ML20210B803

From kanterella
Jump to navigation Jump to search
Extended Life Aluminide Fuel Final Rept
ML20210B803
Person / Time
Site: University of Missouri-Columbia
Issue date: 06/30/1986
From: Beeston J, Miller L
EG&G IDAHO, INC.
To:
Shared Package
ML20210B763 List:
References
EGG-2441, NUDOCS 8609180169
Download: ML20210B803 (94)


Text

l

( ENCLOSURE B EGG 2441 June 1986 EXTENDED LIFE ALUMINIDE FUEL ' G Miller

- -FINAL REPORT 3

U F 0 R M A L R E P O R T 4q EGnG,o,no Work performed under DOE Contract No. DE AC07-76/D01570 Alat e* *k!

' j#

.A-

c

-_.m N - -- - a

g. y,. , ,

~ je ,

\; .

~~

.f

.r ~, f,.  ;

n .<

p q.

IU'  : l[

g - .

  • ,s

)  ;

, v.

,(- k N =r er  %

l Idaho National

. Engineering Laboratory Managed by the U.S. Department of Energy 360918016c>

ADUCB9O60'> S 0 0'1 '?I[, 5 PDR r;+

g

Printed in the United States of America ,

Available from National Technical Information Service U.S. Department of Commerce .

5285 Port Royal Road Springfield, VA 22161 ,.

e

.[

DISCLAIMER This book was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, ,

nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercia!

product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of i authors expressed herein do not necessarily state or reflect those of the United States l Government or any agency thereof. l

I EGG 2441 Distribution Category: UC 80

.g EXTENDED LIFE ALUMINIDE FUEL FINAL REPORT L. G. Miller J. M. Beeston Published June 1986 l

! EG&G Idaho,Inc.

l. Idaho Falls, Idaho 83415 l

Prepared for the l U.S. Department of Energy

! Idaho Operations Office Under DOE Contract No. DE AC07 ID01570 I

--,n-.-------.,-- ---.-.- - - -.--.. . - - . . - - . - . , - - - - - - , . .

F t

ABSTRACT As the price of fuel fabrication, shipment of both new and spent fuel, and fuel

- reprocessing continue to rise at a rapid rate, researchers look for alternate methods to keep reactor fuel costs within their limited funding. Extended fuel element lifetimes, without jeopardizing reactor safety, can reduce fuel costs by up to a factor of two. The Extended Life Aluminide Fuel (ELAF) program was started at the Idaho Nationa:

Engineering Laboratory (INEL) as a joint project of the United States Department of Energy (DOE), the University of Missouri, and the Massachusetts Institute of Tech-nology research reactors. Fuel plates of Advanced Test Reactor (ATR) type construc-tion were fabricated at Atomics International and irradiated in the ATR at the INEL.

Four fuel matrix compositions were tested (i.e.,50 vol% UAl, cores for reference, and 40, 45 and 50 vol% UAl 2cores). The 50 vol% UAl cores2 contained up to 3 grams U-3 235 per em of core. Three plates of each composition were irradiated to peak burnup levels of 3 x 102: fission /cm3 of core. The only observed damage was due to external corrosion at similar rates experienced by UAl, fuel elements in test reactors.

I l

i e

l 11

_. . -my

I

SUMMARY

  • The Extended Life Aluminide Fuel (ELAF) program was started at the Idaho

- National Engineering Laboratory (INEL) as a joint project of the United States Department of Energy (DOE), the University of Missouri, and the Massachusetts e institute of Technology. For the program,30 fuel plates were constructed to a maxi-mum fuel loading that could be produced on a commercial basis. These contained UAl2and UA1 3fuel (UAl,) cores, with maximum boron content as used in the Advanced Test Reactor (ATR) at the Idaho National Engineering Laboratory. The maximum boron content was incorporated to reduce initial reactor reactivity. The UAl 2fuel core was used to gain higher uranium content. The test program was .

planned so that the fuel plates would be irradiated to a maximum fission density of 3-4 x 102: f/cm3 (about 50% burnup for the 50 vol% fuel plate cores). This burnup is about twice that presently allowed in university reactors.

An ELAF fuel core with 73 wt% of the brittle phase (UAl,) gave excellent perform-ance to a burnup of 1.84 x 1023 f/cm3 with a peaking factor of 1.63 (peak burnup of 3

3.0 x 1028 f/cm ).

The ELAF fuel plates operated at surface temperatures of about 395 K (120*C) .

with the only evidence of failure due to pitting corrosion.

Blister temperatures from post irradiation tests of 763 K (for the UA13 composition) and 776 K (for the UAl 2composition) indicated large margins of safety from over-heating for short periods of time.

The 50 vol% UAl 2composition plates performed as good, or better, than the 50 vol% UAl 3composition plates and will provide higher fuelloading.' Although pitting corrosion caused the failure of three plates of the UAl2 composition, a large pit that would have produced failure was found in the UAl3 composition.

Neither the pitting corrosion rate, or the probability of pitting, seemed any greater in the ELAF plates than fuel elements in other reactors when consideration is taken of the plate surface temperature and the time in the water.

Reaction of the UAl2 to produce UAl 3and the U .,A1 i defect 4 phase causes an increase in core volume of 6 to 12%. The core volume percent thus approaches 60 vol% of the brittle constituent.

It is recommended that the specification for oxygen in the powder blends be exam-ined with the view of reducing the allowed oxygen.

It is recommended that management of the fuel element irradiation sequence be considered as a way to reduce the depth of pitting corrosion and extending fuel ele-ment life.

l

. iii

ACKNOWLEDGEMENTS -

The authors would like to thank L. D. Koeppen and J. W. Rogers for contributing the section on Fission Product Radionuclide Distributions in ELAF Fuel Plates that is includedin Appendix A.

t l

l

. 8 l

=

(

iv

CONTENTS A'BSTRACT........................................................................... ii

SUMMARY

........................................................................... iii AC KNOW LE DG EM E NTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv ACRONYMS AND A BB R EVI ATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

l. I NT RO D U CTI O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I
2. PLATE DESIGN AND IRRADIATION HISTORY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2.1 I r ra d i a t io n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
3. TEST EXA M I NATI O NS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.1 Visual Examination and Photography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 O x id e Rem oval . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Dimensional Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4 Immersion Density and Swelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.4.1 Swelling Determined from Thickness Measurements . . . . . . . . . . . . . . . . . . . . . . . . 10 3.4.2 Core Thickness Change by Metallography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3.5 M e t allog ra p hy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.6 Scanning Elect ron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 B li st e r Tes t s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.8 Pi t Repli ca t i o n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.9 Pit tin g Co r rosio n Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.10 Gamma Ray Spect roscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

, 3.11 Radiochemical Analyses for Burnup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4. D I S C U SS I O N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 Swelling and Fuel Phase Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 . Fuel Core Integrity and Bubble Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 Blister Behavior and Potential Swelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 Pitting Corrosion and Plate Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.5 M axi m u m Fi ssio n Den si t y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 v

5.

CONCLUSIONS AND RECOMMENDATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 .......

REFERENCES........................................................................ 47 APPENDIX A-IR RADIATION DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A-1 APPENDIX B-CORE AND PLATE DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B-1 '~

FIGURES

1. I rradiation history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. 'Iypical surface appearance of the irradiated plates before and after oxide removal . . . . . . . . . . . 5
3. ELAF plate shearing and punching schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
4. Core swelling versus burnup from immersion density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5. Core swelling versus burnup from thickness measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 6.

Plate and core thickness before and after irradiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 .......

7. Microstructure of core and cladding of 50 vol% UAl, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
8. Microstructure of 45 vol% and of 40 vol% UAl2 ....................................... 17
9. Fuel grains of UAlx in aluminum matrix. UAl2, UA13 and UAl just discernable wit h Magomet etch . . . . . . . . . . . . . . . . . . . . . ,. . . . . . . . . . . . . . . . . . . . . . . . 18 .....
10. SEM photograph of fractured surface by secondary emission, plate 013 ................... 19
11. SEM photograph of fractured surface by secondary emission, plate 032 . . . . . . . . . . . . . . . . . . . . 20
12. SEM photograph of fractured surface by back scatter emission (plate 032) identifies region A of Kevex-ray examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
13. Examination of fuel grain A for UAl , zUA1, UAl 3 and 4 U . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
14. SEM photographs of plate 007, composition 50 vol% UAl, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
15. SEM photographs of plate 019, composition 50 vol% UAl 2 .............................. 25
16. SEM photographs of plate 006, composition 50 vol% UAI, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
17. SEM phott aphs of plate 013, composition 50 vol% UAl 2 .............................. 27 ,
18. SEM photographs of plate 028, composition 45 vol% UAl 2 .............................. 28
19. SEM photographs of plate 030, composition 40 vol% UAl 2 * *** ** 29
20. SEM photographs of plate 013, acid etch, 50 vol% UAl . .2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
21. Blister temperature as a function of the burnup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 vi L

1-

22. Photographs of blister samples from 50 vol% UAl and 2 UA1 .3. . . . . . . . . . . . . . . . . . . . . . . . . . . 33
23. Photographs of blister samples from 45 vol% and 40 vol% UAl . 2. . . . . . . . . . . . . . . . . . . . . . . . . 34
24. Typical photographs of replica areas on oxide stripped plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
25. SEM photographs of two of the replicated pits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

, TABLES

1. Immersion density of sheared sections of irradiated plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2. Calculation of preirradiated density of sheared sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3. Instability of UAl phase 2 during plate processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4. Thickness measurements of irradiated plates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
5. Comparison oi metallurgical core thickness change with immersion density change and plate thickness change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6. Image analysis o f voidage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
7. Comparison of core thickness change during fabrication and irradiation . . . . . . . . . . . . . . . . . . . 15
8. Blister tem perat u res . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9. Measured pit depths and calculated maximum total pitting corrosion . . . . . . . . . . . . . . . . . . . . . . 36
10. Relative radionuclide activity of the twelve plates in counts per second for the maximum, average, and punching positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
11. Ratios of isotopic maximum gamma counts per second to those of the burnup

- pu nch ing positio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

12. Mass spectral isotopic ratios for ELAF burnup samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
13. Burnup of ELAF fuel plates from isotopic ratios, peaking factor, and PDQ calculations . . . . . . 42 I

i O

f vii

ACRONYMS AND ABBREVIATIONS AI Atomics International ATR' Advanced Test Reactor DOE United States Department of Energy ELAF Extended Life Aluminide Fuel 4

INEL Idaho National En6 ineering Laboratory MITR Massachusetts Institute of Technology Reactor MURR Missouri University Research Reactor NDT Nondestructive' testing SEM Scanning Electron Microscopy

  • l l

i O

viii

!, _ _ _ . _ - - . . _ _ . . . , _ - . - - . _ - - - - - - - - - - - - - - - - -- - - - - - - - - - ~ - ~ ~ ' ' ~ ~ ~ - ' - ~ -~~-~~~~ - -- ---

EXTENDED LIFE ALUMINIDE FUEL FINAL REPORT

- 1. INTRODUCTION The Extended Life Aluminide Fuel (ELAF) Pro- be fabricated into the fuel matrix, which may

. grami ,2 conducted by EG&G Idaho for the accommodate fission products. The UAl, structure Department of Energy, University of hiissouri, and has exceptional tolerance for fission gas retention, hfassachusetts Institute of Technology had an ahd burnable poisons can be readily dispersed in objective of determining whether fuel loadir.g and tiie fuel matrix, burnup limits for fuel elements in university research reactors could safely be increased beyond Uranium aluminide fuel plates with lower fuel the limits presently allowed by reactor licensing loading than the ELAF plates have been success-restrictions. For the program, 30 fuel plates were fully irradiated to fission densities almost as constructed to a maximum fuelloading that could high.9,10 The ATR fuel plates containing princi-be produced on a commercial basis. These con. pally UA1, 3 range from 40 to 60 wt% UAl,, while tained UAl2and UA13 fuel (UAl,) cores, with maxi. plates described in the literature 10 contain 45.5 or mum boron content as used in the Advanced Test $4.5 wt% UAl 2, or 50 wt% UA1.3 These ELAF Reactor (ATR) at the Idaho National Engineering experimental plates contain 64 to 73.3 wt%

Laboratory. The maximum boron content was UAl,-principally UAl2 , or 67.4 wt% UAl,-

incorporated to reduce initial reactor reactivity. principally UA1.3 This fuel loading corresponds to The UAl 2fuelcore was used to gain higher uranium the presence of the brittle constituent of 40 to content. The test program was planned so that the 50 vol%. This introduces the question of whether fuel plates would be irradiated to a maximum fis. the fuel core will retain a sufficiently ductile behav-sion density of 3-4 x 102: f/cm3 (about 50% ior during irradiation to resist blister formation, burnup for the 50 vol% fuel plate cores). This The recent rolling test program at Atomics Interna-burnup is more than twice that presently allowed in tional (AI)ll indicates current technology can be university reactors. used to produce quality fuel plates on a production line basis, and the eminently good irradiation per-The UAI, dispersion fuel system was devel- formance of the UAl fuel in test reactors 9 and oped3,4to meet a need in the high flux, high power experimental plates3 ,"4,5,6,7,8,10 indicates that Advanced Test Reactor (ATR). Several features of failure should not occur in the fuel, the UAI, dispersion fuel system are reported5 ,6,7,8 to extend its performance capability in high flux Preliminary reports2,12 indicated that the prin-reactors. The powder dispersion causes voidage to cipal problem would be pitting due to corrosion.

O I

2. PLATE DESIGN AND IRRADIATION HISTORY Fuel plate dimensions were selected to fit the 2a plate temperatures were 395 and 407 K, respec-ATR I-hole configuration and to provide the plate tively; these decreased with operating time.

area required for testing. The 12 plate configura-tion for a test insertion is shown in Appendix A, During the irradiation period, the 30 plates were Figure A-1. Thickness of plates and cores, and inserted in the reactor in groups of 12. Until the

  • plate construction methods were selected to match end of the period, each plate was removed, as ~

the Missouri University Research Reactor (MURR) required, in order to inspect for corrosion pit depth and ATR fuel. Extrapolation of the test data to a (Figure 1). If the corrosion pit depth of any plate .

1.524-mm (0.060-in.) plate will provide MIT with was estimated to be approaching 6 mil, that plate the required supporting data for extended fuel was removed and a new plate inserted for the next burnup in the Massachusetts Institute of Technol- reactor cycles. Eleven impection intervals were ogy Reactor (MITR). recorded. At the start of the test program, three plates failed by pitting corrosion after 172 full The finished plates measure 25.4 1 0.127 power days.12 x 317.5 t 0.762 x 1.27 10.025 mm (1.000 10.005 x 12.50 10.030 x 0.050 t 0.001 in.). Neutron flux and burnup calculations were made The fuel core dimensions are s20.32 x 266.7 with the PDQ neutron diffusion-depletion pro-x 0.508 mm (0.8 x 10.5 x 0.02 in.). A 9.535-mm gram through the irradiation history of the fuel (3/8-in.) hole centered in the top end of each plate plates. Two-dimensional XY and RZ-4 energy provided a means for individual plate removal in group PDQ problems were developed to model the the canal or hot cell, tests, in the burnup calculation for each test cycle, a correction factor was applied so that the calcu.

The UAl, powder was prepared, and 30 fuel lated thermal neutron flux matched the measured plates were fabricated by AI. The U-235 enrich- value obtained from the flux monitors, which were ment was 93.0 t 1.0% for all batches. Chemical placed in the test and removed after each test cycle, analysis of the JF and JJ blends is given in Appen-dix B. The metal impurities were less than 0.3%' The extent of burnup from these calculations was with no individual impurity exceeding 600 ppm. used, along with the inspection for pitting, to guide No free metallic uranium was present in any pow- the test termination for each plate and for the end der samples as determmed by x ray analysis. Other of irradiation. The goal of the program was to core and plate data are given in Appendix B. reach a maximum burnup of 3.3 x 102i f/cm).

Because of peaking, expected at the sides and top Nondestructive testing (NDT) inspections for r bottom of the plates, the calculated peak burnup nonbond and minimum cladding thickness met the d f irradiation was allowed to reach accepted criteria of the ATR Fuel Element Specifi-2 1 /c

  • cation.13 Fabrication was made according to speci-Gamma ray spectroscopy was done on 12 plates fication ES-50607A.I4 ggggggegg wg composition group. The gamma ray spectroscopy 2.1 levadiatiori showed some peaking. The extent of the peaking on the gamma scans was limited by the size of the colli. .

mator and scanner characteristics. The results of Irradiatien was begun in the ATR l-9 facility in the gamma ray scanning will be presented in Sec-July 1981, and continued in 1-13 until June 1986 tion 3.10.

(Figure 1). The thermal flux in the facility varies

  • between 3 and 7 x 100 n/cm 2s. The peak gamma Radiochemical analysis for burnup was made on heat in the facility of 1.55 W/g was used with cor- the twelve plates selected for highest burnup from rosion film estimates in the MACABRE computer the four composition groups (50 vol% UAlj, code to calculate maximum fuel plate temperatures 45 vol% UAlz ,40 vol% UAl z, ar.150 vol% UA! 3),

versus operating time. The maximum nominal and The analysis is given in Section 3.11.

! 2

aw a m mo oo- r.,s.

N N

$ vesietposas so pua j

. s s%

e s .

a s %,, i i

S s E j

n i s a.f .1 ,

s % g r 1 "j 1  !

! i l } }

I la

  • % i j  % ,, ,

E i

's -

\

i !r 1r !r 1r  !

( l1 581889582lHE5B555lH958595l5858055 l

[  :

i k

! 3  ;

3. TEST EXAMINATIONS Twelve plates were removed from the reactor on June 23,1985, and allowed a decay time to cool 3.3 Dimensional Measurements before the 27 plates were shipped to the hot cell for Thickness measurements were made in the canal, measurements. After each inspection period, those plates not reinserted in the reactor were stored in using a dial indicator, and in the hot cell, using a -

micrometer. The thickness measurements in the hot the ATR canal. The test examinations for this report included: visual examination and photogra- ccH were made before and after removal of the oxide. The results are presented in Section 3.4.1.

phy; dimensional measurements before and after .

oxide removal; oxide removal; immersion density; metallography; scanning electron microscopy; pit 3.4 Immersion Dens.ty i and replication on fifteen plates not selected for Swelling destruct tests; gamma ray spectroscopy; and radio-chemical analysis for burnup. He immersion density of the samples (2 x 3/4 in.

sections) sheared from the core region from each of the 3.1 Visual Examination and twehe plates (Figure 3) was done by the method described in ASTM B 311 (1979). The density (D) was Photography calculated from the formula:

Visual examination of the plates revealed small D = AE pits and corrosion spots with some scratches due to ^'O handling. Typical surface appearance of the irradi- where ated plates, before and after oxide removal, are shown in Figure 2. A deep pit in the side of plate A = weight of specimen in air (g)

No. 004 is shown in Figure 2(c). The depth of this pit will be presented in Section 3.9. No blistering or B = weight of specimen in water (g) oxide spalling was seen. The oxide thickness will be discussed in Section 3.3. E = density of water in g/cm3 (20*C for all samples).

Corrosion and pitting behavior is discussed in Section 3.9. The dry and wet weights, and the immersion den-sity calculated by the formula, are given in Table 1.

3.2 Oxido Removal The preitradiated density f r the sheared sections was calculated from the core and plate specifica-tions for all fabricated plates from Table B-1.a The Oxide thickness was measured by eddy current calculated, preirradiated, sheared plate density of technique on 12 plates in July 1982. Additional the sections was obtained by using the deburred plates were measured on December 20,1984, and core compact weight, the core volume from the at the end of the irradiation on June 26,1985. The void volume measurements, and other data as given oxide thickness increased with time in the reactor, in Table 2. The plate core thickness can then be cal-as expected. Only normal oxide thickness occurred. culated from these values, and the core surface area -

The values are given in Section 3.4.1. In the hot obtained from radiographic fuel core measure.

cell, after the thickness of the plates was measured ments of the plate.15The calculated, preitradiated, with a micrometer, the oxide was removed and the sheared plate density and the plate core thickness ,

plate thickness remeasured. are given in Table 2. It is noted that the plate core thickness obtained is less than the average metallo-Oxide removal from the plates in the hot cell was graphic core thickness for the sample from each accomplished in a solution of 20 g of chromic acid composition group. Since the production plates (CrO3) and 35 ml of 85% phosphoric acid in one have been hot rolled and blister annealed, relative liter of distilled water. The plates were held in a holding rack and stripped in the boiling solution until the oxide was gone (about 10 minutes), a. Appendit B.

4

I i

users,o,,,,,,.....,,,,,,..... .

i b

c L a- l h[-}

.u:

)

  • 1
  • g gw. f A c.
,9.......-,_, .-

1 --

I (a) Plate 016 before oxide removal nI IwI n.,nux i 11 I I ~. I I .I i 1111111.!LLLL1 -,na. A *D.

T (c) Plate 004 before oxide removal

', ,', with deep pit on side of plate

.. .g . -- m .m s

.f. ~ g( .. 3

( q; - -

u, 3 .

3

-:,gh.sg;a e - w -

j . ;-

(b) Plate 016 before oxide removal j' $ [, ;

nuesueurs r ii; , . - .

1

'l'.

Lo k

TV Rt Ir .\  !'

+, >J V'+ o, f ',k; d

. ~ . .

lt.3 .

- \ -JF r

3

{"L' (d) Plate 018 af ter oxide removal 'I 9 f

.. ._ ._. . . _ _ _ . , jf

-. p< . . - - ,

., ee y

I

, (f) Plate 013 af ter oxide removal i

_-i

  • 31

~ t

, ~

(e) Plate 016 af tor oxide removal Figure 2. Typical surface appearance of the irradiated plates before and after oxide removal.

l i

I

Serial

/ number

/ Top end of fuel plate .

Legend

. _ . _ /. M = Met Sample (5)

BU = Burnup Sample D = Density Sample (3)

U h,//

j I,.

XX d

B = Blister Sample l

-l 1.500 XX = Dogbone Area (2)

/ /'//= Scrap

-l

,, //[( U Met samples to be mounted so polished surface is d  !

0.750 2.0 D closest to density samples 10.75(4) 4 Jl 1 .25 M 0.375 g 7gg mure ham amaW

-0.500 ff-,'

B Fuel core outline (4) l B

I Region of the fuel core within 4.0 0.160 t e and one-half inches from its ends, 6.380 where thickening can occur during the i 0.820 0.095

  • 0.680 ^ 2 places (4) rolling process.

U-e1 0.375 t-+2 places, 0.75 j ' i '

f2)The window-shaped aluminum I d M(5)- B XX frame which hold the fuel core.

o' 1.7 01 - ((

8 4

r)Burnup samples to be punched axial and transverse center o p y lines as shown.

SD5 g ,,_ ] (4) Reference demension only.

3 places (5) Bottom met sample to be punched as close to BU samples as possible, Scale: None Dimensions in inches 66689 Figure 3. ELAF plate shcaring and punching schematic.

l 6

Table 1. Immersion density of sheared sections of irradiated plates Preirradiated Dry Wet Measureda Calculated Density CSAP PDQ Punchb Plate Weight Weight Density Section Density Decrease Average Burnup Fission Number (g) (g) (g/cm 3) (g/cm 3) (To) (x 10r2: f/cm3 ) Density 005 3.7845 2.6299 3.2718 3.3320 1.81 1.80 1.28

. 006 3.1313 2.1680 3.2447 3.3462 3.03 2.30 1.73 007 4.1006 2.8521 3.2785 3.3297 1.54 1.48 1.06 013 4.2433 3.0061 3.4236 ~ 3.5992 4.88 2.98 2.02 019 4.2186 3.0141 3.4%1 3.6100 3.16 2.13 1.49 020 4.1226 2.9312 3.4541 3.5768 3.43 2.24 1.72 l 022 4.0864 2.8989 3.4350 3.5251 2.56 1.82 1.22 ,

027 4.2564 3.0223 3.4428 3.5081 1.86 1.94 1.36 028 3.9421 2.7715 3.3615 3.5120 4.29 2.61 1%

030 3.8557 2.6951 3.3162 3.4097 2.74 2.25 1.52 032 4.2891 2.9967 3.3127 3.4365 3.60 2.14 1.49 033 3.7788 2.6481 3.3360 3.4224 2.52 2.00 1.42

a. Calculated from the formula D = AE/(A - B) where E (the density of water at a temrerature of 20*C) was taken as 0.9982 g/cm3 .
b. Table 13 plus 10%. The low punch fission density plus 10Vo gives an average fission density equivalent to the CSAP PDQ average (see Section 3.1I).

amounts of the aluminide phases UAl2 , UAl3 and the computed core thickness is lower than that cal-UAI, have changed (there is less UAl2 and more culated from the metallurgical samples by l to 3%.

UA14 than in the fuel powder charge), Table 3. The Since the calculated preirradiated density from the stability of the UAl 2phase in compact IJF038YD metallurgical sample core thickness gives a higher was investi gated by taking pieces of the compact swelling value, these are the values used in coraput- ,

and giving each piece the heat treatment indicated ing the swelling in Thble 1.

(Table 3). The analyses of the pieces were done by x-ray, similar to the powder blend Jr. The as com- The swelling (density decrease) from the immer-pacted values for UAl2 , UAl3 , and UAI,(Table 3) of sion density measurements is plotted in Figure 4 71, 28, and I, are to be compared with those of the for the burnupaof each plate. It is noted that the powder blend JF values for UAl2 , UAl3 , UAl4 , immersion density of the sheared section also gives respectively, of 67,33, and < 1, with U alloy not an average measurement (peaking is seen in the detected. The calculated core thickness from the thickness measurements). A linear least squares core compact weight and volume is lower than the analysis for the PDQbf ssion density (Table 1) metallurgical sample for each group by 4 to 10% gives an equation (Thble 2). This difference in the core thickness is attributed to the lack of stability of the UAl 2phase during plate processing and the consequent growth of the core thickness. The calculated preirradiated

a. The burnup was taken from the nuclear calculations. It is sheared plate density is dependent upon the relative approximately the same as that measured for the burnup punch.

core and clad thickness. This dens.ty i .is given

. in ins times the peaking factor. and is the bur nup value used for all Table 2 for the metallurgical core thickness of the the figures and text except as otherwise noted (especially Sec-metallurgical sample plates, as well as for the calcu. 'i "' 3 Il *"d 4h lated core thickness. The calculated density from b. A two dimensional neutronics diffusion code.

7 .

t

e

, Table 2. Calculation of p eirrad:ated density of sheared sections t

U Determs Aeovn Metallurgsta8 I Cese Cores Core Core U Denary Pmtra&ared Core' Cla#8 section Pmrradiated' Core Pmrra&ated8 Compac: Whene Compact Ra&ograptus Cere b U Density a'cm8 Place Clad %cight Weight %ghs Centulated Thdaess Calculmed Plase %ght V, Dennuy Surface Area Thackness neight 3/cun Core Th a nen Thamese per per per Denmary For Group Deamsy Number (g) tcin4 s 'cm3 (cm3 tcm) (cm) Core sIO2 ' tem) terns em' crn? car (g/cm4 tem) 'em4 005 11.94 2.W8 4.IN 53.828 0 0540 5.73 8.97 5.04 0.1295 0.0755 0.222 0 201 0 427 3.295 0.0574 3.3320 006 11.95 2.883 4.345 33.618 0.0538 5.73 3.99 5.09 0.1300 0.0762 0.225 0.207 0.430 3.307 0.0574 3.3462 007  !! 95 1 912 4.504 53 465 0 0545 5.73 I.97 5.04 0.1298 0.0'51 P.224 0.264 0.428 3.298 0.0574 3.3297 A=e 2.901 Ave 53 437 Ave 0.0548 Ave 1 98 013 13.10 2.998 4 570 34.210 0.0!!3 7.93 2.65 6.78 0.1295 0.0'42 0.253 0202 0 455 3.507 C.0667 3.5992 019 13 66 2 956 4.628 53 996 0.0547 7.92 2.68 6 86 0 1318 0 0771 0.253 0.2ne 0 462 3.508 0.06t7 1.6100 1

020 63 69 3.002 4 540 53 944 0 05 % 7.92 2.64 6.77 0.1328 0.0'65 0.254 0.208 0 442 3 472 0.0637 3.5768 Ave 2.965 Ave 54 047 Ae 0.0552 Ave 2.66 022 33.01 2 860 4.550 53 159 0 D538 7.!2 2.4% 6.37 0 8275 0 G757 0 245 8.206 4.458 3 474 0.0572 3 5255 027 I1.03 2 891 4.5C7 $3 593 0.C539 7.13 2 47 6.32 0.8293 0 0754 0.243 6 205 e.448 3462 0.0972 3.5081 028 t3 ne 2.877 4.519 53 541 8.0537 7.12 2.47 6.32 0.1295 0.0738 a.243 0.206 0.449 3 476 0.0572 3 5120 Ave 291 Ave 53.432 Ave 0.0538 Ave 2 44 2 OM 82 !! 2 377 4.348 53.tM) 0 0442 4 12 2.20 5 63 a.1313 0 # 776 0.234 0.213 0.447 3.38' 00%I 3 4097 032 ilSi i s45 4.39) 53 055 0.05 4 6.32 2.22 5 68 0.8300 0.072 0.236 0.240 c.444 3 M4 0.e%1 3.4MS 033 12.50 2 S'S 4 348 53.593 0.05 % 6.32 2.20 5 63 0.1295 0.0759 0.233 0.206 0.439 3.391 0 0561 3.4224

, Ave 2.826 Ave SL246 Ave 0.0538 Ave 2.21 a Co e schem % calcutsted fr6am core and phwe data. Appendia B.

~

to Core th.ctws equah core volume &wided es raduW.= surface area.

c. Cme wa;gna pcv cm2 equais cose shdacu nines core wr:pect denutv.

j d. CLd weighs per cm 3equeh cia.i ehdacts umes Al Aemi densay (? 715 g 'em4 j

j e Preire=&ated cakulated denuty equais accis um#v per cm2 ew=$rd by ptme thdace sem).

1 j f. Metallu gran core thdeen los 3 cup is given se Reference 5. Table 32

, & Pmnad.ded akulaaed Jessidy f e= meu:!tergialcore thidness.

d e

+

4 i

1 4

4 4

e e

  • 6

_,.ym -- . , . , . . . . _ _ - . . _ m .. .. , .._ __ _ - - . . , . _ _ _ ,

^

l I

1 l

l Table 3. Instability of UAlaphase during plate processing 5 Relative Amounts of  ;

Aluminide Paase '

Sample

. Number Heat 'ilreatment UAI, UAl, UAI, 0381 As compacted 71 28 1 ,

03811 Outgassing cycle (500'F,5 hr) 74 25 I P

038111 Outgassing plus hot rolling 35 60 5 (910*F,2 hr) 038111 1 Outgassing plus hot rolling plus 20 75 5 blister anneal (925'F, I hr)

Typical ATR Before compacting or heat treatment 8 68 24 Powder Blend s E % = -2.13 + 2.37(B) '

V The correlation coefficients, r, of 0.93 or 0.91 with correlation coefficient, r, of 0.93, whne B is indicate that t.he data from all the plates fit the the burnup in units of 102' f/cm .l The regression equations very well. The telt.tior. ship indicates aa analysis for the punch fission density plus 10% induction period for swtlling equivalent to a fission (Table 1)is density of at out 1 x 10 ' {/can2 . After this induc-tion period, the slope of the equation of 2.37, E % = -1.82 + 3.14(B) r 3.14, corresponds to e salue of 2.6 noted l'y V other investigators9 ,10 for los temperature low I' hurnup fuel plates. The slope correspongts to a low i

6 , j g i g i 3 g 4

  • 50 Vol% UAI3 5

A X 50 Vol% UAl2 o 45 Vol% UAl2 0 g a 40 Vol% UAlp -

9 4

  • X X

73 -

4 e

- s, 4 o t

D 2 - ~ e e

1 I I I I I I I I I L I O' e 0 1;0 1.2 1.4 1.6 1!3 2.0 2.2 2.4 0.6 9.8 30 3.2 Average burnup (x10-21 t/cm3) l'irum 4. Core swelling sersus burnup from imrnrsion dsn.ity.

9

_ _ (

6 relative tton;'c yclume increase for the fis sion tra- for some of the plates, so that the reference plate m(n's (trosmutation produds). thickness instead or the origint) plate thi:kcess was

t. sed for the core shelling (Aut) calcuhticin for 3.4 S Swelling Deterrained fom Thickness these plates, as inJicated in hS'e 4. The core swell.

Meesuresnents. IFA tceasu:tment of pla:e thick- ins is calculated from the differert:e in plate thick- '

ness was madC in both the hot c611 and in the casa! cess (At) divided by the core tUckness (t) take 1 for t iin the het gill t efore sad eftu oxide stripping, and the composition group. -

itt the eens.I before oxide nripping). In the canal, the oxic'r thickn:ss wan measured by eddy currcn: The micrometerincasu eicents showed a reaking teciva!aue, in sne hot cell, the thickpess measare- in swrUing a osa one side of p ate 013, wiuch was ments rere made with a tnierciveter, in the canal, related to the be.tnup. This peakir.g also can be seen gg g gg *'

tke thickness racasuseveals weie rnade whh a dial gage moumed on a fix+u e. Because of va,nauility (Section 3.10). This peaMpg was looked for in the in the measurements, the thiekness measurements of oh Mie n e e

^

were taken to be less securate than the hot ce!! mc.- surementswcre taken alonF cach side ard eiown the suremen;s. The wid'h of the plates efler ::Tadiation middle of each plate; howe /er, because of' the pos -

, g svas meascred in tne hot cfil and da the caeal.

Withm the accuracy ci sne meadring techr.iqie, were less than 0.002 cm and not tabulated. For no it. crease it width was detected. Afost of the p,g,.013, Petling ar otnited to a 0J1)3 cm differ-plates tad a width 8 css than the origir.al width of Mo a crage'of 10 measurements (as indi-1.005 to 1.00$ in. Th3 decrease m width was cared foi the high side und high spot, 'Cible 4). i Since 0 001 :m is the pnit of sensitinity of the  !

cttributed to coriosion and to s'Umt the r'ates m and ou: of the irradiaen fiture for mspedion o &M hi 'M .8 h '

(which was conducted 81 times duing the irraha- the measuremets is a inxhematica! co menience.

tioh). lium the Iaci tof a width incicase,it is postu- The core swellica (escept for the high side of lated that practically ah the swelling increase oxurs plate 013) was plotted in Figure 5 versm the PDQ 1 l in the til:kness directioc The thickness was trea- e.verage burnup, ar.d esamined by linear least

  • saredfor ailp:ates (exccpt plate 013)la 15 pbces (5 squares fitting c urses. When two paints that
abag the length ar/J 3 on the width) and in one appear to have too high a sweliing ir compariscra '

referepce pmitior. (at the top of the r!stc) betone wth bi;inup (due to inaccuiacy in the measure-1 and after oxia stripping. Fon! ate 013, the thick- mot) are eliminated ! plates 0)! ar d 010), the i

1ess was measured in 10 places and avetaged. How- swellig for the remaining 25 plates can be repre.  ;

evar, on the high side of the plate, the results are sented by the equa00n averagsd cerarstify and a high Wot is also siven *

(Dble 4). In otaer plates, peaking in ti; iciness was b 0 = 0.25 + 2.35(L) I less than 4%. t -

i where B 11 the 'iverage burnup in units of The hot cell plate 'inickn:ss measurements, as 3021 f/cr9. The orr+'ation coefficient, r. of 0.92 well as some canal plate uxiQ thickness measure-indicates a good fit of til the d:tta,50 that ihe suell.

rqms by eddi current, are given in Table 4. The i ing of plates in the fain groups popear to b- sirrilat.

, eddy e.irtent thicktss measurements and the.: anal Examina:ian by regression analysis of the punch Idate thickness measurements tcJed to be slightly fission density gives c

i larger than the hot cell measurements. The plate  ;

thidness meetsuremente h tne canal were assumed 4t % = 0.33 & 3.3.t(H)

'o be not e: accurat; because of the sadance of the t measurements . lienee, only the hot c: il plate thi:k-ness meearements aregiven in Table 4. T he lower with r = 0.M r. correlation coefficient that is not

  • oxide thickness 4 the hot (ellis pre 3amabl> due to as soci +

loss of wcter of hydration. The pir.te thickness 3.4.2 Core TWrkness Change by hktallography measuredicats in W hot (til wcte or ly ac: urate to The core thickness of the metallography samples O.0dl eth,as indicated in fly co!trnr. for the re'er- at $0X was measu:ed in a'least 10 places, at fixed j ence (poshion a';\% thi fuel) pl>te ihickness, llew- intervals, and averaged. The core thickness change.

ever, Qt fourth p! ace aceuracy indicated in the was then ca!:ulated using the core thickrets oria.nal plate thicknes, measurements is (toubtful cateciated in Table 2. The avergge th'.ekness r i

, , _ _ . . . , . , _ . , , -_ ,.- -- -+- ---+-----r---~~- - - ~ ' " ~ - ' ' * " ' * ~ ' - - ' * ~ - ~ ^-

Tabic 4. Thickness measurements of irradiated platos t

Cre a CSAP Cinal C. side Origind R:ferenes Berare Arter km Or.de TIL 3 ness PDO D kknew. Rati-o t' late l~ late OAle Oude T hkkrwse Chane e Average Ratii 14casurrrie us runchb S ael; ng

  • Plat TLcken Tiwkness StnpNns. Srmping turh sides 1 :/t Burpup r.wsnns Both Tdts Fbsion to fissica NJpl yf, J ij_ J C J L _ ppt,d,_ ,,,,r g ,_ _,jeg,,,, [fiDQ M to Burngp in}m) Deytty JMsity,,

001 0.4179 C 130 0 1332 0.1322 f.0, J 41 1.03 4.0 - - -

, T3 41793 C.131 03325 0.1321 0.004 20 0.69 19 - - --

OM 0.1300 J.!32 0? 327 0.111! 0.N2 2.8 038 3.2 0 0ry - -

005 4.t MS - 0134 O l321 0.003 4.8 1 80 2.7 0 016 1.28 3.8 txi6 0.1300 - 6.1340 0.1379 Ofil 3.4 2.3J 2.1 0 008 1.71 1.1 On7 c.1294 - 61324 0.1321 0 003 4.3 f .44 , .9 0.008 1.06 4.1 008 b.1798 0.11 0 0.1323 0 1119 DM4 3$ l.23 la P(Yn 009 tr. 6 3M - 0.1330 0 1121 rto 2.g 05 3.7 0 000 - -

010 9 1310 e 0.1318 0.1320 J.018 1.7 0.77 46 0 007 - -

013 0 1295 - 0 1348 in 341 0.0 17 f4 2 98 2.8 C.030 2.02 4.2 0'$ 0 1300 - 0 3117 0.13d# e.rtM  !.S 1.0) 15 - - -

Ost OM98 - 0.1318 0.I'13 fu t$ 2* 1.53 1.8 0F - -

0.9 0.1318 U.l lo 0.1343 0.1331 0.012 S .6 2.1) 26 0 010 1 89 38 020 0 1321 0.130 0 1.' 3? O132 0 003 98 2.24 2.4. 0.011 1 72 ).4 022 0 1295 - 0.8142 0. ' 3l1 0.021 48 1.82 2.i 0.010 1.22 3.9 024 0.1101 - 1.1323 0. i j l

  • 0 004 2.8 1.13 24 J.0 2 - -

025 C.12 M - 0 13'9 C.1113 00.4 28 a li 1.4 - - -

026 '1 1300 - 0 1328 0.1317 0 011 3.1 I OP 2.9 - . .-

02' O. itrl -

0.1329 0.1346 OMil 4.3 I et 22 0 02% i 36 3.2 028 0.8299 - 8.11 40 0.11 10 0.080 61 2. Al 2.$ 0.015 1.94 L3 029 010) - o.1323 0.112. r .004 3.3 1 06 3.2 0 00$ - -

03P 0.1318 0 13 0.I' 3* O 11.17 OM'. 5.0 2.21 12 0.011 1.32 33 031 0 1308 -

Olllo 0.(3?! u,rt19 6.'i 1.36 3.2 0.019 - -

032 0 M08 - 0 1131 0.1 L* $ 0 002 3J

  • 14

. 2..) 0.M l.49 3.4

01) 01291 - C 5 3.* 3 4IE3 0.0.4 $.2
  • nu 2.6 0 m) 1.42 3. 7 014 0 13l& - 033*9 0.133,* 0007 2.6 f .# 1 f .6 0.fm6 - -

OM 01328 - 0.8342 0.1129 0.011 4.5 0. ' 4 2.8 0.J12 -- -

013 high side J. llf 8 1.1174 V42 14.7 3.0 4.9 - 34' -

rl) hahtrotLN. star t 0 th)0 0.14m 0.0L0 19.1 4.2 4$ - 3flC -

s. The core thkknsis .hante (,wel ng cakulatuniis tissed on a core .hk aens of G 054 em for si' ewcpt the 30 vd% UAlyrar whkh 0 039 crr. mas need (see lable 2). The crismat plate th.dness *as u<ed for all f arcs ekept the e hn ohih the re.frence pla'e mkkneeiis shown.
b. 7hbw 13 rius 10%. ine low puenh rimon tenoty p4510% gws an wrag- Benon mnnit' emn.alera to t% CtAP PDG average Mr Sev6on 3 II

.. rahe i3 sa!ues8and the c iteulateJ core thick ness change is immersion density cFange or the plate Core thick- ,

risen in Table 5; a comparisort witt inimersion ness char gc. S: nee the metallurgical cote thickness dentity and r! ate thickness mwurrinenti. is also charge inclujes char ges duc to reaction of the f uel

. given. It b noted that core thickrien ehr.nec, as w'th tiie cladding, as w:ll as that due to wc!hng, mcarured by metallor aphy, is brger thr) the ti.e ialger values leem reasonabl2. Photographs of plates No.002 and 614, used for tactallogrsphy

~~'

and not irredia ed, arc show n at 50X in Fig lte Na)

a. If sn attemp' h tr.ade to c r reo the e.c* age thi linos values fgnj (h). lshotographs of l h mullirily3 h7 6 the ratin e f the ovJe vriptwd piat t>kt res. f .atc< No. (ATI and 013 ITau 4) va lhe metallnpaphy mes.sured plate lhhlt.eis. tic .lDer irradbHon ale sbcun in I..mure W and $

prctnt thidremtaoge recomes rr we ratidom with rarecs to The veldate or brilt le paase pullo.it during paksh-h ur 4. wirdias of li.e r' ate durir s roiidons aer mentl> rr+ im vp s&r in @otogM th Wfore daces th's ef'cet' heme, tSc eserage meswred me thishnevs f,om ihe m-ta.k.smrhv aas t ud. nr.d ofter liradiation of plate.s front the time 11

Y 8 , , ,- , , , , , , , ,

7 -

2 5 g

<1 s4

=

i .

= 3 _ . _

2 -* -

a 1 -

d 0 I I I I I I I I I. 8 I 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 Average burnup (x10-21 f/c m3) egoes Figure 5. Core swelling versus burnup from thidress measurements.

[

composition group (50 vol% UA1, 3 for plates is seen in %ble 7, the 50 sol % UA12 changes most No. 002 and 007: and 50 sol % UAl 2 for riates during plate fabrication with an Il.8% change in No 014 and 013). An image analysis of the coie thickness. It is noted, however, that th: total

voidage was made as seen in %ble 6. change from fabrication and irradis, tion is about the same as for the other gsoups at 13% total
From the comparison in Table 6 for plates 007 change.

and 013 whl:h were irrad'ated, and plates 002 i and 014 which were not, it is seen that the void vol.

ume has not changed nuch with the core thickness 3.5 Metallography increase due to irradiat:on.

Tric itetallognphy was dore on 3/8 x 3/4 in.  ;

A comparison of aserage core thickness of the punchings from the middle of the fuel plate ,

four groups (.'O vol% UAlg, 50 vol% UAl i,

, (1 igure 1). A ractallography sarep'e was taken from '

j 45 sol % l!A1, 2 and 40 vol% IJAl )2 as deterrained each ot the l2 ptates.The uim of the metallography from the core volucie and radiographic surft.cc was to show the microstructure of the core and

] area.# w th that of the metallurg.ieal core thickness cladding, the clad < ore interface, the thickness of *'

measured before Irradiationd ar.d after Irradi.itionb he core and clad 6*ng, and the integrity of the fuel.

2 ghes an Indication of the rela 11ve stability of the The scctions were examincJ on the tactallograph I

three aluminide phases (UAl 2

, UAls and UAl.). As and on the Sc. inning electron microscope. For the 4

examination, the sections (punchings) were meunted and pclished with 6 and then 3 micron -

"

  • 2' diamond raue. The umples were then polished '

and stehed with hfagomet No. 404440All(hlgO,

h. Table $. I 5 micron, pil 8 9.5 in water). A repolish was

{

i' 12

Table 5. Comparison of metallurgical core thickness change with immersion density change and plate thickness change

Metallurgical Plate-Average Core immersion Core

, Core Thickness Density Thickness Plate Thickness Change Change Change Number (cm) (%) _ (%) (%)

005 0.0615 13.9 1.81 4.8 006 0.0601 11.7 3.03 5.4 007 0.0625 14.7 1.54 4.3 Avg 0.0613 013 0.0634 14.6 4.88 8.4 l 019 0.0628 14.8 3.16 5.6

! 020 0.0605 8.8 3.43 5.8 Avg 0.0622 022 0.0607 12.8 2.56 4.8 027 0.0605 12.2 1.86 4.3 i

028 0.0628 16.9 4.29 6.5 l Avg 0.0613 030 0.0601 10.9 2.74 5.0 032 0.0593 10.6 3.60 5.0 033 0.0597 11.4 2.52 5.2 Avg 0.0597 l done by hand on one sample, and etched with 15%

UA13 and 50 vol% UAl2 at 200X and 500X.

l sulfuric acid /85% hydrogen peroxide. The results Although the cladding microstructure shows a of the acid etch will be described in the scanning tang!cd structure due to irradiation damage, the

, electron microscopy section. integrity of the fuellooks good. A fission fragment The thickness of the core and cladding of the stoppng zone (at & NeMad intedac0 can be seen, which is about 10-20 microns in w,dth.i This 50 vol% UAI, and 50 vol% UAl2 is shown in Figure 6. The thickness has been discussed in the z ne etches lighter than the 6061 Al claddmg. The section on thickness changes. The voidage before p lished and etched (Magomet) fuel surface looks and after irradiation appears to be about the same s und, so that few bubbles can be seen in the sur-at 50X and was measured by image analysis as face at 500X. In Figure 8 (a) through (d), the about the same. Thus, although the voidage has micr structure of the polished surface of the not filled with the swelling, theintegrity of the fuel 45 vol% and 40 vol% fuel core composition can looks sound (free from blisters and cracks). also be seen at 200X and 500X. Again, the micro-structure looks sound. No bubbles or cracks can be Although the metallography samples were seen in fuel grains. An effort was not made to dis-

, punched to include all of the core (Figure 3), so tinguish metallographically the relative amounts of that the effect of the burnup peaking might be the three phases UAl , UAl and UAl4 in the fuel z 3 examined, it was not evident in the metallography grains, since the plates were irradiated at a tempera-l samntes. The fuel structure looked sound at the ture (120'C) making this distinction difficult. The ends o t plate width. Scanning electron micros- Magomet etch just makes the phases discernible copy was more limited in the extent of scanning (Figure 9). It was expected that reductions in the that could be achieved, but no effect was detected relative amounts of UAl2 and UAl 3, because of by SEM The structure looked sound except for reaction with the aluminum matrix, would occur as some small bubbles which will be described in Sec- shown in Table 3, and as shown for plates irradi-tion 3.6.

ated at low temperature (70*C) in the literature.10 The microstructure of the core and cladding i, As long as an excess of the aluminum matrix is shown in Figure 7(a) through (d) for the 50 vol% present and bubbles and cracks are not seen, the 13

i l

I i

i e

s .s ,

,,_ ,. r ..S ** < *l :* 9

'h. Q :~ik b '9' - '

b ..

';s.-+ MC.:Q:WW.k'A5. PC * @ ,2$hlf. ,

.- ~

l 2

TMhi$;Ti.*:;" J. h:g

\ i l

f.Q.?i@*

iy ,. ; ;

,. 4. ..--,.~:, :

t M M* M @ -Q-f u 1 *~,= f,, ., *.';- s* * .> w

m. _ r,;. ayzz . .,. m, g. w: - w c/ +-

!s

" g g~.p,;t.* h~ '., ;.l'..h, ';w

$$$$M a.eh $*. Q

  • s 's,;",$

,, Q L 6-

~

.w,

.~

(a) Plate No. 002 before irradiation; composition (b) Plate No. 014, before irradiation; composition j 50 vol%, UAl3, void vol. 6.2%,50x 50 vol%, UAl2, void vol. 8.3%,50x l E '

)[-b'

~

O* f*;

'h f'Y."..\ l s , ' .;.

I j:7 ;.9.,,:'lLi,(:,lG.l5'.y4:,.~?-59c'.h'.;$k',a

& .~ ~. _:

< Vo=..-p g' 4 .-

, (.' . . . '. .

.,:'Q~." X-p;9~e

.. ,~Xis  ;....*-.
f :,>s

,,n >

" g:',,%.:*: " " ,'j s

s, W.. ' .W

x;  ? , ,, * . ,

. ... . . ., ., . 7 ;,.

^w.

--w. - .*;,.

~W 44, . %: ,-:

.* y#

, .[ .~M C. --

s,Lis '" ' 4'. * (.'

? ' ' , ,

  • y:*

.y.,; s  ;;g;

- W,4,3 4 3 4

. i.' .,

. .. .< N . - ' E. , ' -

(c) Plate No. 007, bumup 1.48 x 1021 f/cm3; (d) Plate No. 013, bumup 2.98 x 10 21 f/cm3; composition 50 vol% UA! 3, void vol. 9.1% 50x composition 50 vol% UAl2, void vol.10.1% 50x Figure 6. Plate and core thickness before and after irradiation.

l O g

Table 6. Image analysis of voidage Plate Plate Plate Plate No. 002 No.007 No.013 No. 014

, Void vol% 6.2 9.1 10.1 8.3 Void vol% by 7.5 t 0.4a 8.04 11.04 11.01 t 0.8b Reference 15

a. Average of group (9 plates) for 50 vol% UAl3 .
b. Average of group (7 plates) for 50 vol% UAl2.

fuel core behavior is judged to be sound. An exami- are relatively free of any defects (voids or bubbles) nation of the effect of the reactions was made by at 600X, and -. ter magnification (2000X), Fig-Scanning Electron Microscopy (SEM). ure 13(a). Back .er emission (Figure 12) shows a differene n. > ntast due to the three phases 3.6 Scanning Electron Microscopy (UAl 2, UAl ,3 nid UAl ) 4as was seen in Figure 9 by metallography. The identification of these three phases was made by Kevex-ray (Figure 13). A grain Scanning electron microscopy was performed on in Figure 12 (magnified to about 2000X and the fractured surfaces of the fuel as well as on the pol-regions identified as 2,3,4) and a phate of U-O ished and etched surfaces. The examination of the was examined by Kevex-ray and indicated in fractured surfacesl6 will be discussed first. Small punchings(s2 mm)of plates 013 and 032 contain. Figure 13(c), (d),(e) and (f). The regions were iden-Ing UAl ,2 and plate 006 containing UA1,3 were tified respectively, as UAl2 , UA!3 , UA1, 4 and a obtained.16The punchings were fractured through phase of U, probably an oxide. The presence of the the fuel, and the fractured surface examined on the U phase is surprising, although present in small SEM by secondary and back scatter emission, and amounts (<1%). Small t ubbles were associated by Kevex. ray emission (Figures 10,11,12 and 13). with this U phase. It was not detectable in the pow-The secondary emission photographs of plates 013 der blend, nor in the compact examined by x. ray and 032(Figures 10and ll)show patchesorvoids, analysis (Table 3). The U phase is found in void or small bubbles, and patches of ductile tearing of regions, where accessibility of aluminum is limited, the aluminum matrix. The centers of the fuel grains or trapped oxygen would be present. It was also Table 7. Comparison of core thickness change during fabrication and irrad'ation Calculated Metallurgical

. Average Change Change Principal Core Before After After After Total Plate Composition Thickness Irradiation irradiation Fabrication irradiation Change Number of Group _ (Table 2) _( Thble 2) (Table 5) (%) (%) (%)

006-007 50 vol% UAI, 0.0541 0.0574 0.0613 6.1 6.8 12.9 013-020 50 vol% UAl 2 0.0552 0.0617 0.0622 11.8 0.8 12.6 022-028 45 vol% UAl 2 0.0538 0.0572 0.0613 6.3 7.4 13.7 030-033 40 vol% UAl 2 0.0538 0.0561 0.0597 4.3 6.4 10.7 15

, .. , 4 . ,

, . s. .

. . . i. .

/ # s s _ -- ,.

,-.4 . . . ,. . g -f

.. Os PI:

% N

.g i.

f-

.. e ..

., $e " .

~,

- . AC.l . * >- ., .?I-l '$.4  ? :'*

(; s. . i , A. - . A, ,0. s ..

,- 4-g-*. *..

..? i - 4.. s p .

.ip

,s' c 3 ,, f-- .%7

,' '*).

.-s

. . s.., 4. y . . r .... , .

. ,. <_; m yj

w, . . .

.y eg .

s #. , y. ,- .

.. . % T l *... . .. ' b , . ,: ';, M . ;o '

~ # .

q .I .A '* 4 , , . A a'

{ 'y on

f. ,, f Lu - l' - m eas FCt-,n v: .:. a~ :h .

(a) Plate No.005, composition 50 vol% UAl , bumup (b) Plate No. 013, composition 50 vol% UAl2 , bumup 3

1.8 x 1021 f/cm3200x 2.98 x 1021 f/cm3 200x g g.  % ,

v N., ' .~:..;. ,,_ , ?n. _ ,.

, , ;. s

. +-<

p

e. .,,a  : .& #
  • .va. c &

w :4. .-

g 4

. Ya c %' . [. 'ik'~ ip. ,. .y M 4 '.7

'p t

.f t~.

,g a ,-

l [.  %,.

.. .~

-e b N " ,. e, .

. 4' , ..

t- ,, '54-

. - 1 .. Ni

g. .. gr  ;, .

.. *j.

[_.

Gy -  ;

j

^ d* *~

  • g *4;e [  ;;; i
  • a f'"

.* b'. Os-m_m -

_;m. __,_ ,E -[j (c) Plate No.005, composition 50 vol% UAl3, bumup (d) Plate No. 013, composition 50 vol% UAl2 , bumup 1.8 x 1021 f/cm3500x 2.98 x 1021 f/cm3500x Figure 7. Microstructure of core and cladding of 50 voI% UAI,.

q% y y- <c- r sq .+ ,,v. ig- , g -

_ f . =* p - y %[ ~,

(*'

n

}gn. *'we?Q

s ,.;

' ., **R)  %}': % ' .- - - ,;j r .

_ ,,, ~y , e;

. ?, . ,

, ^ -

p 9 ' * .[ - -

G ,

% ' _q ,

YT [ I . M *j k 4 ['$ .A,. *' a ,,3 $ ' -

[

w

+:

,,. v,n ,

.. < , r , c .a.

> , s k

  • k, .*a a x (o

m

'.g.i %. 4 m.

-. <ik8'[ ,

~ i s

,. . ')

d

,i ,. 1.

f p... L.

, e ./. .*[,.% , . - - . ,

j. , , .

f~ ' I {p f

  • ~

! 'j

., w.q-t m

4 't W.g

+ , : y-

.- v. . H ,4 -

  • c 45 y Q-&s y- ...

- Q :

.y y. ] ,. px ._

f...'~L' 7Q. f.&; + .A: ' f f y ; R . '* f , , j: Q(~~.3 [m'l f m:[ lt l~ 9.~, ,

,l

. '" ~ w 4' . .

.%. ..; p ; ; n , ,

h lt ) .  %

~ ,

Q A*u; k 9:^

V; 6 < gfL:>:&. W $, s 48 *-

tk :j ' S*l, i. g. . ,/\ % .g t w,,, .

3 m_

e . .' t. .*f , C p

p r;.r, .c ' ,,gx ,

m. p r.  % .- -

m.

~

.H

. < ,. s . .. . g.,y 3 . . 4 w in ?i .: $; .=s W S: -

  • E f -

(a) Plate No. 027, composition 45 vol% UAl2, bumup (b) Plate No. 033, composition 40 vol% UAl2, bumup 1.94 x 1021 f/cm3200x 2.0 x 1021 f/cm3 200x r, . c .e .. y,.. . .,_. _.-

. v '. .. ' , - -

,g. . _ , '

1 m ', l*

& 6,) .

-a = <

? P.. i Lj w.

,g.

  • 3 *

,g,...

~ ~'g s,;o,' ', . ;t , **

s y, <

N0, ' dw' q! ;p .j , ,4 .-

, . t-', ,

j~f(( '[ fj[ O, D; ph ,<-^

~ yk '; yf G,  ;

'L.

W ~
r.  ; sm, . .' , , u .~.+, y2

~

y:, 2,,,1

. . . 2 y+ '

93, g m.

j ,,

.t < .

.-.  ; .,* ""* 1 . :. . .a r

.. .. .s .4 - -  % ~

W.-79  :' p..

.m n. v ..

6, ((i X  !

J1' p  %

,g?.

c 1 >/ u-;-

- ~.y c

r

  1. . I-7, py- ,

g- .*

di)

H pt.gf

ss{  ;

3l/c, t i,;fp Qi . . 4~/g:q;J.tW;? m

' ..f~ e qR '

N m;.g, &

, ~;g ag 4's , ,

.x s lb.ghws g:.+_ .

,n'

.-N. -

y ,

y

., ei y

, -. Q q _.yg:( pq ,

.s 4 _,. 5_.

li s -t.6 L ed.A . ,.

,, W~^ #

' ' %;te&&.

a. -We -Qdb 6 MAO  % ., M.m ne . : ~.x * .-

(c) Plate No. 027, composition 45 vol% UAl2, bumup (d) Plate No. 033, composition 40 vol% UAl2, bumup 1.94 x 1021 f/cm3500x 2.0 x 1021 f/cm3500x Figure 8. Microsuus.ture of 45 sol % and of 40 vol% UAlz -

a

'yw(r, .s;v: n ; >.

". . ;:.p. ' ,g * +

ph ' ,.

, p.. ; . 2 ,

a ;<.gy:,

9 , g, , A. ..,w ; re- i p, r .+ sg p.

A . .4, m *y- g. . % ' ",f .

,2 -

s ,

, , v 1,f

',= 't g e

' t '; ,

y'I y,i t ;* Np .-- .a . , a 7 .+

-g . ..J

":=y.G 3

rs*

6.p .,.%,y :1 K; g$ = w . 3 ,r; ( q...-4

y. t g. .

q' R.. , ,, n

~ -

,, ., > e :q 3 + ', ;,, . . r e. z4

W g. 2; y , ,3,. . n 3,. g. e E -

s .'

.s%" , J.

' "J , .g(f l

. f,;; ;1p '. ',.l

,[ W,:r2 $  : . .. , ~ , . : ;. ~ p ..

,e

tc. $ :h .i a / .xn LiG.L. 'C (a) Plate 032 metallograpt'y 200x (g. g - , . , . - ..

~. n. L' -,

.o; i.*. W' M' fA :1-

. %',q,

c,ef',~ ' A ja' A.g,. r-T '. t,.
s 9, v, E . 3 .'

f '; C$ k, .: f, a,i'? rj ~J, ,u X .t x;.+ -',% , s c.'+ , p. , . , - .

,r

~,. ,a - n.

~

. .g. a

. . g.s w: y,' - g. .h. g, 9.. r., ,;y ;) ,.- .. ~N[. ~m

~ ;.:,3

!9.N,. - .w i,;drM .'

,v 3.i Y

. , , . , . -i

\

~<%

s?, <

ls '.;, ~ A.- Q:

_ __.-*r%. 4 n + - .. , . ... i

  • g n. . .1g .;.-4 ,

~

W.:. .. .

W Au t.. 4 1- . atw

~

~

(b) Plate 032 metallography 500x Figure 9. Fuel grains of UAl,in aluminum matrix. UAl ,2 UA1 and 3 UAl,just discernable with Magomet etch.

18

i r

f l

l,

[f?"

,c '

t

72. ' m y' .

~

  • y'if , .- , , ' Yh ,

, 1-

, f- , - ,.- ,

.*,e,  ;:

g -

u  ;' .

9

. ., 4. .

.a s..y.... ,

. ig .. ~. . , , ,

4 - ,

~j
  • ,- i

,.m' p; ~

. 5) ,

n, .

  • 4..A, m,
., o.6 - 4

~

r p ,y '.,q,.

yg'Q_, s* :. . ~ ,m

,. s .

4 4

.s, v

g 4, ~

6 yl_

' ~

r *,

3-

?- '

.- ,+ - . ,: ',

. . ar .

.1 ,

l , , ..

.l 4

.N1 f # ji , ,.

'. 6

O gu, /g s

g4 N -

, ae wa -

  • /

/' '

~ 9

,' * .i , {a*. g.. s ,,e.. ,

i

.)

.~, . t g f ,

. ~, .

l,f m s' ,

k r.

er * ,

' ,t .

."Qf-6* ,

r,

~ -

.7 A?' '

'% 1a_: ,, ..

sm , .

. .) 1:

Figure 10. SEM photograph of fractured surface by secondary emission, plate 013.

G 19

i 1

I l

gy -- v- m. 3 g.g y qn~ ,

x, , .

3

[ J"t_s j. '

. is y . < . f.%w

. . , T {

. cv 'M . t Q

, J -

l y ".- ( -

eg *$

spiaW,

.- , . . , 4

,1

+ 2 ::, '

gs 2 a,

r w- "

e

,Q4 .'., , ,,4 --[a, 4e 4 'y.p.,$ i_  % $-

&,f *Y  ?%9 F

$ / .

p* ,, ,*-n v a ,

~ '

a t.

r

.:n c. - s + . . .

u, .- ,a > . ' '%' L 0 1

~ 4

- as . ..

f j

s

[ , . go J-g e

7 zq -

\, 'i - .

  • $ g

,/

l

{ p 1

./ J

~-

,M ., , / ,

~ b " . ' .+ _'

  • ) _,. -)

criy , .L i s . :- e ~ N. ' ,y 5- >.. , '\ . . a- , l'. ., , , -h ,- 't X- '

C h * ['

. ,, ' . ' e. L d ' ~. * .A g. ' R..g , p - s / s - \' t...

  • ~

g.,0. ' r > Q fs

?

'l; (  ?, '- ', T4' ;, 4 '- / -(= - [ 1

,;<w-  ;- f. .. .

O A,i g - 0.c fl , *:: ; L$a .7 ~ . W.'

'\*. ;  ; h i ..

r-e ._. N. k5a; + N?~ *. Q u,' 3

'- o-

-A, ,, 1 y L +: rs g s. F Figure 12. SEM photograph of fractured surface by back scatter emission (plate 032) identifies region A of Kevex-ray examination. } . s 4 i N E 3 21 r

  • ta r e , y  %- ', '
s. g 4

T C 2 . 2 y . A C. , ~ I 4 2 . 3 y W:  : 2 s . 3 2 . b I1 4 2 ' w y 'i" , fg; . .. (a) Grain A for Kevex ra, examination (b) Another fuel grain l N'" N  ! F5- ' ' g* Y rs. in ravtx-eny ws. 2ern r w ^ (c) Region 2, UAl2 (d) Region 3, UAl3 . .rotx-nas us. 2ero c w FS- i*

  • E " t *av "- 2ero .

,,. i. B A - a M. - (e) Region 4, UAl2 (f) Region 5,U Figure 13. Examination of fuel grain A for UAl2 ' UAI 3, UAl, and U. 22 found at the outskirts of the fuel grains, where groups, as well as representative photographs of reaction with the aluminum matrix occurred; plates of high burnup from each composition pickup of surface oxygen on aluminum powder group are presented (e.g., plate No. 006 from would have taken place. The outskirts of the fuel 50 vol% UA13 ; plate No. 013 from 50 vol% UAl2 ; grains are also the regions where UA14 predomi- plate No. 028 from 45 vol% UAl 2; and plate nates. The photograph of Figure 13(a) was exam- No. 030 from 40 vol% UAl), 2 Figures 14 ined on the image analyzer to determine the percent through 19. Photographs of plate No. 013, after of UAl 2, UAl 3, and UAl 4in that fuel grain. The the repolish and acid etch, are also shown, percentages obtained were UAl 2 ,17%; UA1,50%; 3 Figure 20. The SEh! photographs, with their larger and UAl 4,33%. These percentages are to be com- depth of field at focus, show the fabrication voids pared with those.of sample 038111-1 that had more clearly than the metallography photographs. received the heat treatment outgassing, hot rolling, For example, compare Figure 7(c) of plate No. 005 and blister anneal (925'F, I hr). The percentages of with Figure 14(a) of plate No. 007 (both at 500X). sample 038111-1 are UAl 2 , 20%; UA1, 3 75%; and The low burnup of the 50 vol% UA13 (plate UA1,5%4 (Table 3). Thus, irradiation has reduced No. 007) and the 50 vol% UAl2 (plate No. 019) the percent of UAl 2and increased the percentage of show little difference in fuel damage (Figures 14 UAI, present in the fuel grains. and 15). The four compositions (50 vol% UAl 3, 50 vol% UAl2 ,45 vol% UAl 2, and 40 vol% UAl2) Samples of the powder from UA1 3 and UAl2 com- also show little difference in damage to the fuel position blends were examined by SEh! for any evi- (Figures 16,17,18, and 19). The white bubbles dence of uranium separate from aluminum. The appearing in Figures 14 through 19 (where the Kevex-ray examination showed no uranium sepa- plates were finished with a hiagomet polish-etch) rate from aluminum in over 70 particles taken from are eliminated in Figure 20(a) through 20(f)(where each of the samples of the JJ and JF composition they were repolished with 6 and then 3 micron dia-blends. Variances in the atomic percent of uranium mond paste and acid etched). The cladding in Fig-and aluminum occurred. This was especially true in ure 20(f) shows some etch pits. These pits were the weight percent; however, aluminum was always present in the cladding of all the plates, present with the uranium. SEh! examination was performed on the pol- 3.7 Blister Tests ished and etched surfaces of the metallography samples for any evidences of bubbles, cracking, or irradiation damage. The SEh! surface examination Blister testing is used as a means of evaluating. was performed on an Amray SEh! 1200B, which the behavior of the fuel core with respect to fission had been modified to accept irradiated samples, g S agglomeration. As the fission gas agglomer-The top 1/4 in. of the metallurgical mounts were ates, visible blistering of the fuel plate surface sliced on a Leeco Varicut saw and mounted on a ccurs. The blister test is conducted by starting at a SEh! stem for insertion into the SEht. The surface - furnace temperature slightly above the peak plate was coated with gold (on an Ernest F. Fullam Sput- perating temperature, and heating in successive ter Coater at 100 microns vacuum) to provide sur- increased temperature steps for periods of one-half face conductivity and enhance contrast. The hour. Thus, at a temperature above the third from surface was examined at 200X,500X,1000X, and the last step, the plate section would have been - 3000X on all 12 samples. Any difference in irradia- heated for one and one-half hours, plus longer tion damage was slight. A polishing and etching times at lower temperatures. When a blister is first effect between the h1agomet and the 15% sulfuric discerned, the test is terminated for that sample. acid - hydrogen peroxide was noticed, wherein some of the hiagomet particles were trapped in the The maximum nominal and two sigma plate voids or etch pits. These were small, less than operating temperatures were 395 K and 407 K, 5 microns, and randomly distributed in the clad- respectively, which decreased with operating time. ding as well as the fuel. These white hiagomet par. The initial heating temperature step was at 563 K ticles were eliminated after the repolish and etch f r one-half hour. Since the blister test heating is with 15% sulfuric acid - hydrogen peroxide. terminated after the blisters are visually detected, the blister temperature for a one hour anneal is Representative photographs of low burnup taken as the step temperature before the test is ter-plates (No. 007 and No 019) from 50 vol% minated and blisters are visually detected. The 23 y, 'l4 .

s. .K. .y _

( ~.. . v . - ::5 ? ~/ $. . y ,7 eg <. .,. t . ... . . . . . 9,. m. , ., - - -x . 3 . p) r.A <:

4. -

.' .:; w t. . .r. .. a. Y* _ . . v il *, ng: (

  • V %f "&

. .i - - usp ,> l 1 ~ (a) Fuel at 500x, dark area is matrix aluminum .: r.. ._.,- e ,,; .. ; . n.s . . t

. w g.*4.+_.Q, -_gy &. , ., .,

.Wl) :, fd .9;e ;....~ ij*,  ;*' n+ .--a, , . . . . . . :;.. .,t a, -l' s, F* - d's. , gr ' ' '~' ..M

;. g.~ 2+ ;g y .

. ; , +. . . .. .a .- ; ..9,,, . ;; c wz ,'y;~--l%.:!K - > .. ': + - , l #s . s

  • .. ,g. .n ,

- ..- st. .,<1.. .

~ .c. .

l - gi ., ' f. . .. } l

-. . . - - .p.1. . z <

- g. , s .,,

e. n

-m g .. e- - (b) Fuel at 1000x, dark area is matrix aluminum Figure 14. SEM photographs of plate 007, composition 50 vol% UAI,. 1 l 24 l .,y-~,,-n.--.,- y ,.,, - ,,,g y ,,, ,., W 'N ' : . , h ~ ( --%.; _ 4:19e. , = ff n c ~- . c. . o  : s~ ;

c. . . - ~ ~+,. , .9

.. s (:;' x' . .. ..

  • ~ ; &..

-x ':

m. .. . .

p ,, e ..- w ug - " -y y.,g_'d 4;. t -- ; r . A . ,,ur- . h ~.-~ . . '. : . f- , . +e y;t . .> , , s. .a y, .. 'y * ../. - 2 ,. y '- is p [ t',/ ,

  • 4

.*- N. y x/.;7..:y,x: . q ^- ~ - - y :q C' . . A . ' ] tW % .,, . r t. g... ,,, j f, o ax = a- .1 " . . _ ? y ,5 .k X..p w;;; 3:  ;)e x --- .. ,9,., &cy[';'. -l,[ ,,  : ,, n, z ng ..,:,;,c. $;b:$,,y:?;&- y ,y n 7Qq l} f: a[bg., . M-$ L m. s., , ., 7 Y . .m e ,,m. A7 . + w,, 1 t -wc ; J:_u:L2 Mru 4 . (a) Fuel at 500x g . ?N;yl3M a;9!

i!n.,,r,iaw a+ Ygegg -
  • c; # - -

p a, g '

~

go<  %.- s -

.,- q?c"sc ,-

y - e( fM u. Ql .% * .s . p

\ - + n-

'vyn,, #' :s;&'- *i;l s h;%L

' r&- -
. .p;g

. ;rp,,'s y 4xf.q , ,, .a ".4 s . \ . . y.: .. s ir,. . . . ., , . a .;;'q e s .,. s ', i \ hi v., AA .ht*k ~' . ,, [~ ' (b) Fuel at 1000x Figure 15. SEM photographs of plate 019, composition 50 vol% UAl2 - 25 gy y.m -- .,,,4 emapy ,n n;y Q uf M --l[' - ~ pyM. ~ y-q- . ~4 : f f;lj y yf: -~ - e  :  ;,: ., 7 ;y; ., ... * ~ . .- s A r , _,  ;%%j . g; -Q .L' a --y 'f . c a y9 A;; - Ti.; -J 4 3*t , -; N:e j . , ..,f::f f.f:[ y G ' .;i . .',. '(np , y

w .M.

- y y - ;7 .~* . ;3: ', bq . J * ;E**Up . ay3 3q . "4,. , . +t; - ' f,, ',

6 .i.

m r*.w r- . : . m ._ r .1? "' s u xw , }W. %QM,,s.. V.: ~ %,c;y k -~ .xl 0:

e.- umn 8 ,w.. r ,
. y;'g"; Q aw.y ,y av ~s .. ..n; -;

.- s- . y;.c ~, . e+ ,w y r.su w ,m7. . . + - . ; w.# ,

m,
-. ;t

,->..y37Q' b , .ed . 3 ?.>g' m ,e r; : e

?% , /

's lU -m, i ., .bk7l) , + u n > g- - 1 ' .. 3 pg m;g y' * * ..a ?y:as he:. - - + i .7 ~.?n~f-fn 4 y--, - ~ $3;f ,  ; -: --? z;p. m;g % jQll::%y nm x; :2f.

  • "'ey

$$;:QM%d$$ (a) Fuel at 500x ~ + . P~:9"5 r :~;

h. .f.aa y amc -

z Ig;.'.j7 3 : g e7 m Je;c [g; A:M s ,_::: g" ? -< '. V, f- @-. fc-n .s < &L ., Q . " ;-; W ff. 45 ; u, k;, k~ q c . y y. , -i K v ' ,x a , WP m .;g;gf% !D kt Q V 4 :'y :. 4 A A- '.qis .g-- ~ ex .a .a g +.w' ,J" .F (i ..<; J.. N,_,3'., ;.:yA . . - , W. , '+ W \ W:.,._ , :.N p,* 'n;, g, '

q. q t

, y , .( ... en, pg .- l f. w-. yS7%y.%. . \ ' h "d o %' V A S, W'4 ~ f.,39 . h,&n;:< "f t .j +::R= Q : -:.-:% 7 1

s f

,. g- - ,m ~ 1.., _H). 3 'p>.., Q}b py' . n - - ,w" ,i." , ,

v. ,

pu gjy ; - ;3 a .se , , 7 ,w. '. N;;a !. a" * -pp r  ; y - 4,;A p , 0, ' k,vk m -s - $ ..s. l3 Q .4 y ( &,, N . l 4 s .M, " T,_ 1;,3 4 0 :A[ ~ l , .. .r.=, - I (b) Fuel at 200x (c) Fuel at 1000x Figure 16. SEM photographs of plate 006, composition 50 vol% UAI,. 26 g ~e y y%y 3:n ~ m 3:s w *37 _ , es ., f , .. f. l' z., .s - _ - , - ' .j, , Q , L' . e .. , ~ ,A> .% ~,'. 6 +, * ~h 3i ,w; , _ . ,e,. , r - # (, ~ j *' - 's ._ g. s p .) m* .4 %.'g (nP 7@3 - ;l& ., %f%. ! ): ' ~ ,???.,, ; . . .' ;,' _ ,ig([ .. ~ m,y s w e.r.. >a.;- e. w 8,x .ep ay. . m.,, . e n m,. . .7 ~. 3; ,J.:.4, ,4 -n,"-

8. r .

- s .._ , . . ^m ?_ .s=. . -*> q Q , '~W .q <  ; n -- 3:. y .,c , . '; .2, g 4

  • L . S,!.L cx 3 . . . -nm hwe, J;Jds;hz .

MGQ&%K . (a) Fuel at 500x 6 '.I.N..S, E. .C. , . .m -

. m , q~~ ;

9; ' :qi nr.j , ., . , .. .v ^* ~ QR, ~ *: R: ' ' g g:{:, - . < s .v.7m: ., Qnn-% ' < , ; !. .g .. g;+ o, ,y f , .f F- ) > s -

j6gyf g .

g .ed , \ ,s 9 . ~ .4 N& j4,~n , , - (, , 3 t y' +4 s '. ' .em

.+.-

e , ;e- . ,r w .-. ;;. s . , - x% . ,3. g er n c. g 4q c ru p : .us.  : ~ t 1. % , ~a i .mg s,. =- g,x,;' :v:  ;;;;;p1 m w- . - ~ , m?a y..  ; Q; >*> ) e- *Op.' -~a g ," ..f'(t -.f. ' . , n . . - 3s .q * > , , ,; y y . ~ 'l

;
.pgyg'; q m ;4

./ y 3- . hb) s.A (1_ k g.,m. . . (b) Fuel at 1000x Figure 17. SEM photographs of plate 013, composition 50 vol% UAl 2-1 I 27 , myn ,S g.3 ~-t y tr? q ~ ?= v 7 c- --h* ( 'M::. . -;w ., , ^ .#. r- ' ;E , * . . 'I 2 4; 9 m , a f t. .g3 (I,I * $/f '- ' .k_} ,, .-c > c-!g e . ...y

  • I  ! . g'I ' N

(' * ,g i y.. , ; y;' 'C ' f. . s 5,~. ' < . ,  ; p ? , ;r h! [ b'h i ? i -'

  • i' vip;;- ;q ., . i<f;h y,,- l';* $ , ~

g . . - .<- 3 -f ' - iu: + _ '.e ' ,i;M i j. t > e.f. @* f; .. , )Q, * "'4 f; ,.p i * '@r. - _ _ , l i w W~ :.;; p ys.,p. , p' s,t;' - ,y, , g , , , .. h[ 1 a e- 9.s c. e, 3.+m  ; - y7 - . , y , , , p,e y. ,-e g 6= . ir p f . 5: p ,. . >g, 9 sg 3' y :x x ' . b.- & M_ .[*,; a g,v:x yg >' u , ,wt - C+ i j@ t .-, e-? 2:. ;, . -n l (a) Fuel at 500x To# ,4 ', y.,y ; ' q. 2 d .g . . @ ;- g g ,3 3 , e ;,e, , f;s 5 %[f ,,f _ . [*' -f , .hhl , l . w,; 4 . . y g ;W;;J g ;; ; " 3 ,,* ),3 m.4 [^, g, %,.7 4b > y;g. .. ), ' ' ,d r  % L  ? f}_ y/Y,%

y. , J;] ..

e . , ye>  ; a ov* - c - , ... ..w . fM~d.: p %,Q(*uPI% .. ,. -r 'Q# f _N, :-. , . .e x . e/ ~ +^-- hy:. .+ % w u. g-- ;. . .; , *

' g; Lt w-A;W' s

\ l ~ >( _. vf ',. w; 'l'.. +; t._; 7, ~ a<<; _ f "y , ,:, N .g .. y ~ .s - J. . 7%, ..- y . A , , + . . l g ; . L .? -s> m. ,; ..am.s n .. 3 4 4- 4*- , 2 g: . .% . ...p, y -

c.  :,

f:-  ? .,s.:s . ? !* W.sg/Gdf. wA !fl. $p .9Eld!dte i (b) Fuel at 1000x Figure 18. SEM photographs of plate 028, composition 45 vol% UAl2 - l l l 1 28 J n: . -mn ygp g c~, - e x- n: p,., f, . el.. . * ,. y, h . ,, s e e. - g - .1. . .;. 1 y:,.

1 ;m . -

thy-j, ,. f - a ~ . p f, _ _ 7 - $s . , g g, , ,, U: , . p, ;JJ - ;

t. fsa 9 ;e$

. , r*%,ye - p jt:! - . c 1 3 f.,9 . + a .g. .9 i% 75  :-

? s i

74, e ' l ,fS c : f% 'Q 1 . . _ . , ..a s (a) Fuel at 500x Y 'g E. b \_' g, s ' u+1 M ' L . gj /:z.7_Q 4 Q . glf'*, n .g,3 y; *-'.. ag ; ,. , g kiv ] a: l ".  ;; p ,. .. p 7g j 1 ..r; , Q3 4 =0-i _ h;ji9 - > , " 7)2 ,(W+.. .g.J.w3.; p A g , a y j eMn:w* ' R, , Q 'l .yy J..

i a

.1i . ~; . y e + l 7x;; l ', , _ w' y?*4 : * \ l ^ '* ~ i . , f1:.  ; 4lty:_ yry_~' .g. , g. .g y ' %? . s. ') 3 . ' I i l, ;p;c . ww ~ r.,. w - .a ~ (b) Fuel at 1000x i Figure 19. SEM photographs of plate 030, composition 40 vol% UAl2 . I o l i 29 j '1 - - - -

% e A. . .,~ =vm *yan3 WL

. ;,, -~ 7.. ,. u, . r. _ . _. sj {hp.~y , e .' < a.: ah * . ,% * ~ .n. . . 't . d &+ ,I,( ~l (law(,N .c l -9 *4 ' A,.$Cf' c+

  • G.lyA. . ; , s- g

.Wlt .;,: li . e l%0$.'. . - ik h,b ,- h, [~ ' p$fQ~~d~glJ,.a t 1 , .V ~ -.* h'a[Ww J W ,.. .;E i .n: lf s v . h.:0 l . ',..a'"" i ' 'I l..

  • ) p * .

5.{f -6

  • g* l .. ,

.. m . M. k. f+J j f 4 m,. , .A , ., , , j , 9 *A ht ,$ W I.A * . l d'.

' l / O.p *)?lf%~4 M
  • y % .. ._ _ , - . . . ;. .< ...&. ,. y

, e

  • t,q.,::,L.N4,k. 'c it--

't f I." '.;' ' h 7 ' {,s e?.,, h lthii

< ,^ * (

e . a, a -nch=.,.. n .- k?.N .www n y'. - ' ' ,+ ~ 3-;, : * } a.,g / c v: . - L. 5 g ,,y , 't r ;/. .

  • Skg ..-. m & ,S

. E l. -[ A , [ . ** ' ,. O . ' -l 'f'#j^el .w . ,c.w[. ,e < o. : .*s , :,M.gn, y-g, a r w  ;~~- (N . - 3 y . .a rf' ;->' ' *- ? 9 :~. . ..~g..~ gy. y ? - w.' i *' > , *: j,:9 - e*, g' %. ~ d ', .- ' ^[ d , , y , :, \. y f;;. ~ ll~ G g . -' a . . :.% s ' # '- - --I 2 " ?['<. '

  • f .

. .. ac. .. _ ~ m . 3 mm.n. ..p.. . 7,x..-c.w, .. w.m. , ff. '-  :!- , ? Y, - h., flw;[f^'C'sS...am.;;,,y.,4 .;j.[',4? ~ a t + fR, Q{[ A y . . , y, .g.Qi) . - g

7. . l. 2 f. .. . - g g

. i

  • ). h- h A '. 3 u h

/< di: +:.. . ...y we [ . ... ..g.;! . i <31

. .- a y.*? v6.fi
- ... A , !"

t > . 3 .e <J. -- 4.. v.e~ .. e.' c.,. . p. . , ,. .x. 1 A; a 4g  : .~6 i . *'-i t,, . -: " - y&p:1  : 1 yg) . ' * - )g- . .. y -s ., , ~. ~ 4il j , .%, . <.t j ' .:. g' \4 1 .F ** . - . m a .; ,c .. W* . .o r . t sg I 2 - < \ Table 8. Blister temperatures Punch Fission Blister CSAP PDQ Peak Fissiona Density Temperature !* Plate . Average Burnup Density Plus . Number (f/cm 3x 10-2 ) cf/cm 3x 10 28) . 10 % K 'C '. 005 1.80- 1.64 1.28 743 470 470-006 2.30 2.17 1.73 743 007 1,48 1.33 1.06 803- 530 l 013 2.98 3.00 2.02 743 470 019b 2.13 1.94 1.49 833 560 020 2.24 2.07 1.72 713 440 + 022 1.82 1.95 1.22 -773 500 , 1 027 1.94 2.21 1.36 773 500 4 028 2.61 2.71 1.% 773 500 030 2.25 2.08 1.52 773 500 032b 2.14 1.98 1.49 833 560 033 2.00 1.66 1.42 773 500

a. Table 13.
b. Did not blister.

I blister temperatures are given in 'lkble 8. For a density plus 10% was slightly better where burnupof about2 x 1021 f/cm3 ,theblistertemper- r = 0.38 and T = 845-47.l(B). This value of 0.3 ature is greater than 743 K (470* C) for all the plates (or 0.38) indicates a poor correlation, so that the - except.No. 020, which was determined as 713 K dependency of the blister temperature (T) on the i (440*C). For the twelve plates, the blister tempera- burnup is not very strong. The linear least squares i ture is not strongly dependent upon the burnup as regression analysis was also evaluated for the peak i seen in Table 8 and Figure 21. The linear least _ burnup, since bubbles might be expected in the squares analysis of the blister temperatures, in region of peak burnup. This correlation was not l i terms of the CSAP PDQ average burnup, gives the - any better with r = 0.3. line indicated in Figure 21. Photographs 'of the blister ' samples are shown in Figures 22(a) Two of the plates of UAl2 composition did not through (f) for the 50 vol% composition, and Fig- blister at the end point test temperature, which is ute 23(a) through (f) for the 45 and 40 vol% UAl2. selected to prevent melting of the aluminum. One The average of blister temperatures for the three of the plates [No. Ol9-Figure 22(e)] is from the plates of UA13 composition was lower (763 K) than composition 50 vol% UAl2, and the other (plate ! for the nine plates of UAl2 composition (776 K). No. 032-Figure 23(e)] is from the composition

  • 40.vol% UAl 2. These two plates did not have the The linear least squares regression analysis of the lowest burnup. Plate No. 019 had an average blister temperatures (T)in degrees K, as a function . burnup of 2.13 x 102: f/cm2 , and plate No. 032 of burnup (B), in units of 102: f/cm 2, (Table 8) had an average burnup of 2.14 x 1028 f/cm2 . The gives the equation, plate with the lowest average burnup (No. 007) of 1.48 x 1028 f/cm3 blistered at a temperature 30 K T = 832 - 27.4 B less than No. 019 and 032. One expects the peak where the correlation coefficient (r) is 0.3. Exami- burnup, which would give the maximum fission nation by regression analysis of the punch fission products, to drive the blister temperature. However,
31

873 i i l I i i i I e $ 773 - s eem e e - g e e e y e . I 673 - e 2 lii in g 573 - 473 I I I I I I I I O 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 Average burnup (Fiss/cc x 10-21) . s sees Figure 21. Blister temperature as a function of the burnup. it is noticed that the plates blister in the center, a increase the contrast. The replica on plate No. 025 region of lower burnup but lower strain constraint. tore off, so no pits were measured on this plate. Pit . . height on the replica (pits on the surface became It is significant that the high fuel loading peaks on the negative replica) was measured on a 50 vol% UAl ,2 even at the highest burnup, does not Unitron TMD-3721 microscope at 400X. The blister at a lower temperature than the 50 vol% microscope featured a dial gaiige with readout to UA1. It is also sigmficant that the high fuelloadmg 3 0.0001 in. on the fine focus and indication as to UA17or UA13(50 vol%) plates blister at tempera- height or depth. This was very convenient for these tures compa able with normally loaded plates pres- measurements. The microscope stage also ently in use. contained micrometer screws with readout to ' O.0001 in. A turret objective provided lower magni- ' 3.8 Pit Replication fication for survey and locating the pits. Replication was done on the 15 plates that were not Eighty-two pits were measured ranging in depths to be included in the destruct tests. All 27 plates were from 16.0 mil (0.4 mm) to 0.4 mil (0.01 mm), examined after oxide removal on the hot cell penscope Table 9. The 16.0 mil deep pit was on the c' adding and pictures were taken of pit regions. On 15 plates, as edge, hence no fission product leakage occurred. It each pit region was identified, a ring (1 in. diameter by was also one of the plates (004) taken out during 1/2 in. high) was laid in place and filled with silicone the fuel plate failure and stored in canal wate r for a rubber (either Dow Corning 3110 or G.E. RTV 60). long time (Table 9).12The measurement of the pit The 12 plates used for destruct tests were not replicated diameter was about six times greater than the , to eliminate the need for cleanup on these plates. On depth, a measurement useful in estimating the pit , the 30 sides of the 15 plates,45 pit regions were identi- depth during inspection. The pit depths (height on fled and replicated. Pit regions were identified on all the negative replica) are given in Table 9 for the but 6 of the 30 sides.The pit regions on the 12 destruct 14 plates on which pits were measured (arranged in plates looked similar to those replicated, except that the decreasing size). The next deepest pit (7 mil) was largest pits appeared to be on those plates to be repli. also in the side plate cladding [ Figure 24(d)]. Most cated (specifically plates 004,015, and 031), of the pits were about I mil deep (average Figure 24 (a) through (d). 1.4 i 1.9 for 82 pits measured), Table 9. After the replicas had set up (about 16 hr), they Scanning electron microscope photographs from were removed from the plate surface, ultrasonically the replicas of the largest pit (plates No. 004, cleaned, and coated with gold in a bell jar to 16 mil deep and 40 mil diameter) and 32 -n . j . > ,. ;k } #y+ ~ ( y. 4 > - W; p } .e; e .: 4 +< E,, .

4,w n
n:h 1A *?

v + , ,. 97 .u., . ,.7. i, .

- , , ~

sp A e, p! > . 'p, e q  ;.. .

; }.

. >3 p_qa Q.,g , ,a  ; j[ e , 3 ,,m ,; . . . ,dj A* j < kC

i%, d.

.-  ;{. ys gey(';;qg g[gg y ff- [ fy f) *; q(c[y]qg& . g>3g:9 Q g f W f y l , q g ~ .pi Qa;iy.g[W$l[MA _ Q_._A k _f n _s & . fI" % # ~ s _.. J _ c.; . . - . :tes (b) Plate No. 006, blister T,743 K (a) Plate No. 005, bilster T,743 K i- ,* - .u.,- q i, .- ' ' ~O E, , c f.o

U,3 ,T e ,q . q g e 7 ; (b[.
  • '> .,,,_ sy c p--

.r 3 <r 3 y f):,. R,,y - ).., 53 ,1 % 't %J% u - ' _ gggs - - ['uB M m.s t - < gn .4 gig. -.rf (c) Plate No. 007, blister T,803 K (d) Plate No.013,blisterT,743 K I i , w w -

  • pyy.; gv rmw .+.

y}"jy: ;j - . % ~ ?+ yw % ^ : & i; .. m. ' f ' ?*b y t y -n ? , f;f g f-yTj .

  • l v , ::.  :% u

.'Ya + y ~' l

. , & f. W

~ , . a h, . ,. ..n ~r' 1

g g! .c .. M - f
, ,

l p (w:m , LC':. '", U&k 1 -- u ,.,- *a ' _ . e* m,- s .asw w l .+ w- , i (e) Plate No. 019, blister T,833 K , (f) Plate No. 020, blistar T,713 K Figure 22. Photographs of blister samples from 50 vol% UAI, and UAI,. , 9 33 , I l - , . . .. -m- - - - - s m%" , .<. ,; Q '9 g;:-;;r Q:Q ~ _ 4 ( (a) Plate No. 022, blister T,773 K (b) Plate No. 027, blister T,773 K v (' -# 4,. p, [, r ,, . r. . s9'N .+ s .:.w y . l lh h Y :s. ..,-5.. 4 1 4.. .+

  • y p (4 , g ,

,h ' + j 7 ( ',',,,.; ' N ff; ' b .. -- .U'b- _ (c) Plate No. 028, blister T,773 K (d) Plate No. 030, blister T,773 K 8 , . s . .. .,s s. .t.: p+-w .s , q . y .., . ' t' " l. '[ ' k, ..va, EN{";f[.', .e,',j;.g E,' ag .f ' ' l l _;. ~ . . . .' L- ~ ' ,s i (e) Plate No. 032, blister T,833 K (f) Picte No. 033, blister T,773 K i 1 i 1 l l Iigure 23. Photographs of blister samples f rom 45 val % and 40 so;% UAl 2-i 4 l  ; \ \ l l l l I l l 34 ) t .,I. .:.fT[];} ..- +.r ', ,

l *

,t ., .s.- s,'. 9 'g r. 's ,

4 .,',

( -' !l. ,' ' - 3 ,t ?. .1, ~ jf.i. .. /./ l,,f,;

1

.l. ' s ,' h

  • a ,,

, . ', , f.,,.[,.. , . .. , i ., .. f,,,' \ 'l: 4 .<' ,' ' ' / ), r.f.,',,.,, ) ,. } i i . . . s r.

t. :

'.',I i< . / > ?, 4 ':4 '. :l I o , ,, , i t , / i s' i . t ..( f .,;,I ,4 , ; ., , t 49 .g . ..{, ) , N _' _ ',l ,_**' , . ,y (a) Plate No. 004,16 mit deep pit (b) Flato Nc. C04,2 mil deep pit f'h e . ,.r. .c ,a, . g- . . $h;$ p nib ...,: t.mp . . :.b N.,4 .:; t ..i., p'. e. .'*, v y. e .. .,. . + , - '; *d'q. g,rg' f g **- g.- i- p , ,.. .:..s 5 . ';, p- +. - 4, . ..'s.+*,.'.

y

{

  • h. ,- ;- '

i ,.s.' , k[* * ;'. j. * .f

  1. g =

, e Jp 1.n .. . .s ,,: ..,\

  • ..y d-, . , q -' ,

y o , $';;' a i . ==p \< .A'. g* \., .\'.*~ - f .'. lk% ,.',-?s.. 9 ,.4 s. . _,Q ,.gg ' ' 't ..f."' ,t 3 ..' , ' . , . (c) Plz.tc No. 01E 1.5 mil deep pit (d) Plat 6 No. 031,7 0 mit deep p!t Figure 2d. Typica: p5otograph., cf r:p.'ica areas or oxide r/ ripped pht.. 5 l 1 Ti5 Table S. Measured pit depth and calculated maximum total g4tting corrosion Caletdated ~ Maxirr.um Co-rosion at Pit ~ Pit Time at Timein in Plate Depth Ibwyr Canal At Power Canal Total

  • No. No. (mils) (days) (days) (alls) (mils) (oils) 001 1 3.0 261.6 132 5.2 0.8 6.0 .,

2 2.5 3 0.9 4 0.7 5 0.6 i 6 0.6 7 0.5 t 1 003  ! 1.8 136 87 2.7 0.5 3.2 -  ! 2 1.8 l 3 1.2 ' 4 0.9 i 004 I I6.0 172 1192 3.4 7.1 ' 10.5 2 2.0 3 1.6 4 1.6 $ 1.5 6 1.2 7 1.'l - 8 1.1 9 (.1 10 0.7 11 0.7 12 0.5 13 0.4 008 1 1.0 261.$ 50 '5.2 0.3 5.3 2 0.9 3 0.4 009 1 1.1 196.1 50 3.9 0.3 4.2 2 0.8 . 3 0. 8 - - 4 0.8 " $ 0.6

  • 6 0J3 i e

010 1 1.6 1%.I 50 3.9 0.3 4.2 2 1.2 3 1.1 & 4 5 1.1 1.1 '5 6 1.0 1 7 0.7 8 0.7 {. i 36 I I. - - . .-- ~ 4 Taitne 9. (continued) t Ca;eulateil { , jfaximum Corrasion a: Pit , Pit Time at Tiine in lo Plate Ucpth Power Canal At Power Canal Total No. No. (mils) ,{ days)_ javs) (mils (_ (miis) [ mils)

  • ' 1.5 136 2.7 5.2 7.9

, i015 1 877 2 1.5 i 3 1.1 4 1.1 017 1 0.8 172 1192 3.4 7.1 10.3 2 0.8 3 0.8- ' '4 0.7 024 1 1.0 172 1192 3.4 7.1 10 7 2 1.0 3 0.9 026 1 1.5 173 321 3.4 7.1 6.5 2- 1.5 3 1.1 4 0.9 5 0.9 029 1 1.4 172 1192 3.4 7.1 M.5 2 1.3 3 0.6 4 0.5 l 5 0.4 031 1 7.0 212.7 474 4.2 2.8 7.0 , 2 4.5 l 3 1.6 4 1.1 j 5 0.6 i 6 0.5 7 0.5 ) 034 1 1.0 ?33.9 50 6.6 0.3 6.9 016 1 2.0 '72.4 319 1.4 2.3 3.7 2 1.9 3 1.4 4 1.4 ( . 5 1.2 f> 6 1.2 i 7 1.2 8 1.1 9 1.1 10 0.8 11 0.8 12 0.5 37 -, , -r - ,- w represen'atisepits (p' ate Nc. 01(>about I mi! deep the lowest maximum value was 6.6 mi s for plate . and 4 tr.if diaincter) efe sinown in Figure ?$ (a) No. 033. Thus, the calculated value for the mani-coJ(b). mum torai pitting corrosion by Equation I does soproximate the treasured value. Comparison of the calculated raaximum p' i; ting corrosica of 3.9 Pitt,ng # Conos.. ion Rate 10.5 mils, with the sae:rured vaine of 16 mils let , plate No, G04. indicatcs that the aquatioa for the

  • i Mett per.elration mm be e< pressed in terms of the max'mym pitting corrosien rate b abcul right, rnaxunum pit aspih and the reverage of the 10 derpert since the plate in the canal wouhi kase been .2', a pits. For f>e 14 platee, the 10 deepest pits inchge o ' ;c. slightly high:r temperature fc part of the time. .

that 5,uuld have penetrated the claddini had it rat Considding the otlier meas'lntd vs. lues of the pit been irt the side p aie arce. He aveilige ofsh: ten deep. depths (Tbble 9's in light of the calculated faaximura est pus flhble 9)is 0.li min (4.3 mil). The pitnag fac. pit depth, indicates that the pit incubaticn time is tor is determit.ed s' rom weight loss, defined as t'e ratio not ueg'igible or that most of the pits do not propa-of the deepest metal penetratian to the average netal gatent the maximum.ratt. Dis;ussien of the pitting , pencuation. nc raio of the rr,sximum pir dept.h to the corrc sion is gifen inSection 4.4. gverage p;t depth gnts.in appraxilm' ion ofInc pitti:Uc fae'a. The natio is 3.8 A pitting factor cf one n*p"" sents uniform cornsion. He Large- the p;tting tactor, 3.10 Gamma-Ray Spectroscopy time gWri dr prtbabiLtyof feilure *>y pitting. ~ The 12 fuel pla es removeQ from the ATR rea'. tor The otaxid.bm total piting corrosior was c4u- on hme 23.1985, were examhed by gamir.a-ray 12tylfor the 27 ;1a?es(includiegihe 14 plates given spectrometry meastiremerts rat the TRA Ho; Celi t a in Table 9) for the to al time each flate was in the Facilhy.I8The purpose ef the mt.tsuremenJs v.as to 1 w;tter (i c., the time .st po ver a:Ld t,he tirae in 'he determine the distribution of gamma-ray emittirgt , canal). '1he calculation for the nuximum pitt ing fission prct'ttet cadienuclices iri the fuel. These

conostan is base
I on the equation given12 as resuhs wili be cortbined with radiochemicalunalJ-ses of samples taken from the fuel p:atts te deter.

CR, = 7.6 7.10 24 T t25 in./daf (!) mine the peak fuel be nup (fission density)in each l platt. The ricasurement results for the positiom i where T = fuel plate %rface temperatutg. K. frota which 'he bure up punchings scre taken are given m ietative coun:s per second f.)r each indidd-The fu:1 plate surface ternperature st reactor power ual radionuclide .in Table IC. The radionuclides [ was teken as an awinFe valve for the cakulation .of identified a e "Zr, in'Ru, f 34Cs, 827Cs, and 84'Ce 347 K. and in the car.r! of 294 K. The fuel plate for each of t'ne 12 plates, The counts rer recond for surface tempera;nic ws det rmined fecm(ne oxide each radion;clidc at t':e maximum, and the p mch- l l thic! ness at the':nd of the irradiation and the ATR ing positions, are tabidated in Tab!: 10. Alsa given startup ecta*ianI7 given as in 'Oble 10 is the average of 19 measurerrents of " 2M each radic m!clide on eacn riate. Sin ; no ef ficiency X - 10,244 0 8d exp (2) calibratiens exi,t, qt'sntitative activities and garnina-intensitics are undeterminet therefore. t he wl.cre counts per second pf ole radionuclide fue not related to ar.other radic~tuclide. All the dats were X = oxide thidness (rriis) .dece/ corrected to 6-23-85 at 20001 r. The pu.teb-ing position poir)t churits were taken at the 6.4 in. 0 = hoarcin "enctor, disterace from the bottom cf the fuel plate and at , the axial centerline. The ac*ual area aiewed was The reeasared pitung corrctio;1 of A 4 plates is com- 0.055 in, by 0.6M in. or 0.638 in.2, App.ndix A

  • pared with that calculated for these plates at power contains a co y of trie gi;nma-ray spectromopy and in t he canal (Dbie 9). The cal!ulated valucs f or report.I8Thble !I cor. taint reiiose.'the maxirauq-the niaxirnam pitting corrosion of the othrt gainma counts per serot.d in a.ny positioh measured
  • 13 platea, for which measu ed values wrre not to that &c which t'ae burnup punching was taken.

oH!amed, were of similar anagnittee. The highest 1 hem ratios (maximum gamma;ounts per secorid ma.ximum value was 14.6 mlis for plate No. 006; of or.e area to that of the burnup punching) 3t t i I l w: 7,'., . .. ' ger ; , . ,;.,, - l *l' ' '; ,,, h e xW l ' .' ' ; ' .' .. r . ,, . ..*, . ..V ,, 8 s .e , . g . , '. i>,. ..t ,, a .c,, . ..a. 4 -s.,... . i '- 4j ' , ' d y, . . ' . ig , 4 , , . s., .r v'.- . , ',- , ) , o .. ,j s , .., '- . l - ', . ','f, . e- , , , +, *

2- ,

. .g, '- ,' a . . 8 f ..g , l ' k, . .^. . 4'. y' . !' l' ,, .,, .e4em , . . > e s. v 469 l (II) Plate Nu. 004 largest pit,16 mil deep in side cladding l I i ., i,'. . , , , p. t .- l - . . 4 ( 1., im. 7.. , r. 1 '. *g o . - , _A. ,s 4 s to a. ' l , ' . l - ' ' w Qy  ?. ^- t , ' .) , . , , l , ,.. . .* , . ej . } .4  ; N i- , .x . : a - 'i.....;, . . - ~ .. .6 . , . g 2.pV . ,( ' . a s 'y A, 1 , v jpeL, , ,c, . . wg. ... g .. i ~

  • ~ e y; ,~'

r4 , . ., g. , + - . J . [ . A.. $ e5km , 'i th u ,499 , . (b) Plate No. 010,2 p'ts, depth about 1 mi! 3 Figt.re 25. SEM photographs of two of the replica *cd pits. j l l l 9 Ir l 1 i 39 (

  • r

0 Table 10. Relative radionuclide activity of the twelve pistes in counts per second for the maximum, average, and punch!ng positions * "Zr #Ru D4Cs *Cs l"Ce Plaie __ Mull.'211 f.kish .MA. .hfJK. Pycsh _AUL _hlas. PIIsh 6n. Max P.unsh .Au. 1141 Pum;h .&t lias. ., 5 225 231 248 400 412 446 8.!8 9.22 ILO 31.6 ' 33.5 37.9 116 121 131 6 325 337 365 451 . 413 512 21.6 23.5 27.0 44.0 46.9 52.7 230 242 268 7 389 400 442 553 561 (17 7.16 7.69 9.04 25.4 26.4 30.1 155 163 193 13 33.

  • 35.0 29.7 9.1 10.2 12.3 18.5 20.2 27.6 48.9 S t.6 62.8 155 163 193 19 619 660 745 906 961 1072 11.4 12.4 14.9 35.0 38.8 43.3 346 378 427 20 789 902 549 1133 1872 1234 15.4 16.3 18.6 44.4 46.2 50.8 443 460 497 22 476 503 629 692 734 915 8.2 9.0 13.1 28.6 30.8 39.7 279 303 381 27 32.7 33.3 43.3 10.3 10.3 12.k 8.13 9.0 13.2 29.7 32.3 41.9 143 155 199 28 452 454 497 641 645 711 22.2 23.3 30.7 47.9 49.3 56.5 337 345 386 30 389 455 533 542 624 737 13.0 14.7 17.6 33.1 39.0 44.5 305 352 408 32 4.1 4.6 5.5 - - -

8.41 9.1 10.5 32.8 35.7 39.2 75 8 82.3 92.9 33 - -- - 5.56 6.0 6.49 31.9 34.0 36.8 48.7 51.3 56.I represent the measured buraup peaking that peaking in one edge of these plates. The plates were occurred in each plste. The plates in each composi- moved about as seen in Thble A.1, which tended to tion groap (50 vol% UAl 2, etc.) were placed in the reduce this edge effect. The selection of the peaking  ; I-hcle fixture for the irradiation history as indi- factor from the gamma. scan data (to represent the ~ cated in Appendix A Table A.1 and Figare A.I. maximum burnup for each plate)is complicated by Positions B and D, where the plate edge was the limited number ofisotope counts on each plate, ' toward the reactor core, generally produced higher the relative size of the gamma scan area, and a Table 11. Ration of isotopic maximum gamma counts per second to those of the burnup punching position Ratios For Isotopes Maximuma Plate Peaking Number '?Zr . 103Ru 334Cs 837Cs 8'dCe Factor 005 1.10 1.12 1.28 1.20 1.13 1.41 006 1.12 1.12 1.25 1.20 1.17 1.38 007 1.14 1.12 1.26 1.19 1.25 1.39 I 013 1.20 1,48 1.35 1.28 1.25 1.63 019 1.20 1.18 1.31 1.24 1.23 1.44 000 1.08 1.07 1.21 1.14 1.12 1.33 022 1.32 1.32 1.60 1.39 1.37 1,76 027 1.33 1.24 1.62 1.41 1.39 1.78 028 1.10 1.11 1.38 1.18 1.15 1.52 C?0 1.37 1.36 1.35 1.34 1.34 1.51 032 1.34 - 1.25 1.20 1.23 1.47 (13 3 - - 1.17 1.15 1.15 1.29

a. Maximum peaking factor is the maximum isotopic ratio for each plate plus 10%.

l 40 I i k 4 possible blister area. The limited number (19) of and determine plate removal at the end of irradia-isotope counts on each plate may mean that the tion (Section 2.1). The ratio of the average PDQ peak count wa.s missed. The relative size of the fission density to the minimum fission density i- ' gamma-scan collimator area (0.038 in.2) to a possi- is 1.1; hence, in Tables 1,4, and 8,10% is added ble peaking (blister) area (0.003 in.2) may tend to to the low fission density to obtain an average.  ; level out (miss) the maximum counts. To accommo- The burnup of each punching was obtained from j date these effects, the calculated PDQ average t the isotopic ratios (Tab _le 12) by means of a com- , - minimum peakmg factor was evaluated. The aver- g7 ;g , age to the minimum peak,ng i was about 10%, gg,j9 The irradiation history (Figure 1) was - which was added to the maximum isotopic ratio for divided into sequential power factor intervals. Con-each plate to obtain an overall maximum peakmg sidering results from previous analyses 19, and the facto @aW 11). 4 group ATR PDQ calculated flux in the homoge-nized fuel plate region inside the ELAF assembly,

3.11 Radiochemical Analyses for the capture to fission cross section, a, was taken to be a = 0.1% i 0.01. The program iterates the

. Burnup data until it converges on an apparent fluence and ~ the measured isotopic ratios, and prints out a final i The punchings for burnup analyses were taken 236U/235U ratio. A number of checks were made on j 6.380 in, from the bottom of the plate and at the the calculational procedure and data, including: a axial centerline. The punchings were 0.25 in in change in a to the ATR core region;I9 the gamma , . diameter with an area of 0.049 in.2. The punchings spectroscopy cesium 134,137 results; and total taken at the axial and horizontal centerline are in a uranium concentration in the punchings. These e region of uniform burnup, although it is a region of - checks did not change the calculated burnup for the expected lowest burnup in each plate. Because of punching position (%ble 13) significantly. For the uniformity of burnup expected in this centerline example, an a of 0.215 for the ATR core region 19 punching, and in order to limit program costs, this reduced the.burnup by about 6%, which is to be L centerline punching was the one on which radio- expected because of the harder spectrum in the , chemical analyses were done for burnup. There- ATR core region. Therefore, the punching burnup fore, it is pointed out that (generally) any other given in Table 13 is considered to be representative region referred to, or examined, would have a of the measured isotopic ratios and is generally the higher burnup than that of the punching analyses. lowest burnup of the fuel plate. Multiplication of For this reason,in referring to a burnup of a region, this low punching position burnup by the peaking 4 the PDQ average or peak burnup is used. This peak. factor (Table 10) for each plate then produced the burnup is the lowest burnup multiplied by the peak- peak fission density given in %ble 13. The average ing factor from %ble 11. This peak burnup is PDQ calculated fission density is given (Dble 13) about the same as that of the PDQ average burnup for comparison. It is found to be approximately the calculated, which was used to guide the irradiation same as the peak fission density. 4 { 1 i i 41 Table 12. Mass spectralisotopic ratios for ELAF burnup samples Atom Ratios Sample %235U %23sU %236U %2NU 5 85.40 7.07 6.30 1.23 6 81.98 7.54 9.16 1.32 7 87.32 6.37 5.09 1.22 - 13 83.78 (83.73)a 7.19 7.79 1.25 19 86.92 6.58 5.29 1.20 20 - 84.95 (85.06)a 7.48 6.33 1.23 22 87.63 6.59 4.62 27 1.!6 86.95 6.60 5.29 1.16 28 83.19 7.42 8.14 1.24 30 85.15 (84.64)a 6.97 6.75 1.12 32 85.25 6.95 6.58 1.22 33 85.56 6.86 6.33 1.22

a. Analyzed twice.

Table 13. Burnup of ELAF fuel plates from isotopic ratios, peaking factor, and PDQ calculations Average Uranium Pending Peak PDQ Calculation Plate Atom Density Punching Burnup Fission Density Fission Density Fission Density Number (x 1&2 /cc) (% Heavy Element) (f/cm x 10*) 3 (f/cm x 10*) 3 4 (f/cm 3x 1&21) 5 5.04 22.9 1.16 1,64 1.80 6 5.09 30.8 1.57 2.17 2.30 , 7 5.04 19.0 0.% 1.33 1.48 l 13 6.78 27.2 1.84 3.00 2.98 19 6.86 19.7 1.35 1.94 2.13 20 6.77 23.1 1.56 2.07 2.24 l l 22 6.37 17.4 1.11 I.95 1.82 - l 27 6.32 19.7 1.24 2.21 1.94 1 28 6.32 28.2 1.78 2.71 2.61 1 ! 30 5.63 24.4 1.38 2.08 2.25 l 32 5.68 23.7 1.35 1.98 2.14 ! 33 5.63 23.0 1.29 1.66 2.00 l l l l 42 r

4. DISCUSSION 4.1 Swelling and Fuel Phase fission density. The measurement was repeated with the same results. It is noted that since differ-InStabili4 ences are taken in numbers of about the same mag-

- nitude, slight inaccuracies cause large changes in The ELAF plates were irradiated at a nominal Valu s. t is recomme e a plaWore calculated temperature of 395 K (122*C) to simu- . thickness change (At/t) from Table 4 or Ihble 5 be late um.versity fuel plate conditions. This tempera-taken as the swelling value for these tests. These are ture is about SS K lower than the nominal approximatel the stme as determined for the three temperature for ATR fuel plates '9 and intermedi-failed plates 2 ate to some other UAL, experimental plates6,10, The swelling behavior of these plates was similar t As noted in these tests and by oth-other UAI, fuel plates when compared at equivalent ers,8,10,20,21,22,23 UAl is a more stable phase irradiation temperature and burnup. For example, than UAl2. UAl 2reacts with aluminum to give UAl at a burnup of 2.5 x 102: f/cm 3, the swellmg , and the nonstoichiometric Ui , A14 phase. The obtamed in the ATR platesa was 6.5%, while the reaction causes a measurable change in the fuel swelling of the ELAF platesawas 6.2%. The peak- core thickness and volume, but not in the swelling ing in the swellmg of plate 013 (Table 4) of 14.7% due to irradiation. The swelling as measured by for the high side, and 19.1% for the high spot, immersion density and plate thickness was deter-occurs at the higher irradiation temperatures of mined by the presence of the fission products which l$0-165'C (in Reference 10) at abou his fiss,on i mainly stay in solution. As seen in Thble 7, approx- - density. From other UAl, fuel plates , at 70*C, imately one-half the change in core thickness was the value is about 9% for thickness and for immer- due to the reaction of UAl2 and Al to produce UAl 3 sion in carbon tetrachloride. From these ELAF and UA1. 4 This change principally occurred during tests (immersion density in water with photoflo as a the fabrication process. wett,mg agent), the swelling value was somewhat lower at 3.8% for this average burnup of The amount of oxygen in the powder blend 2.5 x 102 f/cm 3. All of these swelling tests mdi- (0.37% oxygen by weight in JJ blend and 0.11% cate that the UAl, fuel-aluminum matrix plates ar oxygen by weight b in the JF blend) is-evidently resistant to the aggiomeration of fission gas. The , present as UO2 16,21 or U3 0,24. There may be fission product gas is apparently accommodated additional oxygen pickup during grinding and (for the most part) m solution m the UAl, micro- compaction of the powder, as occurs in just a half-structure, most probably in the UAI, microstruc- hour at temperatures less than 350*C, especially in ture. The UAlj body-centered-orthorhombic UAl 223,24 This U-O phase is evidently the source structure contains a variabig, number of aluminumof the small bubble formation as seen in Figures 10 atoms (from 4.5 to 4.9).8,2 21 Thus, the structure and 11.16The topography of the U-O phase resem-contains some empty uranium sites, or sites with bles the appearance of the film of U3 0, on the sur-smaller aluminum atoms, which may accommo-. face of UAl,/Al.24 date fission gas products. Therefore, the defect structure of UAl, may provide the explanation for the low swelling of these fuels to fairly high burnup 4.2 Fuel Core Integn.ty and (3.0 x 1028 f/cm ipeak for plate 013 in local areas). Bubble Formation As shown in Tables 5 and 7, swelling based on The fuel core integrity was very good. No cracks the metallurgical core thickness change includes or blisters were found and the fission products were core changes due to reaction of the UAl2 and alumi- principally retained within the fuel structure. A fis-num to produce UA13 and UA1.4 Therefore, this sion fragment stopping zone about 10-20 microns method gives swelling values that are too high for in width was seen at the fuel-clad interface. No irradiation alone. The swelling determined by water bubbles could be seen in this zone, or the fuel sur-immersion density is low because of the low average face at 500X by metallography, or by SEM cn the

a. From thickness measurements.9 b. Appendix D.

43 polished surfaces at higher magnification. With the would seem to depend most strongly on these U-SEM on the fracture surfaces, Hoffmanl6 did see O phase pockets and associated gas bubbles. The small bubbles wherever he saw the U-O phase. The U-O phase probably is formed during the powder amount of this phase and associated bubbles was grinding and plate rolling fabrication processes and not sufficient to affect the integrity of the fuel core could be diminished by reducing the specification as determined by inspection or by blister testing. In allowed for oxygen (Appendix B). over 70 powder particles examined by Kevex. ray oti -* the SEM, this phase was not found in the JJ and 4,4 pitting CORROSION and Plate JF blend powders before fabrication. life The presence and relative amounts of voids after - irradiation indicate that the swelling due to the Oside formation and pitt'ng corrosion in ahuri-solid fission products has not filled the void spa:es num surtaces has received considerable study.25-32 as seen in Figure 6 and Table f. Difficulties in pol. It is our aim to show that the pitting corrosion of ishing (scratches from .he brittle phase) have been these ELAF plates was not excessive (ss compared attributed to pull out of these brittle intermetatlic to other reactor elements.4 or other ccaditions10) , particles, however the voids are seen after when consideration is made cf the temperature and irradiation,3-9 as well as before. The low welling timein the reactororin thecanal(TaNe 9). AsinJi- t behavior of the UAl, fuels has beer. tnough.t to be cated in Section 3.9, when Equation (1) is used to - partly due to the filling of these voids with the solid calculate the maximum pitting corrosion of the fission products.3-9 The magnitude of this effect E1.AF plates (Table 9) an , stimate resuhs w hich is (even at high burnup)is unresolved, although the reasonable (e.g., as for plate 004) or which oseres-presence of the voids with the dactile aluminum timates the measured maximum pit depth for most matrix does not appear detrimental. This seems to of:he pirdes. But, on one plaie (007) the estimateis be true even at these high burnups where some the same as the measured maximum value. Equa. small bubbles have been detected around the U-O tion (1) was derived from data from the failed phase. ELAF plates,I2 ATR fuel element corrosion data,33 and Engineering Test Reactor (ETR) fuel 4.3 ' Blister Behavior and Pctential 'I*nent c rmsi n d t 34and allows calculation of [ the pitting corrosion of the other 14 plates with i Swelling reasonable va'oes, Therefore,it is evidence that the pittinti corrosion in the ELAF plates is cut ' The blister temperatures of the plates with UAl2 excessise. as the principal constituent were generally as high , as those with UAl,as the principal constituent. For Evaluation of pitting corrosion and the applica- i example, the average blister temperature of the tion of statistics to the analysis 35,36 indicates, as , three UA13 plates was 763 K, while that of the nine with the ELAF failed plates,12 that the measu.ed UAl 2plates was 776 K. Ilowever, one plate of the pit depths can be represented by two straight lines.  ! UAl2composition blistered at 713 K, while two One line, for pit depths (X) below 2.0 mits, can be ' ! plates of the UAl2 composition did not blister at represented by the equation 833 K (at burnups of > 2 x 1023 f/cm 3). Thus, the ' variability of the blister temperature of the plates of Y == -0.114 + 0.43 x l the UAl 2composition was greater than might be expceted. This variability might be explained by . . . pockets of gas bubbles associated with the U-O with a correlation coefficient of r = 0.998. The phase, formed during fabrication of the plates. The ther line, for pit depths (X) above 2.0 mils, can be U-O phase was also foundl6 in the plates of UAl 3 represented by the equation ,, composition. When the blister temperatures of 3 these ELAF plates were compared with blister tem- Y = 0.69 + 0.034 x, I peratures of the ATR composition plates,9 all the i blister temperatures fell within the three sigma scat-ter band except the 713 K temperatute of plate 020. with correlation coefficient of r = 0.94. These high correir' ion coefficients indicate that extreme The potential swelling of plates of the UAl3 or probability statistics 35 can represent the data. The , UAl 2composition, as determined from this work, salue of Y is the reduced variate;i.e., a function of 44 ,- , .. c M n + 1 The plate life can thus be affected by the manage-O ment of the fuel element irradiation sequence and where M is the rank of the pit depth, arranged in time. Interruption and storage of the fuel elements increasing order of pit depth (X), from one to the 1 chanee the conditions for pit initiation and growth; total number and n is the total number. The values 'namely, pitting potential, solution corrosivity, and of Y and X were examined by linear least squares solution velocity. Interruption and storage of the . regression analysis, and plotted on extreme proba- fuel elements may affect gravity conditions with bility paper. The return period (i.e., the number of deposit of solids. pits at which to expect a pit of a given depth) is different for the small and large pits. For the small pits (< 2 mils) one' would expect to have over 4.5 Maximum Fiss. ion Dens,ity 10,000 pits before getting one with a depth of 7 mils, while for the large pits (> 2 mils) the return Although the fission density given for the punch-period is 50. This representation indicates that the ing positions in Table 13, (and as stated in pit incubation time is large or that most of the pits Section 3.11) is considered to be representative of do not propagate at the maximum rate. It has been the measured isotopic ratios for the ELAF fuel postulated 30,31,37 that a critical pitting potential plate punchings, there are two factors which could and a protection potential exists for aluminum. have affected the maximum values of burnup. The Below the critical pitting potential the pit may not first is the variance on alpha (a), the capture to initiate or may not grow. The pitting potential fissio.i cross section in the l-9 facility. The variance decreases with increasing temperature. Other fac- was estimated to be 10.01 for the spectrum in tors also affect the probability that pits will initiate the I-9 and I-13 facility, in which the plates were on the fuel plate surface such as: corrosivity of the irradiated. The effect of this variance (of a on the . solution, the solution velocity, the specimen area, fission density) was examined. It was found to pro-and the time of exposure. Because of the occluded duce less than a 10% change in the burnup. The cell associated with pitting, the maximum corro- second facter was a constant difference between the sion rate will be less affected by the solution veloc- PDQ calculated fission density and the fission den-ity than will pitting initiation. Thus, most of the sity obtained from the punchings with a equal pits as measured for the ELAF plates are much less to 0.196. This constant difference amounted to a than the maximum. During the early stages of pit factor of 1.42 t 0.055 for the 12 plates. It was not initiation or growth, the pitting potential is rather possible at this time to assess which was more accu-unstable. The high concentration of corrosion pro- rate: the PDQ calculated fission densities, or the moting ions may be swept away by convection cur- fission densities calculated from the mass spectro-rents or the solution velocity. Gravity may have an scopic isotopic ratios with a equal to 0.196 There-effect on vertical surfaces, since a difference in fcre, conservative values of the maximum fission solution concentration within a pit is necessary for density are considc;ed to be those from the mea-its continuing activity. Thus, in this irradiation, sured isotopic ratios times the peaking factor as conditions allow the formation of many pits that nrrunted in Table 13. It is noted that these values do not grow, and a few that do, as protection of the Et!: approximately the same as the PDQ calculated pit is established. av age fission densities. s e q e 45 l

5. CONCLUSIONS AND RECOMMENDATIONS l An ELAF fuel core with 73 wt% of the l other reactors when consideration is taken -  ;

brittle phase (UAI,) gave excellent per- of the plate surface temperature and the I formance to burnups of 1.84 x 1023 f/cm3 time in the water. with peaking factors of 1.63 (peak burnup ~ of 3.0 ;c 102 f/cm ). 2

  • Evidences of small bubbles in pockets were '
  • The ELAF fuel plates operated at surface seen in c njunction with uranium oxide,-

temperatures of about 395 K (120*C) with which was probably formed during fabri- - the only evidence of failure due to pitting - cation oMe pow &r and plates. He blis-ters that form during post arradiation l g g3;g . testing may be associated with these ,

  • Blister temperatures from post irradiation pockets. i tests of 763 K for the UA13 composition, and 776 K for the UAl2 composition, indi- l
  • Reaction of the UAl2 to produce UA13 and cated large margins of safety from over- the U .,Al, defect phase causes an increase heating for short periods of time. in core volume of 6 to 12%. The core vol-The 50 vol% UAl 2composition plates per- ume percent thus approaches 60 vol% of formed as good or better than the 50 vol% the brittle constituent.

UA13 composition plates and will provide higher fuelloading. Although pitting cor-

  • It is recommended that the specification rosion caused the failure of three plates of for mm in & mwder blends be exam-the UAl2 composition, a large pit, in the ined with the view of reducing the allowed UAl3composition, in the side of the plate *I8""'

(that would have produced failure) was ,  ;, gg the fuel element irradiation sequence be

  • Neither the pitting corrosion rate, or the considered as a way to reduce the depth of '

probability of pitting, seemed any greater pitting corrosion and extending fuel ele-in the ELAF plates than fuel elements in ment life. e I l REFERENCES

l. L. G. Miller and J. M. Beeston, FuelPlate and Fusion InsulatorIrradiation Test Progmm, EGG-FT-5273, November 1980.

, 2. L. G. Miller, K. R. Brown, J. M. Beeston, and D. M. McGinty, Ertended Life Aluminide Fuelfor University Research Reactors, EGG-SE-6464, December 1983.

3. G. W. Gibson, M. J. Graber, and W. C. Francis, AnnualProgress Report on FuelElement Develop-

. mentforFY-1963,1DO-16934,1%3.

4. M. J. Graber et al.,1%rformance haluation ofCom IIand IIIAdvanced Test ReactorFuelElements, ANCR-1027, Aerojet Nuclear Company,1971.
5. M. M. Martin, A. E. Richt, and W. R. Martin, Irradiation BehaviorofAluminum-BaseFuelDisper-sions, ORNL-4856,1973.
6. M. J. Graber et al., Results ofATR Sample Fuel Plate Irmdiation Experiment, IDO-l6958,1964.
7. V. A. Walker, M. J. Graber, and G. W. Gibson, ATR Fuel Materials Development Irmdiation Results-Plurt II, IDO-17157,1966.
8. W. C. Francis, Metallurgy and Materials Science Bmnch Annual Report Fiscal Year 1970, IN-l437, 1970.
9. . J. M. Beeston et al., " Development and Irradiation Performance of Uranium Aluminide Fuels In Test Reactors," Nuclear Technology,49, June 1980, pp.136-149.
10. W. Dienst, S. Nazare, and F. Thummler, " Irradiation Behavior of UAlx -Al Dispersion Fuels for Thermal High Flux Reactors," Jourral ofNuclear Material, 64,1,1977.

I1. D. F. Atkins, Results and Evaluation of Pmductibility Studies Using UAix for Low Enriched Fuel Plates, N2751R000001, Rockwell International,1979.

12. J. M. Beeston, L. G. Miller, K. R. Brown, and D. M. McGinty, ELAFFailed fue/ Plate Examina-tion, EGG-SE-66%, October 1984.

I3. ATR FuelElement Specification,1N-F-9-ATR, Rev. 5. I4. Extended Life Aluminide FuelPlates, ES-50607A, November 5,1980.

15. D. F. Atkins, Development and Fabrication of Extended-Life Aluminide Fuel Plates, N345

. TR 000001, Rockwell International, June 1982.

16. Performed by G. Hoffman, Argonne National Laboratory, Chicago. -

, 17. M. L. Griebenow et al., "ATR Startup Fuel-Plate-Cladding Corrosion Test: Preliminary Data and Conciusions," Rans. Am. Nucl. Soc., 14,161,197I. Also in TRA Oxide Film Controland Surveil-lance, RE-77-059,1972.

18. L. D. Koeppen and J. W. Rogers, Fission Product Distributions in ELAFFuelPlates, ST-CS-002-86,

. January 1986. I9. W. J. Macck, et al., Isotope Cormlation Studies Relative to High Enrichment Test ReactorFuels, ICP-1156, June 1978.

20. B. S. Borie, Jr., " Crystal Structure of UA1,"

4 JournalofMetals, 3, September 1951, pp. 800-802.

21. H. J. Eding and E. M. Carr, High Purity Umnium Compounds, ANL-6339, March 1%1.

I

22. M. I. Ivanov, V. A. Tumbakov, and N. S. Podol'skaya, "The Heats of Formation of UAl 2 , UAl3 ,

and UA!4," Atomnaya Energiya,3, p.166 [Sov. S. Atomic Energy,5,1958,1997]. i 47

23. P. R. Openshaw and L. L. Shreir, " Oxidation of Uranium-Aluminum Intermetallic Compounds,"

Cormsion Science,3,1%3, pp. 217-237.

24. P. R. Openshaw and L. L. Shreir, " Oxidation of Uranium-Aluminum Intermetallic Compounds 11, Nature and Surface Topography of Oxide Films," Cormsion Science,4,1964, pp. 335-344,
25. L. L. Shreir, Cormsion, Volume 1, Metal /EnvimnmentalReactions, Newnes - Butterworths, Boston, -

1976, pp.1:162 and 4:16.

26. N. G. Fontana and N. D. Greene, Corrosion Engineering, McGraw Hill, New York,1978, pp. 48-58. .
27. M. Pourbaix, Atlas of Electrochemical Equilibrium in Aqueous Solutions, Pergamon Press, New York,1966, pp.168-176.
28. . J. E. Draley, Aqueous Cormsion of 1100 Aluminum and of Aluminum-Nickel Alloys, TID-7587, 1959.
29. D. R. Dickinson, " Oxide Dissolution in Corrosion of Aluminum Cladding on Nuclear Reactor Fuel Elements," Cormsion,21, January 1%5, pp.19-27.
30. K. Nisancioglu and H. Holtan, "The Protection Potential of Aluminum," Cormsion Science,18, 1978, pp.1011-1023.
31. A. Broli and H. Holean, " Determination of Characteristic Pitting Potentials for Aluminum by Use of the Potentiostatic Methods," Cormsion Science, 17,1977, pp. 59-69.
32. O. Hunderi, " Diffuse Light Scattering: A Way to Study Pitting Corrosion in Situ," Cormsion Sci-ence,19, 9,1979, pp. 621-630.
33. K. Viniamuri, P6stirmdiation Examination of Advanced Test Reactor Fuel Elements XA377N and XA379N, EGG-TFBP-5%8, September 1982.
34. J. M. Beeston, ETR FuelElement Pitting, RE-M-78-012, April 1978.
35. American Society for Testing and Materials, Philadelphia, PA, ASTM G46, StandardRecommended Practicefor Examination and Evaluation ofPitting Corrosion.
36. American Society for Testing and Materials, Philadelphia, PA, ASTM G16, StandardRecommended Pmeticefor Applying Statistics to Analysis of Cormsion Data (Reapproved 1977).
37. C. B. Bargeron and R. B. Givens, " localized Corrosion of Aluminum: Blister Formation as a Pre-cursor of Pitting," JournalofElectrochemicalSociety, 124, 2,1977, pp.1845-48.

e 48 O APPENDIX A IRRADIATION DATA O A-1 APPENDIX A IRRADIATION DATA . Table A-1. Plate irradiation history irradiation Times 7-19-81 to 10-I-82 to 1-27-84 to 3-7-84 to 4-24-84 to 7-29-84 to 9-9-84 to 10-21-84 to 3-31-85 to Position 3-6-82 3-16-83 3-7-84 4-24-84 7-29-84 9-9-84 10-21-84 3-31-85 6-23-85 Plate Number A 18 33 30 30 30 30 20 20 20 A 17 32 32 32 36 8 19 19 19 A 13 31 31 31 34 34 13 9 6 B 33 16 20 20 20 20 30 30 30 B 32 15 19 19 19 19 8 8 8 B 29 13 13 13 13 13 34 34 34 C 4 5- 5 5 I I I I 5 C 5 6 6 6 6 6 6 6 6 C 6 3 7 7 7 7 7 7 7 D 23 28 28 28 28 28 28 28 28 D 24 27 27 27 27 27 27 10 10 D 25 26 26 22 22 22 22 22 22 D A-3 C C I I

  • 01JJ004EL
  • 01JJ005EL -

i i 01JJ006EL . 1 _ _ _ _ 4 . . . _ h B d d d d d d D B o o 1 Composition + 2 D A o A o A o B B A o o o U 3 - - g . "l 02JF013EL 02JF017EL M I E 02JF018EL Numbers stamped on plate holderu Letters stamped A on outside of case # ~\ALV notch in top of holder. Reactor core Composition - Position Material Number A UAl 50 vol% 3 8 UAl 40 vol% 1 - C UAl 50 vol%' 4 D UAl 45 vol% 2 ,3,,, Figure A-1. Fuel plate experimental configuration. A-4 FISSION PRODUCT RADIONUCLIDE DISTRIBUTIONS IN ELAF FUEL PLATES INTRODUCTION The scanner bed has two Slo-Syn stepping motors which are directly coupled to the X (Horizontal) and Y (Vertical) drive lead screws with end-of-travel limit Twehe ELAF (Extended Life Aluminide Fuel) fuel switches for each drive. The scanner bed travel is lim-plates, which were irradiateda in the ATR (Advanced ited to 60 in. of horizontal movement and 7 in. of Test Reactor) I type irradiation positions, were exam-vertical movement, with a spatial resolution of ined by gamma-ray spectroscopy measurements at the 0.01 in. The stepping pulses for each motor and the TRA (Test Reactor Area) Hot Cell Facility. This work is limit switch signals to the h1P-12 motor drive inter-part of a joint research program to develop fuels for face are optically coupled to reduce the effects of University reactors. The fuel plates were examined at noise from the motors and translators. The X drive spatial locations along the axis and edges of the fuel can be operated at two speeds. The fast speed is containing regions. The purpose of these measure-16 in./ min and is utilized during initial " set-up" ments was to determine the distribution of gamma-ray when determining the location of the radioactive emitting lission product radionuclides in the fuel. objects and the variations of their radioactivity. The These results will be combined with radiochemical slow speed is 2 in./ min and is used mostly for the analyses of samples taken from the fuel plates to deter-gross activity profile scanning. The Y drive operates mine the overall fuel burn-up in each plate. at a fixed speed of 2 in./ min. Six different sized collimators are presently available SCANNING EQUlPMENT AND ror use. The collimators are a section or round stainless ANALYSIS METHODS steel stock about 4 ft long and 3 in. in diameter, each with a different size collimation opening (slit) which penetrates through the entire length. Fiw collimators Scanning is accomplished using the TRA Hot Cell have openings which are all 0.500 in. in height and scanner which consists of: (1) the scanner bed with a have widths of 0.010 in., 0.020 in., 0.040 in., horizontal and vertical drive system, (2) a collimator 0.080 in. and 0.250. A collimator with a larger open-which penetrates the hot cell well, (3) a Ge (Li) , ing is also available; it has a collimation opening of gamma-ray detector with associated electronics, (4) a , 1.00 in. height and 0.50 in. width. The collimator pen-two peak precision pulser for automatic spectral gain etrates t'ie hot cell wull and presents a collimated calibration, and (5) a Fabri-Tek h1P-12 microcomputer gamma-ray beam to the detector which is situated out-for local control of the scanner bed and gamma spec-side the hot cell. The selection of collimator size is tral data acquisition. The system is controlled remotely dependent on the garnma intensity of the item being via a Vadic Full Duplex Afodem data link between the scanned. The size selected is usually determined by the Fabri-Tek computer and the PDP-1I/44 computer, counting rate the detector is experiencing. Occasionally located m the Radiation hfcasurements Laboratory there exist situations where the item being scanned has (Rh1L). The operator can load a sequence of com-such a relatively low count rate that the collimator mands on the PDP-1I which will execute a predeter-needs to be completely removed and the gamma scan-mined scan sequence. During remote operations, the i ning done through the resultant 3 in. diameter open- , scanner bed can be positioned at a predetermined ing. The collimator can be rotated to position the slit point, a 4096 channel gamma-ray spectrum accumu-for either axial (horizontal) or transverse (vertical) lated for a predetermined period of time, and the spec-scans. The 0.040 in, width collimator was used during tral data transfierred to the PDP-11/44 where it is scanning of the ELAF fuel plates. automatically stored and analyzed. The scanner bed will then be automatically positioned at the next prede- The reference locations of the top and bottom of a termined scan point and the entire process repeated, fuel region, and its centerline, are determined by a gross The operation is terminated when the last scan point scan stepping technique. With the collimator oriented entered in the command sequence has been analyzed. horizontally, the rod is moved in small steps in the wrti-cal direction. A 10 s count is done at each location (step) and a visual inspection is made of the resultant spec-trum. A total integrated gross count is also tabulated at

a. See Table A-l and Figure A-1. that time. The two locations at which sharp changes in A-5

total gross gamma count rate occur and " key" isotopes plate were selected in order to: (1) preside both axial are observed are noted. De axial centerline of the fuel is (fuel length) and transverse (fuel width) distributions, . calculated from the measurement of the fuel axial (2) obtain spectroscopy measurements at exactly the boundanes. De locations of the fuel top and bottom same spatial locations where the samples for radio-ue determmed by orienting the colhmator wrtically, chemical analyses will be remowd, and (3) provide positioning its midpoint at the axial centerline of the sufficient high quality data in a cost effective and . fuel, and noting the point at which the gross gamma timely way. count rate changes sharply and " key" isotopes are observed while stepping from a position clearly off the Sketches of radiographs from each plate showed the fuel to a position clearly on the fuel. " Key" isotopes are location and dimensions of the fuel region, and the defined at the radionuclides, which are determmed to be distance from the end of the fuel to the end of the plate. unique to the fuel being scanned Each fuel plate was gamma-scanned from the bottom to the top. From these scans, the ends of the fuel After all the initial gross activity data is examined regions were accurately determined and the zero refer-and the isotopic scan locations are determined, the ence positions were established relative to the bottom RML PDP-11/44 is programmed for the automatic end of each plate. The fuel dimensions determined by scan sequence of the fuel plate. De RML PDP-11/44 the gamma-scans step' technique agreed (on the awr-analysis procedure performs the following functions age) with the dimensions from the radiographs to on each gamma-ray spectrum: within 0.04 in. on the lengths and within 0.02 in. on the widths. This good agreement demonstrates that

  • Energy calibrates the spectrum based on very accurate p siti ning is established relative to the the pulser data. bottom end of the plates.
  • Searches the spectrum for all prominent m matm us tk measurenwna has pea h actual opening dimensions of 0.040 m, . x 0.500 m..

Because of the distance from the collimator to the fuel plates, the actual area of the fuel plate which is viewed

  • Energies of selected peaks from the sum-y t anangement u mary file will be written to the limit library. 0.0$$m.pxcommatWetector

. . 0.688 m. Th.is ensures answers will be obtamed for all desired peaks. In order to obtain sufficient counting statistics, c un mes M ganuna4ay spectmsmpy measure-

  • Fit all found and selected peaks to a Gaus- .

. . ments (to determine the fission products radionuclide sian distribution. distributions in these plates) varied from 500 s to 900 s

  • Performs decay corrections if necessary. " "E " """ "8 '"
  • Subtracts background values for each peak RESULTS if they exist in the background spectrum.
  • Prints the results from all peaks on a line The results from these measurements are given in printer. relative counts per second for each individual radio-nuclide. Since no efficiency calibrations exht for these .
  • Writes results of the specified energy peaks measmenwnts, quanthative activities and gamma-to a summary file
  • intensities are undetermmed. Therefore, the counts per semnd of one mdionuclide are not related to another mdionuclide. All the data have been decay DESCRIPTION OF corrected to 6-23-85 @ 2000 hr, and corrected for any background activities in the hot cell.

MEASUREMENTS The results are presented on sketches of the fuel The spectroscopy data consists of 4096 channel plates which illustrate the location where each mea-spectra of gamma counts versus energy at presclected surement was taken, the orientation of the collimator, locations on each fuel plate. The spatial locations for and the area viewed by the collimator detector. Each gamma-ray spectroscopy measurements on each fuel scan-point location is shown with an asterisk. The A-6 {f. associated count rate (counts /second) and uncertamty At the centerline locations (1.75 in.,4.54 in.,6.40 in. is shown to the right of each asterisk. and 9.40 in.) the uncertainty also includes the scanner system reproducibility component. These positions , Random uncertainties, including the counting statis- were each measured twice in order to better establish tics and photopeak fitting components, are reported. the uncertainties, including positioning. 1 O I 4 l 4 l-L 1-i i i A-7 O 9 APPENDIX B CORE AND PLATE DATA 1 B-1 APPENDIX B CORE AND PLATE DATA Table B-1. Core and plate specifications Plate Preirradiation Core Actual Compact UAl x Dry Wet B-10 U Core U Void Plate Core Plate wt wt wt wt wt wt Volume Density Volume Thickness Length Number (g) (g) (g) (g) (g) (g) (cm ) (g/cm3) 3 (%) (in.) (in.) 50 vol% UAl i 01 11.94 8.076 32.25 21.92 0.014 5.73 2.882 2.0 7.23 0.0510 10.31 03 11.% 8.075 32.17 21.86 0.014 5.73 2.899 - 7.51 0.0510 10.44 04 11.95 8.076 32.29 21.95 0.014 5.73 2.881 - 7.07 0.0512 10.37 05 11.94 8.076 31.99 21.73 0.014 5.73 2.908 1.970 8.04 0.0510 10.50 06 11.95 8.076 32.23 21.91 0.014 5.73 2.883 1.988 7.13 0.0512 10.56 07 11.95 8.075 32.18 21.85 0.014 5.73 2.912 1.%8 8.04 0.0511 10.44 08 11.94 8.075 32.10 - 21.82 0.014 5.73 2.888 -~ 7.39 0.0511 10.50 09 11.% 8.075 32.31 21.95 0.014 5.73 2.898 - 7.47 0.0514 10.56 10 11.95 8.075 32.16 21.85 0.014 5.73 2.899 - 7.50 0.0512 10.69 Average 7.49 50 vol% UAl, 13 13.70 10.057 33.41 23.18 0.020 7.93 2.998 2.645 10.98 0.0510 10.62 15 13.70 10.057 33.53 23.23 0.020 7.93 3.024 2.622 11.75 0.0512 10.56 16 13.69 10.057 33.41 23.16 0.020 7.93 3.014 2.631 11.49 0.0510 10.62 17 13.69 10.057 33.47 23.19 0.020 7.92 3.023 - 11.72 0.0511 10.62 18 13.70 10.057 33.56 23.30 0.020 7.92 2.973 - 10.23 0.0513 10.62 19 13.68 10.058 34.02 23.60 0.020 7.93 2.956 2.683 9.87 0.0519 10.69 20 13.69 10.057 33. % 23.52 0.020 7.92 3.002 2.638 11.02 0.0520 10.75 Average 11.01 45 vol% UAI, 22 13.01 9.039 33.04 22.83 0.018 7.12 2.860 2.49 7.23 0.0510 10.37 . 23 13.02 9.038 32.95 22.77 0.018 - 2.867 - 7.32 0.0509 10.56 24 13.02 9.038 33.I2 22.90 0.018 - 2.845 - 6.59 0.0513 10.56 25 13.02 9.038 32. % 22.74 0.018 - 2.904 - 8.48 0.0511 10.50 26 13.01 9.037 33.08 22.84 0.018 - 2.875 - 7.73 0.0512 10.56 27 13.03 9.037 32.84 22.68 0.018 7.13 2.891 2.466 8.08 0.0509 10.62 28 13.00 9.039 33.12 22.86 0.018 7.12 2.877 2.475 7.62 0.0510 10.62 Average 7.58 B-3 Table B-1. (continued) Plate Preirradiation Core Actual Compact . UA!x Dry Wet B-10 U Core U Void Plate Core - Plate wt wt wt wt wt wt Volume Density Volume Thickness Lengt) Number -(g) (g) (g) (g) (g) (g) (cm 3) (g/cm ) 3 (%) - (in.) (in.) 40 vol% UAl, 29 12.51 8.018 32.82 22.50 0.016 6.33 2.867 2.208 5.81 0.0513 10.62 30 12.51 8.018 32.93 22.56 0.016 6.32 2.877 2.197 6.02 0.0519 10.62 31 12.51 8.019 32.81 22.46 0.016 6.32 2.901 - 6.80 0.0515 10.62 32 12.51 8.019 32.99 22.63 0.016 6.32 2.845 2.221 4.% 0.0515 10.69 33 12.50 8.018 32.49 22.28 0.016 6.32 2.875 2.198 6.08 0.0510 10.62 34 12.51 8.018 32.98 22.60 0.016 6.32 2.868 - 5.75 0.0519 10.62 36 12.51 8.018 33.09 22.66 0.016 6.33 2.878 - 5.94 0.0520 10.62 , Average 5.91 4 5 g e B-4 , ,.u,,. < ,o , , . . . . . . . . f31D CXD(ICAI, mal,TsIs RI' PORT , {CG .TF xE;nstra ar I. rrna s, EQUEST No. I l 4 (,5 . / eM e W1 ACCTPTED BT M N , Q [ AllAI.. CM W No. Vou0XER No. 927 g,, DATE /- 8 J'* ' "# 2M 5 L 24 5"1. 21453' I cok Ilement (X) Tactor EBC Element Spec. Vt". Anal  ; As <0.5pp o.co8236 <0.004l v so.o,I 7g. 9, Tf; 2, , ., ,y, 1 Dr < 0.F'ppe o.c97o64 l< 0. O Al 85- n . 3 4 0.5 ppa l o.999999 <0.5000 o o.60 mx 0 11 Wyn u.e s -n l . Ba < 1O pp. o.ooo122 < 0. O O l 2. e o.is r. x o, o t Ms ,s.n Be 40.5'pps i o.000015 lO.0000 n o.cr.5 ..x a,,e , 8%u,,, .. L <0.5ppe l 0.433973 <0.2l70 H o.o20 maxh o,oa i "[. ;$9,,, .4 ca < 2 Eppe 0.ooo158 <0.0040 vaAxIva Isox.PIc ca'.PosI:ron cd < 0.F ppa o.325097 < 0. I 6 2F . c. < 2. ppe ' O.co9239 <0.OIF.b' i.d irocedoon Cr iO pas o.ooo799 0.0080 M Pe spec. M Anal and Chemist cu 1 O 99= . o.oooa6a 0.00?7 e 235 1 93.oz l.o 93,i5t W re 100 pp. o.ooo672 0.067E a 234 1.2 a x. t,oog P N cd <0 . F,, 4.19458 < 2.0173 a 236 o.700 Max.- 0.%2 9 151484 He < S pp. o.com4o < 0. 0 0 0 2. e 238 l6.o2 1.o 5,343 v Mn 4 pp= o oo36'3 - O.Ol38 caYsrAI.uns consrIruzms Mo <. E' ppe o.ooo4o) .(O, 002 O . P <50pm o.000087 <0. 00 4 4 ' Ni < 10 pas 0.001122 40. O I I I #h * ~ '** *** ^"'l t.d troted .k and ch*=ist Pb ' < E ppa 0.o00011 0,0000 UAlp 70 Min. (/"/ si i oo pp. o.omo66 0.0066 Uni 33 t%

s. 3 pp. o.mm72 O.Oo06 unA <l @ t v <100pm o.001496 40, l 4 (j 6 Un nloy Nfbd=Ed Y 20 0vp. o.oo14o6 O.2212.

za <.10 ene o.000241 < 0. 0 02 y 955 cens a zr <250ppe o.000029 <0.0073 Total u 7T.98 i O.036-

s. 4. I pm o.526575 <0.52 4 6 l

o 235 c)3.142 t 0.0011 ros.1 tse - loo . 4 g3 ' 4emi.t and :.3 notedoes . l N azA sz -\\ < Q I 4 01 (2) R.D

1. pan Acc;. ,,3;oo I a.o., o_f 3_9 , _. sun. .,7/ oe o MPo 4/Od/#O

..a . _ ._ . , c.nca:.1.An..a . n.n .

  • (, __~'

. yw_u].2t/r/ I yu.1:. ..s. : ac 1.n n: .x:.:n a:a .A .a :. Jj /D . . l . :n a _ u c xi n u __._ . . _ _ nier 11 5 l l

e rez:. r_c: =... cea 'cc . u ..=c::::

,.m .>. ... o A. ,ggs, -... . . 7F , 37 ;3:3:?. M CAI;gl/jO _ -.. . ?ook " 2 SLAP l_- lwrra / ' - ! r_t : :s. en ut. w:: wr. at: tr.r 8, - - e l st::sur en =:j/ ux . p;f :: :g...

Asfo 11 i

~~ I- I~5 $ i 1~l ,,2 l l - r 1- 1 l --- qJ D _t 33. V/ i. A3. // _i. 9973lIs.2c_l7.93 ]Ntio.sfy ! In. 9R0_ ety ! mr- SMLE / Sexwd ' - '~ t~ o f.S~ i 3 3. f3 il 3. 23  % l 1 i  ! ii_s.7o i 1 .9 s 6 io. x ,1 II.~l50 }_fL I 33. Y/ \ 23.l4 I lt/ 3 l 9 f ~1.0 2 1 116.o4 >' t t . 4 9 Q ) I o/7! 33. N  ! D. f !_ / ..I /5 4 f I 7 9 2 ! l; lm.M7 I I I "7 2 o )I n ip 1 33. E6 . 1 4 3_. 3 e t /  !/4 'io 17.9_7 i'I/a.o(71 1o. Q3o \\ o19 l 3 % o t ' R3. (* o ! / In.48 ' *r 9LI \/s sai 9. S'N f.trF aio i ~33. f% .. so.oD! I I . LM. [ t i G 3. G1 '.1.fl2 Mt 49f7.92 i i i i i {E t t i  ! i i i ,I_  ! . _ _ _ s i  ! l l l I I I i  ! !_ I i i i i l i i i e i i i j i a e i I I i i l l i i i _ii i- ) i i i l i  !} I g ~) i !_ 1 1 i I, h i i i l i i I , , I i i i i I i I l l l t I t I i I i } l l 4 I I I i I l  ! I 't i if I , ay*C, l v .r: ac:x :r.:r ; :::m=p:: t-hve:.u:: ~= t n ::.t." ...s ... n c :3 s... , b., [.m , ' . , vc: * :a*:et ~

e:2:.::a

> => r : m .: ': '- a . .t . :.:::. / m l_" ' l <p M.n 4. oo / l t::st: :3 - / /n 6/9.- l \g,D " " ~ ' - ' ,c/7 ' '

-- . .a / -

M e B-6 m.r rus J2sk EER r. ::2 <T F .ar : mat.e. ac.3 . ous M///f/ so odoaopa FLAP r!.u: to. oar a:. war : Waux 3:x.xxe e c ca.x . ..a :, DENSITY C?! WT W.  ? WI. ve ._ , mfo.tl i Aser &%4r i  ! I l f i on 3 3. o '/ R.J.13 1 9 9 73 li.s .oi 1/, /2 1 9. o_,9 i 7. a 3A (i > o.t3 34. 97 i 23 77 i /\ is. e2 I ->.11 g 9.essl ,.323. \ 1I e.wi 33. /4 I Aa fo l / tn.o2 m.11 19 ate! t.. q3_.

i mar 1 .3 4. 9 4 I ,?A. 77 i / I/s,a !7./r I fo.w I T. 9 Tr l \ M Li 33. of l d a- 2'/* l / \ st. o/ f b. At ' e.s s 7l ~1. 9 3 i mi 3cR. If I .7.7. 4P / I n os l 4,/3 Aos71 7.o M-11TF nMI 33. /.2 i det. 26 f *o9't31/ 9. ao l-r n ' 9.nse i ~1. 9 0 4 t

i I I l' I~ 1 i l l l 1 i I i i  ! I I I 1 l  ! l l 4 I I l 1 i I i l I l 1 l l l l l l 1 i i il i I i I I L i i i  ! I f i I i l l I I I l l i l I I ll l l l l i l l l l ! I i . l I I I  ! l l  ! I l l  ! I I i VA7:17::t? 3 I:iS?!C". ION f( s

  • cT v '"'.' 'v:

e AVE.Uf.I " CRIT: CAL" iA::?LI::C  ::07. Q.A /,fy j j , ., ,.b, VOID ". **AI . . c! ' . ACCI??A::C: A P ? ?.0'JJ.*. I::srecna ir / O/ M m 4.co m l .<> l r: :sse:cn3 / /// /// , a r-q>y -.', ::' : :" 1...". / g [Js. . l l N l B.7 l l _ - . _ , _ . _ _ _ _ _ , _ _ - _ _ . _ _ . , . , , , _ _ , _ - , , ,,,..,.,.-__-_,.--,--,-----sc - ~ .- O . r _, . . s. ..:. .. n . u . . . n.u.. . dE

  1. N/
.v.:: ::7: a!.:::o

.a x=:.t Alf. - 2A:s .m dSo.2dd F. E'LA F / rtA:: Io. snr w . wt: w: - we,m otsc.ur- e .: s t;: e3.;

us::7 c2: :.: 2:. .--  :: .;c..

ATVo29l 3 A fot f 2.,1. 4"o lR 4~1 3i12.4s.] r 9 3 i fr. m s I b~irt x \\ 030l 3.2 13 lAA.86 I fi vs.41 1 t,. 51 l In.ons l la. okK ~ ) 1 03/l 04.#1 I 7J. $ I / 112 41 i I ,.12 B 'm A et i l. .lYoi ' i i au_ i 34.f9 1 J ,,z . 4 _7 t / tra. 4) i t. 3211 p.c,q l 4, 04/ ii o33'l 34. ff I JJ. af i / I i2 5g.J L. 52 ! 'r.aeel 1. oil I i o e3'/ l 3 4. 91 l 23. he l / 1 11 A t i L.s 23 l.oiti6~~1W z \l eXl NET SMw'h'r i/ 6 ' l - l ~ (ArroJGI JJ 09 i A.2. 6 6 IA4 r al z.4 i r Ir. s s !Vle o# s'l 4. II,7 I I I I I i l 1 l

I i 1 8 i iF I l l I 1 I ( )

i i i l i i 1 j l l  ! ( I  ! l

I I i t i i I

l l 1 1 i i I l  : I l l l l 1 i i l l l 1 l i i I l l l  ! 1 I I i ( l i l i i  !~ I , I L i i i  ! I i' i ia l i I I II I i l I l t ) l 1 i l i l i i i I i i uAr:a ::2 ? :rs7tc :c:: JY'O. l .mv .,4 Avtr.e.: I " cat:::v_>  ;;en u::e tA ::::c,, '[' ' /' '* '^ * *' "'I ~' ' #2' C2 ";W *- I3sP:c::s n / J M m 4 00 . t tusn=2 6 ////11 - - f , i: . . .a u.. l 1 ~ rj' f ,, / -

  • ,6 f )l B-8 l

I 1 - M ainem 'e s ellR I At.. k r. ! C.* 5 3 2 AstPICS thTERhATIChat FACE I puu 6AII OS/12/al htCLEAR FLAIL DAfRILAllf.h bLCCFC At t i!IMO4T hC. J4h 321513V NPP TACHICAllLA AC.'AIJf-C4 t utk lL AT ILf4 CATE 05fCL/61 PFC 1A(RILallCk AC. 02CC2-tl s+JCkAF r.C . EL 11 BLthC 1La 12.9E IL235 53.It2 BCFCh LC1 12512 1P10 14.21 LaLIXI U1430 AL SLM CF CIEUERL: Ibb u ui2?%) 81101 *e .LEdLRRCC AFCth! PL A I E

  • TIC WT h1 kT IhPht-6I al h1 h1 h1 hl' h L l-4.I L Ll23tl JJ J J a il L 10. J'e l .141 3.525 13.72 13.47 IC.02 1.51 1.31 .C2C .C5 .C3 .Ci

?>t lit ?L L 10.C58 .I41 3.52t 13.13 13.70 10.C4 1.93 1.39 .C2C .C2 .CI .CC JJi 10131- 1 IC.C57 . 1 41 J.52c 13.72 13.lc 1C.04 1.53 f . 3 'i .C2C .C2 .C4 .CC Ji 1384CL 10.3 %1 .I 41 3.422 13.71 13.30 IC.C4 1.53 1.3% .C2C .C3 .Cl .CC ?! g /11 19 t St t 4 I C. 0'a i .141 3.522 13.72 13.70 IC.C4 1.93 1.25 . .C2 C . .C2 ..C I .(C

  • +1JaDul6LL l o . 0's ? .lgt 3.52* 13.72 13.4% IC.C3 1.52 1.3d .C2C *C3 .22 .Cl IJ130l lL L 43.157 .141 J.524 13.22 13.1S tc.C3 7.S2 1.38 .C2C .C3 . C2 .C1

+7JiauteLL 10.C51 .141 3.S2e l'J.7 2 13.10 IC.04 1.53 7.39 .C2C .. C 2 .Cl .CC JJi a C l'AL L 10.0S8 .541 J.521 13.72 13.48 IC.03 1.92 1.38 .C2C .C4 .C2 .Cl ?Je 332 CL L 13.057 .541 3.f25 13.72 13.45 tc.C3 1.52 1.38 .C2C .C3 .Ci .Cl 10 . Ital AL5= 133.573 1.410 35.254 137.21 136.52 ICC.34 75.24 73.E4 .200 .30 .it .Ce SCFAF AE I = .15 C I F F f M E P.C C .15-I t s .' s'*'gm C r e

  • r r~

en ** C C G* C f* C r

  • C 39% e y e e e e e e e O.

C3 7 C t* me 4. o. C 4

  • t'C C C C* C C P C C: o e e e e e e e e

's cr. == ? C= t -= P4 N N N ** N P* N 7 er F e 11 .* e Ce f*e C. Ce L;e f* e, * .e c- - e . r. e e e f 3 4. h. - E (" 4*a.44i4A .s N g c'o ec C,e C s' u e c - ~ ~ - * < c C: 7 .* 3 e e e e wg 1 .: - e =*.- - e T .= c. g u c ..(* 4 e .r .* 7 e- C' ' ,, ' C ew <. . & I F* * * *

  • CC c* e C 2 .-* .=  %%

l, C h n= 4. T. e . . . e e e L.; .? 3 e . * / .* 3 s' e .r s . . . e s. s c C 4 .L. *e e ." P. < e e *; ., to o . C* 9.* r' t. F. v.

  • w t. eu 9% ,,C.,

~2*: ** 6 r' r v. es e r* r .  : o. e e e o e e e e . .. :. L 4 v. J'. e: 44: C 4 4 s; C < V- sr . %. m es' . . . *N

    • et  %
  • g.

'4 = e'. *1 e- - T t'* C *. t* ( 9's . C. e a: l'.L

  • ar 5'..

AB L t.

  • C* 4* C C r C C e e e e e e e e t *.

=r e == .! 8lr. C *4 7 F C :: E

b. C. 4 C

. 7 4* 6m .

  • w L

. O k == - .= w f. . O- s . p. t*, if of f tf b^ tr ts' C

y. e. e e e e . . s e 4 8%d 8 . A f N P. P. % O
  • e**- en e. en .e C'  ?

6 se C e. Q *t F ' f' W r ** <* 0* 9" m* f: 6  %* nt' 1r el $* 6* 6' F. I

  • e A e e e o e p e ra::'. - - o sr o'

.eee c< ee n e. c c e eo e {

-- ececC e C' e* f" C C f* e C &

e e' 4 4 4 ,t r ** r - e 3. e e e e e e e e e c 4 4 f 4 4 ,e 4 sf >. S ' - 9 9 9 e e' ! .e p t ( e.' 9*me . g.' a. m. eu. P* e (' si.  ; 7 r 6 e e e e

  • e e e e s

P . 'r e r* f f* ** % *e *r1 78 *= - 2 . w

  • as

-b .L ". .". ~ t'" g* P, . e. t (  ? V 1**

. e . . e o e e .
    • 7. m. *

. m. L *

  • t, Y t t.

.f. '= -* ,? g~* L ,.. . e . . . . .. e e s me. n i d . '. =.. e a e .* e .* 2 . ., = y e - a . - e ,,, 4 e - 1. e *. r ? ~ o* r : . t

  • e f r :
  • r> * * .u .

t L e. .. ... .

  • 3 l

E.10 _ _ _ _ - _ _ _ _ _ _ - _ _ - _ _ _ _ _ - -- -- I . ... ~ j . . e . l l l J .i l } " M m 1 j F Pi l:1 fC. ht.!O2512 .et[FICS lhf[khAllLhAL f2Cl i 's t. (1 Al t 45/1//54 AUCLfAH FL A I E I tER IC A llt:h bLCCpt 3 4 t tit =t A t P40. Jhh021*#31) NF* iAfp4 CATI (F AC. AIJI-Oi j A" wit.: 8fts s.All 05/07/n1 PFC FAtRICAllCh AC. C2CC3-fL ! $ r,s.> 4 F h:1. It 1 ELEnt tus IE.91 1L2 3 $ = 5 3. I t 2 l BC6Ch LCI IJ512 1e10 144t l l tlat e x t as4tC AL SLM CF C18tRRkC lhv U LI23$) 1110) ** CEPbhMLC AFCthi l PtAtt-NC bl kl hT IhfLT-bi' 'h1 'bf 'hi kl b1 AIT-b1 L L(2jtl j 'Ji 10lli t 9.918 .17J 3.883 13.0* 13.C2 S.C2 I.12 a.64 .Cl2 .C) .C2 .Cl i Y ?JF00221 L 5.031 .32F 3.881 13.0$ 13.C1 5.C1 1.12 4.63 .016 .c4 .C2 .Cl j  :: ' H 00211 L 9.038 .121 J.d83 II.0! 13.02 S.C2 1 12 f.t4 .Clf .C3 .C2 .Cl . ?Je3n24fL J.018 .127 3.882 13.01 13.C2 9.C2 7.12 6.6% .Cte .0J .C2 .Cl Jiddi'At 9.038 .121 3.882 13.01 ~ 13. C 2 " ' 5.C 2 ~ 1.12 L.44 .CtE .C3 .C2 .C1 .'J6 0 621.I l %.017 .I27 3.ast 13.01 13.C1 S.Cl 1.12 (.43 .Ctf .C4 .C2 .Cl J 'JI 1ft/ H L S.017 .12t 3.682 13.05 13.03 5.03 7.13 6.04 .0a8 .02 .Cl .CC 1 ?Jf002cLL 5.0 59 .127 3.882 13.05 13.C0 S.C1 1.12 f.t3 . Cit- .C5 .C2 .Cl ICIAL5s T2.J34 1.016 11.05f IC4.4C IC4.13 12.14 5f.97 53.C9 .444 .21 .it .L3 2CFAF hkl = .It Clif tNthCE .Cl- 'T hd g grrsno By  ?" ' ?'C T4T S 1 ib1 ) 8 ' u e- catV; .AcetPir.o u b.L .~

  1. ~ n ;AOL. ChiM LAS No. q -

om._= n & -4.l*"Um W% w rou a ta n o. 9 2 c1 2. . 4 b o Hotebook , " gle,.cnt (I) Jactor EBO i- I1:sent gSpet. M M1 ^ and Cheniet As 1 40.5,p ' o.oca236 <0.00%i r 67.o 4 - w.q,_$,3.w Dr <0.Spp o.c9706i l < O . 0 485~ (F Al"

.3 -- <o:5'pp i 0.999999 l<O FOOO p o-2% W (_, .

c.so su c 31 , 4i ,5y_c, o i . , 4 E. < 50 pp l o.ooo122 l< Q. Oof L c '- .o.13 < u , og 2 ~ i se 4 0 5 pe= l o.coocis 1 0.0000 n o.ots en21 o oof, ' a]. w i - w !m. < o 5 pp I o.f.33975 l< 0, R 1"Ic .u' o.caoeaalo,ea.r yy m -n' u , . ,,, .e - v 7 1 c. ' Fo pp i o.cootsa 1 O.0013 ,-

.un:m no:une caecst:Icx  !

\ Cd <0.5pp l o.32$ 97 l< 0. I G ES-Co~. < & ppu l o.co9239 l< Q,O l9,{ ' bb l'otebock Cr 410 pp. I c.co3799 l<0.0030 .'***F' ' ***"',", ^^" =^* ch*=ist fCu .6~ pp l o. ooc'5B L O.00(3 u 235 {9301.0 1 9,3, I tyi 1 7e '- (00 pp, I c.coc672 O>.OVIE u 234 l 1.2 cu. l,oo3%shD'A ca <c.Fpm l 4.19438 < 2. 0 ol 73 u 2% 10.4s: 0.2 0.45G i W 0t% W 9 A < S p;e i c.c:co'o < 0. O C O Z. u 23s ts.c 3 1.ou S;gg S - 2. pp 1 o cor '*3 ' O 00Gi . . , ~ cm.m.:.txt: ccurmuzsts no 4. E pem I o.coct03 l< O 0 0 2.0 P < 50 p .i l 0 000057 <0.0044 ' w n,,,w n: < 10 pen , o.oon22 40, O l l 2, 7* *" 'Uc~ % "" and che=1s: a Pb < 2, p l o.C00:1r 'O. 000 O _ un, I a u ,_. t si W om i o.c:c:56 l 0c00F0 un, bo.o eis 1 46 ms , 8  := 4 n= I o.cco:72 IO.0003I % - 26 l *@e" .. E, v <100pp l o.031v6 l<0.I416 unAitoy I ItWB.Td.1 j V 100 v s i o.001'o5 1 0, t 4 0 f., ! za < lo e = l o. cec 241 I<0.0024 9 9 c :.T Ir z z z 12 m =r < 25%,3 Io.ocoop9 l < 0. 00 7.3 _  :<.sas. c . 7 1. I .'; 2 0.0 % - sa <.I p p l o.524575 . 40, $2 4 6 c 235 *l 3 .I 4 I i 0 ,0 G 7 - e=iit and bb Notebook Tota *. E2C 1CC l pb,_.tka 63 2.- t 2 r< 3. 9 910 y 'li.is < g- } - sic $' o i U NER COT. ,_ *) f 0 o,J_,1.0._o 13 9 9 'st L_7/o o O '90, 0.],0 0 II'.'} _} - L CT Micq1.u7Cn G:ic': ._ ' L.i ,~' 'L. u: $ 2$/ U 7.I '.s quA .;. A::- .cz I.;s t.:/cu r:- 2 i CA 1.ts No. M /T 7 O .te:D Io Q::a 11 12 -"t* ' .I'. P'.A Z C01:. */ m . ;;2: .' :.; ::::: M *ET* iL'. 2 *Y?! CI - !I.E.:a s N= . c :. sc. .2 21 om O ' ' - N- m cao;.c_o_g - - - ,- E L. A ,, / / i furs to. nn w:. :tr 2 . um3. ;t,n u t. .. p . 3. .i / a::/. I n::s::;  :.  :;: . , o -- .~.- - _. e ./ , _y. h 4 32.25 1 12 / . 9 >. ). 99ts_la.34 14. ri s,! }t .o 7L i 7, 2 2 L. I taEe.p21 ML'.T SAN. PLE - _hi -I /I i i ciu.eral.12. I7 i21SG T _/_lIIALl.4 nt$ 0 di g ig. . W.tw w.I72.29 821.95 1 / 19 4e i _! ; p ou _.,, _ s 33 g i.91.u s*_5Itr 43 Int :n ookl vc . 23 1 r 73 I 2r. 9i I i / / l.U.S.d i f I W.: 72.j is'o I E f. IL.gfId.740tavcir,sg _ forms e l 31.I8 l .l 26.Ts i/ IIIA 64 f. p j ogggtfi J. UI2,. i.eo;nsur!** ra - 12/.s2 i/ _i y .9 u _ ggi M4! _7.'331_ Qsu%e9\3%,11 I:n.4G ll _hl. A t l 4, 7.31 Q aQ *1A(oR cL9afa 31.IG IKa aM' j. (n.19 lLJW M}tLab!L.1.3 . : .__ I ., i  : 1 l l 7 ., _ ___ _ ,1. _ _ . i i ( I I -

_ 1 i

~ - - -) .-

f. I  : I ,I i r

! i I i_ _l I l_ i i I . I I i _ i i  ! i .I. I l. i i t, _ - _ . I _ i I ( .i i I F, . i - i l i. - - - I Il l 0_-. ~ A ' , l 1 .i 'l l g .-- f { i_  ; 1 l- l l . j . $!ar . C .CT 1 * *' Vera tr'r ~ ::iu' ::Ic': ~ * - - ' - A g **VI W I "C*tI'. . / :. ' #A;:?: :rc !  ?,.4,  ;,, , , ,

.,$ 7 t.;- y ..

. . lL }A .Lx._ m *C ' ';^ ' ~' T '. 'cc1 :>::ct l n?ms: . N Mm d.OO l Y :1 h :<' 4i I l s tx u t:.:: yI se _ 0'D g q; ^ ,-

, f 7 /..l,j

h A D

11. p

_ _-__._~ __ _ _,-..___-__ _ . _ _ - _ _ _ _ ~ . - . . _ . _ - - _ _ _ . _ . . - _ _ . _ _ . _ . _ _ . . _ _ _ . _ _ . _ _ . ~ . _ . _ _ _ . _ . _ . __. ._4),. i, l I I p. l Curtic.~.EIC2532 k.JMICS 15TERAAIIChAL FACE 4 . 6.st ot/l2/a1 ALCL1AR f t ATE # Af kiC AT IC A #ECCHC j e.a cA t.t raC. Jh.&321933v NPP F AER V.413Ch AC. AIM-21 1 .d 20 a8 804 Cah C OS40c.#8 I ~ ~ ~ **'PIC fALSIC88tC& AC. CICCl-LL 1, i S Ad t.C . (Lot bLthC SL= IJ e13 *L2hi.53.345. BGPCh LCT 82112 -astC 14 23 ~ Lat i z ) Ef 41 t At 54.M 07 DtELPREC IAV C 912354 $4I33 ** CE2LANCD ' A PL L k !'

a n.-nu u .r u lutt-6
- > - - - u - - -_ s i -- ei- i. i - e.r i.a u uns,

? j saJo tC t m.076 .0%s 3.804 11.90 11.54 a.0*  !.73 t.33 .C14 .C4 .Cl .CC

J .0.'E t E.Ct .193 1.3G1 11.9E .t1 54 4.02- t.13  !.33 .C14 .G4 .Ct .CC '
.08.o econstL s.0FS 3.4C3 21.9 E 10.56 8.Ce f.13 5.34 .C14 .C2 ..C3 *tc

) s.tJ34CI 3.376 .393 3. sad I I .9 E  !!.T5 E.Ct  !.73 *.34 .C14 .C3 .Cl .CC

e itPWC L J.076 . 0 *, a 3,5 01- 11.S E* - - 5. F 3 --- - 5. 3 3 I I .9 4 -~~ 8.C S-- .C14 .C4---- .Cl^ .CC Y .J r.0cC t 8. 0 7 f. .3%c 3.#0* 11.sf 11 55 E.Cf 2.73 5.3% .C14 .C3 .Cl .CG

.1 I **J0 ff L C.cfS 39s 3.eG5  !!.SE Ct.55 8.Ct 1.F3 * .34 .C14 .07 .C4 .CC sSf o nE L 2. CTS .093 3.8Ce  !!.*f - -II.54 E.C*  !.73 1.33 .Cl4 .C4 .Ci .CC a n419C t. 8.475 . 0 *,8 3.803 11.9f 11.56 E.Of *.73 5.J4 .C14 .C2 .Cl .CC s tat 0E L 4.075 . css 3.804 14.%E 11.S5 E .C e * .73 S.34 .C14 .C3 .Ct. .CC . satis so.734 5 s*J 36.042 I)9.6C J15.43 &c.54 51.30 53.36 <!6C .32 .IC .CC !CkAF AEI * .C4 CItt tul>CE . .2t- 4 4 .5 - O ~ I  ; J -8  ; "4 . , }. d s ,- d .i -3 t .8 3 s . 1 -5 . 1 k .. [. -5 g;g - =e d g 9n 5o w . ja , E l m $3_. b w -d . t. a 1, i A _4 . g i 4 e , . . t

  • 4 @EID D*

3 e ' 1 ~

4. l l O I <

l i B l$ No. 5 RADIONUCUDE Mr Z e atsis.sc 22st6eM .2n(24s) e127tr.2 4 239(t s1) 228(s.2 4 22if 2.lf.) .22ifinf.) 225( 41-) .223(t2%) e r25(vrf.) ..'24(nr.) .234(14%) .2?o(s.5%) .24a(2 .a%) . ...s m 2,.<,... 2,,(, ,s) .,..,,..) . { I I I I I f I I I s saw I tess I .ea" I I so.h S.% s.eek s.e6 s.goi sci Asti 3.6 : 0; No. 5 RADIONUCUDE 103Ru . ) .4.,(,. e . >w s n . 4o,(,..o .aou o o Q .42.c,.ic .mt v.) .ns t,..e .33.o.e ..mc.ie .. cne .4soiv.3.nw..n) .wl,o . ci.ro . 4 , , ,., ) .. . . ,> . 4,,, . . ) .4.u. .,o l i I I I I I I I I I I I . I T a.m .u-- au s% a: s ..: 6.% s: 4% tir tism 0;.. No. 5 m RADIONUCUDE IMCs , . S.ast 2.5v.) ...i (s.swi . S.nf t.s) . e.w( -ev.) .129(247.) . 8.&l(2-8Y.) e s.4s(2.e4 .3.69(4.3v.) 6.54(14Q . 8.LT(24Q .8.1&(2.2Y.) . %.s0(2 ~81.) . S.7&(3 L4 e 8.E lt .u"*) Ot(! JM . se.4 ( 4.s*M 40.4(2 3 % ) . to.t (i.1 %) 48 0(21M . I I I I I I s.w; I I I I

a. sea I

tisw I .s:-* I I mA tw s.ee: see: s.goi . <st; 1 68: 0;.. ~ ~~ No.~5 RADIONUCUDe 137C s . . n.1(n v-) .u.,R*4 . a s.t(5 *f-) 35 *R*o sis.3(s.so e sa.of<ec .3i.s tiss) .suts s4 .366(u r.) .n60*s) .si.4(2 ac .nstino enstaa4 . s2.s(:.3 4) . n.v( ss) . sse(u n . ss sti v.) 3..,(us) . se.. (s.sv.) . ( I I 'I I I I s.c3 I 4s4: I ta I

a. sea I

tw I .er' I I as tw s.4e; seek s.goi 0;.. 9 9 . G l l r9 ! No. 5 RADIONUCUDE IMCe

"7.'.:') .,,,(..s.,',':",.,,,,ss) o e_)  :,',"(':'l....s,) . . ..s(0.,,, .

e,,me.. , :",l::!)' .,3,(* sm . .mf . _, .........., ..,u. , . ,,(e. , 1 . ( I I I I I I I I I I I .saa I I saw Sh E4ei seoi 6 goi s.14 4.ss 3.68: a.6sa tw g;,, No. 6 RADIONUCUDE 95Zr e sst(z.an .336(a.2%) e333(2i%) e 3se(6.es) e3so(z.i f.) 325(s.4c a332(t2%) e 3n(t:M .325(53 0 330(2.2%) ess:(tes) ,321(Li%) e tte(a.oM e344(i.*Q e3&s(2 .n) 34,u6.c e nui.n eun n . 3 3s ti.,o . { I I I I I I I I I I on I .as' ~I I ? mge: sw tesi 24sw 6.goa sgA <sn La a.6sa 0;.. G No 6 RADIONUCUDE 103Ru . s 416(e-9 A) . 4 h3( i.6%) e *64(l.1%) e 4ee(6ssi e442(694 e 46t(t.2%) .444(s4%) e467(s.a4 e 459(s.54 e 46.'s.s0 e467(s.TQ ' e 41o(s.4%) e461(6ss) e4 8b(24Y.) e".s2(s. 44 eise(634 e 466(i.iv.) .<ssts.es) 461(i.ac I .I I I I I I I I I a.6sw I I I I so.h S 9s; a4e6 seek 6.4o: E*A <ss 3.m tw .or' 0; No. 6 , RADIONUCUDE ins , t eme.st e se e as.st e.,s) an.s t s.es) eae.s(:4 4 . .24 3(ts4 e ?i.4(t.sy.) e25.4(s.34 e 2tL(2.24 25.t.(s.s f.) e22.t (t:4 e ar.4(s.37.) e22.9(s.1%)

  • 22.t(695) *22.6(0.,v.) e2to(s L4 e ts.3(s.1M 4 as.s(s.e4 esce(2.3*) mis.s.fi.e o

. I I I i I I I I I == I I .Iex I I

s4.: as.; so.: s.% a.u <st 3.u sw o;

No. 6 ~ RADIONUCUDE 137Cs .so.:(s.%) e 46 60 67.) e 46 o(u r.) , a s.* (s * %) e sso(tit.) e 45.4(i.or.) e44.14*%) e44.4(2 ss) e 4t ab.4%) e 44.4(2 St?) e 44.5'a.is) e 44 94 4%) e 44.3(t st.) e 46.i O.6*'.) e s:.to n.) e4,s(..%) . . ..i ( .. . s > e 4 , (. m e... (,.,, t i i i i i i i . I i i s4oi i T-s.47 6 I 4.su t 3.tr a.a sa Lisa .saw g;,, ss4e: 1 43: s.+e: 6.tsa No. G RADIONUCUDE WCe e 257(e.4%) e242(o.4%) e;42(o.6%) e 25S(c.L%) 42$3(e.1 M e 234(a5%) e232(o.3%) 4 2316.a1.) e233(s.5%) e232(621.) e233(s.2%) e233(s.4%) #251(oit) e245(0.5%) e2&d(s.0Y.) a 25t f o.9%) e 214 (o.3%) e 21e(s.5'I.) a g49(e4%) s I I - [ I I I I I I I I I a.ssa I I .st" 0:.. s gow Lux otsa I sato:.. S.404 a saa sto: s.iti 4.s s = No. 7 . RADIONUCUDE 95Zr o liS(J.s7.) , 469(7 5%) 0315(18%) e 4:2(2.6%) e313(Asy.) e387(L61f.) e3Si(i. %) .379(i.e%) e 389(2.a%) e 334(a.ss) .TTT(2.o%) e31s(7.s%) e383(15F.) e-en26.e*'.) ,44r( -ss) ~ e 4to(2 4%) # 4:3(2.e*f.) & 4 2(J.61.) e44:(35%) ( f k f l , f 30.43; 143:e. 8.48 %40b 6.4ok 14T;e. 4.s 4

  • 3.61; 2 48 Lisk .82 6 Q ;.,

No. 7 . 1 ! RADIONUCUDE 103Ru .ssoci o e 6ste n) .sssfo.n) esting%) es4tb 64 +3*64 W-) + 54445%i est(o**) *sss(2 TS) es42(Lt-t.) esw6.n) esssti.ic *ssato.w) estsb e .) . 6rr(2 or.) esvens%) ese16 6s) e rav6 6v.) e 6 26-u.) i .: s.4.:  : s: .u 14t; 4 su su us osi- . 1x o;. R No. 7 RADIONUCUDE: 134Cs - . 7 36(3 5Y.) . 7 s9(..lT.) 6774(d M . g.a.(1.4%) .73t( 3M . 6.11(2.4 %) ,121(2.7 '.) . Is s(2.71.) .7.lb(2.2%) .74c(i.14 etia(z.aC .tos(s ty.) . I33(a s y.) .14s(i.3%) .8S.C.44 e2s.(4.s%) *sAlteC e s.23(s.5 C . 9 adis if.) s . I I I I I I I f I I I I I i 24c: 3.tii us; to.goi 1.1o: s.44*. Lio; 1916 isg: 2.48; .eti 06. RADIONUCLIDE.137Ca . 2 6.s(1.n) . 26.6 (i. nu . 26.ota.in . :sa (* sr.) Q . ess.m . as.sfue .2..ition' .>.s c . <-o n .2s.4(ac .n.nu) . au tz .c .24.4( ,c .2n(s..e .au(1.im .i sci.4m .suo .c . auf, ,c . a so.sr.) s [ I I f I I I I I I I I I I p to.go:.. 1.m s.es; s.o: Lio: . s.4tb (si: 3.u: a.ts: us: .st: 0;..

No. 7 RADIONUCLIDE 144Ce .

.tesco sv.) .isT(o.sv.) e ssato.sv.) .i93fo.6 4

  • 70(o.4 0 .:53(n.<o e rs:(i.25) misifo.s o elssfo.s1.) elie(6:s) . is2(e.sy.) .ns4(o.6f.)
  • s t(411.) 4:5$(o.67.) .ieo(> 44

. sato.6v.) e is6(o.71.) .issfo.w.) e 7l(e.s 4 ( I I I I I I I I I I I I . I s.o: s. : .I...: o;,, se : 1.% s...: s.42 <s.: 3.ui usi . sam Fio.13 RADIONUCLf0E. 95Z r . . . 3u ( s.u) . si.4(s.9 .3tv(4 s v.) . .3u t us) e 3s..(s.to . 32.3(i.s c .32.a'(s.4 .is.<(2.e4 .33. (s.ssi .3o.3(ux) 3 .4(6.o .3r.3(uy.) .343(n o . t2014) ,n6(:.oo e a s.gts.$4 e st.sfiss) a 34.t (s.s y.)

  • 18.o/r.if.)

l I I I I I I I I I I I I I so. :.. 1.ts: s.n: t% 6 o: s.St: <sg: 3.us a.sa: us: .sa: O: w o No.13 ._ RADIONUCLIDE 103Ru . e l2.3(88 7.) si.92{te Q e ss.6(9.54 e ll.s(% 9%) elf.4( 3%) + 0.51(7.5f.) . i.21(117.) ei.52(10%) eSio(%1%) e1.4b(a3Y.) e 8.8t(f..%) e tt.l(1TV.) e so.9(12d s%.15(f.7f.) alo.6(5 44 .ao.l(s0%)

  • lo.1(B2 %) a S.15(t3 M e 50.3(82%)

( f f f f I }  !  ! 80 19; 1.40 4 3.4e*. I' . 5 4e* s go* sqv: 4.54* - 3.68* 2.6 _ tisi . 26 g RADIONUCLIDE: 134Cs . . .261(79%) e 25.2(r.s%) erttu1W . 26..(t.Q e ls.8(e..%) . It &(24%) g i% g (2.TM 35..(34%) si 6(s..%I .lb.sD 97) sig.l(8.1M el8.l(7.4n el8J(f.15) 62Jf 2.3 M e2a.6(7 11) . Ik.iu.4 7.n . 81.T( 3.3%) e TT 2(s e%)

  • IS.8(s.14

( . ( I I I I I I I I I I- 1 I I g so.ge6 14c: s.4e: %4o: s.go: s.gt: <s4: 3.u: e.asa tesa .es' it2 No.13 - 0: o RADIONUCLIDE 137Cs . . . u.m..m , u..o..e . u..o.e n . ...o44 Q ~ .su(t.n . .o.,4 ..,.i f,.c .46 (un . . (,w .. tic .n .c.,( .n .eusin . usa.o e4rn ,c .u(un ( . . ...( m. n . ..o r.) . umm . ., .(,.,v.3 . . I I I - I I I I I I I i 1 I I .  : s.4.:  :  %: 4.: s ,: 4.  :. 3.u: u.x t..-- . o; . No.13 . RADIONUCLIDE: 144Ce . . i..(o.sv.) .i.v( s o . ie.(..s, ) . m (... n Q .rmcuo . . is sco.<c . s.o.>r.) .iri(. e e,ssco.se . .(...o .is ums, ) .is.( e .snaac eisco.6.n .. (e 4e (

  • is*(* 6%)
  • iss(o.79 - . nss(o.13.) . Ti(..s%)

. I I I I I I I I I I I 1. I I 80.40's. 1.40i.e. 3.44*. %4.: 440* 1 91: 3-4 8:a. 8.68 6 L1t. .52 6

4. 5 4.*

0: e 6 8 9 j No.19 RADIONUCLIDE: 95Zr - e r.74 ( z.e%) , 6u t a.n) e thi(2 4 %) e61o(22%) e f.38(2.81.) e 6 50(i.11.) e bre(2.61.1 e bre(2.s v.) o bai(2.i%) S622(2.o M e b23(i.r 4) ,64T(2.aw) 6 6st(s.sv.) s oti(s.ss) ,63,(i. ir.) , 6 s6(r.ef.) ess2(a Sic) a 67t (s.4 %) e ins (a 17.) ( I I I I I I I [ { I I I I I a.saA tssa .st' so.go:.. s.4o: . s.4e: sto: Lio: s.gt6 Asi: 3.68: 0: No.19 RADIONUCLIDE: 103Ru , $5 3(i.i%) .m(s.3%) e sssti.ss) , sist e-ss) 944(k41.) e 908(2.1%) 3901(b67.) eit3(i.4%) .906(a.sy.) o 920fi.s1.) .9 i(i.ov.) a140(i8%) eis4f8 #1.) eiSi(i.sv.) ,io2:.to oc e sooo(s.64 e qqs(i.1%) e g66(i.2 *A) a io12(e 9%) ( i I i ). I i i 1 1 i i i I- I , S io:.. s.48* s40: 4.10k s.17 454: 3.6 : 248*. L156 88 6 Q;,, j g 10.40:.. h No.19 { RADIONUCLIDE: 134Cs eis.s(i.sx) eit.sti.is) e i+.2(r.u) e t4.sts.so g it S Q.2f.) e ll.t (2.oM silA (3.6*/.) e ll.1(2.3 M ettA(2.1%$ ell.t(3.of.) g il.5(i.77.) e tt.2(2.57.) 381.0(6.17.) ei?.t(e.67.) on3.l(1 l'/.) o l' .8 (2.e1C) e l2.6(3.Tf.) e gr. (p.ty.) e 14.2 (4.if.) ( [ i I I I I I \ I I I I I I so.ge: 11o4 s.4e sto: Lio s.<ti tsg: 3.6r a.ssa tisa .sa' 0: No.19 RADIONUCLIDE: 137Cs - e 43.o(z.3 %) e 42.2(s.a %) , 43. 6 (a.1 %) e 42.t(i.i%) S359(2.25) e36.o(s.es) 8364(2.3%) s is.s(i.2%) e 35.o(i.s%) e35.1(als) e 35.s (s.4%) e 37.2(a.it) e 31.2(s.64 e 3 8.i(i.17.) ,4i.s ('-7s) e n .(6 m . iu (, e r.) . n.,( ev.) . m(i v.) ~ i I i I i i i i t i i 1 I 1 30.43;e. 14o:4 i.48* T.4o'. 6.1o* 5.11 4s4: 3.68: a.6s; Lvsk 0:.. l l No.19 RADIONUCLIDE 144Ce . 40s o.sy.) . 4 so( i.n) .3,6( s ,s.) . 4o,( o s r.) .367(o.c 3sto.co 3s:(i.41.) e3seo.6y.) . 3466.sr.) 34,(6n) 3sa to.,%) .3 Loo.s%) 3tso.to .37v6.ir.) .4o4(5 4e e m o..y.) 3..o..o 3.,rter.3 42u..,o s [ I I I I I I I I I I I I I 24 4 6.4c: s.4A 4.s h 34i: E 'h Lis; .sa; so.4.: 1.4c; s.4 e' O *.. ' No. 20 RADIONUCLIDE: 95Zr ,,,,<...e . ..nu.m . ,..(. v ...<.s, Q .cnn..c .mo.n.) .mo.ry.) .ao.o.m .r.u, o . vaso. o . r,30.m .mo..o ..rroo.a) . . i(2.iv.) 2,r o..n .3,,o.n . ..>(usn . w. .o . . .. o..n ( f f I f k f k  ! g so.4.;.. 1 40; 8.40'. sto; s.4o .. s.44 4.s A 3411.. 24h tes; .82' 0:.. b No. 20 RADIONUCLIDE: 103Ru .i...tt m . . ..o..o . u 4.o.. n . . ..,( ..i v.> l Q . ,.w,.c .n4u .so . nsoo .c e u6n.. <.3 .u..o w ) .nsui.m .imo.m . n 40.ro .u.s(..,o .nsu e .irreo.c . n 4.o..c . n r, o.,o . ii.u.w) .in c . .n _ i [ I I i I I I I . I i .1w I I .4.:.. .. .; 4.: s..: .I o:.. . s.44 4.su >u: uu t,. o;.. No. 20 RADIONUCLIDE: 134Cs . . . t a.so e i..s ta.so .is.4(r.34 . i. 60.sv.) .i6.s t a.4 y.) .54.6050 .is.sts.,M . is.t ta.so .is.4(i.vo .i6.n(s.co est.o ts.24 . is.3(t m) .e6 403) .is.66.74 . n.( s. io e is.Ms.,v.) .is.s(s.so vis4044 . e6 0w) { I I I I I I I I I I I .es; I I e.: sto; s.4o: s.4A 4.s4 tus a4. Lis; so.4.;.. s.4o; 06 No. 20 RADIONUCLIDE: 137Cs e 49.4(2.1%) 64S.7(2.3%) s 47.7(2 S%) a So.8(81%) 0 4b.9{t.57.) 43.ilt.0%) e 4 4.6(s.1%) e 44.3 (i.e%) e44.4(s.5*) e45o(7.44 e 44.7(s.2%) e 42.4(sh%) e 45.5(s.6%) e 45.3(i.41.) e 44.t,0 st) 4 47 4(t 9%) W 4 4.6(t.i f.) e 45.2(s.65.) e 47 5 (8 6**.) i i i i i i i  ! I i 3.sta i 1 .er" I I so.40%.. 14ci.. s.48*. T 4e". E.4ok. s.474. 4.s 4 *. 3.612.. i.ts6 0;.. No. 20 RADIONUCLIDE: 144Ce s476(2 3%) g 4 to( 2.0%) e 4 b7(2.21.) 6444<b9%) . 4Li(s.St.) e43)(i.3%) s444(s.sv.) e 442(i.ev.) e 443(s.3%) e 4 49(s.6%) e446(i.3%) e 437(2.e%) e 433(e.3%) e 45s(e.4%) eart(i. 9%) e 451(i ty.) e 453(2.11.) e 4 57(i.9Y.) e a s 3(i 3 f.) { { i I I I I I I I I I I I so.4es.. 1.4ct.. s.4e: soo: . 6.4ok. s.4 73 4.sw 3.6t; a.ssa us6 .s26 0;.. tic O No. 22 RADIONUCLIDE: 95Zr e .94 cs.iu o %9.u-as) e 4tsuo) e 49s(s.54 e509(A*s) e484(1.5%) e 459(s e%) e47b(a.ss) e4r$(s.65) 0 4el(a.e%) e.7s(11%) e474(t9%) e471(so%,) e 4 95(s.6%) essam .) . e ss6(s..s) e 56e(s.or.) e sto(z.it) e h290 i%) i i i i i i i 1 1 1

a. sea 1

us: 1 .or' i i so.4e;.. s.4o s.4e: too: 6.4ok. sits 4.sw 3.612 03.. No. 22 RADIONUCLIDE: 103Ru e636(i.as) evnt..S) . . son.as) e s.wti.i 4,) Q o.ns(n.v.3 eyoof. c .. ,(.6s3 . . n ( ..,r.) a u.<.. .o e .u o.,*) s n(..,m . ,4( .s) e ..,(. e n( .o %) s .,4 (e.,o e.,ef,..r.3 e ,, (4. f.) e ,isc,.a3 e 3,s(6, r.)

l. I i i i i i 1 i i i

.1-- 1 I i 4eie. 5.u:.. 4.-- soo: 4o:

s. i uw 3.. : uu ur. o;

No. 22 RADIONUCLIDE: 134Cs ,s.oe( s%) ,s.nu.9%) , y.3 3(r.es) , s.rv(3.e%) e s.61(16%) , 0.ti(2.2 %) .Ist(z.es) , s.4l(24%) e s.20(i.nr.) e7.14(s.o%) ,0.53(2.s%) , s.s:(1 a$) e s.eg(s.tr.) es.'s3(f.5%) e so.l(3 $%) , ll.o(3.37.) e so.9(s.77.) , st. 4 (g.3 %) ( e is.l(1 sY.) ( I so.,e:.. I I I I I I I I I I I I 11o s.4e: s oi 6.gow s.sti 4.sw 3.ut a. sea sisa .s2' No. 22 06. RADIONUCLIDE: 137Cs ,21.o (FM %) e2).6(a 31.) ,2s.o(2 6%) ,24.10 v-) 4 38.2 (2.2 % ) e 2s.S(i.e%) e26.s(e s%) e28.s(ta%) e is.6(i.5%) e29.l(2.1%) e 2 8.l(i.2%) ,2 a.2(a.2%) e 28.i(i.5%) e 30.3 (t.9%) e n2(. .%) e s5a(s.11.) e 1510.67.) e as.s (i av.) a 3s.i 6.g %) ( ( I so.ge:.. I I s.es; I I I I I I I I I I 14st.. . s oi 6.g ot s.Sti 4.sw ists a.ssa s.tsa .st -. 0;.. g No. 22 RADIONUCLIDE: 144Ce ,2no.2 t.) , 2 Sit o.w) e 2s:(o.e%) e at(o u) .3o5(1.3%) ,2s2(0.gf.) 9269(12%) ,279(s.4%) e 279(o.3%) a28t(i.4%) e 251(o.6%) 42gi(s.sy.) 42g6(i.og) e236(o.eg) 6346(i 5%) e 342(s.tv.) e 310(i.3*/) e 343(i.5%) e set (84%) ( ( I I I I I I I I I I I I I so.ge:.. 14e:.. s.4e: soo: 6.got s.gt: a. sea 4.sw 3.us Lisa .s2' No. 27 0: RADIONUCLIDE: 95Zr , i s.o c s.45,) , si.4 c...%) ,io.r(4 v.) . s4. o.s v.) .36. (g e%) ,34.2 (64%) + 34.o(z.s%) e 13.3(s.L%) .32.7(7.2%) e 33.2(3.o%) .3 2.'f fs.1%) ,3 i.4 (*1%) eis. (g e%) e3s.3(i.1%) ,,Sie e.f,) e39o(1.9%) e 31.vits%) ( e 41.2(r.3 %) 64LsO.ss) . I I i i I i i I. I I. I I I I lo.10:.. 1.4o s.48 sto: 6.4 o* s.4t! 4.sw 3.68: 2.asa s.ts; 32k 0:.. -) No. 27 RADIONUCLIDE: 103Ru . ,.o, oso ,e.60:s) 9.<s t s s y.) . ..rioon O " " " . ii.u.ie ' ' ' * 'a ' ' " * ..,..(.e . (iiv.3 ' ' ' * ' "..i n .ir.ati i i i i i i i t i 1 u. i 1 1 1 . ..: u a: ..: s..: 6.4.: sr u i: ni; . 6,.. .. a o;,, No. 27 RADIONUCLIDE: 134Cs . 7. 5 0 3 %) .s e.o.'n . n2 0.,v.) 2450a4 .s.1:6.sc . 27, (i.iy.) .7 7a(i.n) .ts3(r.e4 es.i30.,4 .a.oin.is) .e.os0.r4 . tasu.oo e.51(2.84 .s..oO 64 eio.iu. io 15 (s.9v.) . i2.3 (r.o n . ir.6 (i.w) . is.7 u.e 4 i i i i-s.o; i i i t i i u.: i i.ts: 1 .sas 1 I so.4.:.. Sao; s.o: 6.4o: s 43; u g: ni: 0;.. e g No. 27 RADIONUCLIDE: 137Cs l l 3o.1D.* 5) 2 g(s 37.) . n a t s.io ,30.i O i.%) l Q .32..( in .3 .o.m ,a,n on

31. (3..x)

.a., o.in .2,.,n.m .m o..e . 2,.i o., m . 2no.in . ii..o en . ii., o..e . 49 .n . ...i (s. n . 3 ,(,. .e .. (,.x) . I i i i i i i t i 3.Li uh t I 1 .aa' i 1 .0.4.: 1.1.: 3.4.' T.40*m. 640: 5.41: 4.51: its: . O.. No. 27 i RADIONUCLlDE: 144Ce s ig6(o.se o ne(s.O .s.oto.4%) .ssoto.4M eise(o.e4 ,,47(0.1%) . a3(0..%) ,,38(0.1%) . e43(01%) . 44(07%) . 342(o.3%) ei43(0.n) s esofo.6%) . is 4(o.41.) . 7f f..6%) .m( 4m . i .i f..se .iau ,o . ,,( .s o i i i i: i i i t i i uu i 1 .u i I .u.:.. u. s: 6.4.: soi u ,: ui; 6, : o;,, No. 28 RADIONUCLIDE: 95Zr e4u(4%) e 4 <s ta.s%) e <si ts..%) e43 (s. v.) e 45s(2 a".) e44th.6%) e 4 3 5(2.211 s451(s.4%) eas2fi et) e 44s f a.2%) e44tti4%) e 43 s(i.e%) e4ntoss) e 419(i 6 %) .gac .s) e 494(7.l*/.) e 477(s.4%) e 4it (a .i%) e 46T(s.?*/.) ( I I' I I I I I I I I I I I . so.ge .. 1.10 4 s.4e; * *n s.1o: s.gTL 16: a. sea. i.ss; . ear 4.s 4 O*. No. 28 RADIONUCLIDE: 103Ru , 1 e6454 6%) e 622(2.e %) e L 3tfo.9%) e 631(i.1%) l s&99(i e s) s tit (t sY.) o&2i( i%) e G20(e. Y.) e 641(2.e%) e 634 (' 5%) e 625(o.11.) e sse(i.s y.) e 60 sO.6%) e 6;tf(1.5%'s 4 6tf(i. s%) e vis (i.e v.)

  • 67 sh.g1.) e tof fs.:C ,s.t:( 4%)

{ I I I I I I I I I I I I I t;c io.ge:.. 1.4e4 s.4A * *o; 6.1o: s.gs; 4.s s 3.6e: a. sea s.isi .an' 0;.. M No. 28 RADIONUCLIDE: 134Cs e2s.34.s%) e so.:( .is) e zi.o(z.s %) e2a.o0 3%) s2s.6(s.sy.) e 21.o(51%) .2i.o(2.s %)

  • 22.ofa. Y.) 22.t (i.4%) e 22.i(2.i%) . 22.s(s.o%) + 27. (2.u) ets.30 es) e 2s.*(i.41-) e2 5.)(e 6v.)

e a s.e (i.,r.) .

  • 2e.L(i.e y.) e 30.7(i.11.) e 2 s A(say.)

.f I I I I I f I I- I I I I I so.ge; . 1104 s.4e' tes s.10 5.tA 4.sn 3.6a4. a.6te Les; .sai 0;.. No. 28 RADIONUCLIDE: 137C s ,47 3(i.3%) ees.S(re n) 47. 3(6sr.) e 41.i(i.1%) e19 8(2.oF.) 646.s(i.ig) 0 17.2(i9%) e 46.sh 6%) e 4T.)(s.W) e 47.s(a.3%) e 426(i.:f.) e47 4(i.3%) a 15.1 (i.1 f.) e 17.4 (611.) eds.s(s. 62) e 76.o(z.g%) 9 54.s (J.a %) eso.s(a.es) e s 3.v(i.1%) t i i i i I I i I I I 2.68A I 1 I I go.4e;.. 1.iole. 8.40* T.40" 6.1o: s.11.- 4.s4: 3.61 4 . ttsi .sar O .. . . . . l i No. 28 RADIONUCLIDE: 144Ce . 3 4 e ( i.i v.) .33o0 2y.) e us(i.sS) . n o 0.6 */-) Q .344o.6u .notoos.) . non..n . ui niv.) . uv o.47.) .n,(..on e n4n.>%) .n3(o.so on20.6c . w, n.4 53 3s6( .se3 .u6a.v.) . n 6(i..Y.) . nio. . ns o.s f.) 4s3 ! I i i i s.4a; i i i i i i an i 1 .s23 i I l to.go .. 1 10: 24oi s.4ok s.47 6 <sts 3.6 : tts; 0;.. I l No. 30 RADIONUCLIDE: 95Z r ,si6(J.sY.) ,4 ao(s.4 %) , n 6 ( a. 2 9'.) . sn (2.3 %) 448s(a s%) 4576 4%) 64426a7.) e 426(z.5 %) 3896 5%) .31s(a..%) 44ig e.g%) ,431(s.2 %) e 452(2.1%) e454 (s 61) .4ei(or.) + 44s(s. Y.) *404( %) 44y( 1%) easiD tr.) ( 3.40; k i s.g ob. i k i  ! l 61:1 1 {  ! E 1o.40:.. 1.10:.. 240 s.4Ti 4s4: 3.61: 2.48; .0 23 0 .. tj No. 30 RADIONUCLIDE: 103Ru evis(2. %) ,666n6v.) .70so sv.) . r n e.s v.) .663(o.ss) 6is(z.ic .4o366%) e ss20 6%) es42(o.9%) .52s 0 3 %) ,6o50.5%) ,6oiO.i%) . 6 26 0.or.) . 6: s O.,v.) 6*s(v o .6016 8%) e 557(0 60 e sib 6.4%) . 6 n6(o.*e%', ( [ t i i s.4a; i i i i i i i 1 I I so.4e:.. 1.10: stok. 6.4ow. s.4th. (sg: 1 61: a.6sa 6ess .s23 0;.. No. 30 RADIONUCLIDE: 134Cs e lf. 6(0.5%) e l6.*r( 31M el7 6(2.aiC elf. 4D 6%) el4.7(ist) e ts.9(s.7%) .t3.161%) e tt.ofa.1%) e l3.o(i.91) els.o(2.60 el4.?O.sy.) e ts.s(i.97.) sis.36 6%)

  • 4 s h.6%) gist (i. .v.)
  • l3 4(f .f.) 413.o(2.3 0 e sq.6(s.2*/.) 411.2(3.9 %)

( i i i i s.es; i i i i i i i 1 1 1 lo.4e:.. 1 40: %4o s.4o6. s.41: (sg: 16: a.6sa 65s; .s26 0;.. a No. 30 RADIONUCLIDE: 137Cs , 4 2.its.1%) g es.2 6. ef.) ,42.1(t64) e 4 4.5(' 9 F*) e 41.3(s.gr.) e 3a.,(i.3-f.) e st.s(a.o r.) 3 37.2(s.s r.) a 33.i(i.61.) ,31.i(r ef.) .3t e (s.1%) e 37 70 s%) , 31.7(3.35) ,35.s(i.in) sis.ife it) e 3. 6(e..-n . ...,(, er.) 3 (. .n e n,(>> r.) ( i I I I I I I I I I I I I I 10.40*.. 1.14 8.46** s 40 6 6.1ok s.17: . 4.st: 3.6i 2.s a. LTsk .er" 0; No. 30 RADIONUCLIDE: 144Ce ess:(i.sv.) ,31s t s.s r.) . nsiti.es) ,9000 94.) e318(i.21.) e 35s(s t'/.) 031263%) ,13s(e.3*/.) 130s(J.eL) s 269(s.3 %) e 342(te%) g342(s.2%) e 353(e-s*4) e151(s.6Y.) g3 r1(i aal) e 346(u v.) e s2s frad) ess:( 3v.) e ast(..sv.) s I I I I I I I I I I -I I I y so.m. s.4a: .I.: s .: 6.4 a:.. s.,,: 4.s : 16i s.x t,sa .erm o.,, M No. 32 RADIONUCLIDE: 95Z r 4av(s.ts) e s.is(4. e.) . s.e s(s.sv.) . s.1*(Sa r.) e 4.66(i.sv.) .4.t:(i.s s) ,4.s e (s.1%) e e.s* (4.is) e 4..o(s.sy.) g.14(s.ex) .4.<i.(3.sx) ,1.s$(s ar.) 436(m.*f.) .4. i6(s.ar.) ,e...(s ,s) e 4.ao(s.or.) a 3.27(<.sv.) 4. ,( .,v.) e 4.ei(* * %) { I io.ge;.. I I I I I I I I I I I I 5.to; s.co: soo: 6.1o: s.St: 4.st: 16i: a.se; tesa .e:6 0; No. 32 RADIONUCLIDE: 103Ru -none detected-photo peak not observed. A i l I I I I I I I I I I I I I so.ge;.. 14e: s.es; soo: 6.go: s.Sv: 4.st; 3.6i: a.se: tesa .eas 0;.. No. 32 RADIONUCLlDE: 134Cs .. x .sx) . .o.. D o r.) .i so.m . . o. m.s v.) .9.o7(s.ss) e a.io(i.sr.) s e.n fz.ry.) , s.12 4.2 %) . s.4 (i.sx) . s.s s(z.or.) .a.s4(osv.) . e. te(s.4%) . s.u ts.or.) .a.54(i.sv.) ,S.68 0 ss.) .9 os0 4%1 . s.ut9 3%) e s.to u.3%) ei.cO SE) ( i I I I I I I. I I I I I I 10.1o:.. 1 1o;+ s.4ea s.o: g.go; s.iti 4.sw 3.6i a. sea Lisi .eza 0 . No. 32 RADIONUCLlDE: 137Cs e 33.1(3.*Y-) ,37.l(3 2%) 3 8.s(i.sw) 39.20 8%) .365(r.17.) 3 3.S D 9 7.) . g 33.G(71%) s15 3(s.e%I e 32.8Q.1%) g 35.su.1%) e 34.5(s.1%) 935.3 (3 4 Y.) . 3s.3 D 9%) . 3 5.I D.0%) .37 e (4 3%) ......, ....,<.., ....(...1 .3 . ~. . ) { I I I I I I I I I a.se; I I .s2; I I e so.4e;.. 9.to; s.4e: s o: 6.gow s.sti 4.sw 16 ;.. Les; 0;.. g No. 32 RADIONUCLIDE: 144Ce .a1.6 ( 1%) ,es t(o.4%) esi.2(e.4%) e 12.90.o v.) s e4 5(e.sy.) e 77.0 (o.1%) .ta.3(e.sy.) . 76.s ta.5%) e75efe4%) eso.3(o.sy.) .71.3(o.4%) ,so.s(a. .v.) e 8Lo(o.sv.) 390.i(o.4%) ,85.2(- vf.) . . if y.). .2.. f ,s3 . . 4 ( w.) . . .u. v.) I I I I I I I I I 1 61; I

a. sew I

tisi I .e26 I I lo.4e;.. 9 1o:+ e.se: seos 6.goi s.1h 4.s4 0; No. 33 RADIONUCLIDE: 95 Z r -none detected. l j i I I I I I I I I I I I .32; I I 10.48* 9.1o;.. 8.4e' Y.4ein. 6 101 s.91I=. 4.s4 3.611 a.sta Lisi 0;.. No. 33 RADIONUCLIDE.103Ru -none detected. 4 . [ t i i i i i s.41; I i i aas; I i I i no.4e; s.4at s.4e: sto; 6.1ok 4.s e: 3.612 i.ss; .sai 0:.. No. 33 RADIONUCLIDE: 134Cs 6.a s (s.nY.) 46.o 3( t.*r %) e6.tS(i 7%) .t 16(r.sy.) s h.s6(i.6%) e s.it(r. 4%) $S.72(L0%) 4 5.65 (i.'r %) . s.%(s.6 %) e 6.o2(66%) e s.72(2.8%) e166(2.47.) e ste(z.it) e 5.75(i.3%) e6 4s(t 65) e s.s w(a.sy.) 4 6 ib(2.9%) 4 5.so(2.5%) e b.41(4 E%) ( I i I i 8.46; I i i i i i i 1 i i 80.40;..' 9 40;.. 2 40; 6.40 6 s.47 6 4.s t ' 34 ; 3486 sis; .823 0: a o No. 33 RADIONUCLIDE: 137Cs . ss.4(s. *) es5. (s.su) e 33. (s.: *) 166(a.vd) e wa(2 6r.) e ss.s ta.es) e tt'a(3 *%) e n.sts**) e si.9(a.ov.) e ns.sts.v.) esa.itiev.) n. (tiv.) e s s.*(u s) . 34.a (a..r.) ,i4.sc . ra) 8 33 4(J-8 7.) ' 33 8f' 3%) *336(89%)

  • 36 3 (2 7 'A )

( - i i- i i i i f i I I i 1 1 I so.4e; 1.toi s.te' s +o: 6.4o: s.4t; 4.sg: 34 : a.sai a.ts-- .eas 0;.. No. 33 RADIONUCLIDE: 144Ce ess.sta 6%) . s o.,(e.61.) 46.t(i.4%) e se.o(n.6%) . 54.6(a.6y.) . so.6 (...ig) e ss.o(i.6%) .49.q(n.6s) ..g,7(.6v.) ,5.3( 6%) e4e.T(e.61.)

  • 49.'(a.6s) e si.2(e.us) e s4. o f..g s) .si.s(o .o;)

e36 te.6 g.) . ::.9(o.6y.) e so.s co.6y.) e ss. (o.6%) i i i .:.s. 'l..: I

24. .i.:

i i u ,: i i usi i 6,si 1- .ui I I io. :.. . s.4,: 3..r o: ~ ' g l 9 / (' S EG&G Idaho P.O. Box 1625 Idaho Falls, Idaho 83415 t _ - _ _ _ _ _ _ _ _ _ _ _ _ _ -_. a