ML17250A847: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(3 intermediate revisions by the same user not shown)
Line 18: Line 18:


=Text=
=Text=
{{#Wiki_filter:ATTACHMENT ARochester GasandElectricCorporation TMIActionPlan(NUREG0737)Documentation KI-:IILNIIII7 MI',IlHfIKMWDecember30,1980 Cik,1y,,
{{#Wiki_filter:ATTACHMENT A Rochester Gas and  Electric Corporation TMI Action Plan  (NUREG 0737) Documentation KI-:IILNIIII7MI',IlHfIK MW December 30, 1980
1.A.1.1ShiftTechnical Advisor~~Adescrxptxon ofouroriginalSTAprogramwasoutlinedinaletter,datedOctober17,1979,fromL.D.White,Jr.toMr.DennisZiemann,withadditional information
.providedinaletterdatedDecember28,1979,fromMr.WhitetoMr.Ziemann.InresponsetotheNRC'sletterdatedJuly7,1980,fromMr.DennisCrutchfield weprovidedadditional clarification ofouroriginalSTAprogramandadescription ofournewSTAprograminaletterdatedAugust5,1980fromL.D.White,Jr.toMr.Crutchfield.
OuroriginalSTAprogramutilizedlicensedoperators andincludedtheirparticipation incollege-level engineering coursestoprovidethemeventually withanengineering degree.AttherequestoftheNRCRG&Emodifiedtheoriginalprogramandassignedeitherdegreedengineers orSRO'sasSTA,andassigneddegreedengineers toperformtheOperational Assessment function.
WebeganstaffingtheOperational Assessment, Groupinthesummerof1980.OurSTAtrainingandrequalification programisdescribed byaGinnaStationAdministrative Procedure, andconsistsofvariousphasesasdescribed below.PresentLevelofTraininInitialtrainingtomeettherequirements listedinHaroldDenton'sletterdatedOctober30,1979toAllOperating NuclearPowerPlantshasbeencompleted.
Thistrainingincludedafourweekclassroom trainingandtwodaysimulator trainingprogrampresented byourNSSSsupplieraslistedbelow.Title:Chemistry/Basic Theory,Objectives andControlObjective:
1.Discusstheconcernsthatrequirechemistry control2.DiscusstheRCS/Steamside Chemistry limitations andbasis3.Discussthetechniques formain-tainingchemistry limits4.DiscusstypicalRCS/Steamside chemistry problemsandtheassociated corrective actions5.Discusstheeffectsofchemistry upsetsonplantoperations 6.Discusschemistry indications forvariousaccidents 6
2TopicSummary:1.Functional Requirements 2.Chemistry ControlAreas3.Specifications, Limits,andBasis4.Mechanisms forControl5.ProblemsinControl6.Chemistry TroubleShootingTitle:Metalurgy/Basic FractureMechanics Objective:
Reviewtheoryoftheplantlimitations andoperational considerations basedonNSSSmetalurgical restrictions.
TopicSummary:1.Introduction 2.FractureCriteria3.StressAnalysisofthePWRVessel4.CrackTipStressIntensity FactorAnalysis-MethodsofDetermining StressIntensity FactorK5.MaterialProperties 6.Non-Destructive Examination 7.CodesandStandards 8.FractureMechanics Applications intheNSSS9.ReviewofPastandCurrentR&D10.PlantSpecificLimitsReviewTitle:Thermodynamics, HeatTransfer, andFluidFlowandtheirPWRApplications Objective:
Giveworkingknowledge oftheabovetopicsattheoperation level.TopicSummary:2.Basicproperties offluidsandmatter(energyrelationships)
FluidDynamics(addresses naturalcirculation)
Thermodynamics andHeatTransfer(boiling) includesmonitoring oftemperatures, flow,pressureparameters NormalPlantOperations (asperheatgeneration)
-peakingfactorsasafunctionofprimaryandsecondary system,management ofnormalreactorheat,anddecayheattransferlimits(boiloffisdiscussed)
L'lt1*,,~kO 35.Limitingphenomena a.burnout-DNBb.flowinstability c.sonicvelocity-chokedflowd.pumprunoute.thermaltransients
-metalfatiguef.foulingg.flashing-heatstoredinmetalh.blowdowntocontainment i.fueltemperature
-DNBj.steambindingk.Zirc-water reaction6.AccidentTreatment
-heatsinksandpressure/temperature limitsa.lossofRCPb.smallLOCAc.decayheatTitle:NuclearCharacteristics/Review Objective:
Comprehensive reviewofthereactivity effects,magnitudes, anddirection ofeachcorereactivity coefficient andthekineticeffectsofeachforatypicalPWRcycle,changesfromcoldtohot,androdbankposition.
TopicSummary:1.Subcritical Multiplication 2.Sixfactorformula3.Coefficients 4.Defects5.Inhourequations 6.Practical Application
-(measurements) a.Moderator Coefficient b.PowerCoefficient c.RodWorth7.NeutronMechanics Title:NuclearPeakingFactorsObjective:
Comprehensive reviewofFandF>Hincluding thebasis,limitations, andmeasurements ofeach.TopicSummary:2.3.5.Establish limitations ofeacha.Fuelb.Clad(includes Zr/H20reaction) c.FlowMeasurements ofFandF><Protection availa8le DElimitations Technical Specifications 6
Title:NSSSInstrumentation; Basis,Limitations andAlternatives Objective:
DefineNSSSinstrumentation basis,limitations andalternate sourcesofinformation.
TopicSummary:1.Requirements andBasisforParameter Monitoring 2.Instrumentation Limitations 3.Alternate SourcesofInformation 4.Believability ofInformation 5.BehaviorDuringAbnormalConditions 6.AdverseEnvironmental EffectsTitle:NSSSOperating Experience andSystemAssessment Objective:
Enhancetheoperator's abilitytoestablish systempriorities usingcontrolroominstrumentation.
TopicSummary:1.Establish conceptual approachtooperations
-(normal,abnormal, andemergency) 2.SelectedIndustryLER's3.Systemsproblemsarepresented;.
classmustchooseandsetthepriorities andcourseofaction.Title:NormalPlantTransient Assessment Objective:
Enhancetheoverallknowledge levelofnormalplanttransients, including theinstrumentation
: required, themagnitude anddirection ofeach.TopicSummary:2.3.DevelopaBasicOperating Planta.Instrumentation Requiredb.Protection Requiredc.HeatBalanceIntroduction ofonestandardtransient assessment graph(Uses,controlroominstrumentation ranges)StepLoadChangesMajorLoadRejection ReviewofT-TrefMismatch/Re60ns LkP4 9.Title:5.MainGenerator TripCalculation oftheResultant avgInstrument FailureAssessment Objective:
Foranyselectedinstrument failure,predictthemagnitude anddirection ofeachmajorNSSSparameter andgraph.thefunctionassumingnooperatoraction.TopicSummary:1.Classestimates response(nooperatoraction)2.Thefollowing failureswereselectedformaximumimpact:a.TFailsHighatBOLb.NSgPowerRangeFailsHighatBOL3.TurbineImpulseChannelFailsLow4.Pressurizer PressureControlChannelFailsHigh5.Pressurizer LevelControlChannelFailsHigh/LowEachcalculation isconcluded wheneithertheplanthastrippedorastablereactivity balanceexists.Note:Asstudentexperience/training andtime'ermit allinputstothefollowing majorcontrol'systemsandtheirfailureswillbediscussed; 1.ReactorMake-upControl2.SteamGenerator WaterLevelControl3.Electro-Hydraulic ControlSystem10.Title:Accident/Transient Assessment Objective:
Enhancetheabilityforpromptrecognition ofmajoraccident, transients andestablish thebasisfortheappropriate emergency procedures.
TopicSummary:2.3.RodWithdrawal Accidents (FSAR)a.ReviewProtection (DNBRVs.pcm/sec.)
MainGenerator Trips(FSAR)NaturalCirculation, Detaileda.S/Gb,TCalculations b.PowertoFlowRatioc.DecayHeat,d.Subcooling


4.BasisforStoppingRCP'sonLowPressurea.MassInventory b.SteamGenerator Pressure(Bounding Limit)5.S/GTubeRupturea.ImpactofClosingtheMSIVb.MethodsofDepressurizing c.Monitoring Subcooling d.Conditions forStoppingSIe.Conditions Requiring ClosingofPORV6.OnePORVOpenonPressurizer a.DetailsoftheLevelResponse7.SmallBreakTransient BehaviorModesa.<3/8"to>2"b.Conditions forStoppingSI8.SteamBreaka.FSARandGenericAnalysisb.Calculate RCSTemp.for1S/GBlowdown9.MainFeedlineBreaka.Calculate RCSTemp.for1S/GBlowdownb.Calculate TimeforAllS/GtoGoDry10.LossofAllFeedwater a.Calculate TimeforAllSteamGenerators toGoDryb.OptionsAvailable toCoolReactor.(OpeningOnePZRPORV)11.Determination ofInadequate CoreCooling12.AccidentDiagnostics 11.Title:Simulator TrainingObjective:
Ci k,
Observation ofActualAbnormalandAccidentConditions andtheIdentification ofEachTopicSummary:Westinghouse NuclearTrainingCenterControlBoardFamiliarization Demonstrations 1.Verification of:a.NaturalCirculation b.Subcooling c.AdequateCoreCooling IIllV4 2.MajorReactivity Transients a.LoadRejection withRodsinManualb.ATWTc..Continuous ControlRodWithdrawal fromHZP3.Instrument Failures4.SmallandLargeLOCA's5.S/GSecondary Breaks6.Pressurizer PORVOpen7.OneSprayValveOpen8.LossofAllFeedwater 9.LossofRodDriveMG'sTransient Assessment 1.SelectedInstrument Failures2.SelectedAccidents 3.SelectedEquipment.
1y,,
Failures4.MultipleFailuresAfourweekcourseinnuclearandreactorphysicswaspresented forthoseengineers whodidnothavepreviousnuclearengineering education.
Thiscourse,taughtbyMemphisStateUniversity, ispartofanaccredited collegeprogram,andincludedthefollowing topics:AtomsandMatterLightandElectromagnetic WavesRadioactivity andParticleBehaviorNuclearReactions FissionReactorFundamentals NuclearFissionofUranium-235Neutrons, Reactions, andModerator EffectsNeutronMultiplication FactorsReactivity ReactorKineticsTheSubcritical ReactorOn-the-job
: training, including continuing assignment on-shiftasSTA,hasprovidedabasicfamiliarization inplantsystemsandoperation.
Additional TraininExpandedtrainingforthecalendaryear1981willinclude:PlantDesignSystemOperation Transient ResponseAccidentAnalysisSimulator TrainingProcedure ReviewTechnical Specifications Management Skills Requalification trainingwillcommenceJanuary1,1982,andwillcontinueonatwo-yearfrequency (oruntiltheSTAprogramisphasedout).Thisprogramwillinclude:Procedure ReviewTransient ResponseAccidentAnalysisOn-shiftassignment asSTAoron-shiftassignment asSROEvaluations bytheTechnical Assistant forOperational Assessment Lon-TermSTAProramandTraininPlansThelong-term STAprogramwillcontinuetoutilizedegreedindividuals (withthesupplemented education, experience, andtraininglistedabove),orindividuals withanSROlicensewhohavereceivedthenecessary technical education andtraining.
Wewillreplacedegreedindividuals withSRO-licensed individuals asthelicensedindividuals receiveeducation'imilar tothatoutlinedinRG&E'sletterdatedDecember28,1979fromL.D.White,Jr.toMr.DennisZiemann.TheSTAprogramwillbephasedoutwhentheman-machine interface controlroomreviewhasbeencompleted andtheshiftsupervisor andsenioroperatoronashifteachmeettheproposedfutureeducational requirements ofapproximately 60technical credithoursforSROlicensing.
STASelection anduglification Ifreplacement STA'sarerequired, screening willbeperformed toensurecandidates meettheeducation, experience andtrainingrequirements ofourAdministrative Procedure forSTATrainingpriortotheirassignment asSTA.CommentsonINPODocumentandComarisonwithRG&E'sRG&EhasreviewedINPO'sdocumentofApril30,1980concerning STAQualifications, Education andTraining.
Wehaveconcluded thattheseINPOgoalsfortheSTAare"standards ofexcellence" andrepresent anultimategoal.However,lackingguidancefromtheNRConminimumrequirements forSTA,RG&Ehasestablished minimumrequirements for'TA,independent ofINPO's"standard ofexcellence".
i' Wearepleasedtoofferourcommentsontheabove-mentioned INPOdocument.
Wefullyendorsethecommentsandrecommendations madebytheMid-Atlantic NuclearTrainingGroup(MANTG)inaletter,datedOctober21,1980,fromMANTG(Young)toINPO(Thomas)andquotedbelow:GeneralItistheopinionofthemembersoftheMid-Atlantic NuclearTrainingGroupthatthesubjectdocument's experience, education, andtrainingrequirements donotappeartobebaseduponthedemandsoftheSTAposition.
Asanexample,thedocumentincludesapositiondescription whichliststwelvetypicalSTAresponsibilities.
Ofthese,fourpertaintoevaluating plantconditions duringtransients orinvestigating thecausesofsuchtransients'et, verylittleemphasisisplacedontransient conditions inthetransient/
accidentanalysisandEmergency Procedures requirements ofSection6.7.TheMANTGrecommends thatallexperience, education, andtrainingrequirements bebaseduponadetailedjob/taskanalysis'hen derivedinthismanner,thestandards willbeabletorelatetospecificknowledge levels,requirements tothetypicalSTAresponsibilities.
Thisapproachseemsespecially prudentinlightoftherecentemphasisofjobandtaskanalysisbytheNuclearRegulatory Commission, AmericanNuclearStandards Institute, andtheInstitute ofNuclearPowerOperations.
2.Pae10,Section5.2Eeriencea.Thefirstparagraph requirestheSTAtohaveaminimumof18monthsofnuclearpowerplantexperience.
TheMANTGrecommends thatthisrequirement bedeleted.Itisouropinionthataneffective trainingprogramwillproduceacompetent STA,regardless ofhispreviousexperience.
ItshouldbenotedthatINPOdidnotpublishthisrequirement, evenindraftform,untilMayofthisyear.WiththeNRCrequiring fullytrainedSTA'sbyJanuary1,1981,itwillbeimpossible tostafftheSTApositionwithpersonnel whomeetboththerequire-mentsoftheNRCandINPO,unlesstheyaredrawnfromtheexistingplantstaff.b.Paragraph threestatesthatamaximumofthreemonthsoftrainingmaybeappliedtowardtheexperience requirement.
TheMANTGrecommends thatbothon-the-job trainingandplantspecificsystemsoroperations train-ingwhichisconducted byorforthefacilityatwhichtheSTAisqualifying, beequivalent toexperience onaone-to-one basiswithnomaximum.Therationale for l
10thisrecommendation isthattrainingattheplantprovidesthetraineetheopportunity totracesystemsandobserveplantoperations whichtheMANTGfeelsfulfillstheintentofthissection.C.TheMANTGrecommends thattheINPOincludeaprovision inSection5.2whichequatescoldlicensesimulator trainingtooperating plantexperience onathreetoonebasis,similartotheprovision presently allowedforcoldlicenseoperatorcandidates'a ellSection5.3AbsencefromSTADutiesMANTGrecommends thatpersonnel notactivelyperforming STAfunctions butparticipating intheSTArequalification program,beexemptfromtherequirements ofthissection.Additionally, thosepersonsnotperforming thefunctionnorparticipating intherequalification programberequiredtocompleteonlythoseportionsoftherequalification programwhichtheyhavemissedduringtheirabsencepriortoassigning themforSTAduty.Pae13,Section6.1.2ColleeLevelFundamental Education a.IntheElectrical Sciencessection,theMANTGrecommends thatCircuitTheoryandDigitalElectronics bedeletedfromtheknowledge requirements.
TheMANTGdoesnotbelievethattheyarepertinent totheunderstanding ofnuclearpowerplantresponseorcontrol.b.MANTGrequestsguidanceonhowtoobtainthiscollegelevelknowledge withintheshorttimeframerequiredbytheNuclearRegulatory Commission.
Pae15,Section6.2AliedFundamentals-Plant
~SecificTheMANTGrequestsguidanceonhowtodetermine whatconstitutes collegeleveltrainingforPlantSpecifictopics.Pae17,Section6.6General0eratinProcedures MANTGrecommends thatallplantoperating procedures whichrelatetoanSTA'sfunctionbeincludedinthissectionratherthanthoseasmentioned.
Theseprocedures shouldbeidentified intheSTAtaskanalysisrecommended inparagraph
: 1.
1'C\1IF 8.Pae18,Section6.8Simulator TraininThefirstparagraph requiresatrainee/instructor ratioofnotmorethanfourtoone.Thiswouldseemtorequireatleasttwoinstructors foreverytrainingsessionsinceitisanticipated thatSTA'swillbetrainedalongwiththerestoftheircontrolroomwatchsection.TheMANTGrecommends thata4:1ratioonlyapplywhenonlySTA'sarebeinginstructed inagivencourse.b.TheHANTGrecommends thatsimulator emphasisincludethediscussion anddemonstration ofthoseactionswhichoperators maytakewhichwouldeithermitigateoraggrevate atransient oraccidentcondition.
9.Pae19,Section6.9AnnualReualification TraininMANTGrecommends thatareviewofthetheoretical materialpresented duringSTAqualification beincludedintherequalification program.1.A.1.3ShiftManning~~~~BletterdatYedDecember15,1980fromL.D.White,Jr.toMr.DennisM.Crutchfield, USNRC,RG&Eresponded toshiftstaffingcriteriaandguidelines forscheduling overtimeforlicensedoperators.
Thecommitments pro-videdinthatletter,andproposedalternatives tosomeoftheStaffovertimeguidelines, remainunchanged.
Wehaverevisedadministrative procedures toimplement asimilar'olicy tolimitovertimeworkofpeopleinadditiontolicensedoperators whoperformsafetyrelatedwork.Procedure A52.9hasbeenrevisedtoin-cludelimitsonovertimeworkedbyauxiliary operators inadditiontoSROs,ROsandShiftTechnical Advisors.
Procedure A52.10hasbeenimplemented tolimitovertimeworkedbyhealthphysicist technicians, I&Ctechnicians andkeymaintenance personnel.
GuidancefortheEvaluation andDevelopment ofProcedures forTransients andAccidents TheWestinghouse OwnersGroupwillsubmitbyJanuary1,1981,adetaileddescription ofourprogramtocomplywiththerequirements ofItemI.C.1.TheprogramwillidentifypreviousOwnersGroupsubmittals totheNRC,whichwebelievewillcomprisethebulkoftheresponse.
1plI 12Additional effortrequiredtoobtainfullcompliance withthisitem(withproposedschedules forcompletion) willalsobeidentified, asdiscussed withtheNRConNovember12,1980.DesignReviewofPlantShielding andEnvironmental Qualification ofEquipment forSpaces/Systems WhichMayBeUsedinPost-Accident Operations.
Adiscussion ofourdesignreviewiscontained inaletterdatedDecember28,1979fromL.D.White,Jr.toMr.DennisZiemann,USNRC.Additional information andschedulearecontained inaletterdatedDecember15,1980fromJohnE.MaiertoMr.DennisM.Crutchfield, USNRC.II.E.1.2Auxiliary Feedwater SystemAutomatic Initiation andFlowIndication Part1:Auxiliary Feedwater SystemAutomatic Initiation RG&Ehaspreviously responded toNRCrequirements forauxiliary feedwater systemsinlettersdatedNovember28,1979,December14,1979,December19,1979,March28,1980,May22,1980,May28,1980(2letters)andJuly14,1980.Nochangestotherequirements havebeenidentified whichrequireadditional information.
Part2:Auxiliary Feedwater SystemFlowrateIndication TheDesignCriteriaandFlowDiagramforthemodification oftheAuxiliary Feedwater FlowIndication isprovidedinAppendixA.Someofthesalientfeaturesofthedesignare:2.3.Redundant flowindication isprovidedforeachmotordrivenauxiliary feedwater pump(MDAFP)andthecommondischarge oftheturbinedrivenauxiliary feed-waterpump(TDAFP).Eachredundant channelofflowindication consistsofa:1)qualified transmitter, 2)transmitter powersupply,3)squarerootextractor, 4)outputisolation amplifier, and5)maincontrolboardanalogindicator.
Indication isprovidedtotheOperatorbymeansofadualmovementverticalscaleindicator.
Eachmove-mentreceivestheanalogsignalfromitsrespective channelofflowindication foraparticular A~Nr~-"
13auxiliary feedwater flowpath.Hence,theOperatorcanquicklyascertain ifthereisanydiscrepancy betweenchannels.
4.Eachchannelofflowindication ispoweredfromaseparatebattery-backed vitalinstrument bus.Inaddition, eachflowchannel's analoginstrumentation ismountedinafullyqualified instrument rack.5.Testability featureshavebeenprovidedinthedesign,including localflowindication neartheauxiliary feedwater pumpthatwillfacilitate periodicloopcalibration.
6.TheGinnaStationQualityAssurance Programwillbeutilizedinthedesign,procurement, installation andtestingofthismodification.
7.8.Asmentioned inparagraph 3above,continuous displayofbothchannelsofflowindication willbeprovidedtotheoperatoronthemaincontrolboard.Theflowtransmitters installed asapartofthismodification areincludedinRochester GasandElectric's programofEnvironmental Qualification ofFoxboroTransmitters beingconducted byRG&Eandanumberofotherutilities, andwillbequalified totherequirements ofNUREG-0737.
II.E.4.2Containment Isolation Dependability Thepurgeandventsystemat,Ginnaconsistsoffour48inchisolation valves.TheStaff'sinterimpositiononcontainment purging(nowcalledPosition6)wasim-plemented onthesevalvesbyourDecember14,1979andMay29,1980letters.DuringarecentreviewofPosition6,itwaspostulated thattwo6inchvalvesonourcon-tainmentdepressurization linemaybeinterpreted asfallingunderPosition6requirements.
Thesevalvesarenotusedforcontainment purgeandventoperations butareusedperiodically toequalizepressurebetweeninsideandoutsidecontainment.
Preliminary analysissuppliedbythevendorofthesevalvesindicates thatthemostsevereflowcondition loadingwillnotstressthevalvesbeyondtheirstandarddesignlimits.Theanalysisalsodemonstrates thatthevalveswillcloseasfastorfasterwithflowthanwith-outflow.,Therefore, norestrictions needbeplacedonvalveposition, butaninterimrestriction willbeplacedontheamountoftimethesevalvesareopenuntilthefinalanalysisiscomplete.
PP Avalvequalification programforthese6inchvalveswillbedoneintwophases:Toprovidefurtherassurance ofvalveoperability following post-accident closure,amoredetailedanalysiswillbeperformed.
Thesecondphasewillconsistofseismicandenvironmental qualification oftheentirevalveandactuatorassembly.
Wewillinformyouoftheresultsupontheircompletion.
Thedepressurization valveswillonlybeusedtoequalizepressurebetweeninsideandoutsidecontainment, topreventanunacceptable buildupofcontainment pressureduringnormaloperation.
Whenevercontainment depressurization isrequired, emphasiswillbeplacedonlimitingde-pressurization timestoaslowaspractical.
Wedonothaveatthistimesufficient operating experience withlimiteddepressurization topredictwhatcontainment pressurefluctuations mayoccurduringplantoperation
,tocommittoaspecificdepressurization timelimit.However,allpractical effortswillbemadetolimitdepressurization timestothe90hourperyeargoalwhilecritical.
Shouldthisgoalbeexceeded, wewillinformyouandprovideasummaryofthereasonsforexceeding the90hourgoal.Thecontainment isolation pressuresetpointwillbereducedto4psig.Ourrevisedoperation forcontain-mentdepressurization mayresultincontainment pressures of2psig.Normalinstrument errorsanddriftmayamounttoasmuchas1psig(~1%ofrange).Anaddi-tional1psigmarginshouldbeaddedtoassurethatin-advertent isolation ofcontainment doesnottakeplacesincethissamesignalalsotripsthereactorandstartssafetyinjection.
Wewillcontinuetomonitorcontainment pressure.
Ifitisfeasibletoreducethe4psigsetpointpressure, wewillinformyou.NobleGasEffluentMonitorInformation concerning ourplansformonitoring noblegaseffluents wascontained inaletterdatedDecember15,1980fromJohnE.MaiertoMr.DennisM.Crutchfield, USNRC.Additional information willbeprovidedbyFebruary1,1981.
'h 15II.F.1.3Containment HighRangeRadiation MonitorAVictoreen Model875HighRangeContainment AreaMonitorSystemhasbeenpurchased forinstallation byJanuary1,1982.Thesystemiscurrently beingqualified toIEEE-323andRegulatory Guides1.97and1.89,withtestreportsexpectedtobecompleted byMarch1981.Untilthosetestsarecomplete, however,wecannotcommitthattheinstalled systemwillmeetalloftheNRCrequirements.
II.F.1.4Containment PressureMonitorTheStaffpositionpresently callsfor"continuous recording" ofcontainment pressure; itisfeltthatthiswouldresultinawasteofpaperandunnecessary wearontherecordermechanism.
Asystemisproposed, however,thatwillstartrecording wheneverasafetyinjection orcontainment isolation signalispresent.Thisproposedsystemwillprovideadequaterecording ofsignals.II.F.1.5Containment WaterLevelMonitorInformation concerning RG&Eplanstoinstallcontainment waterlevelinstruments iscontained inRG&ElettersdatedDecember15,1980fromJohnE.MaiertoMr.DennisCrutchfield andNovember19,1979fromL.D.White,Jr.toMr.DennisZiemann.Instrumentation forDetection ofInadequate CoreCoolingRG&E'spositionconcerning inadequate corecoolinginstru-mentation iscontained inlettersdatedDecember15,1980fromJohnE.MaiertoMr.DennisCrutchfield andJuly2,1980fromL.D.White,Jr.toMr.Crutchfield.
1Ji 16II.K.2.13
~~~ThermalMechanical Report--EffectofHigh-Pressure Injection onVesselIntegrity forSmall-Break Loss-of-CoolantAccidentwithNoAuxiliary Feedwater Tocompletely addresstheNRCrequirements ofdetailedanalysisofthethermal-mechanical conditions inthereactorvesselduringrecoveryfromsmallbreakswithanextendedlossofallfeedwater, aprogramwillbecompleted anddocumented totheNRCbytheWestinghouse OwnersGroupbyJanuary1,1982.ThisprogramwillconsistofanalysisforgenericWestinghouse PWRplantgroupings.
Following completion ofthisgenericprogram,additional plantspecificanalyses, ifrequired, willbeprovided.
Aschedulefortheplantspecificanalysiswillbedetermined basedontheresultsofthegenericanalysis.
II.K.2.17 Potential forVoidingintheReactorCoolantSystemduringTransients TheWestinghouse OwnersGroupiscurrently addressing thepotential forvoidformation intheReactorCoolantSystem(RCS)duringnaturalcirculation cooldowncondi-tions,asdescribed inWestinghouse LetterNS-TMA-2298 (T.M.Anderson, Westinghouse toP.S.Check,NRC).Webelievetheresultsofthiseffort,willfullyaddresstheNRCrequirement foranalysistodetermine thepotential forvoidingintheReactorCoolantSystemduringanticipated transients.
Areportdescribing theresultsofthiseffortwillbeprovidedtotheNRCbeforeJanuary1,1982.II.K.2.19 Sequential Auxiliary Feedwater FlowAnalysisTheTransient AnalysisCode,LOFTRAN,andthepresent,smallbreakevaluations analysiscode,WFLASH,havebothundergone benchmarking againstplantinformation orexperimental testfacilities.
Thesecodes,under.appropriate conditions, havealsobeencomparedwitheachother.TheWestinghouse OwnersGroupwillprovideonascheduleconsistent, withtherequirement ofTaskII.K.2.19, areportaddressing thebenchmarking ofthesecodes.
4,C
-17II.K.3.1~~~AndII.K.3.2Installation andTestingofAutomatic Power-Operated ReliefValveIsolation SystemReportonOverallSafetyEffectofPower-Operated ReliefValveIsolation SystemTheWestinghouse OwnersGroupisintheprocessofdeveloping areport(including historical valvefailureratedataanddocumentation ofactionstakensincetheTMI-2event,todecreasetheprobability ofastuck-open PORV)toaddresstheNRCconcernsofItemII.K.3.2.
However,duetothetime-consuming processofdatagathering, breakdown, andevaluation, thisreportisscheduled forsubmittal totheNRConMarch1,1981..AsrequiredbytheNRC,thisreportwillbeusedtosupportadecisiononthenecessity ofincorporating anautomatic PORVisolation systemasspecified inTaskActionItemII.K.3.1.
II.K.3.5Automatic TripofReactorCoolantPumpDuringLossofCoolantAccidentTheWestinghouse OwnersGro'presolution ofthisissuehasbeentoperformanalysesusingtheWestinghouse SmallBreakEvaluation ModelWFLASHtoshowampletimeisavailable fortheoperatortotripthereactorcoolantpumpsfollowing certainsizesmallbreaks(SeeWCAP-9584).Inaddition, theOwnersGroupissupporting abestestimatestudyusingtheNOTRUMPcomputercod'etodemonstrate thattrippingthereactorcoolantpumpattheworsttriptimeafterasmallbreakwillleadtoacceptable results.Forbothoftheseanalysisefforts,theWestinghouse OwnersGroupisperforming blindpost-test predictions ofLOFTexperiment L3-6.TheinputdataandmodeltobeusedwithWFLASHonLOFTL3-6hasbeensubmitted totheStaffonDecember1,1980(NS-TMA-2348).
Theinformation tobeusedwithNOTRUMPonLOFTL3-5willbesubmitted priortoperformance oftheL3-6testasstatedinWestinghouse OwnersGroupletterOG-45datedDecember3,1980.TheLOFTprediction frombothmodelswillbesubmitted totheStaffonFebruary15,1981giventhatthetestisperformed onschedule.
Thebestestimatestudyisscheduled forcompletion byApril1,1981.Basedonthesestudies,theWestinghouse OwnersGroupbelievesthatresolution ofthisissuewillbeachieved pVI 18-without,anydesignmodifications.
Intheeventthatthisisnot,thecase,aschedulewillbeprovidedforpotential modifications.
II.K.3.12 ConfirmExistence ofAnticipatory ReactorTripUponTurbineTripAnanticipatory tripuponreactortripexistsattheR.E.Ginnaplantasshownindrawing882D612,Sheet2,Revision3andSheet3,Revision2,providedwithaletterdatedJanuary18,1979fromL.D.White,Jr.toMr.DennisZiemann.II.K.3.17ReportonOutagesofEmergency CoreCoolingSystemsInformation onECCSequipment outagesiscontained inTableII.K.3.17.
Theinformation inTableII.K.3.17 wascompiledinresponsetoMr.D.G.Eisenhut's May7,1980letterconcerning FiveAdditionTMIItemsanddoesnotincludethecorrective actiontaken,arecentchangeintherequirements.
Nevertheless, asseenfromthetable,most.outagesweretheresultofroutinemaintenance andinspections.
Incaseswhereaviolation ofTechnical Specifications didoccur,thecorrective actiontakenisdocumented inLicenseeEventReportsfiledwithNRC.WehavereviewedtheECCSequipment outagesanddetermined that.noactionisrequiredatthistime.Malfunctioning steamadmission valves,thecauseoflengthyturbine-driven auxiliary feedwater pumpoutages,werereplacedinMay,1980.'Improving LicenseeEmergency Preparedness
-LongTermAtthistime'ebelievewewillbeabletocomplywiththeimplementation scheduleestablished forthisitem.However,weplantocomplywiththerequirement forapromptnotification systemprimarily withtheinstalla-tionofsirens.Wedonotyethaveacommitment forsupplyofthesirensbecausefieldworknecessary toestablish soundlevels,sirenlocations andthenumberofsirensrequiredisnotyetcompleted.
Ifitbecomesnecessary torequestanextension oftheimplementation dateasthisworkproceeds, wewillnotifyyoupromptly.
4 19Theemergency plansrequiredtobesubmitted byJanuary2,1980concerning radiological emergency responseplanswillbeprovidedbyseparatecorrespondence.
III.D.3.4 ControlRoomHabitability Requirements Theinformation requested inAttachment 1toitemIII.D.3-4 isnotbeingsubmitted byJanuary1,1981forthereasonsgiveninaletterdatedNovember24,1980fromL.D.White,Jr.toMr.DennisM.Crutchfield, USNRC.
TABLELI.K.3.17 KUIPMBlTREASOHIHOPHQBIB DATEIHOPHfABIR PI>AHTTIHEOP1HATIffG IHOPHMfiE ffODE*T.S.TIMEALTDWANCE DATEOPHQBIETIME)OHRABIZAHfHPumpM-11.15Inspection andMaintenance Bus14Supplyfrom1ADieselN-15&t:H-52.1BreakerInspection aMaintenance BAux.F.W.PumpH-11.5cMaintenance EndBearingCoverGasketfAContSprayPumpDischarge N-64.1Defective
'A'ontact Valve860A-Manualopencurcuit6/14/767/9/767/20/768/2/76111024Hrs.N/A24Hrs.6/14/767/9/767/20/768/2/V61811151015K141211Hours11Hinutes5Hours4Mimtes4Hours20Minutes4Hours27MinuteTurbineDriveAPWPAComponent CoolingPumpBDieselGenerator AServiceWaterPump*'ServiceWaterPumpBServiceWaterPumpMaintenance-ftydraul icControlValve.N-11.27&cH-.45.1AInspection
&:Naintenance Bus16Breaker-Replaced Secondary ContactsM-ff.100,H-45.1APrrmpardMotorInspection
&cMaint.M-11.10&r.H-45.1APumpardMotorInspection ScHaint.M-11.10&r.H-45.1APumpardMotorInspection 4Maint.7/22/768/17/768/21/7611/4/7611/5/7611/9/76C.S.DC.S.DN/AN.A.N/AH/AN/AN/A7/25/768/20/V68/22/V611/4/7611/8/7611/9/7617001530f1'51512452IHours5Minrteo81Hours50Minutes18Hours27Hfmrtes6Hours45Minutes78Hours59Himrtes5Hours45MinutesAOV~6AFromSprayAddativeYIC-836AController Failure.TankNaOH11/17/76110024Hrs.11/17/767Hours30Minutes*0-Plantoperating atpower;C.S.D.-ColdShutDown;H.S.D.-.HotShutDown**Ginnahas&rServiceMaterPumps.Onlytwoarerequiredforpost-accident operation
{FSARTable9.6-1)Sheet1of12


TABLEII.K.3.'17 (Cont'd.)
1.A.1.1
EQJIPHBIT CServiceWaterPumpAServiceWaterPumpCServiceWaterPumpBServiceWaterPump1CSISPumpBus14BreakerRPASONINOPEBABLB M-11.10&:M-45.1APumpendMotorInspection andMaintenance (M-32,M-32')
  ~ ~  Shift Technical Advisor A descrxptxon of our original STA program was outlined in a letter, dated October 17, 1979, from L. D. White, Jr. to Mr. Dennis Ziemann, with additional information  .
AI&0onBreaker{M-32,M-32')
provided in a letter dated December 28, 1979, from Mr. White to Mr. Ziemann. In response to the NRC's letter dated July 7, 1980, from Mr. Dennis Crutchfield we provided additional clarification of our original STA program and a description of our new STA program in a letter dated August 5, 1980 from L. D. White, Jr. to Mr. Crutchfield.
AI&0onBreakerBreakerAI&0Inspection ReplacedSecondary ContactsonBreakerDATEINOPHQBIB 11/9/763/28/773/28/773/24/771/3/vvTIMEINOPHQBIB 1515PLANTOPERATINB MODET.S.TIMEALIDWANCB N/AN/AN/AN/A24Hrs.DATEOPERABLB12/21/763/28/773/28/773/24/vv1/3/vvTIMEOPHUQKB1245152514501150TIMEOUPOPSERVICE41Bys21Hours30Mimtes35Mirutes1Hour50Minutes1Hour50Mimtes2Hours50MinutesBServiceWaterPumpDiverscleaningsuctionscreen1BBoricAcidTransferPumpBreakerPulledtoPerformMaint.onC.B.Sritch.6/1o/77103024Hrs.N/A3/7/776/1o/vv114511003Hours15Minutes30MirutesA&9ServiceWaterPumpsCSISPumpBus14BreakerDServiceWaterPumpDiverscleaningsuctionscreenBreakerfailedtocloseduringP.T.DiverscleaningsuctionscreenCheckValveleaking6/10/776/29/776/9/77v/>>/771430N/A24Hrs.N/A24Hrs.6/1o/vv6/29/776/9/vvv/>>/vv1020172019451Hour20Mimtes3Bours50Minutes2Hours30Minutes5Hours15Minutes*+*AI&0-AnnualInspection andOverhaulSheet-2of12 S
Our original STA program utilized licensed operators and included their participation in college-level engineering courses to provide them eventually with an engineering degree. At the request of the NRC RG&E modified the original program and assigned either degreed engineers or SRO's as STA, and assigned degreed engineers to perform the Operational Assessment function.
TABLEII.K.3.17
We began staffing the Operational Assessment, Group in the summer of 1980.
{Cont'd.)
Our STA training and requalification program is described by a Ginna Station Administrative Procedure, and consists of various phases as described below.
KQIPM1I1T REASONINOPERABIB PLANTDATETINEOPERATING INOPERABLE INOPHQBLB NODET.S.TIMEALMNANCEDATEOPERABLETINEOVPOPSERVICETurbineDrivenABFBoricAcidPumpsEcCVCSValvesScPipingSteamedmission valveproblemMOV3504RepairValves398ABB6/1/778/23/vv1140N/AN/A7/11/7714008/23/vv152540Days2Hours20Mimtes40MinutesBD/GBus16Breaker1AComponent CoolingPumpAServiceWaterPumpBComponent CoolingPumpBComponent CoolingPumpNa51TankIsolation ValvesBreakerwouldnotcloseCalibration ofpresstransmitter Scheduled MotorOverhaultocheckcouplingalignment CheckCouplingAlignment RepairValvesIsolatedtorepairleaks9/14/7707069/26/77110610/19/77070011/15/VV080011/16/Tl130012/3/77010012/3/770100H.S.D.H.S.D.168Hrs.24Hrs.N/A24Hrs.24Hrs.48Hrs.48Hrs.9/14/7710309/26/VV133011/8/7l11/15/77171911/16/771445'12/3/Yl144512/3/7714453Hours24Nimtes2Hours24Minutes20Days6Hours9Hours19Minutes1Hour45Mimtes13Hours45Minutes13Hours45MirutesBCharcoalfilter(CRecircPans)LowAirPlowAlarm1/6/78213524Hrs.1/v/v8164119Hours.6MinutmSheet3of12 f'It TABLEII.K.3.17 (Cont'd.)
Present Level of Trainin Initial training to meet the requirements listed in Harold Denton's letter dated October 30, 1979 to All Operating Nuclear Power Plants has been completed.
EVIPMENTBServiceWaterPumpRotorOverhaulDATETIMEINOPHUSIR INOPHUSIB 12/12/770930KQiTOPERATING MODET.S.TIMEALTlSANCE N/ADATEOPHEEBIE1/6/78TIMEOPHQBIRTIMEOUPOPSERVICE25Days1Hour43MitutesAServiceWaterPumpDServiceWaterPumpBreakerInspection BreakerInspection 3/16/Vs09003/16/781445N/AN/A3/16/7814403/16/7815305Hours40Minutes45MinutesBServiceWaterPumpBreakerInspection 3/14/781245N/A3/14/Vs15252Hours40MirutesCServiceWaterPumpCServiceWaterPumpAServiceWaterPumpBDieselGenerator BreakerInspection CleanIntakeScreenCleanIntakeScreenInspection 3/14/7815155/26/78C8455/26/7808453/27/VS0400C.S.D.N/AN/AN/AN/A3/14/7816035/26/7812505/26/vs3/31/78165648Mirutes4Hours5Minutes4Hours5Minxtes4Days12Hours56MimtesC.ServiceWaterPumpValve860BDischara:
This training included a four week classroom training and two day simulator training program presented by our NSSS supplier as listed below.
fromContainment SprayPumpWorkcnexpansion Joint5/3/781030Valvewouldnotstrokeclosed6/29/781230N/A24Hrs.5/4/7810106/29/78124523Hours40Minutes15MinutesAServiceWaterPumpInspection 4lubrication 6/7/781120N/A6/7/781448'3Hours28MinutesSheet4of12
 
/Jp TABLEIZ.K.3.17 (Cont'd.)
==Title:==
EQHPMFNTDATETIMEINOPPIABLE INOPERABIR PLANTOPFRATI?6 MODET.S.TIMEALMWANCEDATEOPPRABLETIMEOPERABLETIMEOUPOFSERVICEDServiceWaterPumpInspection 8cLubrication
Chemistry/Basic Theory, Objectives and Control Objective:  1. Discuss the concerns  that require chemistry control
.6/7/781525N/A6/7/7814471Hour22MinutesBServiceWaterPumpCServiceWaterPumpHoldforMaintenance Holdforl1aintenance 6/v/vs11006/7/780650N/AN/A6/V/Ve6/7/7811205Hours30Mirntes20MitutesAServiceWaterPumpTochangeexpansion
: 2. Discuss the RCS/Steamside Chemistry limitations and basis
]oint5/2/78N/A5/2/781700BContRecircPansReplaceO.B.fanbearing5/10/780600H.S.D.N/A5/11/78.140052HoursBDieselBus16Breaker1DContainment RecircPanBreakerD.C.ControlMalfunction CableInspection 8/16/7807009/8/7814300168Hrs.8/16/781030144Hrs.9/8/7815245Hours50Minutes54MinutesAContainment RecircFan1ARHRHXOutletHCVA25MOV852A(RIB)BentController Arm84-209(Splices) 8/51/7811009/20/780851Toinstallsplicingsleeves9/18/78082012Hrs.12Hrs.8/51/7814009/20/Ve1500144Hrs.9/18/781f505Hours10Mimtes5Hours6Hours9MinutesMOV852B(RHR)H4-209(Splices) 9/19/78091512Hrs.9/19/7815156HoursCContainment RecircPanDServiceWaterPumpsplicingleadsreplacebearing9/27/78114510/16/780915N/A10/16/781430144Hrs.9/2l/7816475Hours2Mimtes5Hours15MinutesSheet5of12 k
: 3. Discuss the techniques for main-taining chemistry limits
TABLEXX.K.3.17 (Cont'1.)
: 4. Discuss typical RCS/Steamside chemistry problems and the associated corrective actions
S@IPMBiTDATETIMEINOPHUSIE INOPERABLE PLANTOPHQTINQMODET.S.TIMEAIIDWANCE DATEOPHQBLETIHEOPERABIBTIMEOUIOFSERVICEBServiceWaterPumpMotorvibration 12/15/780845N/A12/15/7816417Hours56Minutes8Containment RecircPumpTurbineDrivenAFWPDContainment RecircFansAContainment RecircFansneedssplicesInspection checkforoilleakssplicessplicinginstallsleeves9/28/V8OVOO4/2/7807009/22/7807009/26/780600144Hrs.9/28/78'I332N/A11/2/781410144Hra.9/Zl/781140168Hrs.9/26/7812156Hours32Mimtes7Hours10Minutes124Houn340Hi>utes6Hours15Minutes1CSIPump(Bus14)StartFailure1/3/V924Hra.1/3/7912551Hour58Mimtes1ADieselGenerator HOV851B(R1E)wouldnotre-open2/6/79JjubeOilCoolerHiOP**"*1/8/790905Coastdawn 123012Hra.2/6/7917157Days1/8/793Hours25Minutes1Hour15MimtesADieselGenerator PT-12.12/6/7907007Days2/6/7909352Hours35Minutesoverpressure protection systemBServiceWaterPumpMaintenance onvalvePCV431CInspectMotorBearings6/6/791015V/1V/V90700C.S.D.8Hrs.N/A7/17/7914556/11/7911107Hours55Hirutes5Days55Minutes*+**OP-OilPressureSheet6of12 rIJ TABLEXX.K.3.17 (Cont'd.)
: 5. Discuss the effects of chemistry upsets on plant operations
DATETIMEINOPERABIR INOPHtABIS KANTOPFRATIt6 MODET.S.TIMEALMWANCEDATEOPZRABIRTIMEOPBRAESPORVoverpressure protection sys4304431CMOV5I5&5t6closed7/18/790710C.S.D.8Hrs.7/18/79.13146ttours4MinutesOverpressure Protection Sys.PCV430Mov516closedslightleakage7/18/791413C.S.D.7Days7/18/7915401Hour27MimtesBServiceWaterPump1CServiceWaterPump1DServiceWaterPumpContSprayPumpDischargs Valve860CAServiceWaterPumpTurbineDrivenAux.PWPumpTurbineDrivenAux.Peed.PumpChangeOilChangeOilChangeOildidnotcomeoffseatonfirsttrySteamAdmission Valve3505MotorInoperative MOV3505didnotopenproperly7/26/7908307/25/7908>>7/24/7903304/24/7910486/18/7906308/2/7919158/4/791300C.S.D.C.S.D.C.S.D.H.S.D-toC.S.D.N/AN/AN/AN/AN/AN/A7/26/7913207/25/7913457/25/7908I34/24/79l05'37/12/7913128/3/7920508/Zl/7914504Hours50Minutes5Hours32Mimtes28Hours43Minutes5Minutes26Days6Hours42Minutes1Day1Hour35Mimtes23Days1Hour50Mirutes1AComponent CoolingWaterPumpsvitchinPull-Stop forperformance ofCP-617.09/7/79111024Hours9/7/79112513MimtesSheet7of12; fj TABLEII.K.3.17 (Cont'1.)
: 6. Discuss chemistry indications for various accidents
REASONINOPHQBIB DATETINEINOPERABIR INOPHQBIR KANTOPI3ATING NODET.S.TIMEAIZOWANCE DATF,OPERABIRTIMEOPERABIRTIMEOROPSERVICEBDieselGenerator DieseltobreakertoBus16wouldn'tclose9/13/7905557Days9/13/7909303Hours35Minutes1A11otorDrivenAux.PeelPumpPipssupportsremoved8/29/791100N/A9/4/7915306Days4Hours30MinutesTurbineDrivenAux.PeedPump1BEmergency DieselGenerator "D"StandbyAPPBDieselGenerator SteamDrivenA.P.P.PowerSupplytoV-3996TurbineDriven1%lP1BAux.Peed.Pump1AAux.FeedPump"C"Containment Recirc.FanPumpwillnotoperateundersteadystateconditions Naintainance (Cleanoilcooler)IooseAnchorBoltscleaninletcoolerHain'tenance RewiringPTCalibration CP-2001IewFlowAlarm9/10/7911309/24/7907309/9/79152010/16/79202010/17/79112011/5/79084011/16/79101511/16/79135211/1'7/79 223007Days9/14/7914507Days9/29/7914007Days9/20/7914007Days10/16/7923507Days10/18/7915207Days11/15/7911207Dsys11/16/7912007Days11/16/7916007Days11/18/7910504Days3Bours20Minutes5Ihgrs6Hours30Minutes22Hours40Mirutes3Hours30MinutesKHours2Hours40Hirutes1Hour45Hinutes2Hours8Mitutes12Hours20MinutesSheet8of12 l>>
 
TABLEII.K.3.17 (Cont'd.)
6 2
IQlIPMENT REASONINOPFRABIB PLANTDATETINEOPERATING INOPHlABIB INOPHlABIR HODBT.S.TIMEALIDWANCB DATEOPERABLBTIMEOPHlABIBTIHBIJPOPSERVICESteamDrivenAux.Peed.PumpSteamDrivenAux.Peed.PumpN2Accumulator forPCV-430(V801APressure)
Topic Summary:
PROVBoricAcidStorageTanks"B"ServiceWaterPump"A"DieselGenerator "1D"ServiceWaterPump1ARHRPump1BRHRPump"1C"StandbyAux.PeedPump"D"StandbyAux.FeedPumpFieldPT-16ClosedgovernervalveinordertoisolateSteamBlowdown(BD)TankInxN2PressurebecauseofV-8600ArepairB.A.ppmbelowspecs.NoiseinmotorWouldnotacceptmorethan1KOkwHoldforpumprepacking ChangeOil,installThermocouplesChangeOil,installThermocouples 11/19/79131512/2/79114512/9/79'200>>/n/7908301/18/8007101/22/8006102/8/8010302/8/8012312/19/8010002/21/80083012/17/791340.C.S.D.7DaysN/AN/A241hurs24Hours11/19/79134012/3/79040012/10/79124812/19/7913151/15/8010101/18/8012501/22/8014552/8/8O2/8/8014362/20/8015002/22/8)111025Hirutes16Hours15Minutes24Hours48Hinutes47Hours'35Mirutes49Days1Hour40Hirrrtes51kers40Hinutes8Hours45Minrtes2Hours2Hours5Minutes26Hours40MinutesSheet9of12 4J TABLEII.K.3.17 (Contrd.)
: 1. Functional Requirements
MIIPNENTRFAHONINOPH1ABLFi DATEINOPERABLE PLANTTIMF.OPFRATINGINOPNABLFi MODET.S.TIMF,ALIOWANCE DATEOPERABLFi TINFiOPERABMTIMEOUZOFSERVICE"C"StandbJJAux.FeedPumpChangeOil3/17/M08203/21/M110098Hours40MinutesMOV-73%CCtoRllR11X"A"RllRPrrmp"1B"BoricAcidPumpClutchproblemwithLimitorriue LeakingHealReplacement ofPT-110(N-12.1)5/12/805/17/805/19/8022101150H.S.D.C.S.D.N/AC.S.D.N/A5/12/805/19/805/19/M21301Hour35Mirutes53Hours5Minutes9Hours40Mirutes"1A"BoricAcidPumpNOV-3505h hTurbineDrivenAux.FeedPump.llOV-3504A MainSteamfrom1BStadiaGenerator toAFPBoricAcidStorageTankBoricAcMStorageTankBoricAcidStorageTanksAccumulators BoricAcidStorageTanksReplacement ofPT-110(N-12.1)Ground.inMotorGroundedMotorIxrwConcentration TankA-12.9fTankB-11.85LowConcentration TankA8cB-11.%llighConcentration TankAM-13.0fLeveldroppedto48r'owConcentration (11.9)to(11.8r')5/19/M5/22/8O5/22/eo4/20/794/16'?98/31/795/22/eo7/11/8O115011301015145015'301045C.S.D.*H.S.D.H.S.D.H.S.DN/AN/AGotoH.S.DGoToC.S.D1lhurGoToH.S.D5/19/805/22/eo5/22/eo4/20/V94/16/79e/31/V95/22/M7/11/M2130135017351440161515539Hours40Minutes2Hours20Mirutes3lhurs35Minutes2Hours45Mirutes1Hour50Minutes4Hours6Mirutes45Mirutes5Hours8MinutesSheet10of12 eTABLEXI.K.3.17 (Cont'd.)
: 2. Chemistry Control Areas
REASONBSPHQBIBDATEINOPHQBIB TIMEINOPERABIE KANTOPHATING5$DET.S.TIMEALIOWANCE DATBOPERABIETIMEOPBRAKETIMEOGPOPSERVICEBoricAcidStorageTanksHighConcentration (14.4$)7/14/M1020GotoH.S.D7/14/8015305Hours10Minutes"B"BoricAcidStorageTank"A"ServiceWaterPumpMinorMaintenance v/e/80hwConcentration (11.8r')7/14/800820N/A7/8/MGotoH.S.D7/14/8013401Hour35Mirutes5Hours20Minutes"D"StandbyAux,P.W.Pump"C"StandbyAux.P.W.PumpN-11.14AnnualInsp.andmaintenance M-11.14AnnualInsp.andmaintenance 6/24/806/25/M11107Days6/25/80v~6/27/801015142733Hours15Nirutes51Hours17Minutes"D"ServiceWaterPump"D"ServiceWaterPump1BEmergency DieselGenerator "A"Aux.P.W.Pump(NotorDriven)Minorinspection 7/3/80M321~DB25~D~~DB75CircuitBreakerNaintROCTripDeviceTestand/orRe-placement 9/10/80CP2001.01AMotordriven9/8/MAux.PW.Pumpdischarge flrnrloop2001M-11.10.1 MinorInspection 7/30/MN/Av/3/MN/AV/30/M7Days9/8/M7Days9/10/801425102914406Hours25Hirutes5Hours59Minutes4Hours41Hirutes5Hours45Minutes"D"ServiceWaterPumpM-11-10.1 MinorInspect.ofSWPPackingleak8/19/80N/A8/20/M131513Hours45MinutesSheetllof12 k~
: 3. Specifications, Limits,    and Basis
TABLEIX.K.3.17 (Cont'd.)
: 4. Mechanisms  for Control
"1B"Emergency DieselGenerator ABnergency DieselGener-atorH-32.1,DB-25,DB-50,DB-75circuitbreekermaintenance andOCTripDeviceTestandforreplacement Operability Questioned seeLER80-9DATEINOPHQBIR 9/10/8010/3/80PLANTTINEOPERATING INOPERABLE HODET.S.TINEALIlNANCE DATEOPERABLE9/10/8)10/3/8)TINEOPERABIB1113TINEOUPOPSERVICE4Hours41Hinutes1Day4Hours24HinutesTurbineAux.Peedwater PumpSN-79-1832,B10/2/80010/3/8011153Hours15HimtesSpraySystemToAPPOilresorvoir SN-83-1833.6 Installation ofAux./Int.
: 5. Problems  in Control
BuildingLoopPireSupression Valves10/20/8010/25/804Days21HoursSheet12of12 f~
: 6. Chemistry Trouble Shooting
APPENDIXADesignCriteriaAuxiliary FeedPumpInstrumentation UpgradeGinnaStationRochester GasandElectricCorporation 89EastAvenueRochester, i4ewYork14649ENR-1869Revision1May5,1980Preparedby:0,Responsilengineersin(seDATEReviewedby:QuatyAssurance
 
: Engineer, Designl380DATEApprovedby:0I/IManager,Mechanical Ehgineering DATEPage4292 I"lF
==Title:==
~~RevisionStatusSheetPapeLatestRev.PageLatestRev.PageLati.stRev.sign.CriteriaEWR1869PageiiRevision5/5/804291
Metalurgy/Basic Fracture    Mechanics Objective:  Review theory of the plant limitations and operational considerations based on NSSS metalurgical restrictions.
~~
Topic Summary:
'DesiCriteria1.01.1.11.1.2SummarDescritionoftheDesiSummaryThepurposeofthismodification istoupgradetheflowandpressureinstrumentation associated withthemotordrivenandturbinedrivenauxiliary feedwater pumpsatGinnaStation.Thismodification involvesthereplace-mentofthefollowing primaryinstrumentation:
: 1. Introduction
PT-2029,FT-2001,FT-2009,PT-2019,PT-2030,FT-2002,FT-2006,FT-2007.Thisinstrumentation presently useddoesnot,havethedesiredaccuracyandrepeatability.
: 2. Fracture Criteria
Inaddition, theexistingflowtransmitters areutilizedtooperatevalves4007,3996and4008.Eachoftheseflowtransmitters haveabuiltinswitchwhichisactuatedviaamechanical linkage.Thismechanical linkagehasenoughinertiasuchthataccurateandrepeatable determination ofswitchactuation pointisnotpossible.
: 3. Stress Analysis of the PWR Vessel
Aspartofthismodification, theseswitcheswillbereplacedwithelectronic bistables, whichelectronically compareflowtransmitter outputwithsetpointandchange'statewhenthesetpointisreached.1.21.2.1Tosatisfytherequirements ofreference 2.5below,additional channelsofflowinstrumentation willbeaddedtoeachauxiliary feedwater pump.Thisadditional channelwillbeoftheoppositechanneldesignation fromthatoftheprimarychannel.Theprimarychannelforeachfeedwater pumpwillcontrolthatparticular pump'sdischarge valve,whereasthesecondary channelmerelyindicates flow.Thesecondary channelasshownontheabovereferenced consistsofthatinstrumentation withouttagnumbers.Functions (Reference RGSEdrawing33013-697, Rev.0)tPoopFT-2001Thisloopmeasurestheflowinauxiliary feedwater linetothe"A"steamgenerator, Thedifferential pressuremeasuredbyFT-2001isconverted toaflowsignalby.FM-2001.Indication offlowonthemaincontrolboardisprovidedbyFI-2021A.
: 4. Crack Tip Stress Intensity Factor Analysis  Methods of Determining Stress Intensity Factor K
FM-2001Aactsasanisolation amplifier toisolatetheclassIEsystemfromFI-2021Bwhichisnotsafetyrelated.Electronic bistableRevisionFY-2001functions topositionvalve4007suchthattheflowmatchesFY-2001's setpoint.
: 5. Material Properties
FQ-2001suppliesdcpowertothisloop.DesignCriteriaEWR1869Page1Date4290
: 6. Non-Destructive Examination
'rT.
: 7. Codes and Standards
1.2.2LoopFT-2009Thisloopmeasuresthetotaldischarge flowofthesteamdrivenauxiliary feedwater pump.FT-2009measuresthedifferential pressureacrossitsflowelementandFM-2005convertsthissignaltoaflowsignal.FY-2005isanelectronic bistablewhichopensrecircvalveCV-27tomaintainminimumflowthroughthepump,duringlowflowoperations.
: 8. Fracture Mechanics Applications in the NSSS
FM-2009Aisanisolation amplifier whichisolateslocalflowindicator FI-2009fromtheClassIEsafetysystem.FQ-2009suppliesthisloopwithdcpower.1.2.31.2.41.2.5loopFT-2002Thisloopfunctions exactlythesameastheFT-2001loopwiththeonlydifference thatthisloopmonitorstheflowofauxiliary feedwater totheBsteamgenerator.
: 9. Review of Past and Current R&D
LoopsFT-2006andFT-2007Boththeseloopsfunctioninthesamemanner;eachloopmeasurestheflowtoitsrespective steamgenerator fromtheturbinedrivenauxiliary feedwater pumpandindicates thisflowonthemaincontrolboard.Anisolation amplifier foreachloopisolatestheclassIEportionfromthenonsafetylocalindication locatedneartheturbinedrivenpump.Eachloopalsocontainsadcpowersupply.LoopsPT-2029,PT-2019andPT-2030Eachoftheseloopsaresimilarandmerelymonitorthedischarge pressureoftheirrespective auxiliary feedwater pump.Indication ofdischarge pressureforeachpumpisonthemaincontrolboard.1.2.61.3ForloopsFT-2001,FT-2009andFT-2002asecondary redundant channelofflowinstrumentation isprovided.
: 10. Plant Specific Limits Review
Eachchannelconsistsofaflowtransmitter (FT),sguarerootconverter (FM),powersupply(FQ)andcontrolroomflowindicator (FI)..Performance Reguirements Thesensingelements(theflowandpressuretrans-mitters)shallbecapableofsensingandproducing anoutputovertherangeofdesignvaluesforallpossibleoperating andaccidentconditions fortheparticular systeminwhichtheyareinstalled.
 
DesignCriteria~~EWR18692PageRevisionDare5/5/804290 CJ~~ET Control1.51.5.11.5.22.0AsoutlinedinSection1.1above,thismodification willreplacetheintegralflowswitchesintheflowtransmitters withelectronic bistables.
==Title:==
Thismodifica-tionshallinnowayaffectthecontrolofthesevalves.ModesofOperation TheclassIEportionofthismodification shallbedesignedtobeoperational:
Thermodynamics, Heat Transfer, and Fluid Flow and their PWR Applications Objective: Give working knowledge of the above topics at the operation level.
1)duringallmodesofnormalplantoperation, 2)afterasafeshutdownearth-quake,and3)afterasteam/feedwater linecrackbreakeventintheIntermediate Building.
Topic Summary:
ThenonClassIEportionofthismodification shallbedesignedforoperations duringstartup,hotshutdown, andpoweroperations.
Basic properties of fluids and matter (energy relationships)
ReferencedDocuments 2.12.22.2.12.2.22.3Rochester Gas&ElectricCorporation, GinnaStationQualityAssurance Manual,AppendixA,"QualityandSafetyRelatedListingandDiagrams",
: 2. Fluid  Dynamics (addresses    natural circulation)
October1,1976.USNRC'egulatory Guides.No.1.29,"SeismicDesignClassification",
Thermodynamics and Heat Transfer (boiling) includes monitoring of temperatures,  flow, pressure parameters Normal Plant Operations    (as per heat generation)    peaking  factors as a  function of primary and secondary system, management of normal reactor heat, and decay heat transfer limits (boil off is discussed)
Rev.2,February, 1976.No.1.100,"SeismicQualification ofElectricEquipment.
 
forNuclearPowerPlants",Rev.1,August,1977.AmericanNationalStandards Institute.
L lt 1*,, ~
ANSIN45.2.2-1972,"Packaging,
kO
: Shipping, Receiving, Storage.andHandlingofItemsforNuclearPowerPlants".2.42.4.12.4.22.4.3Institute ofElectrical andElectronic Engineers Standards.
 
IEEE-323-1974,"Standard forQualifying ClassIEEquipment forNuclearPowerGenerating Stations".
3
IEEE-344-1975,"Recommended Practices forSeismicQualification ofClassIEEquipment forNuclearPowerGenerating Stations".
: 5. Limiting phenomena
IEEE-323-1971, "Standard forQualifying Class1EEquipment forNuclearPowerGenerating Stations" Revision2.4.4IEEE-344-1971, "Recommended Practices forSeismicQualification ofClass1EEquipment forNuclearPowerGenerating Stations".
: a. burnout  DNB
DesignCriteriaEWR1869Page342.90 C'.~r~
: b. flow instability
2.4.5~~2.4.6IEEE-383-1975, "IEEEStandardforTypeTestofClassIEElectricCables,FieldSplicesandConnections forNuclearPowerGenerating Stations".
: c. sonic velocity - choked flow
IEEE-384-1974, "TrialUsetandardCriteriaforSeparation forClassIEEquipment andCircuits".
: d. pump runout
2.4.72.53.03.14.05.06.06.1IEEE-336-1977, "Installation, Inspection andTestingRequirements forInstrumentation andElectricEquipment DuringConstruction ofNuclearPowerGenerating Stations".
: e. thermal transients - metal fatigue
LetterdateNovember19,1979toD.Ziemann,NRRfromL.D.White,Jr.section2.1.7.b.SeismicCateorBasedonUSNRCRegulatory Guide1.29andAppendixAoftheGinnaFSARthefollowing instrumentation isSeismicCategory1:FT-2001,FM-2001,FM-2001A, FI-2021A, FQ-2001,FY-2001,FT-2002,FM-2002,FM<<2002A, FI-2022A, FQ-2002,FY-2002,FT-2006,FM-2006,FM-2006A, FI-2023AFQ-2006,FT-2007,FM-2007,FM-2007A, FI-2024A, FQ-2007IPT-2029,PI-2189A, PQ-2029,PT-2019,PI-2048A, PQ-2019,PT-2030,PI-2190A, andPQ-2030,andallinstrumentation usedaspartoftheseondarychannelflowindication.
: f. fouling -
BasedonUSNRCRegulatory Guide1.29andAppendixAoftheGinnaFSARthefollowing instrumentation isnotSeismicCategory1:FI-2021B, FI-2023B, FI-2024B,
: g. flashing    heat stored in metal
.andFI-2022B.
: h. blowdown to containment
ualitGrouNotApplicable.
: i. fuel temperature  DNB j.
CodeClassNotApplicable.
k.
Codes,Standards andReulatorReirementsThenonsafetyrelatedportionofthismodification shallbeinstalled aspertherequirements oftheNationalElectrical Code,1978.USNRCRegulatory Guide1.100definesadditional require-mentsandchangestoIEEEStandard344-1975, "IEEERecommended Practices forSeismicQualification of6.2ClassIEEquipment.
steam binding Zirc-water reaction
forNuclearPowerGenerating Stations".
: 6. Accident Treatment - heat sinks and pressure/temperature    limits
Implementation ofthisstandardforprocurement ofClassIEinstrumentation willincludetherequirements ofthisRegulatory Guide.DesignCriteriaRevision1EWR1869Page4Date55804290 p
: a. loss of RCP
6.37.07.17.1.27.1.37.1.47.27.3FluidPressure1550psigFluidTemperature 40to120'F.Current,10to50mAdcElectricInstrumentation Current,10to50mAdcInstrumentation PowerSuppliesIEEE-336-1977 shallbeusedasaguideline duringtheinstallation, inspection andtestingphaseofthismodification.
: b. small  LOCA
DesiConditions FlowandPressureTransmitters 7.3.17.3.27.3.39.0InputVoltage118volts60hz1POutputCurrent10to50mAdcMaximumLoadLoadConditions 660ohmsTheinstrumentation listedinSection3.1shallbedesignedtowithstand theeffectsofasafeshutdownearthquake (0.2gbasegroundmotion)withoutalossoffunction.
: c. decay heat
Environmental Conditions 9.19.1.19.1.29.1.39.1.49.29.2.19.2.29.2.3Intermediate BuildingTemperature PressureRelativeHumidityRadiation ControlRoomTemperature PressureHumidityNormal40to104Fatm.0to100%Accident.
 
215oF1.0psig100%65to85F.atm.15to95%40to120'F.atm.15to95%(5R/hr-gammaaccumulative)
==Title:==
DesignCriteria~~~EWR1869Page5RevisionDate5/5/8042.90 C/~~C/~"54 9.2.49.39.3.19.3.29.3.39.3.4Radiation RelayRoomTemperature PressureHumidityRadiation negligible 40to104F.atm.15to95%negligible negligible 40to104F.atm.15to95%negligible 9.4Newpressureandflowtransmitters requiredbythismodification shallbeenvironmentally qualified toIEEE-323-1971 andIEEE-344-1971.
Nuclear Characteristics/Review Objective:  Comprehensive    review of the reactivity effects, magnitudes, and direction of each core reactivity coefficient and the kinetic effects of each for a typical PWR cycle, changes from cold to hot, and rod bank position.
9.5Newprocessanalogcomputational equipment shallbeenvironmentally qualified inaccordance withIEEE-323-1974 andIEEE-344-1975.
Topic Summary:
10.0Interface Reirements10.110.211.012.0Existingcabletraysutilizedasaroutingpathforthismodification shallbereviewedtoensurethattraycapacityisnotexceeded.
: 1. Subcritical Multiplication
Mountingofnewelectronic instrumentation inexistingracksintheRelayRoomshallnotdegradethecapability ofthoserackstowithstand theeffectsofthesafeshutdownearthquake.
: 2. Six factor formula
MaterialReirementsNone.Mechanical Reirements13.0Flowandpressuretransmitters shallbedesignedforinstallation atthelocationoftheexistingtransmitters, andutilizing existingtubingconnections.
: 3. Coefficients
Structural Reuirements 14.015.0None.HdraulicReuirements None.ChemistrReirements~~~None.DesignCriteriaEWR1869Page6Revision4290 Ait l6.016.1Electrical Reuirements Instrument cableutilizedinthismodification shallmeetthefollowing requirements:
: 4. Defects
16.1.1Size16AWG.16.1.2Voltagerating600volts.16.1.3Insulation shallbequalified aspe'rIEEE-383-1975.
: 5. Inhour equations
16.2Instrument powershallbefroma120VAC,60ha,lpClass1Epowersupplyasfollows.16.2.1Primaryinstrumentation power:fromsameinstrument busasmotor(turbine) controls16.2.2Secondary flowindication:
: 6. Practical Application - (measurements)
fromoppositeinstrument.
: a. Moderator Coefficient
busdesignated by16.2.1above17.00erational Reirements18.0Thismodification shallnot.imposeanyadditional operational requirements underallmodesofplantoperation asthismodification willnotchangeorintroduce anyadditional equipment operations orcontrol.Instrumentation andControlReuirements 19.0Theinstruments utilizedinthismodification shallhavethesamebasicspan,range,andindication astheexistinginstrumentation.
: b. Power Coefficient
AccessandAdministrative ControlReirements20.0None.Redundanc
: c. Rod Worth
,DiversitandSearationReuirements Separation betweenseparation groups1and2shallbemaintained asperIEEE-384-1974 wheneverexistingplantdesignpermits.Whereseparation betweengroupscannotmeetthiscriteria, separation shallbemaintained asdescribed inSection8.2.2oftheGinnaFSAR.21.0FailureEffectsReuirements 21.1Thismodification shallbedesignedsuchthatafailureofaseparation group1component shallnotaffecttheoperability oftheseparation group2system.DesignCriteriaEWR1869Page7RevisionDa)e5580i2.90 P'I 21.221.322.022.1Theinstrumentation designated inthismodification asbeingineitherseparation group1or2shallbedesignedtowithstand theeffectsofasafeshutdownearthquake withnodegradation inperformance oraccuracy.
: 7. Neutron Mechanics
Thepressureandflowtransmitters installed intheIntermediate Buildingshallbedesignedtowithstand theenvironmental effectsofapostulated pipecrackwithnolossinperformance andaccuracy.
 
TestReirementsTestsshallbeperformed priortoplacingthismodifi-cationinservice, toensurethat,designrequirements havebeenmet.22.2Seismicqualification testingofsafetyrelatedinstru-mentation shallconformtotherequirements ofIEEE-323-1974andIEEE-344-1975.
==Title:==
22.3Environmental qualification testingofinstrumentation shallconformtotherequirements ofIEEE-323-1974, orIEEE-323-1971 asdescribed insection9.4.22.423.024.0Flametestingofcableutilizedinthismodification shallconformtotherequirements ofIEEE-383-1974.
Nuclear Peaking Factors Objective: Comprehensive review of F and F>H including the basis, limitations, and measurements    of each.
Accessibilit
Topic Summary:
,Maintenance, ReairandInservice InsectionNone.Personnel Reirements25.026.0None.Transortabilit Reuirements None.FireProtection Reuirements 27.0Cableusedinthismodification shallmeettheflamespreadrequirements ofIEEE3831974.HandlinReuirements Electronic instrumentation shallbeshippedandstoredinaccordance withLevelBrequirements ofANSIN45.2.2.DesignCriteriaEWR1869Page8RevisionDate55804290 C~'aQl'~
Establish limitations of each
28.029.0PublicSafetReuirements None.~1''1't.Materials andequipment utilizedinthismodification-shallbechosensuchthatthesedesignrequirements aremet.30.031.0Personnel Safet.Reuirements None.UniueReuirements None.DesignCriteriaEWR1869Page9RevisionDate5/5/804290 U1 CriAT%STCAIICCNCNATaAINSOCCONTANNltNT
: a. Fuel
~004STCAMECTOAAIaY~CN.104Pq,IIIOOCNOTC\~Q)S<<11AAT~~Im.stsAAATTa
: b. Clad (includes Zr/H20 reaction)
~SgAIL%NOTS~RQgllOtkTOSCNSAOSDINlOSESEIafoe.~CettCOSAON~MA'<<NNaLtSN~XNSDf4ESI~SIT4SASASSS'SS'A'MAINSCCOWATCN S~~SSStO~INjgCIIISJ.j'I400TASST@QNN@lr4m''lTLrSET~QnQ}-+,O'AIIsttDNATCNI~NCSS~SS--'CMDINSATtIOST<<NACATAME~S4t4I04saTO<<ESCCNSAT STOAACC'tAMEr.aCostIO&SMItvttONOCNIOLTACCIAS.~+'8~4000DSSCTCISOS.0.QANNONANR~LN4NOTONDNIICNAOS.S.TASONSNAIDESe.SONSVNOTaONANSIAEACS.W.SONS~ENIEASTA
: c. Flow
.J3'gf~~W'It"I4}}
: 2. Measurements  of F and F><
: 3. Protection availa8le DE limitations
: 5. Technical Specifications
 
6
 
==Title:==
NSSS  Instrumentation; Basis, Limitations and  Alternatives Objective:  Define NSSS instrumentation basis, limitations and alternate sources of information.
Topic Summary:
: 1. Requirements  and Basis for Parameter Monitoring
: 2. Instrumentation Limitations
: 3. Alternate Sources of Information
: 4. Believability of Information
: 5. Behavior During Abnormal Conditions
: 6. Adverse Environmental Effects
 
==Title:==
NSSS  Operating Experience and System Assessment Objective:  Enhance the    operator's ability to establish system priorities using control room instrumentation.
Topic Summary:
: 1. Establish conceptual approach to operations - (normal, abnormal, and emergency)
: 2. Selected Industry LER's
: 3. Systems problems are presented;.
class must choose and set the priorities and course of action.
 
==Title:==
Normal Plant Transient Assessment Objective: Enhance the overall knowledge level of normal plant transients, including the instrumentation required, the magnitude and direction of each.
Topic Summary:
Develop a Basic Operating Plant
: a. Instrumentation Required
: b. Protection Required
: c. Heat Balance
: 2. Introduction of one standard transient assessment graph (Uses, control room instrumentation ranges)
: 3. Step Load Changes Major Load Rejection Review  of T Tref Mismatch/Re60ns
 
L k
P 4
: 5. Main Generator    Trip Calculation of the Resultant avg 9.
 
==Title:==
Instrument Failure    Assessment Objective:  For any selected instrument      failure, predict the magnitude    and  direction of each major  NSSS  parameter and graph.
the function assuming no operator action.
Topic Summary:
: 1. Class estimates response      (no operator action)
: 2. The following failures were selected for maximum impact:
: a. T      Fails High at BOL
: b. NSgPower Range Fails High at        BOL
: 3. Turbine Impulse Channel Fails Low
: 4. Pressurizer Pressure Control Channel Fails High
: 5. Pressurizer Level Control Channel Fails High/Low Each calculation is concluded when either the plant has tripped or a stable reactivity balance exists.
Note:  As student experience/training and time'ermit all inputs to the following major control 'systems and their failures will be    discussed;
: 1. Reactor Make-up Control
: 2. Steam Generator Water Level Control
: 3. Electro-Hydraulic Control System 10.
 
==Title:==
Accident/Transient Assessment Objective: Enhance the ability for prompt recognition of major accident, transients and establish the basis for the appropriate emergency procedures.
Topic Summary:
Rod  Withdrawal Accidents (FSAR)
: a. Review Protection (DNBR Vs. pcm/sec.)
: 2. Main Generator Trips (FSAR)
: 3. Natural Circulation, Detailed
: a. S/G b, T Calculations
: b. Power to Flow Ratio
: c. Decay Heat,
: d. Subcooling
: 4. Basis for Stopping RCP's on Low Pressure
: a. Mass  Inventory
: b. Steam  Generator Pressure (Bounding Limit)
: 5. S/G Tube Rupture
: a. Impact of Closing the MSIV
: b. Methods  of Depressurizing
: c. Monitoring Subcooling
: d. Conditions for Stopping SI
: e. Conditions Requiring Closing of PORV
: 6. One PORV Open on Pressurizer
: a. Details of the Level Response
: 7. Small Break Transient Behavior Modes
: a. < 3/8" to > 2"
: b. Conditions for Stopping SI
: 8. Steam Break
: a. FSAR and Generic Analysis
: b. Calculate RCS Temp. for 1 S/G Blowdown
: 9. Main Feedline Break
: a. Calculate RCS Temp. for 1 S/G Blowdown
: b. Calculate Time for All S/G to Go Dry
: 10. Loss of All Feedwater
: a. Calculate Time for All Steam Generators to Go Dry
: b. Options Available to Cool Reactor. (Opening One PZR PORV)
: 11. Determination of Inadequate Core Cooling
: 12. Accident Diagnostics 11.
 
==Title:==
Simulator Training Objective:  Observation of Actual Abnormal and Accident Conditions and the Identification of Each Topic Summary:
Westinghouse Nuclear Training Center Control Board Familiarization Demonstrations
: 1. Verification of:
: a. Natural Circulation
: b. Subcooling
: c. Adequate Core Cooling
 
I I
ll V 4
: 2. Major Reactivity Transients
: a. Load Rejection with Rods in Manual
: b. ATWT c.. Continuous Control Rod Withdrawal from HZP
: 3. Instrument Failures
: 4. Small and Large LOCA's
: 5. S/G Secondary Breaks
: 6. Pressurizer  PORV Open
: 7. One  Spray Valve Open
: 8. Loss of All Feedwater
: 9. Loss of Rod Drive MG's Transient Assessment
: 1. Selected Instrument Failures
: 2. Selected Accidents
: 3. Selected Equipment. Failures
: 4. Multiple Failures A four week course in nuclear and reactor physics was presented for those engineers who did not have previous nuclear engineering education. This course, taught by Memphis State University, is part of an accredited college program, and included the following topics:
Atoms and Matter Light and Electromagnetic Waves Radioactivity and Particle Behavior Nuclear Reactions Fission Reactor Fundamentals Nuclear Fission of Uranium - 235 Neutrons, Reactions, and Moderator Effects Neutron Multiplication Factors Reactivity Reactor Kinetics The Subcritical Reactor On-the-job training, including continuing assignment on-shift as STA, has provided a basic familiarization in plant systems and  operation.
Additional Trainin Expanded  training for the calendar year  1981 will include:
Plant Design System Operation Transient Response Accident Analysis Simulator Training Procedure Review Technical Specifications Management  Skills
 
Requalification training will commence January 1, 1982, and will continue on a two-year frequency (or until the STA program is phased out). This program will include:
Procedure Review Transient Response Accident Analysis On-shift assignment  as STA or on-shift assignment as  SRO Evaluations by the Technical Assistant for Operational Assessment Lon -Term STA Pro ram and    Trainin Plans The  long-term  STA program will continue to utilize degreed  individuals (with the supplemented education, experience, and training listed above), or individuals with an SRO license who have received the necessary technical education and training. We will replace degreed individuals with SRO-licensed individuals as the licensed individuals receive education'imilar to that outlined in RG&E's letter dated December 28, 1979 from L. D. White, Jr. to Mr. Dennis Ziemann.
The STA program    will be phased out when the man-machine interface control    room review has been completed and the shift  supervisor  and senior operator on a shift each meet the proposed    future educational requirements of approximately 60 technical credit hours for SRO licensing.
STA Selection and uglification If replacement STA's are required, screening will be performed to ensure candidates meet the education, experience and training requirements of our Administrative Procedure for STA Training prior to their assignment as STA.
Comments on INPO Document and Com    arison with RG&E's RG&E  has reviewed INPO's document of April 30, 1980 concerning STA Qualifications, Education and Training.
We have concluded that these INPO goals for the STA are "standards of excellence" and represent an ultimate goal. However, lacking guidance from the NRC on minimum requirements for STA, RG&E has established minimum requirements for'TA, independent of INPO's "standard of excellence".
 
i' We are pleased to offer our comments on the above-mentioned INPO document. We fully endorse the comments and recommendations made by the Mid-Atlantic Nuclear Training Group (MANTG) in a letter, dated October 21, 1980, from MANTG (Young) to INPO (Thomas) and quoted below:
General It  is the opinion of the members of the Mid-Atlantic Nuclear Training Group that the subject document's experience, education, and training requirements do not appear to be based upon the demands of the STA position.
As an example, the document includes a position description which lists twelve typical STA responsibilities. Of these, four pertain to evaluating plant conditions during transients or investigating the causes of such very little emphasis is placed on transient conditions transients'et, in the transient/ accident analysis and Emergency Procedures requirements of Section 6.7.
The MANTG recommends    that  all experience, education, and training requirements      be based upon a detailed job/task analysis'hen derived in this manner, the standards                  will be able to relate to specific knowledge levels, requirements to the typical STA responsibilities. This approach seems especially prudent in light of the recent emphasis of job and task analysis by the Nuclear Regulatory Commission, American Nuclear Standards Institute, and the Institute of Nuclear Power Operations.
: 2. Pa e 10,  Section 5.2  E  erience
: a. The  first  paragraph  requires the STA to have a minimum of 18 months    of nuclear power plant experience.
The MANTG recommends      that this requirement be deleted.
It is  our opinion that an effective training program will produce    a competent STA, regardless of his previous experience.
It  should be noted that INPO did not publish this requirement, even in draft form, until May of this year. With the NRC requiring fully trained STA's by January 1, 1981,    it will be impossible to staff the STA position with personnel who meet both the require-ments of the NRC and INPO, unless they are drawn from the existing plant staff.
: b. Paragraph three states that a maximum of three months of training may be applied toward the experience requirement. The MANTG recommends that both on-the-job training  and plant specific systems or operations train-ing which is conducted by or for the facility at which the STA is qualifying, be equivalent to experience on a one-to-one basis with no maximum. The rationale for
 
l 10 this recommendation is that training at the plant provides the trainee the opportunity to trace systems and observe plant operations which the MANTG feels fulfills the intent of this section.
C. The MANTG recommends      that the            INPO include a provision in Section 5.2 which equates cold license simulator training to operating plant experience on a three to one  basis, similar to the provision presently allowed for cold license operator      candidates'a e  ll    Section 5.3 Absence from              STA Duties MANTG  recommends that personnel not actively performing STA  functions but participating in the STA requalification program, be exempt from the requirements of this section.
Additionally, those persons not performing the function nor participating in the requalification program be required to complete only those portions of the requalification program which they have missed during their absence prior to assigning them for STA duty.
Pa e  13, Section 6.1.2 Colle      e  Level Fundamental Education
: a. In the Electrical Sciences section, the MANTG recommends that Circuit Theory and Digital Electronics be deleted from the knowledge requirements.                 The MANTG does not believe that they are pertinent to the understanding of nuclear power plant response or control.
: b. MANTG    requests guidance on how to obtain this college level    knowledge  within the short time frame required by the Nuclear Regulatory Commission.
Pa e 15,      Section 6.2  A  lied  Fundamentals-Plant
~Secific The MANTG      requests guidance on how to determine what constitutes college level training for Plant Specific topics.
Pa e 17,      Section 6.6 General    0      eratin Procedures MANTG    recommends that    all plant operating procedures which relate    to  an  STA's function  be included in this section rather than those as mentioned. These procedures should be identified in the STA task analysis recommended in paragraph 1.
 
1 I \ 1 C F
: 8. Pa e 18,    Section 6.8 Simulator Trainin The  first paragraph  requires a trainee/ instructor ratio of not  more than  four to one. This would seem to require at least    two  instructors for every training session since    it is anticipated that  STA's  will be trained along with the rest of their      control room watch section. The MANTG recommends      that a 4:1 ratio only apply when only STA's are being      instructed in a given course.
: b. The HANTG recommends    that simulator  emphasis  include the discussion and demonstration of those actions which operators may take which would either mitigate or aggrevate a transient or accident condition.
: 9. Pa e 19,    Section 6.9 Annual  Re ualification Trainin MANTG    recommends  that  a review of the theoretical material presented during    STA  qualification be included in the requalification program.
1.A.1.3
~ ~  ~ Shift        ~
Manning BY  letter dat ed December 15, 1980 from L. D. White, Jr.
to Mr. Dennis        M. Crutchfield, USNRC, RG&E responded to shift staffing criteria and guidelines for scheduling overtime for licensed operators. The commitments pro-vided in that letter, and proposed alternatives to some of the Staff overtime guidelines, remain unchanged. We have revised administrative procedures to implement a similar'olicy to limit overtime work of people in addition to licensed operators who perform safety related work. Procedure A52.9 has been revised to in-clude limits on overtime worked by auxiliary operators in addition to SROs, ROs and Shift Technical Advisors.
Procedure A52.10 has been implemented to limit overtime worked by health physicist technicians, I&C technicians and key maintenance        personnel.
Guidance    for the Evaluation and          Development    of Procedures for Transients and Accidents The Westinghouse        Owners Group    will submit    by January 1, 1981, a    detailed description of our program to comply with the requirements of Item I.C.1. The program will identify previous Owners Group submittals to the NRC, which we believe will comprise the bulk of the response.
 
1 pl I
 
12 Additional effort required to obtain full compliance with this item (with proposed schedules for completion) will also be identified, as discussed with the NRC on November 12, 1980.
Design Review  of Plant Shielding and Environmental Qualification of Equipment for Spaces/Systems Which May Be Used in Post-Accident Operations.
A discussion of our design review is contained in a letter dated December 28, 1979 from L. D. White, Jr. to Mr. Dennis Ziemann, USNRC. Additional information and schedule are contained in a letter dated December 15, 1980 from John E. Maier to Mr. Dennis M. Crutchfield, USNRC.
II.E.1.2 Auxiliary Feedwater System Automatic Initiation and Flow Indication Part 1: Auxiliary Feedwater System Automatic Initiation RG&E has previously responded to NRC requirements for auxiliary feedwater systems in letters dated November 28, 1979, December 14, 1979, December 19, 1979, March 28, 1980, May 22, 1980, May 28, 1980 (2 letters) and July 14, 1980. No changes to the requirements have been identified which require additional information.
Part 2:    Auxiliary Feedwater System Flowrate Indication The Design Criteria and Flow Diagram for the modification of the Auxiliary Feedwater Flow Indication is provided in Appendix A. Some of the salient features of the design are:
Redundant flow  indication is provided for each motor driven auxiliary feedwater pump (MDAFP) and the common discharge of the turbine driven auxiliary feed-water  pump (TDAFP).
: 2. Each redundant channel    of flow indication consists of a:  1)  qualified transmitter, 2) transmitter power supply, 3) square root extractor, 4) output isolation amplifier, and 5) main control board analog indicator.
: 3. Indication is provided to the Operator by means of a dual movement vertical scale indicator. Each move-ment receives the analog signal from its respective channel of flow indication for a particular
 
A N
      ~
r
  ~ -"
 
13 auxiliary feedwater flow path. Hence, the Operator can quickly ascertain between channels.
if there is  any discrepancy
: 4. Each channel  of flow indication is  powered from a separate battery-backed vital instrument bus. In addition, each flow channel's analog instrumentation is mounted in a fully qualified instrument rack.
: 5. Testability features have been provided in the design, including local flow indication near the auxiliary feedwater pump that will facilitate periodic loop calibration.
: 6. The Ginna  Station Quality Assurance Program    will be utilized in the design, procurement, installation and testing of this modification.
: 7. As mentioned in paragraph 3 above, continuous display of both channels of flow indication will be provided to the operator on the main control board.
: 8. The flow transmitters installed as a part of this modification are included in Rochester Gas and Electric's program of Environmental Qualification of Foxboro Transmitters being conducted by RG&E and a number of other utilities, and will be qualified to the requirements of NUREG-0737.
II.E.4.2 Containment  Isolation Dependability The purge and  vent system at, Ginna consists of four 48 inch isolation valves. The Staff's interim position on containment purging (now called Position 6) was im-plemented on these valves by our December 14, 1979 and May 29, 1980 letters. During a recent review of Position 6, it was postulated that two 6 inch valves on our con-tainment depressurization line may be interpreted as falling under Position 6 requirements. These valves are not used for containment purge and vent operations but are used periodically to equalize pressure between inside and outside containment.
Preliminary analysis supplied by the vendor of these valves indicates that the most severe flow condition loading will not stress the valves beyond their standard design limits. The analysis also demonstrates that the valves will close as fast or faster with flow than with-out flow., Therefore, no restrictions need be placed on valve position, but an interim restriction will be placed on the amount of time these valves are open until the final analysis is complete.
 
PP A  valve qualification program for these  6 inch valves will be  done  in two phases:
To provide further assurance of valve operability following post-accident closure, a more detailed analysis will be performed.
The second phase    will consist of seismic and environmental qualification of the entire valve    and actuator assembly.
We will inform you of the results    upon their completion.
The depressurization valves will only be used to equalize pressure between inside and outside containment, to prevent an unacceptable buildup of containment pressure during normal operation. Whenever containment depressurization is required, emphasis will be placed on limiting de-pressurization times to as low as practical. We do not have at this time sufficient operating experience with limited depressurization to predict what containment pressure fluctuations may occur during plant operation
,to commit to a specific depressurization time limit.
However, all practical efforts will be made to limit depressurization times to the 90 hour per year goal while critical. Should this goal be exceeded, we will inform you and provide a summary of the reasons for exceeding the 90 hour goal.
The containment isolation pressure setpoint will be reduced to 4 psig. Our revised operation for contain-ment depressurization may result in containment pressures of 2 psig. Normal instrument errors and drift may amount to as much as 1 psig (~1% of range).     An addi-tional 1 psig margin should be added to assure that in-advertent isolation of containment does not take place since this same signal also trips the reactor and starts safety injection. We will continue to monitor containment pressure.       it If is feasible to reduce the 4 psig setpoint pressure, we will inform you.
Noble Gas  Effluent Monitor Information concerning our plans for monitoring noble gas effluents was contained in a letter dated December 15, 1980 from John E. Maier to Mr. Dennis M. Crutchfield, USNRC. Additional information will be provided by February 1, 1981.
 
'h 15 II.F.1.3 Containment High Range Radiation Monitor A  Victoreen Model 875 High Range Containment Area Monitor System has been purchased for installation by January 1, 1982. The system is currently being qualified to IEEE-323 and Regulatory Guides 1.97 and 1.89, with test reports expected to be completed by March 1981.
Until those tests are complete, however, we cannot commit that the installed system will meet all of the NRC requirements.
II.F.1.4 Containment Pressure Monitor The  Staff position presently calls for "continuous recording" of containment pressure;  it  is felt that this would result in a waste of paper and unnecessary wear on the recorder mechanism. A system is proposed, however, that will start recording whenever a safety injection or containment isolation signal is present.
This proposed system will provide adequate recording of signals.
II.F.1.5 Containment Water Level Monitor Information concerning RG&E plans to install containment water level instruments is contained in RG&E letters dated December 15, 1980 from John E. Maier to Mr. Dennis Crutchfield and November 19,  1979 from L. D. White, Jr.
to Mr. Dennis Ziemann.
Instrumentation for Detection of Inadequate Core Cooling RG&E's position concerning inadequate core cooling instru-mentation is contained in letters dated December 15, 1980 from John E. Maier to Mr. Dennis Crutchfield and July 2, 1980 from L. D. White, Jr. to Mr. Crutchfield.
 
1 J i
 
16 II.K.2.13 Thermal Mechanical Report -- Effect of High-Pressure
  ~ ~ ~
Injection on Vessel Integrity for Small-Break Loss-of-Coolant Accident with No Auxiliary Feedwater To completely address the NRC requirements of detailed analysis of the thermal-mechanical conditions in the reactor vessel during recovery from small breaks with an extended loss of all feedwater, a program will be completed and documented to the NRC by the Westinghouse Owners Group by January 1, 1982. This program will consist of analysis for generic Westinghouse PWR plant groupings.
Following completion of this generic program, additional plant specific analyses,  if required, will be provided.
A schedule for the plant specific analysis will be determined based on the results of the generic analysis.
II.K.2.17 Potential for Voiding in the Reactor Coolant  System during Transients The Westinghouse  Owners Group is currently addressing the potential for void formation in the Reactor Coolant System (RCS) during natural circulation cooldown condi-tions, as described in Westinghouse Letter NS-TMA-2298 (T. M. Anderson, Westinghouse to P. S. Check, NRC). We believe the results of this effort, will fully address the NRC requirement for analysis to determine the potential for voiding in the Reactor Coolant System during anticipated transients. A report describing the results of this effort will be provided to the NRC before January 1, 1982.
II.K.2.19 Sequential Auxiliary Feedwater  Flow Analysis The  Transient Analysis Code, LOFTRAN, and the present, small break evaluations analysis code, WFLASH, have both undergone benchmarking against plant information or experimental test facilities. These codes, under appropriate conditions, have also been compared with each other. The Westinghouse Owners Group will provide on a schedule consistent, with the requirement of Task II.K.2.19, a report addressing the benchmarking of these codes.
 
4, C
 
                            - 17 II.K.3.1 Installation and Testing of Automatic Power-Operated
  ~ ~ ~
Relief Valve Isolation System And II.K.3.2 Report on Overall Safety Effect of Power-Operated Relief Valve Isolation System The Westinghouse Owners Group is in the process of developing a report (including historical valve failure rate data and documentation of actions taken since the TMI-2 event, to decrease the probability of a stuck-open PORV) to address the NRC concerns of Item II.K.3.2.
However, due to the time-consuming process of data gathering, breakdown, and evaluation, this report is scheduled for submittal to the NRC on March 1, 1981. .As required by the NRC, this report will be used to support a decision on the necessity of incorporating an automatic PORV isolation system as specified in Task Action Item II.K.3.1.
II.K.3.5 Automatic Trip of Reactor Coolant  Pump During Loss of Coolant Accident The Westinghouse  Owners Gro'p resolution of this issue has been  to perform analyses using the Westinghouse Small Break Evaluation Model WFLASH to show ample time is available for the operator to trip the reactor coolant pumps following certain size small breaks (See WCAP-9584). In addition, the Owners Group is supporting a best estimate study using the NOTRUMP computer cod'e to demonstrate that tripping the reactor coolant pump at the worst trip time after a small break will lead to acceptable results.
For both of these analysis efforts, the Westinghouse Owners Group is performing blind post-test predictions of LOFT experiment L3-6. The input data and model to be used with WFLASH on LOFT L3-6 has been submitted to the Staff on December 1, 1980 (NS-TMA-2348). The information to be used with NOTRUMP on LOFT L3-5 will be submitted prior to performance of the L3-6 test as stated in Westinghouse Owners Group letter OG-45 dated December 3, 1980.
The LOFT  prediction from both models will be submitted to the Staff on February 15, 1981 given that the test is performed on schedule. The best estimate study    is scheduled for completion by April 1, 1981.
Based on these studies, the Westinghouse Owners Group believes that resolution of this issue will be achieved
 
p V
I
 
18 without, any design modifications. In the event that this is not, the case, a schedule will be provided for potential modifications.
II.K.3.12 Confirm Existence of Anticipatory Reactor Trip Upon Turbine Trip An anticipatory trip upon reactor trip exists at the R. E.
Ginna plant as shown in drawing 882D612, Sheet 2, Revision 3 and Sheet 3, Revision 2, provided with a letter dated January 18, 1979 from L. D. White, Jr. to Mr. Dennis Ziemann.
II.K.3. 17 Report  on Outages of  Emergency Core Cooling Systems Information on ECCS equipment outages is contained in Table II.K.3.17. The information in Table II.K.3.17 was compiled in response to Mr. D. G. Eisenhut's May 7, 1980 letter concerning Five Addition TMI Items and does not include the corrective action taken, a recent change in the requirements. Nevertheless, as seen from the table, most. outages were the result of routine maintenance and inspections. In cases where a violation of Technical Specifications did occur, the corrective action taken is documented in Licensee Event Reports filed with NRC. We have reviewed the ECCS equipment outages and determined that. no action is required at this time. Malfunctioning steam admission valves, the cause of lengthy turbine-driven auxiliary feedwater pump outages, were replaced in May, 1980.
Improving Licensee Emergency Preparedness    - Long Term At this time'e believe we will be able to comply with the implementation schedule established for this item.
However, we plan to comply with the requirement for a prompt notification system primarily with the installa-tion of sirens. We do not yet have a commitment for supply of the sirens because field work necessary to establish sound levels, siren locations and the number of sirens required is not yet completed. If      it becomes necessary to request an extension of the implementation
'            date as this work proceeds, we will notify you promptly.
 
4 19 The emergency plans required to be submitted by January 2, 1980 concerning radiological emergency response plans  will be provided by separate correspondence.
III.D.3.4 Control Room  Habitability Requirements The information requested in Attachment 1 to item III.D.3-4 is not being submitted by January 1, 1981 for the reasons given in a letter dated November 24, 1980 from L. D. White, Jr. to Mr. Dennis M. Crutchfield, USNRC.
 
TABLE  LI.K.3.17 PI>AHT      T.S.
DATE      TIHE  OP1HATIffG    TIME      DATE        TIME KUIPMBlT                    REASOH  IHOPHQBIB      IHOPHfABIR IHOPHMfiE    ffODE
* ALTDWANCE  OPHQBIE  )OHRABIZ A HfH Pump                      M-11.15 Inspection and        6/14/76                        24 Hrs. 6/14/76    181  1      11  Hours Maintenance                                                                                    11  Hinutes Bus 14 Supply from 1A    Diesel N-15 &t: H-52.1 Breaker        7/9/76                                    7/9/76    1510        5 Hours Inspection a Maintenance                                                                        4  Mimtes B Aux. F.W. Pump                H-11.5c Maintenance End        7/20/76    1110                N/A      7/20/76    15K        4 Hours Bearing Cover Gasket                                                                            20 Minutes fA Cont Spray Pump  Discharge N-64.1 Defective    'A'ontact Valve 860A                      - Manual  open  curcuit      8/2/76                          24 Hrs. 8/2/V6    1412        4 Hours 27 Minute Turbine Drive  APWP            Maintenance-ftydraul  ic      7/22/76                        N/A      7/25/76    1700        2I Hours Control Valve.                                                                                  5 Minrteo A Component  Cooling  Pump    N-11.27 &c H-.45.1A Inspection 8/17/76              C.S.D      N.A.      8/20/V6    1530        81 Hours
                                &: Naintenance                                                                                  50 Minutes B  Diesel Generator            Bus 16 Breaker-Replaced        8/21/76              C.S.D      N/A      8/22/V6                18 Hours Secondary Contacts                                                                              27 Hfmrtes f1'515 A  Service Water Pump M-f f.10 0, H-45.1A  Prrmp ard 11/4/76                        H/A      11/4/76                6 Hours Motor Inspection    &c Maint.                                                                  45 Minutes Service Water Pump          M-11.10 &r. H-45.1A Pump ard  11/5/76                        N/A      11/8/76                78 Hours Motor Inspection Sc Haint.                                                                     59 Himrtes B  Service Water  Pump          M-11.10 &r. H-45.1A Pump ard  11/9/76                        N/A      11/9/76    1245        5 Hours Motor Inspection 4 Maint.                                                                       45 Minutes AOV~6A From Spray Addative YIC-836A Controller Failure.
Tank  NaOH                                                    1 1/17/76  1100                24 Hrs. 11/17/76              7 Hours 30 Minutes
* 0  Plant    operating at power; C.S.D. Cold Shut Down; H.S.D. . Hot Shut Down
** Ginna has Service Mater Pumps. Only two are required for post-accident operation
                  &r                                                                                              {FSAR    Table 9.6-1)
Sheet 1 of 12
 
TABLE  II.K.3.'17 (Cont'd.)
PLANT      T.S.                         TIME DATE      TIME  OPERATINB    TIME      DATE      TIME    OUP OP EQJIPHBIT                  RPASON INOPEBABLB    INOPHQBIB INOPHQBIB    MODE  ALIDWANCB  OPERABLB  OPHUQKB  SERVICE C  Service Water Pump          M-11.10 &: M-45.1A Pump end 11/9/76    1515              N/A      12/21/76  1245    41  Bys Motor Inspection and                                                                  21  Hours Maintenance                                                                            30 Mimtes A  Service Water Pump                  (M-32,M-32')       3/28/77                      N/A      3/28/77  1525    35 Mirutes AI&0 on Breaker C Service Water  Pump                  {M-32,M-32')
AI&0 on Breaker    3/28/77                      N/A      3/28/77  1450    1 Hour 50 Minutes B  Service Water Pump          Breaker AI&0 Inspection    3/24/77                      N/A      3/24/vv            1 Hour 50 Mimtes 1C  SIS Pump Bus 14 Breaker    Replaced Secondary Contacts 1/3/vv                        24 Hrs. 1/3/vv    1150    2 Hours on Breaker                                                                            50 Minutes 1B  Boric Acid Transfer  Pump Breaker Pulled to Perform                                24 Hrs. 3/7/77    1145    3 Hours Maint. on C.B. Sritch.                                                                 15 Minutes B  Service Water Pump          Divers cleaning suction    6/1o/77    1030              N/A      6/1o/vv  1100    30 Mirutes screen A&9  Service Water  Pumps      Divers cleaning suction    6/10/77                      N/A      6/1o/vv  1020    1 Hour screen                                                                                20 Mimtes C SIS Pump Bus 14 Breaker    Breaker  failed to close    6/29/77                      24 Hrs. 6/29/77  1720    3 Bours during P.T.                                                                           50 Minutes D  Service Water Pump          Divers cleaning suction    6/9/77                        N/A      6/9/vv            2 Hours screen                                                                                30 Minutes Check Valve  leaking      v/>>/77    1430              24 Hrs. v/>>/vv    1945    5 Hours 15 Minutes
*+* AI&0      Annual      Inspection and Overhaul Sheet-2 of 12
 
S TABLE    II.K.3.17 {Cont'd.)
PLANT      T.S.                         TINE DATE        TINE  OPERATING    TIME      DATE            OVP OP KQIPM1I1T                REASON INOPERABIB        INOPERABLE  INOPHQBLB    NODE  ALMNANCE    OPERABLE        SERVICE Turbine Driven ABF          Steam edmission valve problem  6/1/77      1140                N/A      7/1 1/77    1400  40 Days MOV  3504                                                                                  2 Hours 20 Mimtes Boric Acid Pumps  Ec CVCS  Repair Valves 398  ABB        8/23/vv                        N/A      8/23/vv    1525  40 Minutes Valves Sc Piping B D/G Bus 16  Breaker        Breaker would not close        9/14/77    0706                168  Hrs. 9/14/77    1030  3 Hours 24  Nimtes 1A Component  Cooling  Pump Calibration of press          9/26/77    1106                24 Hrs. 9/26/VV    1330  2 Hours transmitter                                                                                24 Minutes A Service Water  Pump      Scheduled Motor Overhaul      10/19/77    0700                N/A        11/8/7l          20 Days 6 Hours B Component  Cooling  Pump  to  check coupling alignment  11/15/VV    0800                24 Hrs. 11/15/77  1719  9 Hours 19 Minutes B Component  Cooling  Pump  Check Coupling Alignment      11/16/Tl    1300                24  Hrs. 11/16/77  1445  1 Hour 45 Mimtes Na51 Tank  Isolation Valves  Repair Valves                  12/3/77    0100      H.S.D. 48 Hrs.   '1 2/3/Yl  1445  13 Hours 45 Minutes Isolated to repair leaks      12/3/77    0100      H.S.D. 48 Hrs. 12/3/77    1445  13 Hours 45 Mirutes B Charcoal  filter          Low  Air Plow Alarm            1/6/78      2135                24 Hrs. 1/v/v8    1641  19 Hours (C Recirc Pans)                                                                                                        . 6 Minutm Sheet 3 of 12
 
f
'I t
 
TABLE  II.K.3.17 (Cont'd.)
KQiT      T.S.                             TIME DATE      TIME    OPERATING    TIME      DATE      TIME      OUP OP EVIPMENT                                        INOPHUSIR  INOPHUSIB    MODE  ALTlSANCE  OP HEEBIE  OPHQBIR  SERVICE B Service Water Pump      Rotor Overhaul                12/12/77  0930                N/A      1/6/78              25 Days 1 Hour 43 Mitutes A Service Water Pump      Breaker Inspection            3/16/Vs    0900                N/A      3/16/78    1440      5 Hours 40 Minutes D Service Water Pump      Breaker Inspection            3/16/78    1445                N/A      3/16/78    1530      45 Minutes B Service Water Pump      Breaker Inspection            3/14/78    1245                N/A      3/14/Vs    1525      2 Hours 40 Mirutes C Service Water Pump      Breaker Inspection            3/14/78    1515                N/A      3/14/78    1603      48 Mirutes C Service Water Pump      Clean Intake Screen          5/26/78    C845                N/A      5/26/78    1250      4 Hours 5 Minutes A Service Water Pump      Clean Intake Screen          5/26/78    0845                N/A      5/26/vs              4 Hours 5 Minxtes B Diesel Generator        Inspection                    3/27/VS    0400      C.S.D. N/A      3/31/78    1656      4 Days 12 Hours 56 Mimtes C. Service Water Pump      Work cn expansion  Joint      5/3/78    1030                N/A      5/4/78    1010      23 Hours 40 Minutes Valve 860 B Dischara: from Valve would not stroke closed 6/29/78    1230                24 Hrs. 6/29/78    1 245      15  Minutes Containment Spray Pump A Service Water Pump      Inspection 4 lubrication      6/7/78    1120                N/A      6/7/78    1448      '3  Hours 28 Minutes Sheet 4 of 12
 
  / J p
 
TABLE  IZ.K.3.17 (Cont'd.)
PLANT      T.S.                           TIME DATE        TIME  OPFRATI?6    TIME    DATE        TIME    OUP OF EQHPMFNT                                        INOPPIABLE INOPERABIR    MODE  ALMWANCE  OPPRABLE    OPERABLE  SERVICE D  Service Water  Pump    Inspection  8c Lubrication    . 6/7/78    1525                N/A      6/7/78      1447      1 Hour 22 Minutes B  Service Water  Pump    Hold  for Maintenance            6/7/7 8    0650                N/A       6/V/Ve                5 Hours 30 Mirntes C  Service Water  Pump    Hold  for l1aintenance          6/v/vs    1100                N/A      6/7/78      1120      20 Mitutes A  Service Water  Pump    To change expansion    ]oint    5/2/78                          N/A      5/2/78      1700 Recirc Pans        Replace O.B. fan bearing        5/10/78              H.S.D.                       .
B Cont                                                                0600                N/A      5/11/78    1400      52 Hours B  Diesel Bus  16 Breaker  Breaker D.C. Control            8/16/78    0700      0        168 Hrs. 8/16/78    1030      5 Hours Malfunction                                                                                      50 Minutes 1D  Containment Recirc Pan Cable Inspection                9/8/78    1430                144  Hrs. 9/8/78      1524      54 Minutes A  Containment Recirc Fan  To  install splicing  sleeves  9/18/78    0820                144  Hrs. 9/18/78    1 f50      5 Hours 10 Mimtes 1A RHR HX  Outlet  HCVA25 Bent Controller Arm              8/51/78    1100                12  Hrs. 8/51/78    1400      5 Hours MOV  852A (RIB)            84-209 (Splices)                9/20/78    0851                12 Hrs. 9/20/Ve    1500      6 Hours 9 Minutes MOV  852B (RHR)            H4-209  (Splices)                9/19/78    0915                12  Hrs. 9/19/78    1515      6 Hours C  Containment Recirc Pan  splicing leads                  9/27/78    1145                144  Hrs. 9/2l/78    1647      5 Hours 2 Mimtes D  Service Water  Pump    replace bearing                  10/16/78  0915                N/A      10/16/78    1430      5 Hours 15 Minutes Sheet 5 of 12
 
k TABLE XX.K.3.17 (Cont'1.)
PLANT      T.S.                          TIME DATE      TIME    OPHQTINQ      TIME    DATE      TIHE      OUI OF S@IPMBiT                                      INOPHUSIE INOPERABLE    MODE  AIIDWANCE  OPHQBLE    OPERABIB  SERVICE B  Service Water  Pump      Motor  vibration            12/15/78  0845                N/A      12/15/78 1641        7 Hours 56 Minutes 8 Containment Recirc  Pump  needs  splices              9/28/V8  OVOO                144  Hrs. 9/28/78  'I 332      6 Hours 32 Mimtes Turbine Driven  AFWP        Inspection check for  oil  4/2/78    0700                N/A      11/2/78  1410        7 Hours leaks                                                                                    10 Minutes D  Containment Recirc Fans  splices                    9/22/78  0700                144  Hra. 9/Zl/78  1140        124 Houn3 40 Hi>utes A  Containment Recirc Fans  splicing install sleeves    9/26/78  0600                168 Hrs. 9/26/78  1215        6 Hours 15 Minutes 1C  SI Pump (Bus 14)        Start Failure              1/3/V9                        24 Hra. 1/3/79  1255        1 Hour 58 Mimtes 1A  Diesel Generator        Jjube Oil Cooler Hi OP **"* 1/8/79    0905                7 Days    1/8/79  1230        3 Hours 25 Minutes HOV  851B (R1E)              would not re-open          2/6/79              Coastdawn 12  Hra. 2/6/79    1715      1  Hour 15  Mimtes A  Diesel Generator          PT-12.1                    2/6/79    0700                7 Days    2/6/79  0935        2 Hours 35 Minutes overpressure protection      Maintenance on valve  PCV  V/1V/V9  0700      C.S.D. 8 Hrs. 7/17/79  1455      7 Hours system                      431C                                                                                      55 Hirutes B  Service Water  Pump      Inspect Motor Bearings      6/6/79    1015                N/A      6/11/79  1110      5 Days 55 Minutes
*+** OP      Oil    Pressure Sheet 6 of 12
 
rI J TABLE  XX.K.3.17 (Cont'd.)
KANT      T.S.
DATE        TIME    OPFRATIt6    TIME    DATE        TIME INOPERABIR  INOPHtABIS    MODE  ALMWANCE  OPZRABIR  OP BRAES overpressure protection                                                              8 Hrs.            .
PORV                          MOV  5I5 & 5t6 closed      7/18/79    0710        C.S.D.            7/18/79    1314      6 ttours sys 430  4 431C                                                                                                          4 Minutes Overpressure Protection Sys. Mov 516 closed    slight    7/18/79    1413      C.S.D. 7 Days  7/18/79    1540      1  Hour PCV 430                        leakage                                                                                  27  Mimtes B  Service Water  Pump        Change  Oil                7/26/79    0830      C.S.D. N/A      7/26/79    1320      4 Hours 50 Minutes 1C  Service Water  Pump        Change  Oil                7/25/79    08>>        C.S.D. N/A      7/25/79    1345      5 Hours 32 Mimtes 1D  Service Water  Pump        Change  Oil                7/24/79    0330      C.S.D.            7/25/79    08I3      28 Hours 43 Minutes Cont Spray Pump Dischargs      did not  come off seat on 4/24/79    1048                N/A      4/24/79    l05'3    5 Minutes Valve 860C                    first try A  Service Water  Pump                                    6/18/79    0630                  N/A      7/12/79    1312      26 Days 6 Hours 42 Minutes Turbine Driven Aux. PW Pump Steam Admission Valve 3505 8/2/79      1915      H.S.D- to N/A      8/3/79    2050      1  Day Motor Inoperative                                C.S.D.                                  1  Hour 35 Mimtes Turbine Driven Aux. Peed.      MOV  3505  did not open    8/4/79      1300                N/A      8/Zl/79    1450      23 Days Pump                          properly                                                                                  1 Hour 50 Mirutes 1A Component  Cooling Water  svitch in Pull-Stop for    9/7/79      1110                24 Hours 9/7/79    1125      13  Mimtes Pump                          performance of CP-617.0 Sheet 7 of 12;
 
f j
 
TABLE  II.K.3.17 (Cont'1.)
KANT      T.S.                          TIME DATE        TINE    OPI3ATING    TIME      DATF,    TIME    OR    OP REASON  INOPHQBIB    INOPERABIR  INOPHQBIR    NODE  AIZOWANCE  OPERABIR  OPERABIR  SERVICE B  Diesel Generator        Diesel to breaker to Bus 16 9/13/79      0555                7 Days    9/13/79  0930      3 Hours wouldn't close                                                                              35 Minutes 1A 11otor Driven Aux. Peel  Pips supports removed      8/29/79      1100                N/A      9/4/79    1530      6 Days Pump                                                                                                                    4 Hours 30 Minutes Turbine Driven Aux. Peed    Pump will not operate under 9/10/79      1130                7 Days    9/14/79  1450      4 Days Pump                        steady state conditions                                                                    3 Bours 20 Minutes 1B Emergency  Diesel        Naintainance (Clean  oil    9/24/79      0730      0        7 Days    9/29/79  1400      5 Ihgrs Generator                  cooler)                                                                                    6 Hours 30 Minutes "D" Standby  APP            Ioose Anchor Bolts          9/9/79      1520                7 Days    9/20/79  1400      22 Hours 40 Mirutes B Diesel Generator          clean  inlet cooler        10/16/79    2020                7 Days    10/16/79  2350      3 Hours 30 Minutes Steam  Driven A.P.P.        Hain'tenance                10/17/79    1120                7 Days    10/18/79  1520      K Hours Power Supply  to V-3996    Rewiring                    11/5/79      0840                7 Days    11/15/79  1120      2 Hours Turbine Driven  1%lP                                                                                                    40 Hirutes 1B Aux. Peed. Pump        PT  Calibration            11/16/79    1015                7 Dsys    11/16/79  1200      1 Hour 45 Hinutes 1A  Aux. Feed Pump          CP-2001                    11/16/79    1352                7 Days    11/16/79  1600      2 Hours 8 Mitutes "C" Containment Recirc. Fan Iew Flow Alarm              11/1'7/79    2230                7 Days    11/18/79  1050      12 Hours 20 Minutes Sheet 8 of 12
 
l>>
TABLE  II.K.3.17 (Cont'd.)
PLANT      T.S.                            TIHB DATE        TINE  OPERATING    TIME      DATE      TIME      IJP OP IQlIPMENT                REASON INOPFRABIB        INOPHlABIB INOPHlABIR    HODB  ALIDWANCB  OPERABLB  OPHlABIB  SERVICE Steam Driven Aux. Peed. Pump Field  PT-16                  11/19/79    1315                        11/19/79  1340      25  Hirutes Steam Driven Aux. Peed. Pump Closed governer valve    in  12/2/79      1145                        12/3/79  0400      16 Hours order to isolate Steam                                                                        15 Minutes Blowdown (BD) Tank N2 Accumulator for PCV-430  Inx N2 Pressure  because  of 12/9/79    '200      C.S.D. 7 Days    12/10/79  1248      24 Hours (V801A Pressure) PROV        V-8600A repair                                                                              48 Hinutes Boric Acid Storage Tanks    B.A. ppm below specs.        12/17/79    1340.                        12/19/79  1315      47 Hours
                                                                                                                          '35  Mirutes "B" Service Water Pump      Noise  in motor                >>/n/79      0830                N/A      1/15/80  1010      49 Days 1 Hour 40 Hirrrtes "A" Diesel Generator        Would not accept more than    1/18/80    0710                          1/18/80  1250      5 1kers 1KO kw                                                                                      40 Hinutes "1D" Service Water Pump      Hold  for pump  repacking      1/22/80    0610                N/A      1/22/80  1455      8 Hours 45 Minrtes 1A RHR Pump                                                2/8/80      1030              24 1hurs  2/8/8O              2 Hours 1B RHR Pump                                                2/8/80      1231              24 Hours  2/8/80    1436      2 Hours 5 Minutes "1C" Standby Aux. Peed Pump  Change  Oil, install          2/19/80      1000                        2/20/80  1500 Thermo couples "D" Standby Aux. Feed  Pump  Change Oil, install            2/21/80    0830                          2/22/8)  1110      26 Hours The rmocouples                                                                                40 Minutes Sheet 9 of 12
 
4 J TABLE  II.K.3.17 (Contrd.)
PLANT      T.S.                                TIME DATE      TIMF. OP FRATING    TIMF,        DATE        TINFi    OUZ OF RFAHON INOPH1ABLFi        INOPERABLE INOPNABLFi    MODE  ALIOWANCE      OPERABLFi  OPERABM    SERVICE MIIPNENT "C" StandbJJ    Aux. Feed Pump  Change  Oil                    3/17/M    0820                              3/21/M      1100      98 Hours 40 Minutes MOV-73% CC      to RllR 11X      Clutch problem with            5/12/80    2210      H.S.D.                  5/12/80              1  Hour Limitorriue                                                                                        35 Mirutes "A" RllR  Prrmp                  Leaking Heal                    5/17/80              C.S.D. N/A          5/19/80              53 Hours 5 Minutes "1B" Boric Acid    Pump        Replacement  of  PT-110        5/19/80    1150      C.S.D. N/A          5/19/M    2130      9 Hours (N-12.1)                                                                                            40 Mirutes "1A" Boric Acid    Pump        Replacement  of  PT-110        5/19/M      1150      C.S.D. N/A          5/19/80    2130      9 Hours (N-12.1)                                                                                            40 Minutes Driven        .in Motor              5/22/8O    1130      H.S.D.                  5/22/eo              2 Hours NOV-3505h h Turbine              Ground 20 Mirutes Aux. Feed Pump.
llOV-3504A Main Steam from      Grounded Motor                  5/22/eo    1015      H.S.D.                  5/22/eo    1350      3 lhurs 1B Stadia Generator to AFP 35 Minutes Concentration Tank A-      4/20/79    1450                N/A          4/20/V9    1735    2 Hours Boric Acid Storage Tank          Ixrw 45 Mirutes 12.9f Tank B-11.85 Go  to H.S.D 4/16/79    1440      1 Hour Boric AcM Storage Tank          Low  Concentration Tank  A8cB-  4/16'?9 11.%                                                                                                50 Minutes lligh Concentration Tank AM- 8/31/79                            Go To C.S.D  e/31/V9              4 Hours Boric Acid Storage Tanks                                                                                                              6 Mirutes 13.0f Level dropped to                5/22/eo    15'30      H.S.D      1 lhur      5/22/M      1615      45 Mirutes Accumulators                                        48r'ow Boric Acid Storage Tanks            Concentration (11.9) to    7/11/8O    1045                  Go To  H.S.D 7/1 1/M    1553      5 Hours (11.8r')                                                                                            8 Minutes Sheet 10 of 12
 
e TABLE  XI.K.3.17 (Cont'd.)
KANT      T.S.                              TIME DATE        TIME  OP HATING    TIME        DATB      TIME    OGP OP REASON  BSPHQBIB          INOPHQBIB INOPERABIE      5$ DE ALIOWANCE    OPERABIE  OP BRAKE  SERVICE Boric Acid Storage Tanks      High Concentration (14.4$ )    7/14/M      1020                Go to H.S.D 7/14/80    1530      5 Hours 10 Minutes "B" Boric Acid Storage        hw Concentration (11.8r')      7/14/80                          Go to  H.S.D 7/14/80            1 Hour Tank                                                                                                                            35 Mirutes "A" Service Water  Pump      Minor Maintenance              v/e/80      0820                N/A          7/8/M    1340      5 Hours 20 Minutes "D" Standby Aux, P.W. Pump N-11.14 Annual Insp. and        6/24/80                          7 Days      6/25/80  1015      33 Hours maintenance                                                                                      15 Nirutes "C" Standby Aux. P.W. Pump M-11.14 Annual Insp. and maintenance 6/25/M      11 10                v  ~        6/27/80  1427      51  Hours 17 Minutes "D" Service Water  Pump      Minor inspection                7/3/80                          N/A          v/3/M    1425      6 Hours 25  Hirutes "D" Service Water  Pump      M-11.10.1 Minor Inspection      7/30/M                          N/A          V/30/M    1029      5 Hours 59 Minutes 1B Emergency  Diesel          M  32 1 ~DB 25~D~~DB 75        9/10/80                          7 Days      9/10/80            4 Hours Generator                    Circuit Breaker Naint R OC                                                                        41  Hirutes Trip Device Test and/or Re-placement "A" Aux. P.W. Pump  (Notor  CP  2001.0  1A Motor driven    9/8/M                            7 Days      9/8/M    1440      5 Hours Driven)                      Aux. PW. Pump discharge  flrnr                                                                  45 Minutes loop  2001 "D" Service Water  Pump      M-11-10.1 Minor Inspect. of  8/1 9/80                        N/A          8/20/M    1315      13 Hours SWP Packing leak                                                                                  45 Minutes Sheet ll of 12
 
k~
TABLE  IX.K.3.17 (Cont'd.)
INOPERABLE  PLANT      T.S.                          TINE DATE      TINE    OPERATING    TINE      DATE      TINE      OUP OP INOPHQBIR              HODE  ALIlNANCE  OPERABLE  OPERABIB  SERVICE "1B" Emergency Diesel      H-32.1, DB-25, DB-50, DB-75  9/10/80                                  9/10/8)            4 Hours Generator                  circuit breeker maintenance                                                              41  Hinutes and OC Trip Device Test and for replacement A Bnergency Diesel Gener-  Operability Questioned      10/3/80                                  10/3/8)  1113      1  Day ator                        see LER 80-9                                                                              4 Hours 24 Hinutes Turbine Aux. Peedwater Pump SN-79-18 32,B                10/2/80              0                  10/3/80  1115      3 Hours 15  Himtes Spray System To APP Oil    SN-83-1833.6 Installation of 10/20/80                                10/25/80            4 Days resorvoir                  Aux./Int. Building Loop Pire                                                              21 Hours Supression Valves Sheet 12 of 12
 
f ~
APPENDIX A Design    Criteria Auxiliary Feed    Pump    Instrumentation Upgrade Ginna Station Rochester Gas and Electric Corporation 89 East Avenue Rochester, i4ew York 14649 ENR-1869 Revision    1 May 5, 1980 Prepared by:
0,                          sin(se DATE Responsi  le    ngineer Reviewed by:
l3 80 DATE Qua  ty  Assurance Engineer, Design Approved by:      0I/ I                                            DATE Manager, Mechanical Ehgineering Page 42 92
 
I lF
 
~ ~
Revision Status Sheet Latest                  Latest                Lati.st Pape            Rev. Page              Rev. Page            Rev.
Criteria                            Revision sign.
5/5/80 EWR      1869            Page    ii 42 91
 
~ ~
Desi    Criteria 1.0      Summar  Descri tion of the Desi Summary 1.1.1    The purpose of this modification is to upgrade the flow and pressure instrumentation associated with the motor driven and turbine driven auxiliary feedwater pumps at Ginna Station. This modification involves the replace-ment of the following primary instrumentation:          PT-2029, FT-2001, FT-2009, PT-2019,    PT-2030,  FT-2002,  FT-2006, FT-2007. This instrumentation presently used does not, have the desired accuracy and repeatability.
1.1.2    In addition, the existing flow transmitters are utilized to operate valves 4007, 3996 and 4008. Each of these flow transmitters have a built in switch which is actuated via a mechanical linkage. This mechanical linkage has enough inertia such that accurate and repeatable determination of switch actuation point is not possible. As part of this modification, these switches will be replaced with electronic bistables, which electronically compare flow transmitter output with setpoint and change 'state when the setpoint is reached.
To  satisfy the requirements of reference 2.5 below, additional channels of flow instrumentation will be added to each auxiliary feedwater pump. This additional channel will be of the opposite channel designation from that of the primary channel. The primary channel for each feedwater pump will control that particular pump's discharge valve, whereas the secondary channel merely indicates flow. The secondary channel as shown on the above referenced consists of that instrumentation without tag numbers.
1.2      Functions (Reference  RGSE  drawing 33013-697, t
Rev. 0) 1.2.1    Poop FT-2001 This loop measures the flow in auxiliary feedwater line to the "A" steam generator, The differential pressure measured by FT-2001 is converted to a flow signal by .
FM-2001. Indication of flow on the main control board is provided by FI-2021A. FM-2001A acts as an isolation amplifier to isolate the class IE system from FI-2021B which is not safety related. Electronic bistable FY-2001 functions to position valve 4007 such that the flow matches FY-2001's setpoint. FQ-2001 supplies dc power to this loop.
Design Criteria                                          Revision EWR    1869                                1            Date Page 42 90
 
T.
  'r
 
1.2.2      Loop FT-2009 This loop measures the    total discharge flow of the steam driven  auxiliary feedwater pump. FT-2009 measures the differential pressure across its flow element and FM-2005 converts this signal to a flow signal.        FY-2005 is an electronic bistable which opens recirc valve CV-27 to maintain minimum flow through the pump, during low flow operations. FM-2009A is an isolation amplifier which isolates local flow indicator FI-2009 from the Class IE safety system. FQ-2009 supplies this loop with  dc power.
1.2.3      loop FT-2002 This loop functions exactly the same as the FT-2001 loop with the only difference that this loop monitors the flow of auxiliary feedwater to the B steam generator.
1.2.4      Loops FT-2006 and FT-2007 Both these loops function    in the same manner; each loop measures  the flow to its respective steam generator from the turbine driven auxiliary feedwater pump and indicates this flow on the main control board. An isolation amplifier for each loop isolates the class IE portion from the non safety local indication located near the turbine driven pump. Each loop also contains a dc power supply.
1.2.5      Loops PT-2029, PT-2019 and PT-2030 Each  of these loops are similar and merely monitor the discharge pressure of their respective auxiliary feedwater pump. Indication of discharge pressure for each pump is on the main control board.
1.2.6      For loops FT-2001, FT-2009 and FT-2002 a secondary redundant channel of flow instrumentation is provided.
Each channel consists of a flow transmitter (FT),
sguare root converter (FM), power supply (FQ) and control  room flow indicator (FI)..
1.3        Performance Reguirements The sensing elements    (the flow and pressure trans-mitters) shall  be capable  of sensing and producing an output over the range of design values for all possible operating and accident conditions for the particular system in which they are installed.
Design
    ~
Criteria
          ~
Revision EWR    1869                                    2          Dare    5/5/80 Page 42 90
 
C J ~ ~
ET
 
Control As  outlined in Section 1.1 above, this modification will replace  the integral flow switches in the flow transmitters with electronic bistables. This modifica-tion shall in no way affect the control of these valves.
1.5      Modes of Operation 1.5.1    The class IE portion of this modification shall be designed to be operational: 1) during all modes of normal plant operation, 2) after a safe shutdown earth-quake, and 3) after a steam/feedwater line crack break event in the Intermediate Building.
1.5.2    The non Class IE portion of this modification shall be designed for operations during startup, hot shutdown, and power operations.
2.0      Re ferenced  Documents 2.1      Rochester Gas & Electric Corporation, Ginna Station Quality Assurance Manual, Appendix A, "Quality and Safety Related Listing and Diagrams", October 1, 1976.
2.2      USNRC'egulatory Guides.
2.2.1    No. 1.29,  "Seismic Design Classification", Rev. 2, February, 1976.
2.2.2    No. 1.100,  "Seismic Qualification of Electric Equipment.
for Nuclear  Power Plants", Rev. 1, August, 1977.
2.3      American National Standards Institute. ANSI N45.2.2  1972, "Packaging, Shipping, Receiving, Storage .and Handling of Items for Nuclear Power Plants".
2.4        Institute of Electrical and Electronic Engineers Standards.
2.4.1      IEEE-323 - 1974, "Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations".
2.4.2      IEEE-344 - 1975, "Recommended Practices for Seismic Qualification of Class IE Equipment for Nuclear Power Generating Stations".
2.4.3      IEEE-323-1971,  "Standard  for Qualifying  Class 1E Equipment for Nuclear  Power Generating    Stations" 2.4.4      IEEE-344-1971,  "Recommended    Practices for Seismic Qualification of Class    1E  Equipment  for Nuclear    Power Generating Stations".
Design Criteria                                            Revision EWR    1869                            Page 3
42.90
 
C' .~
r ~
 
2.4.5
~  ~    IEEE-383-1975,  "IEEE Standard  for Type Test of Class IE Electric Cables, Field Splices    and Connections for Nuclear Power Generating Stations".
2.4.6    IEEE-384-1974, "Trial Use tandard Criteria      for Separation for Class IE Equipment and Circuits".
2.4.7    IEEE-336-1977, "Installation, Inspection and Testing Requirements for Instrumentation and Electric Equipment During Construction of Nuclear Power Generating Stations".
2.5      Letter date  November 19, 1979  to D. Ziemann, NRR from L.D. White, Jr. section 2.1.7.b.
3.0      Seismic Cate or 3.1      Based on USNRC Regulatory Guide 1.29 and Appendix A of the Ginna FSAR the following instrumentation is Seismic Category 1: FT-2001, FM-2001, FM-2001A, FI-2021A, FQ-2001, FY-2001, FT-2002, FM-2002, FM<<2002A, FI-2022A, FQ-2002, FY-2002, FT-2006, FM-2006, FM-2006A, FI-2023A FQ-2006, FT-2007, FM-2007, FM-2007A, FI-2024A, FQ-2007I PT-2029, PI-2189A, PQ-2029, PT-2019, PI-2048A, PQ-2019, PT-2030, PI-2190A, and PQ-2030, and all instrumentation used as part of the seondary channel flow indication.
Based on USNRC Regulatory Guide 1.29 and Appendix A        of the Ginna FSAR the following instrumentation is not Seismic Category 1:    FI-2021B, FI-2023B, FI-2024B, .and FI-2022B.
4.0        ualit  Grou Not Applicable.
5.0      Code Class Not Applicable.
6.0      Codes,  Standards  and Re  ulator Re irements 6.1      The non safety related portion of this modification shall be installed as per the requirements of the National Electrical Code, 1978.
6.2      USNRC Regulatory Guide 1.100 defines additional require-ments and changes to IEEE Standard 344-1975, "IEEE Recommended Practices for Seismic Qualification of Class IE Equipment. for Nuclear Power Generating Stations". Implementation of this standard for procurement of Class IE instrumentation will include the requirements of this Regulatory Guide.
Design Criteria                                          Revision        1 EWR    1869                                4            Date    5 5 80 Page 42 90
 
p 6.3        IEEE-336-1977    shall be used as a guideline        during the installation, inspection    and testing phase      of this modification.
7.0        Desi    Conditions 7.1        Flow and Pressure    Transmitters 7.1.2      Fluid Pressure            1550    psig 7.1.3      Fluid Temperature        40  to 120'F.
7.1.4      Current,                  10  to 50 mAdc 7.2        Electric Instrumentation Current,                  10  to  50 mAdc 7.3        Instrumentation Power Supplies 7.3.1      Input Voltage            118 volts 60hz            1P 7.3.2      Output Current            10 to 50 mAdc 7.3.3      Maximum Load              660 ohms Load Conditions The  instrumentation listed in Section 3.1 shall be designed to withstand the effects of a safe shutdown earthquake (0.2g base ground motion) without a loss of function.
9.0        Environmental Conditions 9.1        Intermediate Building              Normal                    Accident.
9.1.1      Temperature                        40  to  104 F            215oF 9.1.2      Pressure                          atm.                      1.0 psig 9.1.3      Relative Humidity                  0  to  100%              100%
9.1.4      Radiation                        (5R/hr    gamma  accumulative) 9.2        Control Room 9.2.1      Temperature                        65  to  85 F.            40 to 120'F.
9.2.2      Pressure                          atm.                      atm.
9.2.3      Humidity                          15  to  95%              15 to  95%
Design
    ~
Criteria
          ~    ~
Revision EWR    1869 Page 5              Date    5/5/80 42.90
 
C
              / ~ ~
C
  /
    ~  " 5 4
 
9.2.4    Radiation                            negligible              negligible 9.3      Relay    Room 9.3.1    Temperature                      40  to  104 F.          40  to 104 F.
9.3.2    Pressure                          atm.                    atm.
9.3.3    Humidity                          15  to 95%              15 to 95%
9.3.4    Radiation                        negligible              negligible 9.4      New pressure and flow transmitters required by this modification shall be environmentally qualified to IEEE-323-1971 and IEEE-344-1971.
9.5      New  process analog computational equipment shall be environmentally qualified in accordance with IEEE-323-1974 and IEEE-344-1975.
10.0      Interface Re irements 10.1      Existing cable trays utilized as a routing path for this modification shall be reviewed to ensure that tray capacity is not exceeded.
10.2      Mounting of new electronic instrumentation in existing racks in the Relay Room shall not degrade the capability of those racks to withstand the effects of the safe shutdown earthquake.
11.0      Material    Re    irements None.
12.0      Mechanical      Re    irements Flow and pressure        transmitters shall be designed for installation at the location of the existing transmitters, and  utilizing existing tubing        connections.
13.0      Structural      Re  uirements None.
14.0      H  draulic    Re  uirements None.
15.0      Chemistr      Re    irements None.  ~
Design
    ~
Criteria
              ~
Revision EWR    1869                              Page 6
42 90
 
A it
 
l6.0      Electrical    Re uirements 16.1      Instrument cable    utilized in this modification shall meet the  following requirements:
16.1.1    Size  16 AWG.
16.1.2    Voltage rating      600 volts.
16.1.3    Insulation shall be qualified as        pe'r IEEE-383-1975.
16.2      Instrument power shall be from a        120VAC, 60ha,      lp Class 1E power  supply as follows.
16.2.1    Primary instrumentation power:          from same instrument bus as motor (turbine) controls 16.2.2    Secondary flow    indication:      from opposite instrument.
bus designated by 16.2.1 above 17.0      0  erational Re irements This modification shall not. impose any additional operational requirements under all modes of plant operation as this modification will not change or introduce any additional equipment operations or control.
18.0      Instrumentation and Control Re uirements The instruments utilized in this modification shall have the same basic span, range, and indication as the existing instrumentation.
19.0      Access and Administrative Control Re irements None.
20.0      Redundanc    ,  Diversit  and Se    aration  Re uirements Separation between separation groups 1 and 2 shall be maintained as per IEEE-384-1974 whenever existing plant design permits. Where separation between groups cannot meet this criteria, separation shall be maintained as described in Section 8.2.2 of the Ginna FSAR.
21.0      Failure Effects Re uirements 21.1      This modification shall be designed such that a failure of a separation group 1 component shall not affect the operability of the separation group 2 system.
Design Criteria                                                Revision EWR    1869                                    7              Da)e    5 5 80 Page i2.90
 
P'I 21.2      The  instrumentation designated in this modification as being in either separation group 1 or 2 shall be designed to withstand the effects of a safe shutdown earthquake with no degradation in performance or accuracy.
21.3      The pressure and flow transmitters installed in the Intermediate Building shall be designed to withstand the environmental effects of a postulated pipe crack with no loss in performance and accuracy.
22.0      Test Re irements 22.1      Tests shall be performed prior to placing this modifi-cation inservice, to ensure that, design requirements have been met.
22.2      Seismic qualification testing of safety related instru-mentation shall conform to the requirements of IEEE-323-1974 and IEEE-344-1975.
22.3      Environmental qualification testing of instrumentation shall conform to the requirements of IEEE-323-1974, or IEEE-323-1971 as described in section 9.4.
22.4      Flame  testing of cable utilized in this modification shall conform to the requirements of IEEE-383-1974.
23.0      Accessibilit , Maintenance, Re air and Inservice Ins ection None.
24.0      Personnel  Re    irements None.
25.0      Trans  ortabilit      Re  uirements None.
26.0      Fire Protection      Re  uirements Cable used in this      modification shall meet the flame spread requirements      of  IEEE383  1974.
27.0      Handlin    Re  uirements Electronic instrumentation shall be shipped and stored in accordance with Level B requirements of ANSI N45.2.2.
Design Criteria                                          Revision EWR    1869                                    8        Date    5 5 80 Page 42 90
 
C
    ~'
aQ l'
~
 
28.0      Public Safet    Re uirements None.
29.0      ~1''1't.
Materials and equipment utilized in this modification-shall  be chosen such  that these design requirements are met.
30.0      Personnel Safet. Re  uirements None.
31.0      Uni ue  Re uirements None.
Design Criteria                                        Revision EWR    1869 Page 9          Date    5/5/80 42 90
 
U 1
 
Cr i
Pq, STCAII                                                                                    STCAM I IIO
                                                                                                                                                                                  ~  Q)
OCNOTC\
S<<11AAT~ ~
                                                                                                                                                                                                    ~INlO I
CCNCNATa A                                                                              ECTO AAIaY g
m.stsAAATTa AIL%NOTS    ~RQgll Otk TO SC NSAOSD a  foe.
S
                                                                                                                                                                                                    ~M SESEI
                                                                                                                                                                                    ~ CettCO SAON            A'
                                                                                                                                                                                    <<NNaL    t SN~XN f  SD AT%                                                                                                                                                    ~ CN. 104 INSOC    CONTANNltNT
                                                                                                                          ~ 004
                                                      ~ SIT 4ESI 4SAS AS SS'SS
  'A'MAIN SCCOWATCN                                                                                                                                O'AII st tDNATCN S~                              ~ SSS I ~ NCS tO~IN jg                                                                                              lTLr S Q}-+,
I I
SJ.j'I C
I 400T
                                                            @QNN@lr 4 m
                                                                                  ''                  ET    ~ Qn ASST S~      S                    ~ S4t IO& SM Itvtt 4000D S                                                          I AS ONOCN IOLTACC
            -'CMDI IO TO
                                                              <<ESCCNSAT
                                                                                                          .~+ '8~        SSCTC ISO NSATt                                            STOAACC                                                            S.0.
ST<<NACA              4I04                                'tAME        r.a      Cost ANNO NANR TAME sa                                                                                                                                                Q
                                                                                                                                                                                                      ~ LN 4 NOTON DNIICN AOS. S. TA SONS                                              AIDE  Se.
N SONS VNOTa ONANSI AEAC S.W. SONS
                                                                                                                                                                                ~  ENIEA STA
 
. J3'gf~~W
            'I t"I 4}}

Latest revision as of 11:31, 4 February 2020

TMI Action Plan (NUREG-0737) Documentation.
ML17250A847
Person / Time
Site: Ginna Constellation icon.png
Issue date: 12/30/1980
From:
ROCHESTER GAS & ELECTRIC CORP.
To:
Shared Package
ML17250A846 List:
References
RTR-NUREG-0737, RTR-NUREG-737 NUDOCS 8101060468
Download: ML17250A847 (85)


Text

ATTACHMENT A Rochester Gas and Electric Corporation TMI Action Plan (NUREG 0737) Documentation KI-:IILNIIII7MI',IlHfIK MW December 30, 1980

Ci k,

1y,,

1.A.1.1

~ ~ Shift Technical Advisor A descrxptxon of our original STA program was outlined in a letter, dated October 17, 1979, from L. D. White, Jr. to Mr. Dennis Ziemann, with additional information .

provided in a letter dated December 28, 1979, from Mr. White to Mr. Ziemann. In response to the NRC's letter dated July 7, 1980, from Mr. Dennis Crutchfield we provided additional clarification of our original STA program and a description of our new STA program in a letter dated August 5, 1980 from L. D. White, Jr. to Mr. Crutchfield.

Our original STA program utilized licensed operators and included their participation in college-level engineering courses to provide them eventually with an engineering degree. At the request of the NRC RG&E modified the original program and assigned either degreed engineers or SRO's as STA, and assigned degreed engineers to perform the Operational Assessment function.

We began staffing the Operational Assessment, Group in the summer of 1980.

Our STA training and requalification program is described by a Ginna Station Administrative Procedure, and consists of various phases as described below.

Present Level of Trainin Initial training to meet the requirements listed in Harold Denton's letter dated October 30, 1979 to All Operating Nuclear Power Plants has been completed.

This training included a four week classroom training and two day simulator training program presented by our NSSS supplier as listed below.

Title:

Chemistry/Basic Theory, Objectives and Control Objective: 1. Discuss the concerns that require chemistry control

2. Discuss the RCS/Steamside Chemistry limitations and basis
3. Discuss the techniques for main-taining chemistry limits
4. Discuss typical RCS/Steamside chemistry problems and the associated corrective actions
5. Discuss the effects of chemistry upsets on plant operations
6. Discuss chemistry indications for various accidents

6 2

Topic Summary:

1. Functional Requirements
2. Chemistry Control Areas
3. Specifications, Limits, and Basis
4. Mechanisms for Control
5. Problems in Control
6. Chemistry Trouble Shooting

Title:

Metalurgy/Basic Fracture Mechanics Objective: Review theory of the plant limitations and operational considerations based on NSSS metalurgical restrictions.

Topic Summary:

1. Introduction
2. Fracture Criteria
3. Stress Analysis of the PWR Vessel
4. Crack Tip Stress Intensity Factor Analysis Methods of Determining Stress Intensity Factor K
5. Material Properties
6. Non-Destructive Examination
7. Codes and Standards
8. Fracture Mechanics Applications in the NSSS
9. Review of Past and Current R&D
10. Plant Specific Limits Review

Title:

Thermodynamics, Heat Transfer, and Fluid Flow and their PWR Applications Objective: Give working knowledge of the above topics at the operation level.

Topic Summary:

Basic properties of fluids and matter (energy relationships)

2. Fluid Dynamics (addresses natural circulation)

Thermodynamics and Heat Transfer (boiling) includes monitoring of temperatures, flow, pressure parameters Normal Plant Operations (as per heat generation) peaking factors as a function of primary and secondary system, management of normal reactor heat, and decay heat transfer limits (boil off is discussed)

L lt 1*,, ~

kO

3

5. Limiting phenomena
a. burnout DNB
b. flow instability
c. sonic velocity - choked flow
d. pump runout
e. thermal transients - metal fatigue
f. fouling -
g. flashing heat stored in metal
h. blowdown to containment
i. fuel temperature DNB j.

k.

steam binding Zirc-water reaction

6. Accident Treatment - heat sinks and pressure/temperature limits
a. loss of RCP
b. small LOCA
c. decay heat

Title:

Nuclear Characteristics/Review Objective: Comprehensive review of the reactivity effects, magnitudes, and direction of each core reactivity coefficient and the kinetic effects of each for a typical PWR cycle, changes from cold to hot, and rod bank position.

Topic Summary:

1. Subcritical Multiplication
2. Six factor formula
3. Coefficients
4. Defects
5. Inhour equations
6. Practical Application - (measurements)
a. Moderator Coefficient
b. Power Coefficient
c. Rod Worth
7. Neutron Mechanics

Title:

Nuclear Peaking Factors Objective: Comprehensive review of F and F>H including the basis, limitations, and measurements of each.

Topic Summary:

Establish limitations of each

a. Fuel
b. Clad (includes Zr/H20 reaction)
c. Flow
2. Measurements of F and F><
3. Protection availa8le DE limitations
5. Technical Specifications

6

Title:

NSSS Instrumentation; Basis, Limitations and Alternatives Objective: Define NSSS instrumentation basis, limitations and alternate sources of information.

Topic Summary:

1. Requirements and Basis for Parameter Monitoring
2. Instrumentation Limitations
3. Alternate Sources of Information
4. Believability of Information
5. Behavior During Abnormal Conditions
6. Adverse Environmental Effects

Title:

NSSS Operating Experience and System Assessment Objective: Enhance the operator's ability to establish system priorities using control room instrumentation.

Topic Summary:

1. Establish conceptual approach to operations - (normal, abnormal, and emergency)
2. Selected Industry LER's
3. Systems problems are presented;.

class must choose and set the priorities and course of action.

Title:

Normal Plant Transient Assessment Objective: Enhance the overall knowledge level of normal plant transients, including the instrumentation required, the magnitude and direction of each.

Topic Summary:

Develop a Basic Operating Plant

a. Instrumentation Required
b. Protection Required
c. Heat Balance
2. Introduction of one standard transient assessment graph (Uses, control room instrumentation ranges)
3. Step Load Changes Major Load Rejection Review of T Tref Mismatch/Re60ns

L k

P 4

5. Main Generator Trip Calculation of the Resultant avg 9.

Title:

Instrument Failure Assessment Objective: For any selected instrument failure, predict the magnitude and direction of each major NSSS parameter and graph.

the function assuming no operator action.

Topic Summary:

1. Class estimates response (no operator action)
2. The following failures were selected for maximum impact:
a. T Fails High at BOL
b. NSgPower Range Fails High at BOL
3. Turbine Impulse Channel Fails Low
4. Pressurizer Pressure Control Channel Fails High
5. Pressurizer Level Control Channel Fails High/Low Each calculation is concluded when either the plant has tripped or a stable reactivity balance exists.

Note: As student experience/training and time'ermit all inputs to the following major control 'systems and their failures will be discussed;

1. Reactor Make-up Control
2. Steam Generator Water Level Control
3. Electro-Hydraulic Control System 10.

Title:

Accident/Transient Assessment Objective: Enhance the ability for prompt recognition of major accident, transients and establish the basis for the appropriate emergency procedures.

Topic Summary:

Rod Withdrawal Accidents (FSAR)

a. Review Protection (DNBR Vs. pcm/sec.)
2. Main Generator Trips (FSAR)
3. Natural Circulation, Detailed
a. S/G b, T Calculations
b. Power to Flow Ratio
c. Decay Heat,
d. Subcooling
4. Basis for Stopping RCP's on Low Pressure
a. Mass Inventory
b. Steam Generator Pressure (Bounding Limit)
5. S/G Tube Rupture
a. Impact of Closing the MSIV
b. Methods of Depressurizing
c. Monitoring Subcooling
d. Conditions for Stopping SI
e. Conditions Requiring Closing of PORV
6. One PORV Open on Pressurizer
a. Details of the Level Response
7. Small Break Transient Behavior Modes
a. < 3/8" to > 2"
b. Conditions for Stopping SI
8. Steam Break
a. FSAR and Generic Analysis
b. Calculate RCS Temp. for 1 S/G Blowdown
9. Main Feedline Break
a. Calculate RCS Temp. for 1 S/G Blowdown
b. Calculate Time for All S/G to Go Dry
10. Loss of All Feedwater
a. Calculate Time for All Steam Generators to Go Dry
b. Options Available to Cool Reactor. (Opening One PZR PORV)
11. Determination of Inadequate Core Cooling
12. Accident Diagnostics 11.

Title:

Simulator Training Objective: Observation of Actual Abnormal and Accident Conditions and the Identification of Each Topic Summary:

Westinghouse Nuclear Training Center Control Board Familiarization Demonstrations

1. Verification of:
a. Natural Circulation
b. Subcooling
c. Adequate Core Cooling

I I

ll V 4

2. Major Reactivity Transients
a. Load Rejection with Rods in Manual
b. ATWT c.. Continuous Control Rod Withdrawal from HZP
3. Instrument Failures
4. Small and Large LOCA's
5. S/G Secondary Breaks
6. Pressurizer PORV Open
7. One Spray Valve Open
8. Loss of All Feedwater
9. Loss of Rod Drive MG's Transient Assessment
1. Selected Instrument Failures
2. Selected Accidents
3. Selected Equipment. Failures
4. Multiple Failures A four week course in nuclear and reactor physics was presented for those engineers who did not have previous nuclear engineering education. This course, taught by Memphis State University, is part of an accredited college program, and included the following topics:

Atoms and Matter Light and Electromagnetic Waves Radioactivity and Particle Behavior Nuclear Reactions Fission Reactor Fundamentals Nuclear Fission of Uranium - 235 Neutrons, Reactions, and Moderator Effects Neutron Multiplication Factors Reactivity Reactor Kinetics The Subcritical Reactor On-the-job training, including continuing assignment on-shift as STA, has provided a basic familiarization in plant systems and operation.

Additional Trainin Expanded training for the calendar year 1981 will include:

Plant Design System Operation Transient Response Accident Analysis Simulator Training Procedure Review Technical Specifications Management Skills

Requalification training will commence January 1, 1982, and will continue on a two-year frequency (or until the STA program is phased out). This program will include:

Procedure Review Transient Response Accident Analysis On-shift assignment as STA or on-shift assignment as SRO Evaluations by the Technical Assistant for Operational Assessment Lon -Term STA Pro ram and Trainin Plans The long-term STA program will continue to utilize degreed individuals (with the supplemented education, experience, and training listed above), or individuals with an SRO license who have received the necessary technical education and training. We will replace degreed individuals with SRO-licensed individuals as the licensed individuals receive education'imilar to that outlined in RG&E's letter dated December 28, 1979 from L. D. White, Jr. to Mr. Dennis Ziemann.

The STA program will be phased out when the man-machine interface control room review has been completed and the shift supervisor and senior operator on a shift each meet the proposed future educational requirements of approximately 60 technical credit hours for SRO licensing.

STA Selection and uglification If replacement STA's are required, screening will be performed to ensure candidates meet the education, experience and training requirements of our Administrative Procedure for STA Training prior to their assignment as STA.

Comments on INPO Document and Com arison with RG&E's RG&E has reviewed INPO's document of April 30, 1980 concerning STA Qualifications, Education and Training.

We have concluded that these INPO goals for the STA are "standards of excellence" and represent an ultimate goal. However, lacking guidance from the NRC on minimum requirements for STA, RG&E has established minimum requirements for'TA, independent of INPO's "standard of excellence".

i' We are pleased to offer our comments on the above-mentioned INPO document. We fully endorse the comments and recommendations made by the Mid-Atlantic Nuclear Training Group (MANTG) in a letter, dated October 21, 1980, from MANTG (Young) to INPO (Thomas) and quoted below:

General It is the opinion of the members of the Mid-Atlantic Nuclear Training Group that the subject document's experience, education, and training requirements do not appear to be based upon the demands of the STA position.

As an example, the document includes a position description which lists twelve typical STA responsibilities. Of these, four pertain to evaluating plant conditions during transients or investigating the causes of such very little emphasis is placed on transient conditions transients'et, in the transient/ accident analysis and Emergency Procedures requirements of Section 6.7.

The MANTG recommends that all experience, education, and training requirements be based upon a detailed job/task analysis'hen derived in this manner, the standards will be able to relate to specific knowledge levels, requirements to the typical STA responsibilities. This approach seems especially prudent in light of the recent emphasis of job and task analysis by the Nuclear Regulatory Commission, American Nuclear Standards Institute, and the Institute of Nuclear Power Operations.

2. Pa e 10, Section 5.2 E erience
a. The first paragraph requires the STA to have a minimum of 18 months of nuclear power plant experience.

The MANTG recommends that this requirement be deleted.

It is our opinion that an effective training program will produce a competent STA, regardless of his previous experience.

It should be noted that INPO did not publish this requirement, even in draft form, until May of this year. With the NRC requiring fully trained STA's by January 1, 1981, it will be impossible to staff the STA position with personnel who meet both the require-ments of the NRC and INPO, unless they are drawn from the existing plant staff.

b. Paragraph three states that a maximum of three months of training may be applied toward the experience requirement. The MANTG recommends that both on-the-job training and plant specific systems or operations train-ing which is conducted by or for the facility at which the STA is qualifying, be equivalent to experience on a one-to-one basis with no maximum. The rationale for

l 10 this recommendation is that training at the plant provides the trainee the opportunity to trace systems and observe plant operations which the MANTG feels fulfills the intent of this section.

C. The MANTG recommends that the INPO include a provision in Section 5.2 which equates cold license simulator training to operating plant experience on a three to one basis, similar to the provision presently allowed for cold license operator candidates'a e ll Section 5.3 Absence from STA Duties MANTG recommends that personnel not actively performing STA functions but participating in the STA requalification program, be exempt from the requirements of this section.

Additionally, those persons not performing the function nor participating in the requalification program be required to complete only those portions of the requalification program which they have missed during their absence prior to assigning them for STA duty.

Pa e 13, Section 6.1.2 Colle e Level Fundamental Education

a. In the Electrical Sciences section, the MANTG recommends that Circuit Theory and Digital Electronics be deleted from the knowledge requirements. The MANTG does not believe that they are pertinent to the understanding of nuclear power plant response or control.
b. MANTG requests guidance on how to obtain this college level knowledge within the short time frame required by the Nuclear Regulatory Commission.

Pa e 15, Section 6.2 A lied Fundamentals-Plant

~Secific The MANTG requests guidance on how to determine what constitutes college level training for Plant Specific topics.

Pa e 17, Section 6.6 General 0 eratin Procedures MANTG recommends that all plant operating procedures which relate to an STA's function be included in this section rather than those as mentioned. These procedures should be identified in the STA task analysis recommended in paragraph 1.

1 I \ 1 C F

8. Pa e 18, Section 6.8 Simulator Trainin The first paragraph requires a trainee/ instructor ratio of not more than four to one. This would seem to require at least two instructors for every training session since it is anticipated that STA's will be trained along with the rest of their control room watch section. The MANTG recommends that a 4:1 ratio only apply when only STA's are being instructed in a given course.
b. The HANTG recommends that simulator emphasis include the discussion and demonstration of those actions which operators may take which would either mitigate or aggrevate a transient or accident condition.
9. Pa e 19, Section 6.9 Annual Re ualification Trainin MANTG recommends that a review of the theoretical material presented during STA qualification be included in the requalification program.

1.A.1.3

~ ~ ~ Shift ~

Manning BY letter dat ed December 15, 1980 from L. D. White, Jr.

to Mr. Dennis M. Crutchfield, USNRC, RG&E responded to shift staffing criteria and guidelines for scheduling overtime for licensed operators. The commitments pro-vided in that letter, and proposed alternatives to some of the Staff overtime guidelines, remain unchanged. We have revised administrative procedures to implement a similar'olicy to limit overtime work of people in addition to licensed operators who perform safety related work. Procedure A52.9 has been revised to in-clude limits on overtime worked by auxiliary operators in addition to SROs, ROs and Shift Technical Advisors.

Procedure A52.10 has been implemented to limit overtime worked by health physicist technicians, I&C technicians and key maintenance personnel.

Guidance for the Evaluation and Development of Procedures for Transients and Accidents The Westinghouse Owners Group will submit by January 1, 1981, a detailed description of our program to comply with the requirements of Item I.C.1. The program will identify previous Owners Group submittals to the NRC, which we believe will comprise the bulk of the response.

1 pl I

12 Additional effort required to obtain full compliance with this item (with proposed schedules for completion) will also be identified, as discussed with the NRC on November 12, 1980.

Design Review of Plant Shielding and Environmental Qualification of Equipment for Spaces/Systems Which May Be Used in Post-Accident Operations.

A discussion of our design review is contained in a letter dated December 28, 1979 from L. D. White, Jr. to Mr. Dennis Ziemann, USNRC. Additional information and schedule are contained in a letter dated December 15, 1980 from John E. Maier to Mr. Dennis M. Crutchfield, USNRC.

II.E.1.2 Auxiliary Feedwater System Automatic Initiation and Flow Indication Part 1: Auxiliary Feedwater System Automatic Initiation RG&E has previously responded to NRC requirements for auxiliary feedwater systems in letters dated November 28, 1979, December 14, 1979, December 19, 1979, March 28, 1980, May 22, 1980, May 28, 1980 (2 letters) and July 14, 1980. No changes to the requirements have been identified which require additional information.

Part 2: Auxiliary Feedwater System Flowrate Indication The Design Criteria and Flow Diagram for the modification of the Auxiliary Feedwater Flow Indication is provided in Appendix A. Some of the salient features of the design are:

Redundant flow indication is provided for each motor driven auxiliary feedwater pump (MDAFP) and the common discharge of the turbine driven auxiliary feed-water pump (TDAFP).

2. Each redundant channel of flow indication consists of a: 1) qualified transmitter, 2) transmitter power supply, 3) square root extractor, 4) output isolation amplifier, and 5) main control board analog indicator.
3. Indication is provided to the Operator by means of a dual movement vertical scale indicator. Each move-ment receives the analog signal from its respective channel of flow indication for a particular

A N

~

r

~ -"

13 auxiliary feedwater flow path. Hence, the Operator can quickly ascertain between channels.

if there is any discrepancy

4. Each channel of flow indication is powered from a separate battery-backed vital instrument bus. In addition, each flow channel's analog instrumentation is mounted in a fully qualified instrument rack.
5. Testability features have been provided in the design, including local flow indication near the auxiliary feedwater pump that will facilitate periodic loop calibration.
6. The Ginna Station Quality Assurance Program will be utilized in the design, procurement, installation and testing of this modification.
7. As mentioned in paragraph 3 above, continuous display of both channels of flow indication will be provided to the operator on the main control board.
8. The flow transmitters installed as a part of this modification are included in Rochester Gas and Electric's program of Environmental Qualification of Foxboro Transmitters being conducted by RG&E and a number of other utilities, and will be qualified to the requirements of NUREG-0737.

II.E.4.2 Containment Isolation Dependability The purge and vent system at, Ginna consists of four 48 inch isolation valves. The Staff's interim position on containment purging (now called Position 6) was im-plemented on these valves by our December 14, 1979 and May 29, 1980 letters. During a recent review of Position 6, it was postulated that two 6 inch valves on our con-tainment depressurization line may be interpreted as falling under Position 6 requirements. These valves are not used for containment purge and vent operations but are used periodically to equalize pressure between inside and outside containment.

Preliminary analysis supplied by the vendor of these valves indicates that the most severe flow condition loading will not stress the valves beyond their standard design limits. The analysis also demonstrates that the valves will close as fast or faster with flow than with-out flow., Therefore, no restrictions need be placed on valve position, but an interim restriction will be placed on the amount of time these valves are open until the final analysis is complete.

PP A valve qualification program for these 6 inch valves will be done in two phases:

To provide further assurance of valve operability following post-accident closure, a more detailed analysis will be performed.

The second phase will consist of seismic and environmental qualification of the entire valve and actuator assembly.

We will inform you of the results upon their completion.

The depressurization valves will only be used to equalize pressure between inside and outside containment, to prevent an unacceptable buildup of containment pressure during normal operation. Whenever containment depressurization is required, emphasis will be placed on limiting de-pressurization times to as low as practical. We do not have at this time sufficient operating experience with limited depressurization to predict what containment pressure fluctuations may occur during plant operation

,to commit to a specific depressurization time limit.

However, all practical efforts will be made to limit depressurization times to the 90 hour0.00104 days <br />0.025 hours <br />1.488095e-4 weeks <br />3.4245e-5 months <br /> per year goal while critical. Should this goal be exceeded, we will inform you and provide a summary of the reasons for exceeding the 90 hour0.00104 days <br />0.025 hours <br />1.488095e-4 weeks <br />3.4245e-5 months <br /> goal.

The containment isolation pressure setpoint will be reduced to 4 psig. Our revised operation for contain-ment depressurization may result in containment pressures of 2 psig. Normal instrument errors and drift may amount to as much as 1 psig (~1% of range). An addi-tional 1 psig margin should be added to assure that in-advertent isolation of containment does not take place since this same signal also trips the reactor and starts safety injection. We will continue to monitor containment pressure. it If is feasible to reduce the 4 psig setpoint pressure, we will inform you.

Noble Gas Effluent Monitor Information concerning our plans for monitoring noble gas effluents was contained in a letter dated December 15, 1980 from John E. Maier to Mr. Dennis M. Crutchfield, USNRC. Additional information will be provided by February 1, 1981.

'h 15 II.F.1.3 Containment High Range Radiation Monitor A Victoreen Model 875 High Range Containment Area Monitor System has been purchased for installation by January 1, 1982. The system is currently being qualified to IEEE-323 and Regulatory Guides 1.97 and 1.89, with test reports expected to be completed by March 1981.

Until those tests are complete, however, we cannot commit that the installed system will meet all of the NRC requirements.

II.F.1.4 Containment Pressure Monitor The Staff position presently calls for "continuous recording" of containment pressure; it is felt that this would result in a waste of paper and unnecessary wear on the recorder mechanism. A system is proposed, however, that will start recording whenever a safety injection or containment isolation signal is present.

This proposed system will provide adequate recording of signals.

II.F.1.5 Containment Water Level Monitor Information concerning RG&E plans to install containment water level instruments is contained in RG&E letters dated December 15, 1980 from John E. Maier to Mr. Dennis Crutchfield and November 19, 1979 from L. D. White, Jr.

to Mr. Dennis Ziemann.

Instrumentation for Detection of Inadequate Core Cooling RG&E's position concerning inadequate core cooling instru-mentation is contained in letters dated December 15, 1980 from John E. Maier to Mr. Dennis Crutchfield and July 2, 1980 from L. D. White, Jr. to Mr. Crutchfield.

1 J i

16 II.K.2.13 Thermal Mechanical Report -- Effect of High-Pressure

~ ~ ~

Injection on Vessel Integrity for Small-Break Loss-of-Coolant Accident with No Auxiliary Feedwater To completely address the NRC requirements of detailed analysis of the thermal-mechanical conditions in the reactor vessel during recovery from small breaks with an extended loss of all feedwater, a program will be completed and documented to the NRC by the Westinghouse Owners Group by January 1, 1982. This program will consist of analysis for generic Westinghouse PWR plant groupings.

Following completion of this generic program, additional plant specific analyses, if required, will be provided.

A schedule for the plant specific analysis will be determined based on the results of the generic analysis.

II.K.2.17 Potential for Voiding in the Reactor Coolant System during Transients The Westinghouse Owners Group is currently addressing the potential for void formation in the Reactor Coolant System (RCS) during natural circulation cooldown condi-tions, as described in Westinghouse Letter NS-TMA-2298 (T. M. Anderson, Westinghouse to P. S. Check, NRC). We believe the results of this effort, will fully address the NRC requirement for analysis to determine the potential for voiding in the Reactor Coolant System during anticipated transients. A report describing the results of this effort will be provided to the NRC before January 1, 1982.

II.K.2.19 Sequential Auxiliary Feedwater Flow Analysis The Transient Analysis Code, LOFTRAN, and the present, small break evaluations analysis code, WFLASH, have both undergone benchmarking against plant information or experimental test facilities. These codes, under appropriate conditions, have also been compared with each other. The Westinghouse Owners Group will provide on a schedule consistent, with the requirement of Task II.K.2.19, a report addressing the benchmarking of these codes.

4, C

- 17 II.K.3.1 Installation and Testing of Automatic Power-Operated

~ ~ ~

Relief Valve Isolation System And II.K.3.2 Report on Overall Safety Effect of Power-Operated Relief Valve Isolation System The Westinghouse Owners Group is in the process of developing a report (including historical valve failure rate data and documentation of actions taken since the TMI-2 event, to decrease the probability of a stuck-open PORV) to address the NRC concerns of Item II.K.3.2.

However, due to the time-consuming process of data gathering, breakdown, and evaluation, this report is scheduled for submittal to the NRC on March 1, 1981. .As required by the NRC, this report will be used to support a decision on the necessity of incorporating an automatic PORV isolation system as specified in Task Action Item II.K.3.1.

II.K.3.5 Automatic Trip of Reactor Coolant Pump During Loss of Coolant Accident The Westinghouse Owners Gro'p resolution of this issue has been to perform analyses using the Westinghouse Small Break Evaluation Model WFLASH to show ample time is available for the operator to trip the reactor coolant pumps following certain size small breaks (See WCAP-9584). In addition, the Owners Group is supporting a best estimate study using the NOTRUMP computer cod'e to demonstrate that tripping the reactor coolant pump at the worst trip time after a small break will lead to acceptable results.

For both of these analysis efforts, the Westinghouse Owners Group is performing blind post-test predictions of LOFT experiment L3-6. The input data and model to be used with WFLASH on LOFT L3-6 has been submitted to the Staff on December 1, 1980 (NS-TMA-2348). The information to be used with NOTRUMP on LOFT L3-5 will be submitted prior to performance of the L3-6 test as stated in Westinghouse Owners Group letter OG-45 dated December 3, 1980.

The LOFT prediction from both models will be submitted to the Staff on February 15, 1981 given that the test is performed on schedule. The best estimate study is scheduled for completion by April 1, 1981.

Based on these studies, the Westinghouse Owners Group believes that resolution of this issue will be achieved

p V

I

18 without, any design modifications. In the event that this is not, the case, a schedule will be provided for potential modifications.

II.K.3.12 Confirm Existence of Anticipatory Reactor Trip Upon Turbine Trip An anticipatory trip upon reactor trip exists at the R. E.

Ginna plant as shown in drawing 882D612, Sheet 2, Revision 3 and Sheet 3, Revision 2, provided with a letter dated January 18, 1979 from L. D. White, Jr. to Mr. Dennis Ziemann.

II.K.3. 17 Report on Outages of Emergency Core Cooling Systems Information on ECCS equipment outages is contained in Table II.K.3.17. The information in Table II.K.3.17 was compiled in response to Mr. D. G. Eisenhut's May 7, 1980 letter concerning Five Addition TMI Items and does not include the corrective action taken, a recent change in the requirements. Nevertheless, as seen from the table, most. outages were the result of routine maintenance and inspections. In cases where a violation of Technical Specifications did occur, the corrective action taken is documented in Licensee Event Reports filed with NRC. We have reviewed the ECCS equipment outages and determined that. no action is required at this time. Malfunctioning steam admission valves, the cause of lengthy turbine-driven auxiliary feedwater pump outages, were replaced in May, 1980.

Improving Licensee Emergency Preparedness - Long Term At this time'e believe we will be able to comply with the implementation schedule established for this item.

However, we plan to comply with the requirement for a prompt notification system primarily with the installa-tion of sirens. We do not yet have a commitment for supply of the sirens because field work necessary to establish sound levels, siren locations and the number of sirens required is not yet completed. If it becomes necessary to request an extension of the implementation

' date as this work proceeds, we will notify you promptly.

4 19 The emergency plans required to be submitted by January 2, 1980 concerning radiological emergency response plans will be provided by separate correspondence.

III.D.3.4 Control Room Habitability Requirements The information requested in Attachment 1 to item III.D.3-4 is not being submitted by January 1, 1981 for the reasons given in a letter dated November 24, 1980 from L. D. White, Jr. to Mr. Dennis M. Crutchfield, USNRC.

TABLE LI.K.3.17 PI>AHT T.S.

DATE TIHE OP1HATIffG TIME DATE TIME KUIPMBlT REASOH IHOPHQBIB IHOPHfABIR IHOPHMfiE ffODE

  • ALTDWANCE OPHQBIE )OHRABIZ A HfH Pump M-11.15 Inspection and 6/14/76 24 Hrs. 6/14/76 181 1 11 Hours Maintenance 11 Hinutes Bus 14 Supply from 1A Diesel N-15 &t: H-52.1 Breaker 7/9/76 7/9/76 1510 5 Hours Inspection a Maintenance 4 Mimtes B Aux. F.W. Pump H-11.5c Maintenance End 7/20/76 1110 N/A 7/20/76 15K 4 Hours Bearing Cover Gasket 20 Minutes fA Cont Spray Pump Discharge N-64.1 Defective 'A'ontact Valve 860A - Manual open curcuit 8/2/76 24 Hrs. 8/2/V6 1412 4 Hours 27 Minute Turbine Drive APWP Maintenance-ftydraul ic 7/22/76 N/A 7/25/76 1700 2I Hours Control Valve. 5 Minrteo A Component Cooling Pump N-11.27 &c H-.45.1A Inspection 8/17/76 C.S.D N.A. 8/20/V6 1530 81 Hours

&: Naintenance 50 Minutes B Diesel Generator Bus 16 Breaker-Replaced 8/21/76 C.S.D N/A 8/22/V6 18 Hours Secondary Contacts 27 Hfmrtes f1'515 A Service Water Pump M-f f.10 0, H-45.1A Prrmp ard 11/4/76 H/A 11/4/76 6 Hours Motor Inspection &c Maint. 45 Minutes Service Water Pump M-11.10 &r. H-45.1A Pump ard 11/5/76 N/A 11/8/76 78 Hours Motor Inspection Sc Haint. 59 Himrtes B Service Water Pump M-11.10 &r. H-45.1A Pump ard 11/9/76 N/A 11/9/76 1245 5 Hours Motor Inspection 4 Maint. 45 Minutes AOV~6A From Spray Addative YIC-836A Controller Failure.

Tank NaOH 1 1/17/76 1100 24 Hrs. 11/17/76 7 Hours 30 Minutes

  • 0 Plant operating at power; C.S.D. Cold Shut Down; H.S.D. . Hot Shut Down
    • Ginna has Service Mater Pumps. Only two are required for post-accident operation

&r {FSAR Table 9.6-1)

Sheet 1 of 12

TABLE II.K.3.'17 (Cont'd.)

PLANT T.S. TIME DATE TIME OPERATINB TIME DATE TIME OUP OP EQJIPHBIT RPASON INOPEBABLB INOPHQBIB INOPHQBIB MODE ALIDWANCB OPERABLB OPHUQKB SERVICE C Service Water Pump M-11.10 &: M-45.1A Pump end 11/9/76 1515 N/A 12/21/76 1245 41 Bys Motor Inspection and 21 Hours Maintenance 30 Mimtes A Service Water Pump (M-32,M-32') 3/28/77 N/A 3/28/77 1525 35 Mirutes AI&0 on Breaker C Service Water Pump {M-32,M-32')

AI&0 on Breaker 3/28/77 N/A 3/28/77 1450 1 Hour 50 Minutes B Service Water Pump Breaker AI&0 Inspection 3/24/77 N/A 3/24/vv 1 Hour 50 Mimtes 1C SIS Pump Bus 14 Breaker Replaced Secondary Contacts 1/3/vv 24 Hrs. 1/3/vv 1150 2 Hours on Breaker 50 Minutes 1B Boric Acid Transfer Pump Breaker Pulled to Perform 24 Hrs. 3/7/77 1145 3 Hours Maint. on C.B. Sritch. 15 Minutes B Service Water Pump Divers cleaning suction 6/1o/77 1030 N/A 6/1o/vv 1100 30 Mirutes screen A&9 Service Water Pumps Divers cleaning suction 6/10/77 N/A 6/1o/vv 1020 1 Hour screen 20 Mimtes C SIS Pump Bus 14 Breaker Breaker failed to close 6/29/77 24 Hrs. 6/29/77 1720 3 Bours during P.T. 50 Minutes D Service Water Pump Divers cleaning suction 6/9/77 N/A 6/9/vv 2 Hours screen 30 Minutes Check Valve leaking v/>>/77 1430 24 Hrs. v/>>/vv 1945 5 Hours 15 Minutes

  • +* AI&0 Annual Inspection and Overhaul Sheet-2 of 12

S TABLE II.K.3.17 {Cont'd.)

PLANT T.S. TINE DATE TINE OPERATING TIME DATE OVP OP KQIPM1I1T REASON INOPERABIB INOPERABLE INOPHQBLB NODE ALMNANCE OPERABLE SERVICE Turbine Driven ABF Steam edmission valve problem 6/1/77 1140 N/A 7/1 1/77 1400 40 Days MOV 3504 2 Hours 20 Mimtes Boric Acid Pumps Ec CVCS Repair Valves 398 ABB 8/23/vv N/A 8/23/vv 1525 40 Minutes Valves Sc Piping B D/G Bus 16 Breaker Breaker would not close 9/14/77 0706 168 Hrs. 9/14/77 1030 3 Hours 24 Nimtes 1A Component Cooling Pump Calibration of press 9/26/77 1106 24 Hrs. 9/26/VV 1330 2 Hours transmitter 24 Minutes A Service Water Pump Scheduled Motor Overhaul 10/19/77 0700 N/A 11/8/7l 20 Days 6 Hours B Component Cooling Pump to check coupling alignment 11/15/VV 0800 24 Hrs. 11/15/77 1719 9 Hours 19 Minutes B Component Cooling Pump Check Coupling Alignment 11/16/Tl 1300 24 Hrs. 11/16/77 1445 1 Hour 45 Mimtes Na51 Tank Isolation Valves Repair Valves 12/3/77 0100 H.S.D. 48 Hrs. '1 2/3/Yl 1445 13 Hours 45 Minutes Isolated to repair leaks 12/3/77 0100 H.S.D. 48 Hrs. 12/3/77 1445 13 Hours 45 Mirutes B Charcoal filter Low Air Plow Alarm 1/6/78 2135 24 Hrs. 1/v/v8 1641 19 Hours (C Recirc Pans) . 6 Minutm Sheet 3 of 12

f

'I t

TABLE II.K.3.17 (Cont'd.)

KQiT T.S. TIME DATE TIME OPERATING TIME DATE TIME OUP OP EVIPMENT INOPHUSIR INOPHUSIB MODE ALTlSANCE OP HEEBIE OPHQBIR SERVICE B Service Water Pump Rotor Overhaul 12/12/77 0930 N/A 1/6/78 25 Days 1 Hour 43 Mitutes A Service Water Pump Breaker Inspection 3/16/Vs 0900 N/A 3/16/78 1440 5 Hours 40 Minutes D Service Water Pump Breaker Inspection 3/16/78 1445 N/A 3/16/78 1530 45 Minutes B Service Water Pump Breaker Inspection 3/14/78 1245 N/A 3/14/Vs 1525 2 Hours 40 Mirutes C Service Water Pump Breaker Inspection 3/14/78 1515 N/A 3/14/78 1603 48 Mirutes C Service Water Pump Clean Intake Screen 5/26/78 C845 N/A 5/26/78 1250 4 Hours 5 Minutes A Service Water Pump Clean Intake Screen 5/26/78 0845 N/A 5/26/vs 4 Hours 5 Minxtes B Diesel Generator Inspection 3/27/VS 0400 C.S.D. N/A 3/31/78 1656 4 Days 12 Hours 56 Mimtes C. Service Water Pump Work cn expansion Joint 5/3/78 1030 N/A 5/4/78 1010 23 Hours 40 Minutes Valve 860 B Dischara: from Valve would not stroke closed 6/29/78 1230 24 Hrs. 6/29/78 1 245 15 Minutes Containment Spray Pump A Service Water Pump Inspection 4 lubrication 6/7/78 1120 N/A 6/7/78 1448 '3 Hours 28 Minutes Sheet 4 of 12

/ J p

TABLE IZ.K.3.17 (Cont'd.)

PLANT T.S. TIME DATE TIME OPFRATI?6 TIME DATE TIME OUP OF EQHPMFNT INOPPIABLE INOPERABIR MODE ALMWANCE OPPRABLE OPERABLE SERVICE D Service Water Pump Inspection 8c Lubrication . 6/7/78 1525 N/A 6/7/78 1447 1 Hour 22 Minutes B Service Water Pump Hold for Maintenance 6/7/7 8 0650 N/A 6/V/Ve 5 Hours 30 Mirntes C Service Water Pump Hold for l1aintenance 6/v/vs 1100 N/A 6/7/78 1120 20 Mitutes A Service Water Pump To change expansion ]oint 5/2/78 N/A 5/2/78 1700 Recirc Pans Replace O.B. fan bearing 5/10/78 H.S.D. .

B Cont 0600 N/A 5/11/78 1400 52 Hours B Diesel Bus 16 Breaker Breaker D.C. Control 8/16/78 0700 0 168 Hrs. 8/16/78 1030 5 Hours Malfunction 50 Minutes 1D Containment Recirc Pan Cable Inspection 9/8/78 1430 144 Hrs. 9/8/78 1524 54 Minutes A Containment Recirc Fan To install splicing sleeves 9/18/78 0820 144 Hrs. 9/18/78 1 f50 5 Hours 10 Mimtes 1A RHR HX Outlet HCVA25 Bent Controller Arm 8/51/78 1100 12 Hrs. 8/51/78 1400 5 Hours MOV 852A (RIB)84-209 (Splices) 9/20/78 0851 12 Hrs. 9/20/Ve 1500 6 Hours 9 Minutes MOV 852B (RHR) H4-209 (Splices) 9/19/78 0915 12 Hrs. 9/19/78 1515 6 Hours C Containment Recirc Pan splicing leads 9/27/78 1145 144 Hrs. 9/2l/78 1647 5 Hours 2 Mimtes D Service Water Pump replace bearing 10/16/78 0915 N/A 10/16/78 1430 5 Hours 15 Minutes Sheet 5 of 12

k TABLE XX.K.3.17 (Cont'1.)

PLANT T.S. TIME DATE TIME OPHQTINQ TIME DATE TIHE OUI OF S@IPMBiT INOPHUSIE INOPERABLE MODE AIIDWANCE OPHQBLE OPERABIB SERVICE B Service Water Pump Motor vibration 12/15/78 0845 N/A 12/15/78 1641 7 Hours 56 Minutes 8 Containment Recirc Pump needs splices 9/28/V8 OVOO 144 Hrs. 9/28/78 'I 332 6 Hours 32 Mimtes Turbine Driven AFWP Inspection check for oil 4/2/78 0700 N/A 11/2/78 1410 7 Hours leaks 10 Minutes D Containment Recirc Fans splices 9/22/78 0700 144 Hra. 9/Zl/78 1140 124 Houn3 40 Hi>utes A Containment Recirc Fans splicing install sleeves 9/26/78 0600 168 Hrs. 9/26/78 1215 6 Hours 15 Minutes 1C SI Pump (Bus 14) Start Failure 1/3/V9 24 Hra. 1/3/79 1255 1 Hour 58 Mimtes 1A Diesel Generator Jjube Oil Cooler Hi OP **"* 1/8/79 0905 7 Days 1/8/79 1230 3 Hours 25 Minutes HOV 851B (R1E) would not re-open 2/6/79 Coastdawn 12 Hra. 2/6/79 1715 1 Hour 15 Mimtes A Diesel Generator PT-12.1 2/6/79 0700 7 Days 2/6/79 0935 2 Hours 35 Minutes overpressure protection Maintenance on valve PCV V/1V/V9 0700 C.S.D. 8 Hrs. 7/17/79 1455 7 Hours system 431C 55 Hirutes B Service Water Pump Inspect Motor Bearings 6/6/79 1015 N/A 6/11/79 1110 5 Days 55 Minutes

  • +** OP Oil Pressure Sheet 6 of 12

rI J TABLE XX.K.3.17 (Cont'd.)

KANT T.S.

DATE TIME OPFRATIt6 TIME DATE TIME INOPERABIR INOPHtABIS MODE ALMWANCE OPZRABIR OP BRAES overpressure protection 8 Hrs. .

PORV MOV 5I5 & 5t6 closed 7/18/79 0710 C.S.D. 7/18/79 1314 6 ttours sys 430 4 431C 4 Minutes Overpressure Protection Sys. Mov 516 closed slight 7/18/79 1413 C.S.D. 7 Days 7/18/79 1540 1 Hour PCV 430 leakage 27 Mimtes B Service Water Pump Change Oil 7/26/79 0830 C.S.D. N/A 7/26/79 1320 4 Hours 50 Minutes 1C Service Water Pump Change Oil 7/25/79 08>> C.S.D. N/A 7/25/79 1345 5 Hours 32 Mimtes 1D Service Water Pump Change Oil 7/24/79 0330 C.S.D. 7/25/79 08I3 28 Hours 43 Minutes Cont Spray Pump Dischargs did not come off seat on 4/24/79 1048 N/A 4/24/79 l05'3 5 Minutes Valve 860C first try A Service Water Pump 6/18/79 0630 N/A 7/12/79 1312 26 Days 6 Hours 42 Minutes Turbine Driven Aux. PW Pump Steam Admission Valve 3505 8/2/79 1915 H.S.D- to N/A 8/3/79 2050 1 Day Motor Inoperative C.S.D. 1 Hour 35 Mimtes Turbine Driven Aux. Peed. MOV 3505 did not open 8/4/79 1300 N/A 8/Zl/79 1450 23 Days Pump properly 1 Hour 50 Mirutes 1A Component Cooling Water svitch in Pull-Stop for 9/7/79 1110 24 Hours 9/7/79 1125 13 Mimtes Pump performance of CP-617.0 Sheet 7 of 12;

f j

TABLE II.K.3.17 (Cont'1.)

KANT T.S. TIME DATE TINE OPI3ATING TIME DATF, TIME OR OP REASON INOPHQBIB INOPERABIR INOPHQBIR NODE AIZOWANCE OPERABIR OPERABIR SERVICE B Diesel Generator Diesel to breaker to Bus 16 9/13/79 0555 7 Days 9/13/79 0930 3 Hours wouldn't close 35 Minutes 1A 11otor Driven Aux. Peel Pips supports removed 8/29/79 1100 N/A 9/4/79 1530 6 Days Pump 4 Hours 30 Minutes Turbine Driven Aux. Peed Pump will not operate under 9/10/79 1130 7 Days 9/14/79 1450 4 Days Pump steady state conditions 3 Bours 20 Minutes 1B Emergency Diesel Naintainance (Clean oil 9/24/79 0730 0 7 Days 9/29/79 1400 5 Ihgrs Generator cooler) 6 Hours 30 Minutes "D" Standby APP Ioose Anchor Bolts 9/9/79 1520 7 Days 9/20/79 1400 22 Hours 40 Mirutes B Diesel Generator clean inlet cooler 10/16/79 2020 7 Days 10/16/79 2350 3 Hours 30 Minutes Steam Driven A.P.P. Hain'tenance 10/17/79 1120 7 Days 10/18/79 1520 K Hours Power Supply to V-3996 Rewiring 11/5/79 0840 7 Days 11/15/79 1120 2 Hours Turbine Driven 1%lP 40 Hirutes 1B Aux. Peed. Pump PT Calibration 11/16/79 1015 7 Dsys 11/16/79 1200 1 Hour 45 Hinutes 1A Aux. Feed Pump CP-2001 11/16/79 1352 7 Days 11/16/79 1600 2 Hours 8 Mitutes "C" Containment Recirc. Fan Iew Flow Alarm 11/1'7/79 2230 7 Days 11/18/79 1050 12 Hours 20 Minutes Sheet 8 of 12

l>>

TABLE II.K.3.17 (Cont'd.)

PLANT T.S. TIHB DATE TINE OPERATING TIME DATE TIME IJP OP IQlIPMENT REASON INOPFRABIB INOPHlABIB INOPHlABIR HODB ALIDWANCB OPERABLB OPHlABIB SERVICE Steam Driven Aux. Peed. Pump Field PT-16 11/19/79 1315 11/19/79 1340 25 Hirutes Steam Driven Aux. Peed. Pump Closed governer valve in 12/2/79 1145 12/3/79 0400 16 Hours order to isolate Steam 15 Minutes Blowdown (BD) Tank N2 Accumulator for PCV-430 Inx N2 Pressure because of 12/9/79 '200 C.S.D. 7 Days 12/10/79 1248 24 Hours (V801A Pressure) PROV V-8600A repair 48 Hinutes Boric Acid Storage Tanks B.A. ppm below specs. 12/17/79 1340. 12/19/79 1315 47 Hours

'35 Mirutes "B" Service Water Pump Noise in motor >>/n/79 0830 N/A 1/15/80 1010 49 Days 1 Hour 40 Hirrrtes "A" Diesel Generator Would not accept more than 1/18/80 0710 1/18/80 1250 5 1kers 1KO kw 40 Hinutes "1D" Service Water Pump Hold for pump repacking 1/22/80 0610 N/A 1/22/80 1455 8 Hours 45 Minrtes 1A RHR Pump 2/8/80 1030 24 1hurs 2/8/8O 2 Hours 1B RHR Pump 2/8/80 1231 24 Hours 2/8/80 1436 2 Hours 5 Minutes "1C" Standby Aux. Peed Pump Change Oil, install 2/19/80 1000 2/20/80 1500 Thermo couples "D" Standby Aux. Feed Pump Change Oil, install 2/21/80 0830 2/22/8) 1110 26 Hours The rmocouples 40 Minutes Sheet 9 of 12

4 J TABLE II.K.3.17 (Contrd.)

PLANT T.S. TIME DATE TIMF. OP FRATING TIMF, DATE TINFi OUZ OF RFAHON INOPH1ABLFi INOPERABLE INOPNABLFi MODE ALIOWANCE OPERABLFi OPERABM SERVICE MIIPNENT "C" StandbJJ Aux. Feed Pump Change Oil 3/17/M 0820 3/21/M 1100 98 Hours 40 Minutes MOV-73% CC to RllR 11X Clutch problem with 5/12/80 2210 H.S.D. 5/12/80 1 Hour Limitorriue 35 Mirutes "A" RllR Prrmp Leaking Heal 5/17/80 C.S.D. N/A 5/19/80 53 Hours 5 Minutes "1B" Boric Acid Pump Replacement of PT-110 5/19/80 1150 C.S.D. N/A 5/19/M 2130 9 Hours (N-12.1) 40 Mirutes "1A" Boric Acid Pump Replacement of PT-110 5/19/M 1150 C.S.D. N/A 5/19/80 2130 9 Hours (N-12.1) 40 Minutes Driven .in Motor 5/22/8O 1130 H.S.D. 5/22/eo 2 Hours NOV-3505h h Turbine Ground 20 Mirutes Aux. Feed Pump.

llOV-3504A Main Steam from Grounded Motor 5/22/eo 1015 H.S.D. 5/22/eo 1350 3 lhurs 1B Stadia Generator to AFP 35 Minutes Concentration Tank A- 4/20/79 1450 N/A 4/20/V9 1735 2 Hours Boric Acid Storage Tank Ixrw 45 Mirutes 12.9f Tank B-11.85 Go to H.S.D 4/16/79 1440 1 Hour Boric AcM Storage Tank Low Concentration Tank A8cB- 4/16'?9 11.% 50 Minutes lligh Concentration Tank AM- 8/31/79 Go To C.S.D e/31/V9 4 Hours Boric Acid Storage Tanks 6 Mirutes 13.0f Level dropped to 5/22/eo 15'30 H.S.D 1 lhur 5/22/M 1615 45 Mirutes Accumulators 48r'ow Boric Acid Storage Tanks Concentration (11.9) to 7/11/8O 1045 Go To H.S.D 7/1 1/M 1553 5 Hours (11.8r') 8 Minutes Sheet 10 of 12

e TABLE XI.K.3.17 (Cont'd.)

KANT T.S. TIME DATE TIME OP HATING TIME DATB TIME OGP OP REASON BSPHQBIB INOPHQBIB INOPERABIE 5$ DE ALIOWANCE OPERABIE OP BRAKE SERVICE Boric Acid Storage Tanks High Concentration (14.4$ ) 7/14/M 1020 Go to H.S.D 7/14/80 1530 5 Hours 10 Minutes "B" Boric Acid Storage hw Concentration (11.8r') 7/14/80 Go to H.S.D 7/14/80 1 Hour Tank 35 Mirutes "A" Service Water Pump Minor Maintenance v/e/80 0820 N/A 7/8/M 1340 5 Hours 20 Minutes "D" Standby Aux, P.W. Pump N-11.14 Annual Insp. and 6/24/80 7 Days 6/25/80 1015 33 Hours maintenance 15 Nirutes "C" Standby Aux. P.W. Pump M-11.14 Annual Insp. and maintenance 6/25/M 11 10 v ~ 6/27/80 1427 51 Hours 17 Minutes "D" Service Water Pump Minor inspection 7/3/80 N/A v/3/M 1425 6 Hours 25 Hirutes "D" Service Water Pump M-11.10.1 Minor Inspection 7/30/M N/A V/30/M 1029 5 Hours 59 Minutes 1B Emergency Diesel M 32 1 ~DB 25~D~~DB 75 9/10/80 7 Days 9/10/80 4 Hours Generator Circuit Breaker Naint R OC 41 Hirutes Trip Device Test and/or Re-placement "A" Aux. P.W. Pump (Notor CP 2001.0 1A Motor driven 9/8/M 7 Days 9/8/M 1440 5 Hours Driven) Aux. PW. Pump discharge flrnr 45 Minutes loop 2001 "D" Service Water Pump M-11-10.1 Minor Inspect. of 8/1 9/80 N/A 8/20/M 1315 13 Hours SWP Packing leak 45 Minutes Sheet ll of 12

k~

TABLE IX.K.3.17 (Cont'd.)

INOPERABLE PLANT T.S. TINE DATE TINE OPERATING TINE DATE TINE OUP OP INOPHQBIR HODE ALIlNANCE OPERABLE OPERABIB SERVICE "1B" Emergency Diesel H-32.1, DB-25, DB-50, DB-75 9/10/80 9/10/8) 4 Hours Generator circuit breeker maintenance 41 Hinutes and OC Trip Device Test and for replacement A Bnergency Diesel Gener- Operability Questioned 10/3/80 10/3/8) 1113 1 Day ator see LER 80-9 4 Hours 24 Hinutes Turbine Aux. Peedwater Pump SN-79-18 32,B 10/2/80 0 10/3/80 1115 3 Hours 15 Himtes Spray System To APP Oil SN-83-1833.6 Installation of 10/20/80 10/25/80 4 Days resorvoir Aux./Int. Building Loop Pire 21 Hours Supression Valves Sheet 12 of 12

f ~

APPENDIX A Design Criteria Auxiliary Feed Pump Instrumentation Upgrade Ginna Station Rochester Gas and Electric Corporation 89 East Avenue Rochester, i4ew York 14649 ENR-1869 Revision 1 May 5, 1980 Prepared by:

0, sin(se DATE Responsi le ngineer Reviewed by:

l3 80 DATE Qua ty Assurance Engineer, Design Approved by: 0I/ I DATE Manager, Mechanical Ehgineering Page 42 92

I lF

~ ~

Revision Status Sheet Latest Latest Lati.st Pape Rev. Page Rev. Page Rev.

Criteria Revision sign.

5/5/80 EWR 1869 Page ii 42 91

~ ~

Desi Criteria 1.0 Summar Descri tion of the Desi Summary 1.1.1 The purpose of this modification is to upgrade the flow and pressure instrumentation associated with the motor driven and turbine driven auxiliary feedwater pumps at Ginna Station. This modification involves the replace-ment of the following primary instrumentation: PT-2029, FT-2001, FT-2009, PT-2019, PT-2030, FT-2002, FT-2006, FT-2007. This instrumentation presently used does not, have the desired accuracy and repeatability.

1.1.2 In addition, the existing flow transmitters are utilized to operate valves 4007, 3996 and 4008. Each of these flow transmitters have a built in switch which is actuated via a mechanical linkage. This mechanical linkage has enough inertia such that accurate and repeatable determination of switch actuation point is not possible. As part of this modification, these switches will be replaced with electronic bistables, which electronically compare flow transmitter output with setpoint and change 'state when the setpoint is reached.

To satisfy the requirements of reference 2.5 below, additional channels of flow instrumentation will be added to each auxiliary feedwater pump. This additional channel will be of the opposite channel designation from that of the primary channel. The primary channel for each feedwater pump will control that particular pump's discharge valve, whereas the secondary channel merely indicates flow. The secondary channel as shown on the above referenced consists of that instrumentation without tag numbers.

1.2 Functions (Reference RGSE drawing 33013-697, t

Rev. 0) 1.2.1 Poop FT-2001 This loop measures the flow in auxiliary feedwater line to the "A" steam generator, The differential pressure measured by FT-2001 is converted to a flow signal by .

FM-2001. Indication of flow on the main control board is provided by FI-2021A. FM-2001A acts as an isolation amplifier to isolate the class IE system from FI-2021B which is not safety related. Electronic bistable FY-2001 functions to position valve 4007 such that the flow matches FY-2001's setpoint. FQ-2001 supplies dc power to this loop.

Design Criteria Revision EWR 1869 1 Date Page 42 90

T.

'r

1.2.2 Loop FT-2009 This loop measures the total discharge flow of the steam driven auxiliary feedwater pump. FT-2009 measures the differential pressure across its flow element and FM-2005 converts this signal to a flow signal. FY-2005 is an electronic bistable which opens recirc valve CV-27 to maintain minimum flow through the pump, during low flow operations. FM-2009A is an isolation amplifier which isolates local flow indicator FI-2009 from the Class IE safety system. FQ-2009 supplies this loop with dc power.

1.2.3 loop FT-2002 This loop functions exactly the same as the FT-2001 loop with the only difference that this loop monitors the flow of auxiliary feedwater to the B steam generator.

1.2.4 Loops FT-2006 and FT-2007 Both these loops function in the same manner; each loop measures the flow to its respective steam generator from the turbine driven auxiliary feedwater pump and indicates this flow on the main control board. An isolation amplifier for each loop isolates the class IE portion from the non safety local indication located near the turbine driven pump. Each loop also contains a dc power supply.

1.2.5 Loops PT-2029, PT-2019 and PT-2030 Each of these loops are similar and merely monitor the discharge pressure of their respective auxiliary feedwater pump. Indication of discharge pressure for each pump is on the main control board.

1.2.6 For loops FT-2001, FT-2009 and FT-2002 a secondary redundant channel of flow instrumentation is provided.

Each channel consists of a flow transmitter (FT),

sguare root converter (FM), power supply (FQ) and control room flow indicator (FI)..

1.3 Performance Reguirements The sensing elements (the flow and pressure trans-mitters) shall be capable of sensing and producing an output over the range of design values for all possible operating and accident conditions for the particular system in which they are installed.

Design

~

Criteria

~

Revision EWR 1869 2 Dare 5/5/80 Page 42 90

C J ~ ~

ET

Control As outlined in Section 1.1 above, this modification will replace the integral flow switches in the flow transmitters with electronic bistables. This modifica-tion shall in no way affect the control of these valves.

1.5 Modes of Operation 1.5.1 The class IE portion of this modification shall be designed to be operational: 1) during all modes of normal plant operation, 2) after a safe shutdown earth-quake, and 3) after a steam/feedwater line crack break event in the Intermediate Building.

1.5.2 The non Class IE portion of this modification shall be designed for operations during startup, hot shutdown, and power operations.

2.0 Re ferenced Documents 2.1 Rochester Gas & Electric Corporation, Ginna Station Quality Assurance Manual, Appendix A, "Quality and Safety Related Listing and Diagrams", October 1, 1976.

2.2 USNRC'egulatory Guides.

2.2.1 No. 1.29, "Seismic Design Classification", Rev. 2, February, 1976.

2.2.2 No. 1.100, "Seismic Qualification of Electric Equipment.

for Nuclear Power Plants", Rev. 1, August, 1977.

2.3 American National Standards Institute. ANSI N45.2.2 1972, "Packaging, Shipping, Receiving, Storage .and Handling of Items for Nuclear Power Plants".

2.4 Institute of Electrical and Electronic Engineers Standards.

2.4.1 IEEE-323 - 1974, "Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations".

2.4.2 IEEE-344 - 1975, "Recommended Practices for Seismic Qualification of Class IE Equipment for Nuclear Power Generating Stations".

2.4.3 IEEE-323-1971, "Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations" 2.4.4 IEEE-344-1971, "Recommended Practices for Seismic Qualification of Class 1E Equipment for Nuclear Power Generating Stations".

Design Criteria Revision EWR 1869 Page 3

42.90

C' .~

r ~

2.4.5

~ ~ IEEE-383-1975, "IEEE Standard for Type Test of Class IE Electric Cables, Field Splices and Connections for Nuclear Power Generating Stations".

2.4.6 IEEE-384-1974, "Trial Use tandard Criteria for Separation for Class IE Equipment and Circuits".

2.4.7 IEEE-336-1977, "Installation, Inspection and Testing Requirements for Instrumentation and Electric Equipment During Construction of Nuclear Power Generating Stations".

2.5 Letter date November 19, 1979 to D. Ziemann, NRR from L.D. White, Jr. section 2.1.7.b.

3.0 Seismic Cate or 3.1 Based on USNRC Regulatory Guide 1.29 and Appendix A of the Ginna FSAR the following instrumentation is Seismic Category 1: FT-2001, FM-2001, FM-2001A, FI-2021A, FQ-2001, FY-2001, FT-2002, FM-2002, FM<<2002A, FI-2022A, FQ-2002, FY-2002, FT-2006, FM-2006, FM-2006A, FI-2023A FQ-2006, FT-2007, FM-2007, FM-2007A, FI-2024A, FQ-2007I PT-2029, PI-2189A, PQ-2029, PT-2019, PI-2048A, PQ-2019, PT-2030, PI-2190A, and PQ-2030, and all instrumentation used as part of the seondary channel flow indication.

Based on USNRC Regulatory Guide 1.29 and Appendix A of the Ginna FSAR the following instrumentation is not Seismic Category 1: FI-2021B, FI-2023B, FI-2024B, .and FI-2022B.

4.0 ualit Grou Not Applicable.

5.0 Code Class Not Applicable.

6.0 Codes, Standards and Re ulator Re irements 6.1 The non safety related portion of this modification shall be installed as per the requirements of the National Electrical Code, 1978.

6.2 USNRC Regulatory Guide 1.100 defines additional require-ments and changes to IEEE Standard 344-1975, "IEEE Recommended Practices for Seismic Qualification of Class IE Equipment. for Nuclear Power Generating Stations". Implementation of this standard for procurement of Class IE instrumentation will include the requirements of this Regulatory Guide.

Design Criteria Revision 1 EWR 1869 4 Date 5 5 80 Page 42 90

p 6.3 IEEE-336-1977 shall be used as a guideline during the installation, inspection and testing phase of this modification.

7.0 Desi Conditions 7.1 Flow and Pressure Transmitters 7.1.2 Fluid Pressure 1550 psig 7.1.3 Fluid Temperature 40 to 120'F.

7.1.4 Current, 10 to 50 mAdc 7.2 Electric Instrumentation Current, 10 to 50 mAdc 7.3 Instrumentation Power Supplies 7.3.1 Input Voltage 118 volts 60hz 1P 7.3.2 Output Current 10 to 50 mAdc 7.3.3 Maximum Load 660 ohms Load Conditions The instrumentation listed in Section 3.1 shall be designed to withstand the effects of a safe shutdown earthquake (0.2g base ground motion) without a loss of function.

9.0 Environmental Conditions 9.1 Intermediate Building Normal Accident.

9.1.1 Temperature 40 to 104 F 215oF 9.1.2 Pressure atm. 1.0 psig 9.1.3 Relative Humidity 0 to 100% 100%

9.1.4 Radiation (5R/hr gamma accumulative) 9.2 Control Room 9.2.1 Temperature 65 to 85 F. 40 to 120'F.

9.2.2 Pressure atm. atm.

9.2.3 Humidity 15 to 95% 15 to 95%

Design

~

Criteria

~ ~

Revision EWR 1869 Page 5 Date 5/5/80 42.90

C

/ ~ ~

C

/

~ " 5 4

9.2.4 Radiation negligible negligible 9.3 Relay Room 9.3.1 Temperature 40 to 104 F. 40 to 104 F.

9.3.2 Pressure atm. atm.

9.3.3 Humidity 15 to 95% 15 to 95%

9.3.4 Radiation negligible negligible 9.4 New pressure and flow transmitters required by this modification shall be environmentally qualified to IEEE-323-1971 and IEEE-344-1971.

9.5 New process analog computational equipment shall be environmentally qualified in accordance with IEEE-323-1974 and IEEE-344-1975.

10.0 Interface Re irements 10.1 Existing cable trays utilized as a routing path for this modification shall be reviewed to ensure that tray capacity is not exceeded.

10.2 Mounting of new electronic instrumentation in existing racks in the Relay Room shall not degrade the capability of those racks to withstand the effects of the safe shutdown earthquake.

11.0 Material Re irements None.

12.0 Mechanical Re irements Flow and pressure transmitters shall be designed for installation at the location of the existing transmitters, and utilizing existing tubing connections.

13.0 Structural Re uirements None.

14.0 H draulic Re uirements None.

15.0 Chemistr Re irements None. ~

Design

~

Criteria

~

Revision EWR 1869 Page 6

42 90

A it

l6.0 Electrical Re uirements 16.1 Instrument cable utilized in this modification shall meet the following requirements:

16.1.1 Size 16 AWG.

16.1.2 Voltage rating 600 volts.

16.1.3 Insulation shall be qualified as pe'r IEEE-383-1975.

16.2 Instrument power shall be from a 120VAC, 60ha, lp Class 1E power supply as follows.

16.2.1 Primary instrumentation power: from same instrument bus as motor (turbine) controls 16.2.2 Secondary flow indication: from opposite instrument.

bus designated by 16.2.1 above 17.0 0 erational Re irements This modification shall not. impose any additional operational requirements under all modes of plant operation as this modification will not change or introduce any additional equipment operations or control.

18.0 Instrumentation and Control Re uirements The instruments utilized in this modification shall have the same basic span, range, and indication as the existing instrumentation.

19.0 Access and Administrative Control Re irements None.

20.0 Redundanc , Diversit and Se aration Re uirements Separation between separation groups 1 and 2 shall be maintained as per IEEE-384-1974 whenever existing plant design permits. Where separation between groups cannot meet this criteria, separation shall be maintained as described in Section 8.2.2 of the Ginna FSAR.

21.0 Failure Effects Re uirements 21.1 This modification shall be designed such that a failure of a separation group 1 component shall not affect the operability of the separation group 2 system.

Design Criteria Revision EWR 1869 7 Da)e 5 5 80 Page i2.90

P'I 21.2 The instrumentation designated in this modification as being in either separation group 1 or 2 shall be designed to withstand the effects of a safe shutdown earthquake with no degradation in performance or accuracy.

21.3 The pressure and flow transmitters installed in the Intermediate Building shall be designed to withstand the environmental effects of a postulated pipe crack with no loss in performance and accuracy.

22.0 Test Re irements 22.1 Tests shall be performed prior to placing this modifi-cation inservice, to ensure that, design requirements have been met.

22.2 Seismic qualification testing of safety related instru-mentation shall conform to the requirements of IEEE-323-1974 and IEEE-344-1975.

22.3 Environmental qualification testing of instrumentation shall conform to the requirements of IEEE-323-1974, or IEEE-323-1971 as described in section 9.4.

22.4 Flame testing of cable utilized in this modification shall conform to the requirements of IEEE-383-1974.

23.0 Accessibilit , Maintenance, Re air and Inservice Ins ection None.

24.0 Personnel Re irements None.

25.0 Trans ortabilit Re uirements None.

26.0 Fire Protection Re uirements Cable used in this modification shall meet the flame spread requirements of IEEE383 1974.

27.0 Handlin Re uirements Electronic instrumentation shall be shipped and stored in accordance with Level B requirements of ANSI N45.2.2.

Design Criteria Revision EWR 1869 8 Date 5 5 80 Page 42 90

C

~'

aQ l'

~

28.0 Public Safet Re uirements None.

29.0 ~11't.

Materials and equipment utilized in this modification-shall be chosen such that these design requirements are met.

30.0 Personnel Safet. Re uirements None.

31.0 Uni ue Re uirements None.

Design Criteria Revision EWR 1869 Page 9 Date 5/5/80 42 90

U 1

Cr i

Pq, STCAII STCAM I IIO

~ Q)

OCNOTC\

S<<11AAT~ ~

~INlO I

CCNCNATa A ECTO AAIaY g

m.stsAAATTa AIL%NOTS ~RQgll Otk TO SC NSAOSD a foe.

S

~M SESEI

~ CettCO SAON A'

<<NNaL t SN~XN f SD AT% ~ CN. 104 INSOC CONTANNltNT

~ 004

~ SIT 4ESI 4SAS AS SS'SS

'A'MAIN SCCOWATCN O'AII st tDNATCN S~ ~ SSS I ~ NCS tO~IN jg lTLr S Q}-+,

I I

SJ.j'I C

I 400T

@QNN@lr 4 m

ET ~ Qn ASST S~ S ~ S4t IO& SM Itvtt 4000D S I AS ONOCN IOLTACC

-'CMDI IO TO

<<ESCCNSAT

.~+ '8~ SSCTC ISO NSATt STOAACC S.0.

ST<<NACA 4I04 'tAME r.a Cost ANNO NANR TAME sa Q

~ LN 4 NOTON DNIICN AOS. S. TA SONS AIDE Se.

N SONS VNOTa ONANSI AEAC S.W. SONS

~ ENIEA STA

. J3'gf~~W

'I t"I 4