ML20210B811

From kanterella
Jump to navigation Jump to search
Missouri Univ Research Reactor Upgrade Neutronics Analysis Using AMPX-II/BOLD Venture IV Computation Sys Benchmarked to Destructive Analysis of Fuel Element 775F3. W/Three Oversize Drawings
ML20210B811
Person / Time
Site: University of Missouri-Columbia
Issue date: 09/01/1986
From: Soon Kim, Mckibben C
MISSOURI, UNIV. OF, COLUMBIA, MO
To:
Shared Package
ML20210B763 List:
References
NUDOCS 8609180171
Download: ML20210B811 (116)


Text

. . .

1

~

E ' UNIVERSITY OF MISSOURI u

MURR UP2RADE NEUTRONICS ANALYSIS USING

(

^

{

AMP /.-II/ BOLO VENTURE IV COMPUTATION SYSTEM-BENCliMARKED TO THE DESTRUCTIVE ANALYSIS' .

OF FUEL ELEMENT 775F3 i

r

~

MURR' Internal Report- -

g- .

Li By:

y Soon Sam.Kim f -

Charlie McKibben

' University of Missouri Research Reactor Facility Upgrade Group E

E ~'

E September 1, 1986 3 ,

E

v I

MURR Upgrade Neutronics Analysis Using

~

AMPX-II/ BOLD VENTURE IV Computation System Benchmarked to the Destructive Analysis of Fuel Element 775F3 MURR Internal Report By:

Soon Sam Kim Charlie McKibben University of Missouri Research Reactor Facility Upgrade Group September 1,1986 l

TABLE OF CONTENTS Section No. Page No.

1 Introduction . . . . . . . . . . . . . . . . . . . . . 1 2 Cross Section Generation . . . . . . . . . . . . . . . 2 3 BOLD VENTURE IV Ccmputation System . . . . . . . . . . 7 3.1 MURR Core Model. . . . . . . . . . . . . . . . . . . . 9 1

3.2 Benchmark Calculations . . . . . . . . . . . . . . . . 16 4 Analy tical Resul ts . . . . . . . . . . . . . . < . . . 46 4.1 R-Z Cal cul a ti on s . . . . . . . . . . . . . . . . . . . 46 4.2 0-R-Z Cal cula ti ons . . . . . . . . . . . . . . . . . . 48 5 Conclusions ..................... 50 REFERENCES . . . . . . . . . . . . . . . . . . . . . . 55 ll Appendix A . . . . . . . . . . . . . . . . . . . . . . 57 Appendix B . . . . . . . . . . . . . . . . . . . . . . 64 I

11 i

LIST OF FIGURES Figure No. Page No.

I 1 Calculational Sequence of N4PX-II . . . . . . . . . . . . 4 2 Major Components of BOLD VENTURE ............ 8 3 R-Z Model of the MURR System .............. 11

4. e-R Model of the MURR Core and Be Reflector . . . . . . . 13 5 Control Blade Movement Scheme for CORE VII 17 I

6 Comparison of Peak Burnup in Each Fuel Plate for 775F3 . 21 7 Comparison of Axial Burnup Distribution in Plate 1 ... 22 8 Comparison of Axial Burnup Distribution in Plate 2 ... 23 9 Comparison of Axial Burnup Distribution in Plate 3 ... 24 10 Comparison of Axial Burnup Distribution in Plate 4 ... 25 11 Comparison of Axial Burnup Distribution in Plate 5 ... 26 12 Comparison of Axial Burnup Distribution in Plate 6 ... 27 13 Comparison of Axial Burnup Distribution in Plate 7 ... 28 14 Comparison of Axial Burnup Distribution in Plate 8 ... 29 15 Comparison of Axial Burnup Distribution in Plate 9 ... 30 16 Comparison of Axial Burnup Distribution in Plate 10 . . . 31 17 Comparison of Axial Burnup Distribution in Plate 11. . . 32 18 Comparison of Axial Burnup Distribution in Plate 12 . . . 33 19 Comparison of Axial Burnup Distribution in Plate 13 . . . 34 20 Comparison of Axial Burnup Distribution in Plate 14 . . . 35 21 Comparison of Axial Burnup Distribution in Plate 15 . . . 36 22 Comparison of Axial Burnup Distribution in Plate 16 . . . 37 23 Comparison of Axial Burnup Distribution in Plate 17 . . . 38 24 Comparison of Axial Burnup Distrioution in Plate 18 . . . 39 25 Comparison of Axial Burnup Distribution in Plate 19 . . . 40 26 Comparison of Axial Burnup Distribution in Plate 20 . . . 41 I 27 28 29 Comparison Comparison Comparison of of of Axial Axial Axial Burnup Distribution in Plate 21.

Burnup Distribution in Plate 22 .

Burnup Distribution in Plate 23 .

42 43 44 30 Comparison of Axial Burnup Distribution in Plate 24 . . . 45 I

I '"

I l

I LIST OF TABLES Table Ho. Page No. <

l 1 Group Structure and Fission Spectrum . . . . . . . . . . 6 l 2 MURR R-Z Zone Specification .............. 10 3 U-235 Loading for MURR 775 gm Element . . . . . . . . . 14 4 Uranium and Boron Loading for MURR 1270 gm Elements . . 15 5 Control Blade Height vs. Core Burnup for CORE VII . . . 19 6 R-Z Results at Cold Clean Core Condition I

. . . . . . . 47 7 R-Z Depletion Result . . . . . . . . . . . . . . . . . . 49 8 MURR 3D Result . . . . . . .......... . . . . . 51 9 Total Control Blade Worth . ... . . . . . . . . . . . 52 ,

I .

e a

I -

s I

I -

I .

t tv I ,

I .

- - - - - - -r ,---- - -- ___.__ - - ---

~ __.

t I

1. INTRODUCTION The University of i41ssouri Research Reactor (MURR)-is the highest steady state powered, highest flux university research reactor in the Uni-ted States. The reactor engages in various research with universities and ,

industries providing an intense source of neutron and gamma irradiation.

Presently, detailed plans are underway to upgrade the power from the cur-rent 10 MW up 'to 30 MW. As a part of the plan, a new fuel element has I been designed with the fuel density varying between the 24 fuel plates.

The new fuel element will contain 1270 gm of U-235 instead of 775 ght in t'ne present fuel element. The purpose of the new design is to reduce the power peaking which will lower the fuel cycle cost and allow for an upgrade ,

of the reactor power level.

In the past, MURR core analysis was performed using the 2D neutron ,

diffusion theory code, EXTERMINATOR-II(l), which used neutron cross sec-tions generated by LEOPARD (2) and/or XSDRN(3) computer codes. To perform all the necessary safety analysis for the new fuel design requires the use of a nucleonics code package that can handle up to three dimensional models with fuel depletion capability. This is due to mixing the present 775 gm elements dith the new 1270 gm elements. Previous researchers used the CITATION code (4) to apply three dimensional modeling to MURR. How-ever, due to the inherent limitation of CITATION, they could not fully utilize the ' restart' capability of the code which is essential to reduce the computation cost.

In September 1935, BOLO VENTURE computation system (5,6) w.:s obtained

. fron the Radiation Shielding Information Center (RSIC). It is known as an advanced and powerful computing tool which has been used for application 1

I I .

to power reactor and. casearch reactors like HFIR at Gak Ridge National Laboratory (ORHL). BOLO VENTL)RE uses ISOTXS crust sostion cata file which can be generated from KtPX-II computing system (7). This package was also cbtained in Dacember 1935 from the RSIC along with CSRL(3), a 218 group neutron cron section reference library. Tne ; authors successfully con-verted toe two big code packages from their FORTRAM and assembly language versjons to the load modules working in the University of Missouri Cotaput-ing System after a fcur month dogfight. Effort has been mada to fully utilize the restart capability in 30LD VENTURE. The user can now save either the whole restart data file or tha Existing flux values to use in the next iterative procedur.e for rapid flu < convergenc6.

The purpose of this , report is to dcce.nt tM nucleonics analysis of the MURR upgrade core Using the n0w MORR computatfocal system, AMPX-II/SQLD VENT!JRE IV. Secticn 2 dc.cribes the use of N4?X-II to generate the cross tection sets for tne various iiuclides in the MURR components.

In Sectica 3, core medals and ben:tmark calculations perforned using BOLD '

VENTURE are presented. Analytical retults for R-Z, and 6-R-Z calcula-tions are contained in Section 4. Cirally, Secticn 5 presants conclusions and discussions fer fcrther research; the Appendices ara included to pro-vide more detailed faf.0)maticn regaritng the input to th:. selected tacdu19s of NiPX-11 and to 80s.D VEMTURE.

2. Cross Section Generation Prior to the BOLD VEUTURE calculatioY.s, tt:e hstvogeneous geometry of I the M'JRR components must be simplified and homc9anized to a form which would be handled by 30LD VENTURE. cor tha :ntarials involved, c, cross section library was developed. Periodic array of the fuel plates and the ,

coolant in tne core .ns divided into a cueber of identitai homoganized 2

. J

~

I I ' unit fuel ceils' which consist of the fuel meat, cladding, and the coolant. The it3RR was then represented in the model as a multitude of homogenized zones starting from flex trap, pres.sure vessel, core section, control blade, beryllium and graphite reflectors, etc.

The cross section sets for various nuclides in the MURR ~ system were generated using the CSRL library and the nodules in N4PX-II. The AMPX-II system allcws the user to choose an approorf ate sequence from about 30 codules available in the system. Calculational sequence used to generate the cross section sets is shown in Fig,1.

To briefly describe, starting with ENDF-formatted nuclear data files, NPTXS and XLACS can be used to produce a master 218 neutron fine group l library. The CSRL is a P3

, 218 fine group cross section library generated using XLACS. MALOCS is then used to collapse 218 neutron group cross sec-tion library into 27 group library. Several weighting spectra are used in MALOCS to collapse the cross section data. Tne caterials with resonance parameters are processed witn a fission-1/E-Maxwellian weighting function.

For non-resonance naterials, a fission-1/Eey-Maxwellian is used. Some structural mterials are usually weighted by a 1/EtT-Maxwellian function.

Next, AIM converts 3CD-formatted library to binary AMPX library and the selected data sets of the various nuclides are combined using AJAX. One of the NiPX modules, NITAWL, has two distinct features. It allows performing resonance self-shielding calculation as well as collecting cross section data into ' workable' arrangements for the one-dimensional discrete trans-port module, XSDR'4 Pit.

Using XSDRNPM, cell and/or zone weighted cross section sets were obtained. The purpose of the cell weighting is to use a detail cell (e.g.

wa:er, clad, fuel meat regions) to generate cross sections which conserve I

~ -

Fig,'l Calculational Sequence of AhPX-II As 6

1-RAY OINT NEUTRON ~ NPTXS 'ENDF/B-IV~ SMUG INTERACTION X-SECTION k OR V ,

A-SECTION LIBRARY \ LIBRARY

  • ks EVALUATED NUCLEAR XLACS DATA FILE LIBRARY

, , I MASTER NEUTRON FINE rl MALOCS e COLLAPSE X-SECTION LIBRARIES l I GROUP (218) , USIllG WEIGHTING FUNCTIONS LIBRARY FISSION - I/E - MAXWELL.I N NEUTRON BROAD GROUP -

FI$SION - 1/Ec'7 - MAXt<ELLI AN 1/EIT - MAXWELLI AN .

g . .

AIM e CONVERT MASTER LIBRARY FROM BCD J

y TO BINARY FORMAT (OR VICE VERSA}_

L I -

/JAX 4y

= COMBINE DATA FROM MASTER APPX-11 LIBRARY f

l -

NITAWL e RESONANCE SELF-SHIELDING e PRO?UCE "W3RXING' LIBRARY

/% ,Y E /WORXING COM3INED ICE

"[27 NEUTRON

! 27 GROUP e-9 GRO'JP WORKING I #

I 1

- 3-  ; e ALLOW SPATIAL CROSS SECTION

[{LIB A Yj 7-*- XSDRNPM WEIGHTING THROUGH 1-D TRANSPORT CALCULATION v y

. CELY iONE

[ WEIGHTED WEIGHTED 27 GROUP 4 NEUTRON 4NEUIRCN\

GROUP I '

k%

X-SECT!)N 1.IBPARY /

/

GROUP X-SECTION X-SECTION TILE

'1BRARY

~%d W Y -

BOLD VENTURE IV*

'NOT INCLUDED IN AMPX-II !YSTEM y

E E the c'eactio.n ratas when the ceil is modeled as homogentzed (e.g. fuel c*.l l ) . To perforrii zone weighting, te reactor is modeled as a set of homogeneen zones where the cell weighted Cro.SS Sections are \ised where appropriat.e, e.g., fuel cell cross .tections for tne coce zone. 27ns weighting generates a unique set, of cross sec.tions which preserve reaction rates for aach zone in the system when Csilapsing 043rgy group! inta broa-der energy groups. As showr in the figure, cell weighted P.7 g:'oup crcss ser+.ica lib' try was pf'oduced oy the first path through XSdRMM and this cell weightad vo.*kira library was Combined wit.1 other cr:ss ::ection sets torcugn the s::co .d NITAWL run. This carrbined 27 group library is then input to XSDRNPd again to get zon6 weQhtad and colla'o sed crass section sats, For f.he MURR core analysis, the conLined 2f group library is col-lapsed to a four r.euttor, grcup microscopic cross section library--

gecarated in the forn of ISOTXS filc--which it input to the BOLD VENTURE IV cortpctational system. Energy lin.its along with fissio; spe6trym frac-tiors of the four group structure are shewn in Table 1. For the benefit l of later users, the samle input data for AlN, AJAX, NITAWL, and XSDRNPM are attached in the Appendix A.

Tite control clade cross section set was made as follows. First, the cell &veraged crc'is sections wer6 evaluated fof' the control blade materi-als using NITAWL and XSURNPM. T51s set was then spatielly weighted using zone dependent neutron spectruni. Using this data 11 a form of !S9fX5, the r?acthity sort') of the control blades in the 30LOVENTURE model was checked against their 'neasured worth. The control blade crnst section set was found to Jive t]o high of a total reactivity worth for the control blade'. Next, internal b' lack absorber cons ants dere calculated for energy groups 3 and 4. Tne calculated reactivity worth was closer to the l .

I I

I Table 1 i

1 l

Group Structure and Fission Spectrum  !

Upper Energy Lower Energy Fission Spectrum I Group _ pund(MeV's Bound (MeV) Fraction 1 2.0 x 10t 9.0 x 10-1 7.1496 x 10-1 2 9.0 x 10-1 3.0 x 10-3 2.8496 x 10-1 3 3.0 x 10-3 8.0 x 10-7 S.1064 x 10-5 4 8.0 x 10-7 0.0 3.5349 x 10-10 I

'I I

l' E

I I

I I

l *

~

I measured but still over predicted. The control blade black absorber con-stants were adjusted to give good agreement between calculated and mea-sured values. Black absorber constants for group 3 and group 4 used in the rest of the analysis are 0.08406 and 0.2, respectively.

3. BOLD VENTURE IV Computation System BOLD VENTURE is a modular system in which individual modules can be I accessed in a desired sequence by a CONTROL module. The , major components of the computational system are shown in Fig. 2. A brief description of .

the function of each module follows. Various interface data files are written via input and/or special processors for use by the other modules.

VENTURE (9) module uses these generated interface data files to solve 1, 2, I or 3 dimensional multigroup neutronics problems applying the Finite-Difference neutron diffusion or a simple P-1 theory approximation to neu- -

tron transport. It solves for the Keff, forward and adjoint flux distri-bution, and spatial power distribution. It also solves fixed source, and criticality search problems.

I RODM0D(10) module allows positioning control blades according to a prescribed schedule during the calculation of reactor history. Control blades may be represented explicitly with or without internal black absor-ber conditions in selected energy groups, or fractional insertion may be done, or both in a problem. Time dependent depletion calculation is per-I formed by BURNER (ll). The operating history of a reactor is followed over a period by solving the nuclide chain equations to estimate the nuclide concentrations at the end of an exposure time. FUELMANG(12) is a module used to position fuel during depletion calculation, maintain a mass l .

7 .

~

Fig. 2 Major Components of BOLD VENTURE

)

I l

ISOTXS CORE MURR CROSS , DENSITIES l CORE MODEL SEC110N AND (1, 2 OR 3D l FILE COMPOSITIO 'j GEOMETRY)

I CONTROL MODULE e ALLOW DIFFERENT CALCULATIONAL PATH TO BE FOLLOWED h

CODE K)DULES d SPECIAL INPUT e PRODUCE INTERFACE DATA FILE I PROCESSORS

  • -*-l VENTURE e FLUX-POWER-REACTIVITY MODULE BASED ON FINITE DIFFERENCE DIFFUSION THEORY I * % RODMOD e ALLOW POSITIONING CONTROL RODS DURING CALCULATION OF REACTOR HISTORY I
  • d BURNER e EXPOSURE CALCULATION MODULE I <-* PERTUBAT e PERTURBATION REACTIVITY IMPORTANCE ANALYSIS MODULE

< d FUELMANG e FUEL MANAGEMENT POSITIONING AND ACCOUNTING MODULE I

  • d DEPTHCHARGE e STATIC AND TIME DEPENDENT PERTURBATION SENSITIVITY ANALYSIS MODULE Y

BOLD VENTURE e EIGENVALUE OF THE PROBLEM I OUTPUT / INPUT TO OTHER e SPATIAL POWER AND NEUTRON FLUX DISTRIBUTION e ADJOINT FLUX AND PERTURBATION INFORMATION CODES N

/

COBRA-3C/MURR - _ _ .

PARET RELAPS o STEADY STATE e REACTIVITY TRANSIENT e THERMAL-HYDRAULIC I THERMAL-HYDRAUL.it CODE ANALYSIS CODE 8

TRANSIENT ANALYSIS CODE

balance history of the fuel movement, and calculates the unit fuel cycle component of the electric generation cost.

PERTUBAT(13) performs first order perturbation calculations using VEN-TURE results. Provision is made to calculate perturbations due to changes in microscopic cross section and nuclide densities. Nuclide importance data can also be calculated. In addition, perturbations due to a linear dependence of macroscopic cross sections on temperature may be obtained given temperature distribution and associated cross section data.

DEPTH-CHARGE (14) in BOLD VENTURE system provides a generalized first order perturbation / sensitivity theory capability for both static and time dependent analysis. Data sensitivity and uncertainty analysis can be per-formed evaluating derivative of the response with respect to the nuclide concentrations and/or nuclear data utilized in the model.

As depicted in the figure, key output of BOLD VENTURE such as the spa-l tial power shape is finally used as an input to COBRA-3C/MURR which is a modified version of COBRA-3C/RERTR(15) for the steady state thermal-hydraulic study, to PARET(16) for the reactivity transient analysis, and to RELAP5(17) for the thermal-hydraulic transient analysis.

3.1 MURR Core itodel BOLD VENTURE has the facility to model up to the three-dimensional reactor system and up to 18 different types of reactor geometry. However, since the fuel element in the MURR core has curved fuel plates, only the I R-Z, 9-R, and 0-R-Z geometric types were considered in the analysis. Pre-sented in Table 2 is the material specification for each zone in the R-Z model. Figure 3 shows a diagram of the R-Z model of the MURR reactor used extensively in the BOLO VENTURE calculations. The symmetry axis in the I '

Table 2 MURR R-Z Zone Specification Zone No. Description 1 Flux Trap 2 Inner Al Pressure Yessel 3 Inner Coolant Channel I 4 5

Reactor Core Fuel Extension Fuel Hanger 6

I 7 8

9 Water Outer Coolant Channel Outer Al Pressure Vessel I 10 11 12 Water Al Cladding of Control Blade Control Blade Meat 13 Beryllium Reflector I 14 15 Water Upper Graphite Reflector Lower Graphite Reflector

  • 16 I 17 18 19 Water Aluminum Water O

I 10

I l

l 1

FC'C9 g m

o H ,

3 -

939.ZF ,

I LV L*LV 6 C N w "

Q D 801037338 311HdV80 3

499'#3 y L 93*#3 g n 801031338 08 IC2 U 19C'1L -

629'9 L  ! I

$ #94'9 L l 30V 18 LOB 1NOO N @

p S

.~ 639 94 <

o FCt'9 L i  ;. g g I -@o I -

-- J 9F6'S L xs:s swgss3sgss (wxxws sxxww wx3xw3xsxxxgs3mwss%3wxwsw 996't L 2 #99'# L f .

IYx l M W .

C e o

- s e o e o u N  :

.? .a o ,

l u- )

i l l 1 n  ! _

CC6'9 \ '

l <

991'.9 so w.wwMs%NssSh%s%9 Mss %#SSshWMhxWNSSS%XxWANWNSSSMS' d

ggf 9 x n.

34

.J C LL H i

l l l O O D DO a ND D t a co O 4 04  % fo O w@@

cn ", C. Add d ? O.C4 sti oo -en a w nD o I N nn O O,=

v=*="

11

I I figure corresponds to the actual symmetry axis of the MURR. The numbers in the figure shows the MURR homogenized zones representing flux trap, core section, control blade, beryllium and graphite reflector, etc. The location of the zone bouradaries are given in cantimeters relative to the top of the model and center line of the reactor.

Also used in the analysis is a e-R model to better describe the curved fuel plates ~ and control blades. Figure 4 shows the top view of the MURR core and beryllium reflector modeled in the BOLD YENTURE calculations.

(here are a total five movable blades used in the reactor. Four of these, the control blades, each occupy approximately 72* of a circular arc around the pressure vessel and are made of boral. The fif th, the regulating blade covers 17.8* of the circular arc and is made of stainless steel.

The user can easily combine the above R-Z and 0-R models t'o set up a three-dimensional 0-R-Z MURR reactor model. As previously described, the new fuel element is designed in such a way that the fuel loading between plates varies. U-235 loading for the 775 gm and the 1270 gram elements are given in Tables 3 and 4, respectively. In Table 3, nominal loading is f<I given in column 2 and the actual uranium content in the 775-F3 fuel ele-l ment which was used in the benchmark calculations is shown in column 3.

In the new fuel element, fuel plates from 8 to 19 are loaded uniformly at the maximun level of 3.0 gm-U/cm 3

. The uranium per cubic centimeter decreases going from Plate 8 to 1 and from Plate 19 to 24 in order to l

l reduce power peaks on outside plates. Also noted is that the new fuel element contains boron in the form of boron carbide in the first five and

! last four plates to reduce the initial core reactivity.

12

Prossuro Vossol I \ ~

i p

I fi I

\1 u i

pc gulating *M Flux Trap B Blade I U Fuel Element I

I Be Reflector Control Blade (4)

I I

Fig. 4 8-R Model of the MURR Core and Be Reflector I

I I

13

l Il Table 3 U-235 Loading for MURR 775 Gram Elements Nominal U-235 Content Difference Plate Number U-235 Content (gm) in 775-F3(gm) from Nominal 1 19.260 18.95 - 0.31 20.23 - 0.16 I 2 3

4 20.393 21.526 2.?.65' 21.13 22.47

- 0.40

- 0.19 5 2. 7. 3 23.59 - 0.20 6 24.926 24.72 - 0.21 7 26.059 25.80 '

- 0.26 8 27.192 27.05 - 0.14 9 28.325 28.13 - 0.20 ll 10 29.459 29.33 - 0.13 11 30.592 30.25 - 0.34

- 0.40 I 12 13 14 31.725 32.858 33.992 31.33 32.66 33.73

- 0.20

- 0.26 15 35.125 34.89 - 0.24 16 36.258 36.02 - 0.24 17 37.391 37.06 - 0.33 18 38.524 38.00

- 0.52 19 39.658 39.28 - 0.38 20 40.791 40.51 - 0.28 21 41.924 41.72 - 0.20

- 0.42

'I 22 23 24 43.057 44.1?il 45.324 42.64 43.90 44.74

- 0.29

- 0.58 775 grams 768.13 i

I 14

Table 4. Uranium and Boron Loading for 1270 gm Elements i

Plate U-235 Content U-238 Content Boron Content (Natural) l 11.38 0.838 .08 I

1 2 15.11 1.113 .085 3 19.13 1.409 .088 4 28.12 2.071 .091 5 34.25 2.523 .095 6 43.15 3.178 7 50.83 3.744 8 53.06 3.908 9 55.30 4.073 10 57.54 4.238 -

59.78 4.403 I

11 12 62.02 4.568 13 64.26 4.733 14 66.52 4.899 68.76 5.064 4 15 16 70.99 5.229 17 73.23 5.394 18 75.47 5.559 19 77.71 5.724 20 75.82 :< 5.584 67.55,' 4.975 .155 I 21 22 23 57.08 47.09 4.204 3.468

.159

.163 24 36.22 2.668 .166 I 1,270.37 1.082 I

I I

15

m 3.2 Benchmark Calculations The validity of the BOLD VENTURE core model was tested against the burnup data of the 775-F3 fuel element obtained by post-f rradiation exam-ination(18) performed in 1973. All 24 plates in 775-F3 were gamma scanned longitudinally along the center line to profile burnup in the element.

In addition, five samples were analyzed for burnup employing the 145, 146, and 148 isotopes of Nd. Transverse gamma scans were also made at the burnup sample locations. The linear relationship between gamma activity and burnup was used to convert the longitudinal gamma scans to fissions per cubic centimeter values.

The tested fuel element is one of the elements in CORE VII which was loaded with eight new elements and depleted up to a 650 MWD core burnup.

The control blade bank movement scheme for CORE VII(19) is shown in Fig.

5 in which the bank position at the cold clean core condition is marked with *, whereas the bank position with equilibrium xenon is marked with

+. It is to be noted that blade height in the figure is expressed in inches of withdrawal from the bottom of the core. The 775F3 fuel element was used when the reactor operated for 95-100 hours per week at 5 MW.

Analytically, the average xenon reactivity worth can be calculated to be approximately 90 percent of the equilibrium xenon reactivity worth for this operating cycle. Therefore, the blade position at each depletion step was approximated using the following equation:

16

M M M (

CONTROL BLADE POSITION VS. CORE BURNUP 22-21-

4...a... . .a. . .a...a . a. .. e .. a B 195 i L

A D .

9,..

.. .. ..a...a 6.. f E 18- .

P ,

0 . l S IT- l

}

y . . . i. . . . .. a... e.. e . . 1 r**

i . ,

0 16- p l

I r-y N

$ .. .a .. . . .. .a. . 4...a.. . . .. I y

,s

,*,,,',,s' 1 15- ,e N , *

  • g ',.--

E 14- I S

- ,, * ~ . a / I 1

332 ,,,,,..." l 12- / ,,e , , >'

. s' I l ... , , , , . . . . . . . . . . . . . . . _ , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , _ _ , . , , . . . . . . _ , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , , . . , _ . . ,

I i 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4 5 5 5 4 56 58 06 26 4 66 6 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 '6 8 0 2' 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 CORE BURNUP (HWD)

LEGENDS P +-+-+ 4 A 6 5 .--.-+6 Flc. 5 CONTROL BLADE MOVEt1ENT SCHEME for CORE VII

~

BPj = BPc,1 + 0.9 (BPx,j - BPc,1) where BPj = blade position at step 1, BPc,1 = blade position at cold clean, step'i, BPx,j = blade position at equilibrium xenon, at step i.

I Since the BOLD VENTURE uses descrete time steps, the continuous control blade height change during depletion was simplified into four discrete steps in which the blade height remains at a given position for the spe-cified depletion time step. These rod positions during a specified depletion step . length were averaged to represent the rod position for the burnup step. This data is presented in Table 5 and displayed in Figure 5 with a symbol.

A R-Z MURR model was set up and depleted up to 650 MWD using VENTURE, RODM00, and BURNER modules. In the R-Z model, the three barrel flux trap was incorporated as follows. Volume of the three tubes were combined into one big tube in such a way that a single ring of aluminum has the same volume as that in the three aluminum tubes of the flux trap. To represent the typical reactivity worth of a flux trap sample loading used in 1971 and 1972, the volume inside the ring was modeled as aluminium with a boron-10 number density of 1.0 x 10 19 atoms /cm3 . The ring is located at the centerline of the R-Z MURR model with an inner radius of 0.974" and an outer radius of 1.261".

Since the BOLD VENTURE gives the output in a form of fission source per cubic centimeter of the homogenized zone volume per second, the fol-lowing analytical formula was set up to convert fission source to fis-sions/cm3 of fuel meat volume:

18

Table 5 Control Blade Height vs. Core Burnup I Cumulative Burnup (MWD)

Inches Withdrawn 0 15.21 81.25 15.21 162.5 16.62 243.75 16.62 325.0 18.16 406.25 18.16 487.5 20.11 563.75 20.11 650.0 20.11 I

19

~

K -1 -1 BU = { (FS) x /W ) x (PCF) xv ij ijk (at)k x(W cell meat j j where k=1 I BU = Fissions /cm3 for mess interval i in Plate j, 13 FS = Fission source for mess interval i of ijk Plate j during the burnup step k, at = Time length for k burnup step (sec),

k (W /W ) = ratio of unit cell to meat radial thickness cell meat) for Plate j, PCF = Fraction of circular arc occupied by the fuel meat j

in Plate j, v = Number of neutrons emitted per fission.

I Figure 6 compares the peak burnup calculated versus the measured val-ues for each plate. Figures 7 through 30 give the axial burnup distribu-tions comparisons for Plate 1 through 24, respectively. The BOLD VENTURE results are marked with a , and the gamma scan derived values are marked 7, a, and x. In the figures, the horizontal axis represents the distance from top of the fuel plate and it is to be noted that nominally the fuel meat starts at 3/4" below the top of the fuel plate and ends at 3/4" above the bottom of the plate. As shown in the figures, the BOLD VENTURE results are conservative in a sense that the calculated values tend to overestimate the test data. This probably reflects the conservatism of having indicated reactor power slightly greater than actual power level.

l In general, the BOLD VENTURE results are in good agreement with the test data, but shows some discrepancy due to the approximations used in the 20

M M -

[

Fig. 6 Comparison of Peak Burnup in Each Fuel Plate for 775F3 Peak Burnup in Each Fuel Plate for 775 F3 10  ;

i i

9 [ . _ . - _ . . q . ._ _ . . . _ . . _ _ _ _ _ _ _L - _ _ - _ _ _ _ _ . _ .___ __- -_ _

l  !

.N .

}l

g. 8 ----j.;-- p g S \i 7-----N - -

,I a ,

q '

U 6 - !-- --- - - -

9 yh .

'f--

e

/

k _ _- 5

~. 5 _ u_- - . ,_. . -.. _

J_- _.. . _ . -

c - -

Q N, n a3

/

M - . --

4-- - - _ . . ..

hu [

E 3- '-- - - -- t --

a i m l 5 2 o

Q.

1 O . . . . . . . . . . .

1 3 5 7 9 11 13 15 17 19 21 23 Fuel Plate Numb. . .

O calc: BOLD VENTURE V meas by gamma scan

M M M M f Fig. 7 Comparison of flxial Burnup Distribution in Plate 1 PLATE # 1 4-step BOLD VENTURE 11 10 --- - - - - - - - - - - - - - - -

1 7o 9 N

E o

8 - - - - - - - -

l - - - - - - - - - - - - - -- --

i e

4 m I J g f _

l o

N a

w hl g . _ . . .. . _ - . . . . . . . . .._,

N o.

L --

- 5 - - - - - -- --

o ,

m 3

v i a .

3 3 ,

Z E I'

! 3 i m 2 -

t

- - = - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - --

! v j __ . _ _ . _ . . - _ . . . . _ . . . . . _ . . _ . . _ . . . . . . . . . . . . ., ..

m..

0 WW l

)

0 20 40 60 AXIAL DISTANCE FROM ELEMENT TOP (cm) i

l M

M '

M -

F

- - A - - - 0 M

i q -

6 k-

_.w M -

M2e t

a )

P m

Mln i

(

P c

n O o -

T Miu t

b 2R U E -

3,,w 0

4 T N

i T - E r N r ,

M t

  1. E ,v MiD s V D

v E

L E

p u

EL O M

n TB =- O Mr R

B u Ap - F Lt e l A E C

Mi a

x Ps 4 - - N A

A T f

S I

o D Mos n f 0 2

L

  1. - A I

X i

r - A p

Mamo C

M8 i

g i

F M " '

9 7

0 M 1 0 9 8 7 6 5 4 3 2 1 0 1 1 M

uuNec9.a*C Nd R"g  :

3 n. } n 3 m M t m~

M l lll1\I' il'

I I o ge  ;

i. r _ _

e s

?_u s

p

i O ,

i i i Z w

a "

z  ! 2 E Dy  ! k d w

c. ' P

\M s *

,i e Lt_] G

_a l l 2 5-f- O g I l 1 o 5 c2 ___

.i i

m e

- a i I 5 0  ;

, i  !

y 5

o 1 ,[ I i

1 l

i i

I

[

Jm l  ;

l '

c j l' M i O

8 ' 'I o i ,

a

  • i- 1 i i }b- l l

N $

E l 1

' l 3

! N v

8 -

i i

', j i i

i,

j i s C  !

I l 8 I l l  ! ,

._L . _ . . . _ _ j -

.s

.g, u.

' i s 3 ,

i i

'h . . 'y ;

I i i

f I e i . , ,  ; , ,

i I i l ,

! I d ! ,R _!

M

j . i

' l .

l' l

, i l i , -

0 I i i i l 1 l

- o cn m r- e m + m N - o (co/suotss!; og3 o* L ;o sg!un)dnNHnG 26

m W W W W W W W W f Fig. 12 Comparison of Axial Burriup Distribution in Plate 6 PLATE # 6 4-::tep BOLD /ENTURE \

11 - l 10 - - -

- - - - - i ---

I,

- - - - - ~

9u 9

'N 8 - -> -- - - - -

I

.9 L1 61 --

7-- - - - - - - - - - - -

6 - - - - - - -- ---

o N

y to 6 - -- -- - - -' - - - - - - - ' - - - - - ~ - ~ ' - ~ ~

O.

f_r-G O a ( - -- -- - - - -

5 -- - - - - - - - - - - - --

--Er .

v 4--- -- --

7 S 3--- - - - -- - 1 Y -- - - -

[ f -

~'

] 2 -- - - - -

f M - - - -

R .

K ,PV .

1 A -V --- -F--- -- - - - - -

(

0 V ',l 0 20 40 60 AXtAL DISTANCE FROM ELEMENT TOP (cm)

Fig. 13 Comparison of Axial Burnup Distribution in Plate 7 PLATE # 7 4-step BOLO VENTURE 11 10 - - -- -

g g_. _ _ _ _ _ ._ _ _ . . ___ _ ___ . _ _ _ _

o s

g _. _ __

_ _ .h - . .

.9 E

.c 7__ __ . _ _ _ _ _ __ . _ _ - _ ._ __ _ . - . -

o N

g LI 6----

---t--

O. I

' V A g

.e c 4_. _ _ _ _ _ _ _ _ _ __

- m. , yw _. ._. _

3 N Ja s ,- _ . - -

fv _ . _ _ . s,__a .

y hm 2 , #e,

\

n V

,_ __ w_ \

0 , " ',l / ,

O 20 40 60 AX!AL DlSIANCE FROM ELEMENT TOP (cm)

N I

I ,

I ,

f  ! >% l l }

I i  % o I  !! I id 1

i i j c' v> .  ;

i i C*

Ie*

g, }

}-

l l

' l P

4 2 i 7

l 5 i S

C i , .

1 O

I 3 I' l l'

l I

a >

i i

o 8

c o @e i l

l i  :

E tk@

l a!oa 1b i i a Fm _ _J , I -

E 3 bl '

O Ia. c. ,r -

3, C

I e l

.2 t

=t ,

l i , TlwS  !'

aiy t

Iv 8 i l

i e M Ih i ,

I___ j. -

' ' j i j i i l '

i i

i i

i r i i i i I l l

, [  !

I&

5 -l!~

4 i i i .

! i  ; I j ,

l l ' I I I

a o

e m e 5 m o t n N - C l (oofsuotssa on o '. Io Silun)antmne 29

M M M M M M M M M M f Fig. 15 Comparison of Axial Burnup Distribution in Plate 9 PLATE # 9 4-step BOLD VENTURE -

11 , ,(

10 -

m ,_-

9 u

N E 8-2a >

n C 7- .,

o N

w g 9

l

~

=

+ 5-o S 4 ,

rx ' - --

3 7 ,

1 d . .8 M.{'R.

~. . .-

r g: y 3 5 _R 'a 5 ,

- J'  % .YI.b

_((

g)%vv

,l j l 3_ _ _ . - .-

.; 1 f ~

j-

\

'7 O ,?? l y

0 20 40 50 AXIAL DISTANCE FROM ELEMENT TOP (cm)

v I

I  ;

3 i

) >

i q.

,h o f _

- /j/

.s se i ;i i e'; '

l d 7 l 5 e

" ' c_

?gs

~

2 1 l 1

I. EOM 4 I:'

5 <-~ R ' f s j%s 3 3

.I > d S

I a

I "

k'f' -

8 g

E N(& E I

e < ~

w

%J% H I k 0, ~'r '

u C 3

w o b E

h-na

\ a

's ;s i 1 '

N I e

~

i

\

5%

' \]6&

L I 3

9,j >

N -

e O 2 h C O v m N ~ O

~ e.

Coo /suoissa og3 g... n s;;un)anNhins l .

31

N I

I -

I I s { .

tf I /

I =e E

lE - e (L

c y o r

.s a a + c -

v-- I O E E U U '

.3 :4t:: $ d 1 9 2 UO m o Ia != }__.

't I a 14 %s a o

m' o $

5 M N s I 3 N

ir >

l0 ,

.e ,

a g' o  %, .

I c-I t i g O

O m o e, o o 9 ,y g _ g l (co/auotsats ora o t to s3 un)anNeine 32 t

M M

M' -

0 M s

~ g -

6 s- _-

\

M _

= y

=

M2e1 t

1 i I

_ w

)

a

% m Ml P i

n -

L

(

P c

n O o B - T Mi2E t

t i

a 1 R

U T

!' l O

0 4 T N

E r N M Mi// V t

D s E D

um g

E L

E p L -

M EO B u g_ O Ma n - -

R r

T c -

F B

Ap e -

r E

l L st C

a N Mh P4 -

i A

f - -

T

- S r I o V -

D Mo i s

n J

g y-0 2

L A

X I

r -

A a

Mo p

m -

C 8

1 g -

g.

~

g -

i -

F 7 M -

M i 0 1 0 9 g 7 6 5 4 3 2 1 O 1 1 .

M g o N E 9.a E o " w O* ~u a g .

hm M -

m" M

I iam ins am suo ser ses ma mer amm ma sus aus um aus saa mas uma mim ase 2 Fig. 19 Comparison of Axial Burnup Disicitiuti:n in Plate 13 PLATE # 13 4-step GOLD VENTURE g 1 __ -- - - -

==- -' -

10 -

1 I i .*

t t l i g a_ --

-j I _u - - - .

? i l ---

)d gr--- - - - -

.._~m _

.9 i ,

F g y- _ ._ _ . _ -

3_ _ __ _ _ __

i o i i N i '

W c, .

a o l i

( l

u s1 ^

I J- .---. -

.-l.

l B

'E 4- - - - -

}

y,@% x._ e i -

3- _unV* Mg _

7 B

'g W z ,

5 y a 2 3

g r

%. s qy ,

i 0- ?.

0 20 40 60 AXIAL DISTANCE FROM ELEMENT TOP (cm)

M -

I J ,)i,.

0 6

M1 4

e t ,

a )

l m

MPi n (

P c

n O o T i4E t

u R 0

4 T b 1 UT N i E r N M t E E i

D s

  1. V L E

D p L M u

n EO B O M

r u T R F

B Ap et W E l

a L s C MAi f

x P4 - N A

T S

I o D n y 0 L M o 2 A 4

s I i X r

a A

p m

M C o f 0

M2i F

g nq@

M " -

?

\

0 M 0 9 8 7 6 5 2

1 1 1 1 0 M

9sE0.EC 0W O; o5 3m M

w*

M

i ii 1.l i!  ! , ' I  ! !1 M

D. 2- 0 M .

6 5 -

1 e -

t a )

l P - m c

i n

h (

P O

Mi5E t

n o

R d -

0 4

T T

o U N t

i 1 T E r N M t E E s

  1. V L

i D E D

p L M u

n r

u EO B T p h~--

- O R

F B

Ae E l

a Lt s  % C MiP4 A

f x

- N A

T S

I o p D Mo i n

s y

0 2

L A

I X

r A ap m

C o

P' -

1 2

_ g g

i F -

M s"L-

?

0 1 0 9 8 7 6 5 4 2 1 0 1 1 9oNncRE; oNW o' ~o S L 3m M

u*

M llljl(l lll lL

_ _ _ _ _ _ _ _ _ _ _ _ a i

Fig. 22 Comparison of Axial Burnup Distribution in Plate 16 PLATE # 16 4-step BOLD VENTURE 11 10 -

9u 9 ---- -

\ .

8 -

E - - - - - - - - - - -

o

! n '

l n C 7- - - - - - - - - - -- -

o N

M W G 1

O, r-o l N 4 y

_rP -

c ~

3 3-- --- -

al 2 - - - --- ,

~

f 1 --g-l O -1 '" , .

l 0 20 40 60 AXIAL DISTANCE FROM ELEMENT TOP (cm) e--------__

f M

M M \

, 0 6

M M

M 7

1 t

a e

)

l P m

(

c n '

M i P

n O o T i

t u 7E R 0 4 T N

M b i

1 U T E r N M t E E M

i D

s

  1. V D L E

p L M u

n EO B O R

r u T F M Ap W'

B t

e E l

a L s C N

P4 -

i A

M A f

o o

x n

ff i 0 2

T S

I D

L A

M i s

r I

X A

A a

p m

o M C f-3 2

M i g

F M q 7

0 M 1 1

0 1

9 8 7 6 5 ^1 0 M

osE0.EC 0W O. - -

M

);

m

m m m m m m m m m m m m m m m m m (

Fig. 24 Comparison of Axial Burnup Distribution in Plate 18 PLATE # 18 4-step BOLD VENTURE 4

11 10 o 9 u

N E 8 2

E C 7 -

o N

W 6 U O 7

o r, ,

S 4 M ' '-

~  %

" 'Y' ~ f a

a P-t '

3 Y  %  %

m 2 .

y, 1- -

W -

0 ,

T 0 20 40 60 AXIAL DISTANCE FROM ELEMENT TOP (cm)

f M

M M

s 0 6

M M

M 9

1 e

%d t '

)

a l

P m

(

c n

M i P

i o

n 9E R h 0 O

T t N 4 T M bu 1 U T -" N i

E r N M t E i#'ED s L M

W D

p u

n r

u EO B T p L

[ _

E M

O R

F Ae k B E t

l L s C a N i

x P4 -

/

T W A S I

f D o

0 L n j 2 A o

W i s

r _

I X

A a

p m

W C o

5 2

W g W

i F

W' .

0 M 1 1

0 1

9 8 7 6 " ' 0 M .

G s E 0.E C 0 W 9 '

oB i M

a M

f M

- v v

v 5 0 M h 6 w\s M -

0 -

M2t e

a

~

)

l P

m c

Mi n n

o

(

P O

T 0

Mi0E t

b i

u r

2U R

T N

- 4 T N

E M

t E E M

i D

s

  1. V -

L E

D p L M u

n EO B g O R

T p MBl r

u Ae L s t

- F E

C a N MA i

x P4 A T

S f I o D n 7 0 L Msi o

r a

- J 2 A I

X A

p -

MC6 m

o M2i F

g M . .

v 0

M 1 1

0 1

9 8 7 6 5 4 3 2 1 0 M

oo)8 a n-oNJb O, N 11DZ5m M

,~

M

m m m m m m M M M M M M M M M M M M M Fig. 27 Comparison of Axial Burnup Distribution in Plate 21 PLATE # 21 4-step BOLD VENTURE 11 10 9 9 ---

E 8 - - --

.e E

C 7 0

m 5 '-

l,

. # N r

E 3 3 N7 . '?

1 0 '

0 20 40 60 AXIAL DISTANCE FROM ELEMENT TOP (cm)

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ =_ _ _

Fig. 28 Comparison of Axial Burnup Distribution in Plate 22 PLATE # 22 4-step BOLD VENTURE 11 - - -

10 --

Q 9 -

E 8

.9 E ~

C 7 o

O 8 Mn e o 7 g

5 2

m A

$ 4 7 5

~

i ,/

3 3 f .

1 -

0 7 '- l 7 0 20 40 60 AXIAL DISTANCE FROM ELEMENT TOP (cm)

M M M M M M M M M M M M M M M M M M M f Fig. 29 Comparison of Axial Burnup Distribution in Plate 23 PLATE # 23 4-step BOLD VENTURE 11 10 --- -- - -

o 9 s

E 8

' a  %

g i 6 -- #f ~%

?

+ 5 - - - - - - - - - - -

-Q g x In 2 f y

1 -

0 7 '.

0 20 40 60 AXIAL DISTANCE FROM ELEMENT TOP (cm)

Fig. 30 Comparison of Axial Burnup Distribution in Plate 24 PLATE # 24 4-step BOLD VENTURE 11 10 - - - - - - - - - - - -- --

9o 9 --

E 8 h---

.2 '(XX

.E /rN , \

g h

g 6 [ h,s\ 3_g f

7 N 5 --

' I 4

5 K r

i 3 3 - - - - - - - --

m 2-- -

1 .n O ,

0 20 40 60 AXIAL DISTANCE FROM ELEMENT TOP (cm)

m modeling, model based on nominal fuel loading instead of 775F3 specific loading, and interpretation of the gamma scans.

According to the figures, the axial fission peaking in the fuel plate occurs below the mid-plane of the core, showing that the existence of the control blades in the upper part of the core forces the power peak to shif t downward from the mid-plane.

4. Analytical Results Extensive BOLD VENTURE runs have been made for the MURR system using R-Z, and 0-R-Z models. The purpose of the R-Z runs was l') to evaluate the core reactivity and the power peaks at the cold clean core condition, and 2) to deplete the 6.2 Kg core and the new 10.16 Kg core. As a refer-ence, three sample input data files of the R-Z, 0-R, and 0-R-Z MURR models are given in Appendix B. It is to be noted that the flux trap model was used only in the benchmark study given in the previous section.

The other BOLD VENTURE calculations assumed that only water is in the flux trap region. This results in more thermal neutrons reaching the inside fuel plates which is conservative since the inside fuel plates have the highest power density.

4.1 R-Z Calculations Table 6 summarizes the BOLD VENTURE results for the 6.2 Kg and the 10.16 Kg cores at the 10 MW thermal power. Two cases, with and without natural boron in tne fuel meat, were also considered in the new core analysis to see the effect to the core characteristics. Excess core reactivity was evaluated performing R-Z runs for the MURR with the four control blades fully inserted in the core. As is seen in the table, the l

l 1

1

Table 6 R-Z Results at Cold Clean Core Condition i

Control Blade Out Control Blade In 6.2 Kg 10.16 Kg Core 6.2 Kg 10.16 Kg Core Core Core W/ Boron W/0 Boron W/ Boron W/0 Boron Kerg 1.1124 1.09389 1.13560 0.9315 0.9234 0.9545 Peak w/cc 673.7 462.7 468.7 909.8 548.6 574.2 Power Densi ty at Plate 1 Plate 23 Plate 23 Plate 1 Plate 4 Plate 4 0

M

~

I MURR with the new fuel has about 1.9 %Ak less reactivity than that of the 6.2 Kg core at the cold clean core condition. Elimination of natural boron in the new fuel will cause a 4.2 %Ak increase in tne core reacti-vity. This large increase in reactivity results in only a 1.3% increase in the peak power density for the new fuel without baron.

The result of the new core for the all blades out case clearly shows in the table that the. maximum power peaking is significantly reduced when compared to that of the 6.2 Kg core. According to the BOLD VENTURE I result, the power peak of the new core occurs at Plate 23 when the control blades are fully out, but the peak moves to Plate 4 by the time the rods are inserted to the cold clean critical position. The total worth of the four control blades for the 6.2 Kg and the 10.16 Kg cores were calculated to be -0.1809ak and -0.1705ak, respectively. It is to be noted that the total worth of the four blades is reported (20) to be -0.1655 Ak. The overprediction of rod worth is due to the control rod constants used are based on the actual partial 288* control blade coverage, but the R-Z model applies them to a full 360* coverage.

The R-Z model was then deoleted up to 1300 MWD. Table 7 shows BOLD I VENTURE result for the five burnup steps. Column three in the table clearly indicates that increase in reactivity due to burnup of the boron in the new fuel compensate to some extent for the decrease in reactivity due to fuel burnup and accumulation of fission product poisons.

4.3 0-R-Z Calculations The 3D calculations are expensive, but essential to verify the results of the scoping 9-R 2D calculations. When the more detailed 3D information is necessary, the 3D runs are indispensable. Using BOLD VENTURE, the 48

Table 7 R-Z Depletion Result Cumulative Control Blade 10.16 Kg Core I Burnup (MWD)

Position (Inches Withdrawn) W/ Boron W/0 Boron 6.2 Kg Core 0 16.38 1.05092 1.08996 1.06697 325 17.61 1.01919 1.04071 1.02537 650 19.00 1.02415 1.03725 -

1.02588 970 20.50 1.02541 1.03374 1.02605 1300 20.50 1.01632 1.02142 1.01731 I

I I

1 I

49

m present 6.2 Kg core and the new 10.16 Kg core at cold clean core condi-tion was analyzed using the 30 MURR model. The result in Table 8 shows that when the rods are fully withdrawn, core reactivity of the 10.16 Kg core is lower than that of the present 6.2 Kg core by about 1.9 %. This result came out to be the same in the 2D R-Z calculations, indicating that the 20 models are simpler but still gives the consistent values.

For the all blades out condition, the 2D Keff's are in close agreement with the 30 values within the maximum error of 0.43 %.

The total control blade worth calculated from the R-Z and the 0-R-Z runs are summarized in Table 9. The 3D model gives better agreement due to the control rod constants used are based on the actual 288* coverage which can only be model in the 0-R-Z model. In both models, the rod worth for the new core is less than that of the present 6.2 Kg core.

This is due to the larger macroscopic fission cross section for U-235 causing the same macroscopic absorption cross section for control blades to have less relative importance in the new core.

i l

l 5. Conclusions l

The major outcome of this work has been the development of an advanced and powerful computing tool, AMPX-II/ BOLD VENTURE IV, to perform MURR upgrade core analysis and other necessary nucleonics studies. Four group cross section sets for various materials in the MURR system were generated in the form of ISOTXS data files using modules of the AMPX-II system. The files were then used in BOLO VENTURE to determine the core k-eff, spatial flux and power distributions.

l ll l 50 l

l

I Table 8 MURR 30 Result Control Blade Oui! Control Blade In I

6.2 Kg Core 10.16 Kg Core 6.2 Kg Core 10.16 Kg Core keff 1.11725 1.09832 0.95340 0.94667 Peak W/cc 702.9 459.3 901.3 546.7 j Power .

Density at Plate 1 Plate 23 Plate 1 Plate 4 I

I ,

51

-i Table 9 Total Control Blade Worth (in AK) Experimentally R-Z Model 0-R-Z Model Measured 6.2 Kg Core 0.1813 0.1638 0.1655 10.16 Kg Core 0.1705 0.1516 ---

(With Boron in fuel)

I I

I I

I 52

v I

Extensive R-Z runs were made to test the validity of the BOLD VENTURE model. Benchmark calculations were performed to compare the R-Z result I against the burnup data of the destructively analyzed fuel element, 775- l F3. The computational results agreed well with the destructive analysis data, showing that the BOLD VENTURE code system coupled with our MURR model gives excellent fuel depletion results. Since the fuel depletion is the integral over time of the power distribution, it also confirms our accuracy in predicting the power peaking factors.

Cold clean keff calculations for the 2D and the 30 models showed that the new 10.16 kg core has less reactivity than the present 6.2 kg core by about 1.9 %, and the resulting maximum power peak is reduced signifi-cantly. Elimination of the natural boron in the new fuel will increase reactivity by about 4.2 %. The 30 results showed that 2D calculations provide consistent results proving that the 2D runs can be substituted for some expensive 3D runs.

In the 30 model of the 6.2 Kg core, the two beamport holes and the impurities in the beryllium reflector were not taken into account.

According to the previous study (21), the negative reactivity for these

! effects are -0.0034 AK. When considering this, the analytical Keff at

!I l

the cold clean core is 1.109 which is higher than the-measured data of 1.095 by about 1.3 %. This difference may be accounted for due to other

( details not included in the model that cause negative reactivity, such as:

the thermal column and impurities in the aluminum of the fuel elements and l

pressure vessels.

The reactivity worth of the four control blades was also calculated I

and the worth in the new core came out to be less than that of the present l

I 53

y core by about 7%. This is due to the less importance of the control blades in the new core when compared to that in the 6.2 Kg core.

At the time of this writing, reactivity worth measurements are being performed for the four control blades to compare against the measured data in 1971. The new control blade data will be included in the future 3D calculations such as differential blade worth and each control blade worth evaluations.

Various combinations of new and depleted 775 and 1270 fuel elements are being analyzed using the 0-R nodel to determine which fuel loading combinations have the worst power peak's. The worst power peak cases will then be modeled three dimensionally to determine the power distributions.

These results will provide the input for COBRA-3C/MURR to determine the safety limits for steady state power. A safety limit analysis report will'be issued giving the results of the 0-R, 0-R-Z, and COBRA studies.

I I

I 54 ,

I REFERENCES I 1. T.B. Fowler, et al., " EXTERMINATOR-II: A FORTRAN Code for Solving Multigroup Neutron Diffusion Equations in Two Dimensions," ORNL-4078 (1967)

2. R.F. Barry, " LEOPARD-A Spectrum Dependent Non-Spatial Depletion Code for the IBM-7094," WCAP-3269-26 (1962)
3. N.M. Greene, et al., "XSDRN: A Discrete Ordinates Spectral Averaging Code," 0RNL-TM-2500 (1969)
4. T.B. Fowler, et al., " Nuclear Reacter Core Analysis Code: CITATION,"

ORNL-TM-2496 (1971)

5. D.R. Vondy, et al., "The BQLD VENTURE Computation System for Nuclear Reactor Core Analysis, Version III," ORWL-5711 (June 1981)

I 6. D.R. Vondy, et al., "A Computational system for nuclear Reactor Core Analysis," 0RNL-5153 (April 1977)

N.M. Greene, et al., "AMPX: A Modular Code $ystem for Generating Coupled I 7.

Multigroup Neutron-Gamma Libraries fro.m ENDF/B," GRNL-TM-3706 (March 1976)

8. W.E. Ford III, et al., "A 218-Group Neutrcn Cross Section Library in the AMPX Master Interface Format for Criticality Safety Studies,"

ORNL/CSO/TM-4 (July 1976) l 9. D.R. Vondy, et al., " VENTURE: A Code Block for Solving Multigroup Neutronics Problems Applying the Finite Difference Diffusion Theory Approximation to Neutron Transport, Version III," ORNL-5062/R1 (November 1977)

10. D.R. Vondy, et al., "RODMOD-A Code for Control Blade Positioning,"

ORNL-5466 (November 1978)

11. D.R. Vondy, et al., " Exposure Calculation Code Module for Reactor Core Analysis: BURNER," 0RNL-5180 (February 1979)
12. T.W. Medlin, et al., " Fuel Management Positioning and Accounting Module:

FUELMANAG, Version VI.II," 0RNL-5718 (January 1982)

13. D.R. Vondy, et al., "The Code PERTUBAT for Processing Neutron Diffusion Theory Neutronics Results for Perturbation Analyses," ORNL-5376 (March 1978)
14. J.R. White, "The DEPTH-CHARGE Static and Time-Dependent Perturbation / Sensitivity System for Nuclear Reactor Core Analysis,"

ORNL/CSD-78/R1 (August 1984) l l

55 t

e I

l

15. J. Chao, " COBRA-3C/RERTR: A Thermal-Hydraalic Subchannel Code with Low Pressure Capabilities," Argonne National Laboratory (December 1980)
16. C.F. Obenchain, "PARET-A Program for the Analysis of Reactor Transient,"

I00-17282, AEC Research and Development Report (January 1969)

17. RELAPS/ MODS -A Computer Program for Transient Thermal-Hydraulic Analysis I of Nuclear Reactors and Related System, Aerojet Nuclear Company, ANCR-NUREG-1335(September 1976)

R.R. Hobbins, et al., " Post -Irradiation Examination of MURR Fuel I 13.

Element," Aerojet Nuclear Company (August 1973)

19. R. Hultsch, Personal Communication (April 1986)

I

20. MURR Hazards Summary Report, University of Missouri Research Reactor Facility (1965)
21. J.C. McKiboen, " Computer Model of Small Reactivity Changes in MURR," M.S.

Thesis, University of Missouri-Columbia (1984)

I I

I I

56

I I  :

I I

I .

P l Appendix A Sample Input Data for AIM, AJAX, NITAWL, and XSDRNPM ,

I I .

I I

I l

!l l

1I l

lI 57

~ ~ - - -

I l

i

//$0365FT JOB (0365LH,SSK),'KIM', CLASS:A,MSGl.EVEL:(1,1), USER 6

/NJOBPARM LINES:2,T:5,R:3000

/MROUTE PRINT RMT44

/4 SETUP TAPE:2

/> MESSAGE MATEMPORARY T PE NAME:LANG01,NUM3ER:65 FOR 'KIM'

/MMESSAGE NNPERM. TAFE X01341 FOR 'MCKIBBEN' I

//GO EXEC PGM: MERRY

//STEPLIB DD UNIT:UMCDA.DSN:$0365F.LAIMS.LO?,D(MERRY), DISP:SHR .

//GO.FT45F001 DD UNIT:(TAPE , DEFER) . DISP:(NEW.P ASS), I

// VOL:(, RETAIN,SER:X01341),L ABEL2(3 SL),

// DSN: AIM.G27,

// DCB:(RECFM:VBS,LRECL:X,ELKSIZE:3320)

//GO.FT58F001 DD UNIT:(TAPE,, DEFER),DISPr(OLDsPASS),

// VOL:(, RETAIN,SER:LANG01), LABEL:(90,SL,,IN),

// DCB:(RECFM:FB,LRECL:30,BLKSIZE:6400),DSN: PDC. SCALE.X27, ,

//GO.FT17F001 DD SPACE:CTRK,(600,10),RLSE), UNIT:SYSDA,

// DCB:(RECFM:VBS.LRECL:X,BLKSIZE:1693,BUFL:2040)

//GO.FT06F001 DD SYSOUT:M

//GO.FT05F001 DD M 0$$ 45 5.3 10s 1 20$ 0 -1 1 E T I

II b

t L

58 I

//60365FT JOB (0365LH,SSK),'KIM', CLASS:A,MSGLEVEL:(1,1), USER:6

/*JC3PARM tsNES:2,T 5

/wROUTE PRINT RMT44

/* SETUP TAPE:2

/* MESSAGE xd PERMANENT TAPE NAME:X01341 FOR 'MCKIBBEN'

/dMESSAGE MXRING IN X00026 FOR 'KIM' I //G3 EXEC PCM MERRY

//STEPLIB DD UNIT:UMCDA,DSN:$0365F.LAJAXS.LOADCMERRY), DISP:SHR

//GO.FT15F001 DD UHIT:SYSDA, DISP:(NEW, DELETE),

I // SPACE:(1693,(200,203),

// ECB (RECFM:VBS,LRECL:X,BLKSIZE:1693,BUFL:2040)

//G9.FT16F001 DD UNIT:SYSDA, DISP:(NEW, DELETE),

// SPACE (1693,(40,20)),

// CCB:(RECFM:VBS.LRECL:X,BLKSIZE:1693,BUFL:2040)

//GO.FT13F001 DD UNIT:SYSDA, DISP:(NEW, DELETE), .

// SPACE:(1693,(1600,20)),

// DCD:(RECFM:VBS,LRECL:X,BLKSIZE:1693,BUFL:2040)

I. //CO.FT19F001 DD UNIT:SYSDA, DISP:(NEW DELETE),

// SPACE:(1693,(40,20)),

I // DCB:(RECFM:VBS,LRECL:X,BLKSIZE:1693,BUFL:2040)

//CO.FT45F001 DD UNIT:(TAPE,, DEFER), DISP:(OLD, PASS),

// VOL:(, RETAIN,SER:X01341), LABEL:C3,SL,,IN),

// DCB:(RECFM:VBS,LRECL:X,BLKSIZE:3520),

// DSN: AIM.G27

//GO.F723F001 DD UNII:(TAPE,, DEFER), DISP:(NEW, PASS),

// '/cL:(, RETAIN,SER:X00026), LABEL:(44,SL),

I // DCB:(RECFM:VBS,LRECL:X,BLKSIZE:3520),

// DSN:AJAX.G27

//GO.FTC6F001 DD SYSOUT:M I //GO.FT05F301 3D

  • OSS 23 45 10$ 1T 213 45 37 T I-35$

999 1001 1002 2004 3007 4009 5010 5011 6012 8016 9019 11023 13027 16023 16032 17000 19039 24000 24304 24404 I 25055 26000 26304 28304 29000 47109 49115 92234 92235 92236 92233 93237 94238 94239 94240 94241 94242 T

I I

I 59

~

m I

//$0365FT JOB (0345LH,SSK),'KIM', CLASS:A,MS3 LEVEL:(1,1), USER:6

/xJOSPARM LINES:2,T:5,R:4000

/NROUTE PRINT RMT44 I /MSETUP TAPE:2

/MMESSAGE MhPERMANENT TAPE NAME:X01341 FOR 'McKIBSEN'

/hMESSAGE MARING IN X00026 FOR 'KIM'

//GO EXEC PGM: MERRY ,

//STEPLIB DD UHIT:UMCDA.DSN:30365F.FITALL. LOA 3(MERRY), DISP:SHR '

//GO.FT04F0 01 DD UNIT:{ T APE,, DEFER), DISP:(NEW, PASS),

I // VOL:(, RETAIN,,SER:X00026), LABEL:(45,SL),

// DCB:(RECFM:VBS,LRECL:X,BLKSIZE:3520),

// DSN:NITAWL.G27

//GO.FT09F001 DD UNIT:SYSDA, SPACE:(CYL,(30,5),RLSE),

I // DCB:(D50RG:DA,RECFM:F,BLKSIZE:3520)

//GO.FT10F001 DD UdIT SYSDA SPACE:(CYL,(30,5),RLSE), .

// DCB:(DSORG:DA.RECFM:F.5LKS1ZE:3523)

I //GO.FT22F001 DD UNITr(TAPE,, DEFER), DISP:(OLD, PASS).

// VOL:(, RETAIN,,SER:X01341), LABEL:(3,SL,,1H),

// DCB:(RECFM:VBS,LRECL:X,BLKSIZE:3520),

I // DSN:B0HAMI.G27 '

//GO.FT18F001 DD UNIT:SYSDA,$ PACE:(TRK,(900,50),RLSE),

// DCB:(RECFM:VBS,LRECL:X,BLKSIZE:3520)

//GO.FT19F001 DD UNIT:SYSDA, SPACE:(TRK,(900,50),RLSE),

// DCB:(RECFM:VBS,LRECL:X,BLKSIZE:3520)

//GO.FT06F001 DD SYSOUT:M

//GO.FT05F001 DD M 0$$ 22 E 13$ 0 38 0 0 0 0 0 3 0 0 -1 0 T 2$$

999 1001 1002 2004 3007 4009 5010 5011 6012 8016 9019 11023 13027 130271 14023 16032 17000 19039 24000 24304 24404 25055 26000 26304 28304 29000 47109 49115 92234 92235 92236 ,

92238 93237 94238 94239 94240 94241 94242 3MM 92238 355.2 1 0.0254 0.407 9.2853+4 2.1288-4 1 26.98 319.86 1 235.05 145.6 1 0.0133 92235 355.2 1 0.0254 0.407 5.3+3 3.7354-3 1 26.98 ,

18.2 1 238.05 0.473 1 0.0133 92234 355.2 1 0.0254 0.407 4.89+5 4.0358-5 1 26.93 1.687+3 1 235.05 768.2 1 0.0133 T

P

~

ll 60

I

//$0365FT J03 (0355LH,5SK),'KIMr,CLAS$ A,M5CLEVElsil,!),USUt:6 .

l /dJCBPARM LINES:1,T:7.R:4000

/* ROUTE PRINT RMT44 I /MSETUP TAPE:2

/~*MESSAGE

/WNESSAGE

    • PERMAN5H7 TAPJ MAMO:X3:241 FOR 'MCKIt ihe WW PERM. TAPE XCGt26 FOR 'KGt'

[

I

//GO EXEC PGM: MERRY

//STEPLID DD UNIT:UMCDA,DSN:00 360 5.XSURMPM. LOA 9CMIRRY), C'SFttK1

//GO.FT04F001 DD UNIT:(TAPC,, DEFER),01SF:(CLP, PASS),

// VOL:(, RETAIN,,SER:XQOO261,LABlit:15 SL,,IN?,

I // DCB:(RECFM:V3S,LRECL:X,BLKSIZE:J3Fb),

// DSN:NITAWL.G27

//GO.FT08F001 DD UNIT:SY$DA,$P Cf (352th (200r20.))

//GO.FT09F001 DD UN'T'3YSCA, SPA 02 (3.502.(203,73))

I- //GO.FT10FGC1 DD UNIT:3YSDA,SPXCE'(3123,<2FGv103) .

//GO.FT16F0 01 DD ?JHIT:SYSDA,D74P:1.DO.ETC),3PsCE:(1513,(40,23 ?l <

I //30.FT17F001 SD UNIT:SYSDA, DISP:(,DELhY:.123? ACE:(1695gi40.294)

//GO.FT13Ff31 DD UNIT:SYSDA , DISP 7 T ,76L ET E), h( LCEe(16 95,< 40 + 7 07 ?

//GO.FT19F001 DD UR!T:SY3DA,015P (,LZLEfGI,s.E.lcE (165%,(43,335%

//00.FT20F0L1 DD D'JMMY I; //GO.FT03F001 DD UNIT:CTAPE,.UEFE3).DISF (ME3.PS30),

// VOL7(, RETAIN,,SER:X01341),LARELf(4.SL).

// DOC :( R EC FM:VB S , L R EC L :X , B L AS!Z E:15f 0 ) ,

// CSN XSDRNDM.G27

//CO FT06FOC1 DD SYSOUT:w

//GO.FTG5F001 DD K I XSDRHPM RUM 'TROM 27 TO 27' 189 1 3 7 1 3 3 12 4 3 1 27 10 C # 6 200 -2 0 1 E I 390 1 C 01E 400 -1 27 0 -2 E Suw 1*3 L-3 1.0 A6 1,420892 10: 95 (4.0 C T i 1333 9R1 2 2R3 1 14$$ 92234 92235 922!5 9Z231 9(I59 f4 7 46 14RFt irg t s 130271 1302T IC01 0016 o I 13wd 4.0358-3 3.7354-3 1.9359-5 2 12F4-4 f~i$ 1<tf 1-15 1-15 4.86-2 5.18-2 6,6-2 5.3"2 T

I 34**

35*w 365$

F1 T 210.0 C.0254 2I 0.0635 0,1453 3R1 2 325 393S 1 2 3 I 40S$ F3 47*d F1  ;

5133 1 23456739IS 11 i2 13 14 i} 24 x) 12 '

I 19 20 21 22 23 24 25 26 27 f

I 61 I

i

. . . . . ,o .. _ i ,,,m,

.. _ g, 62h%YIldC&MMOS T C* '

L K

k //TOU 5FY JR (6365tO 30K.)s'C W ,Ct63S:AeMSOLCVEL:(1,1), USER:6 s /*Jt,E URM (IHft:T,T:1,M M 30 b /vRC'JTE PRIK7 R.'1T44

'l /XtETCP ThPE:t IS / A.'*.C53 AGE d@ERMANENT i A? 5 MfdE:)M096 FOR NCX*BF,2H'

[

k MCO CXEC @ :MG CY

//STEPL53 % W1T:U'*t.2A,DSMet 36SF.%SDEKPJ3.LD AD(MERRY), DISP:sfR

- //GO.Ff04F0L1 50 V.MIT (TAPC,,2ETE21,FISP:tDtD, PASS),

- // VOL :( RETAIN . & S Ed:X020 96 ) , L A3Et :(1 r31. , ,1N ) ,

// DCI.MP.C/dN V35,LRECL X,BLKSIZEs35111,

// .DtN:CSM.MIT AML k //GO.FTOLOO? D3 WU $YSDA,$ PACE:(3520,c26 5,20 2 )

/fGO.F309fC01 .00 UNITr$Yi4A APACEs(352c,(190,ta)>

i"/00. f 714F0 6J 00 WIMVGO.t,7P ACEI df 20,(200,20 ))

% frCO f!16f 041 OC HMT St%A,D!S*:(,Dit.ETE)eSF ACE (1C93,(4,0,20))

NC9.F 717FH1 D3 WET:0Y5 CAM $N(,0Eit75),J P4CE:C % 93, f 4C ,20)) t

[ /c62.FTf3000! Ob VNI DSYSD ,biSPN ,CELETE),

=

i // M' ACE:(14 93 5 (4 b 2fD

__' ."M JY 1D F031 GU DEII Gy$3 A , D1'dP:( , tEL Eii) ,5 P A CE:( 16 T.3, ( 40,10 ) )

E s .r.16 M rMF031 DO Wil:3YSDA 0ISP=(,05LET/I),SP.4CEr(Itr93.(40,20))

L $ n*6C .6M 3F001 BC M'hjMCTU,MSP:GEW,C$1t0),

k' .J/ IfiCCT* TEX,(30,56),R4 deb;

// CSMJ4115F. WPX1.1.ncf.V,,0Cp tRECFM:VB5 3REcL *L BLKSIZE:3520 )

[ s */%. F Tt a c 31 DD %'f52p w g

  • 4 /C3. FTCSPH) DO n b TNat3Ptf R.UN TD MAlff Att '1557%Se FOR THE X27 LIBWA?Y

'l p l li4 2 M 43 1 0 17 M 5 1 i to d? 0' O O

{ Q \%2 -t o ! E

.'.35 1 0 4 2 E 5 (% 4 4 23 *? 56 .45 i E

f. h,. E** M 2,-0 1.0 % 1.dM4l92 4 0.B 0; $ t y

i.M MJ 2 JRJ 1144 .W' 6 Eit'/ t 8R9 13 2R11 2R12

, s.*i)A W 4 2n 3 16 2.911 g A4et T H E 8 016 10 'WO 170 00 W 39 2P060 47109 49115

=

t *J. 7 itM SG16 7 32? S223<* 9433 92236 E

g 9223% W 71t 94240 %?41 94242 iS0271 1001 8016 h M 1 027 A M /' 0 ". 5 13027 1001 tils fW.' ? tio 5Gli M027 6012 25504 b.~' -

24304 IS3M 2$035 i3027 '001 8315 4009 3007 1001 6 01 f. 8312 13027 1; n %16 1032 2 0 01 8016 140rt.

1.7327 !?11 Rot (-

.5xx C .6852-2 3- 3G26-1 1-15 !~19 1 -13 1-15 1-15 1-J5 I i.0243-2 S.291-2 3.147-2 !.015-3

+.0353-6 3.7354-4 1.f359-6 2.1203-? 1-13 1-15 1-15 1-2 4 ? . 98-2 6. 6 8-2 7.2 4<-2 3. 0 0 5-3 6. 2 37-2 3.147 -2 I  !,Oti.1-2 6.6351-2 3 3?2$-2 t, . "20 ' ~2 1-15 1-2 5 2 -15 1-i! 1-15 1-2 ", t.-! 5 1-15 1-15 3 60."D 2 3.3526-2 1.2J-i 1-15 6.52'?-2 1.1426-2 4,9-2 1.1-2 5.35-3 1.615-I 1-25 5.4332-2 3.3023-2 I b.3 6.02'*3-h 6.6852-2 3.342t.*2 16is 110t 13016 116332 1270*#3 1130!7 129003 147139 149113 213027 31391 33016 !'302/ 492234 '92235 492235 +

492228 494239 494243 494241 474242 413C271 41041 (8016 a 62 g

D A& __ ___ - _ _ . _ _ _ _ - - - - - _ _ - - - - - _ = - - - - - - - - -

513027 51001 53016 613027 71001 78016 813027 95010 95011 913027 96012 92630' 924304 928304 925055 1013027 111001 113016 124009 123007 131001 138016 146012 1413027 141001 148016 1410J2 151001 158016 .

1514028 1613027 171001 178016 T

34WM F1 T 35MW II 0.0 5.72 6.76 SI 6.93 14.85 14.98 3I 15.94 ZI 16.( 4I 16.53 2I 16.78 3I 16 88 17.36 24.25 3I 24.57 47.14 II 47.63 2I 50.17 63.34 36$$ 2R1 2 3 6R4 5 6 4R7 3R8 SR9 3R10 4R11 12 13

4R14 15 2R16 3R17 39$$ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 40$$ F1 .

51$$ 5R1 4R2 10R3 8R4 ,

T I

I I 9

,1 I

'I e

I I

63

1 I l

)

I l l

1 i

I i l

I  !

i

, . Appendix'3 I

Sample BOLD VENTURE -

Input Data for the R-Z, e-R, and 0-R-Z Geometry ,

I -

I .

i  :

a P

64 W

~

I //WS0365FU JOB (036SLH,XXX),'KIM',MSGLEVEL:(1,1), USER:6

//30365FG JOB (6365LH, J,'KIM',MSGLEVEL:(1,1)

, g /WJOBPARM T:29, LINES:48,R:4400 g /MXEQ IDLE

//M X-SECTIONS FRCM ISDTXS 'THIS IS A TEST FDR DEPIETION'

/NROUTE PRINT RMT12

//EOLDVENT PROC GOSIZE:4326K, MODULE: SCALE,

// H31:1,HB2:1,B1:3520,B2:32000,HX:2,HS:50,N1:100,

// N2:436,H3:10,N4:1,H5:192,H6:10,N7:12,N8:12,H9:109,

// N10:109,H11:165,H12:1,N13:109,H14:1,H15:10,

// N16:436

//GO EXEC PGM:8 MODULE.REGICH:&GOSIZE I

//STEPLIB DD DISP:SHR, UNIT:UMCTS,DSN:$0365F. BOLD. VENTURE. LOAD

// DD DSH:UM. FORTRAN.COMPLIB, DISP:SHR

// PRINT DD SYSOUT:A,DCB:(RECFM:VBA,LRECL:137,BLKSIZE:.1100)

//FT01F001 DD UNIT:SYSDA, SPACE:(&B1,(&MS,1)),

// DCB:(RECFM:VBS,LRECL:X,BUFHO:&HB1,3LKSIZE:&B1)

//FT02F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:M.FT01F001

//FT03F001 DD UNIT:SYSDA, SPACE:(80,(10)),DCB:(RECFM:F,BLKSIZE:30)

//FT04F001 DD UNIT:SYSDA, SPACE:(3200,(&N1,3MX)),

// DCB:(RECFM:FBS,LRECL:80,BLKSIZE:3200)

//FT05F001 DD UNIT:SYSDA, SPACE:(3120,(200,100)),

I // DCB:(RECFM:FB,BUFNO:1,LRECL:80,BLKSIZE:3120)

//FT06F001 DD SYSOUT:A,DCB:(RECFM:VBA,LRECL:137,BLKSIZE:110G)

//FTC7F001 DD SYSOUT:B,DCB:(RECFM:F,BLKSIZE:80)

//FT08F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,2)),DCB:x.FT01F001 I //FT09F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:x.FT01F001

//FT10F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS 1)),DCB:x.FT01F001

//FT11F001 DD UNIT:SYSDA SPACE:(&B1,i&N1,1HX)),0CB:x.FT01F001

//FT12F001 DD UNIT:SYSDA, SPACE:(&31,(&H1,1HX)),DCB:W.FT01F001

//FT13F001 DD UNIT:SYSDA, SPACE:(&Bl (&N1,2)),DCB:M.FT01F001

//FT14F001 DD UNIT:SYSDA, SPACE:(&B1,(&NS,1)) DCB:M.FTC1F001 I //FT15F001 DD UNIT:SYSDA, SPACE:(&B1,(&N1,1NS)),DCB:M.FT01F001

//FT16F001 DD UNIT;SYSDA,S? ACE:(&B1,(&H1,1HX)),DC3:x.FT01F001

//FT17F001 DD UNIT:SYSDA, SPACE:C&31,(&H16,1)),DCB:W.FT01F001

//FT13F001 DD UNIT:SYSDA, SPACE:(&B1,(&H16.11),DCB:4.FT01F001

//FT19F001 DD UNIT:SYSDA. SPACE:(131,(&MS,1);,DCB:W.F701F001

//FT20F001 DD UNIT:SYSDA, SPACE:(&B1,(&M13,1)),DCB:x.FT01F001

//FT21F001 DD UNIT:SYSDA,SFACE:(&B1,(&H1,2)),DCB:W.FT01F001 I //FT22F001 DD UNIT:SYSDA, SPACE:(131,(&HS,1)),DCB:W.FT01F001

//FT23F001 DD UNIT:SYSDA SPACE:(&B1,(&H3,1)),DCB:(RECFM:F0,BUFNO:8HB1)

//FT24F001 DD UNIT:SYSDA, SPACE:(&B1,(&H2,1)),DC3:(R2CFM:F3,BUFH0:3H32)

I

//FT25F001 DD UNIT:SYSDA SPACE:(&B1,(&N12,1)),DCB:(RECFM:FB,BUFNG:1NB1)

//FT26F001 DD UNIT:SYSDA, SPACE:(&B1,(&N12,1)).DCB:(RECFM:FB,CUFNO:1H31)

//FT27F001 DD UhIT:SYSDA, SPACE:(SB),(&N2,1)),DCB:(RECFM:F3,50FNO:1H32)

//FT20F001 D3 UHIT:SYSDA, SPACE:(851,(&H2,1)),DCB:(RECFM:FB,BUFMO::H32)

//FT29F001 DD UNIT:SYSDA, SPACE:(131,(&N14,1)),DCD:(RECFM:FB,5UFNO:&NS2)

//FT!0F001 DD UNIT:SYSDA, SPACE:(&31,(&N1,2)),DCB:V.FT01F001

//FTIIF031 DD UNIT:SYSDA, SPACE:(Otl,(&N1,8HX)),PC3:a.FT01F001 I //FT32F001 DD UNIT:SYSDA, SPACE:(131,t&N1,2)),DC3:*.FT01F001

//FT33F0 01 DD UNIT:SYSDA,SIACE:( 331,( OiM ,1)),DCO:d . FT01F0 01

//FT34F001 DD UNIT:SYSDA,5 PACE:(&L1 (;P1,0MX)),DCB:4.FT01F001 I //FT33F001 DD LNIT:SYSDA, SPACE (&B1,(;N1,2)),DC2:*.FT01F001

//FT36F001 DD UNIT:SYSDA, SPACE:(131,(&G6 2)),DC;:w.FTG1F001 es ll

~

I

//FT37F001 DD UNIT:SYSDA, SPACE:(&DI,(&N15,2)),DCB:x.FT01F001

//FT38F001 DD !JHIT:SYSDA,SP ACE:(&B1,(&H15,2)),DCB:M.FT01F001

//FT39F001 DD UNIT:SYSDA, SPACE:(&B1,(&N15,2)),DCL:x.FT01F001

//FT40FJ01 DD 'JNIT:SYSD A,SP ACE:(&B2,(&H5,1)),DCB:(RECFM:FB,BUFNO:3H32)

//FT41F001 DD UNIT:SYSDA SPACE:(&B1,(&N4,1)),DCB:x.FT01F001

//FT42F001 DD UNIT:SYSDA,SPACC:(&B2,(&N7,1)),

// DCB:(REOFN:VBS,LRECL:X,BUFHO:8HB2 BLKSIZE:&B2)

//FT43F001 DD UNIT:SYSDA, SPACE:(&E2,(&H8,1)),DCB:W.FT42F001

//FT44F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:x.FT01F001

//FT45F001 LD UNIT:SYSDA. SPACE:(&B1,(&H9,1)),DCB:M.FT01F001

//FT46F001 DD UMIT:SYSDA, SPACE:(%B1,(&H10,1)),DCB:M.FT01F001

//FT47F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:x.FTC1F001

//FT48F001 DD UNIT:5YSDA, SPACE:(&B1,(&N1,2)),DC3:w.FT01F001

//FT49F001 DD UNIT:SYSDA, SPACE:(&B1,(&N11,1)),DCB:M.FT01F001

//FT50F001 DD UNIT:SYSDA, SPACE:(&B1,(&N1,2)),DCB:x.FT01F0,01

//FT51F001 DD UNIT:SYSDA,$ PACE:(AB1,C&NS,1)),DCB:w.FT01F001 I //FT52F001

//FT53F001

//FT54F001 DD DD DD UNIT:SYSDA,$ PACE:(&B1,(&HS,1)),DC3:x.FT01F001 UNIT:$YSDA, SPACE:(&B1,(&HS,1)),DC3:x.FT01F001 UNIT:SYSDA, SPACE:(&B1,(SN1,2)),DCB:4.FT01F001

//FT55F001 DD UNIT:SYSDA, SPACER (&B1,(&HS,1)),DCB:M.FT01F001

//FT56F001 DD UN1T:SYSDA,$ PACE:(131,(&HS,1)),DCB:*.FT01F001

//FT70F001 DD UNIT:SYSDA,$ PACE:(AB1,(&H4,1)),DC3:h.FTQ1F001

//FT71F001 DD UNIT:SYSDA SFACE:(&B1,(&H1,&HX)),DCS:W.FT01F001 I //FT72F001

//FT73F001

//FT74F001 DD DD DD UNIT:SYSDA, UNIT:SYSDA.

UNIT:SYSDA, SPACE:(&D1,(&H1,2)),DCB:x.FT01F001 SPACE:(&B1,(&H4,1)),DCB:x.FT01F001 SPACE:(&B1,(&H1,3HX)),DCB:M.FT01F001

//FT75F001 DD UNIT:SYSDA, SPACE:(&B1.C&H1.2)),DCB:x.FT01F001

//FT76F001 DD UNIT:SYSDA SPACE:(&B1,(SN6,2)),DCB:*.FT01F601

//FT77F001 DD UNIT:SYSDA,$ PACE:(&B1,(&H15,2)),DCB:x.FT01F001 I //FT78F001

//FT79F001

//FT80F001 DD DD DD UNIT:SYSDA, SPACE:(&B1,(&H15,2)),DC3:h.FT01F001 UNIT SYSDA, SPACE:(&B1,(&H15,2)) DCB:M.FT01F001 UNIT:SYSDA, SPACE:(&D2,(&H5,1)),DCB:(RECFM:FS,BUFhD:SN32)

//FT81F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,4HX)),DCB:x.FT01F001 I //FT82F001

//FT83F001 DD DD UNIT:SYSDA SPACE:(&31,(&N1,2)),DCB:w.FT01F001 UNIT:SYSDA, SPACE:(201,C&H4,1)),DCB:w.FT01F001

//FT84F001 DD UNIT:SYSDA. SPACE:(&B1,(&H1,3HX)),DC3:x.FT01F001

//FT85F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,2)),DCB:M.FT01F001

//F186F001 DD UNIT:SYSDA, SPACE:(&B1,(&Ho,2)),DC3:*,FT01F001

// F T37 F 0 01 DD UNIT:SYS D A , S P A C E:( & B 1, ( & H15,2 ) ) , DCB:w . FT 01 F0 01 I //FT88F001 DD UNIT:SYSDA, SPACE:(AB1,(&H15,2)),DCO:x.FT01F001

//FT89F001 DD UNIT:SYSDA,$ PACE:(&B1,(&H15,2)),0CB:W.FT01F001

//FT90F001 DD UNIT:SYSDA, SPACE:Ca32,(&H5,1)),DCB:(RECFM:F3,3UFHD:8HS2)

//FT91F001 DD UNIT SYSDA, SPACE:(&B1,(&H1,3NX)),0CB:W.FT01F001 I //FT92F001

//FT93F001

//FT94F001 DD DD DD UNIT:SYSDA, SPACE:(&B1,(SN1,2)),DCO:M.FT01F001 UNIT:SYSDA, SPACE:(&D1,(&H4,1)),DCB:x.FT01F001 UNIT:SYSDA, SPACE:(&B1,C&H1,1HX)),DCB:w.FT01F001

//FT95F001 DD UNIT:SYSDA, SPACE:(131,(&H1,2)),DCBix.FT01F001 l //FT96F001 DD UNIT:SYSDA, SPACE:(331,(1HS,1)),DCB:W.FT01F301

//FT97F001 DD UNIT:5YSCA,5?AC2:(&51,(&HS,1)),DC3:x.FT01F301

//FT93F001 DD UNIT:SYSCA, SPACE:(&B1,(&HS,1)),DC3:1.FT01.2001

//FT99F001 DD SYSOUT:A.DC3:(RECFM:VBA,LRECL:137,BLKSIZE:1100)

// PEND .

//BURH EXEC BDLDVENT,

' // N31:1,N32:1,B1:3520,B2:32000,H1:100,H2:436, es ll

~-

I

// N3:10,H4:1,N5:192,H6:10,H7:12,N8:12,H9:109,

// N10:109,H11:165,H12:1,N13:109,N14:1,N15:10,

// h16:436,GOSIZE:4326K I //FT11F001 DD UNIT:UT1 CTS, DISP:SHP.,

// DSN:$0365F.GP.UPXS. FINAL

//MFT15F001 DD UNIT:UMCTS, DISP:(NEW,CATLG),

//M DSH:$0355F.0ZARK.RTf1 ARCH, SPACE:(TRK,(10,10),RLSE)>

//d DCB:(RCCFM VSS,LRECL:X,BLKSIZE:3520)

//XFT12?001 DD UNIT:UMCTS, DISP:(OLD, PASS),

g //M DSN:00365F.RTMARCH g //UG.SYSIN DD X

CCHTROL1 R-Z MURR K CALCULATICH 360 DEG C.R. AT 26 3GP X-SECT I 999999 2 6 1 2 7 2 1 2 1 1

9 3 2 12 7 9 3 13 7 9, 1

3 2 12 7 9 3 13 7 9 3 2 12 7 9 3 13 7 9 3 2 12 7 9 3 13 7 9 3 0 GRUPXS END DCRSPR I END INPUT PROCESSOR O

CV RODSET 1D

$NCRN NFRH NCR NERT HSRPS NCYD HSE HOE ISV MRH MRl HSl; Il0 4 2 1 12 5 1 0 0 0 0 0 0 0 SR I 2D $HHR HHF ACR ADF$

WB10C W WB11C MH15 W N016E d M WC12A M WAL7 W I 4.5982-3 1.8649-2 0,6614-2 3.6-2 6.6852-2 3.3426-2 30 $SRZ$

9 42 43 44 45 46 47 48 49 50 51 0 I 4D $FEH NOP Ji$

0,0 0 0 105t

. SD $IF MGP IS 0 THEN HZI IS THE LAST Z3'IE IS SET J$

l 47

= 4D C.25 1 0 1GR 5p +1 I 4D 3.5 SD +1 4 D 0. 7,5 1

1 0 ICR 0 10R j

SD +1 4D 1. 1 0 10R ,

SD +0 STOP I END CVENTR 301 0.0 0.5 +07 1.C 1.0 0.000005 0 . 0 C f,0 05 0 0 0 0 0 0 0 0 I

1 1 1 0 C 0 0 0 0 0 2 2 67

42 51 2 23 1.0 0

013 27 27 H1A 016A All H1B 016B AL2 U234 U235 U236 U238 AL3 H1C 016C AL4 HID 016D PU239 PU240 PU241 PU242 XE135 PM143 PM147 PM148M SM149 SSFP HSFP 24 AL5 H1E 016E BE9 HIG 016G C12B AL9 H1H 016H H1I 016I Allo HIJ 016J AL6 B10C B11C AL7 AL8 HIF 016F C12A LI6 020 I 1 1 H1A 2 2 6.6852 -2016A 3.3426 -2 All 6.0243 -2 11 HIB 6.297 -2016B 3.147 -2AL2 3.005 -3 4 4 U234 5.191 -6U235 4.8050 -4U236 2.466 -60238 2.739 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM143 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 HIC 3.7049 -2016C 1.8525 -2 5 5 AL4 3.005 -3HID 6.297 -2016D 3.147 -2 6 6 ALS 6.0243 -2 7 7 HIE 6.6852 -2016E 3.3426 -2 8 8 AL6 6.0243 -2 I 9 9 B10C 4.5982 -3B11C 1.8649 -2AL7 3.60 -2C12A 0.66 -2 10 10 ALS 6.0243 -2 11 11 HIF 6.685 -2016F 3.34 -2 12 12 BE9 1.236 -1LI6 1.31 -6 13 13 HIG -2016G 3.3426 6.6352 -2 14 14 C12B 4.9 -2AL9 1.3 -2H1H 3.35 -3016H 1.675 -3 15 15 H1I 6.63 -20161 3.34 -2 16 16 I AL10 6.0243 l'i 17 HIJ 6.535

-2

-2016J 3.34 -2 la 13-H1A 6.685 -2016A 3.34 -2 68

~

I 003 7 1 2 2 2 4 11 0.0 0.0 0.08406 0.2 9 42 43 44 45 46 47 48 49 50 51 004 R-Z GECMETRY MESH 4 5.715 1 1.041 1 .1741 1 .3302 1 .3302 8 2.6416 1 .3302 11 3.6322 1 .3302 1 .3302 1 .1311 1 .96 2 .483 1 .0963 3 .255 1 .0963 2 .488 4 6.884 1 .316 4 22.58 1 .478 2 2.54 4 13.176 1 20.0 1 4.445 2 8.89 1 1.905 2 5.710 2 5.710 1 3.83 1 3.518 1 3.132 6 18.74 8 20.32 1 1.905 1 1.905 2 6.985 1 4.445 1 2.54 3 20.0 005 1 2 18 18 18 18 18 18 18 18 18 6 7 9 9 9 11 11 13 13 15 15 17 1 2 18 18 18 18 18 18 18 18 18 6 7 9 9 9 11 12 11 14 15 16 17 1 2 3 19 19 19 19 19 19 19 5 6 7 9 9 9 11 12 13 14 15 16 17 1 2 3 20 20 20 20 20 20 20 5 6 7 42 42 42 11 12 13 14 15 16 17 1 2 3 4 24 27 30 33 36 39 5 6 7 43 43 43 11 12 13 14 15 16 17 1 2 3 4 24 27 30 33 36 39 5 6 7 44 44 44 11 12 13 14 15 16 17 I 1 1

1 2

2 2

3 3

3 4 24 27 30 33 36 39 5 6 7 4 24 27 30 33 36 39 5 6 7 4 24 27 30 33 36 39 5 6 7 45 46 47 45 45 46 46 47 47 11 11 11 12 12 12 13 13 13 14 14 14 15 15 15 16 16 16 17 17 17 1 2 3 22 25 28 31 34 37 40 5 6 7 48 48 48 11 12 13 14 15 16 17 1 2 3 23 26 29 32 35 38 41 5 6 7 49 49 49 11 12 13 14 15 16 17 1 2 3 20 20 20 20 20 20 20 5 6 7 50 50 50 11 12 13 21 15 16 17 1 2 3 19 19 19 19 19 19 19 5 6 7 51 51 51 11 12 13 21 15 16 17 1 2 3 19 19 19 19 19 19 19 5 6 7 7 7 7 7 12 13 21 15 16 17 1 2 18 18 18 18 18 18 18 18 18 6 7 7 7 7 7 12 13 21 15 16 17 1 2 18 18 18 18 18 18 18 18 18 6 7 7 7 7 7 12 13 13 15 16 17 1 2 18 la 18 18 18 18 18 18 18 6 7 7 7 7 7 11 13 13 15 16 17 012 0

1 1 1 1 1.0 2 2 1 2 1.0 3 3 1 3 1.0 4 4 1 4 1.0 5 5 1 5 1.0 6 6 2 6 1.0 7 7 2 7 1.0 8 8 2 8 1.0 9 9- 2 9 1.0 10 10 2 10 1.0 11 11 2 11 1.0 12 12 2 12 1.0 13 13 2 13 1.0 14 14 2 14 1.0 15 15 2 15 1.0 16 16 2 16 1.0 17 17 2 17 1.0 18 18 1 18 1.0 19 19 1 19 1.0 20 20 1 20 1.0 21 21 2 21 1.0 22 41 1 22 1.0 ll ee

m l

\

1 l

19 19 H1C 5.971 -2016C 2.985 -2AL3 5.98 -3 20 20 I H1C 21 21 3.748 C12B 4.404

-2016C 1.874

-2AL9 1.4669

-2ALI

-2HIH 2.60 4.847

-2

-3016H 2.423 -3 22 41 U234 5.191 -6U235 4.8050 -4U236 2.466 -6U238 2.739 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 42 51 B10C 4.5982 -3B11C 1.8649 -2AL7 3.60 -2C1RA 0.66 -2 END DUTLIN RRTINS 0 1 0 48 0.5 +7 1 1 0 2 2 7 BLANK END INPUT PROCESSOR OV FPRINT 1D2001 2D MPWDINTM 000

.2D MFISSORM 00 0 STOP END DUTLIN EXPINS 0 51 0 40 32.5 0.0 ll I 0.0000 0 3 1 1 0 0 0 1 1 0 0 0 BLANK I END INPUT PROCESSOR OV EXPOSE l

l 1D / FILE REFERENCE INFORMATICH l 0190 10 3550 00 12 0 43 0 6R 2D / TITLE AND NUCLIDE NA;1ES M DEPLETION MODULE TEST WITH 8 HEAVY METALS + 7 FP'S M hU234 x WU235 M MU236 w kU238

  • WPU239 d WPU240 W WPU241 M XPU242 N 70 i

m-> -

MXE135 M MPM147 M MPM148 M MPM148f1M MSM149 M MHSFP M MSSFP M MB10C M MB11C M MBE9 M MLI6 x 3D / REFERENCE DATA 0.0 /

257 9 10 13 14 15 /

7 9 10 11 12 4D / DECAY DATA 1.495-09 2.118-05 8.378-09 1.488-06 1.943-07 SD / FISSION PRODUCT YIELD DATA 0.0641 0.072 0.065 0.027 0.027 0.027 0.013 0.013 0.013 1.5466 1.5466 1.5011 0.0134 3R ,

6D / CHAIN DATA FOR MATRIX EXPONENTIAL 122 232 451 562 672 782 11 13 2 13 14 2 10 11 100002 10 12 900002 16 17 2 18 19 3 8D / BASIC DATA 4252627280 /

122230 /

90 /

I 10 10 15 900002 100002 2 14 0 12 2 13 0 /

11 2 -13 0 /

/

I 16 18 STOP 2 17 0 3 19 0

/

0 /

END DUTLIH RODIHS 0 6 0 24 3 1 1 BLANK END DJTLIN RODINS 0 6 0 24 3 2 1

'3 LANK END DUTLIN RODINS 0 6 0 24 3 3 1 BLANK

" END DUTLIN RODIHS 0 6 0 24 3 4 1 BLANK END 71 l

n, I

//w//w$0365FR JOB (6365LH, , 'KIM',MSGLEVEL:(1,1)

//MWJOBPARM T:56, LINES:30,R:4400

//MwXEQ IDLE

//$0365FZ JOB (0365LH, .),'KIM',MSGLEVEL:(1,1), USER:6

/MJOBPARM T:3, LINES:6,R:4400

/MROUTE PRINT RMT44

//BDLDVENT PROC GOSIZE:4326K, MODULE: SCALE,

// HB1:1,HB2:1,B1:3520,32:32000,NX:2,HS:50,N1:100,

// H2:436,H3:10,H4:1,H5:192,N6:10,H7:12,NS:12,N9:109,

// N10:109,H11:165,H12:1,H13:109,H14:1,H15:10,

// N16:436

//GO EXEC PGM:& MODULE, REGION:8GOSIZE

//STEPLIB DD DISP:SHR, UNIT:UMCTS,DSH:$0365F.30LD. VENTURE. LOAD

// DD DSN:UM. FORTRAN.COMPLIB, DISP:SHR

// PRINT DD SYSOUT:A,DCB:(RECFM:VBA,LRECL:137,BLKSIZE:.1100)

//FT01F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),

// DCB:(RECFM:VBS,LRECL:X,BUFNO:1HB1,BLKSIZE:131)

//FT02F001 DD UNIT:SYSDA, SPACE =r831,C&NS,1)),DCB:M.FT01F001

//FT03F001 DD UNIT:SYSDA, SPACE:(80,(10)),DCB:(RECFM:F,BLKSIZE 30)

//FT04F001 DD UNIT SYSDA, SPACE:(3200,'C&H1,8HX)),

// DCB:(RECFM:FBS,LRECL:80,BLKSIZE:3200)

//FT05F001 DD UNIT:SYSDA, SPACE:(3120,(200,100)),

// DCB:(RECFM:FB,BUFHO:1,LRECL:30,BLKSIZE:3120>

//FT06F001 DD SYSOUT:A,DCB:(RECFM:VBA,LRECL:137,BLKSIZE:1100)

//FT07F001 DD SYSOUT:B,DCB:(RECFM:F,BLKSIZE:80)

//FT03F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,2)),DCB:x.FT01F001

//FT09F001 DD UNIT:SYSDA SPACE:(&B1,(&HS,1)),DCB:w.FT01F001

//FT10F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:W.FT01F001

//FT11F001 DD UNIT:SYSDA, SPACE:(SB1,(&H1,&HX)),DCB:M.FT01F001

//FT12F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,&HX)),DCB:4.FT01F001

//FT13F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,2)),DCB:M.FT01F001

//FT14F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:x.FT01F001

//FT15F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DC3:M.FT01F001

//FT16F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,8HX)),DCB:x.FT01F001

//FT17F001 DD UNIT:SYSDA, SPACE:(&B1,(&H16,1)),DCB:W.FT01F001

//FT18F001 DD UNIT:SYSDA, SPACE:(&B1,(&H16,1)),DCB:x.FT01F001

//FT19F001 DD UNIT:SYSDA, SPACE:(&B1,(SHS,1)),DCB:W.FT01F001

//FT20F001 DD UNIT:SYSDA, SPACE:(&B1,(&H13,1)),DCB:M.FT01F001

//FT21F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,2)),DCB:N.FT01F001

//FT22F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:d.FT01F001

//FT23F001 DD UNIT:SYSDA, SPACE:(&B1,(&N3,1)),DCB:(RECFM:FB,SUFNO:3HB1)

//FT24F001 DD UNIT:SYSDA, SPACE:(&B1,(&H2,1)),DCB:(RECFM:FB,BUFNO:SHB2)

//FT25F001 DD UNIT:SYSDA, SPACE:(&B1,(&H12,1)),DCB:(RECFM:FB,3UFH0:3H31)

//FT26F001 DD UNIT:SYSDA, SPACE:C&B1,(&N12,1)),DCB:(RECFM:F3,DUFNO:3H31)

//FT27F001 DD UNIT:SYSDA, SPACE:(&B1,(&H2,1)),DCB:(RECFM:FB,BUFNO:aHB2)

//FT28F001 DD UNIT:SYSDA, SPACE:(&B1,(&H2,1)),DC3:(RECFM:FB,BUFH0:3NB2)

I //FT29F001 DD UNIT:SYSDA, SPACE:(&B1,(&H14,1)),DC3:(RECFM:FB,BUFMO:3N32)

//FT30F001

//FT31F001 DD DD UNIT:SYSDA, UNIT:SYSDA, SPACE:(&B1,(1H1,2)),0C3:x.FT01F001 SPACE:(&31,(IN1,&NX)),DCB:x.FT01F001

//FT32F001 DD UNIT:SYSDA, SPACE:(&B1,(&N1,2)),DC3:M.FT01F001

//FT33F001 DD UNIT:SYSDA, SPACE:(&31,(&N4,1)),0C3:M.FT01F001

//FT34F001 DD UNIT:SYSDA, SPACE:(&B1,(SN1,&NX)),DCB:W.FT01F001

//FT35F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,2)),DC3:W.FT01F001

//FT36F001 DD UNIT:SYSDA, SPACE:(&31,(&H6,2)),DC3:M.FT01.001 72

//FT37F001 DD UNIT:SYSDA, SPACE:(&B1,(&H15,2)),DCB:x.FT01F001

//FT33F001 DD UNIT:SYSDA, SPACE:(IB1,(&N15,2)),DC3:x.FT01F001

//FT39F001 DD UNIT:SYSDA, SPACE:(&B1,(&H15,2)),DOB:x.FT01F001

//FT40F001 DD UNIT:SYSDA, SPACE:(&B2,(SN5,1)),DCB:(RECFM:FB,BUFNO:aHB2)

//FT41F001 DD UNIT:SYSDA, SPACE:(&B1,(&F4,1)),DCB:x.FT01F001

//FT42F001 DD UNIT:SYSDA, SPACE:(SB2,(&H7,1)),

// DCB:(RECFM:VBS LRECL:X,BUFNO:8HB2,BLKSIZE:&B2)

//FT43F001 DD UNIT:SYSDA, SPACE:(&B2,(&NS,1)),DCB:x-FT42F001

//FT44F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:x.FT01F001

//FT45F001 DD UNIT:SYSDA, SPACE:(&B1,(&H9,1)),DCB:x.FT01F001

//FT46F001 DD UNIT:SYSDA, SPACE:(&B1,(&H10,1)),DCB:x.FT01F001

//FT47F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:x.FT01F001

//FT48F001 DD UNIT:SYSDA, SPACE:(&B1,C&H1,2)),DCB:x.FT01F001

//FT49F001 DD UNIT:SYSDA, SPACE:(&B1,(&H11,1)),DCB:x.FT01F001

//FT50F001 DD UNIT:SYSDA, SPACE:(SB1,(&N1,2)),DCB:x.FT01Ft01

//FT51F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:x.FT01F001

//FT52F001 DD UNIT:SYSDA, SPACE:(&B1,(&NS,1)),DCB:x.FT01F001

//FT53F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:x.FT01F001

//FT54F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,2)),DCB:x.FT01F001

//FT55F001 DD UNIT:SYSDA, SPACE:(&B1,C&NS,1)),DCB:x.FT01F001

//FT56F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)) DCB:x.FT01F001

//FT96F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:x.FT01F001

//FT97F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:M.FT01F001

//FT98F001 DD UNIT:SYSDA, SPACE:C&B1,(&HS,1)),DCB:x.FT01F001

//FT99F001 DD SYSOUT:A DCB:(RECFM:VBA,LRECL:137,BLKSIZE:1100)

// PEND

//BURH EXEC BOLDVENT,

// HB1:1,NB2:1,B1:3520,B2:32000,H1:100,H2:436,

// N3:10,H4:1,N5:192,H6:10,H7:12,N3:12,H9:109,

// N10:109,N11:165,H12:1,H13:109,N14:1,H15:10,

// N16:436,GOSIZE:4326K

//GO.FT11F001 DD UNIT:UMCTS, DISP:SHR,

// DSH:$0365F.GRUPXS. FINAL

//GO.SYSIH DD x

CONTROL 1 THETA-R CASE ' FRESH 1270 + DEPLETED (1600) 775',180 DEGREE 999999 1 1 2 6 2 7 2 1 13 0 GRUPXS END DCRSPR 0

END DVENTR 001 0.00 1.0 +07 0.0 0.003200 0.000005 0.000005 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 003 3 3 3 1 2 1 1 1 0 0 2.2635 -3

( ll 004 THETA-R GEOMETRY MESH 73

us l

ll 2 .2618 2 .2618 2 .2618 2 .2618 2 .2618 2 .2618 2 .2618 2 .2618 2 .2618 2 .2618 2 .2618 2 .2618 4 5.715 1 1.041 1 .1741 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .1311 1 .96 2 .488 1 .0963 3 .255 1 .0963 2 .488 4 6.884 1 .316 4 22.58- 1 .478 2 2.54 4 13.176 005 289289289289289289289289289289289289 290290290290290290290290290290290290 291291291291291291291291291291291291 1 2 3 73 74 75145146147217218219 .

4 5 6 76 77 78148149150220221222 I 7 8 9 79 80 81151152153223224225 10 11 12 82 83 84154155156226227228 13 14 15 85 86 87157158159229230231 16 17 18 88 89 90160161162232233234 19 20 21 91 92 93163164165235236237 22 23 24 94 95 96166167168238239240 25 26 27 97 98 99169170171241242243 28 29 30100101102172173174244245246 31 32 33103104105175176177247248249 34 35 36106107108178179180250251252 37 38 39109110111181182183253254255 40 41 42112113114184185186256257258 43 44 45115116117187188189259260261 46 47 48118119120190191192262263264 49 50 51121122123193194195265266267 52 53 54124125126196197198268269270 55 56 57127128129199200201271272273 58 59 60130131132202203204274275276 61 62 63133134135205206207277278279 64 65 66136137138208209210280281282 67 68 69139140141211212213283284285 70 71 72142143144214215216286287288 292292292292292292292?92292292292292 293293293293293293293293293293293293 294294294294294294294294294294294294 295295295295295295295295295295295295 296296296296296296296296296296296296 297297297297297297297297297297297297 298298298298298298298298298298298298 299299299299299299299299299299299299 300300300300300300300300300300300300 301301301301301301301301301301301301 302302302302302302302302302302302302 303303303303303303303303303303303303 304304304304304304304304304304304304 012 0

1144 1 1 1.0 74

~

I 145288 1 2 1.0 239287 1 3 1.0 290290 1 4 1.0 291291 1 5 1.0 292292 1 6 1.0 293293 2 7 1.0 294294 2 S 1.0 295295 2 9 1.0 296296 2 10 1.0 297297 2 11 1.0 2?8298 2 12 1.0 299299 2 13 1.0 300300 2 14 1.0 301301 2 15 1.0 302302 2 16 1.0 ,

303303 2 17 1.0 304304 2 18 1.0 0

013 29 29 H1A 016A All -H1B 016B AL2 U234 U235 U236 U238 AL3 hic 016C AL4 HID 016D PU239 PU240 PU241 PU242 XE135 PM148 PM147 PM148M SM149 SSFP HSFP B10A BilA 24 ALS HIE 016E BE9 HIG 0160 C12B AL9 H1H 016H H11 016I AL10 HIJ 016J AL6 B10C B11C AL7 AL8 HIF 016F C12A LI6' 020 1 3 U234 2.8077 -6U235 2.5994 -4U236 1.2941 -60238 1.4866 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2B10A 7.8452 -6B11A 3.1870 -5 4 6 U234 3.5642 -6U235 3.2975 -4U236 1.6430 -6U238 1. 0 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 7.9649 -6311A 3.2356 -5 7 9 U234 4.3188 -6U235 3.9975 -4U236 1.9913 -6U238 2.2063 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2310A 7.8949 -6311A 3.2071 -5 10 12 U234 6.0G38 -6U235 5.6360 -40236 2.8080 -6U238 3.2233 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 75

7 hic 3.7049 -2016C 1.8525 -2B10A 7.8307 -6B11A 3.1810 -5 13 15 U234 7.1264 -6U235 6.5955 -4U236 3.2866 -6U238 3.7720 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2B10A 7.8541 -6B11A 3.1906 -5 16 18 U234 8.6379 -6U235 7.9952 -4U236 3.9833 -6U238 4.5728 -5 PU239 1.0 -15PU240 1.0~ -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 ,

19 21 U234 9.8048 -6U235 9.0756 -4U236 4.5216 -6U238 5.1908 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1G 3.7049 -2016C 1.8525 -2 22 24 U234 9.8765 -6U235 9.1416 -4U236 4.5550 -6U238 5.2284 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 25 27 U234 9.9444 -6U235 9.2044 -4U236 4.5860 -6U238 5.2643 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 28 30 U234 10.007 -6U235 9.2630 -4U236 4.6151 -6U238 5.2978 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2 l 31 33 i U234 10.067 -6U235 9.3172 -40236 4.6409 -6U238 5.3294 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 34 36 U234 10.123 -6U235 9.369) -4U236 4.6681 -6U238 5.3589 -5 PU239 1.0 -15PU243 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15?M148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15SSF? 1.0 -15AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2 37 39 U234 10.175 -6U235 9.4182 -4U236 4.6920 -6U238 5.3865 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 76

XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2

! H1C 3.7049 -2016C 1.8525 -2

[

)

I 4.0 42 U234 10.228 PU239 1.0

-6U235 9 A670

-15PU240 1.0

-4U236 4.7162

-15PU241 1.0

-6U238 5.4146

-15PU242 1.0

-5

-15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 43 45 U234 10.273 -6U235 9.5094 -4U236 4.7372 -6U238 5.3652 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15Pfl148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 .

46 48 I U234 10.316 PU239 1.0 XE135 1.0

-6U235 9.5487

-15PU240 1.0

-15 Pt1148 1.0

-4U236 4.7575

-15PU241 1.0

-15Pf1147 1.0

-6U238 5.4611

-15PU242 1.0

-15PM148M 1.0

-5

-15

-15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 49 51 U234 10.359 -6U235 9.5878 -4U236 4.7768 -6U238 5.4831 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP. 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 52 54 U234 10.397 -6U235 9.6240 -4U236 4.7947 -6U238 5.5043 -5 Pd239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 55 57 U234 10.436 -6U235 9.6589 -4U236 4.8122 -6U238 5.5243 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15P!1148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 58 60 U234 9.9310 -6U235 9.1916 -4U236 4.5798 -6U238 5.2570 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15Pt1148M 1.0 -15 I SM149 Hic 61 63 1.0 3.7049

-15SSFP

-2016C 1.0 1.8525

-15NSFP

-2 1.0 -15AL3 2.5643 -2 U234 S.6334 -6U235 7.9909 -4U236 3.9814 -6U238 e.5704 -5 PU239 1.0 -15?U240 1.0 -15PU241 1.0 -15PU242 ' .0 -15 XE135 1.0 -15PM148 1.0 -15P;1147 1.0 -15 P 1143M 1. 0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 hic 3.7049 -2016C 1.0525 -2310A 7.8726 -6311A 3.*901 -5 64 66 j U234 7.2406 -6U235 6.5939 -4U236 3.3302 -6U233 3.8303 -5 '

77

PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M'1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 7.8857 -6B11A 3.2034 -5 67 69 U234 5.7422 -6U235 5.3146 -4U236 2.6478 -6U238 3.0396 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 7.8982 -6311A 3.2085 -5 70 72 U234 4.3177 -6U235 3.9954 -4U236 1.9906 -6U238 2.2850 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PUZ42 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2310A 7.8627 -6B11A 3.1941 -5 73 75 U234 2.8077 -6U235 2.5994 -4U236 1.2941 -6U238 1.4866 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 7.8452 -6B11A 3.1870 -5 76 78 U234 3.5642 -6U235 3.2975 -4U236 1.6430 -6U238 1.8860 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15 S S FP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2B10A 7.9649 -6811A 3.2356 -5 79 81 U234 4.3188 -6U235 3.9975 -4U236 1.9913 -6U238 2.2863 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2B10A 7.8949 -6B11A 3.2071 -5 82 84 l U234 6.0888 -6U235 5.6360 -4U236 2.8030 -6U238 3.2233 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2310A 7.8307 -6B11A 3.1813 -5 85 87 U234 7.1264 -60235 6.5955 -4U236 3.2866 -60238 3.7720 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 I XE135 1.0 SM149 1.0

-13PM148 1.0

-15SSFP 1.0

-15PM147 1.0

-15HSFP 1.0

-15PM148M 1.0

-15AL3 2.5643

-15

-2 H1C 3.7049 -20160 1.8525 -2B10A 7.8541 -6311A 3.1906 -5 I ll 78 i

I 88 90 U234 8.6379 -6U235 7.9952 -4U236 3.9333 -6U238 4.5728 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 I XE135 SM149 H1C 1.0 1.0 3.7049

-15PM148 1.0

-15SSFP

-2016C 1.0 1.8525

-15PM147 1.0

-15NSFP

-2 1.0

-15PM148M 1.0

-15AL3 2.5643

-15

-2 91 Q3 I U234 9.8048 PU239 1.0

-6U235 9.0756

-15PU240 1.0

-4U236 4.5216

-15PU241 1.0

-6U238 5.1908

-15PU242 1.0

-5

-15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15?M148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2 94 96 I U234 9.8765 PU239 1.0 XE135 1.0

-60235 9.1416

-15PU240 1.0

-15PM148 1.0

-4U236 4.5550

-15PU241 1.0

-15PM147 1.0

-6U238 5.2284

-15PU2,42 1.0

-15PM148M 1.0

-5

-15

-15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2 97 99 U234 9.9444 -6U235 9.2044 -4U236 4.5860 -6U238 5.2643 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM14BM 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 100102 U234 10.007 -6U235 9.2630 -4U236 4.6151 -6U238 5.2978 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 103105 U234 10.067 -60235 9.3172 -4U236 4.6409 -6U238 5.3294 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M l'.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C t.7049 -2016C 1.8525 -2 106108 U234 10.123 -6U235 9.3699 -4U236 4.6681 -6U238 5.3589 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 109111 U234 10.175 -6U235 9.4182 -4U236 4.6920 -6U238 5.3865 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 112114 U234 10.228 -6U235 9.4670 -4U236 4.7162 -6U238 5.4146 -5 PU239 1.0 -15PU240 1.0 -15PUC41 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM1.48M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 79

115117 U234 10.273 -6U235 9.5094 -4U236 4.7372 -6U238 5.3652 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 I XE135 1.0 SM149 H1C 1.0 3.7049

-15PM148 1.0

-15SSFP

-2016C 1.0 1.8525

-15PM147 1.0

-15MSFP

-2 1.0

-15PM148M 1.0

-15AL3 2.5643

-15

-2 118120 U234 10.316 -6U235 9.5487 -4U236 4.7575 -6U238 5.4611 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 121123 U234 10.359 -6U235 9.5878 -4U236 4.7768 -6U238 5.4831 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU2,42 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 124126 U234 10.397 -6U235 9.6240 -4U236 4.7947 -6U238 5.5043 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 127129 U234 10.436 -6U235 9.6589 -4U236 4.8122 -6U238 5.5243 -5 I PU239 XE135 SM149 1.0 1.0 1.0

-15PU240 1.0

-15PM148 1.0

-15SSFP 1.0

-15PU241 1.0

-15PM147 1.0

-15HSFP 1.0

-15PU242 1.0

-15PM14SM 1.0

-15AL3 2.5643

-15

-15

-2 hic 3.7049 -2016C 1.8525 -2 130132 U234 9.9310 -60235 9.1916 -4U233 4.5798 -6U238 5.2570 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 I XE135 1.0 SM149 H1C 1.0 3.7049

-15PM148 1.0

-15SSFP

-2016C 1.0 1.8525

-15PM147 1.0

-15HSFP

-2 1.0

-15PM148M 1.0

-15AL3 2.5643

-15

-2 I 133135 U234 8.6334 PU239 1.0

-6U235 7.9909

-15PU240 1.0

-4U236 3.9814

-15PU241 1.0

-6U238 4.5704

-15PU242 1.0

-5

-15 XE135 1.0 -15PM143 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 7.8726 -6B11A 3.1931 -5 136138 U234 7.2406 -6U235 6.5939 -4U236 3.3382 -6U238 3.8328 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM14SM 1.0 -15 SM149 1.0 -15SSFP 1.0 -15NSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2310A 7.8857 -6311A 3.2034 -5 139141 U234 5.7422 -6U235 5.3146 -4U236 2.6478 -60238 3.0396 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15?M140M 1.0 -15 80

SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.3525 -2B10A 7.3932 -6B11A 3.2085 -5 142144 U234 4.3177 -6U235 3.9954 -4U236 1.9906 -6U238 2.2850 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM148M 1.0 -15 SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 7.8627 -6B11A 3.1941 -5 145147 U234 4.1153 -6U235 1.9069 -4U236 4.7437 -5U233 2.5999 -5 PU239 5.3343 -07PU240 1.4256 -07PU241 7.3103 -08PU242 1.4331 -03 XE135 1.1 -16PM148 9.6916 -09PM147 4.4267 -06PM143M 6.8104 -03 SM149 4.8592 -08SSFP 3.2284 -06HSFP 3.7915 -04AL3, 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 148150 U234 4.2015 -6U235 2.2104 -4U236 4.3536 -5U238 2.6013 -5 PU239 5.9791 -07PU240 1.3420 -07PU241 6.9478 -08PU242 1.1057 -08 XE135 1.1 -19PM148 8.3634 -09PM147 4.0820 -06PM148M 6.6306 -03 SM149 5.2029 -08SSFP 2.8338 -06HSFP 3.3795 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 151174 U234 4.3780 -6U235 2.9518 -4U236 3.3694 -5U233 2.6048 -5 PU239 7.7435 -07PU240 1.0467 -07PU241 5.5084 -08PU242 4.9605 -09 XE135 1.1 -19PM148 5.3315 -09PM147 3.0624 -06PM143M 5.8659 -08 SM149 6.0443 -08SSFP 2.0406 -06HSFP 2.3318 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 175177 U234 4.4420 -6U235 3.2415 -4U236 2.9753 -5U238 2.6074 -5 PU239 8.4231 -07PU240 8.9370 -03PU241 4.6942 -08PU242 3.2514 -09 XE135 1.1 -19PM143 4.2555 -09PM147 2.6165 -06PM143M 5.4147 -03 SM149 6.4070 -08SSFP 1.7109 -06HSFP 1.9945 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 173210 U234 4.4312 -6U235 3.0953 -4U236 3.1563 -5U238 2.6119 -5 PU239 7.7178 -07PU240 9.4940 -03PU241 4.7861 -08PU242 3.8137 -09 XE135 1.1 -19PM148 4.7478 -09PM147 2.8699 -06PM148M 5.5675 -03 SM149 6.1181 -08SSFP 1.8806 -06HSFP 2.1931 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 211213 U234 4.3174 -6U235 2.4992 -40236 3.9434 -5U233 2.6148 -5 PU239 6.0530 -07PU240 1.1773 -07PU241 5.6651 -0GPU242 7.3203 -09 XE135 1.1 -19PM143 7.0505 -09PM147 3.7749 -06PM143M 6.2221 -03 SM149 5.3796 -03SSFP 2.5621 -06NSFP 2.9957 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 214216 U234 4.2573 -6U235 2.2549 -4U236 4.2668 -5U233 2.6144 -5 PU239 5.5261 -07PU240 1.2526 -07PU241 5.9863 -03PU242 9.2153 -09 X2135 1 1 -19PM148 3.0737 -09PM147 4.0993 -06PM14GM 6.4379 -03 SM149 5.1209 -03SSFP 2.8400 -06HSFP 3.3254 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.3525 -2 217219 U234 4.1153 -60235 1.9069 -4U236 4.7437 -5U233 2.5999 -5 81

I PU239 5.3343 -07PU240 1.4256 -07PU241 7.3103 -08PU242 1.4381 -03 XE135 1.1 -16PM148 9.6916 -09PM147 4.4267 -06PM148M 6.8104 -08 SMi49 4.8592 -08SSFP 3.2284 -06HSFP 3.7915 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 220222 U234 4.2015 -6U235 2.2104 -4U236 4.3536 -5U238 2.6013 -5 PU239 5.9791 -07PU240 1.3420 -07PU241 6.9478 -08PU242 1.1057 -08 XE135 1.1 -19PM148 8.3634 -09PM147 4.0820 -06PM148M 6.6306 -08 SM149 5.2029 -08SSFP 2.8838 -06HSFP 3.3795 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 223246 U234 4.3780 -6U235 2.9518 -4U236 3.3694 -5U238 2.6048 -5 PU239 7.7435 -07PU240 1.0467 -07PU241 5.5084 -08PU242 4.9605 -09 XE135 1.1 -19PM148 5,3315 -09PM147 3.0624 -06PM148M 5.8659 -08 SM149 6.0443 -08SSFP 2.0406 -06HSFP 2.3818 -04AL3, 2.5643 -2 hic 3.7049 -2016C 1.8525 -2 247249 U234 4.4420 -60235 3.2415 -4U236 2.9753 -5U238 2.6074 -5 PU239 8.4231 -07PU240 8.9370 -08PU241 4.6942 -08PU242 3.2514 -09 XE135 1.1 -19PM148 4.2555 -09PM147 2.6165 -06PM148M 5.4147 -03 SM149 6.4070 -08SSFP 1.7109 -06HSFP 1.9945 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 250282 I U234 4.4312 PU239 7.7178 XE135 1.1

-6U235 3,0953 -4U236 3.1568 -50238 2.6119

-07PU2'0 9.4940 -08PU241 4.7861 -08PU242 3.8137

-19PM148 4.7478 -09FM147 2.8699 -06PM148M 5.5675

-5

-09

-08 SM149 6.1181 -08SSFP 1.8806 -06HSFP 2.1931 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 233285 U234 4.3174 -6U235 2.4992 -4U236 3.9434 -5U238 2.6148 -5 PU239 6.0530 -07PU240 1.1773 -07PU241 5.6651 -0SPU242 7.3203 -09 XE135 1.1 -19PM148 7.0505 -09PM147 3.7749 -06PM148M 6.2221 -08 SM149 5.3796 -08SSFP 2.5621 -06HSFP 2.9957 -04AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2 286288 U234 4.2578 -6U235 2.2549 -4U236 4.2668 "U238 2.6144 -5 FU239 5.5261 -07PU240 1.2526 -07PU241 5.9863 -08PU242 9.2153 -09 XE135 1.1 -19PM148 8.0737 -09PM147 4.0993 -06PM148M 6.4379 -08 SM149 5.1209 -08SSFP 2.8400 -06HSFP 3.3254 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 239289 H1A 6.6852 -2016A 3.3426 -2 290290 All 6.0243 -2 291291 H13 6.297 -2016D 3.147 -2AL2 3.005 -3 292292 AL4 3.005 -3HID 5.297 -2016D 3.147 -2 293293 AL5 6.0243 -2 294294 HIE 6.6852 -2016E 3.3426 -2 095295

- HIE 6.6852 -2016E 3.3426 -2 82 11

~

l 1

1 l

296296 HIE 6.6852 -2016E 3.3426 -2 297297 HIE 6.6852 -2016E 3.3426 -2 298298 HIF 6~685

. -2016F 3.34 -2 299299 DE9 1.236 -1

~

300300 HIG 6.6852 -2016G 3.3426 -2 301301 C12B 4.9 -2AL9 1.3 -2H1H 3.35 -3016H 1.675 -3 302302 H1I 6.68 -2016I 3.34 -2 .

303303 AL10 6.0243 -2 304304 HIJ 6.685 -2016J 3.34 -2 END DUTLIH EXPIHS 0 1 0 40 2.0000 0 1 0 3 1 0 0 1 1 0 0 0 I BLANK END INPUT PROCESSOR OV EXPOSE 1D / FILE REFERENCE INFORMATION O 15 0 1 0 8 5 12 0 0 0 13 0 82 2D / TITLE AND HUCLIDE NAMES M DEPLETION MODULE TEST WITH 8 . 't METALS + 7 FP'S M MU234 M MU235 M MU236 M MU238 M aPU239 x MPU240 M MPU241 M MPU242 M

  • XE135 W *PM147 M MPM148 M MPM148hM MSM149 M MHSFP M MSSFP M I 3D / REFERENCE DATA 0.0 /

12345678 9 10 13 14 15 /

1234 56789 10 11 12 4D / DECAY DATA 9.000-14 3.122-17 9.385-16 4.919-18 9.116-13 3.362-12 6 , 09 5.836-14 I 2.118-05 8.378-09 4.093-09 1.943-07 50 / FISSICH PRODUCT YIELD DATA 0.06 0.0715 0.06 0.06 0.0715 0.06 0.0715 0.06 0.03 0.027 0.03 0.03 0.027 0.03 0.027 0.03 0.02 0.013 0.02 0.02 0.013 0.02 0.013 0.C2 1.5466 1.5011 1.5466 1.5466 1.5011 1.5466 1.5011 1.3466 0 . 013 '+ O R 6D / CHAIN DATA FOR MATRIX EXFONENTIAL 122 232 333 451 562 6 72 732 992 11 13 1 14 14 2 15 15 2 10 11 100002 10 12 900002 I STOP END ll

f

//$0365FU JOB (0365LH, J.'KIM',MSGLEVEL:(1,1), USER:6

//M$0365FG JOB (6365LH,XXX],'KIM',MSGLEVEL:(1,1)

/WJ0DPARM T:3, LINES:5,R:4400

/MROUTE PRINT RMT44

//BOLDVENT PROC GOSIZE:4326K, MODULE: SCALE,

// NB1:1,HB2:1,B1:3520,B2:32000,NX:2,HS:50,H1:100.

I // N2:474,H3:10,H4:1,H5:211,H6:10,h7:14,H8:14,H9:120,

// N10:120,H11:186,H12:1,H13:1,N14:1,H15:10,

// N16:477

//GO EXEC PGM:8 MODULE, REGION:8COSIZE

//STEPLIB DD DISP:SHR, UNIT:UMCTS,DSH:00365F. BOLD. VENTURE. LOAD

// DD DSH:UM. FORTRAN.CCMPLIB, DISP:SHR

// PRINT DD SYSOUT:A,DCB:(RECFM:VDA,LRECL:137,BLKSIZE:1100)

//FT01F001 DD UNIT:SYSDA, SPACE:(&B1,C&HS,1)),

// DCB :( R EC FM:VB S , L R EC L : '. ,3 U FH O :& N 31,3 L K S IZ E:.831)

//FT02F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:M.FT01F001

//FT03F001 DD UNIT:SYSDA, SPACE:(80,(10)),DC2:(RECFM:F,BLKSIZE:30)

//FT04F001 DD UNIT:SYSDA, SPACE:(3200,(1H1,1HX)),

// DCB:(RECFM:FBS,LRECL:3C,BLKSIZE:3200)

I

//FT05F001 DD UNIT:SYSDA. SPACE:(3120,(200,106)),

// DCB:(RECFM:FB,BUFNO:1,LRECL:00,BLKSIZE:3121)

//FT06F001 DD SYSOUT:A,DCB:(RECFM:VBA,LRECL:137,BLKSIZE:1100)

//FT07F001 DD SYSOUT:B,DCB:(RECFM:F,BLKSIZE:80)

//FT03F001 DD UNIT:SYSDA, SPACE:(&L1,(&N1,2)),DCB:M.FT01F001

//FT09F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:M.FT01F031

//FT10F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:M.FT01F001

//FT11F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,1HX)),CCB:M.FT01F001

//FT12F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1.&HX)),DCB:M.FT01F001

//FT13F001 DD UNIT:SYSDA, SPACE:(&B1,(&N1,2)),DCB:M.FT01F001

//FT14F001 DD UNIT:SYSDA, SPACE:(SB1,(*HS,1)),DCB:M.FT31F001

//FT15F001 DD UNIT:SYSDA, SPACE:(&B1,(&HS,1)),DCB:M.FT01F001

//FT16F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,1HX)),DCB:M.FT01F001

//FT17F001 DD UNIT:SYSDA, SPACE:(&D1,(&H16,1)),DCB:M.FT01F001

//FT18F001 DD UNIT:SYSDA, SPACE:(&B1,(&H16,1)),DCB:M.FT01F001

//FT19F001 DD UNIT:SYSDA, SPACE:(&B1,(tHS,1)),DCB:w.FT01F001

//FT20F001 DD UNIT:SYSDA, SPACE:(&B1,(1H13,1)),DC3:M.FT01F001

//FT21F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,2)),DC3:n.FT01F001

//FT22F001 DD UNIT:SYSDA, SPACE:(&B1,(&NS,1)),DCB:M.FT01F001

//FT23F001 DD UNIT:SYSDA, SPACE:(SB1,4%H3,1)),DCB:(RECFM:F3,BUFHO:8NB1)

//FT24F001 DD UNIT:SYSDA,$ PACE:(&Bl.(tH2,1)),CCB:(RECFM:FB,3UFNO:&HO2)

//FT25F001 DD UNIT:SYSDA, SPACE:(&B1,(&H12,1)),DC3:(RECFM:F3,3UFNO:tHB1)

//FT26F001 DD UNIT:SYSDA, SPACE:(&31,(&N12.1)),DCO:(RECFM:FD,00FNO:0H;1)

//FT27F001 DD UNIT:SYSDA, SPACE:(1E1,(&N2,1)),DCD:(RECFM:F3,BUFHC:&H02)

//FT23F001 DD UNIT:SYSDA, SPACE:(121,(&N2,1)),DCB:(RECFM:FB,0UFH0:8H32)

//FT29F001 DD UNIT:SYSDA, SPACE:(&B1,(&H14,1)),DC3:(RECFN:F3,DUFNO:8N02)

//FT30F001 DD UNIT:SYSDA, SPACE:(&DI,(&H1,2)),DCB:*.FT01F001

//FT31F001 DD UNIT:SYSDA, SPACE:(831,(&H1,thX)),DCB:M.FT01F001

//FT32F001 CD UNIT:SYSDA, SPACE:(&31,(&H1,2)),DC3:x.FT01F001

//FT33F001 DD UNIT:SYSDA. SPACE:(831,(&H4,1)),DCE:w.FT01F001 I

//FT34F001 DD UNIT:SYSDA, SPACE:(&L1,(*N1,aHZ)),0C3:d.FTC1F]J1

//FT3SF001 DD UNIT:SYSDA,$ PACE:(&;;,(&N1,2)),CCO:7.FT017001

//FT36F001 DD UNIT:SYSDA, SPACE:(&31,(&H6,2)),CCO:w.FT01F001

//FT37F001 DD UNIT:SYSDA, SPACE:(&B1,(2N15,2)),D03:M.FT01F001

//FT38F001 DD UNIT:SYSDA. SPACE:(101,(&H15,2)),DC3:w.FT01F001 Il

N I //FT39F001

//FT40F001

//FT41F001 DD DD DD UNIT:SYSDA, SPACE:($31,(&H15,2)),DCB:M.FT01F001 UNIT:SYSDA, SPACE:(CD2,(&H5,1)),DC3:(RECFM:FB,BUFNO:aHB2)

UNIT:SYSDA, SPACE:(SB1,C8N4,1)),DCB:M.FT01F001

//FT42F001 DD UNIT:SYSDA, SPACE:(&B2,(3H7,1)),

// DCB:(RECFM:VSS,LRECL:X,3UFHO:&HB2,BLKSIZE:3B2)

//FT43F001 DD UNIT:SYSDA, SPACE:(OB2,(8H3,1)),DCB:M.FT42F001

//FT44F0C1 DO UNIT:SYSDA, SPACE:(SB1,(&HS,1)),DCB:M.FT01F001

//FT45F001 DD UNIT:SYSDA, SPACE:(8B1,(&H9,1)),DCB:M.FT01F001

//FT46F001 DD UNIT:SYSDA, SPACE:(&B1,(SN10,1)),DCB:M.FT01F001

//FT47F001 DD UNIT:SYSDA, SPACE:(3L1,(CHS,1)),DCB:M.FT01F001

//FT43F001 DD UNIT:SYSDA, SPACE:(&B1,(8H1,2)),DCB:M.FT01F001

//FT49F001 DD UNIT:SYSDA, SPACE:(&B1,(&H11,1)),DC3:M.FT01F001

//FT50F001 DD UNIT:SYSDA, SPACE:(&B1,(&H1,2)),DCB:M.FT01F001

//FT51F001 DD UNIT:SYSDA,$ PACE:(&B1,(&NS,1)),DCD:M.FT01F001

//FT52F001 DD UNIT:SYSDA, SPACE:(3B1,(&HS,1)),DCO:M . FT 01 F0,01

//FT53F001 DD UNIT:SYSDA, SPACE:(&B1,(tHS,1)),DCB:M.FT01F001

//FT54F001 DD UNIT:SYSDA, SPACE:(8B1,(8N1,2)),DCB:M.FT01F001

//FT55F001 DD UNIT:SYSDA, SPACE:(881,(&HS,1)),DCB:M.FT01F001

//FT56F001 DD UNIT:SYSDA, SPACE:(&B1,(&NS,1)),DCB:M.FT01F001

//FT96F001 DD UNIT:SYSDA SPACE:(&B1,(&HS,1)),DCB:M.FT01F001

//FT97F001 DD UNIT:SYSDA SPACE:(SB1,(SHS,1)),DCD:M.FT01F001

//FT98F001 DD UNIT:SYSDA, SPACE:(&B1,(2NS,1)),DCB:M.FT01F001

//FT99F001 DD SYSCUT A,DCE:(RECFM:V3A,LRECL:137,BLKSIZE:1100)

// PEhD

// BURN EXEC SOLDVENT,

// HB1:1,HB2:1,B1:3520,B2:32000,H1:100,H2:474,

// H3:10,N4:1,H5:211,H6:10,N7:14,H8:14,H9:120,

// H10:120,H11:186,N12:1,H13:1,H14=1,H15:10,

// N16:477,GOSIZE:4326K

//GO.FT11F001 DD UNIT:UMCTS, DISP:SHR,

// DSH:00365F.GRUPXS. FINAL

//hGO.FT12F001 DD UNIT:0MCTS, DISP:SHR,

//M DSN:30365F.B13RX26. FLUX,

//M SPACE:(TRK,(30,10),RLSE),

//M DCB:(RECFM:V35,LRECL:X,BUFNO:1,BLKSIZE:3520)

//GO.FT18F001 DD UNIT:UMCTS, DISP:(NEW,CATLG),

// DSH:$0365F.MIXXED.RTFLUX,

// SPACE:(TRX,(30.10),RLSE),

// DC3:(RECFM:VBS,LRECL:X,BUFNO:1,3LKSIZE:3520)

//GO.SYSIN ED M

CONTROL 1 3-D MURR CORE ' MIXED FUEL, FRESH 775 + DEPLETED 1270, 5/03/85 999999 1 1 2 6 1 2 2 12 7 0 GRUPXS END DCRSPR 0

END IMPUT PRCCESSCR OV ROD 3ET 1D

$NCRN NFRN NCR NERT HSRPS HCYD HSE HOE ISV MRW MRI NSH Il$ f 4 2 1 12 5 1 0 0 0 0 0 0 0 CR ll

s-7 2D ?HNR HHF ADR ADF$

MB10C M MB11C M *C12A M MAL 7 x MHIE

  • M016E M 5.7478-3 2.3311-2 0.8267-2 4.5-2 6.6852-2 3.3426-2 3D $NRZ$

I 9 64 65 66 67 68 69 70 71 72 73 0 4D $FEH HOP J1$

0.0 0 0 10R SD $IF NOP IS 0 THEN HZI IS THE LAST ZONE IS SET JS I 9 4D 1.2135 1 0 10R SD +1 4D 0.4662 1 0 10R SD +1 ,

4D 0.72 1 0 10R SD +1 4D 1. -1 0 10R SD +0 STOP END DVENTR 001 0.00 3.0 +07 1.C 0.5 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 003 15 1 1 1 2 2 2 4 11 0.0 0.0 0.08406 0.2 9 64 65 66 67 63 69 70 71 72 73 004 THETA-R-Z GECMETRY ME5H I 1 4

4

.0909

.7354 5.715 3 .2938 1 .0353 1 1.041 4 .7854 1 .1521 1 .1741 2 .1891 2 .1552 1 .3302 1 .1936 1 .33 2 4 ,3977 1 3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .3.202 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .33C2 1 .3302 1 .3302 1 .3302 1 .3302 1 .3302 1 .1302 1 .3302 1 .3302 1 .3302 1 .3302 1 .1311 1 .96 2 .403 1 .0963 3 .255 1 .0963 2 .433 4 6.224 1 .316 4 22.53 1 .478 2 2.54 4 13.;16 1 20.0 1 4.445 2 8.39 1 1.905 2 5.'1C 2 5.711 1 3.33 1 3.518 1 3.132 3 3.53 12 30.43 1 1.905 1 1.905 2 6.935 1 4.445 1 2.54 3 20.0 005 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 13 13 13 13 13 13 13 13 13 13 I

18 13 13 13 18 13 13 13 la 13 13 13 13 13 13 13 13 10 13 13 13 IS 18 18 18 IS la 13 13 13 IS 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 IS 86

~. .

I 13 18 18 18 .18 18 18 18 18 18 18 13 18 la 18 la 18 18 13 13 18 18 13 13 13 A8 la 18 la 18 I 13 18 18 13 13 18 18 13 18 13 18 13 18 18 13 13 18 18 13 18 13 18 18 18 18 18 18 18 18 18 18 13 18 13 13 18 18 10 18 16 8 13 13 la 13 18 18 18 18 18 18 13 18 18 la 28 18 18 18 18 18 1C 13 18 13 18 18 13 18 13 18 la 18 15 la la 18 13 18 13 18 la 18 18 18 18 18 18 18 18 18 18 18 13 13 18 18 18 13 15 13 18 18 18 13 16 13 13 13 la 13 18 18 13 18 13 18 18 18 13 la .

18 18 18 18 18 18 18 18 18 18 13 18 18 18 la 13 18 18 13 13 la 13 18 18 18 13 18 18 18 18 IS 18 16 18 15 18 13 13 18 18 I

18 18 la 18 18 18 13 18 18 18 6 6 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7 9 9 9 7 9 9 9 7 22 7 9 9 9 7 9 9 9 7 22 7 9 9 9 7 9 9 9 7 22 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 13 13 13 13 13 15 13 13 13 13 13 13 13 13 13 13 13 13 13 13 I 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 17 17 17 17 17 17 17 17 17 17 15 15 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 18 18 18 13 18 18 13 18 18 la 13 la 14 18 18 18 18 18 18 18 18 18 18 13 13 18 18 18 18 la 5 1C 18 13 18 18 18 18 13 18 18 18 13 18 18 18 IS 18 13 13 18 I 18 la 13 23 18 13 18 la 18 13 la 13 18 13 18 13 13 13 18 la la 13 13 13 18 13 18 13 18 13 16 18 13 18 13 13 13 13 13 18 13 18 13 13 18 18 18 15 18 18 18 18 18 13 18 18 18 13 18 13 13 18 13 18 18 18 13 18 13 18 I 10 18 13 13 IS 18 13 10 la 13 18 13 18 la 13 13 10 13 13 13 18 18 13 18 13 13 la 13 13 18 13 13 10 10 13 13 13 18 12 18 I 10 13 13 IS IS 13 13 18 13 13 13 18 18 13 12 18 13 13 13 13

.i 10 13 13 13 18 18 18 10 18 la la 11 13 la 18 la 18 10 10 ll

v I

18 18 18 18 18 18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 IS 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 6 6 6 6 6 6 6 6 6 I

6 6 7 7 7 6 7 7 7 6 7 6 9 9 9 6 9 9 9 6 22 6 9 9 9 6 9 9 9 6 22 6 9 9 9 6 9 9 9 6 22 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 ,

15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 19 19 19 19 19 19 19 19 19 19 -

19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 l 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 10 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 5 5 5 5 5 3 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 5 7 7 7 6 7 6 9 9 9 6 9 9 9 5 22 6 9 9 9 6 9 9 9 6 22 6 9 9 9 6 9 9 9 6 22 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 58

11 1

I 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 Y

I

^

I 17 17 17 17 17 17 17 17 17 17 i 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 c 3 3 3 3 3 3 3 3 3 3 23 23 20 20 20 20 20 20 20 20 y 20 20 20 20 20 20 20 20 20 20 23 20 20 20 20 20 20 20 20 20 d' 20 20 20 20 20 20 20 20 2C 20 '

23 23 20 20 20 20 20 20 23 20 20 20 20 20 20 20 20 20 26 20 I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 23 20 20 20 20 20 20 20 20 20 20 20 23 20 20 20 20 20 20 20 20 2'J 20 20 20 20 20 20 20 20 20 20 23 20 20 20 20 20 20 20 20 20 I 20 20 23 23 20 20 20 20 20 20 20 20 20 2G 2G 20 20 20 20 20 ?C 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 25 20 20 20 20 20 20 20 23 20 20 20 20 20 20 20 20 20 20 20 20 I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 l 20 20 20 20 20 20 20 20 20 20 l 20 20 20 20 20 20 21 23 23 20 l

5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 I 6 6

6 7 7 7 6 7 7 64 64 64 6 64 64 64 6 7 64 64 64 6 64 64 64 6 7 7 6 7 6 64 64 64 6646464 6 7 6 11 11 11 6 11 11 11 6 11

, 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 l

I 14 15 16 14 15 16 14 lb 16 14 15 16 14 15 16 14 15 16 14 15 16 14 15 16 14 15 16 14 15 16 I 17 1

17 2 2 2 1

17 1

17 1

17 1

17 1

17 1

2 2 2 2 2 2 2 17 1

17 1

17 1

3 3 3 3 3 3 3 3 3 3 74 74 9 4 4 4 74 74 74 74 77 77 25 2 25 25 77 77 77 77 00 03 23 23 23 23 30 20 20 80 I 03 30 20 00 3J 00 31 34 37 31 Il 34 34 37 37 31 34 37 30 33 30 00 30 30 33 33 00 to 80 30 30 30 40 40 43 40 C3 30 33 30 ll

I 83 80 43 43 43 43 80 80 80 80 e 80 80 43 43 43 43 80 80 30 00 to 80 43 43 43 43 80 CO 80 80 33 83 43 43 43 43 83 83 83 83 R

86 86 43 43 43 43 86 86 86 86 26 86 43 43 43 43 86 86 86 86 86 86 46 46 46 46 86 86 36 86 I 86 86 86 86 46 46 46 46 46 46 46 46 86 86 86 86 86 86 C6 86 36 $6 46 46 46 46 86 86 86 86 ,

06 tt6 46 46 46 46 86 36 36 86 I. 86 86 46 46 46 46 36 86 86 36 4 .6 49 49 49 49 86 86 86 86

'E3 . 4s 5: 52 52 52 36 e6 86 86 86 .6 55 55 55 55 36 86 86 86 ,

89 69 58 58 SS 58 89 89 39 C9 92 92 61 61 61 el 92 92 92 92 I 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 6 7 7 7 6 7 I 6 65 65 65 6 55 65 65 6 7 6'.56565 6 65 65 65 6 7 6 o5 65 65 6 65 65 65 6 7 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 .14 14 14 14 14 14 14 14 I- 15 15 15 15 15 15 15 15 lb 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 C I 1 1 1 1 2 1 2 2 2 2 2 2 2 2 3 3 3 3 1 1 1 1 1 1 3 3 3 3 3 3 74 74 4 4 4 4 74 74 74 74 5 77 77 25 25 25 25 77 77 77 77 80 80 28 28 28 2a 80 80 80 80 80 80 31 31 31 31 80 80 80 80 f

I 80 80 80 80 34 37 34 37 34 37 34 37 80 80 80 80 30 80 80 80 80 80 40 40 40 40 80 80 80 80 80 80 43 43 43 43 30 00 30 80

= 80 80 43 43 43 43 30 80 80 80 80 80 43 43 43 43 00 80 80 80

-[

m 86 83 30 33 43 43 43 43 43 43 43 43 06 83 C6 83 06 83 36 83 26 86 43 43 43 43 86 06 86 86 I

86 86 46 46 46 46 86 06 C6 86 86 36 46 46 46 46 86 36 06 36 26 06 46 46 46 46 36 36 06 E6 86 86 46 46 46 46 86 55 86 06

, 36 OS 46 46 46 46 06 85 86 06 86 66 46 46 46 46 36 06 US 36 C6 06 49 49 49 49 56 86 36 86

'% 86 86 52 52 52 52 86 06 86 86

'b) h 90 e

w- ._

I 86 86 55 55 55 55 86 86 86 86 89 89 58 58 53 58 89 89 89 89 92 92 61 61 61 61 92 92 92 92 I 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 4 6 7 7 7 6 7 7 7 6 7 6 6 6 6 I

6 66 66 66 6 66 66 66 6 7 6 66 66 66 6 66 66 66 6 7 6 66 66'66 6 66 66 66 6 7 6 11 11 11 6 11 11 11 6 11 I 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 I 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 15 16 17 I 1 2

3 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 74 74 4 4 4 474747474 77 77 25 25 25 25 77 77 77 77 80 80 28 28 28 28 89 30 80 80 80 80 31 31 31 31 30 80 80 80 I 80 80 80 80 80 80 34 37 40 34 37 40 34 37 40 34 37 40 80 80 80 8C 80 80 80 80 80 80 80 30 80 80 43 43 43 43 80 80 80 80 80 80 43 43 43 43 80 80 80 80 80 80 43 43 43 43 80 80 80 80 83 83 43 43 43 43 83 83 83 83 86 86 43 43 43 43 86 86 86 86 86 36 43 43 43 43 86 86 86 86 86 86 46 46 46 46 86 86 86 86 86 86 46 46 46 46 86 86 86 86 86 86 46 46 46 46 86 86 86 S6 86 86 46 46 46 46 86 86 86 S6 86 86 46 46 46 46 86 86 86 86 86 86 46 46 46 46 86 86 86 86 86 86 49 49 49 49 86 86 86 86 86 86 52 52 52 52 86 86 86 86 86 86 55 55 55 55 86 86 86 86 89 39 58 58 58 58 89 89 39 89 92 92 61 61 61 61 92 92 92 92 I 5 5 5 5 5 5 5 5 6 6 6 6 6 7 6 6 6 A 7 7 6 7 7 7 6 7 5 5 6 6 I 6 67 67 67 6 67 67 67 6 7 6 67 67 67 6 67 67 67 6 7 6 67 67 67 6 67 67 67 6 7 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 l

91

16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 74 74 4 4 4 4 74 74 74 74 I 77 80 33 77 80 30 25 28 3'

25 28 31 25 28 31 25 28 31 77 30 80 77 30 3G 77 80 80 77 80 80 30 80 34 34 34 34 80 ti 80 80 80 80 37 37 37 37 80 30 80 80 30 80 40 40 40 40 60 30 80 80 80 80 43 43 43 43 80 80 80 80 80 80 43 43 43 43 30 80 80 30 80 80 43 43 43 43 80 80 80 30 ,

83 83 43 43 43 43 83 33 33 83 I 86 86 86 86 86 86 43 43 46 43 43 46 43 43 46 43 43 46 36 86 86 86 86 86 86 86 86 86 86 86 86 86 46 46 46 46 86 36 36 86 I 86 86 86 86 46 46 46 46 46 46 46 46 86 86 86 86 26 86 86 86 86 86 46 46 46 46 86 36 86 86 I 86 36 86 86 46 49 46 49 46 49 46 49 86 86 86 86 86 86 52 52 52 52 86 86 86 86 86 86 86 86 86 86 55 55 55 55 86 36 86 86 89 89 58 58 58 58 89 89 89 89 92 92 61 61 61 61 92 92 92 92 5 5 5 5 5 5 5 5 5 5 I 6 6 6 6 6 7 7 7 6 7 7 7 6 6 6 6 6 6 6 7 6 68 68 68 6686868 6 7 6 68 68 68 6 68 68 68 6 7 6 68 68 68 6 68 68 68 6 7 6 11 11 11 6 11 11 11 6 11 I 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 12 13 14 15 15 15 15 15 15 15 15 15 15 I 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 16 17 1

1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 74 74 4 4 4 4 74 74 74 74 77 77 25 25 25 25 77 77 77 77 I 30 83 80 30 28 31 28 31 23 31 23 31 80 00 80 80 30 30 80 30 80 50 34 34 34 34 30 30 00 30 I 80 30 30 30 37 40 37 40 37 40 37 40 80 30 30 30 83 30 83 80 80 CD 43 43 43 43 30 80 80 30 80 33 83 43 43 43 30 30 80 30

,3 92 l l

80 80 43 43 43 43 80 80 80 80

$3 83 43 43 43 43 83 83 83 33 86 86 43 43 43 43 36 86 86 86 I 86 36 86 86 86 86 43 46 46 43 46 46 43 46 46 43 46 46 86 36 36 86 86 86 86 86 86 35 86 36 I 86 86 86 86 36 86 46 46 46 46 46 46 46 46 46 46 46 46 86 86 86 86 86 86 86 36 86 86 86 86 86 86 46 46 46 46 36 86 86 86 86 86 49 49 49 49 86 86 86 86 36 86 52 52 52 52 86 86 36 36 86 86 55 55 55 55 86 36 86 36 89 89 58 58 58 58 89 89 39 89 92 92 61 61 61 61 92 92 92 92 ,

5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 6 7 7 7 6 7 6696969 6696969 6 7 6 69 69 69 6 69 69 69 6 7 6696969 6696969 6 7 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 I

)

13 13 13 13 13 13 13 13 13 13 l

14 14 14 14 14 14 14 14 14 14  ;

15 15 15 15 15 15 15 15 15 15 l 16 16 16 16 16 16 16 16 16 16 l 17 17 17 17 17 17 17 17 17 17 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2

) 3 3 3 3 3 3 3 3 3 3 75 75 23 23 23 23 75 75 75 75 78 73 26 26 26 26 73 78 78 78 I 81 61 31 81 81 81 29 32 35 29 32 35 29 32 35 29 32 35 81 31 81 81 81 81 81 81 31 31 81 81 I 81 81 81 81 81 81 38 41 44 33 41 44 33 41 44 38 41 44 81 81 81 81 81 81 81 81 81 81 81 81 I

81 81 44 44 44 44 81 81 81 81 81 81 44 44 44 94 81 81 81 81 34 84 44 44 44 44 84 84 84 34 87 37 44 44 44 44 87 37 37 37 I 87 87 87 87 87 87 44 47 47 44 47 47 44 47 47 44 47 47 37 37 87 87 37 37 87 37 87 87 37 37 I 87 37 47 47 47 47 87 87 a7 87 87 37 87 87 47 47 47 47 47 47 47 47 87 87 87 87 87 37 37 87 87 87 47 47 47 47 87 37 87 87 I 37 87 37 37 30 53 50 53 50 53 50 53 37 87 37 37 37 87 37 37 87 87 56 56 56 56 87 87 87 37 10 90 59 54 59 59 90 90 90 90 I

93

~, . . -

Il  !

93 93 62 62 62 62 93 93 93 93 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 I 6 6

6 7 7 7 6 70 70 70 70 70 70 7 7 7 6 7 6 7C 70 70 6 7 6 70 70 70 6 7 6 70 70 70 6 70 70 70 6 7 I 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 14 14 14 14 14 14 14 14 14 14 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 1 1 1 1 1 1 1 1 1 1 ,

2 2 2 2 2 2 2 2 2 2 I 3 3 3 3 3 3 3 3 3 76 79 76 79 24 27 24 27 24 27 24 27 76 79 76 79 76 79 3

76 79 82 82 30 30 30 30 82 82 32 82 82 82 33 33 33 33 82 82 82 82 32 82 36 36 36 36 82 82 82 82 32 82 39 39 39 39 82 32 32 82 I 82 82 82 82 82 82 42 45 45 42 45 45 42 45 45 42 45 45 82 82 82 32 82 82 82 82 82 82 82 82 I 82 85 83 82 85 88 45 45 45 45 45 45 45 45 45 45 45 45 82 85 38 82 85 88 82 85 88 82 85 88 88 88 45 45 45 45 88 88 88 38 ,

88 88 48 48 48 48 88 88 88 88 88 88 48 43 43 48 88 83 88 88 88 88 48 43 43 48 83 38 88 88 I 88 83 88 88 38 88 48 48 48 48 48 48 48 48 48 48 48 48 88 88 88 88 33 88 88 83 88 88 83 88 I 83 83 88 88 38 88

$1 54 57 51 54 57 51 54 57 51 54 57 88 88 88 83 88 88 88 88 88 83 88 88 91 91 60 60 60 60 91 91 91 91 94 9'+ 63 63 63 63 94 94 94 94 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 I 6 6

6 7 7 7 6 7 7 7 6 7 71 71 71 6 71 71 71 6 7 71 71 71 6 71 71 71 6 7 I 6 6

12 71 71 71 6 71 71 71 6 7 11 12 11 12 11 12 12 6 11 11 11 6 11 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 21 21 21 21 21 21 21 21 21 21 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 94

I i 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 I 2C 26 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 P.0 20 20 20 20 20 20 20 26 20 20 26 Z0 20 20 20 20 20 I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2C 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 29 20 20 20 20 20 20 20 20 20 20 26 20 20 I 20 20 20 20 20 20 20 20 20 20 20 20 20 2U 20 20 20 20 20 20 20 20 20 20 20 26 20 20 20 20 I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 I 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2C 2G 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 29 to 20 20 20 20 20 20 20 20 20 20 20 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 7 7 7 6 7 7 7 6 7 .

6 72 72 72 6 72 72 72 6 7 6 72 72 72 6 72 72 72 6 7 6 72 72 72 6 72 72 72 6 7 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 21 21 21 21 21 21 21 21 21 21 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 0 2 2 2 2 3 3 3 3 3 3 3 3 3 3 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 29 19 19 19 19 19 19 19 19 19 95

19 19 19 19 19 19 19 19 19 17 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19

-lm 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 A 19 19 19 19 19 19 19 17 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 6 6 6 6 ,

6 7 7 7 6 7 7 7 6 7 6737373 6 73 73 73 6 7 6737373 6737373 6 7 6 73 73 73 6 73 73 73 6 7 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 21 21 21 21 21 21 21 21 21 21 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 I 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 1 1 1 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 17 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 l 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 l 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 13 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 5 5 5 5 5 5 5 5 5 5 96

u 6 6 6 6 6 6 6 6 6 6 6 7 7 7 67 7 7 6 7 6 7 7 7 6 7 7 7 6 7 6 7 7 7 6 7 7 7 6 7 6 7 7 7 6 7 7 7 6 7 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 21 21 21 21 21 21 21 21 21 21 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 18 13 18 18 18 13 13 18 13 18 ,

18 18 18 18 13 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 13 18 18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 13 18 18 13'18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 13 18 18 13 18 18 18 18 18 18 18 18 13 18 la 18 18 18 18 18 18 18 la 18 18 18 18 13 18 18 13 18 I 18 18 18 18 18 13 18 13 18 18 18 18 18 18 13 18 18 18 13 18 13 18 18 18 18 13 18 18 13 18 18 18 18 18 18 13 18 la 18 18 13 18 13 18 18 18 18 13 18 18 13 18 18 18 13 18 18 18 18 18 g 18 13 18 13 18 13 18 18 18 18 3 13 18 18 18 18 18 18 18 18 18 13 18 18~13 18 13 13 18 18 18 lg 18 18 13 13 18 18 18 18 13 18 lg 6 6 6 6 6 6 6 6 6 6 l

6 7 7 7 6 7 7 7 6 7 l 6 7 7 7 6 7 7 7 6 7 l 6 7 7 7 6 7 7 7 6 7 6 7 7 7 6 7 7 7 6 7 6 11 11 11 6 11 11 11 6 11

, 12 12 12 12 12^12 12 12 12 12 l 13 13 13 13 13 13 13 13 13 13 21 21 21 21 21 21 21 21 21 21 15 15 15 15 15 15 15 15 15 15 16 16 15 15 16 16 15 16 16 16 17 17 17 17 17 17 17 17 17 17 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 l 97 l

l

u 18 18 18 18 13 18 18 18 13 la 18 18 18 18 18 13 la 18 18 18 18 18 18 18 18 13 18 18 13 18 18 18 18 18 18 18 13 18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 13 18 18 18 18 18 18 13 I 18 13 18 18 18 18 13 18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 13 13 18 18 18 18 18 18 18 18 18 13 13 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 13 18 13 18 18 13 18 18 la 18 ,

18 18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 la 18 18 18 18 18 18 18 13 18 18 18 18 13 18 18 18 18 18 I 18 18 18 18 13 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 13 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 6 6 6 6 6 6 6 6 6 6 6 7 7 7 6 7 7 7 6 7 6 7 7 7 6 7 7 7 6 7 6 7 7 7 6 7 7 7 6 7 6 7 7 7 6 7 7 7 6 7 6 11 11 11 6 11 11 11 6 11 12 12 12 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 1 1 1 1 1 1 1 1 1 1 I 2 2 2 2 2 2 2 2 2 2 18 18 18 13 18 18 18 18 13 la 13 18 18 13 18 18 18 la 18 13 13 18 18 18 18 18 18 18 18.18 13 18 18 18 18 18 13 13 13 18 18 18 18 13 13 18 18 la 18 13 13 18 18 18 13 18 18 18 18 18 13 18 18 18 13 13 13 la 13 la 13 18 13 13 18 la 18 13 13 13 13 13 la 13 13 la 18 la 13 13 18 13 18 13 13 la 13 13 13 13 18 la 13 la 18 13 la 18 13 18 13 13 13 IS 13 13 la 18 18 18 13 18 18 18 13 13 la 18 13 13 18 18 13 18 13 13 18 13 13 13 98

m l

18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 IS 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 la 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 6 6 6 6 6 6 6 6 6 6 6 7 7 7 6 7 7 7 6 7 6 7 7 7 6 7 7 7 6 7 .

6 7 7 7 6 7 7 7 6 7 6 7 7 7 6 7 7 7 6 7 6 11 11 11 6 11 11 11 6 11 6 11 11 11 6 11 11 11 6 11 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 15 15 15 15 15 15 15 15 15 15 16 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 012 36 1 1 1 1 1.0 2 2 1 2 1.0 3 3 1 3 1.0 4 4 1 4 1.0 5 5 1 5 1.0 6 6 2 6 1.0 7 7 2 7 1.0 8 8 2 8 1.0 9 9 2 9 1.0 10 10 2 10 1.0 11 11 2 11 1.0 12 12 2 12 1.0 13 13 2 13 1.0 14 14 2 14 1.0 15 15 2 15 1.0 16 16 2 16 1.3 17 17 2 17 1.0 18 18 1 18 1.0 19 19 1 19 1.0 20 20 1 20 1.0 I 21 21 22 22 23 24 2 21 1 22 1 23 1.0 1.0 1.0 25 27 1 24 1.0 20 3C 1 25 1.3 31 33 1 26 1.0 34 36 1 27 1.0 37 39 1 28 1.0 l

99

m 40 42 1 29 1.0 43 45 1 30 1.0E-25 46 48 1 31 1.0E-25 49 51 1 32 1.0 52 54 1 33 1.0 55 57 1 34 1.0 58 60 1 35 1.0 61 63 1 36 1.0 64 73 2 37 1.0 74 94 1 38 1.0 0

1 6 1 43 0.1667 7 12 1 44 0.1667 13 18 1 45 0.1667 19 24 1 46 0.1667 25 30 1 47 0.1667 31 36 1 48 0.1667 013 33 33 H1A 016A All H1B 016B AL2 U234 U235 U236 U238 AL3 hic 016C AL4 HID 016D PU239 PU240 PU241 PU242 XE135 PM143 PM147 PM148M SM149 SSFP HSFP FE CR HI MH B10A BilA 24 A '. 5 HIE 016E BE9 HIG 016G C12B AL9 H1H 016H H1I 016I Alla -HIJ 016J AL6 B10C B11C AL7 AL8 HIF 016F C12A LI6 020 1 1 H1A 6.6852 -2016A 3.3426 -2 2 2 All 6.0243 -2 3 3 H1B 6.297 -2016B 3.147 -2AL2 3.005 -3 4 4 U234 2.305022 -6U235 1.139165 -4U236 2.394445 -5U238 1.425172 -5 I PU239 2.579038 -7PU240 6.554637 -3PU241 2.878085 -3PU242 4.858748 XE135 1.1 SM149 2.758163 -8SSFP

-25PM148 7.571195 -9PM147 2.426308 -6PM148M3.713872 1.631745 -6HSFP 1.911454 -4AL3 2.5643

-9

-8

-2 H1C 3.7049 -2016C 1.8525 -2B10A 2.747502 -8311A 3.1870 -5 5 5 AL4 3.005 -3HID 6.297 -2016D 3.147 -2 6 6 AL5 6.0243 -2 7 7 HIE 6.6852 -2016E 3.3426 -2 8 8 AL6 6.0243 -2 I 9 9 B10C 5.7478 -3311C 2.3311 -2AL7 4.50 -2012A 3.3257 -2 10 10 ALS 6.0243 -2 100

m 11 11 HIF 6.685 -2016F 3.34 -2 12 12 I BE9 13 13 HIG 1.236 6.6852

-ILI6 1.31

-2016G 3.3426

-6

-2 14 14 C12B 4.9 -2AL9 1.3 -2H1H 3.35 -3016H 1.675 -3 15 15 I H1I 16 16 6.68 -2016I 3.34 -2 AL10 6.0243 -2 17 17 HIJ 6.685 -2016J '3.34 -2 ,

18 18 I H1A 19 19 H1C 6.685 5.971

-2016A 3.34

-2016C 2.985

-2

-2AL3 5.98 -3 20 20 H1C 3.748 -2016C 1.874 -2ALI 2.60 -2 21 21 C12B 4.404 -2AL9 1.4669 -2H1H 4.847 -3016H 2.423 -3 22 22 FE 5.8478 -2CR 1.5619 -2HI 9.129 -3MN 1.5784 -3 23 23 U234 1.990437 -6U235 6.294325 -5U236 3.109818 -5U238 1.380477 -5 PU239 2.771447 -7PU240 9.876072 -8PU241 6.171575 -8PU242 2.158391 -8 XE135 1.10 -25PM148 1.029409 -8PM147 2.596113 -6PM148M4.044491 -8 SM149 2.349339 -8SSFP 2.188626 -06HSFP 2.596460 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8523 -2B10A 4.699892 -10311A 3.1870 -5 24 24 U234 2.124877 -6U235 8.091878 -5U236 2.865460 -5U238 1.401603 -5 I PU239 2.665907 -7PU240 8.726926 -08PU241 4.734888 -08PU242 1.263395 -03 XE135 1.10 -25PM148 9.189101 -09PM147 2.622427 -06PM148M3.992104 -03 SM149 2.489246 -08SSFP 1.994667 -06HSFP 2.352746 -04AL3 2.5645 -2 H1C 3.7049 -2016C 1.3525 -2B10A 2.612909 -9B11A 3.186965 -5 5525 U234 2.985047 -6U235 1.67:134 -4U236 2.734078 -5U238 1.809417 -5 PU239 3.651451 -07PU240 7.624806 -08PU141 3.341533 -03FU242 4.472238 -09 XE135 1.1 -25PM148 8.031943 -09PM147 2.773994 -36PM143M4.525446 -03 SM149 3.726171 -08SSFP 1.813689 -06MSFP 2.120190 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 7.834927 -8311A 3.235579 -5 26 26 U234 2.611117 -6U235 1.005740 -4U236 3.700146 -5U233 1.753199 -5 FU239 4.045940 -07PU243 1.231745 -07PU241 7.939522 -03?U242 2.215434 -03 XE135 1.1 -25PM143 1.132832 -0SPM147 3.104779 -06?M1.48M5.256466 -03 SM149 3.316539 -03SSFP 2.541010 -06HSFP 3.003037 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2310A 2.472503 -9311A 3.235565 -5 101

27 27 U234 2.773257 -6U235 1.248162 -4U236 3.355047 -5U238 1.779688 -5 PU239 3.862344 -07PU240 1.062664 -07PU241 5.875757 -0GPU242 1.251585 -08 XE135 1.1 -25PM148 1.021532 -08PM147 3.129887 -06PM148M5.050516 -08 SM149 3.449326 -03SSFP 2.278828 -06HSFP 2.679795 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 1.067573 -8B11A 3.235569 -5 28 28 U234 3.683111 -6U235 2.296002 -4U236 2.947815 -5U238 2.195046 -5 PU239 4.903671 -07PU240 8.269939 -08PU241 3.603972 -08PU242 3.785193 -09 XE135 1.1 -25PM148 7.964726 -09PM147 2.972805 -06PM148M5.190089 -03 SM149 4.781375 -08SSFP 1.891742 -06HSFP 2.207602 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 1.890402 -07B11A 3.207082 -5 29 29 U234 3.257893 -6U235 1.495437 -4U236 4.148412 -5U238 2.127513 -5 PU239 5.663309 -07PU240 1.438274 -07PU241 9.553452 -08PU242 2.087502 -08 XE135 1.1 -25PM148 1.262875 -08PM147 3.635316 -06PM148M6.412535 -08 I SM149 4.432026 -08SSFP 2.766966 -06HSFP 3.259578 -04AL3 H1C 3.7049 -2016C 1.8525 2.5643

-2B10A 1.048810 -08B11A 3.207070

-2

-5 30 30 U234 3.443455 -6U235 1.795287 -4U236 3.703771 -5U238 2.159218 -5 PU239 5.338786 -07PU240 1.208595 -07PU241 6.774877 -0SPU242 1.134474 -08 XE135 1.1 -25PM148 1.057523 -08PM147 3.481109 -06PM14SM6.004285 -08 SM149 4.529415 -08SSFP 2.442354 -06HSFP 2.864774 -34AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 3.572096 -08B11A 3.207075 -5 31 31 U234 5.274896 -6U235 3.604707 -4U236 3.653244 -5U238 3.096834 -5 PU239 7.589057 -07PU240 1.014440 -07PU241 4.383434 -08PU242 3.565108 -09 XE135 1.1 -25PM148 8.980184 -09PM147 3.610207 -06PM148M6.813383 -08 SM149 7.108673 -08SSFP 2.249021 -06HSFP 2.620730 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 4.023580 -07B11A 3.180986 -5 32 32 U234 4.714027 -6U235 2.523523 -4U236 5.329376 -5U233 3.002520 -5 PU239 9.214495 -07PU240 1.903223 -07PU241 1.291668 -07PU242 2.181917 -08 XE135 1.1 -25PM148 1.523113 -0GPM147 4.690409 -06PM148M3.930562 -03 SM149 c.835080 -03SSFP 3.429658 -06HSFP 4.029195 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.3525 -2310A 3.735024 -03311A 3.100976 -5 33 33 U234 4.959988 -6U235 2.937776 -4U236 4.690097 -5U230 3.046617 -5 PU239 8.541173 -07PU240 1.555522 -07PU241 8.793980 -00PU242 1.142439 -08 XE135 1.1 -25PM148 1.239591 -0 CPM 147 4.384624 -06PM148M3.159931 -03 SM149 6.873336 -03SSFP 2.931479 -06SSFP 3.439635 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2310A 1.021729 -7311A 3.130932 -3 34 34 U234 6.252502 -6U235 4.594014 -4U236 3.757478 -5U238 3.626374 -5 j PU239 9.590212 -07PU240 1.013035 -07PU241 4.341437 -00PU242 2.744034 -09 XE135 1.1 -25PM148 8.368996 -09PM147 3. 596 935 -06P;1143M7.354 964 -00 102

I SM149 8.734168 -08SSFP 2.204243 -06HSFP 2.565670 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 7.339517 -7311A 3.190539 -5 I 35 35 U234 5.636736 -6U235 3.418752 -4U236 5.642368 -5U238 3.516994 PU239 1.227600 -06PU240 2.037849 -07PU241 1.405923 -07PU242 1.837736 -03

-5 XE135 1.1 -25PM148 1.4a9042 -08PM147 4.916291 -06PM148M1.016106 -07

.I SM149 8.659350 -08SSFP 3.434161 -06HSFP 4.084455 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 1.060054 -7B11A 3.190532 -5 36 36 U234 5.907515 -6U235 3.876274 -4U236 4.907964 -5U238 3.567906 -5 PU239 1.116435 -06PU240 1.623509 -07PU241 9.241438 -00PU242 9.327053 -09 XE135 1.1 -25PM148 1.192670 -08PM147 4.505478 -06PM143M9.089666 -08 SM149 8.588290 -DaSSFP 2.990455 -06HSFP 3.494303 -04AL3, 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 2.403347. -7B11A 3.1906 -5 37 37 U234 7.653637 -6U235 5.942152 -4U236 4.0'36560 -5U233 4.398390 -5 PU239 1.233470 -06PU240 1.040520 -07PU241 4.422062 -08PU242 2.201718 -09 I XE135 1.1 -25PM148 8.155787 -09PM147 3.710933 -06PM148MS.200425 -03 SM149 1.108623 -075SFP 2.246351 -06HSFP 2.613086 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 38 38 U234 6.949320 -6U235 4.646608 -4U236 6.188027 -5U238 4.267365 -5 PU239 1.660848 -06PU240 2.213523 -07PU241 1.548218 -07PU242 1.582565 -03 XE135 1.1 -25PM148 1.520499 -08PM147 5.272726 -06PM148M1.184971 -07 SM149 1.126907 -07SSFP 3.651813 -06HSFP 4.274133 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 39 39 U234 7.259223 -6U235 5.155485 -4U236 5.333094 -5U238 4.328237 -5 PU239 1.482084 -06PU240 1.726314 -07PU241 9.837732 -08PU242 7.850932 -09 XE135 1.1 -25PM148 1.189782 -08PM147 4.761510 -06FM148M1.041913 -07 SM149 1.104911 -07SSFP 3.105182 -06HSFP 3.623872 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 40 40 U234 8.751723 -6U235 7.069632 -4U236 4.128074 -5U238 4.99609 -5 PU239 1.459708 -06PU240 1.006640 -07PU241 4.251777 -08PU242 1.713612 -09 XE135 1.100000 -25PM148 7.629232 -09PM147 3.632552 -06PM148M8.594230 -08 SM149 1.313501 -075SFP 2.130701 -06HSFP 2.534650 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 41 41 U234 7.989806 -6U235 5.739732 -4U236 6.413151 -5U233 4.347310 -5 PU239 2.052408 -06PU240 2.233062 -07PU241 1.5C0503 -07PU242 1.296250 -03 XE135 1.1 -25PM148 1.461326 -00PM147 5.304043 -06PM148M1.208663 -07 SM149 1.361946 -07SSFP 3.615351 -06HSFP 4.226654 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 42 42 U234 8.324533 -6U235 6.263179 -4U236 5.504326 -5U233 4.916124 -5 PU239 1.801517 -06Pt'i40 1.716410 -07PU241 9.007424 -00PU242 6.342233 -0 9 XE135 1.1 -25FM;4G 1.131459 -00?M147 4.744000 -36PM140M1.113302 -07 SM149 1.322993 -07SSFP 3.055422 -06MSF? 3.563843 -04ALI 2.5643 -2 H1C 3.7049 -20160 1.3525 -2 43 43 103

y U234 9.037325 -6U235 7.696652 -4U236 3.523243 -5U238 5.106715 -5 PU239 1.548734 -06PU240 7.476632 -03PU241 3.093755 -03PU242 8.556524 -10 XE135 1.1 -25PM143 5.524775 -09PM147 2.833560 -06PM14GM7.484954 -08 I SM149 1.456820 -07SSFP 1.679296 -06HSFP 1.950194 -04AL3 hic 44 44 3.7049 -2016C 1.8525 -2 2.5643 -2 U234 8.314186 -6U235 6.579829 -4U236 5.574482 -5U238 4.957145 -5 PU239 2.344565 -06PU240 1.761119 -07PU241 1.271657 -07PU242 7.040835 -09 XE135 1.1 -25PM148 1.100632 -08PM147 4.296887 -06PM143M1.201017 -07 SM149 1.565951 -07SSFP 2.869176 -06HSFP 3.349218 -04AL3 2.5643 -2 HIC 3.7049 -2016C 1.8525 -2 45 45 U234 8.625621 -6U235 7.005772 -4U236 4.773447 -5U233 5.024533 -5 90239 2.003728 -06PU240 1.337480 -07PU241 7.786451 -03PU242 3.440623 -09 XE135 1.1 -25PM148 8.462152 -09PM147 3.817793 -06PM1,48M1.023967 -07 SM149 1.495001 -075SFP 2.421567 -06HSFP 2.820331 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 46 46 U234 9.419099 -6U235 8.106891 -4U236 3.410361 -5U238 5.296567 -5 PU239 1.540431 -06PU240 6.839969 -08PU241 2.656876 -08PU242 6.603988 -10 XE135 1.1 -25PM148 5.080256 -09PM147 2.700607 -06PM148M7.123379 -08 SM149 1.503037 -07SSFP 1.583956 -06HSFP 1.838634 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 47 47 U234 8.646360 -60235 6.816511 -4U236 5.727657 -5U238 5.141403 -5 PU239 2.349243 -06PU240 1.803641 -07PU241 1.257973 -07PU242 7.005369 -09 XE135 1.1 -25PM148 1.137814 -08PM147 4.479204 -06PM148M1.227981 -07 SM149 1.589147 -07SSFP 2.969245 -06HSFP 3.465104 -04AL3 2.5643 -2 HIC 3.7049 -2016C 1.8525 -2 48 48 U234 8.955737 -60235 7.234735 -4U236 4.935551 -5U238 5.208404 -5 PU239 2.006383 -06PU240 1.380755 -07PU241 7.783075 -08PU242 3.503261 -09 XE135 1.1 -25PM148 8.813245 -09PM147 4.008774 -06PM148M1.050SS7 -07 SM149 1.514405 -07SSFP 2.530268 -06HSFP 2.946465 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 49 49 U234 9.014238 -6U235 7.551373 -4U236 3.557732 -5U238 5.083100 -5 PU239 1.380039 -06PU240 7.730250 -08PU291 2.859256 -08PU242 8.930421 -10 XE135 1.1 -25PM148 5.859757 -09PM147 3.032220 -06FM148M7.227146 -08 I SM149 1.324668 -0755FP 1.774002 -06HSFP 2.059484 -04AL3 hic 50 50 3.7049 -2016C 1.8525 -2 2.5643 -2 U234 8.162840 -6U235 5.785287 -40236 6.468176 -5U238 4.931133 -5 PU239 1.936382 -06PU240 2.214900 -07PU241 1.472309 -07PU242 1.233337 -0G XE135 1.1 -25PM148 1.498860 -08PM147 5.503312 -06PM14GM1.2SS239 -07 SM149 1.336072 -07sSFP 3.705474 -06HSFP 4.330175 -G4AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 51 51 U234 8.471199 -60235 6.245703 -4U236 5.653695 -5U2!0 4.974626 -5

?U239 1.639938 -06PU240 1.739070 -07PU241 9.456403 -00PU242 6.419503 -09 X5135 1.1 -25PM148 1.180295 -00PM147 3.025635 -06PM14oM1.127290 -07 SM149 1.290660 -075SFP 3.215923 -0SHSFP 3.749265 -04ALI 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 52 52 f 104

m U234 ~ 7.813304 -6U235 6.401916 -4U236 3.316946 -5U233 4.419978 -5 PU239 1.154627 -06PU240 7.648310 -08PU241 2.760030 -08PU242 1.011765 -09 XE135 1.1 -25PM148 5.869847 -09PM147 2.951616 -06PM148M6.611822 -08 SM149 1.105140 -07SSFP 1.729379 -06MSFP 2.008121 -04AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2B10A 1.941524 -06311A 3.198093 -5 53 53 U234 7.006819 -60235 4.588026 -4U236 6.199347 -5U238 4.286018 -5 PU239 1.527131 -06PU240 2.163207 -07PU241 1.415345 -07PU242 1.493859 -08 XE135 1.1 -25PM148 1.556 088 -08PM147 5.442284 -06Pf1148M1.16 9760 -07 SM149 1.088907 -07SSFP 3.725447 -06HSFP 4.358741 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2310A 2.127899 -07B11A 3.198083 -5 54 54 U234 7.283142 -6U235 5.012339 -4U236 5.474423 -5 U 2 3,8 4.341254 -5 PU239 1.349536 -06PU240 1.730203 -07PU241 9.328795 -08PU242 7.994906 -09 XE135 1.1 -25PM148 1.256719 -08PM147 5.042411 -06PM148M1.042220 -07 SM149 1.059968 -07SSFP 3.272315 -06HSFP 3.818879 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 3.735361 -07B11A 3.198086 -5 55 55 U234 6.524396 -6U235 5.101929 -4U236 2.991877 -5U238 3.707105 -5 PU239 9.222005 -07PU240 7.367947 -08PU241 2.624821 -08PU242 1.158017 -09 XE135 1.1 -25PM148 5.750991 -09PM147 2.780294 -06PM148M5.800981 -08 SM149 8.750942 -08SSFP 1.634377 -06HSFP 1.898458 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 1.515358 -06B11A 3.203392 -5 56 56 U234 5.776327 -6U235 3.347243 -4U236 5.687874 -5U238 3.592820 -5 PU239 1.136867 -06PU240 2.012777 -07PU241 1.298092 -07PU242 1.76c284 -03 XE135 1.1 -25PM148 1.544677 -08PM147 5.095217 -06PM148M1.006214 -07 SM140 8.365646 -08SSFP 3.574509 -06HSFP 4.189294 -04AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2310A 8.360377 -03B11A 3.203381 -5 57 57 U234 6.016160 -6U235 3.710566 -4U236 5.089051 -5U238 3.639239 -5 I PU239 1.017878 -06PU240 1.646266 -07PU241 8.823309 -00PU242 9.751936 -09 XE135 1.1 -25PM148 1.276558 -08PM147 4.006876 -06PM140M9.134402 -03 SM149 8.216921 -08SSFP 3.185422 -06HSFP 3.722885 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2D10A 1.726722 -07311A 3.203333 -5 50 58 U234 5.145587 -6U235 3.937415 -4U236 2.648309 -5U238 2.940177 -5 PU239 6.902196 -07PU240 6.704965 -08PU241 2.362966 -00PU242 1.267047 -09 XE135 1.1 -25PM148 5.570534 -09PM147 2.567334 -06PM143M4.979033 -08 SM149 6.783802 -08SSFP 1.517104 -06HSFP 1.763041 -04AL3 2.5643 -2 H1C 3.7049 -2015C 1.8525 -2310A 1.112908 -06B11A 3.200491 -5 59 59 U234 4.484412 -6U235 2.316975 -4U236 5.066351 -5U238 2.847724 -5 PU239 7.8?7818 -07FU240 1.729338 -07?U241 1.097344 -07PU242 1.914259 -03 XE135 1.1 -25PM148 1.473191 -08Pf1147 4.574058 -06PM148MO.346251 -C0 SM149 6.233046 -08SSFP 3.313945 -06HSFP 3.892514 -04AL3 2.5643 -2 hic 3.7049 -2016C 1.0525 -2S10A 3.001755 -03311A 3.203475 -5 105

60 60 U234 4.681166 -6U235 2.610791 -4U236 4.598880 -5U238 2.884639 -5 PU239 7.154596 -07PU240 1.448593 -07PU241 7.715033 -08PU242 1.101557 -08 XE135 1.1 -25PM148 1.253948 -08PM147 4.402588 -06PM14CM7.732018 -08 SM149 6.183711 -08SSFP 2.999279 -06HSFP 3.511996 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2B10A 6.575817 -08311A 3.203478 -5 61 61 U234 3.843883 -6U235 2.814077 -4U236 2.193298 -5U238 2.210414 -5 PU239 4.860906 -07PU240 5.718732 -08PU241 1.998708 -08PU242 1.298586 -09 XE135 1.1 -25PM148 5.029992 -09PM147 2.198706 -06PM140M3.97262a -03 SM149 4.919084 -DaSSFP 1.307510 -06HSFP 1.520316 -04AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2B10A 7.718483 -07311A 3.194089 -5 62 62-I U234 3.289122 -6U235 1.458772 -4U236 4.164080 -5U238 2.139367 -5 PU239 5.179947 -07PU240 1.373627 -07PU241 8.541934 -03PU242 1.396042 -08 XE135 1.1 -25PM148 1.287542~-08PM147 3.733066 -06PM148M6.353508 -03 SM149 4.302619 -08SSFP 2.812953 -06HSFP 3.312950 -04AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2B10A 8.441855 -09B11A 3.194070 -5 63 63 U234 3.441491 -6U235 1.671762 -4U236 3.836959 -5U238 2.167202 -5 PU239 4.734221 -07PU240 1.176577 -07PU241 6.211758 -08PU242 1.134373 -03 XE135 1.1 -25PM148 1.122662 -08PM147 3.668099 -06PM148M6.003565 -03 SM149 4.313013 -08SSFP 2.585345 -06HSFP 3.034365 -04AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2B10A 2.087647 -03B11A 3.194074 -5 I 64 73 B10C 5.7478 -3B11C 2.3311 -2AL7 4.50 -2C12A 0.3267 -2 74 94 U234 5.191 -6U235 4.8050 -4U236 2.466 -6U238 2.739 -5 PU239 1.0 -15PU240 1.0 -15PU241 1.0 -15PU242 1.0 -15 XE135 1.0 -15PM148 1.0 -15PM147 1.0 -15PM143M 1.0 -15 I

SM149 1.0 -15SSFP 1.0 -15HSFP 1.0 -15AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 1 1 U234 8.919471 -6U235 7.595781 -4U236 3.477103 -5U238 5.039819 -5 PU235 1.523446 -06PU240 7.378691 -03PU241 3.053227 -00PU242 8.444436 -10 XE135 1.1 -25PM148 5.452367 -09PM147 2.796423 -06?M140M7.306353 -03 SM149 1.437727 -07SSFP 1.657283 -06MSFP 1.924634 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.3525 -2 2 2 l 5l U234 8.980791 -6U235 7.647963 -4U236 3.500962 -5U238 5.074423. -5 PU239 1.533941 -06PU240 7.429355 -03PU241 3.074192 -00PU242 8.502419 -10

' XE135 1.1 -25PM140 5.439027 -09PM147 2.8*5635 -06?.114CM7.437503 -00 SM149 1.447604 -075SFP 1.660673 -06HSFP 1.937357 -04AL3 2.5643 -2 hic 3.7049 -2016C 1.0525 -2 3 3 U234 9.037325 -6U235 7.696652 -4U236 3.523243 -5U233 5.106715 -5 PU239 1.543734 -06PU240 7.476632 -00PU241 3.093755 -05PU242 3.556524 -10 106

m XE135 1.1 -25PM148 5.524775 -09PM147 2.333560 -06PM148M7.434954 -0S SM149 1.456820 -07SSFP 1.679296 -06HSFP 1.950194 -04AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2 4 4 U234 9.091512 -6U235 7.741689 -4U236 3.543745 -5U238 5.137175 -5 PU239 1.557971 -06PU240 7.521231 -08PU241 3.112208 -08PU242 8.607561 -10 XE135 1.1 -25PM148 5.557105 -09PM147 2.850142 -06PM148M7.528752 -08 SM149 1.465345 -07SSFP 1.689123 -06HSFP 1.961605 -04AL3 2.5643 -2 HIC 3.7049 -2016C 1.8525 -2 5 5 U234 9.142085 -6U235 7.785477 -4U236 3.563879 -5U238 5.165613 -5 PU239 1.566596 -06PU240 7.562863 -08PU241 3.129436 -08PU242 3.655208 -10 XE135 1.1 -25PM148 5.533536 -09PM147 2.866262 -06PM148M7.571339 -03 SM149 1.473632 -075SFP 1.698677 -06HSFP 1.972700 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 ,

6 6 U234 9.189046 -6U235 7.825610 -4U236 3.582233 -5U238 5.192218 -5 PL'239 1.574665 -06PU240 7.601818 -08PU241 3.145554 -08PU242 8.699785 -10 XE135 1.1 -25PM148 5.617345 -09PM147 2.881035 -06PM143M7.610362 -08 SM149 1.481229 -075SFP 1.707433 -06HSFP 1.982869 -04AL3 2.5643 I

-2 Hic 3.7049 -2016C 1.8525 -2 7 7 U234 8.205761 -60235 6.493595 -4U236 5.501456 -5U238 4.892208 -5 PU239 2.313852 -06PU240 1.738049 -07PU241 1.254999 -07PU242 6.948603 -09 XE135 1.1 -25PM148 1.086208 -08PM147 4.240574 -06PM148M1.185277 -07 SM149 1.545429 -07SSFP 2.831574 -06HSFP 3.305322 -04AL3 2.5643 -2 H1C 3.7049. -2016C 1.8525 -2 8 8 U234 8.262174 -6U235 6.538206 -4U236 5.539226 -5U238 4.9258 -5 PU239 2.329739 -06PU240 1.749983 -07PU241 1.263616 -07PU242 6.996316 -09 XE135 1.1 -25PM148 1.093670 -08PM147 4.269705 -06PM148M1.193419 -07 SM149 1.556045 -075SFP 2.851026 -06HSFP 3.328030 -04AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2 9 9 U234 8.314186 -6U235 6.579829 -4U236 5.574482 -5U238 4.957145 -5 PU239 2.344565 -06PU240 1.761119 -07PU241 1.271657 -07PU242 7.040335 -09 XE135 1.1 -25PM148 1.100632 -03PM147 4.296837 -06PM148M1.201017 -07 SM149 1.565951 -075SFP 2.869176 -06HSFP 3.349218 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 10 10 U234 8.364035 -6U235 6.618332 -4U236 5.606990 -5U233 4.986714 -5 PU239 2.358550 -06PU240 1.771625 -07PU241 1.279242 -07PU242 7.032836 -09 XE135 1.1 -25PM148 1.107074 -08PM147 4.322032 -06PM142M1.20SO45 -07 SM149 1.575115 -075SFP 2.835965 -06HSFP -3.363317 -04AL3 2.5643 -2 MIC 3.7049 -2016C 1.8525 -2 11 11 U234 8.410562 -6U235 6.655767 -4U236 5.633790 -5U238 3.014316 -5 PU239 2.371605 -06PU240 1.781431 -07PU241 1.236323 -07PU262 7.122040 -09 XE135 1.1 -25PM148 1.113335 -03PM147 4.345476 -06?M148M1.214077 -07 SM149 1.584024 -075SFP 2.9022S9 -06HSFP 3.387870 -34AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 12 12 l U234 8.453765 -6U235 6.690074 -4U236 5.667343 -5U238 5.043145 -5 PU239 2.333320 -06PU240 1.790606 -07PU241 1.292943 -07PU242 7.153722 -09 l 107

v-XE135 1.1 -25PM148 1.119074 -08PM147 4.363381 -06PM148M1.221139 -07 SM149 1.592189 -07SSFP 2.917249 -06HSFP 3.405334 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 13 13 U234 8.513136 -6U235 6.913955 -4U236 4.710921 -5U238 4.958762 -5 PU239 1.977480 -06PU240 1.319959 -07PU241 7.684451 -08PU242 3.395557 -09 XE135 1.1 -25PM148 8.351247 -09PM147 3.767757 -06PM148M1.010547 -07 SM149 1.475408 -075SFP 2.369830 -06HSFP 2.783369 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 14 14 U234 8.571663 -6U235 6.961452 -4U236 4.743259 -5U238 4.992812 -5 PU239 1.991059 -06PU240 1.329023 -07PU241 7.737214 -08PU242 3.418873 -09 XE135 1.1 -25PM148 8.408620 -09PM147 3.793642 -06PM148M1.017489 -07 SM149 1.485544 -07SSFP 2.406248 -06HSFP 2.802489 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 ,

15 15 U234 8.625621 -6U235 7.005772 -4U236 4.773447 -5U238 5.024583 -5 PU239 2.003728 -06PU240 1.337480 -07PU241 7.786451 -08PU242 3.440628 -09 XE135 1.1 -25PM148 8.462152 -09PM147 3.817793 -06PM148M1.023967 -07 I SM149 1.495001 -075SFP 2.421567 -06HSFP 2.820331 -04AL3 Hic 16 16 3.7049 -2016C 1.8525 -2 2.5643 -2 U234 8.677340 -6U235 7.046768 -4U236 4.801268 -5U238 5.054554 -5 PU239 2.015680 -06PU240 1.345458 -07PU241 7.832898 -08PU242 3.461152 -09 XE135 1.1 -25PM148 8.511670 -09PM147 3.840134 -06PM148M1.029959 -07 SM149 1.503751 -07SSFP 2.435738 -06HSFP 2.836837 -04AL3 2.5643 -2 I h1C 17 17 3.7049 -2016C 1.8525 -2 U234 8.725609 -6U235 7.086624 -4U236 4.828512 -5U238 5.082531 -5 PU239 2.026837 -06PU240 1.352905 -07PU241 7.876253 -08PU242 3.480310 -09 XE135 1.1 -25PM148 8.559809 -09PM147 3.861853'-06PM148M1.035784 -07 SM149 1.512255 -075SFP 2.449514 -06HSFP 2.852881 -04AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2 18 18 U234 8.770431 -6U235 7.123153 -4U236 4.853385 -5U238 5.10870' -5 PU239 2.037276 -06PU240 1.359874 -07PU241 7.916822 -08PU242 3.498235 -09 I XE135 1.1 H1C 3.7049

-25PM148 8.603934 -09PM147 3.881760 -06PM148M1.041124 -07 SM149 1.520050 -07SSFP 2.462140 -06HSFP 2.867586 -04AL3

-2016C 1.8525 -2 2.5643 -2 19 19 U234 9.299985 -6U235 8.004748 -4U236 3.367352 -5U238 5.230399 -5 PU239 1.521136 -06PU240 6.754516 -0 CPU 241 2.623684 -00PU242 6.521483 -10 XE135 1.1 -25PM148 5.016247 -09PM147 2.6665S2 -06PM14CM7.J33628 -03 SM149 1.484099 -07SSFP 1.564000 -06MSFP 1.815469 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 20 20 I U234 9.340902 -6U235 8.040599 -4U236 3.302422 -5U230 5.182678 PU239 1.507307 -06PU240 6.692892 -0S?U241 2.599746 -00FU242 6.461934 -10 XIII5 1.1

-5

-25PM143 5.030604 -09PM147 2.670463 -J6PM143M7.064903 -03 SM149 1.490697 -07SSFP 1.570969 -06H5F? 1.023563 -04AL3 2.5543 -2 H1C 3.7049 -2016C 1.0525 -2 21 21 l U234 9.3800 -6U235 8.073831 -4U236 3.396471 -5U233 5.275315 -5 PU239 1.534250 -06PU240 6.812525 -00PU241 2.646215 -03PU242 6.577490 -13 108

m XE135 1.1 -25PM148 5.059540 -09PM147 2.689596 -06PM14GM7.094332 -08 SM149 1.496907 -075SFP 1.577493 -06HSFP 1.831137 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 22 22 U234 9.419099 -6U235 8.106891 -4U236 3.410361 -5U238 5.296567 -5 PU239 1.540431 -06PU240 6.339969 -08PU241 2.656876 -08PU242 6.603988 -10 XE135 1.1 -25PM148 5.080256 -09PM147 2.700607 -06PM143M7.123379 -03 SM149 1.503037 -075SFP 1.583956 -06HSFP 1.838634 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 23 23 U234 9.453651 -6U235 8.137501 -4U236 3.423225 -5U238 5.317047 -5 PU239 1.546387 -06PU240 6.866418 -08PU241 2.667148 -08PU242 6.629519 -10 XE135 1.1 -25PM143 5.099437 -09PM147 2.710305 -06?M143M7.150277 -03 SM149 1.508712 -07SSFP 1.589937 -06HSFP 1.845577 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 ,

24 24 U234 9.489112 -6U235 8.167010 -4U236 3.435650 -5U238 5.336366 -5 PU239 1.552005 -06PU240 6.891361 -08PJ241 2.676839 -08PU242 6.653609 -10 XE135 1.1 -25PM148 5.117929 -09PM147 2.720635 -06PM148M7.176203 -08 I SM149 1.514183 -075SFP 1.595703 -06HSFP 1.852269 -04AL3 H1C 25 25 3.7049 -2016C 1.8525 -2 2.5643 -2 U234 8.537017 -6U235 6.730629 -4U236 5.655455 -5U238 5.077170 -5 PU239 2.319894 -06PU240 1.781108 -07PU241 1.242257 -07PU242 6.917848 -09 XE135 1.1 -25PM148 1.123479 -08PM147 4.422771 -C6PM148M1.212510 -07 SM149 1.569126 -075SFP 2.931836 -06HSFP 3.421451 -04AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2 26 26 U234 8.574577 -60235 6.760771 -4U236 5.680772 -5U238 5.030349 -5 PU239 2.298728 -06PU240 1.764857 -07PU241 1.230923 -07PU242 6.854734 -09 XE135 1.1 -25PM148 1.128461 -03PM147 4.442375 -06PM143M1.217887 -07 SM149 1.576058 -07SSFP 2.944844 -06HSFP 3.436629 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 27 27 U234 8.610468 -6U235 6.788713 -4U236 5.704316 -5U238 5.120772 -5 PU239 2.339816 -06PU240 1.796404 -07PU241 1.252926 -07PU242 6.977256 -09 XJ135 1.1 -25PM148 1.133174 -08PM147 4.460939 -06PM140M1.222974 -07 SM149 1.582667 -07SSFP 2.957137 -06HSFP 3.450974 -04AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 28 28 U234 8.646360 -6U235 6.816511 -4U236 5.727657 -5U233 5.141403 -5 PU239 2.349243 -06PU240 1.303541 -07PU241 1.257973 -07PU242 7.005369 -09 XE135 1.1 -25PM143 1.137314 -0SPM147 4.479204 -06PM143M1.227901 -07 SM149 1.589147 -07SSFP 2.969245 -06NSFP 3.465104 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 29 29 U234 8.678076 -60235 6.842243 -4U236 5.749270 -5U238 5.161281 -5 PU239 2.353326 -06PU240 1.310615 -07PU241 1.262337 -07PU242 7.032451 -09 XE135 1.1 -25PM143 1.142113 -00PM147 4.496113 -36P"143M1.232510 -07 SM149 1.595143 -075SFP 2.980457 -06HSFP 3.47E139 -04AL3 0.5543 -2 H1C 3.7049 -20160 1.0525 -2 30 30 U234 8.710629 -6U235 6.867063 -4U236 5.770130 -5U233 5.100035 -5 PU239 2.366394 -06PU240 1.817193 -07PU241 1.267425 -07PU242 7.053006 -09 109

v XE135 1.1 -25PM148 1.146252 -08PM147 4.512422 -06PM14GM1.237088 -07 SM149 1.600934 -075SFP 2.991266 -06HSFP 3.490802 -04AL3 2.5643 -2 hic 3.7049 -2016C 1.8525 -2 I 31 31 U234 8.842483 -6U235 7.143582 -4U236 4.873327 -5U238 5.143335 PU239 1.931316 -06PU240 1.363505 -07PU241 7.685844 -08PU242 3.459495 -09

-5 XE135 1.1 -25PM148 8.702205 -09PM147 3.958266 -06PM148M1.037647 -07 SM149 1.495325 -07SSFP 2.498388 -06HSFP 2.909340 -04AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2 I

32 32 U234 8.881388 -6U235 7.175575 -4U236 4.895141 -5U233 5.096408 -5 PU239 1.963240 -06PU240 1.351066 -07PU241 7.615722 -00PU242 3.427932 -09 XE135 1.1 -25PM148 8.740876 -09PM147 3.975352 -06?M140M1.042259 -07 SM149 1.501948 -07sSFP 2.509493 -06HSFP 2.922274 -04AL3 2.5643 -2 H1C 3.7049 -2016C 1.8525 -2 .

33 33 U234 8.918562 -6U235 7.205228 -4U236 4.915439 -5U238 5.187505 -5 PU239 1.998333 -06PU240 1.375215 -07PU241 7.751845 -0SPU242 3.439204 -09 XE135 1.1 -25PM148 8.777299 -09PM147 3.992424 -06PM140M1.046601 -07 SM149 1.508229 -07SSFP 2.519948 -06H'SFP 2.934446 -04AL3 2.5643 -2 Hic 3.7049 -2016C 1.8525 -2 34 34 U234 8.955737 -6U235 7.234735 -4U236 4.935551 -5U238 5.208404 -5 PU239 2.006383 -06PU240 1.380755 -07PU241 7.783075 -08PU242 3.503261 -09 XE135 1.1 -25PM148 8.813245 -09FM147 4.008774 -06PM148M1.050C87 -07 SM149 1.514405 -07SSFP 2.530268 -06HSFP 2.946465 -04AL3 2.5643 -2 I H1C 35 35 3.7049 -2016C 1.8525 -2 U234 8.988590 -6U235 7.262048 -4U236 4.954172 -5U238 5.228540 -5 PU239 2.014140 -06PU240 1.386093 -07PU241 7.813168 -03PU242 3.516805 -09 I XE135 1.1 -25PM148 8.846520 -09PM147 4.023909 -06PM148M1.054C55 -07 SM149 1.520123 -07SSFP 2.539820 -06HSFP 2.957589 -04AL3 2.5643 -2 H1C 3.7049 -20160 1.8525 -2 36 36 U234 9.022307 -6U235 7.288304 -4U236 4.972148 -5U238 5.247540 -5 PU239 2.021458 -06PU240 1.391131 -07PU241 7.841561 -08PU242 3.529584 -09 I XE135 H1C 1.1 3.7049

-25PM148 8.078597 -09PM147 4.038501 -06PM148M1.353600 -07 SM149 1.525635 -075SFP 2.549030 -06HSFP 2.960314 -04AL3

-2016C 1.8525 -2 2.5643 -2 END DU7LIN RODINS 0 6 0 24 3 1 1 ELANK END I

110 J

~ -

Table 4. Uranium and Boron Loading for 1270 gm Elements Plate U-235 Content U-238 Content Boron Content (Natural) 1 11.38 0.838 .08 I 2 3

4 15.11 19.13 28.12 1.113 1.409 2.071

.085

.088

.091 34.25 2.523 .095 I

5 6 43.15 3.178 7 50.83 3.744 8 53.06 3.908 9 55.30 J.073 10 57.54 4.238 ,

11 59.78 4.403 I 12 13 14 62.02 64.26 66.52 4.568 4.733 4.899 15 68.76 5.064 16 70.99 5.229 17 73.23 5.394 18 75.47 5.559 19 77.71 5.724 20 75.82 5.584 21 67.55 4.975 .155 I 22 23 24 57.08 47.09 36.22 4.204 3.468 2.668

.159

.163

.166 1,270.37 1.082 I

I I

l i

15 L