .. i: 40 + 30 t 20 10 10 i--l +--+ ---1 + -+-_,_ 1--,. B1'1 I B2' r 20 30 40 -r I r + + t I + - r--t--t--+--+ ----r --j---l------MELLLA+ EXTENSION -T + 003N1452 Revision 0 T + -+ -I t -+ --RFWT Manual BSP Scram Region Boundary -; --RFWT Manual BSP Controlled Entry Region Boundary + RFWT BSP Boundary + 50 60 70 80 90 100 110 120 Core Flow (% Rated) Figure 30 Manual BSP Regions and BSP Boundary for Reduced Feedwater Temperature Operation Page 64 Peach Bottom Unit 3 Reload 21 Appendix A Analysis Conditions 003Nl452 Revision 0 The reactor operating conditions used in the reload licensing analysis for this plant and cycle are presented in Table A-1. The pressure relief and safety valve configuration for this plant are presented in Table A-2. Additionally, the operating flexibility options listed in Section 8 are supported by the reload licensing analysis. Table A-1 Reactor Operating Conditions Analysis Value Parameter ICF LCF ICF LCF NFWT NFWT RFWT RFWT Thennal power, MWt 4016.0 4016.0 4016.0 4016.0 Core flow, Mlb/hr 112.8 87.3 112.8 104.0 Reactor pressure (core mid-plane), psia 1067.0 1062.3 1048.4 1046.8 Inlet enthalpy, Btu/lb 524.2 515.8 512.6 509.4 Non-fuel power fraction 18 NIA NIA NIA NIA Steam flow, Mlb/hr 16.49 16.46 14.82 14.81 Dome pressure, psig 1035.2 1034.4 1017.4 1017.4 Turbine pressure, psig 961.3 960.8 957.1 957.2 Table A-2 Pressure Relief and Safety Valve Configuration Valve Type Number of Lowest Setpoint Valves (psig) Safety/Relief Valve 11 1169.1 Spring Safety Valve 3 1297.8 18 For TRACG methodology, the direct moderator heating is a function of moderator density. Page 65 Peach Bottom Unit 3 Reload 21 Appendix B Thermal-Mechanical Compliance 003N1452 Revision 0 A thermal-mechanical compliance check is performed for all analyzed transients to assure that the fuel will operate without violating the thermal-mechanical design limits. These limits are designed such that reactor operation within these limits provides assurance that the fuel will not exceed any mechanical design or licensing limits during all modes of operation. The fuel thermal-mechanical limits are met for the current cycle. Page 66 Peach Bottom Unit 3 Reload 21 Appendix C Decrease in Core Coolant Temperature Event 003Nl452 Revision 0 The Loss-of-Feedwater Heating event was analyzed at 100% rated power using the BWR Simulator Code. The use of this code is consistent with the approved methodology. The transient plots, neutron flux and heat flux values normally reported in Section 9 are not an output of the BWR Simulator Code; therefore, those items are not included in this document. The OLMCPR result is shown in Section 11. The Inadvertent HPCI start-up event with a Level 8 turbine trip was analyzed with TRACG, and the OLMCPR results are summarized in Section 11 if the event sets the OLMCPR for an application condition. Page 67 Peach Bottom Unit 3 Reload 21 Off-Rated Power Dependent Limits Appendix D Off-Rated Limits 003N1452 Revision 0 The off-rated power dependent limits to be applied for Base, Base + TBSOOS, Base + RPTOOS, and Base+ PROOS and/or PLUOOS are documented in Reference D-1. The Kp/MCPRp and LHGRFACp limits provided in Reference D-1 have been validated for this cycle. The MCPRp limits provided in Reference D-1 are based on a SLMCPR of 1.15; therefore no SLMCPR adjustment is required for this cycle. The Base Case includes 2 TBVOOS, 1 SRVOOS, 1 MSIVOOS, 1 TCV/TSVOOS, and FWHOOS/FFWTR. These Base Case EOOS conditions are included in all other application conditions. The off-rated power dependent limits support 1 MSIVOOS at power levels:::; 65% rated thermal power in all application conditions. The off-rated power dependent limits support 1 TCV/TSVOOS at power levels :::; 54% rated thermal power in Base + TBSOOS. The off-rated power dependent limits support 1 TCV/TSVOOS at power levels:::; 78% rated thermal power in all other application conditions. MCPRp Limits for: BASE OMSIVOOS, lTCVand/or lTSVOOS, lSRVOOS, 2TBVOOS) Limits for Power< 26.3% Flow> 60.0% Power(%) Limit Power(%) Limit MCPRp MCPRp 22.6 2.99 22.6 2.67 26.3 2.83 26.3 2.60 Limits for Power ;::: 26.3% Power(%) Limit Kp 26.3 1.392 40.0 1.288 55.0 1.237 65.0 1.130 85.0 1.067 100.0 1.000 Page 68 Peach Bottom Unit 3 Reload 21 MCPRp Limits for: BASE + TBSOOS Limits for Power < 26.3% Flow>60.0% Power(%) 22.6 26.3 Limits for 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 MCPRp Limits for: BASE+ RPTOOS Limits for Power < 26.3% Flow> 60.0% Power(%) 22.6 26.3 Limits for 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 Limit MCPRTJ 4.15 3.78 Limit MCPRp 2.99 2.83 Flow $ 60.0% Power(%) 22.6 26.3 Limit KTJ 1.399 1.323 1.237 1.155 1.079 1.000 Flow$60.0% Power(%) 22.6 26.3 Limit Kp 1.392 1.288 1.237 I. 130 1.067 1.000 003N1452 Revision 0 Limit MCPRp 3.64 3.25 Limit MCPRp 2.67 2.60 Page 69 Peach Bottom Unit 3 Reload 21 MCPRp Limits for: BASE + PROOS and/or PLUOOS Limitsfor Power < 26.3% Flow> 60.0% Power(%) Limit MCPRp 22.6 2.99 26.3 2.83 Limits for Power;::: 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 LHGRFACp Limits for: Flow :S 60.0% Power(%) 22.6 26.3 Limit Kp 1.392 1.288 1.237 1.210 1.147 1.000 BASE (lMSIVOOS, 1 TCV and/or 1 TSVOOS, lSRVOOS, 2TBVOOS) Limits for Power < 26.3% Flow> 60.0% Flow :S 60.0% Power(%) Limit Power(%) 22.6 0.508 22.6 26.3 0.522 26.3 Limits for Power ;::: 26.3% Power(%) Limit 26.3 0.620 40.0 0.696 55.0 0.751 65.0 0.817 85.0 0.930 100.0 1.000 Limit 003Nl452 Revision 0 MCPRp 2.67 2.60 Limit 0.508 0.522 Page 70 Peach Bottom Unit 3 Reload 21 LHGRFACp Limits for: BASE + TBSOOS Limits for Power< 26.3% Flow> 60.0% Power(%) 22.6 26.3 Limits for 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 LHGRFACp Limits for: BASE+ RPTOOS Limits for Power< 26.3% Flow> 60.0% Power(%) 22.6 26.3 Limits for 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 Limit Power(%) 0.397 22.6 0.417 26.3 Limit Power(%) 0.508 22.6 0.522 26.3 Flow ::: 60.0% Limit 0.620 0.655 0.714 0.817 0.930 1.000 Flow ::: 60.0% Limit 0.620 0.696 0.751 0.817 0.930 1.000 Limit 0.397 0.442 003N1452 Revision 0 Limit 0.508 0.522 Page 71 Peach Bottom Unit 3 Reload 21 LHGRFACp Limits for: BASE+ PROOS and/or PLUOOS Limitsfor Power < 26.3% Flow> 60.0% Power(%) Limit 22.6 0.508 26.3 0.522 Limitsfor Power> 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 Off-Rated Flow Dependent Limits Flow Power(%) 22.6 26.3 Limit 0.620 0.696 0.751 0.817 0.930 1.000 Limit 0.508 0.522 003N1452 Revision 0 The off-rated flow dependent limits to be applied for Base, Base + TBSOOS, Base + RPTOOS, and Base + PROOS and/or PLUOOS are documented in Reference D-1. The MCPRf and LHGRFACf limits provided in Reference D-1 have been validated for this cycle. The flow dependent limits basis is a single pump runout with no mechanical scoop tube setpoint. Peach Bottom has ASDs installed and no MIG set. Flow dependent limits are provided for operation up to a maximum of 110% rated core flow. The MCPRf limits provided in Reference D-1 are based on a SLMCPR of 1.12; therefore, the MCPRf limits have been scaled for the cycle-specific SLM CPR in Section 11. The off-rated flow dependent limits support 1 MSIVOOS at power levels :::: 65% rated thermal power in all application conditions. The off-rated flow dependent limits support 1 TCV /TSVOOS at power levels :::: 54% rated thermal power in Base + TBSOOS. The off-rated flow dependent limits support 1 TCV /TSVOOS at power levels :::: 78% rated thermal power in all other application conditions. MCPRf Limits for: BASE (lMSIVOOS, 1 TCV and/or 1 TSVOOS, lSRVOOS, 2TBVOOS) Limitsfor a Maximum Ru11out Flow of 110.0% Flow(%) Limit MCPRf 30.0 1.57 86.0 1.25 110.0 1.25 Page 72 Peach Bottom Unit 3 Reload 21 MCPRf Limits for: BASE + TBSOOS Limits for a Maximum Ru11out Flow of 110.0% Flow(%) 30.0 86.0 110.0 MCPRf Limits for: BASE+ RPTOOS Limits for a Maximum Ru11out Flow of 110.0% Flow(%) 30.0 86.0 110.0 MCPRf Limits for: BASE+ PROOS and/or PLUOOS Limitsfor a Maximum Runout Flow of 110.0% Flow(%) 30.0 86.0 110.0 LHGRFACfLimits for: Limit MCPR( 1.57 1.25 1.25 Limit MCPRf 1.57 1.25 1.25 Limit MCPRJ 1.57 1.25 1.25 BASE OMSIVOOS, lTCV and/or lTSVOOS, lSRVOOS, 2TBVOOS) Limitsfor a Maximum Runout Flow of 110.0% Flow(%) Limit 30.0 0.706 70.0 0.973 80.0 1.000 110.0 1.000 LHGRFACf Limits for: BASE + TBSOOS Limits for a Maximum Runout Flow of 110.0% Flow(%) Limit 30.0 0.706 70.0 0.973 80.0 1.000 110.0 1.000 003N1452 Revision 0 Page 73 Peach Bottom Unit 3 Reload 21 LHGRFACfLimits for: BASE+ RPTOOS Limits for a Maximum Runout Flow of 110.0% Flow(%) 30.0 70.0 80.0 110.0 LHGRFACfLimits for: BASE + PROOS and/or PLUOOS Limits for a Maximum Runout Flow of 110.0% Flow(%) 30.0 70.0 80.0 110.0 References Limit 0.706 0.973 1.000 1.000 Limit 0.706 0.973 1.000 1.000 003Nl452 Revision 0 D-1. Peach Bottom Atomic Power Station Units 2 and 3 TRACG Implementation for Reload Licensing Transient Analysis, 0000-0135-9000-R2, June 2017. Page 74 Peach Bottom Unit 3 Reload 21 Appendix E TRACG04 AOO Supplementary Information 003N1452 Revision 0 Reference E-I provides the results of the evaluations supporting the application of TRACG04 for AOO analyses for Peach Bottom. Section I I of this report presents the MCPR limits based on the TRACG04 methodology of Reference E-2. The safety evaluation report for licensing topical report NEDE-32906P Supplement 3-A (Reference E-2) concluded that the application of TRACG04 methods to AOO and overpressure transient analyses were acceptable subject to certain limitations and conditions. Peach Bottom 3 Cycle 22 is in compliance with these limitations and conditions. References E-1. Peach Bottom Atomic Power Station Units 2 and 3 TRA.CG Implementation for Reload Licensing Transient Analysis, OOOO-Ol 35-9000-R2, Revision 2, June 2017. E-2. Migration ,to TRA.CG04/PANACJI from TRA.CG02/PANACIO for TRA.CG AOO and ATWS Overpressure Transients, NEDE-32906P, Supplement 3-A, Revision I, April 2010. Page 75 Peach Bottom Unit 3 Reload 21 Appendix F Interim Methods LTR (NEDC-33173P-A Revision 4) Supplemental Information 003N1452 Revision 0 The safety evaluation for licensing topical report NEDC-33173P-A Revision 4 (Reference F-1) concluded that the application of GEH/GNF methods to expanded operating domains was acceptable subject to certain limitations and conditions. Several of these limitations and conditions request that additional, application-specific information be provided in the SRLR. The information provided below responds to these requests for the identified items. Limitation and Condition 9.5 (SLMCPR 2) Limitation and Condition 9.5 states: "For operation at MELLLA+, including operation at the EPU power levels at the achievable core flow state-point, a 0.01 value shall be added to the cycle-specific SLMCPR value for power-to-flow ratios up to 42 MWt!Mlbm!hr, and a 0.02 value shall be added to the cycle-specific SLMCPR value for power-to-flow ratios above 42 MWt!Mlbm!hr. " For operation at MELLLA+, a 0.02 value was added to the cycle specific SLMCPR. The SLMCPR values reported in Section 11 reflect this adder. Limitation and Condition 9.8 (ECCS-LOCA 2) Limitation and Condition 9.8 states: "The ECCS-LOCA will be pe1formed for all statepoints in the upper boundary of the expanded operating domain, including the minimum core flow statepoints, the transition statepoint, as defined in Reference F-2 and the 55 percent core flow statepoint. The plant-specific application will report the limiting ECCS-LOCA results as well as the rated power and flow results. The SRLR will include both the limiting statepoint LOCA results and the rated conditions ECCS-LOCA results. " This limitation and condition is satisfied by the Appendix K PCTs reported in Reference 1 in Section 16.4. The level of detail contained in the SRLR is consistent with the NRC evaluation of the GNF response to RAI 25 Item b in the M+LTR (Reference F-2). The SRLR reports the bounding Licensing Basis PCT for all statepoints analyzed. Page 76 Peach Bottom Unit 3 Reload 21 Limitation and Condition 9.10/9.11 (Transient LHGR 2/3) Limitation and Condition 9.10 states: 003Nl452 Revision 0 "Each EPU and MELLLA + fuel reload will document the calculation results of the analyses demonstrating compliance to transient T-M acceptance criteria. The plant T-M response will be provided with the SRLR or COLR, or it will be reported directly to the NRC as an attachment to the SRLR or COLR. " Limitation and Condition 9.11 states: "To account for the impact of the void hist01y bias, plant-specific EPU and MELLLA + applications using either TRACG or ODYN will demonstrate an equivalent to JO percent margin to the fuel centerline melt and the 1 percent cladding circumferential plastic strain acceptance criteria due to pellet-cladding mechanical interaction for all of limiting AOO transient events, including equipment out-of-service. Limiting transients in this case, refers to transients where the void reactivity coefficient plays a significant role (such as pressurization events). If the void hist01y bias is incorporated into the transient model within the code, then the additional 10 percent margin to the fuel centerline melt and the 1 percent cladding circumferential plastic strain is no longer required. " Appendix B documents the fact that the results for all analyzed transients demonstrate compliance with thermal-mechanical acceptance criteria. Table F-1 summarizes the percent margin to the Thermal Overpower and Mechanical Overpower acceptance criteria. As referenced in Appendix E, the void history bias was incorporated into the transient model within the TRACG04 code, and therefore the l 0 percent margin to the fuel centerline melt and the l percent cladding circumferential plastic strain acceptance criteria is no longer required. Table F-1 Margin to the Thermal Overpower and Mechanical Overpower Acceptance Criteria Criteria GNF2 Thermal Overpower 2.76% Mechanical Overpower 0.60% Page 77 Peach Bottom Unit 3 Reload 21 Limitation and Condition 9.17 (Steady-State 5 Percent Bypass Voiding) Limitation and Condition 9.17 states: 003N1452 Revision 0 "The instrumentation specification design bases limit the presence of bypass voiding to 5 percent (LRPM (sic) levels). Limiting the bypass voiding to less than 5 percent for long term steady operation ensures that instrumentation is operated within the specification. For EPU and MELLLA + operation, the bypass voiding will be evaluated on a specific basis to confirm that the void fi*action remains below 5 percent at all LPRM levels when operating at steady-state conditions within the MELLLA + upper boundaly. The highest calculated bypass voiding at any LPRM level will be provided with the specific SRLR. " The bypass voiding was evaluated for the licensed core loading and confirmed that the bypass void fraction remained below 5 percent at all LPRM levels when operating at steady-state conditions within the licensed upper boundary. Limitation and Condition 9.18 (Stability Setpoints Adjustment) Limitation and Condition 9.18 states: "The NRC staff concludes that the presence bypass voiding at the /ow-flow conditions where instabilities are likely can result in calibration errors of less than 5 percent for OP RM cells and less than 2 percent for AP RM signals. These calibration errors must be accounted for while determining the setpoints for any detect and suppress long term methodology. The calibration values for the different long-term solutions are specified in the associated sections of this SE, discussing the stability methodology. " This limitation and condition is not applicable to DSS-CD because the significant conservatisms in the current licensing methodology and associated MCPR margins are more than sufficient to compensate for the overall uncertainty in the OPRM instrumentation. Limitation and Condition 9.19 (Void-Quality Correlation 1) Limitation and Condition 9.19 states: "For applications involving PANCEA(sic)IODYNllSCORITASC for operation at EPU and MELLLA+, an additional 0.01 will be added to the OLMCPR, until such time that GE expands the experimental database supporting the Findlay-Dix void-quality correlation to demonstrate the accuracy and pe1formance of the void-quality correlation based on experimental data representative of the current fuel designs and operating conditions during steady-state, transient, and accident conditions. " Page 78 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 The OLMCPR limitation requiring an additional 0.01 adder on the OLMCPR does not apply to EPU or MELLLA+ licensing calculations when TRACG04 methods are used (Reference F-3). Therefore, the OLMCPR adder is not applied to Peach Bottom Unit 3 Cycle 22. References F-1. Applicability of GE Methods to Expanded Operating Domains, NEDC-33 l 73P-A, Revision 4, November 2012. F-2. General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus, NEDC-33006P-A, Revision 3, June 2009. F-3. Migration to TRACG04 I PANACJJ from TRACG02 I PANACJO for TRACG AOO and ATWS Overpressure Transients, NEDE-32906P, Supplement 3-A, Revision 1, April 2010. Page 79 Peach Bottom Unit 3 Reload 21 Appendix G 003N1452 Revision 0 MELLLA+ LTR (NEDC-33006P-A Revision 3) Supplemental Information The safety evaluation for licensing topical report NEDC-33006P-A Revision 3 (Reference G-1) approved the operation of GE BWRs in the MELLLA+ expanded operating domain, subject to certain limitations and conditions. Several of these limitations and conditions request that additional, application-specific information be provided in the SRLR. The information provided below responds to these requests for the identified items. Limitation and Condition 12.6 (SLMCPR Statepoints and CF Uncertainty) Limitation and Condition 12.6 states: "Until such time when the SLMCP R methodology (References G-3 and G-4) for off-rated SLMCPR calculation is approved by the staff/or MELLLA+ operation, the SLMCPR will be calculated at the rated statepoint (120 percent Pll 00 percent CF), the plant-specific minimum CF statepoint (e.g., 120 percent P/80 percent CF), and at the JOO percent OLTP at 55 percent CF statepoint. The currently approved off-rated CF uncertainty will be used for the minimum CF and 55 percent CF statepoints. The uncertainty must be consistent with the CF uncertainty currently applied to the SLO operation or as approved for MELLLA + operation. The calculated values will be documented in the SRLR." As requested, the SLMCPR calculated results at specified off-rated power/flow conditions are reported in Table G-1 below, including the low CF statepoint. Table G-1 Two-Loop SLMCPR Results for MELLLA+ Conditions Power(% Rated) Flow(% Rated) SLM CPR 100.0 110.0 1.07 100.0 100.0 1.07 100.0 85.2 1.11 77.5 55.0 1.12 Page 80 Peach Bottom Unit 3 Reload 21 Limitation and Condition 12.10.b (ECCS-LOCA Off-Rated Multiplier) Limitation and Condition 12.1 O.b states: 003N1452 Revision 0 "LOCA analysis is not pe1formed on cycle-specific basis; therefore, the thermal limits applied in the M+SAR LOCA analysis for the 55 percent CF MELLLA+ statepoint and/or the transition statepoint must be either bounding or consistent with cycle-specific off rated limits. The COLR and the SRLR will contain confirmation that the off-rated limits assumed in the ECCS-LOCA analyses bound the cycle-specific off-rated limits calculated for the MELLLA + operation. Eve1y future cycle reload shall confirm that the specific off-rated thermal limits applied at the 55 percent CF and/or the transition statepoints are consistent with those assumed in the plant-specific ECCS-LOCA analyses." The off-rated limits assumed in the ECCS-LOCA analyses are confirmed to be consistent with the specific off-rated LHGR multipliers calculated for the MELLLA+ operation. The off-rated LHGR multipliers provide adequate protection for the MELLLA+ operation. Limitation and Condition 12.18.d (ATWS TRACG Analysis) Limitation and Condition 12.18.d states: "Jn general, the plant-specific application will ensure that operation in the MELLLA domain is consistent with the assumptions used in the ATWS analysis, including equipment out of service (e.g., FWHOOS, SLO, SRVs, SLC pumps, and RHRpumps, etc.). If assumptions are not satisfied, operation in MELLLA + is not allowed. The SRLR will specify the prohibited flexibility options for plant-specific MELLLA+ operation, where applicable. For key input parameters, systems and engineering safety features that are important to simulating the ATWS analysis and are specified in the Technical Specification (TS) (e.g., SLCS parameters, ATWS RPT. etc.), the calculation assumptions must be consistent with the allowed TS values and the allowed plant configuration. If the analyses deviate ji*om the allowed TS configuration for long term equipment out of service (i.e., beyond the TS LCO), the plant-specific application will specify and justify the deviation. In addition, the licensee must ensure that all operability requirements are met (e.g., NPSH) by equipment assumed operable in the calculations. " This A TWS TRACG Analysis limitation and condition requires that the SRLR specify the prohibited flexibility options for plant-specific MELLLA+ operation, where applicable, as expressed by EOOS options in Section 8. Page 81 Peach Bottom Unit 3 Reload 21 References 003Nl452 Revision 0 G-1. General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus, NEDC-33006P-A, Revision 3, June 2009. G-2. GE Hitachi Boiling Water Reactor, Detect and Suppress Solution -Confirmation Density, NEDC-33075P, Revision 8, November 2013. G-3. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999. G-4. Power Distribution Uncertainties for Safety Limit MCPR Evaluations, NEDC-32694P-A, August 1999. G-5. DSS-CD TRACG Application, NEDE-33147P-A, Revision 4, August 2013. Page 82 Peach Bottom Unit 3 Reload 21 Appendix H Application to Current Licensed Thermal Power (CLTP) 003N1452 Revision 0 The reload licensing analysis for this plant and cycle is based on TPO conditions at 4016 MWt rated core power (Reference H-1) and is applicable to CL TP conditions at 3951 MWt rated core power (Reference H-2). Off-rated limits have been developed based on the plant transient trends versus percent of rated power and flow and these relationships have been validated for Peach Bottom TPO. Therefore, the off-rated limits provided in Appendix D are applicable for operation at both CL TP and TPO conditions. Note, however, that the Appendix D power dependent off-rated limits have been provided at TPO values of Pbypass and Pmin of 26.3% rated power and 22.6% rated power, respectively. The power dependent limit values at Pbypass and Pmin have been validated as applicable for operation at both CL TP and TPO conditions. At CL TP conditions, the power level values for Pbypass and Pmin should be adjusted to those appropriate for CLTP. The BSP Scram Region and Controlled Entry Region for both NFWT and RFWT are conservative for CL TP in terms of absolute power. The Scram Region and Controller Entry Region power level based coordinates may be rescaled from the TPO power level to the CL TP power level. The ABSP setpoints are conservative for CLTP in terms of absolute power. The ABSP constant power line setpoint (Pssr-TRrP) and the slope (mTRIP) may also be rescaled from the TPO power level to the CL TP power level. References H-1. Safety Analysis Report for Peach Bottom Atomic Power Station Units 2 and 3 Thermal Power Optimization, NEDC-33873P, Revision 0, February 2017. H-2. Safety Analysis Report for Peach Bottom Atomic Power Station Units 2 & 3 Maximum Extended Load Line Limit Analysis Plus, NEDC-33720P, Revision 0, September 2014. Page 83 Peach Bottom Unit 3 Reload 21 Appendix I 003N1452 Revision 0 Peach Bottom Unit 3 Cycle 22 Contingency TCV/TSV Delay Analysis The pressurization transient results provided in Section 9 and Section 11 were performed with a 0 ms TSV delay time following a high water level (L8) turbine trip and a 0 ms TCV delay time following a high water level (L8) turbine trip. A contingency analysis for Peach Bottom 3 Cycle 22 was performed with a 0 ms TSV delay time following a high water level (L8) turbine trip and a 45 ms TCV delay time following a high water level (L8) turbine trip. The contingency analysis evaluated the impact of this change on the FWCF and HPCIL8 events. The results show that the change could impact the Peach Bottom 3 Cycle 22 reload analysis limits. The following pressurization transient OLMCPR may be implemented for Peach Bottom 3 Cycle 22 instead of those provided in Section 11 if the TCV delay time is at least 45 ms longer than the TSV delay time. Limiting Pressurization Events OLMCPR Summary Table: Appl. Exposure Range Option A Option B Cond. GNF2 GNF2 1 Base (lMSIVOOS, lTCVand/or lTSVOOS, lSRVOOS, 2TBVOOS) BOC to MOC 1.46 1.38 MOC to EOC 1.49 1.41 2 Base + TBSOOS BOC to MOC 1.51 1.42 MOC to EOC 1.55 1.46 3 Base + RPTOOS BOC to MOC 1.58 1.41 MOCtoEOC 1.61 1.44 4 Base + PROOS and/or PLUOOS BOC to MOC 1.46 1.38 MOC to EOC 1.49 1.41 Page 84 Peach Bottom Unit 3 Reload 21 Appendix J End of Cycle Power Coastdown Restrictions 003N1452 Revision 0 End-of-cycle power coastdown operation down to 40% reactor power is supported by the GEST AR basis document identified at the beginning of this report. Coastdown operation beyond the EOR condition is conservatively bounded by the reload licensing analyses at the EOR condition for a normal coastdown power profile. During coastdown, operation at a power level above that which can be achieved (at rods-out with all cycle extensions features utilized, e.g., ICF, FFWTR) with steady-state equilibrium xenon concentrations is not supported. Page 85 Peach Bottom Unit 3 Reload 21 Acronym llCPR Ilk 2RPT (2PT) ADS ADSOOS AOO APRM ARTS ASD BOC BSP BWROG CCFL CFR COLR CPR DIRPT DIV OM DR OS/RV ECCS ELLLA EOC EOOS EOR EPU ER FFWTR FMC PR FOM FW FWCF FWHOOS FWTR GEST AR GETAB GS3 GSF HAL HBB Appendix K List of Acronyms Description Delta Critical Power Ratio Delta k-effective Two Recirculation Pump Trip Automatic Depressurization System Automatic Depressurization System Out of Service Anticipated Operational Occurrence Average Power Range Monitor 003Nl452 Revision 0 APRM, Rod Block and Technical Specification Improvement Program Adjustable Speed Drive Beginning of Cycle Backup Stability Protection Boiling Water Reactor Owners Group Countercurrent Flow Limitation Code of Federal Regulation Core Operating Limits Report Critical Power Ratio Delta MCPR over Initial MCPR for a two-Recirculation Pump Trip Delta CPR over Initial MCPR vs. Oscillation Magnitude Decay Ratio Dual Mode Safety/Relief Valve Emergency Core Cooling System Extended Load Line Limit Analysis End of Cycle (including all planned cycle extensions) Equipment Out of Service End of Rated (All Rods Out 100%Power I 100%Flow I NFWT) Extended Power Uprate Exclusion Region Final Feedwater Temperature Reduction Final MCPR figure of Merit Feed water Feedwater Controller Failure Feedwater Heaters Out of Service Feedwater Temperature Reduction General Electric Standard Application for Reactor Fuel General Electric Thermal Analysis Basis GEH Simplified Stability Solution Generic Shape Function Haling Bum Hard Bottom Burn Page 86 Peach Bottom Unit 3 Reload 21 Acronym HBOM HCOM HFCL HPCI ICA ICF JM CPR IVM Kf Kp LS LCF LFWH LHGR LHGRFACf LHGRFACp LOCA LOSC LPRM LRNBP LRWHBP LTR MAPFACf MAPFACp MAPLHGR MCPR MCPRf MCPRp MELLLA MELLLA+ MEOD MOC MRB MSF MSIV MSIVOOS MSR MS ROOS MTU MWd MWd/MT MWd/ST MWt NIA NBP Description Hot Bundle Oscillation Magnitude Hot Channel Oscillation Magnitude High Flow Control Line High Pressure Coolant Iniection Interim Corrective Action Increased Core Flow Initial MCPR Initial Validation Matrix Off-rated flow dependent OLMCPR multiplier Off-rated power dependent OLMCPR multiplier Turbine Trip on high water level (Level 8) Low Core Flow Loss of Feedwater Heating Linear Heat Generation Rate Off-rated flow dependent LHGR multiplier Off-rated power dependent LHGR multiplier Loss of Coolant Accident Loss of Stator Cooling Local Power Range Monitor Load Rejection without Bypass Load Rejection with Half Bypass Licensing Topical Report Off-rated flow dependent MAPLHGR multiplier Off-rated power dependent MAPLHGR multiplier Maximum Average Planar Linear Heat Generation Rate Minimum Critical Power Ratio Off-rated flow dependent OLMCPR Off-rated power dependent OLMCPR Maximum Extended Load Line Limit Analysis MELLLA Plus Maximum Extended Operating Domain Middle of Cycle Maximal Region Boundaries Modified Shape Function Main Steam Isolation Valve Main Steam Isolation Valve Out of Service Moisture Separator Reheater Moisture Separator Reheater Out of Service Metric Ton Uranium Megawatt day Megawatt days per Metric Ton Megawatt days per Standard Ton Megawatt Thermal Not Applicable No Bypass 003Nl452 Revision 0 Page 87 Peach Bottom Unit 3 Reload 21 Acronym NCL NFWT NOM NTR OLM CPR oos OPRM Pbypass Pdomc Psi P,. PCT PHE PLHGR PLU PLUOOS PRFDS PROOS Q/A RBM RC RCF RFWT RPS RPT RPTOOS RV RVM RWE SC SL SLM CPR SLO SRI SRLR S/RV (SRV) SRVOOS SS ssv STP STU TB SOOS TBV TBVO Description Natural Circulation Line Normal Feedwater Temperature Nominal Burn Normal Trip Reference Operating Limit MCPR Out of Service Oscillation Power Range Monitor 003N1452 Revision 0 Reactor power level below which the TSV position and the TCV fast closure scrams are bypassed Peak Dome Pressure Peak Steam Line Pressure Peak Vessel Pressure Peak Clad Temperature Peak Hot Excess Peak Linear Heat Generation Rate Power Load Unbalance Power Load Unbalance Out of Service Pressure Regulator Failure Downscale Pressure Regulator Out of Service Heat Flux Rod Block Monitor Reference Cycle Rated Core Flow Reduced Feedwater Temperature Reactor Protection System Recirculation Pump Trip Recirculation Pump Trip Out of Service Relief Valve Reload Validation Matrix Rod Withdrawal Error Standard Cycle Safety Limit Safety Limit Minimum Critical Power Ratio Single Loop Operation Select Rod Insert Supplemental Reload Licensing Report Safety/Relief Valve Safety/ReliefValve(s) Out of Service Steady State Spring Safety Valve Simulated Thermal Power Short Tons (or Standard Tons) of Uranium Turbine Bypass System Out of Service Turbine Bypass Valve Turbine Bypass Valves Open Page 88 Peach Bottom Unit 3 Reload 21 Acronym TBVOOS TCV TCVOOS TCVSC TLO TOPPS TRF TSIP TSV TSVOOS TT TTNBP TTWHBP UB Description Turbine Bypass Valves Out of Service Turbine Control Valve Turbine Control Valve Out of Service Turbine Control Valve Slow Closure Two Loop Operation Tracking Over-Power Protection System Trip Reference Function Technical Specifications Improvement Program Turbine Stop Valve Turbine Stop Valve Out of Service Turbine Trip Turbine Trip without Bypass Turbine Trip with Half Bypass Under Bum 003Nl452 Revision 0 Page 89 
}}
}}

Revision as of 03:03, 25 April 2018

Peach Bottom, Units 2 and 3, Submittal of Measurement Uncertainty Recapture Power Uprate License Amendment Request - Supplement 5, Supplemental Reload Licensing Report
ML17258A179
Person / Time
Site: Peach Bottom  Constellation icon.png
Issue date: 09/15/2017
From: David Gudger
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML17258A179 (91)


Text

Exelon Generation September 15, 2017 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Peach Bottom Atomic Power Stations, Units 2 and 3 10 CFR 50.90 10 CFR 50, Appendix K Renewed Facility Operating License Nos. DPR-44 and DPR-56 NRC Docket Nos. 50-277 and 50-278

Subject:

Measurement Uncertainty Recapture Power Uprate License Amendment Request -Supplement 5, Supplemental Reload Licensing Report

Reference:

Exelon letter to the NRC, "Request for License Amendment Regarding Measurement Uncertainty Recapture Power Uprate," dated February 17, 2017 (ADAMS Accession No. ML 17048A444) In accordance with 10 CFR 50.90, Exelon Generation Company, LLC (Exelon) requested amendments to Renewed Facility Operating License Nos. DPR-44 and DPR-56 for Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, respectively, in the referenced letter. Specifically, the proposed changes would revise the Renewed Operating Licenses to implement an increase in rated thermal power from 3951 Megawatts-Thermal (MWt) to 4016 MWt. This supplement provides a copy of the Supplemental Reload Licensing Report (SRLR) for PBAPS Unit 3, Cycle 22, in accordance with Section 1.2.1 of Attachment 5 of the referenced license amendment request. The only differences between the SRLR at the requested uprated conditions for each unit will be typical unit-specific differences unrelated to the implementation of the uprate license amendment. Exelon has reviewed the information supporting a finding of no significant hazards consideration and the environmental consideration provided to the U.S. Nuclear Regulatory Commission in the referenced letter. The supplemental information provided in this submittal does not affect the bases for concluding that the proposed license amendment does not involve a significant hazards consideration. Further, the additional information provided in this submittal does not affect the bases for concluding that neither an environmental impact statement nor an environmental assessment needs to be prepared in connection with the proposed amendment. In accordance with 10 CFR 50.91, "Notice for public comment; State consultation," paragraph (b), Exelon is notifying the Commonwealth of Pennsylvania and the State of Maryland of this application for license amendment by transmitting a copy of this letter and its attachments to the designated State Officials.

MUR LAR Supplement 5 Supplemental Reload Licensing Report September 15, 2017 Page 2 There are no regulatory commitments contained in this letter. Should you have any questions concerning this request, please contact Mr. David Neff at (610) 765-5631. I declare under penalty of perjury that the foregoing is true and correct. Executed on the 15th day of September 2017. Respectfully, .._: J I ..¢_., d yv-oavid T. Gudger Manager -Licensing & Regulatory Affairs Exelon Generation Company, LLC

Attachment:

Supplemental Reload Licensing Report for Peach Bottom Unit 3 Reload 21 Cycle 22 cc: USNRC Region I, Regional Administrator USNRC Senior Resident Inspector, PBAPS USNRC Project Manager, PBAPS R. R. Janati, Pennsylvania Bureau of Radiation Protection S. T. Gray, State of Maryland GNi= Global Nuclear Fuel A Joint Venture of GE Toshiba, & H1tach1 Supplemental Reload Licensing Report for Peach Bottom Unit 3 Reload 21Cycle22 Copyright 2017 Global Nuclear Fuel-Americas, LLC All Rights Reserved 003N1452 Revision 0 Class I (Public) September 2017 Peach Bottom Unit 3 Reload 21 Important Notice Regarding Contents of This Report Please Read Carefully 003Nl452 Revision 0 This report was prepared by Global Nuclear Fuel -Americas, LLC (GNF-A) solely for use by Exelon Corporation ("Recipient") in support of the operating license for Peach Bottom Unit 3 (the "Nuclear Plant"). The information contained in this report (the "Information") is believed by GNF-A to be an accurate and true representation of the facts known by, obtained by or provided to GNF-A at the time this report was prepared. The only undertakings of GNF-A respecting the Information are contained in the contract between Recipient and GNF-A for nuclear fuel and related services for the Nuclear Plant (the "Fuel Contract") and nothing contained in this document shall be construed as amending or modifying the Fuel Contract. The use of the Information for any purpose other than that for which it was intended under the Fuel Contract, is not authorized by GNF-A. In the event of any such unauthorized use, GNF-A neither (a) makes any representation or warranty (either expressed or implied) as to the completeness, accuracy or usefulness of the Information or that such unauthorized use may not infringe privately owned rights, nor (b) assumes any responsibility for liability or damage of any kind which may result from such use of such information. Page 2 Peach Bottom Unit 3 Reload 21 Acknowledgement 003Nl452 Revision 0 The engineering and reload licensing analyses, which form the technical basis of this Supplemental Reload Licensing Report, were performed by GNF-A/GEH Nuclear Analysis personnel. The Supplemental Reload Licensing Report was prepared by Rachel Shapiro. This document has been verified by Jin Su. Page 3 Peach Bottom Unit 3 Reload 21 1. Plant Unique Items 2. Reload Fuel Bundles 3. Reference Core Loading Pattern Table of Contents 4. Calculated Core Effective Multiplication and Control System Worth 5. Standby Liquid Control System Shutdown Capability 6. Reload Unique AOO Analysis -Initial Condition Parameters 7. Selected Margin Improvement Options 8. Operating Flexibility Options 9. Core-wide AOO Analysis Results I 0. Rod Withdrawal Error AOO Summary 11. Cycle SLMCPR and OLMCPR Summary 12. Overpressurization Analysis Summary 13. Fuel Loading Error Results 14. Control Rod Drop Analysis Results 15. Stability Analysis Results 16. Loss-of-Coolant Accident Results Appendix A Analysis Conditions Appendix B Thermal-Mechanical Compliance Appendix C Decrease in Core Coolant Temperature Event Appendix D Off-Rated Limits Appendix E TRACG04 AOO Supplementary Information 003N1452 Revision 0 5 5 6 6 6 7 11 12 13 18 19 24 25 25 26 31 65 66 67 68 75 Appendix F Interim Methods LTR (NEDC-33173P-A Revision 4) Supplemental Information 76 Appendix G MELLLA+ LTR (NEDC-33006P-A Revision 3) Supplemental Information 80 Appendix H Application to Current Licensed Thermal Power (CL TP) 83 Appendix I Peach Bottom Unit 3 Cycle 22 Contingency TCV/TSV Delay Analysis 84 Appendix J End of Cycle Power Coastdown Restrictions 85 Appendix K List of Acronyms 86 Page 4 Peach Bottom Unit 3 Reload 21 003Nl452 Revision 0 The basis for this report is General Electric Standard Application for Reactor Fuel, NEDE-24011-P-A-25, August 2017; and the U.S. Supplement, NEDE-24011-P-A-25-US, August 2017. A proprietary Fuel Bundle Information Report (FBIR) supplements this licensing report. The FBIR references the thermal-mechanical linear heat generation rate limits and also provides a description of the fuel bundles to be loaded. The document number for this report is 003N 1453. 1. Plant Unique Items Appendix A: Analysis Conditions Appendix B: Thermal-Mechanical Compliance Appendix C: Decrease in Core Coolant Temperature Event Appendix D: Off-Rated Limits Appendix E: TRACG04 AOO Supplementary Information Appendix F: Interim Methods L TR (NEDC-33173P-A Revision 4) Supplemental Information Appendix G: MELLLA+ L TR (NEDC-33006P-A Revision 3) Supplemental Information Appendix H: Application to Current Licensed Thermal Power (CLTP) Appendix I: Peach Bottom Unit 3 Cycle 22 Contingency TCV/TSV Delay Analysis Appendix J: End of Cycle Power Coastdown Restrictions Appendix K: List of Acronyms 2. Reload Fuel Bundles Fuel Type Cycle Loaded Irradiated: GNF2-PI ODG2B400-13GZ-1 OOT2-150-T6-4232 (GNF2) 20 GNF2-PI ODG2B393-4G8.0/8G7.0/2G6.0-1 OOT2-150-T6-4233 (GNF2) 20 GNF2-PI ODG2B393-15GZ-1 OOT2-150-T6-4235 (GNF2) 20 GNF2-P10DG2B403-8G7.0/4G6.0-IOOT2-150-T6-4236 (GNF2) 20 GNF2-P10DG2B417-12G7.0-100T2-150-T6-4366 (GNF2) 21 GNF2-PI ODG2B402-15GZ-1 OOT2-150-T6-4367 (GNF2) 21 GNF2-PI ODG2B424-12G7.0-1 OOT2-150-T6-4368 (GNF2) 21 GNF2-PI ODG2B408-14GZ-1 OOT2-150-T6-4369 (GNF2) 21 GNF2-PI ODG2B403-14GZ-1 OOT2-150-T6-4370 (GNF2) 21 GNF2-PI ODG2B409-14GZ-1 OOT2-150-T6-4365 (GNF2) 21 New: GNF2-P I ODG2B403-14GZ-1 OOT2-150-T6-4505 (GNF2) 22 GNF2-PI ODG2B419-15GZ-1 OOT2-150-T6-4507 (GNF2) 22 GNF2-Pl ODG2B406-14G6.0-1OOT2-l50-T6-4506 (GNF2) 22 GNF2-PI ODG2B404-6G7 .0/8G6.0-1 OOT2-150-T6-4504 (GNF2) 22 Total: Number 28 24 16 40 64 144 32 16 16 72 88 64 48 112 764 Page 5 Peach Bottom Unit 3 Reload 21 3. Reference Core Loading Pattern Nominal previous end-of-cycle exposure: Minimum previous end-of-cycle exposure (for cold shutdown considerations): Assumed reload beginning-of-cycle exposure: Assumed reload end-of-cycle exposure (rated conditions): Core Average Exposure 36017 MWd/MT (32674 MWd/ST) 35687 MWd/MT (32374 MWd/ST) 16683 MWd/MT (15134 MWd/ST) 34292 MWd/MT (31109 MWd/ST) 003N1452 Revision 0 Cycle Exposure 19843 MWd/MT (18002 MWd/ST) 19513 MWd/MT (17702 MWd/ST) 0 MWd/MT (0 MWd/ST) 17609 MWd/MT (15975 MWd/ST) Reference core loading pattern: Figure 1 4. Calculated Core Effective Multiplication and Control System Worth Beginning of Cycle, keffective Uncontrolled (20°C) 1.102 Fully controlled (20°C) 0.942 Strongest control rod out (most reactive condition, 60°C) 0.979 R, Maximum increase in strongest rod out reactivity during the cycle 0.001 Cycle exposure at which R occurs 15432 MWd/MT (14000 MWd/ST) 5. Standby Liquid Control System Shutdown Capability Boron (ppm) Shutdown Margin (at 160°C, Xenon Free) (at 20°C) Analytical Requirement Achieved 660 0.032 Page 6 Peach Bottom Unit 3 Reload 21 6. Reload Unique AOO Analysis -Initial Condition Parameters 1 Operating domain: ICF (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.38 1.32 0.97 7.304 118.6 Operating domain: ICF and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.43 1.37 0.96 7.517 116.6 Operating domain: MELLLA+ (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.38 1.25 0.97 7.301 91.3 Operating domain: MELLLA (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.47 1.26 0.97 7.778 105.5 003N1452 Revision 0 Initial MCPR 1.64 Initial MCPR 1.66 Initial MCPR 1.45 Initial MCPR 1.46 1 Exposure range designation is defined in Table 7-1. Application condition number is defined in Section 11. Page 7 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.41 1.37 0.96 7.395 107.6 Operating domain: ICF (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.33 1.24 0.96 6.966 121.9 Operating domain: ICF and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.33 1.26 0.96 7.012 122.3 Operating domain: ICF (HBB) Exposure range : MOC to EOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.34 1.37 0.97 7.065 123.1 Operating domain: ICF and FWTR (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.32 1.35 0.96 6.938 124.7 003N1452 Revision 0 Initial MCPR 1.63 Initial MCPR 1.73 Initial MCPR 1.76 Initial MCPR 1.58 Initial MCPR 1.68 Page 8 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA + (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.32 1.23 0.96 6.941 92.4 Operating domain: MELLLA+ (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Design Local Radial Axial R-Factor Power Flow (MWt) (1000 lb/hr) GNF2 1.0 1.36 1.32 0.98 7.174 92.8 Operating domain: MELLLA(UB) Exposure range : MOCtoEOC ( Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.32 1.23 0.96 6.922 110.2 Operating domain: MELLLA and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.33 1.25 0.96 6.973 112.4 003N1452 Revision 0 Initial MCPR 1.57 Initial MCPR 1.41 Initial MCPR 1.69 Initial MCPR 1.73 Page 9 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.35 1.35 0.97 7.110 110.8 Operating domain: MELLLA and FWTR (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Peaking Factors Fuel Bundle Bundle Local Radial Axial R-Factor Power Flow Design (MWt) (1000 lb/hr) GNF2 1.0 1.33 1.34 0.97 6.975 114.1 003N1452 Revision 0 Initial MCPR 1.53 Initial MCPR 1.62 Page 10 Peach Bottom Unit 3 Reload 21 7. Selected Margin Improvement Options 2 Recirculation pump trip: Rod withdrawal limiter: Thermal power monitor: Improved scram time: Measured scram time: Exposure dependent limits: Exposure points analyzed: Table 7-1 Cycle Exposure Range Designation Name Exposure Range 3 BOC to MOC BOC22 to EOR22 -4316 MWd/MT (3915 MWd/ST) MOC to EOC EOR22 -4316 MWd/MT (3915 MWd/ST) to EOC22 BOC to EOC BOC22 to EOC22 Yes No Yes Yes (Option B) No Yes 2 003N1452 Revision 0 2 Refer to the GESTAR basis document identified at the beginning of this report for the margin improvement options currently supported therein. 3 End of Rated (EOR) is defined as the cycle exposure corresponding to all rods out, I 00% power/100% flow, and normal feedwater temperature. For plants without mid-cycle OLMCPR points, EOR is not applicable. Page 11 Peach Bottom Unit 3 Reload 21 8. Operating Flexibility Options 4 s 6 003N1452 Revision 0 The following information presents the operational domains and flexibility options which are supported by the reload licensing analysis. Extended Operating Domain (EOD): EOD type: Maximum Extended Load Line Limit Plus (MELLLA+) Minimum core flow at rated power: Increased Core Flow: Flow point analyzed throughout cycle: Feedwater Temperature Reduction: Feedwater temperature reduction during cycle: Final feedwater temperature reduction: ARTS Program: Single Loop Operation: Equipment Out of Service: Safety/relief valves Out of Service: (credit taken for 10 valves) 1 MSIVOOS 1 TCV and/or 1 TSVOOS JSRVOOS 2 TBVOOS TB SOOS RPTOOS PROOS PLUOOS Yes 85.2 % Yes 110.0 % Yes 55.0°F 90.0°F Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes 4 Refer to the GEST AR basis document identified at the beginning of this report for the operating flexibility options currently supported therein. 5 Single Loop Operation is prohibited in the MELLLA+ domain. 6 Feedwater Temperature Reduction is prohibited in the MELLLA+ domain. Page 12 Peach Bottom Unit 3 Reload 21 9. Core-wide AOO Analysis Results 7 8 Methods used: TRACG04, GEXL-PLUS Operating domain: ICF and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Uncorrected ACPR/ICPR Event Flux STP GNF2 (%rated) (%rated) FW Controller Failure 307.0 114.4 0.185 Operating domain: MELLLA+ (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Uncorrected ACPR/ICPR Event Flux STP GNF2 (%rated) (%rated) Load Rejection w/o Bypass 243.8 106.1 0.161 Operating domain: MELLLA and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1,2,3,4) Uncorrected ACPR/ICPR Event Flux STP GNF2 (%rated) (%rated) FW Controller Failure 290.4 113.6 0.183 Operating domain: ICF and FWTR with TBSOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2) 003N1452 Revision 0 Fig. 2 Fig. 3 Fig. 4 Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 346.8 115.7 0.206 7 Exposure range designation is defined in Table 7-1. Application condition number is defined in Section 11. 8 The Heat Flux (Q/A) (%rated) output is not available from TRACG04, so the Simulated Thermal Power (STP) (% rated) is shown. 5 Page 13 Peach Bottom Unit 3 Reload 21 003Nl452 Revision 0 Operating domain: MELLLA+ with TBSOOS (HBB) Exposure range : BOCtoMOC (Application Condition: 2 ) Uncorrected .ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Inadvertent HPCI /LS 238.l 117.8 0.180 6 Operating domain: MELLLA and FWTR with TBSOOS (HBB) Exposure range : BOCtoMOC (Application Condition: 2) Uncorrected .ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 330.3 115.0 0.205 7 Operating domain: ICF and FWTR with RPTOOS (HBB) Exposure range : BOCtoMOC (Application Condition: 3) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 397.0 116.3 0.208 8 Operating domain: MELLLA+ with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition: 3) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Load Rejection w/o Bypass 293.3 107.6 0.165 9 Operating domain: MELLLA and FWTR with RPTOOS (HBB) Exposure range : BOC to MOC (Application Condition: 3 ) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 358.4 115.2 0.199 10 Page 14 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 Operating domain: ICF with PROOS and/or PLUOOS (HBB) Exposure range : BOC to MOC (Application Condition: 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 141.5 105.2 0.113 11 Operating domain: MELLLA+ with PROOS and/or PLUOOS (HBB) Exposure range : BOC to MOC (Application Condition: 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 140.4 104.5 0.108 12 Operating domain: MELLLA with PROOS and/or PLUOOS (HBB) Exposure range : BOC to MOC (Application Condition: 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 140.8 104.7 0.108 13 Operating domain: ICF and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 332.8 115.4 0.193 14 Operating domain: MELLLA+ (HBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Uncorrected aCPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Load Rejection w/o Bypass 301.4 108.2 0.181 15 Page 15 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 Operating domain: MELLLA and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 313.7 114.8 0.194 16 Operating domain: ICF and FWTR with TBSOOS (UB) Exposure range : MOCtoEOC (Application Condition: 2) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 369.3 116.8 0.213 17 Operating domain: MELLLA+ with TBSOOS (HBB) Exposure range : MOCtoEOC (Application Condition: 2 ) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Inadvertent HPCI /LS 293.5 118.9 0.196 18 Operating domain: MELLLA and FWTR with TBSOOS (UB) Exposure range : MOCtoEOC (Application Condition: 2 ) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 367.8 116.2 0.214 19 Operating domain: ICF and FWTR with RPTOOS (UB) Exposure range : MOCtoEOC (Application Condition: 3) Uncorrected ACPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 415.2 117.2 0.214 20 Page 16 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 Operating domain: MELLLA+ with RPTOOS (UB) Exposure range : MOCtoEOC (Application Condition: 3) Uncorrected L\CPR/ICPR Event Flux STP GNFl Fig. (%rated) (%rated) Load Rejection w/o Bypass 319.7 108.2 0.177 21 Operating domain: MELLLA and FWTR with RPTOOS (UB) Exposure range : MOCtoEOC (Application Condition: 3) Uncorrected L\CPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) FW Controller Failure 378.6 116.3 0.208 22 Operating domain: ICF and FWTR with PROOS and/or PLUOOS (UB) Exposure range : MOCtoEOC (Application Condition: 4) Uncorrected L\CPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 139.3 106.2 0.162 23 Operating domain: MELLLA+ with PROOS and/or PLUOOS (HBB) Exposure range : MOCtoEOC (Application Condition: 4) Uncorrected L\CPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 142.5 105.8 0.131 24 Operating domain: MELLLA and FWTR with PROOS and/or PLUOOS (UB) Exposure range : MOCtoEOC (Application Condition: 4) Uncorrected L\CPR/ICPR Event Flux STP GNF2 Fig. (%rated) (%rated) Pressure Regulator Failure Downscale 139.0 105.4 0.152 25 Page 17 Peach Bottom Unit 3 Reload 21 10. Rod Withdrawal Error AOO Summary 003N1452 Revision 0 The Rod Withdrawal Error (RWE) event was analyzed in the GE BWR Licensing Report Maximum Extended Load Line Limit and ARTS Improvement Program Analyses for Peach Bottoms Atomic Power Station Unit 2 and 3, NEDC-32162P, Rev. 2, March 1995. RWE Results: Base, Base + RPTOOS, Base + PROOS and/or PLUOOS RBM Setpoint (%) ACPR 110.0 0.21 113.0 0.23 115.5 0.28 118.5 0.33 Base + TBSOOS RBM Setpoint (%) ACPR 110.0 0.28 113.0 0.29 115.5 0.29 118.5 0.33 The more limiting of the cycle specific and the generic L'.1CPR values are reported in the table above. The RWE OLM CPR is determined by adding the L'.1CPR for the desired RBM setpoint from the table above to the SLMCPR in Section 11. The RBM setpoints provided in the table above are for an unfiltered RBM response. The ARTS RWE analysis validated that the following MCPR values provide the required margin for full withdrawal of any control rod during this cycle: For Power< 90%: MCPR 1.83 For 90%: MCPR 1.50 The RBM operability requirements have been evaluated and shown to be sufficient to ensure that the SLM CPR and cladding strain criteria will not be exceeded in the event of a RWE. Page 18 Peach Bottom Unit 3 Reload 21 11. Cycle SLMCPR and OLMCPR Summary 9 10 11 Two Loop Operation (TLO) safety limit: 1.15 Single Loop Operation (SLO) safety limit: 1.15 Stability MCPR Design Basis: See Section 15 ECCS MCPR Design Basis: See Section 16 (Initial MCPR) Non-pressurization Events: Exposure range: BOC to EOC All Fuel Types 003N1452 Revision 0 Rod Withdrawal Error 1.38 (Base, Base+ RPTOOS, Base+ PROOS and/or PLUOOS) (113.0 % RBM Setpoint) 1.44 (Base + TBSOOS) Loss of Feedwater Heating 1.32 Fuel Loading Error (Mislocated) Not Limiting Fuel Loading Error (Misoriented) 1.34 Rated Equivalent SLO Pump Seizure 12 1.43 9 Exposure range designation is defined in Table 7-1. 10 For SLO, the MCPR operating limit is 0.03 greater than the two loop value. 11 The safety limit values presented include a 0.02 adder in accordance with Interim Methods L TR Safety Evaluation Report Limitation and Condition 9.5, as noted in Appendix F. 12 The cycle-independent OLMCPR for the recirculation pump seizure event for GNF2 is 1.60 based on the specific SLO SLM CPR. When adjusted for the off-rated power/flow conditions of SLO, this limit corresponds to a rated OLMCPR of 1.43. This limit does not require an adjustment for the SLO SLMCPR. Page 19 Peach Bottom Unit 3 Reload 21 Limiting Pressurization Events OLMCPR Summary Table: 13 14 Appl. Exposure Range Option A Cond. GNF2 I Base (lMSIVOOS, 1 TCV and/or 1 TSVOOS, lSRVOOS, 2TBVOOS) BOC to MOC 1.48 MOCtoEOC 1.50 2 Base + TBSOOS BOC to MOC 1.53 MOC to EOC 1.56 3 Base + RPTOOS BOC to MOC 1.60 MOCtoEOC 1.62 4 Base + PROOS and/or PLUOOS BOC to MOC 1.48 MOC to EOC 1.50 Pressurization Events: 15 Operating domain: ICF and FWTR (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Option A GNF2 FW Controller Failure 1.45 Operating domain: MELLLA+ (HBB) Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4) Option A GNF2 Load Rejection w/o Bypass 1.46 003N1452 Revision 0 Option B GNF2 1.40 1.42 1.44 1.47 1.43 1.45 1.40 1.42 Option B GNF2 1.37 Option B GNF2 1.38 13 Each application condition (Appl. Cond.) covers the entire range of licensed flow and feedwater temperature unless specified otherwise. The OLMCPR values presented apply to rated power operation based on the two loop operation safety limit MCPR. 14 Note that Base (Base Case) includes I MSIVOOS, I TCV/TSVOOS, I SRVOOS, 2 TBVOOS, and FWHOOS/FFWTR. These Base Case EOOS conditions are included in all other application conditions. Refer to Appendix D for power levels supported for I MSIVOOS and I TCV/TSVOOS. 15 Application condition numbers shown for each of the following pressurization events represent the application conditions for which this event contributed in the determination of the limiting OLMCPR value. Page 20 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA and FWTR (HBB) Exposure range : BOC to MOC ( Application Condition: 1, 2, 3, 4) Option A GNF2 FW Controller Failure 1.48 Operating domain: ICF and FWTR with TBSOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2 ) Option A GNF2 FW Controller Failure I.SO Operating domain: MELLLA + with TBSOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2 ) Option A GNF2 Inadvertent HPCI /LS I.SO Operating domain: MELLLA and FWTR with TBSOOS (HBB) Exposure range : BOC to MOC (Application Condition: 2 ) Option A GNF2 FW Controller Failure l.S3 Operating domain: ICF and FWTR with RPTOOS (HBB) Exposure range : BOC to MOC ( Application Condition: 3 ) Option A GNF2 FW Controller Failure I.SS Operating domain: MELLLA+ with RPTOOS {HBB) Exposure range : BOC to MOC (Application Condition: 3 ) Option A GNF2 Load Rejection w/o Bypass I.SS Option B GNF2 1.40 Option B GNF2 1.41 Option B GNF2 1.41 Option B GNF2 1.44 Option B GNF2 1.41 Option B GNF2 1.38 003N14S2 Revision 0 Page 21 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA and FWTR with RPTOOS (BBB) Exposure range : BOC to MOC ( Application Condition: 3 ) Option A GNF2 FW Controller Failure 1.60 Operating domain: ICF with PROOS and/or PLUOOS (BBB) Exposure range : BOC to MOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.36 Operating domain: MELLLA+ with PROOS and/or PLUOOS (BBB) Exposure range : BOC to MOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.40 Operating domain: MELLLA with PROOS and/or PLUOOS (BBB) Exposure range : BOC to MOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.39 Operating domain: ICF and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Option A GNF2 FW Controller Failure 1.46 Operating domain: MELLLA+ (BBB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Option A GNF2 Load Rejection w/o Bypass 1.49 Operating domain: MELLLA and FWTR (UB) Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4) Option A GNF2 FW Controller Failure 1.50 Option B GNF2 1.43 Option B GNF2 1.24 Option B GNF2 1.28 Option B GNF2 1.27 Option B GNF2 1.38 Option B GNF2 1.41 Option B GNF2 1.42 003NI452 Revision 0 Page 22 Peach Bottom Unit 3 Reload 21 Operating domain: ICF and FWTR with TBSOOS (UB) Exposure range : MOCtoEOC ( Application Condition: 2 ) Option A GNF2 FW Controller Failure 1.51 Operating domain: MELLLA+ with TBSOOS (HBB) Exposure range : MOCtoEOC (Application Condition: 2 ) Option A GNF2 Inadvertent HPCI /LS 1.53 Operating domain: MELLLA and FWTR with TBSOOS (UB) Exposure range : MOCtoEOC (Application Condition: 2 ) Option A GNF2 FW Controller Failure 1.56 Operating domain: ICF and FWTR with RPTOOS (UB) Exposure range : MOC to EOC (Application Condition: 3 ) Option A GNF2 FW Controller Failure 1.59 Operating domain: MELLLA+ with RPTOOS (UB) Exposure range : MOC to EOC (Application Condition: 3 ) Option A GNF2 Load Rejection w/o Bypass 1.58 Operating domain: MELLLA and FWTR with RPTOOS (UB) Exposure range : MOC to EOC (Application Condition: 3 ) Option A GNF2 FW Controller Failure 1.62 Operating domain: ICF and FWTR with PROOS and/or PLUOOS (UB) Exposure range : MOCtoEOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.44 Option B GNF2 1.42 Option B GNF2 1.44 Option B GNF2 1.47 Option B GNF2 1.42 Option B GNF2 1.41 Option B GNF2 1.45 Option B GNF2 1.32 003N1452 Revision 0 Page 23 Peach Bottom Unit 3 Reload 21 Operating domain: MELLLA+ with PROOS and/or PLUOOS (HBB) Exposure range : MOCtoEOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.45 Operating domain: MELLLA and FWTR with PROOS and/or PLUOOS (UB) Exposure range : MOCtoEOC (Application Condition: 4) Option A GNF2 Pressure Regulator Failure Downscale 1.46 12. Overpressurization Analysis Summary16 Event Pdome Pv (psig) {psig) MSIV Closure (Flux Scram) -ICF (HBB) 1322 1352 MSIV Closure (Flux Scram)-MELLLA+ (HBB) 1324 1349 MSIV Closure (Flux Scram) -MELLLA (HBB) 1323 1351 16 Overpressure calculated at an initial dome pressure of I 035 psig. Option B GNF2 1.33 Option B GNF2 1.34 003Nl452 Revision 0 Plant Response Figure 26 Figure 27 Figure 28 Page 24 Peach Bottom Unit 3 Reload 21 13. Fuel Loading Error Results Variable water gap misoriented bundle analysis: Yes 17 Misoriented Fuel Bundle GNF2-Pl ODG2B404-6G7.0/8G6.0-1 OOT2-150-T6-4504 (GNF2) GNF2-Pl ODG28406-14G6.0-1 OOT2-150-T6-4506 (GNF2) GNF2-Pl ODG2B419-15GZ-1 OOT2-150-T6-4507 (GNF2) GNF2-P 1 ODG28403-14GZ-1 OOT2-150-T6-4505 (GNF2) GNF2-Pl ODG28417-12G7.0-1 OOT2-150-T6-4366 (GNF2) GNF2-P 1 ODG28402-15GZ-1 OOT2-150-T6-4367 (GNF2) GNF2-P 1 ODG28424-12G7 .0-1 OOT2-150-T6-4368 (GNF2) GNF2-Pl ODG28408-14GZ-1 OOT2-150-T6-4369 (GNF2) GNF2-P10DG28403-14GZ-1OOT2-150-T6-4370 (GNF2) GNF2-P10DG28409-14GZ-1 OOT2-150-T6-4365 (GNF2) 14. Control Rod Drop Analysis Results 003N1452 Revision 0 .6.CPR 0.15 0.14 0.16 0.13 0.14 0.19 0.12 0.19 0.19 0.17 This is a banked position withdrawal sequence plant; therefore, the control rod drop accident analysis is not required. NRC approval is documented in NEDE-24011-P-A-US. 17 Includes a 0.02 penalty due to variable water gap R-factor uncertainty. Page 25 Peach Bottom Unit 3 Reload 21 15. Stability Analysis Results 003Nl452 Revision 0 Peach Bottom Unit 3 is licensed to operate in the MELLLA+ operating domain. Implementation of MELLLA+ operating domain requires the use of the Detect and Suppress Solution -Confirmation Density (DSS-CD) stability solution. Stability results for operation at EPU with MELLLA+ and DSS-CD are contained in this section. 15.1 Stability DSS-CD Solution Peach Bottom Unit 3 implements the stability DSS-CD solution using the Oscillation Power Range Monitor (OPRM) as described in Reference 1 in Section 15.4. Plant-specific analyses for the DSS-CD solution are provided in Reference 2 in Section 15.4. The Detect and Suppress function of the DSS-CD solution based on the OPRM system relies on the Confirmation Density Algorithm (CDA), which constitutes the licensing basis. The Backup Stability Protection (BSP) solution may be used by the plant in the event that the OPRM system is declared inoperable. The CDA enabled through the OPRM system and the BSP solution described in Reference I in Section 15.4 provide the stability licensing bases for Peach Bottom Unit 3 Cycle 22. The safety evaluation report for Reference I in Section 15.4 concluded that the DSS-CD solution is acceptable subject to certain specific limitations and conditions. These cycle-specific limitations and conditions are met for Peach Bottom Unit 3 Cycle 22. 15.2 Detect and Suppress Evaluation A reload DSS-CD evaluation has been performed in accordance with the licensing methodology described in Reference I in Section 15.4 to confirm the established Amplitude Discriminator Setpoint (SAo) of the CDA in Reference 2 in Section 15.4. The Cycle 22 DSS-CD evaluation and the results for the DSS-CD Reload Confirmation Applicability Checklist documented in Table 15-1 demonstrate that: I) the DSS-CD Solution is applicable to Peach Bottom Unit 3 Cycle 22; and, 2) the established SAD=l.10 in Reference 2 in Section 15.4 is confirmed for operation of Peach Bottom Unit 3 Cycle 22. The SAo=l.10 setpoint is applicable to TLO and to SLO. The SAO=l.10 setpoint is adequate to bound a variation in normal feedwater temperature of+/- I 0.0 °F in the MELLLA+ domain per Reference 2 in Section 15.4. Page 26 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 Table 15-1 DSS-CD Reload Confirmation Applicability Checklist Parameter DSS-CD Criterion Peach Bottom 3 Acceptance Cycle 22 BWR Product Line BWR/3-6 design BWR/4 Confirmed AtriumlOXM, GNF2, Fuel Product Line GE 14, and earlier GE GNF2 Confirmed designs TPO/MELLLA + TPO/MELLLA + Operating Domain including currently including currently Confirmed (TLO) licensed operational licensed operational flexibility features flexibility features TPO/MELLLA TPO/MELLLA Operating Domain including currently including currently Confirmed (SLO) licensed operational licensed operational flexibility features flexibility features 120 °F Rated TFw Reduction (TPO/MELLLA) 90°F Reduction Confirmed No TFw Reduction (TPO/MELLLA) (MELLLA+ Extension) TLO DSS-CD Licensing Margin for TLO Basis MCPR Margin Cycle 22 Results Confirmed criterion in Reference 2 in DSS-CD Criterion Section 15.4 SLO DSS-CD Licensing Margin for SLO Basis MCPR Margin Cycle 22 Results Confirmed criterion in Reference 2 in DSS-CD Criterion Section 15.4 15.3 Backup Stability Protection Reference 1 in Section 15.4 describes two BSP options that are based on selected elements from three distinct constituents: BSP Manual Regions, BSP Boundary, and Automated BSP (ABSP) setpoints. The Manual BSP region boundaries and the BSP Boundary are calculated for Peach Bottom Unit 3 Cycle 22 for normal feed water temperature operation and reduced feedwater temperature. The endpoints of the regions are defined in Table 15-2 and Table 15-3. The Scram Region boundary, the Controlled Entry Region boundary, and the BSP Boundary are shown in Figure 29 and in Figure 30 for the normal and reduced feedwater temperature, respectively. The Manual BSP region boundary endpoints are connected using the Modified Shape Function (MSF). Page 27 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 The ABSP Average Power Range Monitor (APRM) Simulated Thermal Power (STP) setpoints associated with the ABSP Scram Region are confirmed for Cycle 22 and are defined in Table 15-4. These ABSP setpoints are applicable to both TLO and SLO. The BSP Boundary and the Manual BSP region boundaries for normal feedwater temperature operation are adequate to bound a variation in normal feedwater temperature of +/-10.0 °F. The regions currently implemented at Peach Bottom Unit 3 (Reference 3 in Section 15.4) are bounding of the Cycle 22 proposed regions. Table 15-2 BSP Endpoints for Normal Feedwater Temperature Endpoint Power Flow Definition (%) (%) Al 73.1 49.2 Scram Region Boundary, HFCL Bl 40.0 31.0 Scram Region Boundary, NCL Controlled Entry A2 63.5 50.0 Region Boundary, HFCL B2 27.6 30.1 Controlled Entry Region Boundary, NCL Note: The BSP Boundary for Normal Feedwater Temperature is defined by the MELLLA boundary line, per Reference 1 in Section 15.4. Page 28 Peach Bottom Unit 3 Reload 21 Table 15-3 BSP Endpoints for Reduced Feedwater Temperature Endpoint Power Flow Definition (%) (%) Al' 63.0 49.4 Scram Region Boundary, HFCL Bl' 33.8 30.6 Scram Region Boundary, NCL Controlled Entry A2' .65.3 52.4 Region Boundary, HFCL B2' 27.6 30.l Controlled Entry Region Boundary, NCL 003N1452 Revision 0 Note: The BSP Boundary for Reduced Feedwater Temperature is defined by the MELLLA boundary line, per Reference 1 in Section 15.4. Table 15-4 ABSP setpoints for the Scram Region Parameter Symbol Value Slope of ABSP APRM flow-mTRIP 1.37 biased trip linear segment. ABSP APRM flow-biased trip setpoint power intercept. Constant Power Line for Trip PssP-TRIP 39.3 %RTP1 from zero Drive Flow to Flow Breakpoint value. ABSP APRM flow-biased trip setpoint drive flow intercept. WssP-TRIP 46.5 %RDF2 Constant Flow Line for Trip. Flow Breakpoint value WssP-BREAK 20.0 %RDF2 1. RTP -Rated Thermal Power 2. RDF -Recirculation Drive Flow Page 29 Peach Bottom Unit 3 Reload 21 15.4 References 003Nl452 Revision 0 I. GE Hitachi Boiling Water Reactor, Detect and Suppress Solution -Confirmation Density, NEDC-33075P-A, Revision 8, November 2013. 2. Project Task Report: Exelon Nuclear, LLC, Peach Bottom Power Station Units 2 and 3, Thermal Power Optimization Project, Task T0202: Thermal Hydraulic Stability, 003N6203, Revision I, December 20 I 6. 3. DIR Transmittal of APRM Flow-Biased STP Scram SLO Setpoints and EPU+TPO Manual BSP Regions, ES I 700004, Revision I, March 20 I 7. Page 30 Peach Bottom Unit 3 Reload 21 16. Loss-of-Coolant Accident Results 16.1 10CFR50.46 Licensing Results 003N1452 Revision 0 The ECCS-LOCA analysis is based on the SAFER/PRIME ECCS-LOCA methodology. NRC approval of the PRIME methodology is found in the Final Safety Evaluation of the PRIME model Licensing Topical Report (Reference 2 for GNF2 in Section 16.4 ). The licensing results applicable to the GNF2 fuel type in the new cycle are summarized in the following table. Table 16.1-1 Licensing Results Licensing Local Core-Wide Metal-Water Fuel Type Basis PCT Oxidation Reaction (oF) (%) (%) GNF2 1920 <4.00 < 0.10 The SAFER/PRIME ECCS-LOCA analysis results for the GNF2 fuel type are documented in Reference I for GNF2 in Section 16.4. Page 31 Peach Bottom Unit 3 Reload 21 16.2 lOCFRS0.46 Notification Letters 003N1452 Revision 0 The 1 OCFR50.46 Notification Letters applicable to the GNF2 Licensing Basis PCT are shown in the following table. Number 2014-01 2014-02 2014-03 2014-04 2017-01 2017-02 Table 16.2-1 Impact on Licensing Basis Peak Cladding Temperature for GNF2 lOCFRS0.46 Notification Letters Subject SAFER04A E4 Revision-Code Changes of Neutral Impact SAFER04A E4 Revision-Mass Non-Conservatism SAFER04A E4 Revision-Minimum Core DP Model SAFER04A E4 Revision-Lower Plenum CCFL Restriction GNF2 Lower Tie Plate-Finger Spring Removal and Bypass Flow Hole Change Fuel rod plenum temperature modeling update, lOx 10 geometry and getter removal Total PCT Adder (°F) PCT Impact {°F) 0 +10 -10 +5 0 0 +5 After accounting for the 1 OCFR50.46 Notification Letters impact, the GNF2 Licensing Basis PCT with the total PCT adder remains below the 10CFR50.46 limit of 2200 °F. Page 32 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 16.3 ECCS-LOCA Operating Limits The ECCS-LOCA MAPLHGR operating limits for all fuel bundles in this cycle are shown in the following table. Table 16.3-1 MAPLHGR Limits Bundle Type(s): GNF2-P10DG2B404-6G7 .0/8G6.0-1 OOT2-150-T6-4504 (GNF2) GNF2-P10DG2B406-14G6.0-100T2-150-T6-4506 (GNF2) GNF2-P 1 ODG2B419-15GZ-1 OOT2-150-T6-4507 (GNF2) GNF2-P 1 ODG2B403-14GZ-1 OOT2-150-T6-4505 (GNF2) GNF2-P I ODG2B400-13GZ-1 OOT2-150-T6-4232 (GNF2) GNF2-Pl ODG2B393-4G8.0/8G7.0/2G6.0-1 OOT2-150-T6-4233 (GNF2) GNF2-Pl ODG2B393-I 5GZ-1 OOT2-150-T6-4235 (GNF2) GNF2-PI ODG2B403-8G7.0/4G6.0-I OOT2-150-T6-4236 (GNF2) GNF2-P10DG2B417-12G7.0-IOOT2-l 50-T6-4366 (GNF2) GNF2-Pl ODG2B402-15GZ-I OOT2-150-T6-4367 (GNF2) GNF2-PI ODG2B424-12G7 .0-1OOT2-I50-T6-4368 (GNF2) GNF2-Pl ODG2B408-14GZ-1 OOT2-150-T6-4369 (GNF2) GNF2-PIODG2B403-14GZ-1OOT2-l50-T6-4370 (GNF2) GNF2-P I ODG2B409-I 4GZ-I OOT2-150-T6-4365 (GNF2) Average Planar Exposure MAPLHGR Limit GWd/MT GWd/ST kW/ft 0.00 0.00 13.78 19.31 17.52 13.78 67.00 60.78 7.50 70.00 63.50 6.69 The power and flow dependent LHGR multipliers are sufficient to provide adequate protection for the off-rated conditions from an ECCS-LOCA analysis perspective. The MAPLHGR multipliers can either be set to unity or set equal to the LHGR multipliers, which remain compliant with the basis of the LOCA analysis with no loss of ECCS-LOCA margin. The single loop operation multiplier on LHGR and MAPLHGR and the ECCS-LOCA analytical initial MCPR value applicable to the GNF2 fuel type in the new cycle core are shown in the following table. Page 33 Peach Bottom Unit 3 Reload 21 003Nl452 Revision 0 Table 16.3-2 Initial MCPR and Single Loop Operation Multiplier on LHGR and MAPLHGR Single Loop Operation Fuel Type Initial MCPR Multiplier on LHGR and MAPLHGR GNF2 1.25 0.73 The GNF2 SLO multiplier applies to the MELLLA/EPU operating domain only, and SLO operation in the MELLLA+ domain is not permitted. 16.4 References The SAFER/PRIME ECCS-LOCA analysis basis reports applicable to the new cycle core are: References for GNF2 1. Project Task Report, Exelon Generation Company LLC, Peach Bottom Atomic Power Station, Units 2 & 3 MELLLA+ Task T0407: ECCS-LOCA Pe1formance, 0000-0162-2354-RO, Revision 0, (PLM OOON0296 Revision 0), December 2013. 2. The PRIME Model for Analysis of Fuel Rod Thermal-Mechanical Pe1formance, Part 1 -Technical Bases -NEDC-33256P-A, Revision 1, Part 2 -Qualification -NEDC-33257P-A, Revision 1, and Part 3 -Application Methodology -NEDC-33258P-A, Revision 1, September 2010. Page 34 Peach Bottom Unit 3 Reload 21 60 25 26 3 3 26 25 3 3 25 29 3 3 26 25 58 25 29 38 36 32 32 32 38 38 32 32 32 36 38 29 25 56 3 30 26 32 35 32 36 33 7 32 32 7 33 36 32 35 32 26 30 3 54 26 34 36 7 7 7 7 7 6 6 6 6 7 7 7 7 7 36 34 26 52 25 35 36 7 7 6 34 6 35 5 34 34 5 35 6 34 6 7 7 36 35 25 003Nl452 Revision 0 50 25 26 35 33 9 6 6 31 9 34 9 37 9 9 37 9 34 9 31 6 6 9 33 35 26 25 48 29 34 36 9 34 9 31 9 35 5 34 9 35 35 9 34 5 35 9 31 9 34 9 36 34 29 46 25 29 36 7 6 9 31 9 34 5 39 9 31 5 5 31 9 39 5 34 9 31 9 6 7 36 29 25 44 3 25 32 7 7 6 31 9 31 9 35 9 35 5 31 31 5 35 9 35 9 31 9 31 6 7 7 32 25 3 42 26 38 35 7 6 31 9 34 9 35 5 34 5 35 5 5 35 5 34 5 35 9 34 9 31 6 7 35 38 26 40 30 36 32 7 34 9 35 5 35 5 31 5 37 5 39 39 5 37 5 31 5 35 5 35 9 34 7 32 36 30 38 3 32 36 7 6 34 5 39 9 34 5 35 5 31 5 5 31 5 35 5 34 9 39 5 34 6 7 36 32 3 36 3 32 33 7 35 9 34 9 35 5 37 5 34 5 35 35 5 34 5 37 5 35 9 34 9 35 7 33 32 3 34 3 32 7 6 5 37 9 31 5 35 5 31 5 33 5 5 33 5 31 5 35 5 31 9 37 5 6 7 32 3 32 29 38 32 6 34 9 35 5 31 5 39 5 35 5 31 31 5 35 5 39 5 31 5 35 9 34 6 32 38 26 30 26 38 32 6 34 9 35 5 31 5 39 5 35 5 31 31 5 35 5 39 5 31 5 35 9 34 6 32 38 26 28 3 32 7 6 5 37 9 31 5 35 5 31 5 33 5 5 33 5 31 5 35 5 31 9 37 5 6 7 32 3 26 3 32 33 7 35 9 34 9 35 5 37 5 34 5 35 35 5 34 5 37 5 35 9 34 9 35 7 33 32 3 24 3 32 36 7 6 34 5 39 9 34 5 35 5 31 5 5 31 5 35 5 34 9 39 5 34 6 7 36 32 3 22 30 36 32 7 34 9 35 5 35 5 31 5 37 5 39 39 5 37 5 31 5 35 5 35 9 34 7 32 36 30 20 26 38 35 7 6 31 9 34 9 35 5 34 5 35 5 5 35 5 34 5 35 9 34 9 31 6 7 35 38 26 18 3 25 32 7 7 6 31 9 31 9 35 9 35 5 31 31 5 35 9 35 9 31 9 31 6 7 7 32 25 3 16 25 29 36 7 6 9 31 9 34 5 39 9 31 5 5 31 9 39 5 34 9 31 9 6 7 36 29 25 14 29 34 36 9 34 9 31 9 35 5 34 9 35 35 9 34 5 35 9 31 9 34 9 36 34 29 12 25 26 35 33 9 6 6 31 9 34 9 37 9 9 37 9 34 9 31 6 6 9 33 35 26 25 10 25 35 36 7 7 6 34 6 35 5 34 34 5 35 6 34 6 7 7 36 35 25 26 34 36 7 7 7 7 7 6 6 6 6 7 7 7 7 7 36 34 26 6 3 30 26 32 35 32 36 33 7 32 32 7 33 36 32 35 32 26 30 3 4 25 29 38 36 32 32 32 38 38 32 32 32 36 38 29 25 2 25 26 3 3 29 25 3 3 25 29 3 3 26 25 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 Fuel Type 3=GNF2-P I ODG28403-8G7.0/4G6.0-I OOT2-150-T6-4236 (Cycle 20) 31 =GNF2-P I ODG2B409-14GZ-I OOT2-150-T6-4365 5=GNF2-P I ODG28404-6G7.0/8G6.0-1OOT2-l50-T6-4504 (Cycle 22) 32=GNF2-PI ODG2B417-I 2G7.0-1OOT2-I50-T6-4366 6=GNF2-P I ODG28406-14G6.0-I OOT2-l 50-T6-4506 (Cycle 22) 33=GNF2-PIODG2B417-12G7.0-IOOT2-l 50-T6-4366 7=GNF2-P I ODG2B419-15GZ-1OOT2-I50-T6-4507 (Cycle 22) 34=GNF2-PIODG2B402-15GZ-IOOT2-150-T6-4367 9=GNF2-P I ODG28403-14GZ-1OOT2-I50-T6-4505 (Cycle 22) 35=GNF2-PI ODG2B402-15GZ-I OOT2-150-T6-4367 25=GNF2-P I ODG28400-I 3GZ-1 OOT2-150-T6-4232 (Cycle 20) 36=GNF2-PI ODG2B424-12G7.0-IOOT2-150-T6-4368 26=GNF2-P I ODG28393-4G8.0/8G7.0/2G6.0-1OOT2-l50-T6-4233 (Cycle 20) 37=GNF2-PI ODG2B408-14GZ-I OOT2-150-T6-4369 29=GNF2-P I ODG28393-I 5GZ-1OOT2-I50-T6-4235 (Cycle 20) 38=GNF2-P I ODG2B403-I 4GZ-1OOT2-I50-T6-4370 30=GNF2-P I ODG28403-8G7.0/4G6.0-1OOT2-l50-T6-4236 (Cycle 20) 39=GNF2-P I ODG2B409-I 4GZ-1OOT2-I50-T6-4365 Figure 1 Reference Core Loading Pattern Page 35 (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21) (Cycle 21)

Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 ,, .. BO 1ii "' .. 0 IF-60 40 20 0 0 2 4 160 140 120 100 80 ,, .. 1ii 60 "' at 40 20 0 -20 -40 0 2 4 TAACG_CASE_IO 16'1093 6 6 FWCF ICF _TRM1*EIS ore Inlet Flow 420 40 Simulated Thermal Power Neutron Flux 360 30 300 '6' .. 1ii 240"' ,, .. )( 20 :::J u: at 180 s .. z 120 10 60 0 0 8 10 12 14 16 0 Time (sec) -.-Feedwater Flow 100 40 -r-Steam Flow --Turbine Steam Flow 90 35 --+--NRlevel 3.0 80 25 :;;: 70 ..

  • 20 i! ... 60 .. c Q. ! 1 5 .. " 0 .. a. 50 > s 1 0 0 .c (.) .. .. 0.5 40 ! > :: 0.0 30 ii "' > -0.5 .. ... 20 -1.0 r 10 -1.5 -I 0 -2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 ------8 003N1452 Revision 0 RV. SV, and/or SRV Flow Bypass Valvo Flow Vessel Come Pressure 1300 1200 -.. 'ii S: ! :::J " " ! 1100 Q. 1000 10 12 14 16 Time (sec) ---.-Tatel eectivity -..-Scram Reactivity -+-Doppler Temperature Reactivity -.-Void Reactiv* 6 8 10 12 14 16 Time (sec) Figure 2 Plant Response to FW Controller Failure (MOC ICF and FWTR (HBB) ) Page 36 Peach Bottom Unit 3 003N 1452 Reload 21 Revision 0 HEJ 22 120 100 80 ,, ., 1'il ti: 60 .... 0 .,. 40 20 0 0 160 120 80 ,, ., 1'il 40 ti: .,. 0 -40 -80 0 Tl\.l.CG_CASE_IO 16J73M LRNBP LCF _TNM1*EIS ----Co"' Inlet Flow 360 60 --RV. SV, and/or SRV Flow Simulated Thermal Power Bypass Valve Flow Neutron Flux Vessel Dome Pressure 300 50 240 'ti 40
  • 1'il ti: ,, ., 180 1'il 30 u:: ti: .,. c f 120 20 60 10 0 0 2 3 4 5 6 0 2 3 4 5 Time (sec) Time (sec) Feedwater Flow 60 4.0 Steam Flow Turbine Steam Flow 3.5 _.... NRlevel 50 3.0 ;:-2.5 :;;: .. 2.0 40 s I! .. .. c Q. 1.5 ., .. .. Q. 30 1.0 .c 0 .. ,.. .. 0.5 .. .r:. u 20 :§. : 0.0 ;; ti: > -0.5 .. ... 10 -1.0 -1.5 0 -2.0 2 3 4 5 6 0 2 3 4 Time (sec) Time (sec) Figure 3 Plant Response to Load Rejection w/o Bypass (MOC MELLLA+ (HBB) ) 5 1300 1250 1200 ii ;; .9: 1150 .. .. £ 1100 1050 1000 6 6 Page 37 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'C 80 .. ,. ... 0 ;;e. 60 40 20 0 0 2 4 160 140 120 100 80 'C .. ,. 60 #-40 20 0 -20 -40 0 2 4 Tl\ltCG_C."-SE_fO 1:1110IOl1 ... lO:* 6 6 FWCF MEL_TRM1*EIS Core Inlet Flow 420 40 Simulated Thermal Power Neutron Flu* 360 30 300 ,, .. ,. 240 'C .. >< 20 ::s ii: #-180 s .. z 120 10 60 0 0 8 10 12 14 16 0 Time (sec) Feedwater Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 NR level 3.0 80 ;:' 2.5 :;: 70 .. 20 .. 0 i! ... 60 .. c: Q, .. 1.5 .. c .. 0 .. Q, 50 > E 1.0 0 0 "' u .. "' 40 .. 0.5 0 .c tl u :§. : 0.0 30 a; > -0.5 .. --' 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 ----8 003N1452 Revision 0 RV, V, and/or SRV Flow Bypass Valve Flow Vessel Dome Pressure 1300 1200 -.. Oi f ::s .. .. f 1100 Q. 1000 10 12 14 16 Time (sec) --Total Reactivity ----Scram Reactivity --+--Doppler Temperature Reactivity -...-Void Reectivi 6 8 10 12 14 16 Time (sec) Figure 4 Plant Response to FW Controller Failure ( MOC MELLLA and FWTR (HBB) ) Page 38 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'a BO .. 1' "' 'O 'a' 60 40 20 0 0 2 4 160 140 120 100 80 'a Cl 1' 60 0:: 'a' 40 20 0 -20 -40 0 2 4 1Qlro&;)l 16'12*5' 6 6 FWCF ICF _TRM1-NBP ore Inlet Flow 420 60 Simulated Thermal Power --Neutron Flux 360 50 300 '6" 40 .. 1' 240"' 'a .. .. 30 :I ii: 'a' 180 '5 .. 20 z 120 10 60 0 0 B 10 12 14 16 0 Time (sec) Feedwoter Flow 100 4.0 Steam Flow Turbine Stl!am Flow 90 3.5 NR level 3.0 80 2.5 70 i 2.0 .. 0 .. 60 .. c Q. 1.5 .. .. 0 .. Q. 50 > g 1.0 0 "' 0 .. ... 40 .. 0.5 .. .c ti " :§. :.'! 0.0 30 'ii 0:: > -0.5 Cl ..J 20 -1.0 -10 -1.5 0 -2.0 8 10 12 14 16 0 Time (sec) 2 4 6 2 4 -------8 10 12 14 003N1452 Revision 0 1300 1250 1200 ii ii .9: 1150 e :I .. .. e CL 1100 1050 1000 16 Time (sec) --+-Total Reactivily ---Scram Reactivity Doppler Temperature Reactivity -r-Void Reectivi 6 8 10 12 14 16 Time (sec) Figure 5 Plant Response to FW Controller Failure ( MOC ICF and FWTR with TBSOOS (HBB) ) Page 39 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 "O BO "' ..... 0 ';fl. 60 40 20 0 0 10 120 100 80 60 "O .. 1;j 40 "' ';fl. 20 0 -20 + -40 0 10 L'""'"""'*"" ....... .,, ... HPCIL8 LCF _ TNM1-NBP --Cora In at low 2BO 60 Simulated ThelTTlBI Power 1--Neutron Flux 240 50 200 '6' 40 .. 'Ii 160"' "O .. " 30 :i ii: ';fl. 120 '5 .. 20 z 80 10 40 -. 0 0 20 30 40 so 0 --+-----10 20 003Nl452 Revision 0 RV, SV, end/or SRV Flow 1350 Bypass Valve Flow Vessel Oom1 Pressure 1300 1250 ii ;; .9: 1200 ! :i " .. ! a. 1150 1100 1050 30 40 50 Time (sec) Time (sec) 20 -.--Faedwater Flow BO 4.0 --+-Total Reecbv11y -w-Steam Flow Turbine Steam Flow 3.5 + -----Scram Raacbvity --+-Doppler Temperature Rel!llctrv1ty ----HPCI Flow 70 Void Reectivi --.-NRlevol 30 60 2.5 ... .. 20 l .. 0 t 50 .. c Q. 1 5 .. .. 0 .. Q. 40 1.0 .Q u .. .. 05 .. *;; 30-;; ll :§. g: 0 0 Ci "' 20 ..J -05 + -1.0 ... 10 -1.5 0 -2.0 30 40 50 0 10 20 30 40 Time (sec) Time (sec) Figure 6 Plant Response to Inadvertent HPCI /LS ( MOC MELLLA+ with TBSOOS (HBB) ) Page 40 Peach Bottom Unit 3 Reload 21 HEJ 22 140 120 100 ,, .. 80 1'il a: .... 0 ;!! 60 40 20 0 0 2 4 160 140 120 100 80 ,, 0 1'il 60 a: ;!. 40 20 0 *20 -40 0 2 4 Tlv.CG_C.i.sf_D 6 6 FWCF MEL_TRM1*NBP ----Core Inlet Flow 420 60 Simulated Thermal Power Neutron Flux 360 50 300 :;; 40 " 1'il 240 a: ,, " >C 30 ::J ii: ;!! 180 " 20 z 120 60 10 0 0 8 10 12 14 16 0 Time (sec) -+-Feedwater Flow 100 4.0 Steam Flow ---r-Turbine Steam Flow 90 3.5 -+--NRlevel 3.0 80 2.5 :;;: 70 "' 20 15 i! ... 60 .. c Q, 1.5 " .. 0 " Q, 50 > 1.0 0 .a 0 .. ... 40 .. 'i 0.5 Cl ll u :§. :E 0.0 30 ii a: > *0.5 " ... 20 *1.0 10 *1.5 0 *2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 ----8 003N1452 Revision 0 RV, SV, and/or SRV Flow 1300 Bypass Valve Flow Vessel Dome Pressure 1250 1200 ii ii .S: 1150 ! ::J .. .. 1100 1050 1000 10 12 14 16 Time (sec) -+--Total Reactivity -----Scram Reactivity Doppler Temperature Reactivity -r-Void Reectiv* 6 8 10 12 14 16 Time (sec) Figure 7 Plant Response to FW Controller Failure ( MOC MELLLA and FWTR with TBSOOS (HBB) ) Page 41 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'C .. 80 '16 a: 'O .... 60 40 20 0 0 2 4 160 140 120 100 80 'C D '16 60 a: .... 40 20 0 -20 -40 0 2 4 6 6 FWCF ICF _TRM1*NRPT Core Inlet Flow 420 40 Simulated Thermal Power Neutron Flux 360 30 300 :;;-.. '16 240 a: 'C .. " 20 :I ii: .... 180 f ! .. z 120 10 60 0 0 8 10 12 14 16 0 Time (sec) Feedwater Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 --NR level 3.0 80 2.5 :;;: 70 .. Vt -;; 2.0 '!! 60 " c Q. ! 1.5 .. .. 0 .. Q. 50 > 1.0 0 .c CJ " ... 40 .. 0.5 D .s: u " :§. : 0.0 30 Ci a: > -0.5 .. ..... 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 --+---8 10 12 14 003N1452 Revision 0 1300 1200 -" -;; .a .. .. e 1100 11. 1000 16 Time (sec) --Total Reactivity --Scram Reactivity -+-Doppler Temperature Reactivity ---.-Void Reactivi 6 8 10 12 14 16 Time (sec) Figure 8 Plant Response to FW Controller Failure ( MOC ICF and FWTR with RPTOOS (HBB) ) Page 42 Peach Bottom Unit 3 Reload 21 HE3 22 120 100 80 'ti .. 'ii a: 60 .. 0 .... 40 20 0 0 160 120 80 'ti * 'ii 40 a: .... 0 -40 -80 0 TIUGG_C"S( 0 1iUU1i LRNBP LCF _TNM1-NRPT Core Inlet Flow 360 60 Simulated Thermal Power --Neutron Flux 300 50 240 ;;-40 .. 'ii a: 'ti .. 180 30 ii: .... c e s 120 20 60 10 0 0 2 3 4 5 6 0 Time (sec) --+-Feedwater Flow 60 4.0 -----Steam Flow Turbine Steam Flow 3.5 --+--NRlevel 50 3.0 2.5 :;;: ..
  • 20 40 £ l! ... .. 'C Q. 1.5 ., .. 0 .. Q. 30 g 1.0 .a u .. 05 .. .. .c 1i u 20 :§. :g 0.0 'ii a: > -0.5 .. ..... 10 -1.0 -1.5 0 -2.0 2 3 Time (sec) 4 5 --+--Total Reactivity 003N1452 Revision 0 6 1250 1200 ti Ui ..!!; 1150 ! ::J .. .. ! "-1100 1050 --Scram Reectivity -+--Doppler Temperature Reactivity ---r--Void Reectivit 2 3 4 5 6 0 2 3 Time (sec) 4 5 6 Time (sec) Figure 9 Plant Response to Load Rejection w/o Bypass (MOC MELLLA+ with RPTOOS (HBB)) Page 43 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'ti BO .. 'ii a: ... 0 ..... 60 40 20 0 0 2 4 160 140 120 100 80 'ti .. 'ii 60 a: ..... 40 20 0 -20 -40 0 2 4 T"IVGG_c.:.Sl_IO l01f;)40016'111T1 6 6 FWCF MEL_ TRM1-NRPT --Core lnkll Flow 420 40 Simulated Thermal Power Noulron Flux 360 30 300 '6" .. 'ii 240 a: 'ti .. " 20 ::> u:: ..... 180 '! .. z 120 10 60 0 0 8 10 12 14 16 0 Time (sec) Feedwater low 100 4.0 Sleam Flow Turbine Steam Flow 90 3.5 NR level 3.0 80 'i: 2.5 :;;: 70 ..
  • 20 .. 0 1! ... 60 .. 1: Q. ! 1.5 D .. 0 .. Q. 50 > 1.0 0 .a u .. ... 40 .. 0.5 .. .t:. ; u u §. : 0.0 30 ;; a: > -0.5 .. ... 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 0 Time (sec) 2 4 6 2 4 ----8 003Nl452 Revision 0 RV, SV, and or SRV Flow Bypass Valve Flow Vessel Dome Pressure 1300 1200 -.. ii .S: e ::> .. .. e 1100 CL 1000 10 12 14 16 Time (sec) -+--Total oactivily Scram Reactivity --+--Doppler Temperature Reactivity -....--Void Reactiv' 6 B 10 12 14 16 Time (sec) Figure 10 Plant Response to FW Controller Failure ( MOC MELLLA and FWTR with RPTOOS (HBB) ) Page 44 Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 -----PRFDS ICF _TNM1-NPR HE3 22 140 -----Coro Inlet Flow 280 60 --+-RV, SV, and/or SRV Flow 1300 Simulated Therrnal Power -----Bypass Valve Flow --+-Neutron Flux Vessel Dome Pressure 120 240 50 1250 100 200 40 1200 Cl 'Iii ii 'ti 80 160 a:: 'i .. 'ti .s 'Iii .. a:: " 30 11so e ::> ... ii: ::> 0 .,_ .. .,_ 60 120 .. Cl 20 1100 z 40 80 20 40 10 . 1050 0 0 0 1000 0 2 3 5 6 7 8 0 2 3 4 5 6 7 8 Time (sec) Time (sec) 120 Feedwater low 60 40 --+-Total eacbv1ty Steam Flow --tt-Scram Reactivity Turbine Steam Flow 35 --+---Doppler Temperature Reactivity NR level -.-Void Reactivi 100 50 30 "E 25 :;;: ..
  • 20 80 .,. 40 .e ; ... '!: "-! 1.5 Cl 'ti .. 0 .. .. "-'Iii 60 + 30 g 1 0 a:: .,_ Jl u .. ... .. 05 Cl " " 40 20 :§. ii': 0 0 ii a:: > -0 5 .. ... 20 10 -1.0 .,. -1 5 -0 0 -2 0 ++ l 0 2 3 4 5 6 7 8 0 2 3 4 5 6 8 llUCG C:.sl () T;)l\)l 16J&l57 Time (sec) Time (sec) Figure 11 Plant Response to Pressure Regulator Failure Downscale (MOC ICF with PROOS and/or PLUOOS (HBB)) Page 45 Peach Bottom Unit 3 Reload 21 HEJ 22 120 100 BO ,,
  • 1i ..: 60 'O .,. 40 Cora lnlel Flow Simulated Thermal Power Neutron Flux PRFDS LCF _TNM1-NPR 240 60 200 50 160 '6" 40 ., 1i ..: ,, ., 120 30 Li: .,. 80 0 20 z 20 40 10 L---0 0 0 2 3 4 5 6 7 B Time (sec) 120 60 --r-Steam Flow ,, 0 BO 60 .,. 40 20 0 0 2 3 4 _,_ Turbine Steam Flow -+--NRlevel 5 6 7 Time (sec) B 50 E' :;;: .. 40 :s f .. .. ., 30 i .. ! " 20 ,§. 10 0 'ii > ., _, 0 0 4.0 3.5 3.0 2.5 E 2.0 ., 1.5 c 0 a. E 1.0 0 CJ l;-0.5 ti .. 0.0 .. ..: -0.5 -1.0 -1.5 -2.0 0 2 3 2 ----4 5 6 7 Time (sec) -+--Tolal eacbvily 003N1452 Revision 0 8 1200 ... ii .9: 1150 !! 1100 1050 " .. .. !! CL -----Scram Reactivity 3 --+--Doppler Temperature Reactivity --r-Void Reactiv' 4 Time (sec) 5 6 7 8 Figure 12 Plant Response to Pressure Regulator Failure Downscale (MOC MELLLA+ with PROOS and/or PLUOOS (HBB)) Page 46 Peach Bottom Unit 3 Reload 21 HEJ 22 120 100 BO '1:1 .. 1i a: 60 ... 0 ..... 40 20 0 0 2 120 100 BO '1:1 Cl 1i 60 a: ..... 40 20 0 0 2 flUCG_CJ.Sl_Jtl 101:'>>;)11622251 3 4 5 Time (sec) 3 4 5 Time (sec) PRFDS MEL_TNM1-NPR 240 60 200 50 160:;; 40 Cl 1i a: '1:1 .. 120 ; 30 ii: ..... BO .. 20 z 40 10 0 0 6 7 B 0 Faedwater Flow 60 4.0 Steam Flow Turbine Steam Flow 3.5 NR level 50 3.0 2.5 :ii ..
  • 2.0 40 .2 I!! .. .. c Q. ! 1.5 Cl .. 0 .. Q. 30 i; 1.0 i CJ >-.. 0.5 .. .s:: " u 20 : 0.0 'ii a: > -0.5 .. _, 10 -1.0 -1.5 0 -2.0 6 7 B 2 3 0 2 003N1452 Revision 0 1300 --1250 1200 ii iii ..!!: 1150 f " .. .. f CL 1100 1050 1000 4 5 6 7 B Time (sec) --+-Total Reactivily --Scram Reactivily --Doppler Temperature Reactivity -r-Void Reactiv* 3 4 5 6 7 B Time (sec) Figure 13 Plant Response to Pressure Regulator Failure Downscale (MOC MELLLA with PROOS and/or PLUOOS (HBB)) Page 47 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'C 80 .. "iii a:: ... 0 60 40 20 0 0 2 4 160 140 120 100 80 'C .. "iii 60 a:: "a"-40 20 0 -20 -40 0 2 4 flUCG_C-'.st:_IO 6 6 FWCF ICF _BREO*EIS ----Core Inlet Flow 420 40 Simulated Thermal Power Neutron Flux 360 30 300 '6' .. "iii 240 a:: 'C .. )( 20 :i ii: ;if. 180 '5 .. z 120 10 60 0 0 8 10 12 14 16 0 Time(sec) Feedwater Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 NR level 3.0 80 2.5 :;< 70 ..
  • 20 .. 0 i! ... 60 .. c Q. ! 1.5 .. .. 0 .. Q. 50 > 1.0 0 ..0 CJ " "' 40 .. 0.5 .. .s: u " :§. : 0.0 30 'ii a:: > -0.5 .. ... 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 Time(sec) 2 4 6 0 2 4 --8 003N1452 Revision 0 RV, SV, and/or SRV Flow Bypass Valve Flow Vessel Come Pressure 1300 1200 ii Ui .!!: ! :i .. .. ! 1100 a.. 1000 10 12 14 16 Time (sec) -+-Total Reactivity -e-Scram Reactivrty --+-Doppler Temperature Reactivity -....-Void Reactiv* 6 8 10 12 14 16 Time (sec) Figure 14 Plant Response to FW Controller Failure ( EOC ICF and FWTR (UB) ) Page 48 Peach Bottom Unit 3 Reload 21 HEJ 22 120 100 80 'ti Cl 7i er: 60 ... 0 ;;e 40 20 0 0 160 120 80 'ti .. 'iii 40 er: ;;e 0 -40 -80 0 TIViCG_o.sf}D XUl':>809 1621fill LRNBP LCF _ TNEO*EIS ---Core Inlet Flow 360 60 Simulated Thermal Power Neutron Flux 300 50 240 40 er: 'ti Cl 180 !l 30 ii: ;;e c e '! 120 20 60 10 0 0 2 3 4 5 6 0 Time (sec) --+-Feadwater Flow 60 4.0 ---e-Steam Flow ---r-Turbine Steam Flow 3.5 -+-NR level 50 3.0 2.5 :;;: .. 20 40 s [! ... .. c CL 1.5 Cl .. 0 .. CL 30 1.0 "' 0 .. ... .. 0.5 .. .c u 20 :§. 0.0 1i er: > -0.5 Cl ..J 10 -1.0 -1.5 0 -2.0 2 3 4 5 6 Time (sec) 2 0 3 Time(sec) 4 5 -+-Total Reactivity 003N1452 Revision 0 6 1300 1250 ii iii s 1200 ; 1150 1100 .. .. £ ----Scram Reactivity 2 --+---Doppler Temperature Reactivity -.....-Void Reectiv* 3 Time (sec) 4 5 6 Figure 15 Plant Response to Load Rejection w/o Bypass ( EOC MELLLA+ (HBB)) Page 49 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'ti " BO 'li II: ..... 0 60 40 20 0 0 2 4 160 140 120 100 BO 'ti " 'li 60 II: 40 20 0 -20 -40 0 2 4 TIUCG_CJ.SE_IO 16311S4 6 6 FWCF MEL_BREO*EIS --Core Inlet Flow 420 40 Simulated Thennal Power Neutron Flux 360 30 300 .. 'li 240 II: 'ti .. IC 20 " ii: 1BO " z 120 10 60 0 0 B 10 12 14 16 0 Time (sec) Feedwater Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 NR level 3.0 BO E" 2.5 :;;: 70 ..
  • 2.0 l5 i! .. 60 .. c: Q. 1.5 " .. " Q. 50 > 1.0 0 .Q u .. 0.5 40 .. " .J:. u u ,§. : 0.0 30 'ii II: > -0.5 .. -' 20 -1.0 10 -1.5 0 -2.0 B 10 12 14 16 Time (sec) 2 4 6 0 2 4 ----B 003N1452 Revision 0 RV. SV. and/or SRV Flow Bypass Valve Flow Vessel Dome Pressure 1300 1200 -II ii .9: .. .. e 1100 a. 1000 10 12 14 16 nme (sec) --otal Raacbvily Scram Reactivity -+--Doppler Temperature Reactivity ---.-Void Reactiv* 6 B 10 12 14 16 Time (sec) Figure 16 Plant Response to FW Controller Failure ( EOC MELLLA and FWTR (UB) ) Page 50 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 .,, .. 80 'ii a: ... 0 ..,,. 60 40 20 0 0 2 4 160 140 120 100 80 .,, ., 'ii 60 a: ;f. 40 20 0 -20 -40 0 2 4 TIUCG_C'.$E_ID 16ttwl 6 6 FWCF ICF _BREO-NBP --Core Inlet Flow 420 60 Simulated Thermal Power Neutron Flux 360 so 300 '6" 40 .. 'ii 240 a: .,, .. >< 30 :i iL ;f. 180 .. 20 z 120 60 10 0 0 8 10 12 14 16 0 Time (sec) Feedwater Flow 100 4.0 StoamFlow Turbine Steam Flow 90 3.S --NR level 3.0 80 2.S :;;: 70 " 20 :; e ... 60 .. c Cl. 1.S .. .. Cl. " so > 8 1.0 0 ii 0 40 .. o.s ! " §. .. 0.0 30 ;; a: > -0.S .. ... 20 -1.0 10 -1.S 0 *2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 ----8 10 12 14 003N1452 Revision 0 1300 12SO 1200 ii ii 11so e :i .. .. f CL 1100 10SO 1000 16 Time (sec) --Total Reactivity -e-Scram Reactivity -.......-Doppler Temperature Reactivity -.-Void Reactivi 6 8 10 12 14 16 Time (sec) Figure 17 Plant Response to FW Controller Failure ( EOC ICF and FWTR with TBSOOS (UB) ) Page 51 Peach Bottom Unit 3 Reload 21 HEJ 22 140 120 100 ,, " BO ti rr: .. 0 .... 60 40 20 0 0 10 120 100 80 60 ,, 0 ti 40 rr: .... 20 0 -20 -40 0 10 tlUCG C:..sl 10 lt.2l01S 003N1452 Revision 0 l HPCILS LCF _TNEO-NBP Cora net F ow 420 80 low 1400 1::= Simulated Thermal Power Neutron Flux 360 70 1350 60 1300 300 1250 -" iii .9: " 50 ti 240 rr: ,, D 1200 e ::i .. .. e 1150 II. " 40 ::i ii: .... 1BO ! 30 " z 120 20 1100 60 10 1050 0 0 1000 20 30 40 50 0 10 20 30 40 50 Time (sec} Time (sec) Feedwater Flow BO 4.0 --Total Reactivity Steam Flow Turbine Steam Flow 35 ---Scram Reactivity -.-Doppler Temperature Reactivity --HPCIFlow 70 --.-Vold Reectivi -....-NR level 30 2.5 .. 20 .. 0 50 i! ... c 1\ 40 t 1 5 0 II. 1.0 I .8 u .. ... .. 05 .. 30 ii ti ,g :,, 0 0 ;; rr: 20 -0 5 .... -1 0 .l. 10 5 -+ ___._---r-- 2.0 ----+ ----+---20 30 40 0 10 20 30 40 50 Time (sec) Time (sec) Figure 18 Plant Response to Inadvertent HPCI /LS ( EOC MELLLA+ with TBSOOS (HBB) ) Page 52 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 ..., D 80 16 a: 'O .,. 60 40 20 0 0 2 4 ----Core Inlet Flow Simulated Thermal Power Neutron Flux 6 8 10 12 14 16 Time (sec) FWCF MEL_BREO-NBP 420 60 360 50 300 40 .. 16 240 a: ..., .. >< 30 :J ii: .,. 180 '5 D 20 z 120 10. 60 0 0 0 160 100 Steam Flow 4.0 ..., .. 140 120 100 80 60 .,. 40 20 .o Turbine Steam Flow --NRlevel 90 80 t: :;;: 70 0 60 ... D .. .. 50 ... .. 40 .! u §. 30 'i > j 20 3.5 3.0 2.5 20 ... c ! 1.5 &. 1.0 u ... 0.5 ti : 0.0 a: -0.5 -1.0 2 4 6 003N1452 Revision 0 --RV, SV, and or SRV Flow 1300 ----Bypass Valve Flow Vessel Dome Pressure 1250 1200 ti ii .S: 1150 ! :J .. .. ! ... 1100 1050 1000 8 10 12 14 16 Time (sec) --Tolal Reactivity ----Scram Reactivity --+-Doppler Temperature Reactivity -.--Void Reactivi __ __ 1_: _____ Figure 19 Plant Response to FW Controller Failure ( EOC MELLLA and FWTR with TBSOOS (UB) ) Page 53 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'O BO Cl 'iii "' 0 ;i! 60 40 20 0 0 2 4 160 140 120 100 80 'O .. 'iii 60 "' ;/! 40 20 0 -20 l -40 0 2 4 6 6 FWCF ICF _BREO-NRPT ----Cora Inlet Flow 560 60 Simulated Thermal Power Neutron Flux 480 50 400 'ti 40 Cl 'iii 320..: 'O Cl " 30 :I ii: ;i! 240 " 20 z 160 10 BO o o B 10 12 14 16 0 Time (sec) Feedweter Flow 100 4.0 Steam Flow Turbine Steam Flow 90 3.5 NR level 3.0 BO 2.5 :;;: 70 .. E 2.0 :s i! .. 60 .. c Q. ! 1.5 " .. 0 .. Q. 50 > 1.0 0 i CJ ,., 40 .. 0.5 .. .::. u u :§. 0.0 30 'ii "' > -0.5 .. ... 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 Time (sec) 2 4 6 0 2 4 --B 003N1452 Revision 0 RV, SV, and/or SRV Flow 1300 Bypass Valve Flow Vessel Dome Pressure 1250 1200 ii 'ii .s 1150 ! :I .. " ! ... 1100 1050 1000 10 12 14 16 Time (sec) -+-Total Reactivity -..-Scram Reactivity Doppler Temperature Reactivity -....-Void Reactivi 6 B 10 12 14 16 Time (sec) Figure 20 Plant Response to FW Controller Failure ( EOC ICF and FWTR with RPTOOS (UB) ) Page 54 Peach Bottom Unit 3 Reload 21 HE3 22 120 100 j 80 "O ., 1ii II: 60 .... 0 ..,.,_ 40 20 0 0 160 120 80 "O .. 1ii 40 II: ..,.,_ 0 *40 *BO 0 YRACG_c.:.sl It) 16l011T LRNBP LCF BNEO*NRPT -ore Inlet Flow 360 60 Simulated Thermal Power --Neutron Flux 300 50 240 :s 40 .. 1ii a: "O ., 180 30 ii: i.e. 120 20 60 10 0 0 2 3 4 5 6 0 Time (sec) Faedwater Flow 60 4.0 Steam Flow Turbine Steam Flow 3.5 --NR level 50 3.0 2.5 .. 2.0 40 .2 l!! .. .. c Q. 1.5 .. .. 0 .. Q. ......___ 30 1.0 .c u .. " 0.5 .. > u 20 :§. 0.0 c; II: > -0.5 .. _, 10 *1.0 *1.5 0 *2.0 2 3 4 5 6 0 Time (sec) 2 ------3 003Nl452 Revision 0 RV, SV, and/or SRV Flow 1350 Bypass Valve Flow Vessel Dome Pressure 1300 1250 .... 'ii .s 1200 e :I " .. e CL 1150 1100 1050 4 5 6 Time (sec) 2 --Total Reacbvlty Scram Reactivity --+--Doppler Temperature Reactivity -r-Void Reactiv' 3 Time (sec) 4 5 6 Figure 21 Plant Response to Load Rejection w/o Bypass ( EOC MELLLA+ with RPTOOS (UB) ) Page 55 Peach Bottom Unit 3 Reload 21 HEJ 22 140 120 100 ,, .. 80 1i ... 0 ';;'. 60 40 20 0 0 2 4 160 140 120 100 80 ,, .. 1i 60 'If. 40 20 0 -20 -40 0 2 4 flUCG_CloSl_rtl r.llrolOll6JlllS 6 6 FWCF MEL_BREO-NRPT --Core Inlet Flow 420 60 Simulated Thermal Power Neulrcn Flux 360 50 300 40 ., 1i 240 ,, D " 30 ::l ii: ';f. 180 ! ., 20 z 120 60 10 0 0 8 10 12 14 16 0 Time (sec) --+-Feedwater Flow 100 4.0 Sleam Flow Turbine Steam Flow 90 3.5 NR level 3.0 80 2.5 :;;: 70 ..
  • 20 .. 0 i! ... 60 .. c a. ! 1.5 .. .. 0 .. a. 50 > !5 1.0 0 .Cl (J .. ... 40 .. 0.5 " .c u u :§. : 0.0 30 ii > -0.5 ., ..J 20 -1.0 10 -1.5 0 -2.0 8 10 12 14 16 0 Time (sec) 2 4 6 2 4 --8 003N1452 Revision 0 R , SV, and/or SRV Flow 1300 Bypass Valve Flow Vessel Dome Pressure 1250 1200 ii u; .a 1150 ; .. .. e a. 1100 1050 1000 10 12 14 16 Time (sec) -+--Total Reactivity --Scram Reactivity -+-Doppler Temperature Reactivity -a-Void Reactiv' 6 8 10 12 14 16 Time (sec) Figure 22 Plant Response to FW Controller Failure ( EOC MELLLA and FWTR with RPTOOS (UB) ) Page 56 Peach Bottom Unit 3 Reload 21 I HEJ 22 140 120 100 ,, 0 80 ,. a: .. 0 ';/!. 60 40 20 0 0 2 120 100 80 ,, " 1ii 80 a: lJf. 40 0 2 rol0a1611&1' PRFDS ICF _BREO-NPR Core Inlet Flow 280 60 Simulated Thennel Power Neutron Flux 240 50 200 'S 40 .. ,. 160 a: ,, .. )( 30 :i ii: lJf. 120 5 .. 20 z 80 40 10 0 0 3 4 5 6 7 0 Time (sec) -+--Fee water Flow 60 40 1 ___ Steam Flow -Turbine Steam Flow I 35 -+-NR level i 50 30 25 :;;: ..
  • 20 40 .2 + l! ... .. 1: a. ! 1 5 -.. .. 0 .. Q. 30 g 1,0 .c u .. ... .. 0.5 .. .c ti u 20 :§. : 0 0 Ci a: > " ...J 10 *1.0 -1 5 0 *2 0 3 4 5 6 7 0 Time (sec) 2 2 3 4 5 6 003N1452 Revision 0 7 1250 1200 .... "i .& 1150 e ::J .. .. e Q. 1100 1050 Time (sec) ...-Total Reacbvrty - Scram Reactivrty -Doppler Temperature Reactivity Void Reacl!Vrt -----1 3 4 Time (sec) 5 6 7 Figure 23 Plant Response to Pressure Regulator Failure Downscale ( EOC ICF and FWTR with PROOS and/or PLUOOS (UB)) Page 57 J Peach Bottom Unit 3 Reload 21 HEJ 22 120 100 BO ,, .. ,. °' 60 ... 0 .... 40 20 0 0 2 120 100 BO ,, .. ,. 60 °' .... 40 20 0 0 2 flUGG_Cl..Sl_ID 2'01l'Ol.ll 16J'lDTt Con1 Inlet Flow Simulated Thermal Power Neutron Flux 3 4 5 6 7 B Time (sec) Feedwater Flow Steam Flow Turbine Steam Flow --NR level --3 4 5 6 7 Time (sec) PRFDS LCF TNEO-NPR -003Nl452 Revision 0 240 60 1350 200 50 160 'S 40 ., ,. °' ,, ., 120 30 ii: .... c f 5 BO ., 20 z 40 10 0 0 0 60 4.0 3.5 50 3.0 2.5 :x ..
  • 20 40 ;; i! ... .. ;: a. ! 1.5 0 .. 0 ., a. 30 E 1.0 0 .Q u .. ... .. 0.5 .. .c u u 20 :§. : 0.0 "i °' > -0.5 .. ...J 10 -1.0 -1.5 0 -2.0 B 2 3 0 2 Bypass Valve Flow Vessel Dome Pressure 4 5 6 7 Time (sec) --Total Reacbvity ------Scram Reactivity 1300 1250 ii "i ..!!: 1200 f ::J .. .. f Q. 1150 . 1100 B -.-Coppler Temperature Reactivity 3 --r-Void Reacfri 4 Time (sec) 5 6 7 B Figure 24 Plant Response to Pressure Regulator Failure Downscale ( EOC MELLLA+ with PROOS and/or PLUOOS (HBB)) Page 58 Peach Bottom Unit 3 Reload 21 I HE3 22 140 120 100 ,, 80 a: ... 0 ;fl. 60 40 20 0 L +---0 1 2 120 100 80 ,, .. 'iii 60 a: "" 40 20 0 0 2 PRFDS MEL_BREO*NPR --ore Inlet Flow 280 60 Simulated Thermal Power Neulton Flux 240 50 200 :;; 40 .. 'iii 160 a: ,, .. .. 30 :I ii: ;fl. 120 15 .. 20 z 80 40 10 003N1452 Revision 0 1250 1200 " Ui 1150 ; 1100 1050 .. .. i 0 0 ..... 1000 3 4 5 6 7 Time (sec) -+-Fee water Flow 60 --.-Steam Flow -Turbine Steam Flow 1--NRlevel 50 :;c .. ... 40 .2 I! .. a. .. .. .. 30 .c .. .. " u 20 :§. c; > " _, 10 0 3 4 5 6 7 Time (sec) 0 2 4.0 35 3.0 25 20 .. c 1.5 0 a. g 1 0 u ... 0.5 u i.'l 0 0 a: *05 -1 0 *1 5 -2.0 0 2 3 4 5 6 Time (sec) -...-otal eacbvity _...._ Scram Reactivrty 7 -+-Doppler T empereture Reactivity --.-. Void ReeclN 3 4 5 Time (sec) Figure 25 Plant Response to Pressure Regulator Failure Downscale ( EOC MELLLA and FWTR with PROOS and/or PLUOOS (UB)) Page 59 Peach Bottom Unit 3 Reload 21 HEJ 22 140 120 100 ,, 0 80 ,. a: .. 0 .,. 60 40 20 0 0 120 100 80 ,, * ,. 60 a: .,. 40 20 0 0 2 2 Cora Inlet Flow Simulated Thermal Power --+-Neutron Flux 3 4 5 6 7 Time (sec) Faedwnter Flow Steam Flow Turbine Steam Flow --+-NR level 3 4 5 6 Time (sec) MSIVF ICF _ TNEO-EIS 003N1452 Revision 0 420 80 1400 360 70 60 300 :g .. 50 ,. 240 a: ,, .. " 40 ::i ii: .,. 180 ! 30 ., z 120 20 60 10 0 0 0 60 4.0 3.5 50 3.0 2.5 .. .. 20 40 E ... .. c Q. ! 1.5 .. .. 0 .. Q. 30 1.0 .c CJ .. .. " 0.5 " u " 20 :§. : 0.0 'ii a: > -0.5 .. _, 10 -1.0 -1.5 0 -2.0 7 2 0 2 ----Bypass Valve Flow Vassel Dome Pressure 3 4 5 6 7 1350 1300 1250 -.. ;; .a 1200 " .. f 1150 a. 1100 1050 nme (sec) --+-Total Reacbvity -e-Scram Reactivrty Doppler Temperature Reactivity -.--Void Reactiv* 3 4 5 6 Time (sec) 7 Figure 26 Plant Response to MSIV Closure (Flux Scram) ( EOC ICF (HBB) ) Page 60 Peach Bottom Unit 3 Reload 21 I HEJ 22 140 120 100 ,, 0 BO ,. II:: ..... 0 'ii-60 -40 20 --Core Inlet F ow Simulated Thermal Power --Neutron Flux MSIVF LCF _TNEO*EIS 003N1452 Revision 0 420 eo 360 70 60 300 '6" .. 50 ,. 240 II:: ,, ., )( 40 :J u:: 'ii-1BO '! 30 .. z 120 20 60 10 --Bypass Velve Flow --.-Vessel Dome Pressure 1350 1300 1250 _ II -; .!: 1200 ! :J .. .. ! 1150 0.. 1100 1050 0 -+-....... -+------+ 0 o 0 1 2 3 4 5 6 7 0 2 3 4 5 6 7 Time (sec) Time (sec) 120 SO 40 -+-Total Reacbvity ,, 0 BO 60 'ii-40 --Steam Flow -Turbine Steam F1ow --+-NRlevet 3 5 6 Time (sec) 50 :;;: ID 40 ls c. ., ID ., 30 .g ID .! u + 20 :§. 'ii > .. _, 10 0 7 ----Scram Reactivity 35 --+-Doppler Temperature Reactivity -.-Void Reactiv' 30 2.5
  • 20 ... c .. 1 5 c: 0 c. E 1.0 0 0 ,. '; o 5 "ii :g 0 0 II:: -0 5 -1 o -1 5 ---+---;--__.--j4f-'---; * --+6___,_ 7 I -2.0 0 2 Time (sec) I -------' Figure 27 Plant Response to MSIV Closure (Flux Scram) ( EOC MELLLA+ (HBB)) Page 61 Peach Bottom Unit 3 Reload 21 HE3 22 140 120 100 'O 80 Cl 1i II: 'ii ...,. 60 40 20 0 0 120 100 80 'O 0 1i 60 II: ...,. 40 20 0 0 1619Ci -0.5 .. .J 10 -1.0 --1.5 0 -2.0 7 0 2 2 -.-Bypass Valve Flow Vessel Dome Pressure 3 4 5 6 Time (sec) ...... Total Reactivity ----Scram Reactivity 7 1350 1300 1250 -.. a; E: 1200 ; "' .. e 1150 a. 1100 1050 -+---Doppler Temperature Reactivity -r-Void Reactiv* 3 4 5 6 7 Time (sec) Figure 28 Plant Response to MSIV Closure (Flux Scram) ( EOC MELLLA (HBB) ) Page 62 Peach Bottom Unit 3 Reload 21 120 I 110 100 90 t 80 t ==-"' f----t-=: 70 ... 60 :. "; 50 E " i: 40 30 20 10 10 I ;-.. ... L _.)_ I --t t Bl B2 20 30 40 --,---+ ,___ T t +-50 003Nl452 Revision 0 I -r r-1 l +-I --t + 1 +---j----r---I---+ I -t-----+----+ I t--+---t---I--+--_J_ _j__ ---+ -t ---MELLLA+ EXfENSlON --l -NFWT Manual BSP Scram Region Boundary --NFWT Manual BSP Controlled Entry Region Boundary -* NFWT BSP Boundary 60 70 80 90 100 110 120 Core Flow (% Figure 29 Manual BSP Regions and BSP Boundary for Normal Feedwater Temperature Operation Page 63 Peach Bottom Unit 3 Reload 21 120 I 110 t-100 -+ 90 80 +-:;:;-" i:i: 70 + .. 60 + lo ] 50 .. i: 40 + 30 t 20 10 10 i--l +--+ ---1 + -+-_,_ 1--,. B1'1 I B2' r 20 30 40 -r I r + + t I + - r--t--t--+--+ ----r --j---l------MELLLA+ EXTENSION -T + 003N1452 Revision 0 T + -+ -I t -+ --RFWT Manual BSP Scram Region Boundary -; --RFWT Manual BSP Controlled Entry Region Boundary + RFWT BSP Boundary + 50 60 70 80 90 100 110 120 Core Flow (% Rated) Figure 30 Manual BSP Regions and BSP Boundary for Reduced Feedwater Temperature Operation Page 64 Peach Bottom Unit 3 Reload 21 Appendix A Analysis Conditions 003Nl452 Revision 0 The reactor operating conditions used in the reload licensing analysis for this plant and cycle are presented in Table A-1. The pressure relief and safety valve configuration for this plant are presented in Table A-2. Additionally, the operating flexibility options listed in Section 8 are supported by the reload licensing analysis. Table A-1 Reactor Operating Conditions Analysis Value Parameter ICF LCF ICF LCF NFWT NFWT RFWT RFWT Thennal power, MWt 4016.0 4016.0 4016.0 4016.0 Core flow, Mlb/hr 112.8 87.3 112.8 104.0 Reactor pressure (core mid-plane), psia 1067.0 1062.3 1048.4 1046.8 Inlet enthalpy, Btu/lb 524.2 515.8 512.6 509.4 Non-fuel power fraction 18 NIA NIA NIA NIA Steam flow, Mlb/hr 16.49 16.46 14.82 14.81 Dome pressure, psig 1035.2 1034.4 1017.4 1017.4 Turbine pressure, psig 961.3 960.8 957.1 957.2 Table A-2 Pressure Relief and Safety Valve Configuration Valve Type Number of Lowest Setpoint Valves (psig) Safety/Relief Valve 11 1169.1 Spring Safety Valve 3 1297.8 18 For TRACG methodology, the direct moderator heating is a function of moderator density. Page 65 Peach Bottom Unit 3 Reload 21 Appendix B Thermal-Mechanical Compliance 003N1452 Revision 0 A thermal-mechanical compliance check is performed for all analyzed transients to assure that the fuel will operate without violating the thermal-mechanical design limits. These limits are designed such that reactor operation within these limits provides assurance that the fuel will not exceed any mechanical design or licensing limits during all modes of operation. The fuel thermal-mechanical limits are met for the current cycle. Page 66 Peach Bottom Unit 3 Reload 21 Appendix C Decrease in Core Coolant Temperature Event 003Nl452 Revision 0 The Loss-of-Feedwater Heating event was analyzed at 100% rated power using the BWR Simulator Code. The use of this code is consistent with the approved methodology. The transient plots, neutron flux and heat flux values normally reported in Section 9 are not an output of the BWR Simulator Code; therefore, those items are not included in this document. The OLMCPR result is shown in Section 11. The Inadvertent HPCI start-up event with a Level 8 turbine trip was analyzed with TRACG, and the OLMCPR results are summarized in Section 11 if the event sets the OLMCPR for an application condition. Page 67 Peach Bottom Unit 3 Reload 21 Off-Rated Power Dependent Limits Appendix D Off-Rated Limits 003N1452 Revision 0 The off-rated power dependent limits to be applied for Base, Base + TBSOOS, Base + RPTOOS, and Base+ PROOS and/or PLUOOS are documented in Reference D-1. The Kp/MCPRp and LHGRFACp limits provided in Reference D-1 have been validated for this cycle. The MCPRp limits provided in Reference D-1 are based on a SLMCPR of 1.15; therefore no SLMCPR adjustment is required for this cycle. The Base Case includes 2 TBVOOS, 1 SRVOOS, 1 MSIVOOS, 1 TCV/TSVOOS, and FWHOOS/FFWTR. These Base Case EOOS conditions are included in all other application conditions. The off-rated power dependent limits support 1 MSIVOOS at power levels:::; 65% rated thermal power in all application conditions. The off-rated power dependent limits support 1 TCV/TSVOOS at power levels :::; 54% rated thermal power in Base + TBSOOS. The off-rated power dependent limits support 1 TCV/TSVOOS at power levels:::; 78% rated thermal power in all other application conditions. MCPRp Limits for: BASE OMSIVOOS, lTCVand/or lTSVOOS, lSRVOOS, 2TBVOOS) Limits for Power< 26.3% Flow> 60.0% Power(%) Limit Power(%) Limit MCPRp MCPRp 22.6 2.99 22.6 2.67 26.3 2.83 26.3 2.60 Limits for Power ;::: 26.3% Power(%) Limit Kp 26.3 1.392 40.0 1.288 55.0 1.237 65.0 1.130 85.0 1.067 100.0 1.000 Page 68 Peach Bottom Unit 3 Reload 21 MCPRp Limits for: BASE + TBSOOS Limits for Power < 26.3% Flow>60.0% Power(%) 22.6 26.3 Limits for 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 MCPRp Limits for: BASE+ RPTOOS Limits for Power < 26.3% Flow> 60.0% Power(%) 22.6 26.3 Limits for 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 Limit MCPRTJ 4.15 3.78 Limit MCPRp 2.99 2.83 Flow $ 60.0% Power(%) 22.6 26.3 Limit KTJ 1.399 1.323 1.237 1.155 1.079 1.000 Flow$60.0% Power(%) 22.6 26.3 Limit Kp 1.392 1.288 1.237 I. 130 1.067 1.000 003N1452 Revision 0 Limit MCPRp 3.64 3.25 Limit MCPRp 2.67 2.60 Page 69 Peach Bottom Unit 3 Reload 21 MCPRp Limits for: BASE + PROOS and/or PLUOOS Limitsfor Power < 26.3% Flow> 60.0% Power(%) Limit MCPRp 22.6 2.99 26.3 2.83 Limits for Power;::: 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 LHGRFACp Limits for: Flow :S 60.0% Power(%) 22.6 26.3 Limit Kp 1.392 1.288 1.237 1.210 1.147 1.000 BASE (lMSIVOOS, 1 TCV and/or 1 TSVOOS, lSRVOOS, 2TBVOOS) Limits for Power < 26.3% Flow> 60.0% Flow :S 60.0% Power(%) Limit Power(%) 22.6 0.508 22.6 26.3 0.522 26.3 Limits for Power ;::: 26.3% Power(%) Limit 26.3 0.620 40.0 0.696 55.0 0.751 65.0 0.817 85.0 0.930 100.0 1.000 Limit 003Nl452 Revision 0 MCPRp 2.67 2.60 Limit 0.508 0.522 Page 70 Peach Bottom Unit 3 Reload 21 LHGRFACp Limits for: BASE + TBSOOS Limits for Power< 26.3% Flow> 60.0% Power(%) 22.6 26.3 Limits for 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 LHGRFACp Limits for: BASE+ RPTOOS Limits for Power< 26.3% Flow> 60.0% Power(%) 22.6 26.3 Limits for 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 Limit Power(%) 0.397 22.6 0.417 26.3 Limit Power(%) 0.508 22.6 0.522 26.3 Flow ::: 60.0% Limit 0.620 0.655 0.714 0.817 0.930 1.000 Flow ::: 60.0% Limit 0.620 0.696 0.751 0.817 0.930 1.000 Limit 0.397 0.442 003N1452 Revision 0 Limit 0.508 0.522 Page 71 Peach Bottom Unit 3 Reload 21 LHGRFACp Limits for: BASE+ PROOS and/or PLUOOS Limitsfor Power < 26.3% Flow> 60.0% Power(%) Limit 22.6 0.508 26.3 0.522 Limitsfor Power> 26.3% Power(%) 26.3 40.0 55.0 65.0 85.0 100.0 Off-Rated Flow Dependent Limits Flow Power(%) 22.6 26.3 Limit 0.620 0.696 0.751 0.817 0.930 1.000 Limit 0.508 0.522 003N1452 Revision 0 The off-rated flow dependent limits to be applied for Base, Base + TBSOOS, Base + RPTOOS, and Base + PROOS and/or PLUOOS are documented in Reference D-1. The MCPRf and LHGRFACf limits provided in Reference D-1 have been validated for this cycle. The flow dependent limits basis is a single pump runout with no mechanical scoop tube setpoint. Peach Bottom has ASDs installed and no MIG set. Flow dependent limits are provided for operation up to a maximum of 110% rated core flow. The MCPRf limits provided in Reference D-1 are based on a SLMCPR of 1.12; therefore, the MCPRf limits have been scaled for the cycle-specific SLM CPR in Section 11. The off-rated flow dependent limits support 1 MSIVOOS at power levels :::: 65% rated thermal power in all application conditions. The off-rated flow dependent limits support 1 TCV /TSVOOS at power levels :::: 54% rated thermal power in Base + TBSOOS. The off-rated flow dependent limits support 1 TCV /TSVOOS at power levels :::: 78% rated thermal power in all other application conditions. MCPRf Limits for: BASE (lMSIVOOS, 1 TCV and/or 1 TSVOOS, lSRVOOS, 2TBVOOS) Limitsfor a Maximum Ru11out Flow of 110.0% Flow(%) Limit MCPRf 30.0 1.57 86.0 1.25 110.0 1.25 Page 72 Peach Bottom Unit 3 Reload 21 MCPRf Limits for: BASE + TBSOOS Limits for a Maximum Ru11out Flow of 110.0% Flow(%) 30.0 86.0 110.0 MCPRf Limits for: BASE+ RPTOOS Limits for a Maximum Ru11out Flow of 110.0% Flow(%) 30.0 86.0 110.0 MCPRf Limits for: BASE+ PROOS and/or PLUOOS Limitsfor a Maximum Runout Flow of 110.0% Flow(%) 30.0 86.0 110.0 LHGRFACfLimits for: Limit MCPR( 1.57 1.25 1.25 Limit MCPRf 1.57 1.25 1.25 Limit MCPRJ 1.57 1.25 1.25 BASE OMSIVOOS, lTCV and/or lTSVOOS, lSRVOOS, 2TBVOOS) Limitsfor a Maximum Runout Flow of 110.0% Flow(%) Limit 30.0 0.706 70.0 0.973 80.0 1.000 110.0 1.000 LHGRFACf Limits for: BASE + TBSOOS Limits for a Maximum Runout Flow of 110.0% Flow(%) Limit 30.0 0.706 70.0 0.973 80.0 1.000 110.0 1.000 003N1452 Revision 0 Page 73 Peach Bottom Unit 3 Reload 21 LHGRFACfLimits for: BASE+ RPTOOS Limits for a Maximum Runout Flow of 110.0% Flow(%) 30.0 70.0 80.0 110.0 LHGRFACfLimits for: BASE + PROOS and/or PLUOOS Limits for a Maximum Runout Flow of 110.0% Flow(%) 30.0 70.0 80.0 110.0 References Limit 0.706 0.973 1.000 1.000 Limit 0.706 0.973 1.000 1.000 003Nl452 Revision 0 D-1. Peach Bottom Atomic Power Station Units 2 and 3 TRACG Implementation for Reload Licensing Transient Analysis, 0000-0135-9000-R2, June 2017. Page 74 Peach Bottom Unit 3 Reload 21 Appendix E TRACG04 AOO Supplementary Information 003N1452 Revision 0 Reference E-I provides the results of the evaluations supporting the application of TRACG04 for AOO analyses for Peach Bottom.Section I I of this report presents the MCPR limits based on the TRACG04 methodology of Reference E-2. The safety evaluation report for licensing topical report NEDE-32906P Supplement 3-A (Reference E-2) concluded that the application of TRACG04 methods to AOO and overpressure transient analyses were acceptable subject to certain limitations and conditions. Peach Bottom 3 Cycle 22 is in compliance with these limitations and conditions. References E-1. Peach Bottom Atomic Power Station Units 2 and 3 TRA.CG Implementation for Reload Licensing Transient Analysis, OOOO-Ol 35-9000-R2, Revision 2, June 2017. E-2. Migration ,to TRA.CG04/PANACJI from TRA.CG02/PANACIO for TRA.CG AOO and ATWS Overpressure Transients, NEDE-32906P, Supplement 3-A, Revision I, April 2010. Page 75 Peach Bottom Unit 3 Reload 21 Appendix F Interim Methods LTR (NEDC-33173P-A Revision 4) Supplemental Information 003N1452 Revision 0 The safety evaluation for licensing topical report NEDC-33173P-A Revision 4 (Reference F-1) concluded that the application of GEH/GNF methods to expanded operating domains was acceptable subject to certain limitations and conditions. Several of these limitations and conditions request that additional, application-specific information be provided in the SRLR. The information provided below responds to these requests for the identified items. Limitation and Condition 9.5 (SLMCPR 2) Limitation and Condition 9.5 states: "For operation at MELLLA+, including operation at the EPU power levels at the achievable core flow state-point, a 0.01 value shall be added to the cycle-specific SLMCPR value for power-to-flow ratios up to 42 MWt!Mlbm!hr, and a 0.02 value shall be added to the cycle-specific SLMCPR value for power-to-flow ratios above 42 MWt!Mlbm!hr. " For operation at MELLLA+, a 0.02 value was added to the cycle specific SLMCPR. The SLMCPR values reported in Section 11 reflect this adder. Limitation and Condition 9.8 (ECCS-LOCA 2) Limitation and Condition 9.8 states: "The ECCS-LOCA will be pe1formed for all statepoints in the upper boundary of the expanded operating domain, including the minimum core flow statepoints, the transition statepoint, as defined in Reference F-2 and the 55 percent core flow statepoint. The plant-specific application will report the limiting ECCS-LOCA results as well as the rated power and flow results. The SRLR will include both the limiting statepoint LOCA results and the rated conditions ECCS-LOCA results. " This limitation and condition is satisfied by the Appendix K PCTs reported in Reference 1 in Section 16.4. The level of detail contained in the SRLR is consistent with the NRC evaluation of the GNF response to RAI 25 Item b in the M+LTR (Reference F-2). The SRLR reports the bounding Licensing Basis PCT for all statepoints analyzed. Page 76 Peach Bottom Unit 3 Reload 21 Limitation and Condition 9.10/9.11 (Transient LHGR 2/3) Limitation and Condition 9.10 states: 003Nl452 Revision 0 "Each EPU and MELLLA + fuel reload will document the calculation results of the analyses demonstrating compliance to transient T-M acceptance criteria. The plant T-M response will be provided with the SRLR or COLR, or it will be reported directly to the NRC as an attachment to the SRLR or COLR. " Limitation and Condition 9.11 states: "To account for the impact of the void hist01y bias, plant-specific EPU and MELLLA + applications using either TRACG or ODYN will demonstrate an equivalent to JO percent margin to the fuel centerline melt and the 1 percent cladding circumferential plastic strain acceptance criteria due to pellet-cladding mechanical interaction for all of limiting AOO transient events, including equipment out-of-service. Limiting transients in this case, refers to transients where the void reactivity coefficient plays a significant role (such as pressurization events). If the void hist01y bias is incorporated into the transient model within the code, then the additional 10 percent margin to the fuel centerline melt and the 1 percent cladding circumferential plastic strain is no longer required. " Appendix B documents the fact that the results for all analyzed transients demonstrate compliance with thermal-mechanical acceptance criteria. Table F-1 summarizes the percent margin to the Thermal Overpower and Mechanical Overpower acceptance criteria. As referenced in Appendix E, the void history bias was incorporated into the transient model within the TRACG04 code, and therefore the l 0 percent margin to the fuel centerline melt and the l percent cladding circumferential plastic strain acceptance criteria is no longer required. Table F-1 Margin to the Thermal Overpower and Mechanical Overpower Acceptance Criteria Criteria GNF2 Thermal Overpower 2.76% Mechanical Overpower 0.60% Page 77 Peach Bottom Unit 3 Reload 21 Limitation and Condition 9.17 (Steady-State 5 Percent Bypass Voiding) Limitation and Condition 9.17 states: 003N1452 Revision 0 "The instrumentation specification design bases limit the presence of bypass voiding to 5 percent (LRPM (sic) levels). Limiting the bypass voiding to less than 5 percent for long term steady operation ensures that instrumentation is operated within the specification. For EPU and MELLLA + operation, the bypass voiding will be evaluated on a specific basis to confirm that the void fi*action remains below 5 percent at all LPRM levels when operating at steady-state conditions within the MELLLA + upper boundaly. The highest calculated bypass voiding at any LPRM level will be provided with the specific SRLR. " The bypass voiding was evaluated for the licensed core loading and confirmed that the bypass void fraction remained below 5 percent at all LPRM levels when operating at steady-state conditions within the licensed upper boundary. Limitation and Condition 9.18 (Stability Setpoints Adjustment) Limitation and Condition 9.18 states: "The NRC staff concludes that the presence bypass voiding at the /ow-flow conditions where instabilities are likely can result in calibration errors of less than 5 percent for OP RM cells and less than 2 percent for AP RM signals. These calibration errors must be accounted for while determining the setpoints for any detect and suppress long term methodology. The calibration values for the different long-term solutions are specified in the associated sections of this SE, discussing the stability methodology. " This limitation and condition is not applicable to DSS-CD because the significant conservatisms in the current licensing methodology and associated MCPR margins are more than sufficient to compensate for the overall uncertainty in the OPRM instrumentation. Limitation and Condition 9.19 (Void-Quality Correlation 1) Limitation and Condition 9.19 states: "For applications involving PANCEA(sic)IODYNllSCORITASC for operation at EPU and MELLLA+, an additional 0.01 will be added to the OLMCPR, until such time that GE expands the experimental database supporting the Findlay-Dix void-quality correlation to demonstrate the accuracy and pe1formance of the void-quality correlation based on experimental data representative of the current fuel designs and operating conditions during steady-state, transient, and accident conditions. " Page 78 Peach Bottom Unit 3 Reload 21 003N1452 Revision 0 The OLMCPR limitation requiring an additional 0.01 adder on the OLMCPR does not apply to EPU or MELLLA+ licensing calculations when TRACG04 methods are used (Reference F-3). Therefore, the OLMCPR adder is not applied to Peach Bottom Unit 3 Cycle 22. References F-1. Applicability of GE Methods to Expanded Operating Domains, NEDC-33 l 73P-A, Revision 4, November 2012. F-2. General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus, NEDC-33006P-A, Revision 3, June 2009. F-3. Migration to TRACG04 I PANACJJ from TRACG02 I PANACJO for TRACG AOO and ATWS Overpressure Transients, NEDE-32906P, Supplement 3-A, Revision 1, April 2010. Page 79 Peach Bottom Unit 3 Reload 21 Appendix G 003N1452 Revision 0 MELLLA+ LTR (NEDC-33006P-A Revision 3) Supplemental Information The safety evaluation for licensing topical report NEDC-33006P-A Revision 3 (Reference G-1) approved the operation of GE BWRs in the MELLLA+ expanded operating domain, subject to certain limitations and conditions. Several of these limitations and conditions request that additional, application-specific information be provided in the SRLR. The information provided below responds to these requests for the identified items. Limitation and Condition 12.6 (SLMCPR Statepoints and CF Uncertainty) Limitation and Condition 12.6 states: "Until such time when the SLMCP R methodology (References G-3 and G-4) for off-rated SLMCPR calculation is approved by the staff/or MELLLA+ operation, the SLMCPR will be calculated at the rated statepoint (120 percent Pll 00 percent CF), the plant-specific minimum CF statepoint (e.g., 120 percent P/80 percent CF), and at the JOO percent OLTP at 55 percent CF statepoint. The currently approved off-rated CF uncertainty will be used for the minimum CF and 55 percent CF statepoints. The uncertainty must be consistent with the CF uncertainty currently applied to the SLO operation or as approved for MELLLA + operation. The calculated values will be documented in the SRLR." As requested, the SLMCPR calculated results at specified off-rated power/flow conditions are reported in Table G-1 below, including the low CF statepoint. Table G-1 Two-Loop SLMCPR Results for MELLLA+ Conditions Power(% Rated) Flow(% Rated) SLM CPR 100.0 110.0 1.07 100.0 100.0 1.07 100.0 85.2 1.11 77.5 55.0 1.12 Page 80 Peach Bottom Unit 3 Reload 21 Limitation and Condition 12.10.b (ECCS-LOCA Off-Rated Multiplier) Limitation and Condition 12.1 O.b states: 003N1452 Revision 0 "LOCA analysis is not pe1formed on cycle-specific basis; therefore, the thermal limits applied in the M+SAR LOCA analysis for the 55 percent CF MELLLA+ statepoint and/or the transition statepoint must be either bounding or consistent with cycle-specific off rated limits. The COLR and the SRLR will contain confirmation that the off-rated limits assumed in the ECCS-LOCA analyses bound the cycle-specific off-rated limits calculated for the MELLLA + operation. Eve1y future cycle reload shall confirm that the specific off-rated thermal limits applied at the 55 percent CF and/or the transition statepoints are consistent with those assumed in the plant-specific ECCS-LOCA analyses." The off-rated limits assumed in the ECCS-LOCA analyses are confirmed to be consistent with the specific off-rated LHGR multipliers calculated for the MELLLA+ operation. The off-rated LHGR multipliers provide adequate protection for the MELLLA+ operation. Limitation and Condition 12.18.d (ATWS TRACG Analysis) Limitation and Condition 12.18.d states: "Jn general, the plant-specific application will ensure that operation in the MELLLA domain is consistent with the assumptions used in the ATWS analysis, including equipment out of service (e.g., FWHOOS, SLO, SRVs, SLC pumps, and RHRpumps, etc.). If assumptions are not satisfied, operation in MELLLA + is not allowed. The SRLR will specify the prohibited flexibility options for plant-specific MELLLA+ operation, where applicable. For key input parameters, systems and engineering safety features that are important to simulating the ATWS analysis and are specified in the Technical Specification (TS) (e.g., SLCS parameters, ATWS RPT. etc.), the calculation assumptions must be consistent with the allowed TS values and the allowed plant configuration. If the analyses deviate ji*om the allowed TS configuration for long term equipment out of service (i.e., beyond the TS LCO), the plant-specific application will specify and justify the deviation. In addition, the licensee must ensure that all operability requirements are met (e.g., NPSH) by equipment assumed operable in the calculations. " This A TWS TRACG Analysis limitation and condition requires that the SRLR specify the prohibited flexibility options for plant-specific MELLLA+ operation, where applicable, as expressed by EOOS options in Section 8. Page 81 Peach Bottom Unit 3 Reload 21 References 003Nl452 Revision 0 G-1. General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus, NEDC-33006P-A, Revision 3, June 2009. G-2. GE Hitachi Boiling Water Reactor, Detect and Suppress Solution -Confirmation Density, NEDC-33075P, Revision 8, November 2013. G-3. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999. G-4. Power Distribution Uncertainties for Safety Limit MCPR Evaluations, NEDC-32694P-A, August 1999. G-5. DSS-CD TRACG Application, NEDE-33147P-A, Revision 4, August 2013. Page 82 Peach Bottom Unit 3 Reload 21 Appendix H Application to Current Licensed Thermal Power (CLTP) 003N1452 Revision 0 The reload licensing analysis for this plant and cycle is based on TPO conditions at 4016 MWt rated core power (Reference H-1) and is applicable to CL TP conditions at 3951 MWt rated core power (Reference H-2). Off-rated limits have been developed based on the plant transient trends versus percent of rated power and flow and these relationships have been validated for Peach Bottom TPO. Therefore, the off-rated limits provided in Appendix D are applicable for operation at both CL TP and TPO conditions. Note, however, that the Appendix D power dependent off-rated limits have been provided at TPO values of Pbypass and Pmin of 26.3% rated power and 22.6% rated power, respectively. The power dependent limit values at Pbypass and Pmin have been validated as applicable for operation at both CL TP and TPO conditions. At CL TP conditions, the power level values for Pbypass and Pmin should be adjusted to those appropriate for CLTP. The BSP Scram Region and Controlled Entry Region for both NFWT and RFWT are conservative for CL TP in terms of absolute power. The Scram Region and Controller Entry Region power level based coordinates may be rescaled from the TPO power level to the CL TP power level. The ABSP setpoints are conservative for CLTP in terms of absolute power. The ABSP constant power line setpoint (Pssr-TRrP) and the slope (mTRIP) may also be rescaled from the TPO power level to the CL TP power level. References H-1. Safety Analysis Report for Peach Bottom Atomic Power Station Units 2 and 3 Thermal Power Optimization, NEDC-33873P, Revision 0, February 2017. H-2. Safety Analysis Report for Peach Bottom Atomic Power Station Units 2 & 3 Maximum Extended Load Line Limit Analysis Plus, NEDC-33720P, Revision 0, September 2014. Page 83 Peach Bottom Unit 3 Reload 21 Appendix I 003N1452 Revision 0 Peach Bottom Unit 3 Cycle 22 Contingency TCV/TSV Delay Analysis The pressurization transient results provided in Section 9 and Section 11 were performed with a 0 ms TSV delay time following a high water level (L8) turbine trip and a 0 ms TCV delay time following a high water level (L8) turbine trip. A contingency analysis for Peach Bottom 3 Cycle 22 was performed with a 0 ms TSV delay time following a high water level (L8) turbine trip and a 45 ms TCV delay time following a high water level (L8) turbine trip. The contingency analysis evaluated the impact of this change on the FWCF and HPCIL8 events. The results show that the change could impact the Peach Bottom 3 Cycle 22 reload analysis limits. The following pressurization transient OLMCPR may be implemented for Peach Bottom 3 Cycle 22 instead of those provided in Section 11 if the TCV delay time is at least 45 ms longer than the TSV delay time. Limiting Pressurization Events OLMCPR Summary Table: Appl. Exposure Range Option A Option B Cond. GNF2 GNF2 1 Base (lMSIVOOS, lTCVand/or lTSVOOS, lSRVOOS, 2TBVOOS) BOC to MOC 1.46 1.38 MOC to EOC 1.49 1.41 2 Base + TBSOOS BOC to MOC 1.51 1.42 MOC to EOC 1.55 1.46 3 Base + RPTOOS BOC to MOC 1.58 1.41 MOCtoEOC 1.61 1.44 4 Base + PROOS and/or PLUOOS BOC to MOC 1.46 1.38 MOC to EOC 1.49 1.41 Page 84 Peach Bottom Unit 3 Reload 21 Appendix J End of Cycle Power Coastdown Restrictions 003N1452 Revision 0 End-of-cycle power coastdown operation down to 40% reactor power is supported by the GEST AR basis document identified at the beginning of this report. Coastdown operation beyond the EOR condition is conservatively bounded by the reload licensing analyses at the EOR condition for a normal coastdown power profile. During coastdown, operation at a power level above that which can be achieved (at rods-out with all cycle extensions features utilized, e.g., ICF, FFWTR) with steady-state equilibrium xenon concentrations is not supported. Page 85 Peach Bottom Unit 3 Reload 21 Acronym llCPR Ilk 2RPT (2PT) ADS ADSOOS AOO APRM ARTS ASD BOC BSP BWROG CCFL CFR COLR CPR DIRPT DIV OM DR OS/RV ECCS ELLLA EOC EOOS EOR EPU ER FFWTR FMC PR FOM FW FWCF FWHOOS FWTR GEST AR GETAB GS3 GSF HAL HBB Appendix K List of Acronyms Description Delta Critical Power Ratio Delta k-effective Two Recirculation Pump Trip Automatic Depressurization System Automatic Depressurization System Out of Service Anticipated Operational Occurrence Average Power Range Monitor 003Nl452 Revision 0 APRM, Rod Block and Technical Specification Improvement Program Adjustable Speed Drive Beginning of Cycle Backup Stability Protection Boiling Water Reactor Owners Group Countercurrent Flow Limitation Code of Federal Regulation Core Operating Limits Report Critical Power Ratio Delta MCPR over Initial MCPR for a two-Recirculation Pump Trip Delta CPR over Initial MCPR vs. Oscillation Magnitude Decay Ratio Dual Mode Safety/Relief Valve Emergency Core Cooling System Extended Load Line Limit Analysis End of Cycle (including all planned cycle extensions) Equipment Out of Service End of Rated (All Rods Out 100%Power I 100%Flow I NFWT) Extended Power Uprate Exclusion Region Final Feedwater Temperature Reduction Final MCPR figure of Merit Feed water Feedwater Controller Failure Feedwater Heaters Out of Service Feedwater Temperature Reduction General Electric Standard Application for Reactor Fuel General Electric Thermal Analysis Basis GEH Simplified Stability Solution Generic Shape Function Haling Bum Hard Bottom Burn Page 86 Peach Bottom Unit 3 Reload 21 Acronym HBOM HCOM HFCL HPCI ICA ICF JM CPR IVM Kf Kp LS LCF LFWH LHGR LHGRFACf LHGRFACp LOCA LOSC LPRM LRNBP LRWHBP LTR MAPFACf MAPFACp MAPLHGR MCPR MCPRf MCPRp MELLLA MELLLA+ MEOD MOC MRB MSF MSIV MSIVOOS MSR MS ROOS MTU MWd MWd/MT MWd/ST MWt NIA NBP Description Hot Bundle Oscillation Magnitude Hot Channel Oscillation Magnitude High Flow Control Line High Pressure Coolant Iniection Interim Corrective Action Increased Core Flow Initial MCPR Initial Validation Matrix Off-rated flow dependent OLMCPR multiplier Off-rated power dependent OLMCPR multiplier Turbine Trip on high water level (Level 8) Low Core Flow Loss of Feedwater Heating Linear Heat Generation Rate Off-rated flow dependent LHGR multiplier Off-rated power dependent LHGR multiplier Loss of Coolant Accident Loss of Stator Cooling Local Power Range Monitor Load Rejection without Bypass Load Rejection with Half Bypass Licensing Topical Report Off-rated flow dependent MAPLHGR multiplier Off-rated power dependent MAPLHGR multiplier Maximum Average Planar Linear Heat Generation Rate Minimum Critical Power Ratio Off-rated flow dependent OLMCPR Off-rated power dependent OLMCPR Maximum Extended Load Line Limit Analysis MELLLA Plus Maximum Extended Operating Domain Middle of Cycle Maximal Region Boundaries Modified Shape Function Main Steam Isolation Valve Main Steam Isolation Valve Out of Service Moisture Separator Reheater Moisture Separator Reheater Out of Service Metric Ton Uranium Megawatt day Megawatt days per Metric Ton Megawatt days per Standard Ton Megawatt Thermal Not Applicable No Bypass 003Nl452 Revision 0 Page 87 Peach Bottom Unit 3 Reload 21 Acronym NCL NFWT NOM NTR OLM CPR oos OPRM Pbypass Pdomc Psi P,. PCT PHE PLHGR PLU PLUOOS PRFDS PROOS Q/A RBM RC RCF RFWT RPS RPT RPTOOS RV RVM RWE SC SL SLM CPR SLO SRI SRLR S/RV (SRV) SRVOOS SS ssv STP STU TB SOOS TBV TBVO Description Natural Circulation Line Normal Feedwater Temperature Nominal Burn Normal Trip Reference Operating Limit MCPR Out of Service Oscillation Power Range Monitor 003N1452 Revision 0 Reactor power level below which the TSV position and the TCV fast closure scrams are bypassed Peak Dome Pressure Peak Steam Line Pressure Peak Vessel Pressure Peak Clad Temperature Peak Hot Excess Peak Linear Heat Generation Rate Power Load Unbalance Power Load Unbalance Out of Service Pressure Regulator Failure Downscale Pressure Regulator Out of Service Heat Flux Rod Block Monitor Reference Cycle Rated Core Flow Reduced Feedwater Temperature Reactor Protection System Recirculation Pump Trip Recirculation Pump Trip Out of Service Relief Valve Reload Validation Matrix Rod Withdrawal Error Standard Cycle Safety Limit Safety Limit Minimum Critical Power Ratio Single Loop Operation Select Rod Insert Supplemental Reload Licensing Report Safety/Relief Valve Safety/ReliefValve(s) Out of Service Steady State Spring Safety Valve Simulated Thermal Power Short Tons (or Standard Tons) of Uranium Turbine Bypass System Out of Service Turbine Bypass Valve Turbine Bypass Valves Open Page 88 Peach Bottom Unit 3 Reload 21 Acronym TBVOOS TCV TCVOOS TCVSC TLO TOPPS TRF TSIP TSV TSVOOS TT TTNBP TTWHBP UB Description Turbine Bypass Valves Out of Service Turbine Control Valve Turbine Control Valve Out of Service Turbine Control Valve Slow Closure Two Loop Operation Tracking Over-Power Protection System Trip Reference Function Technical Specifications Improvement Program Turbine Stop Valve Turbine Stop Valve Out of Service Turbine Trip Turbine Trip without Bypass Turbine Trip with Half Bypass Under Bum 003Nl452 Revision 0 Page 89