ML17258A179
ML17258A179 | |
Person / Time | |
---|---|
Site: | Peach Bottom |
Issue date: | 09/15/2017 |
From: | David Gudger Exelon Generation Co |
To: | Document Control Desk, Office of Nuclear Reactor Regulation |
References | |
Download: ML17258A179 (91) | |
Text
Exelon Generation 10 CFR 50.90 10 CFR 50, Appendix K September 15, 2017 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Peach Bottom Atomic Power Stations, Units 2 and 3 Renewed Facility Operating License Nos. DPR-44 and DPR-56 NRC Docket Nos. 50-277 and 50-278
Subject:
Measurement Uncertainty Recapture Power Uprate License Amendment Request - Supplement 5, Supplemental Reload Licensing Report
Reference:
Exelon letter to the NRC, "Request for License Amendment Regarding Measurement Uncertainty Recapture Power Uprate," dated February 17, 2017 (ADAMS Accession No. ML17048A444)
In accordance with 10 CFR 50.90, Exelon Generation Company, LLC (Exelon) requested amendments to Renewed Facility Operating License Nos. DPR-44 and DPR-56 for Peach Bottom Atomic Power Station (PBAPS), Units 2 and 3, respectively, in the referenced letter.
Specifically, the proposed changes would revise the Renewed Operating Licenses to implement an increase in rated thermal power from 3951 Megawatts-Thermal (MWt) to 4016 MWt.
This supplement provides a copy of the Supplemental Reload Licensing Report (SRLR) for PBAPS Unit 3, Cycle 22, in accordance with Section 1.2.1 of Attachment 5 of the referenced license amendment request. The only differences between the SRLR at the requested uprated conditions for each unit will be typical unit-specific differences unrelated to the implementation of the uprate license amendment.
Exelon has reviewed the information supporting a finding of no significant hazards consideration and the environmental consideration provided to the U.S. Nuclear Regulatory Commission in the referenced letter. The supplemental information provided in this submittal does not affect the bases for concluding that the proposed license amendment does not involve a significant hazards consideration. Further, the additional information provided in this submittal does not affect the bases for concluding that neither an environmental impact statement nor an environmental assessment needs to be prepared in connection with the proposed amendment.
In accordance with 10 CFR 50.91, "Notice for public comment; State consultation,"
paragraph (b), Exelon is notifying the Commonwealth of Pennsylvania and the State of Maryland of this application for license amendment by transmitting a copy of this letter and its attachments to the designated State Officials.
MUR LAR Supplement 5 Supplemental Reload Licensing Report September 15, 2017 Page 2 There are no regulatory commitments contained in this letter.
Should you have any questions concerning this request, please contact Mr. David Neff at (610) 765-5631.
I declare under penalty of perjury that the foregoing is true and correct. Executed on the 15th day of September 2017.
Respectfully,
~.._: J I ..¢_., d yv-oavid T. Gudger Manager - Licensing & Regulatory Affairs Exelon Generation Company, LLC
Attachment:
Supplemental Reload Licensing Report for Peach Bottom Unit 3 Reload 21 Cycle 22 cc: USNRC Region I, Regional Administrator USNRC Senior Resident Inspector, PBAPS USNRC Project Manager, PBAPS R. R. Janati, Pennsylvania Bureau of Radiation Protection S. T. Gray, State of Maryland
GNi= Global Nuclear Fuel A Joint Venture of GE Toshiba , & H1tach1 003N1452 Revision 0 Class I (Public)
September 2017 Supplemental Reload Licensing Report for Peach Bottom Unit 3 Reload 21Cycle22 Copyright 2017 Global Nuclear Fuel-Americas, LLC All Rights Reserved
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Important Notice Regarding Contents of This Report Please Read Carefully This report was prepared by Global Nuclear Fuel - Americas, LLC (GNF-A) solely for use by Exelon Corporation ("Recipient") in support of the operating license for Peach Bottom Unit 3 (the "Nuclear Plant"). The information contained in this report (the "Information") is believed by GNF-A to be an accurate and true representation of the facts known by, obtained by or provided to GNF-A at the time this report was prepared.
The only undertakings of GNF-A respecting the Information are contained in the contract between Recipient and GNF-A for nuclear fuel and related services for the Nuclear Plant (the "Fuel Contract") and nothing contained in this document shall be construed as amending or modifying the Fuel Contract. The use of the Information for any purpose other than that for which it was intended under the Fuel Contract, is not authorized by GNF-A. In the event of any such unauthorized use, GNF-A neither (a) makes any representation or warranty (either expressed or implied) as to the completeness, accuracy or usefulness of the Information or that such unauthorized use may not infringe privately owned rights, nor (b) assumes any responsibility for liability or damage of any kind which may result from such use of such information.
Page 2
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Acknowledgement The engineering and reload licensing analyses, which form the technical basis of this Supplemental Reload Licensing Report, were performed by GNF-A/GEH Nuclear Analysis personnel. The Supplemental Reload Licensing Report was prepared by Rachel Shapiro. This document has been verified by Jin Su.
Page 3
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Table of Contents
- 1. Plant Unique Items 5
- 2. Reload Fuel Bundles 5
- 3. Reference Core Loading Pattern 6
- 4. Calculated Core Effective Multiplication and Control System Worth 6
- 5. Standby Liquid Control System Shutdown Capability 6
- 6. Reload Unique AOO Analysis - Initial Condition Parameters 7
- 7. Selected Margin Improvement Options 11
- 8. Operating Flexibility Options 12
- 12. Overpressurization Analysis Summary 24
- 13. Fuel Loading Error Results 25
- 14. Control Rod Drop Analysis Results 25
- 15. Stability Analysis Results 26
- 16. Loss-of-Coolant Accident Results 31 Appendix A Analysis Conditions 65 Appendix B Thermal-Mechanical Compliance 66 Appendix C Decrease in Core Coolant Temperature Event 67 Appendix D Off-Rated Limits 68 Appendix E TRACG04 AOO Supplementary Information 75 Appendix F Interim Methods LTR (NEDC-33173P-A Revision 4) Supplemental Information 76 Appendix G MELLLA+ LTR (NEDC-33006P-A Revision 3) Supplemental Information 80 Appendix H Application to Current Licensed Thermal Power (CLTP) 83 Appendix I Peach Bottom Unit 3 Cycle 22 Contingency TCV/TSV Delay Analysis 84 Appendix J End of Cycle Power Coastdown Restrictions 85 Appendix K List of Acronyms 86 Page 4
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 The basis for this report is General Electric Standard Application for Reactor Fuel, NEDE-24011-P-A-25, August 2017; and the U.S. Supplement, NEDE-24011-P-A-25-US, August 2017.
A proprietary Fuel Bundle Information Report (FBIR) supplements this licensing report. The FBIR references the thermal-mechanical linear heat generation rate limits and also provides a description of the fuel bundles to be loaded. The document number for this report is 003N 1453.
- 1. Plant Unique Items Appendix A: Analysis Conditions Appendix B: Thermal-Mechanical Compliance Appendix C: Decrease in Core Coolant Temperature Event Appendix D: Off-Rated Limits Appendix E: TRACG04 AOO Supplementary Information Appendix F: Interim Methods LTR (NEDC-33173P-A Revision 4) Supplemental Information Appendix G: MELLLA+ LTR (NEDC-33006P-A Revision 3) Supplemental Information Appendix H: Application to Current Licensed Thermal Power (CLTP)
Appendix I: Peach Bottom Unit 3 Cycle 22 Contingency TCV/TSV Delay Analysis Appendix J: End of Cycle Power Coastdown Restrictions Appendix K: List of Acronyms
- 2. Reload Fuel Bundles Cycle Fuel Type Number Loaded Irradiated:
GNF2-PI ODG2B400-13GZ-1 OOT2-150-T6-4232 (GNF2) 20 28 GNF2-PI ODG2B393-4G8.0/8G7.0/2G6.0-1 OOT2-150-T6-4233 (GNF2) 20 24 GNF2-PI ODG2B393-15GZ-1 OOT2-150-T6-4235 (GNF2) 20 16 GNF2-P10DG2B403-8G7.0/4G6.0-IOOT2-150-T6-4236 (GNF2) 20 40 GNF2-P10DG2B417-12G7.0-100T2-150-T6-4366 (GNF2) 21 64 GNF2-PI ODG2B402-15GZ-1 OOT2-150-T6-4367 (GNF2) 21 144 GNF2-PI ODG2B424-12G7.0-1 OOT2-150-T6-4368 (GNF2) 21 32 GNF2-PI ODG2B408-14GZ-1 OOT2-150-T6-4369 (GNF2) 21 16 GNF2-PI ODG2B403-14GZ-1 OOT2-150-T6-4370 (GNF2) 21 16 GNF2-PI ODG2B409-14GZ-1 OOT2-150-T6-4365 (GNF2) 21 72 New:
GNF2-P I ODG2B403-14GZ-1 OOT2-150-T6-4505 (GNF2) 22 88 GNF2-PI ODG2B419-15GZ-1 OOT2-150-T6-4507 (GNF2) 22 64 GNF2-Pl ODG2B406-14G6.0-1OOT2-l50-T6-4506 (GNF2) 22 48 GNF2-PI ODG2B404-6G7 .0/8G6.0-1 OOT2-150-T6-4504 (GNF2) 22 112 Total: 764 Page 5
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0
- 3. Reference Core Loading Pattern Core Average Cycle Exposure Exposure 36017 MWd/MT 19843 MWd/MT Nominal previous end-of-cycle exposure:
(32674 MWd/ST) (18002 MWd/ST)
Minimum previous end-of-cycle exposure (for cold 35687 MWd/MT 19513 MWd/MT shutdown considerations): (32374 MWd/ST) (17702 MWd/ST) 16683 MWd/MT 0 MWd/MT Assumed reload beginning-of-cycle exposure:
(15134 MWd/ST) (0 MWd/ST)
Assumed reload end-of-cycle exposure (rated 34292 MWd/MT 17609 MWd/MT conditions): (31109 MWd/ST) (15975 MWd/ST)
Reference core loading pattern: Figure 1
- 4. Calculated Core Effective Multiplication and Control System Worth Beginning of Cycle, keffective Uncontrolled (20°C) 1.102 Fully controlled (20°C) 0.942 Strongest control rod out (most reactive condition, 60°C) 0.979 R, Maximum increase in strongest rod out reactivity during the cycle (.~k) 0.001 15432 MWd/MT Cycle exposure at which R occurs (14000 MWd/ST)
- 5. Standby Liquid Control System Shutdown Capability Shutdown Margin (~k)
Boron (ppm)
(at 160°C, Xenon Free)
(at 20°C)
Analytical Requirement Achieved 660 ~0.010 0.032 Page 6
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 1
Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.38 1.32 0.97 7.304 118.6 1.64 Operating domain: ICF and FWTR (HBB)
Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.43 1.37 0.96 7.517 116.6 1.66 Operating domain: MELLLA+ (HBB)
Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.38 1.25 0.97 7.301 91.3 1.45 Operating domain: MELLLA (HBB)
Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.47 1.26 0.97 7.778 105.5 1.46 1
Exposure range designation is defined in Table 7-1. Application condition number is defined in Section 11.
Page 7
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Operating domain: MELLLA and FWTR (HBB)
Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.41 1.37 0.96 7.395 107.6 1.63 Operating domain: ICF (UB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.33 1.24 0.96 6.966 121.9 1.73 Operating domain: ICF and FWTR (UB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.33 1.26 0.96 7.012 122.3 1.76 Operating domain: ICF (HBB)
Exposure range : MOC to EOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.34 1.37 0.97 7.065 123.1 1.58 Operating domain: ICF and FWTR (HBB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.32 1.35 0.96 6.938 124.7 1.68 Page 8
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Operating domain: MELLLA + (UB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.32 1.23 0.96 6.941 92.4 1.57 Operating domain: MELLLA+ (HBB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.36 1.32 0.98 7.174 92.8 1.41 Operating domain: MELLLA(UB)
Exposure range : MOCtoEOC ( Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.32 1.23 0.96 6.922 110.2 1.69 Operating domain: MELLLA and FWTR (UB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.33 1.25 0.96 6.973 112.4 1.73 Page 9
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Operating domain: MELLLA (HBB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.35 1.35 0.97 7.110 110.8 1.53 Operating domain: MELLLA and FWTR (HBB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Peaking Factors Bundle Bundle Fuel Initial Local Radial Axial R-Factor Power Flow Design MCPR (MWt) (1000 lb/hr)
GNF2 1.0 1.33 1.34 0.97 6.975 114.1 1.62 Page 10
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 2
- 7. Selected Margin Improvement Options Recirculation pump trip: Yes Rod withdrawal limiter: No Thermal power monitor: Yes Improved scram time: Yes (Option B)
Measured scram time: No Exposure dependent limits: Yes Exposure points analyzed: 2 Table 7-1 Cycle Exposure Range Designation Name Exposure Range 3 BOC to MOC BOC22 to EOR22 - 4316 MWd/MT (3915 MWd/ST)
MOC to EOC EOR22 - 4316 MWd/MT (3915 MWd/ST) to EOC22 BOC to EOC BOC22 to EOC22 2
Refer to the GESTAR basis document identified at the beginning of this report for the margin improvement options currently supported therein.
3 End of Rated (EOR) is defined as the cycle exposure corresponding to all rods out, I 00% power/ 100% flow, and normal feedwater temperature. For plants without mid-cycle OLMCPR points, EOR is not applicable.
Page 11
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0
- 8. Operating Flexibility Options 4 s 6 The following information presents the operational domains and flexibility options which are supported by the reload licensing analysis.
Extended Operating Domain (EOD): Yes EOD type: Maximum Extended Load Line Limit Plus (MELLLA+)
Minimum core flow at rated power: 85.2 %
Increased Core Flow: Yes Flow point analyzed throughout cycle: 110.0 %
Feedwater Temperature Reduction: Yes Feedwater temperature reduction during cycle: 55.0°F Final feedwater temperature reduction: 90.0°F ARTS Program: Yes Single Loop Operation: Yes Equipment Out of Service:
Safety/relief valves Out of Service: Yes (credit taken for 10 valves) 1 MSIVOOS Yes 1 TCV and/or 1 TSVOOS Yes JSRVOOS Yes 2 TBVOOS Yes TB SOOS Yes RPTOOS Yes PROOS Yes PLUOOS Yes 4
Refer to the GESTAR basis document identified at the beginning of this report for the operating flexibility options currently supported therein.
5 Single Loop Operation is prohibited in the MELLLA+ domain.
6 Feedwater Temperature Reduction is prohibited in the MELLLA+ domain.
Page 12
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0
- 9. Core-wide AOO Analysis Results 7 8 Methods used: TRACG04, GEXL-PLUS Operating domain: ICF and FWTR (HBB)
Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4)
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 307.0 114.4 0.185 2 Operating domain: MELLLA+ (HBB)
Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4)
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Load Rejection w/o Bypass 243 .8 106.1 0.161 3 Operating domain: MELLLA and FWTR (HBB)
Exposure range : BOC to MOC (Application Condition: 1,2,3,4)
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 290.4 113.6 0.183 4 Operating domain: ICF and FWTR with TBSOOS (HBB)
Exposure range : BOC to MOC (Application Condition: 2)
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 346.8 115.7 0.206 5 7
Exposure range designation is defined in Table 7-1 . Application condition number is defined in Section 11.
8 The Heat Flux (Q/A) (% rated) output is not available from TRACG04, so the Simulated Thermal Power (STP)
(% rated) is shown.
Page 13
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Operating domain: MELLLA+ with TBSOOS (HBB)
Exposure range : BOCtoMOC (Application Condition: 2 )
Uncorrected .ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Inadvertent HPCI /LS 238.l 117.8 0.180 6 Operating domain: MELLLA and FWTR with TBSOOS (HBB)
Exposure range : BOCtoMOC (Application Condition: 2)
Uncorrected .ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 330.3 115.0 0.205 7 Operating domain: ICF and FWTR with RPTOOS (HBB)
Exposure range : BOCtoMOC (Application Condition: 3)
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 397.0 116.3 0.208 8 Operating domain: MELLLA+ with RPTOOS (HBB)
Exposure range : BOC to MOC (Application Condition: 3)
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Load Rejection w/o Bypass 293.3 107.6 0.165 9 Operating domain: MELLLA and FWTR with RPTOOS (HBB)
Exposure range : BOC to MOC (Application Condition: 3 )
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 358.4 115.2 0.199 10 Page 14
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Operating domain: ICF with PROOS and/or PLUOOS (HBB)
Exposure range : BOC to MOC (Application Condition: 4)
Uncorrected aCPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Pressure Regulator Failure Downscale 141.5 105.2 0.113 11 Operating domain: MELLLA+ with PROOS and/or PLUOOS (HBB)
Exposure range : BOC to MOC (Application Condition: 4)
Uncorrected aCPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Pressure Regulator Failure Downscale 140.4 104.5 0.108 12 Operating domain: MELLLA with PROOS and/or PLUOOS (HBB)
Exposure range : BOC to MOC (Application Condition: 4)
Uncorrected aCPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Pressure Regulator Failure Downscale 140.8 104.7 0.108 13 Operating domain: ICF and FWTR (UB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Uncorrected aCPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 332.8 115.4 0.193 14 Operating domain: MELLLA+ (HBB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Uncorrected aCPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Load Rejection w/o Bypass 301.4 108.2 0.181 15 Page 15
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Operating domain: MELLLA and FWTR (UB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 313.7 114.8 0.194 16 Operating domain: ICF and FWTR with TBSOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 2)
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 369.3 116.8 0.213 17 Operating domain: MELLLA+ with TBSOOS (HBB)
Exposure range : MOCtoEOC (Application Condition: 2 )
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Inadvertent HPCI /LS 293.5 118.9 0.196 18 Operating domain: MELLLA and FWTR with TBSOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 2 )
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 367.8 116.2 0.214 19 Operating domain: ICF and FWTR with RPTOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 3)
Uncorrected ACPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 415.2 117.2 0.214 20 Page 16
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Operating domain: MELLLA+ with RPTOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 3)
Uncorrected L\CPR/ICPR Flux STP Event GNFl Fig.
(%rated) (%rated)
Load Rejection w/o Bypass 319.7 108.2 0.177 21 Operating domain: MELLLA and FWTR with RPTOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 3)
Uncorrected L\CPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
FW Controller Failure 378.6 116.3 0.208 22 Operating domain: ICF and FWTR with PROOS and/or PLUOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 4)
Uncorrected L\CPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Pressure Regulator Failure Downscale 139.3 106.2 0.162 23 Operating domain: MELLLA+ with PROOS and/or PLUOOS (HBB)
Exposure range : MOCtoEOC (Application Condition: 4)
Uncorrected L\CPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Pressure Regulator Failure Downscale 142.5 105.8 0.131 24 Operating domain: MELLLA and FWTR with PROOS and/or PLUOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 4)
Uncorrected L\CPR/ICPR Flux STP Event GNF2 Fig.
(%rated) (%rated)
Pressure Regulator Failure Downscale 139.0 105.4 0.152 25 Page 17
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0
- 10. Rod Withdrawal Error AOO Summary The Rod Withdrawal Error (RWE) event was analyzed in the GE BWR Licensing Report Maximum Extended Load Line Limit and ARTS Improvement Program Analyses for Peach Bottoms Atomic Power Station Unit 2 and 3, NEDC-32162P, Rev. 2, March 1995.
RWE Results:
Base, Base + RPTOOS, Base + PROOS and/or PLUOOS RBM Setpoint (%) ACPR 110.0 0.21 113.0 0.23 115.5 0.28 118.5 0.33 Base + TBSOOS RBM Setpoint (%) ACPR 110.0 0.28 113.0 0.29 115.5 0.29 118.5 0.33 The more limiting of the cycle specific and the generic L'.1CPR values are reported in the table above. The RWE OLM CPR is determined by adding the L'.1CPR for the desired RBM setpoint from the table above to the SLMCPR in Section 11.
The RBM setpoints provided in the table above are for an unfiltered RBM response.
The ARTS RWE analysis validated that the following MCPR values provide the required margin for full withdrawal of any control rod during this cycle:
For Power< 90%: MCPR ~ 1.83 For Power~ 90%: MCPR ~ 1.50 The RBM operability requirements have been evaluated and shown to be sufficient to ensure that the SLM CPR and cladding strain criteria will not be exceeded in the event of a RWE.
Page 18
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0
- 11. Cycle SLMCPR and OLMCPR Summary 9 10 11 Two Loop Operation (TLO) safety limit: 1.15 Single Loop Operation (SLO) safety limit: 1.15 Stability MCPR Design Basis: See Section 15 ECCS MCPR Design Basis: See Section 16 (Initial MCPR)
Non-pressurization Events:
Exposure range: BOC to EOC All Fuel Types Rod Withdrawal Error 1.38 (Base, Base+ RPTOOS, Base+ PROOS and/or PLUOOS)
(113.0 % RBM Setpoint) 1.44 (Base + TBSOOS)
Loss of Feedwater Heating 1.32 Fuel Loading Error (Mislocated) Not Limiting Fuel Loading Error (Misoriented) 1.34 12 Rated Equivalent SLO Pump Seizure 1.43 9
Exposure range designation is defined in Table 7-1.
10 For SLO, the MCPR operating limit is 0.03 greater than the two loop value.
11 The safety limit values presented include a 0.02 adder in accordance with Interim Methods LTR Safety Evaluation Report Limitation and Condition 9.5, as noted in Appendix F.
12 The cycle-independent OLMCPR for the recirculation pump seizure event for GNF2 is 1.60 based on the cycle-specific SLO SLM CPR. When adjusted for the off-rated power/flow conditions of SLO, this limit corresponds to a rated OLMCPR of 1.43. This limit does not require an adjustment for the SLO SLMCPR.
Page 19
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 13 14 Limiting Pressurization Events OLMCPR Summary Table:
Appl.
Exposure Range Option A Option B Cond.
GNF2 GNF2 I Base (lMSIVOOS, 1TCV and/or 1TSVOOS, lSRVOOS, 2TBVOOS)
BOC to MOC 1.48 1.40 MOCtoEOC 1.50 1.42 2 Base + TBSOOS BOC to MOC 1.53 1.44 MOC to EOC 1.56 1.47 3 Base + RPTOOS BOC to MOC 1.60 1.43 MOCtoEOC 1.62 1.45 4 Base + PROOS and/or PLUOOS BOC to MOC 1.48 1.40 MOC to EOC 1.50 1.42 15 Pressurization Events:
Operating domain: ICF and FWTR (HBB)
Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4)
Option A Option B GNF2 GNF2 FW Controller Failure 1.45 1.37 Operating domain: MELLLA+ (HBB)
Exposure range : BOC to MOC (Application Condition: 1, 2, 3, 4)
Option A Option B GNF2 GNF2 Load Rejection w/o Bypass 1.46 1.38 13 Each application condition (Appl. Cond.) covers the entire range of licensed flow and feedwater temperature unless specified otherwise. The OLMCPR values presented apply to rated power operation based on the two loop operation safety limit MCPR.
14 Note that Base (Base Case) includes I MSIVOOS, I TCV/TSVOOS, I SRVOOS, 2 TBVOOS, and FWHOOS/FFWTR. These Base Case EOOS conditions are included in all other application conditions. Refer to Appendix D for power levels supported for I MSIVOOS and I TCV/TSVOOS .
15 Application condition numbers shown for each of the following pressurization events represent the application conditions for which this event contributed in the determination of the limiting OLMCPR value.
Page 20
Peach Bottom Unit 3 003N14S2 Reload 21 Revision 0 Operating domain: MELLLA and FWTR (HBB)
Exposure range : BOC to MOC ( Application Condition: 1, 2, 3, 4)
Option A Option B GNF2 GNF2 FW Controller Failure 1.48 1.40 Operating domain: ICF and FWTR with TBSOOS (HBB)
Exposure range : BOC to MOC (Application Condition: 2 )
Option A Option B GNF2 GNF2 FW Controller Failure I.SO 1.41 Operating domain: MELLLA+ with TBSOOS (HBB)
Exposure range : BOC to MOC (Application Condition: 2 )
Option A Option B GNF2 GNF2 Inadvertent HPCI /LS I.SO 1.41 Operating domain: MELLLA and FWTR with TBSOOS (HBB)
Exposure range : BOC to MOC (Application Condition: 2 )
Option A Option B GNF2 GNF2 FW Controller Failure l.S3 1.44 Operating domain: ICF and FWTR with RPTOOS (HBB)
Exposure range : BOC to MOC ( Application Condition: 3 )
Option A Option B GNF2 GNF2 FW Controller Failure I.SS 1.41 Operating domain: MELLLA+ with RPTOOS {HBB)
Exposure range : BOC to MOC (Application Condition: 3 )
Option A Option B GNF2 GNF2 Load Rejection w/o Bypass I.SS 1.38 Page 21
Peach Bottom Unit 3 003NI452 Reload 21 Revision 0 Operating domain: MELLLA and FWTR with RPTOOS (BBB)
Exposure range : BOC to MOC ( Application Condition: 3 )
Option A Option B GNF2 GNF2 FW Controller Failure 1.60 1.43 Operating domain: ICF with PROOS and/or PLUOOS (BBB)
Exposure range : BOC to MOC (Application Condition: 4)
Option A Option B GNF2 GNF2 Pressure Regulator Failure Downscale 1.36 1.24 Operating domain: MELLLA+ with PROOS and/or PLUOOS (BBB)
Exposure range : BOC to MOC (Application Condition: 4)
Option A Option B GNF2 GNF2 Pressure Regulator Failure Downscale 1.40 1.28 Operating domain: MELLLA with PROOS and/or PLUOOS (BBB)
Exposure range : BOC to MOC (Application Condition: 4)
Option A Option B GNF2 GNF2 Pressure Regulator Failure Downscale 1.39 1.27 Operating domain: ICF and FWTR (UB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Option A Option B GNF2 GNF2 FW Controller Failure 1.46 1.38 Operating domain: MELLLA+ (BBB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Option A Option B GNF2 GNF2 Load Rejection w/o Bypass 1.49 1.41 Operating domain: MELLLA and FWTR (UB)
Exposure range : MOCtoEOC (Application Condition: 1, 2, 3, 4)
Option A Option B GNF2 GNF2 FW Controller Failure 1.50 1.42 Page 22
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Operating domain: ICF and FWTR with TBSOOS (UB)
Exposure range : MOCtoEOC ( Application Condition: 2 )
Option A Option B GNF2 GNF2 FW Controller Failure 1.51 1.42 Operating domain: MELLLA+ with TBSOOS (HBB)
Exposure range : MOCtoEOC (Application Condition: 2 )
Option A Option B GNF2 GNF2 Inadvertent HPCI /LS 1.53 1.44 Operating domain: MELLLA and FWTR with TBSOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 2 )
Option A Option B GNF2 GNF2 FW Controller Failure 1.56 1.47 Operating domain: ICF and FWTR with RPTOOS (UB)
Exposure range : MOC to EOC (Application Condition: 3 )
Option A Option B GNF2 GNF2 FW Controller Failure 1.59 1.42 Operating domain: MELLLA+ with RPTOOS (UB)
Exposure range : MOC to EOC (Application Condition: 3 )
Option A Option B GNF2 GNF2 Load Rejection w/o Bypass 1.58 1.41 Operating domain: MELLLA and FWTR with RPTOOS (UB)
Exposure range : MOC to EOC (Application Condition: 3 )
Option A Option B GNF2 GNF2 FW Controller Failure 1.62 1.45 Operating domain: ICF and FWTR with PROOS and/or PLUOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 4)
Option A Option B GNF2 GNF2 Pressure Regulator Failure Downscale 1.44 1.32 Page 23
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Operating domain: MELLLA+ with PROOS and/or PLUOOS (HBB)
Exposure range : MOCtoEOC (Application Condition: 4)
Option A Option B GNF2 GNF2 Pressure Regulator Failure Downscale 1.45 1.33 Operating domain: MELLLA and FWTR with PROOS and/or PLUOOS (UB)
Exposure range : MOCtoEOC (Application Condition: 4)
Option A Option B GNF2 GNF2 Pressure Regulator Failure Downscale 1.46 1.34
- 12. Overpressurization Analysis Summary 16 Pdome Pv Plant Event (psig) {psig) Response MSIV Closure (Flux Scram) - ICF (HBB) 1322 1352 Figure 26 MSIV Closure (Flux Scram)- MELLLA+ (HBB) 1324 1349 Figure 27 MSIV Closure (Flux Scram) - MELLLA (HBB) 1323 1351 Figure 28 16 Overpressure calculated at an initial dome pressure of I 035 psig.
Page 24
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0
- 13. Fuel Loading Error Results 17 Variable water gap misoriented bundle analysis: Yes Misoriented Fuel Bundle .6.CPR GNF2-Pl ODG2B404-6G7.0/8G6.0-1 OOT2-150-T6-4504 (GNF2) 0.15 GNF2-Pl ODG28406-14G6.0-1 OOT2-150-T6-4506 (GNF2) 0.14 GNF2-Pl ODG2B419-15GZ-1 OOT2-150-T6-4507 (GNF2) 0.16 GNF2-P 1ODG28403-14GZ-1 OOT2-150-T6-4505 (GNF2) 0.13 GNF2-Pl ODG28417-12G7.0-1 OOT2-150-T6-4366 (GNF2) 0.14 GNF2-P 1ODG28402-15GZ-1 OOT2-150-T6-4367 (GNF2) 0.19 GNF2-P 1ODG28424-12G7 .0-1 OOT2-150-T6-4368 (GNF2) 0.12 GNF2-Pl ODG28408-14GZ-1 OOT2-150-T6-4369 (GNF2) 0.19 GNF2-P10DG28403-14GZ-1OOT2-150-T6-4370 (GNF2) 0.19 GNF2-P10DG28409-14GZ-1 OOT2-150-T6-4365 (GNF2) 0.17
- 14. Control Rod Drop Analysis Results This is a banked position withdrawal sequence plant; therefore, the control rod drop accident analysis is not required. NRC approval is documented in NEDE-24011-P-A-US.
17 Includes a 0.02 penalty due to variable water gap R-factor uncertainty.
Page 25
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0
- 15. Stability Analysis Results Peach Bottom Unit 3 is licensed to operate in the MELLLA+ operating domain. Implementation of MELLLA+ operating domain requires the use of the Detect and Suppress Solution - Confirmation Density (DSS-CD) stability solution. Stability results for operation at EPU with MELLLA+ and DSS-CD are contained in this section.
15.1 Stability DSS-CD Solution Peach Bottom Unit 3 implements the stability DSS-CD solution using the Oscillation Power Range Monitor (OPRM) as described in Reference 1 in Section 15.4. Plant-specific analyses for the DSS-CD solution are provided in Reference 2 in Section 15.4. The Detect and Suppress function of the DSS-CD solution based on the OPRM system relies on the Confirmation Density Algorithm (CDA), which constitutes the licensing basis. The Backup Stability Protection (BSP) solution may be used by the plant in the event that the OPRM system is declared inoperable.
The CDA enabled through the OPRM system and the BSP solution described in Reference I in Section 15.4 provide the stability licensing bases for Peach Bottom Unit 3 Cycle 22. The safety evaluation report for Reference I in Section 15.4 concluded that the DSS-CD solution is acceptable subject to certain cycle-specific limitations and conditions. These cycle-specific limitations and conditions are met for Peach Bottom Unit 3 Cycle 22.
15.2 Detect and Suppress Evaluation A reload DSS-CD evaluation has been performed in accordance with the licensing methodology described in Reference I in Section 15.4 to confirm the established Amplitude Discriminator Setpoint (SAo) of the CDA in Reference 2 in Section 15.4. The Cycle 22 DSS-CD evaluation and the results for the DSS-CD Reload Confirmation Applicability Checklist documented in Table 15-1 demonstrate that: I) the DSS-CD Solution is applicable to Peach Bottom Unit 3 Cycle 22; and, 2) the established SAD=l.10 in Reference 2 in Section 15.4 is confirmed for operation of Peach Bottom Unit 3 Cycle 22.
The SAo=l.10 setpoint is applicable to TLO and to SLO.
The SAO=l.10 setpoint is adequate to bound a variation in normal feedwater temperature of+/- I 0.0 °F in the MELLLA+ domain per Reference 2 in Section 15.4.
Page 26
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Table 15-1 DSS-CD Reload Confirmation Applicability Checklist Peach Bottom 3 Parameter DSS-CD Criterion Acceptance Cycle 22 BWR Product Line BWR/3-6 design BWR/4 Confirmed AtriumlOXM, GNF2, Fuel Product Line GE 14, and earlier GE GNF2 Confirmed designs
~ TPO/MELLLA + TPO/MELLLA +
Operating Domain including currently including currently Confirmed (TLO) licensed operational licensed operational flexibility features flexibility features
~ TPO/MELLLA TPO/MELLLA Operating Domain including currently including currently Confirmed (SLO) licensed operational licensed operational flexibility features flexibility features
~ 120 °F (TPO/MELLLA) 90°F Reduction Rated TFw Reduction Confirmed No TFw Reduction (TPO/MELLLA)
(MELLLA+ Extension)
TLO DSS-CD Licensing Basis MCPR Margin Cycle 22 Results ~
Margin for TLO Confirmed criterion in Reference 2 in DSS-CD Criterion Section 15.4 SLO DSS-CD Licensing Basis MCPR Margin Cycle 22 Results ~
Margin for SLO Confirmed criterion in Reference 2 in DSS-CD Criterion Section 15.4 15.3 Backup Stability Protection Reference 1 in Section 15.4 describes two BSP options that are based on selected elements from three distinct constituents: BSP Manual Regions, BSP Boundary, and Automated BSP (ABSP) setpoints.
The Manual BSP region boundaries and the BSP Boundary are calculated for Peach Bottom Unit 3 Cycle 22 for normal feed water temperature operation and reduced feedwater temperature. The endpoints of the regions are defined in Table 15-2 and Table 15-3. The Scram Region boundary, the Controlled Entry Region boundary, and the BSP Boundary are shown in Figure 29 and in Figure 30 for the normal and reduced feedwater temperature, respectively. The Manual BSP region boundary endpoints are connected using the Modified Shape Function (MSF).
Page 27
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 The ABSP Average Power Range Monitor (APRM) Simulated Thermal Power (STP) setpoints associated with the ABSP Scram Region are confirmed for Cycle 22 and are defined in Table 15-4. These ABSP setpoints are applicable to both TLO and SLO.
The BSP Boundary and the Manual BSP region boundaries for normal feedwater temperature operation are adequate to bound a variation in normal feedwater temperature of +/-10.0 °F. The regions currently implemented at Peach Bottom Unit 3 (Reference 3 in Section 15.4) are bounding of the Cycle 22 proposed regions.
Table 15-2 BSP Endpoints for Normal Feedwater Temperature Power Flow Definition Endpoint
(%) (%)
Scram Region Al 73.1 49.2 Boundary, HFCL Scram Region Bl 40.0 31.0 Boundary, NCL Controlled Entry A2 63.5 50.0 Region Boundary, HFCL Controlled Entry B2 27.6 30.1 Region Boundary, NCL Note: The BSP Boundary for Normal Feedwater Temperature is defined by the MELLLA boundary line, per Reference 1 in Section 15.4.
Page 28
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Table 15-3 BSP Endpoints for Reduced Feedwater Temperature Power Flow Definition Endpoint
(%) (%)
Scram Region Al' 63.0 49.4 Boundary, HFCL Scram Region Bl' 33.8 30.6 Boundary, NCL Controlled Entry A2' .65.3 52.4 Region Boundary, HFCL Controlled Entry B2' 27.6 30.l Region Boundary, NCL Note: The BSP Boundary for Reduced Feedwater Temperature is defined by the MELLLA boundary line, per Reference 1 in Section 15.4.
Table 15-4 ABSP setpoints for the Scram Region Parameter Symbol Value Slope of ABSP APRM flow-mTRIP 1.37 biased trip linear segment.
ABSP APRM flow-biased trip setpoint power intercept.
Constant Power Line for Trip PssP-TRIP 39.3 %RTP 1 from zero Drive Flow to Flow Breakpoint value.
ABSP APRM flow-biased trip setpoint drive flow intercept. WssP-TRIP 46.5 %RDF 2 Constant Flow Line for Trip.
Flow Breakpoint value WssP-BREAK 20.0 %RDF 2
- 1. RTP - Rated Thermal Power
- 2. RDF - Recirculation Drive Flow Page 29
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 15.4 References I. GE Hitachi Boiling Water Reactor, Detect and Suppress Solution - Confirmation Density, NEDC-33075P-A, Revision 8, November 2013.
- 2. Project Task Report: Exelon Nuclear, LLC, Peach Bottom Power Station Units 2 and 3, Thermal Power Optimization Project, Task T0202: Thermal Hydraulic Stability, 003N6203, Revision I, December 20 I 6.
- 3. DIR Transmittal of APRM Flow-Biased STP Scram SLO Setpoints and EPU+TPO Manual BSP Regions, ES I 700004, Revision I, March 20 I 7.
Page 30
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0
- 16. Loss-of-Coolant Accident Results 16.1 10CFR50.46 Licensing Results The ECCS-LOCA analysis is based on the SAFER/PRIME ECCS-LOCA methodology. NRC approval of the PRIME methodology is found in the Final Safety Evaluation of the PRIME model Licensing Topical Report (Reference 2 for GNF2 in Section 16.4 ).
The licensing results applicable to the GNF2 fuel type in the new cycle are summarized in the following table.
Table 16.1-1 Licensing Results Core-Wide Licensing Local Metal-Water Fuel Type Basis PCT Oxidation Reaction (oF) (%)
(%)
GNF2 1920 < 4.00 < 0.10 The SAFER/PRIME ECCS-LOCA analysis results for the GNF2 fuel type are documented in Reference I for GNF2 in Section 16.4.
Page 31
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 16.2 10CFRS0.46 Notification Letters The 10CFR50.46 Notification Letters applicable to the GNF2 Licensing Basis PCT are shown in the following table.
Table 16.2-1 Impact on Licensing Basis Peak Cladding Temperature for GNF2 10CFRS0.46 Notification Letters PCT Impact Number Subject
{°F)
SAFER04A E4 Revision-Code Changes of 2014-01 0 Neutral Impact 2014-02 SAFER04A E4 Revision-Mass Non-Conservatism +10 SAFER04A E4 Revision-Minimum Core DP 2014-03 -10 Model SAFER04A E4 Revision-Lower Plenum CCFL 2014-04 +5 Restriction GNF2 Lower Tie Plate-Finger Spring Removal 2017-01 0 and Bypass Flow Hole Change Fuel rod plenum temperature modeling update, 2017-02 0 lOx 10 geometry and getter removal Total PCT Adder (°F) +5 After accounting for the 10CFR50.46 Notification Letters impact, the GNF2 Licensing Basis PCT with the total PCT adder remains below the 10CFR50.46 limit of 2200 °F.
Page 32
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 16.3 ECCS-LOCA Operating Limits The ECCS-LOCA MAPLHGR operating limits for all fuel bundles in this cycle are shown in the following table.
Table 16.3-1 MAPLHGR Limits Bundle Type(s): GNF2-P10DG2B404-6G7 .0/8G6.0-1 OOT2-150-T6-4504 (GNF2)
GNF2-P10DG2B406-14G6.0-100T2-150-T6-4506 (GNF2)
GNF2-P 1ODG2B419-15GZ-1 OOT2-150-T6-4507 (GNF2)
GNF2-P 1ODG2B403-14GZ-1 OOT2-150-T6-4505 (GNF2)
GNF2-P I ODG2B400-13GZ-1 OOT2-150-T6-4232 (GNF2)
GNF2-Pl ODG2B393-4G8.0/8G7.0/2G6.0-1 OOT2-150-T6-4233 (GNF2)
GNF2-Pl ODG2B393- I 5GZ-1 OOT2-150-T6-4235 (GNF2)
GNF2-PI ODG2B403-8G7.0/4G6.0-I OOT2-150-T6-4236 (GNF2)
GNF2-P10DG2B417-12G7.0-IOOT2-l 50-T6-4366 (GNF2)
GNF2-Pl ODG2B402-15GZ- I OOT2-150-T6-4367 (GNF2)
GNF2-PI ODG2B424-12G7 .0-1OOT2-I50-T6-4368 (GNF2)
GNF2-Pl ODG2B408-14GZ-1 OOT2-150-T6-4369 (GNF2)
GNF2-PIODG2B403-14GZ-1OOT2-l50-T6-4370 (GNF2)
GNF2-P I ODG2B409- I 4GZ- I OOT2-150-T6-4365 (GNF2)
MAPLHGR Average Planar Exposure Limit GWd/MT GWd/ST kW/ft 0.00 0.00 13.78 19.31 17.52 13.78 67.00 60.78 7.50 70.00 63.50 6.69 The power and flow dependent LHGR multipliers are sufficient to provide adequate protection for the off-rated conditions from an ECCS-LOCA analysis perspective. The MAPLHGR multipliers can either be set to unity or set equal to the LHGR multipliers, which remain compliant with the basis of the ECCS-LOCA analysis with no loss of ECCS-LOCA margin.
The single loop operation multiplier on LHGR and MAPLHGR and the ECCS-LOCA analytical initial MCPR value applicable to the GNF2 fuel type in the new cycle core are shown in the following table.
Page 33
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Table 16.3-2 Initial MCPR and Single Loop Operation Multiplier on LHGR and MAPLHGR Single Loop Operation Fuel Type Initial MCPR Multiplier on LHGR and MAPLHGR GNF2 1.25 0.73 The GNF2 SLO multiplier applies to the MELLLA/EPU operating domain only, and SLO operation in the MELLLA+ domain is not permitted.
16.4 References The SAFER/PRIME ECCS-LOCA analysis basis reports applicable to the new cycle core are:
References for GNF2
- 1. Project Task Report, Exelon Generation Company LLC, Peach Bottom Atomic Power Station, Units 2 & 3 MELLLA+ Task T0407: ECCS-LOCA Pe1formance, 0000-0162-2354-RO, Revision 0, (PLM OOON0296 Revision 0), December 2013.
- 2. The PRIME Model for Analysis of Fuel Rod Thermal-Mechanical Pe1formance, Part 1 -
Technical Bases - NEDC-33256P-A, Revision 1, Part 2 - Qualification - NEDC-33257P-A, Revision 1, and Part 3 - Application Methodology - NEDC-33258P-A, Revision 1, September 2010.
Page 34
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 60 25 26 3 3 26 25 3 3 25 29 3 3 26 25 58 25 29 38 36 32 32 32 38 38 32 32 32 36 38 29 25 56 3 30 26 32 35 32 36 33 7 32 32 7 33 36 32 35 32 26 30 3 54 26 34 36 7 7 7 7 7 6 6 6 6 7 7 7 7 7 36 34 26 52 25 35 36 7 7 6 34 6 35 5 34 34 5 35 6 34 6 7 7 36 35 25 50 25 26 35 33 9 6 6 31 9 34 9 37 9 9 37 9 34 9 31 6 6 9 33 35 26 25 48 29 34 36 9 34 9 31 9 35 5 34 9 35 35 9 34 5 35 9 31 9 34 9 36 34 29 46 25 29 36 7 6 9 31 9 34 5 39 9 31 5 5 31 9 39 5 34 9 31 9 6 7 36 29 25 44 3 25 32 7 7 6 31 9 31 9 35 9 35 5 31 31 5 35 9 35 9 31 9 31 6 7 7 32 25 3 42 26 38 35 7 6 31 9 34 9 35 5 34 5 35 5 5 35 5 34 5 35 9 34 9 31 6 7 35 38 26 40 30 36 32 7 34 9 35 5 35 5 31 5 37 5 39 39 5 37 5 31 5 35 5 35 9 34 7 32 36 30 38 3 32 36 7 6 34 5 39 9 34 5 35 5 31 5 5 31 5 35 5 34 9 39 5 34 6 7 36 32 3 36 3 32 33 7 35 9 34 9 35 5 37 5 34 5 35 35 5 34 5 37 5 35 9 34 9 35 7 33 32 3 34 3 32 7 6 5 37 9 31 5 35 5 31 5 33 5 5 33 5 31 5 35 5 31 9 37 5 6 7 32 3 32 29 38 32 6 34 9 35 5 31 5 39 5 35 5 31 31 5 35 5 39 5 31 5 35 9 34 6 32 38 26 30 26 38 32 6 34 9 35 5 31 5 39 5 35 5 31 31 5 35 5 39 5 31 5 35 9 34 6 32 38 26 28 3 32 7 6 5 37 9 31 5 35 5 31 5 33 5 5 33 5 31 5 35 5 31 9 37 5 6 7 32 3 26 3 32 33 7 35 9 34 9 35 5 37 5 34 5 35 35 5 34 5 37 5 35 9 34 9 35 7 33 32 3 24 3 32 36 7 6 34 5 39 9 34 5 35 5 31 5 5 31 5 35 5 34 9 39 5 34 6 7 36 32 3 22 30 36 32 7 34 9 35 5 35 5 31 5 37 5 39 39 5 37 5 31 5 35 5 35 9 34 7 32 36 30 20 26 38 35 7 6 31 9 34 9 35 5 34 5 35 5 5 35 5 34 5 35 9 34 9 31 6 7 35 38 26 18 3 25 32 7 7 6 31 9 31 9 35 9 35 5 31 31 5 35 9 35 9 31 9 31 6 7 7 32 25 3 16 25 29 36 7 6 9 31 9 34 5 39 9 31 5 5 31 9 39 5 34 9 31 9 6 7 36 29 25 14 29 34 36 9 34 9 31 9 35 5 34 9 35 35 9 34 5 35 9 31 9 34 9 36 34 29 12 25 26 35 33 9 6 6 31 9 34 9 37 9 9 37 9 34 9 31 6 6 9 33 35 26 25 10 25 35 36 7 7 6 34 6 35 5 34 34 5 35 6 34 6 7 7 36 35 25 26 34 36 7 7 7 7 7 6 6 6 6 7 7 7 7 7 36 34 26 6 3 30 26 32 35 32 36 33 7 32 32 7 33 36 32 35 32 26 30 3 4 25 29 38 36 32 32 32 38 38 32 32 32 36 38 29 25 2 25 26 3 3 29 25 3 3 25 29 3 3 26 25 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 Fuel Type 3=GNF2-P IODG28403-8G7.0/4G6.0-I OOT2-150-T6-4236 (Cycle 20) 31 =GNF2-P IODG2B409-14GZ- IOOT2-150-T6-4365 (Cycle 21) 5=GNF2-P IODG28404-6G7.0/8G6.0-1OOT2-l50-T6-4504 (Cycle 22) 32=GNF2-PI ODG2B417- I2G7.0-1OOT2-I50-T6-4366 (Cycle 21) 6=GNF2-P IODG28406-14G6.0-I OOT2- l 50-T6-4506 (Cycle 22) 33=GNF2-PIODG2B417-12G7.0-IOOT2-l 50-T6-4366 (Cycle 21) 7=GNF2-P IODG2B419-15GZ-1OOT2-I50-T6-4507 (Cycle 22) 34=GNF2-PIODG2B402-15GZ-IOOT2-150-T6-4367 (Cycle 21) 9=GNF2-P IODG28403-14GZ-1OOT2-I50-T6-4505 (Cycle 22) 35=GNF2-PI ODG2B402-15GZ- IOOT2-150-T6-4367 (Cycle 21) 25=GNF2-P IODG28400- I3GZ-1 OOT2-150-T6-4232 (Cycle 20) 36=GNF2-PI ODG2B424-12G7.0- IOOT2-150-T6-4368 (Cycle 21) 26=GNF2-P IODG28393-4G8.0/8G7.0/2G6.0-1OOT2-l50-T6-4233 (Cycle 20) 37=GNF2-PI ODG2B408-14GZ-I OOT2-150-T6-4369 (Cycle 21) 29=GNF2-P IODG28393- I 5GZ-1OOT2-I50-T6-4235 (Cycle 20) 38=GNF2-P IODG2B403- I4GZ-1OOT2-I50-T6-4370 (Cycle 21) 30=GNF2-P IODG28403-8G7.0/4G6.0-1OOT2-l50-T6-4236 (Cycle 20) 39=GNF2-P IODG2B409- I4GZ-1OOT2-I50-T6-4365 (Cycle 21)
Figure 1 Reference Core Loading Pattern Page 35
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 FWCF ICF_TRM1*EIS HE3 22 140 120 ore Inlet Flow Simulated Thermal Power Neutron Flux 420 360 40
RV. SV, and/or SRV Flow Bypass Valvo Flow Vessel Come Pressure 1300 30 100 300
'6' 1ii 1200 -
,,. BO 240"' ,,. 'ii
~ S:
1ii 0
)(
- J u:
~ 20 at
!:::J IF- 60 180 ~ !"
z
- s. 11 00 Q.
40 120 10 20 60 1000 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Time (sec) Time (sec) 160 100 40
- . - Feedwater Flow ---.- Tate l eectivity
- r - Steam Flow -..- Scram Reactivity 140 - - Turbine Steam Flow 90 35 -+- Doppler Temperature Reactivity
--+-- NR level - . - Void Reactiv*
3.0 120 80
~
- 25 100 70
~
i!..
c
. . 20 80 60 Q. !0 15
.." a.
.. s 1ii 60 50 >
0 10
"'at .c (.)
~
0.5 40 40
~
~ :: 0.0 20 30 ii
"' -0 .5 0 20
-1.0
-20 10 -1 .5
-4 0 0 2 4 6 8
-10~*
12 I
14 16 r 0 -2.0 0 2 4 6 8 10 12 14 16 Time (sec) Time (sec)
TAACG_CASE_IO ~01~ 16'1093 Figure 2 Plant Response to FW Controller Failure (MOC ICF and FWTR (HBB) )
Page 36
Peach Bottom Unit 3 003N 1452 Reload 21 Revision 0 LRNBP LCF_TNM1*EIS HEJ 22 120
Co"' Inlet Flow Simulated Thermal Power Neutron Flux 360 60
-- RV. SV, and/or SRV Flow Bypass Valve Flow Vesse l Dome Pressure 1300 100 300 50 1250 80 240 'ti 40 1200 1'il
,,., ti:
ii 1'il ~ .9:
180 ~ 1'il 30 1150 ~
ti:
....0 60 u::
c ti:
~
f £ 40 120 ~ 20 1100 20 60 10 1050 0 0 0 1000 0 2 3 4 5 6 0 2 3 4 5 6 Time (sec) Time (sec) 160 60 4.0 Feedwater Flow Steam Flow Turbine Steam Flow 3.5
_.... NR level 120 50 3.0 s ~
2.5 80 40
...,I! c
. 2.0 Q.
~ 1.5 Q.
1'il 40 30 ~ ~ 1.0 ti:
.c 0
~ 0 .5
.r:.
u ~
0 20 :§. : 0.0
- ti
> -0.5
-40 10 -1.0
-1.5
-80 0 -2 .0 0 2 3 4 5 6 0 2 3 4 5 6 Tl\.l.CG _CASE_IO 101~ 16J73M Time (sec) Time (sec)
Figure 3 Plant Response to Load Rejection w/o Bypass (MOC MELLLA+ (HBB) )
Page 37
Peach Bottom Unit 3 003N1452 Reload 2 1 Revision 0 FWCF MEL_TRM1*EIS HE3 22 140 120 Core Inlet Flow Simulated Thermal Power Neutron Flu*
420 360 40
-- RV, V, and/or SRV Flow Bypass Valve Flow Vessel Dome Pressure 1300 30 100 300
,,,.. 1200 -
'C 80 240 ~
~
'C Oi
~
~
0
- s ii:
~
20
....::sf
- e. 60 180 ~ f s
z
. 1100 Q.
40 120 10 20 60 1000 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Tim e (sec) Time (sec) 160 100 4.0 Feedwater Flow - - Total Reactivity Steam Flow ---- Scram Reactivity Turbine Steam Flow 3.5 --+-- Doppler Temperature Reactivity 140 90 NR level -...- Void Reectivi 3.0 120 80
- 2.5 100 70 0
i!.
~. .
c:.
20 80 60 Q, c 1.5
'C 60 50 >
0 Q,
E 1.0
~ 0 0 u
40 40
.c 0 "'
~ 0.5 u tl
- §. : 0.0 20 30 a; ~
> -0.5 0 20
-1 .0
-20 10 -1 .5
-40 0 -2 .0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Tl\ltCG _C."-SE _fO 1:1110IOl1 ... l O:
- Time (sec) Time (sec)
Figure 4 Plant Response to FW Controller Failure
Page 38
Peach Bottom Unit 3 003N1 452 Reload 21 Revision 0 FWCF ICF_TRM1-NBP HE3 22 140 420 60 1300 ore Inlet Flow 120
-- Simulated Thermal Power Neutron Flux 360 50 1250 100 300
'6" 1'
40 1200 ii
'a 1'
. BO 240 "'
~
.. ~. 'a ii
.9:
"O :I ii:
'a' 30 1150
....e
- I
'a' 60 180 ~ e z
'5 20 1100 CL 40 120 10 1050 20 60 0 0 0 1000 0 2 4 6 B 10 12 14 16 0 2 4 6 8 10 12 14 16 Time (sec) Ti me (sec) 160 100 4 .0 Feedwoter Flow --+- Tota l Reactivily Steam Flow - - - Scram Reactivity Turbine Stl!am Flow 3.5 ~ Doppler Temperature Reactivity 140 90 NR level - r - Void Reectiv i 3.0 120 80
~ 2.5 100 70 i .
0 ~
. 2.0
~ c
'a 80 60 Q. ~ 1.5 0
Q.
Cl 1' 60 50 > g 1.0 0:: 0
'a' ... 0.5 0
40 40
.c
. ~
ti
- §. :.'! 0.0 20 30 'ii 0::
Cl -0.5
..J 0 20
-1.0 -
-20 10 -1 .5
-40 0 -2 .0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 T ~G.C45C_IO 1Qlro&;)l 16'12*5' Time (sec) Time (sec)
Figure 5 Plant Response to FW Controller Failure
( MOC ICF and FWTR with TBSOOS (HBB) )
Page 39
Peach Bottom Unit 3 003Nl452 Reload 2 1 Revision 0 HPCIL8 LCF_ TNM1-NBP HE3 22 140 2BO 60 1350 Cora In at low --+- RV , SV, end/or SRV Flow Simulated ThelTTlBI Power 1- - Neutron Flux ---- Bypass Valve Flow Vessel Oom1 Pressure 120 240 50 1300 100 200
'6'
'Ii 40 1250 ii "O
~
BO 160 "'
~ .
"O
~
.9:
- i 30 1200 !
0
';fl. 60 120 ~
ii: ';fl. .."
- i a.
z
'5 20 1150 40 80 10 1 100 20 40 0
0 10 20
- ~'
30
. 40 so 0 0 0 10 20 30 40 50 1050 Time (sec) Time (sec) 120 BO 4.0
-.-- Faedwater Flow --+- Total Reecbv11y
-w- Steam Flow ----- Scram Raacbvity
~ Turbine Steam Flow 3.5 + --+- Doppler Temperature Rel!llctrv1ty 100 ---- HPCI Flow 70 Void Reectivi
--.- NR levol 30 80 60
...~. 2.5 l .
0 ~. 20 60 t 50 ~ c "O
Q. ~ 15 0
Q.
1;j 40 40 ~ ~ 1.0
";fl. ...
.Q u 20 30-;;
. ~
- 05 ll
- §. g: 00 0 20 ~
Ci "' -05 +
..J
-1 .0 ...
-20 + 10
-1.5
-40 0 -2.0 0 10 20 30 40 50 0 10 20 30 40 L'""'"""'*""... . ., . . Time (sec) Time (sec)
Figure 6 Plant Response to Inadvertent HPCI /LS
( MOC MELLLA+ with TBSOOS (HBB) )
Page 40
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 FWCF MEL_TRM1*NBP HEJ 22 420 1300 140
Core Inlet Flow Simulated Thermal Power Neutron Flux 60 RV, SV, and/or SRV Flow Bypass Valve Flow Vesse l Dome Pressure 120 360 50 1250 100 300
- 40 1200 1'il ii 80 240 a
~
,, ii
.S:
~" 30 1'il >C a: 1150 !
....0 ::J ii: ;!! ..
- J
- !! 60 180 ~
~
z" 20 1100 40 120 10 1050 20 60 0 0 0 1000 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Time (sec) Time (sec) 160 100 4.0
-+- Feedwater Flow -+-- Total Reactivity Steam Flow ----- Scram Reactivity
---r- Turbine Steam Flow 90 3.5 ~ Doppler Temperature Reactivity 140
-+-- NRlevel -r- Void Reectiv*
3.0 120 80
~ 2.5 70 "'15
. c. .
100
~ 20 i!
60
,,0 80 Q,
~ 1.5 0
Q, 1'il a: 60 50 > " ~ 1.0 0
.a 0
'i 0.5 40 40 Cl
~
u ll
- §. :E 0.0 20 30 ii a:
0 20
..." *0.5
- 1 .0
- 20 10
- 1 .5
-40 0 *2.0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Tlv.CG _C.i.sf_ D 2011':&)91~11)'))
Time (sec) Time (sec)
Figure 7 Plant Response to FW Controller Failure
( MOC MELLLA and FWTR with TBSOOS (HBB) )
Page 41
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 FWCF ICF_TRM1*NRPT HE3 22 140 120 Core Inlet Flow Simulated Thermal Power Neutron Flux 420 360 40
--+-
1300 30 100 300
'16 1200 -
'C
'16 80 240 a:
~ .
'C
.a" a: " ~ 20 ~
'O
- I ii:
f .... ....
60 180 e z
!. 1100 11.
40 120 10 20 60 1000 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Time (sec) Time (sec) 160 100 4 .0 Feedwater Flow - - Total Reactivity Stea m Flow - - Scram Reactivity 140 120
-- Turbine Steam Flow NR level 90 80 3.5 3.0
-+- Doppler Temperature Reactivity
---.- Void Reactivi
~
100 70 .
~
Vt 2.5
-;; 2.0
'!! c
'C D
80 60 Q.
!0 Q.
1.5
'16 a: 60 50 > 0 ~ 1.0
.... .c
." ~
... 0.5 CJ 40 40 D
.s: u
- §. " : 0.0 20 30 Ci a:
0 20
-0 .5
-1.0
-20 10
-1 .5
-40 0 -2.0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Tlv.CG_c.i.sc :or.11 ~16'22 11 Time (sec) Time (sec)
Figure 8 Plant Response to FW Controller Failure
( MOC ICF and FWTR with RPTOOS (HBB) )
Page 42
Peach Bottom Unit 3 003N1452 Reload 2 1 Revision 0 LRNBP LCF_TNM1-NRPT HE3 22 120 360 60 Core Inlet Flow 100
-- Simulated Thermal Power Neutron Flux 300 50 1250 80 240 ;;-
'ii 40 1200 ti
'ti a:
~ .
'ti Ui
'ii a: 60 0
180 ~
ii:
c
~
30 1150 !
- J s
e "-
40 120 ~ 20 1100 20 60 10 1050 0 0 0 0 2 3 4 5 6 0 2 3 4 5 6 Tim e (sec) Time (sec) 160 60 4.0
--+- Feedwater Flow --+-- Total Reactivity
Steam Flow - - Scram Reectivity
~ Turbine Steam Flow 3.5 -+-- Doppler Temperature Reactivity
--+-- NR level ---r-- Void Reectivit 120 50 3.0
~
80 40
£ . .
2.5 20 l!
Q.
'C
~ 1.5
'ti
'ii a: 40 30 ~
. 0 Q.
g 1.0
.... .a.... u
~ 05
.c u 1i 0 20 :§. :g 0.0 a:
'ii
-0 .5
-40 10 -1 .0
-1 .5
-80 0 -2.0 0 2 3 4 5 6 0 2 3 4 5 6 TIUGG_C"S( 0 1)1~ 1iUU1i Time (s ec) Tim e (s ec)
Figure 9 Plant Response to Load Rejection w/o Bypass (MOC MELLLA+ with RPTOOS (HBB))
Page 43
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 FWCF MEL_TRM1-NRPT HE3 22 140 420 40 Core lnkll Flow RV, SV, and or SRV Flow Simulated Thermal Power Bypass Valve Flow Noulron Flux Vessel Dome Pressure 1300 120 360 30 100 300
'6"
'ii 1200 -
'ti
'ii BO 240 a:
~ ..
'ti ii
.S:
...a:
0 u::"
180 ~
- > ~
20
..e
..... 60 e z
. 1100 CL 40 120 10 20 60 1000 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Time (sec) Time (sec) 160 100 4.0 Feedwater low -+-- Total oactivily Sleam Flow ~ Scram Reactivity Turbine Steam Flow 3.5 --+-- Doppler Temperature Reactivity 140 90 NR leve l -....-- Void Reactiv' 3.0 120 80
'i:
- 2.5 100 70 0
1!..
1:
. . 20 80 60
!0 Q.
1.5
'ti
'ii 50 >
D Q.
~ 1.0 a: 60 40 40
.a 0
u
~
... 0 .5
.t:. ;
u u
§. : 0.0 20 30 ;; a:
0 20
> -0.5
-1 .0
-20 10 -1 .5
-40 0 -2.0 0 2 4 6 8 10 12 14 16 0 2 4 6 B 10 12 14 16 T"IVGG _c.:.Sl_IO l01f;)40016'111T1 Time (sec) Time (sec)
Figure 10 Plant Response to FW Controller Failure
( MOC MELLLA and FWTR with RPTOOS (HBB) )
Page 44
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 PRFDS ICF_TNM1-NPR HE3 22 140 280 60 1300
Coro Inlet Flow Simulated Therrn al Power
--+- Neutro n Flux
Bypass Valve Flow Vessel Dome Pressure 120 240 50 1250 100 200
~ 40 1200 Cl
'Iii ii
'ti
'Iii 80 160 a::
~ .
'ti
'i
.s
... " ~
....e a:: ::> 30 11so
.,_0 ii: .,_
60 120 ~
~
~
Cl z 20 1100 40 80 10 . 1050 20 40 0 0 0 1000 0 2 3 5 6 7 8 0 2 3 4 5 6 7 8 Time (sec) Time (sec) 120 60 40 Feedwater low --+- Total eacbv1ty Steam Flow --tt- Scram Reactivity Turbine Steam Flow 35 --+--- Doppler Te mperature Reactivity NR level - . - Void Rea ctivi 100 50 30 "E
- 25 80 .,. 40 .e 20
!0
"- 1.5
'ti
'Iii 60 + 30 ~
Cl g10 a::
.,_ Jl Cl u
~ 05
~
40 20 :§. " "i ': 00 a::
ii
> -0 5 20 10 -1 .0 .,.
~J
-1 5 -
0 0 -2 0 ++
0 2 3 4 5 6 7 8 0 2 3 4 5 6 8 l llUCG C:.sl () ~ T;)l\)l 16J&l57 Time (sec) Time (sec)
Figure 11 Plant Response to Pressure Regulator Failure Downscale (MOC ICF with PROOS and/or PLUOOS (HBB))
Page 45
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 PRFDS LCF_TNM1-NPR HEJ 22 120 240 60 Cora lnlel Flow Simulated Thermal Power Neutron Flux 100 200 50 BO .,
160 '6" 40 1200
,, 1i ii 1i ~ .9:
..: 60 120 ~ ~ 30 1150 !!
.,.'O Li: .,. ..."!!
40 80 z
~0 20 1100 CL 20 40 10 L--- 1050 0 0 0 0 2 3 4 5 6 7 B 0 2 3 4 5 6 7 8 Time (sec) Time (sec) 120 ~-----~-~~-- -~F~ ee-d~w-.~
,.~,F=lo-w-~ 60 4.0
-+-- Tolal eacbvily
--r- Steam Flow ----- Scram Reactivity
_,_ Turbine Steam Flow 3.5 --+-- Doppler Temperature Reactivity
-+-- NR level --r- Void Reactiv' 50 3.0 E'
- 2.5 BO 40
- s E 2.0
- f. ~.,
0
~ c 1.5 0
a.
~ 60 30 ~ E 1.0
.,. i 0
CJ l;-
0.5
! ~
40 "
20 ,§. ...
ti 0.0
'ii
_,.,> -0.5 20 10 -1 .0
-1 .5 0 0 -2 .0 0 2 3 4 5 6 7 B 0 2 3 4 5 6 7 8 Time (sec) Time (sec)
Figure 12 Plant Response to Pressure Regulator Failure Downscale (MOC MELLLA+ with PROOS and/or PLUOOS (HBB))
Page 46
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 PRFDS MEL_TNM1-NPR HEJ 22 120 240 60 1300 100 200 50 1250 BO 160 :;; 40 1200 Cl 1i ii
'1:1 1i a:
~ .
'1:1 iii
...a:
0 60 120 ;
ii:
~
30 1150 f
~.
f CL 40 BO z 20 1100 20 40 10 1050 0 0 0 1000 0 2 3 4 5 6 7 B 0 2 3 4 5 6 7 B Time (sec) Time (sec) 120 60 4 .0 Faedwater Flow --+- Total Reactivily Steam Flow - - Scram Reactivily Turbine Steam Flow 3.5 - - Doppler Temperature Reactivity NR level -r- Void Reactiv*
100 50 3.0
~
- ii
. 2.5
. c!..
BO 40 .2 2.0 I!!
'1:1 Cl Q.
Cl 0
Q.
1.5 1i a: 60 30 i; ~ 1.0 CJ i
.s::
~ 0.5
" u 40 20 ~ : 0.0 a:
'ii
> -0 .5 20 10 -1 .0
-1 .5 0 0 -2 .0 0 2 3 4 5 6 7 B 0 2 3 4 5 6 7 B flUCG_CJ.Sl_Jtl 101:'>>;)11622251 Time (sec) Time (sec)
Figure 13 Plant Response to Pressure Regulator Failure Downscale (MOC MELLLA with PROOS and/or PLUOOS (HBB))
Page 47
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 FWCF ICF_BREO*EIS HE3 22 140 420 40
Core Inlet Flow Simulated Thermal Power Neutron Flux RV, SV, and/or SRV Flow Bypass Valve Flow Vessel Come Pressure 1300 120 360 30 100 300
'6' "iii 1200 ii
'C "iii 80 240 a::
~ .
'C Ui
... ~
)(
a:: !
~
0 60 180 ~
- i ii: ;if.
20
- i
'5 z
. 1100 a..
40 120 10 20 60 1000 0 0 0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Time(sec) Time (sec) 160 100 4.0 Feedwater Flow -+- Total Reactivity Steam Flow - e - Scram Reactivrty Turbine Steam Flow 3.5 --+- Doppler Temperature Reactivity 140 90 NR level -....- Void Reactiv*
3.0 120 80
~
- < 2.5 100 70 0
i!.. c
. . 20
'C 80 60 Q.
0 Q.
1.5 "iii a:: 60 50 > 0 ~ 1.0 "a"-
40 40
..0
.s:
CJ
~ 0.5 u
- §. : 0.0 a::
20 30 'ii
> -0 .5 0 20
-1.0
-20 10
-1.5
-40 0 -2.0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 f lUCG _C-'.st:_IO 2'0 1 Toe.>a 1 611~f Time(sec) Time (sec)
Figure 14 Plant Response to FW Controller Failure
Page 48
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 LRNBP LCF_TNEO*EIS HEJ 22 120
--- Core Inlet Flow Simulated Thermal Power Neutron Flux 360 60 100 300 50 1300 80 240 ~ 40 1250
~
er: ii
'ti iii Cl 7i ~ 'ti Cl s er: 60 0
180 !l ii:
~ 30
- e 1200 ;
- e c e £ 40 120 ~ 20 1150 20 60 10 1100 0 0 0 0 2 3 4 5 6 0 2 3 4 5 6 Time (sec) Time (sec) 160 60 4.0
--+- Feadwater Flow -+- Tota l Reactivity
---e- Steam Flow ---- Scram Reactivity
---r- Turbine Steam Flow 3.5 --+--- Doppler Temperature Reactivity
-+- NR level -.....- Void Reectiv*
120 50 3.0
~
s 2.5 80 40
[!
~
c
. . 20
'ti
~
CL Cl ~ 1.5 0
CL
'iii er: 40 30 ~ ~ 1.0
- e "'... 0
.c u
~ 0 .5
~
0 20 :§. ~ 0.0 1i er:
Cl -0.5
..J
-40 10 -1.0
-1.5
-80 0 -2.0 0 2 3 4 5 6 0 2 3 4 5 6 TIViCG_o.sf}D XU l':>809 1621fill Time (sec) Time (sec)
Figure 15 Plant Response to Load Rejection w/o Bypass
Page 49
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 FWCF MEL_BREO* EIS HE3 22 140
-- Core Inlet Flow Simulated Thenn al Power Neutron Flux 420 40 RV. SV. and/or SRV Flow Bypass Valve Flow Vesse l Dome Pressure 1300 120 360 30 100 300
~
'li 1200 -
II 240
'ti
'li BO II:
~
'ti
~ 20 ii
.9:
.e~..
II:
0 "
ii:
~
~ 60 1BO ~
1100 a.
z" 40 120 10 20 60 1000 0 0 0 0 2 4 6 B 10 12 14 16 0 2 4 6 B 10 12 14 16 Time (sec) n me (sec) 160 140 Feedwater Flow Steam Flow Turbine Steam Flow NR level 100 90 4 .0 3.5
~
otal Raacbvily Scram Reactivity
-+-- Doppler Temperature Reactivity
---.- Vo id Reactiv*
3.0 120 BO E"
100 70 .
- 2.5
. c:.
l5 2.0 i!
'ti BO 60
."Q.
~ 1.5 Q.
'li 60 50 > " ~ 1.0 II:
~ ...
.Q 0
u
~ 0.5 40 40 "u
.J:.
u
,§. : 0 .0 20 30 'ii II:
> -0.5 0 20
-1.0
-20 10
-1.5
-40 0 -2 .0 0 2 4 6 B 10 12 14 16 0 2 4 6 B 10 12 14 16 TIUCG_CJ.SE_IO XI I ~ 16311S4 Time (sec) Time (sec )
Figure 16 Plant Response to FW Controller Failure
Page 50
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 FWCF ICF_BREO-NBP HE3 22 140
-- Core Inlet Flow Simulated Thermal Power Neutron Flux 420 60 1300 120 360 so 12SO 100 300
'6"
'ii 40 1200
.,,.. 80 240 a: .,,..
ii ii
'ii ~ ~
...a: ><
~ 30 11so e 0
..,,. 60 iL 180 ~
- i
- f. ...
- i f
z
~
.. 20 1100 CL 40 120 10 10SO 20 60 0 0 0 1000 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 T ime (se c) Time (sec) 160 100 4.0 Feedwater Flow -- Total Reactivity StoamFlow -e- Scram Reactivity Turbine Steam Flow 3.S -.......- Doppler Temperature Reactivity 140 90 NR level -.- Void Reactivi 3.0 120 80
~ 2.S 100 70
~ 20
- e. c 80 60 Cl.
~ 1.S Cl.
'ii a: 60 so > "
0 8 1.0
- f.
40 40 ii 0
~ o.s
§. ~.. 0.0 20 30 ;; a:
0 20
> -0.S
-1 .0
-20 10
-1 .S
-40 0 *2.0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 TIUCG_C'.$E_ID 101~ 16ttwl T ime (se c) T ime (sec)
Figure 17 Plant Response to FW Controller Failure
( EOC ICF and FWTR with TBSOOS (UB) )
Page 51
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 HEJ 22 HPCILS LCF_TNEO-NBP l
140 420 80 1400 Cora net F ow low Simulated Thermal Power 1::= Neutron Flux 70 1350 120 360 60 1300 100 300
~
ti 50 1250 -
,, BO 240 rr: ,, "
iii
" ~ .9:
ti rr:
0
"::i ii:
D
~ 40 1200
..e
- i 60 1BO ~ e
! 30 1150 II.
z" 40 120 20 1100 20 60 10 1050 0 0 0 1000 0 10 20 30 40 50 0 10 20 30 40 50 Time (sec} Time (sec) 120 BO 4 .0 Feedwater Flow -- Total Reactivity Steam Flow --- Scram Reactivity 100 Turbine Steam Flow HPCI Flow NR level 70 35 30 Doppler Temperature Reactivity Vold Reectivi
~ "'~..
80 2.5 60 50 i!
0 ~
c
. . 20 ti 0
rr: 40 I 1\ 40
.8
- t. ~ 15 0
u II.
~ 1.0
. ~ 05 20 30 ii ti
,g :,, 0 0
- rr
0 20 ~ -0 5
-1 0 .l.
-20 10 5
-40 -+ ___._---r-- - 0 -2.0 ---- + ~ - ---+---
0 10 20 30 40 0 10 20 30 40 50 tlUCG C:..sl 10 ~H~ lt.2l01S Time (sec) Time (sec)
Figure 18 Plant Response to Inadvertent HPCI /LS
( EOC MELLLA+ with TBSOOS (HBB) )
Page 52
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 FWCF MEL_BREO-NBP HE3 22 140 120
Core Inlet Flow Simulated Thermal Power Neutron Flux 420 360 60
RV, SV, and or SRV Flow Bypass Valve Flow Vessel Dome Pressure 1300 50 1250 100 300
~
16 40 1200 ti
..., 240 a: ...,
D 16 a:
80
~
~
. 1150 !
ii
.S:
.,.'O 60
- J ii:
180 ~
.,. 30
- J
'5D z 20 1100 40 120 10 . 1050 20 60 0 0 0 1000 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Time (sec) Time (sec) 160 ----~-~-~---=Fe_e_d_ w-at-er~lo-w-~ 100 4.0
- - Tolal Reactivity Steam Flow ---- Scram Reactivity Turbine Steam Flow 90 3.5 --+- Doppler Temperature Reactivity 140
- - NR level -.-- Void Reactivi 3.0 120 80 t:
- 2 .5 70 ~
100
~
0 ~
c
. . 20 80 60 ... !
1.5
. D
~ 1.0
.,.~ 60 50 ~
.... u
... 0.5 40 40 .!u
~
ti
§. : 0.0 20 30 'i a:
> -0 .5 j
.o 20
-1.0
~""_"_"2'_Q_,_~_4 6_T_i_.:_._'_s*-~---12--14--1-6 :_1._:_+o_-_-_--_2*~~_,_-,4+*-~*6~~-T-i-m+8-~(-s~e-c_~o~_ ,12~._._ 1,4~.--1+6-<-<
2 1
Figure 19 Plant Response to FW Controller Failure
( EOC MELLLA and FWTR with TBSOOS (UB) )
Page 53
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 FWCF ICF_BREO-NRPT HE3 22 140 120
Cora Inlet Flow Simulated Thermal Power Neutron Flux 560 480 60
-- RV, SV, and/or SRV Flow Bypass Va lve Flow Vessel Dome Pressure 1300 50 1250 100 400
'ti 40 1200 Cl
'iii ii
'O BO 320..: 'ii Cl
'iii ~ 'O Cl .s
" ~ 30 1150 !
"'0 :I ii: ;i! .
- I
- i! 60 240 ~ !"
~
z" 20 1100 40 160 10 1050 20 BO 0 o o 1000 0 2 4 6 B 10 12 14 16 0 2 4 6 B 10 12 14 16 Time (sec) Time (sec) 160 100 4 .0 Feedweter Flow -+- Tota l Reactivity Steam Flow -..- Scram Reactivity Turbine Steam Flow 3.5 ~ Doppler Temperature Reactivity 140 90 NR level -....- Void Reactivi 3.0 120 BO
~
100 70 .:s
- 2.5 i!.
E.
c 2.0
'O 80 60 Q.
!0 Q.
1.5
'iii 60 50 > 0 ~ 1.0
- /! i CJ 40 40 ~ 0.5 u u
- §. ~ 0.0 30 'ii 20
"' -0 .5 0 20
-1 .0
-20 10 -1 .5 l
-40 0 -2 .0 0 2 4 6 8 10 12 14 16 0 2 4 6 B 10 12 14 16 TIU.CG _C:.S(t0n 1 ~161Br.t.0 Time (sec) Time (sec)
Figure 20 Plant Response to FW Controller Failure
( EOC ICF and FWTR with RPTOOS (UB) )
Page 54
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 LRNBP LCF BNEO*NRPT HE3 22 120 ore Inlet Flow Simulated Thermal Power Neutron Flux 360 60 RV, SV, and/or SRV Flow Bypass Valve Flow Vess el Dome Pressure 1350 100 300 50 1300 j
80 240
- s 1ii 40 1250
....'ii a:
"O., ~ .,
"O
.s 1ii II: 60 180 ~ ~ 30 1200 e
....0 ii:
i.e. ..:I"e
~ CL 40 120 ~ 20 1150 20 60 10 1100 0 0 0 1050 0 2 3 4 5 6 0 2 3 4 5 6 Time (sec) Time (sec) 160 60 4 .0 Fae dwater Flow - - Total Reacbvlty Steam Flow ~ Scram Reactivity 120 -- Turbine Steam Flow NR level 50 3.5 3.0
--+-- Doppler Temperature Reactivity
- r - Void Reactiv '
~
~
. 2.5
~
... c.
80 40 .2 2.0 l!!
"O Q.
~ 1.5 0
Q.
1ii 40 30 ~ ~ 1.0 II:
..,.,_ .c.. u
~
u ~
~ 0.5 0 20 :§. ~ 0 .0 c; II:
_, .> -0 .5
- 40 10 *1 .0
- 1 .5
- BO 0 *2.0 0 2 3 4 5 6 0 2 3 4 5 6 YRACG_c.:.sl It) ~ \ ~~ 16l011T Time (sec) Time (sec)
Figure 21 Plant Response to Load Rejection w/o Bypass
( EOC MELLLA+ with RPTOOS (UB) )
Page 55
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 FWCF MEL_BREO-NRPT HEJ 22 140
-- Core Inlet Flow Simulated Thermal Power Neulrcn Flux 420 60 R , SV, and/or SRV Flow Bypass Valve Flow Vessel Dome Pressure 1300 120 360 50 1250 100 300
~., 40 1200 1i
,,.. 80 240 ~ ,,
ii u;
1i ~ D .a
~
0
"::l ii:
~ 30
';f.
1150 ;
';;'. 60 180 ~ e a.
z
., 20 1100 40 120 10 1050 20 60 0 0 0 1000 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 Tim e (sec) Ti me (sec) 160 100 4.0
--+- Feedwater Flow -+-- Tota l Reactivity Sleam Flow - - Scram Reactivity 140 Turbine Steam Flow 3.5 - + - Doppler Temperature Reactivity 90 NR level -a- Void Reactiv' 3.0 120 80
~
.. 2.5 100 70 i!..
0 c
. . 20 80 60 a.
.. !0 1.5 1i 60 50 >
.. a.
!5 1.0
~
'If.
40 40
.Cl 0
(J
~ 0.5
.cu " u
- §. : 0.0 20 30 ii ~
..J
> -0 .5 0 20
-1.0
-20 10
-1 .5
-40 0 -2.0 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 16 flUCG_CloSl _rtl r.llrolOll6JlllS Time (sec ) Time (sec)
Figure 22 Plant Response to FW Controller Failure
( EOC MELLLA and FWTR with RPTOOS (UB) )
Page 56
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 I
PRFDS ICF_BREO-NPR HEJ 22 140 280 60 Core Inlet Flow Simulated Thennel Power Neutron Flux 120 240 50 1250 100 200
'S 40 1200
...."i 0
80 160 a:
~
a:
0
';/!. 60 120 ~
)(
- i ii:
~ 30 lJf.
1150 e::J
...e 5
z
.. 20 1100 Q.
40 80 10 1050 20 40 0 0 0 0 2 3 4 5 6 7 0 2 3 4 5 6 7 Time (sec) Time (sec) 120 60 40
-+-- Fee water Flow ...- Total Reacbvrty
___ Steam Flow - Scram Reactivrty
- Turbine Steam Flow I 35 - Doppler Temperature Reactivity 1-+- NR level i Void Reacl!Vrt
1 100 50 30
~
. 25
..l! 1:!. .
80 40 .2 20 +
.. g a.
,, 0 Q.
15 -
1ii a: 80 30 ~ 1,0 lJf.
.c ... u
... 0.5
.cu
. ~
ti 40 20 :§. : 00 Ci a:
...J 10 *1.0
-1 5 0 0 *2 0 5 5 6
~ t 2 3 4 6 7 0 2 3 4 7 J
rol0a1611&1' Time (sec) Time (sec)
Figure 23 Plant Response to Pressure Regulator Failure Downscale
( EOC ICF and FWTR with PROOS and/or PLUOOS (UB))
Page 57
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 PRFDS LCF TNEO-NPR HEJ 22 120 240 60 T-,--~~-,-~~~..--,--~R~v*.~s~v-,a~n~d/~o~
rs~R
~v"""'Fl~
ow -,- 1350 Con1 Inlet Flow Simulated Thermal Power Bypass Valve Flow Neutron Flux Vessel Dome Pressure 100 200 50 1300 BO 160 'S 40 1250 ii
,. °'~ ,,., "i
...°' 60 0
120 ~
ii:
~ 30 1200 f
- J
.... c f f Q.
5.,
40 BO z 20 1150 20 40 10 . 1100 0 0 0 0 2 3 4 5 6 7 B 0 2 3 4 5 6 7 B Time (sec) Time (sec) 120 60 4.0 Feedwater Flow - - Total Reacbvity Steam Flow ------ Scram Reactivity 100 -- Turbine Steam Flow NR level 50 3.5 3.0
- . - Coppler Temperature Reactiv ity
--r- Void Reacfri
~
- x. 2.5 BO 40 ;; 20 i!
a.
,,. 1.5 0
0 a.
60 30 ~ E 1.0 0
°'
.... .Q u 40 -- .c "i
u 20 :§.
~ 0.5 u
- 0 .0
°'
-0 .5
...J 20 10 -1.0
-1 .5 0 0 -2.0 0 2 3 4 5 6 7 B 0 2 3 4 5 6 7 B flUGG _Cl..Sl_ID 2'01l'Ol.ll 16J'lDTt Time (sec) Time (sec)
Figure 24 Plant Response to Pressure Regulator Failure Downscale
( EOC MELLLA+ with PROOS and/or PLUOOS (HBB))
Page 58
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 I HE3 PRFDS MEL_BREO*NPR 22 140 280 60 ore Inlet Flow Simulated Thermal Power Neulton Flux 120 240 50 1250 100 200
'iii 40 1200 80 160 a: Ui
~ ~
~
a:
0
- I ii:
~ 30
- fl.
1150 ;
- fl. 60 120 ~
i z
15 20 1100 40 80 10 1050 20 40 0 L0
+-
1 --
2 3 4 Time (sec) 5 6 7 0 0 -r-~-+~~
0
.....--o+'~......,,._.~--~-+~--+ 1000 2 3 4 Time (sec) 5 6 7 120 60 4.0
-+- Fee water Flow -...- otal eacbvity
--.- Steam Flow _...._ Scram Reactivrty
- Turbine Steam Flow 35 -+- Doppler T empereture Reactivity 1-- NRlevel --.-. Void ReeclN 100 50 3.0
~
- c
. ~
25 80 ... 40 .2 . 20
..a.
I! c
,,. .. ~ 1.5 0
a.
'iii a: 60 30 ~ g10
.c... u
~ 0.5
~ "
u u 40 20 :§. i.'l 00 c; a:
_," *05 20 10 -1 0
- 1 5 0 0 -2 .0 0 2 3 4 5 6 7 0 2 3 4 5 fl'U.CG _C-'5!: _1D X) * ~16)11t1 Time (sec) Time (sec)
Figure 25 Plant Response to Pressure Regulator Failure Downscale
( EOC MELLLA and FWTR with PROOS and/or PLUOOS (UB))
Page 59
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 MSIVF ICF_ TNEO-EIS HEJ 22 140 420 80 -r-~~~~-r'~--,~---.,,..--,R~v
~.~s~v~.a-n'd~/o~r~SR~v~F~
~w_,. 1400 Cora Inlet Flow Simulated Thermal Power ---- Bypass Valve Flow
--+- Neutron Flux Vassel Dome Pressure 70 1350 120 360 60 1300 100 300
- g 50 1250 -
0 80 240 a:
~
.a a:
0 60 180 ~
"::i ii: .,.~ 40 1200 ~
".f z
., 30 1150 a.
40 120 20 1100 20 60 1050 10 0 0 0 0 2 3 4 5 6 7 0 2 3 4 5 6 7 Time (sec) nme (sec) 120 60 4.0 Faedwnter Flow --+- Total Reacbvity Steam Flow - e - Scram Reactivrty Turbine Steam Flow 3.5 ~ Doppler Temperature Reactivity
--+- NR level -.-- Void Reactiv*
100 50 3.0
~ 2.5
.. c!. .
80 40 ~ ~ 20 E
Q.
1.5
,.* 0 Q.
~ 1.0 30 ~
60
.,.a: .c
. CJ
~ 0.5
~
"" u 40 20 "
- §. : 0.0 a:
'ii
_, -0 .5 20 10 -1.0
-1 .5 0 0 -2.0 0 2 3 4 5 6 7 0 2 3 4 5 6 7 f"-'GG_~ !l! IO:OOITO&Oll~§JO Time (sec) Time (sec)
Figure 26 Plant Response to MSIV Closure (Flux Scram)
Page 60
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 I MSIVF LCF_TNEO*EIS HEJ 22 140 Core Inlet F ow 420 eo -r--~--~---,.T_,.._--=---.R=r."""
v-.a~n~d~
l o~
rS"'R"'V~
F~ow.,.,. 1400 Simulated Thermal Power - - Bypass Velve Flow Neutron Flux --.- Vessel Dome Pressure 70 1350 120 360 60 1300 100 300
'6" 50 1250 _
II 0
BO 240 II::
~
~ 40 1200 !
)(
II::
0
'ii 1BO ~
- J u:: 'ii-
- J z
. 30 1150 0..
40 120 20 1100 20 60 10 1050 0 - +-.......-+------+ 0 o 0 1 2 3 4 5 6 7 0 2 3 4 5 6 7 Time (sec) Time (sec) 120 -----~--~-~-- --F~e-e~w -.-,-
.,~F~lo-w-~ SO 40
-+- Total Reacbvity
- - Steam Flow ---- Scram Reactivity
- Turbine Steam F1ow 35 --+- Doppler Temperature Reactivity
--+- NRlevet - . - Vo id Reactiv '
50 30
- - 2.5 ID BO 40 ls 20
~c. c.
,, ., c: 1 5 0 .,
ID 0 c.
E 1.0
~ 60 30 ~ 0
'ii- .g 0 ID '; o 5
.!u "ii 40 + 20 :§. :g II::
00
'ii
_,> -0 5 10 -1 o
-1 5 0 -2.0 ~1-
---+---;--__.--4jf-'---;* --+6___,_ 7 I 3
Time (sec) 5 6 7 0 2 Time (sec) I Figure 27 Plant Response to MSIV Closure (Flux Scram)
Page 61
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 MSIVF MEL_TNEO-EIS HE3 22 140 420 80 ~~~~~~~~~-- ~~R=v-.~s~ v-* *-n~d-fu-rs=R
=v~Fl-ow~ 1400 Cora Inlet Flow 120
-- Simulated Thermal Power Neutron Flux 360 70
- . - Bypass Va lve Flow Vessel Dome Pressure 1350 60 1300 100 300 1i 50 1250 -
'O 80 240 II: a; Cl 1i II:
- J
'O Cl
~ 40 E:
1200 ;
'ii
...,. 60 180 ~
ii: ...,. .e"'
- 30 1150 a.
zCl 40 120 20 1100 20 60 10 1050 0 0 0 0 2 3 4 5 6 7 0 2 3 4 5 6 7 Time (sec) Time (sec) 120 60 4.0 Feedwater Flow ...... Total Reactivity Steam Flow ---- Scram Reactivity 100 -- Turbine Sleam Flow NR level 50 3.5 3.0
-+--- Doppler Temperature Reactivity
- r - Void Reactiv*
~
- 2.5 80 40 .2
.l!
. . 20
'O 0
.Q.
Cl
!0 Q.
1.5 1i 60 30 ~
Cl 8 1.0 II:
u
~ 0 .5 D
~
u u 40 20 :§. : 0.0 II:
.J
> -0 .5 20 10 -1 .0 -
-1 .5 0 0 -2.0 0 2 3 4 5 6 7 0 2 3 4 5 6 7 t 1UCG _~_1D 20 1 ~ 1619Ci<I Time (sec) Time (sec)
Figure 28 Plant Response to MSIV Closure (Flux Scram)
Page 62
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 120 110
~
I I I
+-
-r r-1 l I
100 . ... --,--
90 t ~ ~
- + --t L + 1
+--
_.)_
80 t
==-
~
=:"' 70 f--- -t- --t -j- ---r-- -I-
--+
~
~
... I
~ 60 E 50 t ~
t- -
I+- -t----
I
-+-
--t-- - I - - + - -
---+
i:" ,___ _J_ _j__
40 Bl ---+ -t
- - - MELLLA+ EXfENSlON 30 T --l B2 - NFWT Manual BSP Scram Region Boundary 20 t - - NFW T Manual BSP Controlled Entry Region Boundary 10 +- -
- NFWT BSP Boundary 10 20 30 40 50 60 70 80 90 100 110 120 Core Flow (% Rat~
Figure 29 Manual BSP Regions and BSP Boundary for Normal Feedwater Temperature Operation Page 63
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 120 I i- - -r I
r -T T 110 100 90
-+
t-l +
+ --4
+
I t
--~-j
+
80 +- +- ~
~
i:i: 70 + -+
---1 + -r-- t- - -+ -I
~
~
. _,_ -+-- +
~ 60 lo
+ -+- t- +
t
]. 50 1--
r --j- -+
i: ,. - - -MELLLA+ EXTENSION 40 + --l---
1 B1 ' - - RFWT Manual BSP Scram Region Boundary I
30 t -;
B2' - - RFWT Manual BSP Controlled Entry Region Boundary 20 r + RFWT BSP Boundary 10 ~*
+
10 20 30 40 50 60 70 80 90 100 110 120 Core Flow (% Rated)
Figure 30 Manual BSP Regions and BSP Boundary for Reduced Feedwater Temperature Operation Page 64
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Appendix A Analysis Conditions The reactor operating conditions used in the reload licensing analysis for this plant and cycle are presented in Table A-1. The pressure relief and safety valve configuration for this plant are presented in Table A-2. Additionally, the operating flexibility options listed in Section 8 are supported by the reload licensing analysis.
Table A-1 Reactor Operating Conditions Analysis Value ICF LCF ICF LCF Parameter NFWT NFWT RFWT RFWT Thennal power, MWt 4016.0 4016.0 4016.0 4016.0 Core flow, Mlb/hr 112.8 87.3 112.8 104.0 Reactor pressure (core mid-plane), psia 1067.0 1062.3 1048.4 1046.8 Inlet enthalpy, Btu/lb 524.2 515.8 512.6 509.4 18 Non-fuel power fraction NIA NIA NIA NIA Steam flow, Mlb/hr 16.49 16.46 14.82 14.81 Dome pressure, psig 1035.2 1034.4 1017.4 1017.4 Turbine pressure, psig 961.3 960.8 957.1 957.2 Table A-2 Pressure Relief and Safety Valve Configuration Number of Lowest Setpoint Valve Type Valves (psig)
Safety/Relief Valve 11 1169.1 Spring Safety Valve 3 1297.8 18 For TRACG methodology, the direct moderator heating is a function of moderator density.
Page 65
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Appendix B Thermal-Mechanical Compliance A thermal-mechanical compliance check is performed for all analyzed transients to assure that the fuel will operate without violating the thermal-mechanical design limits. These limits are designed such that reactor operation within these limits provides assurance that the fuel will not exceed any thermal-mechanical design or licensing limits during all modes of operation. The fuel thermal-mechanical limits are met for the current cycle.
Page 66
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Appendix C Decrease in Core Coolant Temperature Event The Loss-of-Feedwater Heating event was analyzed at 100% rated power using the BWR Simulator Code. The use of this code is consistent with the approved methodology. The transient plots, neutron flux and heat flux values normally reported in Section 9 are not an output of the BWR Simulator Code; therefore, those items are not included in this document. The OLMCPR result is shown in Section 11. The Inadvertent HPCI start-up event with a Level 8 turbine trip was analyzed with TRACG, and the OLMCPR results are summarized in Section 11 if the event sets the OLMCPR for an application condition.
Page 67
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Appendix D Off-Rated Limits Off-Rated Power Dependent Limits The off-rated power dependent limits to be applied for Base, Base + TBSOOS, Base + RPTOOS, and Base+ PROOS and/or PLUOOS are documented in Reference D-1. The Kp/MCPRp and LHGRFACp limits provided in Reference D-1 have been validated for this cycle.
The MCPRp limits provided in Reference D-1 are based on a SLMCPR of 1.15; therefore no SLMCPR adjustment is required for this cycle.
The Base Case includes 2 TBVOOS, 1 SRVOOS, 1 MSIVOOS, 1 TCV/TSVOOS, and FWHOOS/FFWTR. These Base Case EOOS conditions are included in all other application conditions.
The off-rated power dependent limits support 1 MSIVOOS at power levels:::; 65% rated thermal power in all application conditions. The off-rated power dependent limits support 1 TCV/TSVOOS at power levels
- 54% rated thermal power in Base + TBSOOS. The off-rated power dependent limits support 1 TCV/TSVOOS at power levels
- ::; 78% rated thermal power in all other application conditions.
MCPRp Limits for:
BASE OMSIVOOS, lTCVand/or lTSVOOS, lSRVOOS, 2TBVOOS)
Limits for Power< 26.3%
Flow> 60.0% Flow~60.0%
Power(%) Limit Power(%) Limit MCPRp MCPRp 22.6 2.99 22.6 2.67 26.3 2.83 26.3 2.60 Limits for Power ;::: 26.3%
Power(%) Limit Kp 26.3 1.392 40.0 1.288 55.0 1.237 65.0 1.130 85 .0 1.067 100.0 1.000 Page 68
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 MCPRp Limits for:
BASE + TBSOOS Limits for Power < 26.3%
Flow>60.0% Flow $ 60.0%
Power(%) Limit Power(%) Limit MCPRTJ MCPRp 22.6 4.15 22.6 3.64 26.3 3.78 26.3 3.25 Limits for Power~ 26.3%
Power(%) Limit KTJ 26.3 1.399 40.0 1.323 55 .0 1.237 65 .0 1.155 85.0 1.079 100.0 1.000 MCPRp Limits for:
BASE+ RPTOOS Limits for Power < 26.3%
Flow> 60.0% Flow$60.0%
Power(%) Limit Power(%) Limit MCPRp MCPRp 22.6 2.99 22.6 2.67 26.3 2.83 26.3 2.60 Limits for Power~ 26.3%
Power(%) Limit Kp 26.3 1.392 40.0 1.288 55.0 1.237 65.0 I. 130 85.0 1.067 100.0 1.000 Page 69
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 MCPRp Limits for:
BASE + PROOS and/or PLUOOS Limitsfor Power < 26.3%
Flow> 60.0% Flow :S 60.0%
Power(%) Limit Power(%) Limit MCPRp MCPRp 22.6 2.99 22.6 2.67 26.3 2.83 26.3 2.60 Limits for Power;::: 26.3%
Power(%) Limit Kp 26.3 1.392 40.0 1.288 55.0 1.237 65.0 1.210 85.0 1.147 100.0 1.000 LHGRFACp Limits for:
BASE (lMSIVOOS, 1TCV and/or 1TSVOOS, lSRVOOS, 2TBVOOS)
Limits for Power < 26.3%
Flow> 60.0% Flow :S 60.0%
Power(%) Limit Power(%) Limit 22.6 0.508 22.6 0.508 26.3 0.522 26.3 0.522 Limits for Power ;::: 26.3%
Power(%) Limit 26.3 0.620 40.0 0.696 55.0 0.751 65.0 0.817 85.0 0.930 100.0 1.000 Page 70
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 LHGRFACp Limits for:
BASE + TBSOOS Limits for Power< 26.3%
Flow> 60.0% Flow ::: 60.0%
Power(%) Limit Power(%) Limit 22.6 0.397 22.6 0.397 26.3 0.417 26.3 0.442 Limits for Power~ 26.3%
Power(%) Limit 26.3 0.620 40.0 0.655 55.0 0.714 65.0 0.817 85.0 0.930 100.0 1.000 LHGRFACp Limits for:
BASE+ RPTOOS Limits for Power< 26.3%
Flow> 60.0% Flow ::: 60.0%
Power(%) Limit Power(%) Limit 22.6 0.508 22.6 0.508 26.3 0.522 26.3 0.522 Limits for Power~ 26.3%
Power(%) Limit 26.3 0.620 40.0 0.696 55.0 0.751 65.0 0.817 85.0 0.930 100.0 1.000 Page 71
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 LHGRFACp Limits for:
BASE+ PROOS and/or PLUOOS Limitsfor Power < 26.3%
Flow> 60.0% Flow ~60.0%
Power(%) Limit Power(%) Limit 22.6 0.508 22.6 0.508 26.3 0.522 26.3 0.522 Limitsfor Power> 26.3%
Power(%) Limit 26.3 0.620 40.0 0.696 55.0 0.751 65.0 0.817 85.0 0.930 100.0 1.000 Off-Rated Flow Dependent Limits The off-rated flow dependent limits to be applied for Base, Base + TBSOOS, Base + RPTOOS, and Base
+ PROOS and/or PLUOOS are documented in Reference D-1. The MCPRf and LHGRFACf limits provided in Reference D-1 have been validated for this cycle. The flow dependent limits basis is a single pump runout with no mechanical scoop tube setpoint. Peach Bottom has ASDs installed and no MIG set.
Flow dependent limits are provided for operation up to a maximum of 110% rated core flow.
The MCPRf limits provided in Reference D-1 are based on a SLMCPR of 1.12; therefore, the MCPRf limits have been scaled for the cycle-specific SLM CPR in Section 11.
The off-rated flow dependent limits support 1 MSIVOOS at power levels :::: 65% rated thermal power in all application conditions. The off-rated flow dependent limits support 1 TCV/TSVOOS at power levels ::::
54% rated thermal power in Base + TBSOOS. The off-rated flow dependent limits support 1 TCV/TSVOOS at power levels :::: 78% rated thermal power in all other application conditions.
MCPRf Limits for:
BASE (lMSIVOOS, 1TCV and/or 1TSVOOS, lSRVOOS, 2TBVOOS)
Limitsfor a Maximum Ru11out Flow of 110.0%
Flow(%) Limit MCPRf 30.0 1.57 86.0 1.25 110.0 1.25 Page 72
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 MCPRf Limits for:
BASE + TBSOOS Limits for a Maximum Ru11out Flow of 110.0%
Flow(%) Limit MCPR(
30.0 1.57 86.0 1.25 110.0 1.25 MCPRf Limits for:
BASE+ RPTOOS Limits for a Maximum Ru11out Flow of 110.0%
Flow(%) Limit MCPRf 30.0 1.57 86.0 1.25 110.0 1.25 MCPRf Limits for:
BASE+ PROOS and/or PLUOOS Limitsfor a Maximum Runout Flow of 110.0%
Flow(%) Limit MCPRJ 30.0 1.57 86.0 1.25 110.0 1.25 LHGRFACfLimits for:
BASE OMSIVOOS, lTCV and/or lTSVOOS, lSRVOOS, 2TBVOOS)
Limitsfor a Maximum Runout Flow of 110.0%
Flow(%) Limit 30.0 0.706 70.0 0.973 80.0 1.000 110.0 1.000 LHGRFACf Limits for:
BASE + TBSOOS Limits for a Maximum Runout Flow of 110.0%
Flow(%) Limit 30.0 0.706 70.0 0.973 80.0 1.000 110.0 1.000 Page 73
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 LHGRFACfLimits for:
BASE+ RPTOOS Limits for a Maximum Runout Flow of 110.0%
Flow(%) Limit 30.0 0.706 70.0 0.973 80.0 1.000 110.0 1.000 LHGRFACfLimits for:
BASE + PROOS and/or PLUOOS Limits for a Maximum Runout Flow of 110.0%
Flow(%) Limit 30.0 0.706 70.0 0.973 80.0 1.000 110.0 1.000 References D-1 . Peach Bottom Atomic Power Station Units 2 and 3 TRACG Implementation for Reload Licensing Transient Analysis, 0000-0135-9000-R2, June 2017.
Page 74
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Appendix E TRACG04 AOO Supplementary Information Reference E- I provides the results of the evaluations supporting the application of TRACG04 for AOO analyses for Peach Bottom.Section I I of this report presents the MCPR limits based on the TRACG04 methodology of Reference E-2.
The safety evaluation report for licensing topical report NEDE-32906P Supplement 3-A (Reference E-2) concluded that the application of TRACG04 methods to AOO and overpressure transient analyses were acceptable subject to certain limitations and conditions. Peach Bottom 3 Cycle 22 is in compliance with these limitations and conditions.
References E-1. Peach Bottom Atomic Power Station Units 2 and 3 TRA.CG Implementation for Reload Licensing Transient Analysis, OOOO-Ol 35-9000-R2, Revision 2, June 2017.
E-2. Migration ,to TRA.CG04/PANACJI from TRA.CG02/PANACIO for TRA.CG AOO and ATWS Overpressure Transients, NEDE-32906P, Supplement 3-A, Revision I, April 2010.
Page 75
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Appendix F Interim Methods LTR (NEDC-33173P-A Revision 4)
Supplemental Information The safety evaluation for licensing topical report NEDC-33173P-A Revision 4 (Reference F-1) concluded that the application of GEH/GNF methods to expanded operating domains was acceptable subject to certain limitations and conditions. Several of these limitations and conditions request that additional, application-specific information be provided in the SRLR. The information provided below responds to these requests for the identified items.
Limitation and Condition 9.5 (SLMCPR 2)
Limitation and Condition 9.5 states:
"For operation at MELLLA +, including operation at the EPU power levels at the achievable core flow state-point, a 0.01 value shall be added to the cycle-specific SLMCPR value for power-to-flow ratios up to 42 MWt!Mlbm!hr, and a 0.02 value shall be added to the cycle-specific SLMCPR value for power-to-flow ratios above 42 MWt!Mlbm!hr. "
For operation at MELLLA+, a 0.02 value was added to the cycle specific SLMCPR. The SLMCPR values reported in Section 11 reflect this adder.
Limitation and Condition 9.8 (ECCS-LOCA 2)
Limitation and Condition 9.8 states:
"The ECCS-LOCA will be pe1formed for all statepoints in the upper boundary of the expanded operating domain, including the minimum core flow statepoints, the transition statepoint, as defined in Reference F-2 and the 55 percent core flow statepoint. The plant-specific application will report the limiting ECCS-LOCA results as well as the rated power and flow results. The SRLR will include both the limiting statepoint ECCS-LOCA results and the rated conditions ECCS-LOCA results. "
This limitation and condition is satisfied by the Appendix K PCTs reported in Reference 1 in Section 16.4. The level of detail contained in the SRLR is consistent with the NRC evaluation of the GNF response to RAI 25 Item b in the M+LTR (Reference F-2). The SRLR reports the bounding Licensing Basis PCT for all statepoints analyzed.
Page 76
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Limitation and Condition 9.10/9.11 (Transient LHGR 2/3)
Limitation and Condition 9.10 states:
"Each EPU and MELLLA + fuel reload will document the calculation results of the analyses demonstrating compliance to transient T-M acceptance criteria. The plant T-M response will be provided with the SRLR or COLR, or it will be reported directly to the NRC as an attachment to the SRLR or COLR. "
Limitation and Condition 9.11 states:
"To account for the impact of the void hist01y bias, plant-specific EPU and MELLLA +
applications using either TRACG or ODYN will demonstrate an equivalent to JO percent margin to the fuel centerline melt and the 1 percent cladding circumferential plastic strain acceptance criteria due to pellet-cladding mechanical interaction for all of limiting AOO transient events, including equipment out-of-service. Limiting transients in this case, refers to transients where the void reactivity coefficient plays a significant role (such as pressurization events). If the void hist01y bias is incorporated into the transient model within the code, then the additional 10 percent margin to the fuel centerline melt and the 1 percent cladding circumferential plastic strain is no longer required. "
Appendix B documents the fact that the results for all analyzed transients demonstrate compliance with thermal-mechanical acceptance criteria.
Table F-1 summarizes the percent margin to the Thermal Overpower and Mechanical Overpower acceptance criteria.
As referenced in Appendix E, the void history bias was incorporated into the transient model within the TRACG04 code, and therefore the l 0 percent margin to the fuel centerline melt and the l percent cladding circumferential plastic strain acceptance criteria is no longer required.
Table F-1 Margin to the Thermal Overpower and Mechanical Overpower Acceptance Criteria Criteria GNF2 Thermal Overpower 2.76%
Mechanical Overpower 0.60%
Page 77
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Limitation and Condition 9.17 (Steady-State 5 Percent Bypass Voiding)
Limitation and Condition 9.17 states:
"The instrumentation specification design bases limit the presence of bypass voiding to 5 percent (LRPM (sic) levels). Limiting the bypass voiding to less than 5 percent for long term steady operation ensures that instrumentation is operated within the specification.
For EPU and MELLLA + operation, the bypass voiding will be evaluated on a cyc/e-specific basis to confirm that the void fi*action remains below 5 percent at all LPRM levels when operating at steady-state conditions within the MELLLA + upper boundaly.
The highest calculated bypass voiding at any LPRM level will be provided with the plant-specific SRLR. "
The bypass voiding was evaluated for the licensed core loading and confirmed that the bypass void fraction remained below 5 percent at all LPRM levels when operating at steady-state conditions within the licensed upper boundary.
Limitation and Condition 9.18 (Stability Setpoints Adjustment)
Limitation and Condition 9.18 states:
"The NRC staff concludes that the presence bypass voiding at the /ow-flow conditions where instabilities are likely can result in calibration errors of less than 5 percent for OPRM cells and less than 2 percent for APRM signals. These calibration errors must be accounted for while determining the setpoints for any detect and suppress long term methodology. The calibration values for the different long-term solutions are specified in the associated sections of this SE, discussing the stability methodology. "
This limitation and condition is not applicable to DSS-CD because the significant conservatisms in the current licensing methodology and associated MCPR margins are more than sufficient to compensate for the overall uncertainty in the OPRM instrumentation.
Limitation and Condition 9.19 (Void-Quality Correlation 1)
Limitation and Condition 9.19 states:
"For applications involving PANCEA(sic)IODYNllSCORITASC for operation at EPU and MELLLA+ , an additional 0.01 will be added to the OLMCPR, until such time that GE expands the experimental database supporting the Findlay-Dix void-quality correlation to demonstrate the accuracy and pe1formance of the void-quality correlation based on experimental data representative of the current fuel designs and operating conditions during steady-state, transient, and accident conditions. "
Page 78
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 The OLMCPR limitation requiring an additional 0.01 adder on the OLMCPR does not apply to EPU or MELLLA+ licensing calculations when TRACG04 methods are used (Reference F-3). Therefore, the OLMCPR adder is not applied to Peach Bottom Unit 3 Cycle 22.
References F-1. Applicability of GE Methods to Expanded Operating Domains, NEDC-33 l 73P-A, Revision 4, November 2012.
F-2. General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus, NEDC-33006P-A, Revision 3, June 2009.
F-3. Migration to TRACG04 I PANACJJ from TRACG02 I PANACJO for TRACG AOO and ATWS Overpressure Transients, NEDE-32906P, Supplement 3-A, Revision 1, April 2010.
Page 79
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Appendix G MELLLA+ LTR (NEDC-33006P-A Revision 3) Supplemental Information The safety evaluation for licensing topical report NEDC-33006P-A Revision 3 (Reference G-1) approved the operation of GE BWRs in the MELLLA+ expanded operating domain, subject to certain limitations and conditions. Several of these limitations and conditions request that additional, application-specific information be provided in the SRLR. The information provided below responds to these requests for the identified items.
Limitation and Condition 12.6 (SLMCPR Statepoints and CF Uncertainty)
Limitation and Condition 12.6 states:
"Until such time when the SLMCPR methodology (References G-3 and G-4) for off-rated SLMCPR calculation is approved by the staff/or MELLLA+ operation, the SLMCPR will be calculated at the rated statepoint (120 percent Pl l 00 percent CF), the plant-specific minimum CF statepoint (e.g., 120 percent P/80 percent CF), and at the JOO percent OLTP at 55 percent CF statepoint. The currently approved off-rated CF uncertainty will be used for the minimum CF and 55 percent CF statepoints. The uncertainty must be consistent with the CF uncertainty currently applied to the SLO operation or as NRC-approved for MELLLA + operation. The calculated values will be documented in the SRLR."
As requested, the SLMCPR calculated results at specified off-rated power/flow conditions are reported in Table G-1 below, including the low CF statepoint.
Table G-1 Two-Loop SLMCPR Results for MELLLA+ Conditions Power(% Rated) Flow(% Rated) SLM CPR 100.0 110.0 1.07 100.0 100.0 1.07 100.0 85.2 1.11 77.5 55.0 1.12 Page 80
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Limitation and Condition 12.10.b (ECCS-LOCA Off-Rated Multiplier)
Limitation and Condition 12.1 O.b states:
"LOCA analysis is not pe1formed on cycle-specific basis; therefore, the thermal limits applied in the M+SAR LOCA analysis for the 55 percent CF MELLLA+ statepoint and/or the transition statepoint must be either bounding or consistent with cycle-specific off rated limits. The COLR and the SRLR will contain confirmation that the off-rated limits assumed in the ECCS-LOCA analyses bound the cycle-specific off-rated limits calculated for the MELLLA + operation. Eve1y future cycle reload shall confirm that the cycle-specific off-rated thermal limits applied at the 55 percent CF and/or the transition statepoints are consistent with those assumed in the plant-specific ECCS-LOCA analyses. "
The off-rated limits assumed in the ECCS-LOCA analyses are confirmed to be consistent with the cycle-specific off-rated LHGR multipliers calculated for the MELLLA+ operation. The off-rated LHGR multipliers provide adequate protection for the MELLLA+ operation.
Limitation and Condition 12.18.d (ATWS TRACG Analysis)
Limitation and Condition 12.18.d states:
"Jn general, the plant-specific application will ensure that operation in the MELLLA domain is consistent with the assumptions used in the ATWS analysis, including equipment out ofservice (e.g., FWHOOS, SLO, SRVs, SLC pumps, and RHRpumps, etc.).
If assumptions are not satisfied, operation in MELLLA + is not allowed. The SRLR will specify the prohibited flexibility options for plant-specific MELLLA+ operation, where applicable. For key input parameters, systems and engineering safety features that are important to simulating the ATWS analysis and are specified in the Technical Specification (TS) (e.g., SLCS parameters, ATWS RPT. etc.), the calculation assumptions must be consistent with the allowed TS values and the allowed plant configuration. If the analyses deviate ji*om the allowed TS configuration for long term equipment out of service (i.e., beyond the TS LCO), the plant-specific application will specify and justify the deviation . In addition, the licensee must ensure that all operability requirements are met (e.g., NPSH) by equipment assumed operable in the calculations. "
This A TWS TRACG Analysis limitation and condition requires that the SRLR specify the prohibited flexibility options for plant-specific MELLLA+ operation, where applicable, as expressed by EOOS options in Section 8.
Page 81
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 References G-1. General Electric Boiling Water Reactor Maximum Extended Load Line Limit Analysis Plus, NEDC-33006P-A, Revision 3, June 2009.
G-2. GE Hitachi Boiling Water Reactor, Detect and Suppress Solution - Confirmation Density, NEDC-33075P, Revision 8, November 2013.
G-3. Methodology and Uncertainties for Safety Limit MCPR Evaluations, NEDC-32601P-A, August 1999.
G-4. Power Distribution Uncertainties for Safety Limit MCPR Evaluations, NEDC-32694P-A, August 1999.
G-5. DSS-CD TRACG Application, NEDE-33147P-A, Revision 4, August 2013.
Page 82
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Appendix H Application to Current Licensed Thermal Power (CLTP)
The reload licensing analysis for this plant and cycle is based on TPO conditions at 4016 MWt rated core power (Reference H-1) and is applicable to CL TP conditions at 3951 MWt rated core power (Reference H-2).
Off-rated limits have been developed based on the plant transient trends versus percent of rated power and flow and these relationships have been validated for Peach Bottom TPO. Therefore, the off-rated limits provided in Appendix D are applicable for operation at both CL TP and TPO conditions. Note, however, that the Appendix D power dependent off-rated limits have been provided at TPO values of Pbypass and Pmin of 26.3% rated power and 22.6% rated power, respectively. The power dependent limit values at Pbypass and Pmin have been validated as applicable for operation at both CLTP and TPO conditions. At CL TP conditions, the power level values for Pbypass and Pmin should be adjusted to those appropriate for CLTP.
The BSP Scram Region and Controlled Entry Region for both NFWT and RFWT are conservative for CLTP in terms of absolute power. The Scram Region and Controller Entry Region power level based coordinates may be rescaled from the TPO power level to the CL TP power level. The ABSP setpoints are conservative for CLTP in terms of absolute power. The ABSP constant power line setpoint (Pssr-TRrP) and the slope (mTRIP) may also be rescaled from the TPO power level to the CL TP power level.
References H-1. Safety Analysis Report for Peach Bottom Atomic Power Station Units 2 and 3 Thermal Power Optimization, NEDC-33873P, Revision 0, February 2017.
H-2. Safety Analysis Report for Peach Bottom Atomic Power Station Units 2 & 3 Maximum Extended Load Line Limit Analysis Plus, NEDC-33720P, Revision 0, September 2014.
Page 83
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Appendix I Peach Bottom Unit 3 Cycle 22 Contingency TCV/TSV Delay Analysis The pressurization transient results provided in Section 9 and Section 11 were performed with a 0 ms TSV delay time following a high water level (L8) turbine trip and a 0 ms TCV delay time following a high water level (L8) turbine trip.
A contingency analysis for Peach Bottom 3 Cycle 22 was performed with a 0 ms TSV delay time following a high water level (L8) turbine trip and a 45 ms TCV delay time following a high water level (L8) turbine trip. The contingency analysis evaluated the impact of this change on the FWCF and HPCIL8 events. The results show that the change could impact the Peach Bottom 3 Cycle 22 reload analysis limits. The following pressurization transient OLMCPR may be implemented for Peach Bottom 3 Cycle 22 instead of those provided in Section 11 if the TCV delay time is at least 45 ms longer than the TSV delay time.
Limiting Pressurization Events OLMCPR Summary Table:
Appl.
Exposure Range Option A Option B Cond.
GNF2 GNF2 1 Base (lMSIVOOS, lTCVand/or lTSVOOS, lSRVOOS, 2TBVOOS)
BOC to MOC 1.46 1.38 MOC to EOC 1.49 1.41 2 Base + TBSOOS BOC to MOC 1.51 1.42 MOC to EOC 1.55 1.46 3 Base + RPTOOS BOC to MOC 1.58 1.41 MOCtoEOC 1.61 1.44 4 Base + PROOS and/or PLUOOS BOC to MOC 1.46 1.38 MOC to EOC 1.49 1.41 Page 84
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Appendix J End of Cycle Power Coastdown Restrictions End-of-cycle power coastdown operation down to 40% reactor power is supported by the GEST AR basis document identified at the beginning of this report. Coastdown operation beyond the EOR condition is conservatively bounded by the reload licensing analyses at the EOR condition for a normal coastdown power profile. During coastdown, operation at a power level above that which can be achieved (at all-rods-out with all cycle extensions features utilized, e.g., ICF, FFWTR) with steady-state equilibrium xenon concentrations is not supported.
Page 85
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Appendix K List of Acronyms Acronym Description llCPR Delta Critical Power Ratio Ilk Delta k-effective 2RPT (2PT) Two Recirculation Pump Trip ADS Automatic Depressurization System ADSOOS Automatic Depressurization System Out of Service AOO Anticipated Operational Occurrence APRM Average Power Range Monitor ARTS APRM, Rod Block and Technical Specification Improvement Program ASD Adjustable Speed Drive BOC Beginning of Cycle BSP Backup Stability Protection BWROG Boiling Water Reactor Owners Group CCFL Countercurrent Flow Limitation CFR Code of Federal Regulation COLR Core Operating Limits Report CPR Critical Power Ratio DIRPT Delta MCPR over Initial MCPR for a two-Recirculation Pump Trip DIV OM Delta CPR over Initial MCPR vs. Oscillation Magnitude DR Decay Ratio OS/RV Dual Mode Safety/Relief Valve ECCS Emergency Core Cooling System ELLLA Extended Load Line Limit Analysis EOC End of Cycle (including all planned cycle extensions)
EOOS Equipment Out of Service EOR End of Rated (All Rods Out 100%Power I 100%Flow I NFWT)
EPU Extended Power Uprate ER Exclusion Region FFWTR Final Feedwater Temperature Reduction FMC PR Final MCPR FOM figure of Merit FW Feed water FWCF Feedwater Controller Failure FWHOOS Feedwater Heaters Out of Service FWTR Feedwater Temperature Reduction GEST AR General Electric Standard Application for Reactor Fuel GETAB General Electric Thermal Analysis Basis GS3 GEH Simplified Stability Solution GSF Generic Shape Function HAL Haling Bum HBB Hard Bottom Burn Page 86
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Acronym Description HBOM Hot Bundle Oscillation Magnitude HCOM Hot Channel Oscillation Magnitude HFCL High Flow Control Line HPCI High Pressure Coolant Iniection ICA Interim Corrective Action ICF Increased Core Flow JM CPR Initial MCPR IVM Initial Validation Matrix Kf Off-rated flow dependent OLMCPR multiplier Kp Off-rated power dependent OLMCPR multiplier LS Turbine Trip on high water level (Level 8)
LCF Low Core Flow LFWH Loss of Feedwater Heating LHGR Linear Heat Generation Rate LHGRFACf Off-rated flow dependent LHGR multiplier LHGRFACp Off-rated power dependent LHGR multiplier LOCA Loss of Coolant Accident LOSC Loss of Stator Cooling LPRM Local Power Range Monitor LRNBP Load Rejection without Bypass LRWHBP Load Rejection with Half Bypass LTR Licensing Topical Report MAPFACf Off-rated flow dependent MAPLHGR multiplier MAPFACp Off-rated power dependent MAPLHGR multiplier MAPLHGR Maximum Average Planar Linear Heat Generation Rate MCPR Minimum Critical Power Ratio MCPRf Off-rated flow dependent OLMCPR MCPRp Off-rated power dependent OLMCPR MELLLA Maximum Extended Load Line Limit Analysis MELLLA+ MELLLA Plus MEOD Maximum Extended Operating Domain MOC Middle of Cycle MRB Maximal Region Boundaries MSF Modified Shape Function MSIV Main Steam Isolation Valve MSIVOOS Main Steam Isolation Valve Out of Service MSR Moisture Separator Reheater MS ROOS Moisture Separator Reheater Out of Service MTU Metric Ton Uranium MWd Megawatt day MWd/MT Megawatt days per Metric Ton MWd/ST Megawatt days per Standard Ton MWt Megawatt Thermal NIA Not Applicable NBP No Bypass Page 87
Peach Bottom Unit 3 003N1452 Reload 21 Revision 0 Acronym Description NCL Natural Circulation Line NFWT Normal Feedwater Temperature NOM Nominal Burn NTR Normal Trip Reference OLM CPR Operating Limit MCPR oos Out of Service OPRM Oscillation Power Range Monitor Pbypass Reactor power level below which the TSV position and the TCV fast closure scrams are bypassed Pdomc Peak Dome Pressure Psi Peak Steam Line Pressure P,. Peak Vessel Pressure PCT Peak Clad Temperature PHE Peak Hot Excess PLHGR Peak Linear Heat Generation Rate PLU Power Load Unbalance PLUOOS Power Load Unbalance Out of Service PRFDS Pressure Regulator Failure Downscale PROOS Pressure Regulator Out of Service Q/A Heat Flux RBM Rod Block Monitor RC Reference Cycle RCF Rated Core Flow RFWT Reduced Feedwater Temperature RPS Reactor Protection System RPT Recirculation Pump Trip RPTOOS Recirculation Pump Trip Out of Service RV Relief Valve RVM Reload Validation Matrix RWE Rod Withdrawal Error SC Standard Cycle SL Safety Limit SLM CPR Safety Limit Minimum Critical Power Ratio SLO Single Loop Operation SRI Select Rod Insert SRLR Supplemental Reload Licensing Report S/RV (SRV) Safety/Relief Valve SRVOOS Safety/ReliefValve(s) Out of Service SS Steady State ssv Spring Safety Valve STP Simulated Thermal Power STU Short Tons (or Standard Tons) of Uranium TB SOOS Turbine Bypass System Out of Service TBV Turbine Bypass Valve TBVO Turbine Bypass Valves Open Page 88
Peach Bottom Unit 3 003Nl452 Reload 21 Revision 0 Acronym Description TBVOOS Turbine Bypass Valves Out of Service TCV Turbine Control Valve TCVOOS Turbine Control Valve Out of Service TCVSC Turbine Control Valve Slow Closure TLO Two Loop Operation TOPPS Tracking Over-Power Protection System TRF Trip Reference Function TSIP Technical Specifications Improvement Program TSV Turbine Stop Valve TSVOOS Turbine Stop Valve Out of Service TT Turbine Trip TTNBP Turbine Trip without Bypass TTWHBP Turbine Trip with Half Bypass UB Under Bum Page 89