ML19242C981
ML19242C981 | |
Person / Time | |
---|---|
Site: | West Valley Demonstration Project |
Issue date: | 06/11/1979 |
From: | Vaughan R WEST VALLEY NUCLEAR WASTES |
To: | NRC COMMISSION (OCM) |
References | |
NUDOCS 7908140301 | |
Download: ML19242C981 (32) | |
Text
. _ _ __ _ _ _ _ _ _ . _ _ _ _ _ _ . . . . _
+*
- V
. m ico
'Vi _ r. n l C /.T I C:; 0? TIC':S :
. F nther discussion of my previcus cral stateront p q S.bl.. . . _ ,dyd)
Fe br uarv 1979 -
F
- J UN 11 1979 > 'S u . s . ~ .e. ., .u.,,,, /
/ -
Camm.~ sr am N.*.u,3 j
N mu.o &
p//_7 y ,
4 l --- e Ra,ymcnd C. Vaughan ( C oaliticn en 'lle s t 7 s11c y IIucle a .7nste s )
135 East :.'nin Street Hamburg, !ew York 1h075 _
h -2Of 3 AESTRACT: -
Unresolved vitrification problems 'are reviewed. In spite of these potential problems, vitrification is seen to be a better method of long-term radioactive-waste containment than either shale fracturing or in-tank solidification. It is proposed that calcination be done at West Valley, but that vitrification be dcne elseinere, mainly in order to reduce the volu e of wastes to be transported. At be st, this volume would be reduced by a fact,r of about 22; at worst, by a facter of about 6, compared to the volu .c to be transported according to the DCE vitrification option. Shipment of c9nisters of calcined wastes is shown to be fe asible in terms cf heat dissipaticn and radistien attenuation. For several reaccns, including heat dissipation, it is proposed that the p article s of calcined waste be temporarily " glued" together to form a relatively ncn-porous solid in each canister. Pre fe r ably, a material such as beric cxide glass or sodium silicate glass would be used as the binder, since neither of these materials would need to be rencved when the es1cined waste s were vitrified.
C C ,. a. . , ... o .
Vitrificaticn: Pro and Ccn 1 The Option of Calcining at 'Je st Valley, Vitrifying Elsewhere 5 (Tables 1 and 2: quantities of calcined pcwder) 7 Heat Dissipatice in Canisters of Calcined Powder 10
( T able 3: thermal properties of canisters) 12 Radiovctivi.ty of Cenisters of Calcined ?cwder lh (Table 4: radicl ;ical prc;erties cf c=niste s) ~ 16 Calcined Pcwder in Ecric Cxide :Jatri:- 17 Calcinad Powder in Sodiun Silica *;e '~trin .e 20 Sirterin; of C alcined ?c" de:' 22 (Figu~e 1: thermal.ccnduetivities) 2h (Figure 2: viseccities) .g y % 25
!ctes and References h, h"3 6*" . "
4 26 655 248s '
790814c% _ _ . _ _ . _ . . _ _ . . _ _.
12034 e -- ---%%---. 4w.- w ,6_e- , . , , , , , . , , , , ,,_
Vaughnn VITRIFICATION OPTIO."S 1/23/79 -
Vitrification: Pro and Con Vitrification, or incorpormting the re a s t e s into a glass, is presented in the DCE Study Report (1) es the best ethod for converting the 7/e st Valle y high-level liquid waste s into a st able form for long-term protected storage. In all three vitrificetion options that -
are considered in the report (2), the redioactive substences from tanks SD2 and SDh (along with some ncn-radioactive substances frca both t anks) would be c alcined to produce a dry radioactive powder.
This c alcined powder would be mixed at a high temperature with silica, boric oxide (3), and other glass-forming additives to produce a molten glass mixture that would gradually solidi-fy as it c o ole d.
The result would be a radioactive vitrified solid, that is, a type of borosilicate glass in which the radioactive atoms are bound into I
the molecular structure of the glass. The glass would be se aled into ,
I
~~
steinless steel canisters for long-term stor36e at a site as s ume d to be several thousand kiloineters away (h). I Vitrification probably is the be st ce thod f or assuring long-term containment of the radioactive wastes. In my cpinicn, at le ast ,
vitrification is the best option that is pre sently available , and I assume in this paper that the wastes can be and should be vitrified, although not necessarily at Je st Valle y. Heverthele ss , in spite of my pre fe re nce f or vitrific ation, I believe that there are some unanswered questions about the long-term integrity cf vitrified iaste s. Before prccee ding, I will review some of these potential problems .
Pyre x-t ype borosilicate gl9s se s , censisting altcst entir.ely of beric oxide (523 0 ) and silica (SiO2), and true biniry borosilicate glasses, consisting entirely of 3 0 end SiO 2, or kn wn to be very 23 sbeble. These types of glasses are highly re sist ant to le aching and e ,e 6 red c,V 13084
. Vaughan VITRI?IC ATION C?TIONS 1/23/79 devitrification (5) . Thus, in discussing the ternary Na 0-B 0 -SiO 2 2 23 system, Morey (6) states that "no mixture s on the side 3 0 23 -SiO 2 "Id be crys t a llise d" , and Rockett and Fester (7) report similar conclusions from their work on the binary 3 023-S102 system. Resistance to le acblng is ciell-known for borosilicate glasses which contein a feirly high ratio of SiO 2 t 3230 .(8).
However, there are three things that should be bcrne in mind.
First, titrified radioactive wastes are not'as similar to Pyrex-type borcsilicate glass - as is some time s implie d ( 9) . The borcullicate (B203 + SiO2 ) e atent of the radioactive glasses proposed by DCE would be only about $5% (10) instead of the 9h5 borcsilicate content of typical Pyrex glasses. Second, althcugh borosilic ate and other glasses l nre usually considere d to- be honcgeneous, it has been shown that they ,
I '
frequently consist of fine-scale tuc-phese mixt ure s , as will be discussed below. Third, rediation may cause graduel degredation of !
the glass, as will be discussed belcw.
The first of these three considerations dce s not requu e much further discussion, except to say that the known stability of Pyrex-type borcsilicate glasses dce s net imply anything about the stability of a glass "iith a boresilicate content of cnly $$$.
The second consideration is the fine -s c a le two-phase s tr uct ur e of m.any glasses which is described, f er example , by Dere=us in his book, Glass Science (11) . Chapter h cf this book, " ?ha se Se p ar ation" ,
describes the phenomenen and provides sc=e intere sting electron microgrephs of phase seperation in verious g19sses. Regarding Jhc fine -s c ale phase separetion cf Pyrex berosilicate glass, Dcre mus states that "the catrix phase is rich in silica, and the borosilicate phase is separated at such a fine s c ale that it cannot be leached cut, r orn 13034 6 rsa3 LJU
Vaughan VITRIFICATION OPTICNS 1/2 S/79 sc that the glass shcws a chemical durability appronching that of vitre ous silic a" (12). He also suggests thet "it seems likely that there is little solubility of bor ate in silicate, as uculd be expected frca the different s truc t ure s of the se accrphous oxides... Therefore, the silica-rich ph ses in sodium borosiliente glas se s are also probnbly close to 100% silice" ( 13 ) . The potential problem with phase separation is that it =ny decre ase the leach resistance of a glass. According to Doremus (1k), -
" .. .we athering and devitrific ation are faster the lower the silica content of a phase. Thus a glass separated into a silica-rich phase end another containing less eilica might weather or devitrify more rapidly than a hc.ac6eneous glass. The resultant
- properties de pend on the scele of the separation, since .n scme borosilicate glasses, as mentioned before , the very fine sc ale of phase separ ation le ads to a more che mic ally re sist ant glass ."
In a Pyrex-type borosilicate glass there is enough silica to provide this fine-sc ale structure, wherein the silica-rich matrix surrounds and thus protects the tiny " islands" of the other, more soluble phase.
It remains to be seen whether the vitrified wastes cont ain enou6h silica to afford this protection, if phase separation occurs.
The third censideration is possible degradatica of the glass, mainly due to radiation emitted by the radioactive compcnents of the glass.
A repcrt critten by An Ad Hoc Panel of Earth Scientists f or the U.S.
Envircnment al Frcte cticn Agency (13) r aises1 que~sticas about le aching and devitrificaticn in the presence of alpha radiaticn and other conditiens e xpected during long-term ster nge , and suggests ~that
"...there is no evidence thet incorperstion into a glass will ensure re sist ence to significant leaching over time senles of a de c a de . "le 7ish to make cle ar that this is an are a in .hich experiments can be dcne. If carefully centrolled, such stuties should be able to answer the que sticn re as onably we ll."
The same repcrt (16) centeins en interesting observation on the manner in which devitrific a tion may occur :
nr
{crJb [N l9 u Jq
. - ..- . - . . .- x --. _- - .. .. - .
??.u; hen VITRIFICATIO" O?TIONS 1/28/77 -h-
"The c cnse c ue nce s of devitrification are the formation of one or more crystnllino phases. Such processes c omrcnly re sult in the formation of meterials with simpler chemical compositions than the glass. The new phase excludes impurit ie s . If the impuritics include the class of nuclides that are the fission product s er TRU's , then these will end up in intergranular boundary are as . Le aching of the se would then be relatively e as; ,
and the bulk of the original glass need not even go into sclutica, but could remein es reletively ncn-radicective crystals."
~ ~
Dorimus ( 17) '[ugge s t s that , in some cases at le ast , crystallisation may be more likely to occur in silic e-poor phases than in silica-rich phases:
"Cften phase se paration give s one phase that is more easily crystallised than the bulk glass. For exemple,- in a sodium borosilicate glass phase separation leads to one silica-rich phase and another sodium borosilicate phase containing less silica then the glass as a whole. This sodium borcsilicate phase crystallises during he at-tre atment at relatively low te mpe r a t ur e s . . . "
Regardless of which phase crystallises, it seems likely that the t
glass will becomo less resistent to leaching. lnother possibility is sugge sted in the recently released Battelle-Columbus report en ' Nest Valle y -( 18) :
"Holium "'cduction from actinides in vitrifie d westes ceuld cause at 3 problem in disruptior of the microstructure of the glass. This might incre ase the le ach rate of the glass..."
Disruptien of the micr os truct ure could be a major problem if tl.e micr e s t ruc t ure consists of a protective silica-rich matrix surrcunding tiny " islands" of another, more soluble phase, which would presumably centsin = cst cf the radioactive components of the glass.
??e ve r the le s s , it seems to me that these pro ler.s can be avoided if a suitable glass f ormulation is use d. Vitrific ation technology appears to be f airly well developed at sever al glass-tsnuf ecthring ccmpantes and nuclear facilities, including Facific ::crtherest Labcratories. The DOE report ( 19 ) ste;es that, "since 1966, over 50 million curies of radioactive materiels have been incorporated
() sr' '") om',' s'r "/ m v9I%g Ml
_ .__ u _ . , _ _ . .~ - - T u-- - ~ *~~~?---** -
--e--- - - - - - ~ - - * ' - - - - ' - -
s.o ug.:1 n n ,.,1.-. . ..
t r i u, .-
10,. 7 V- r. ,,.
au ., ,,..S 2/,/,,f -$-
into gless at Pacific 'ior th"re st Labcr at crie s ( ?NL) in a series of demcastrations." The glass fccmulaticn clll depend, cf course, on the types of wastes to be inccrporated into the 6 ssa1 , and scme further
.:cek will be required to develop a glass s uite d to the "le s t V alle y
- pstes (2C)..
In eny case, it seems obvious that the le ech re sist 9nce of vitrified westes will be much better than the lesah resistance of the rndicactive ce me nt mixe s propose d by DOE f or 'the cther two 7.ejor options in the report, Shale Frecturing and In-Tank Solidificaticn (21) .
Thus, of the presently available options, vitrification ceems to be the be st choice . There are scme indications that ceramic or glass-ceramic forms of radioactive waste s olidification are better (i.e . ,
more stable, in a thermodynamic sense) than vitrific ation, but these nee d much more development work barcre they can be relied on. In the i meantime, cle an-up work must be started at the 'lle st Valle y site . The
- in s te s cannot be left there indefinitely ahile the seerch continues f er an " ideal" disposal method fcr nucle ar weste s.
The Gotion of Calcining at "Te s t 7911e y . Vitrifvinz elsewhere Unfortunately, the high price tag and the high r ec'intion-exposu e figare assigne d to vitrific aticn in the ECE report make it eppear to be a prohibitively expensive and dangercus option. '!a t e , have m.
th=t these high figures ere based on a questicneble a s s ur.ption ,
name ly, the assumption that the c omple te vitrification process will be cprried cut et the 7est 7elle y alte . '!st everycne mskes this assumption. Fcr enample, it ..as been pr^ pose d that the onlc6.a61cn
=., . p . l .e+,
.- ..u ..
,, e e,,
v.~ o
- c. .v
.. . o,, u. e,a,_.,e ,7 .. m..n&o u.c vi.o. ,,.u.s__.,..-.,t.<
.m . .- . a,mu ,,,y might to dcne 9t 'scific Northwest Lobsretcries. The DCE report dces r or7 (d r3 /_ J J agnpa
. .s v W 2
- - - , . - - ..-_v _ - . - _ . - _ - . - . _ . . . . _ . . .
s ,. ~, e .1, . . . r. m. u. ..r . r o- . .r nw o. w 1. -7C .S
. ?. /,7 /~1,~ 6 -
.ot censider this possibility, evcn though it could ~nka a signific nnt reduction in costs and rndistion axycaure.
In DCE 's bre akdown of estimated vitrification costs (22) and e stimate d population exposure (23), the largest single items cre esacciated with the transportaticn of the ennisters cf vitrified westos. Transport ation acccunts fcr (0.7 million of the 130 tillion dollers e stimated for the comple te vitrification prcce ss (including removal of wastes from tanks, partial separation of .restes, calcination, vitrification, and transportation to storege site ) , and transportation accounts for 10 of the 14 man-rem estimated for the population exposure during this proce ss. The ccats and radiation doses are high because DCE is talking about trensporting at least 22h canisters of vitrified wastes, e ach two feet in diameter and ten feet long (2h).
For ccmpariscn, consider the f act that the calcined radioactive waste powder would fit into ten canisters of this sise, if it were not mixed with the glass-forming additives and other non-radioactive substances that go into the glass. Thus, there c,ould conceivably be a 22-fold reduction in the number of canisters that wculd be shippe d.
Transportation ecsts cou3d conceivsbly be reduced from h0 7 million to perhaps k million dollars, and the radiation exposure to pecple living alcng the transportaticn route could conceivably be cut frc=
.10 to 1 msn-rem ( 25) .
It may not be re 911stic to reduce the number of canisters'frem 22h dcwn to ten. Nevertheless, 15, appears that the number can be brcught down to somewhere between ten and forty canisters , if c a1 cine d ,
powder is shipped cut for vitrificaticn elsewhere. Ten canisters is the approximate minimum, cssuming that the calcined powder consists entirely of radioactive asterial, as shown in Table 1. If it is not 655 254 13331
= . = - - = .. .- .. -
inughan Table 1 e .u 0.3 Lw. . ...p. .
v 1..yr
. r.. . ut I n.
e R.rmr c ,.-,n. C ew1.
r n - .r a- .ou~.,. .r o..
EERIVED FRCY. ECTH TA::K5 ' C O:.'3I!ED )
I Volume of Eulk toluT.e
- .:es s s olid s , only of pc;; der Substnnce (kr) -
(ft)) (ft))
Th0 2 17600 70 1ho U;03 0 00 30 00 Pu0 g, 35 05 1 Fission products, actinides, etc. _5CCO 35 70 TOTALS 28635 kg 135 5 ft3 271 ft3 Thus, the tot al volu~ of radioactive calcined powder would be approximately 271 ft).e assuming that the powder contains 50% volds, which is typical for a powdered c.aterial. Each DCE canister has a capacity of about 28 ft), so ten cr.nisters .tould be needed to accom=odate this pcwder.- Quantities in the above t able are based on the somewhat inconsistent data in Companien Report, pp . 3 -2h , 3 -26, 3 -2 8, 3 -29, h-23, C -1, C-2, C-3, and C-5 Table 2 APPROXIMATE INVENTORY OF NON-RADICACTIVE CALCI::ED PC'.YEER DERIVED FR0!.! TAUKS 802 AND 8Lh Volume of Bulk volume Mass solids,only of powder Substance Mole s (kz) (ft)) (ft3)
Fe 2, 0 (in 8D2) 330000 52700 355 710 Cr 0 30000 h560 31 62 23 "
Nio "'
25000 1870 9 18
" " 10 Al 0 5500 560 $
23 "
AlF 3 "
18000 1510 17 3h
..:n 0 3 cr MnC 25000 1975 1h 23 TOTALS FOR 8D2 63175 kg h31 ft3 862 f t)
Fe 0 (in Sch ) 20000 3190 22 hk 23 "
Cr 0, "'
5200 790 5 10 2;
N10 $500 blO 2 h Al 0 8500 870 8 16 23
- .~no 2
er .'.in0 " "~
6CO $0 0.5 ~
~
1 TOTALS FCR 8Eh 5310 kg 37.5 ft3 75 ft3 TOTALS FCR BOTH 3D2 A::D SDh $3435 Kg h68.5 ft3 937 ft3 Quantities in the a bo're table are based on the somernat inconsistent data in Ccmpanion Reccrt, pp. 3 -20, 3-26, 3 -2 3, and 3-29. The v alue s in the table may 'ce changed slightly if " residual nitrate and uncalcined materials" ( p.14 -lh ) replace some of the fully-enicined exides.
N Ni) l E
--..'.1.=.-
1pnSa
Vnughan VITRIFIC ; TIC" 0FTIO::S 2/3/79 feasible to carry out a c omple te seper9tien of the r=dicactive and non-endic,ctive c c:: $ c u n d s , then the n nber of conistars could be es high as h3. Table 2 lists the main n:n "9dio9ctive cubs t rnce s that would be c alcine d, if they could not be separated frca the redicactive substances. Even including all these ncn-radicactive .re s te s , the total volume of calcined powder would cnly be about 1200 ft3, which is much less thah the 6300 f t3 of glass propcsed in DCEis abese n vitrification option. Thus, at worst, shipping the calcined powder would require only 43 canisters , instead of the 22h required to ship the glass.
The extent of separation will depend en the amount of research .
and development that is done. According to the DCE report (26):
" Ideally, in order to reduce subsequent stcrage and transportenion costs, only the radioactive fractions would be vitrified; the inert salts that make up by f ar the gre ater bulk of the restes would be solidi 1 cd by a different process for less costly disposal. The sodium nitrate-nitrite in the tank SD2 supernate is the chief inert constituent, and the supernate, <thich is a single -phase s olution, is s us ce ptible to separation into activ.
and ncnactive fracticns; a considerable beckgrcund of information is available on the se paration precedure . The sludge, ahich is predeminantly inert ferric hydroxide , presents a much more complex problem; the sludge could also be divide d into inert and active fractions, but a considerable amount of research and development would be required to ensure a workable process."
Regardle ss of whether the compounds of iron, chrcmium, nicke l, e t c . ,
are separate d frca the radi cactive constituents of the sludge, I assume in acc~ordance_ with - the .EOE 're port that the separation of th' radioactive constituents from the sodium salts in the SE2 supernate will be carrie d cut prior to calcinetien. This sep?raticn procedure ,
enploying lon-exchange eclumns ( 27) , ms:ces it possible to exclude _
the sodium salts from the calcinntion step. The B a t t e lle -C olumbus repcrt refers to this separation proce dure as a sort of efterthought (23), but the calcinntion and vitrifiestien options propsced in
-c ne:
s -
- 59
__vu J
/,u; ban VIT3./IC? TION 0?TIONS 2/3/70 the Bette 11e -Columbus re port assume that the sodiur salts cill not I
t2 removed prior to enicinetion (29) . Thus, that r:pcrt sugge sts some unnecessarily large final volumes of rasted: 30,000 ft3 of ec1cined powder, or h0,000 ft3 of glass (30).
In summary, I prcpose calcining the SL2 and 5:k wastes a t !!a st Valle y, af ter se parating the sodiun compounds from the SD2 wastes, in essentially the same manner proposed in the DCE report. This erill not be an easy task. I think that the DOE report underestimates er unde rst e te s the difficulty of some parts of it, particularly the removal of the sludge from t'ank 8D2. Ne ve rthe le s s, the task must be done as a prerequisite for any opti~on that converts the wastes into a st able , le ach-re sist ant f orm.
Calcination will produce a quantity'.of radioagtive powder, perhaps as little as 270 ft3, er perhaps as much as 1200 ft3, depeneing on whether the non-radioactive substances in Table 2 are eliminated cr included. I propose shipping this calcined powder elsewhere for vitrification, either to an established nucle ar f acility such as Pacific Northwest Laboratories which is elre ady equipped for vitrification, or to a possible vitrification f acility adjacent to a re pository site . The main re ason f er this proposal is to reduce the number of canisters that wou c be shippe d. Another fe ature of the prepcsal is that vitrification could be c arried out sever al ye ar-later than calcinatica. The calcination process could be done in the neer future, perhaps within five ye ars , so that the liquid wastes at vest Valley uculd be converted into e s e mi-s t able fern. The vitrification
~
process could be deferred f or as r.uch as a decade er two, until all doubts about vitrification are cle are d up, or - pcssibly - until ceramic or glass-ceramic techno1cgy is shown to be superier to vitrification.
, , . 3rj
?' -I o
(
490.9)._42
-L%
. -~_ ~..y. . _ , - . ; --- ___---____ . ,, ._ _..; - :.v ;__. ..---a ~= - - - - = - - -
u..,..
.p. . . . ....
.r _ r. , . ... g ,,
- r. .1 g.';
.~ 2h,,N,, m-Heet Dissiantion in Canisters of Calcined Powder An impcrtnnt ccnsideration is the emount of heat genarsted by radicactive decay in e ach conister cf calcined powder. Since the tet el he et generntion rate of the 3:2 nnd SEh wastos is in the neighbcchood cf h30,000 STU/hr (31), the heat cutput per canister will range from about 10,000 to about h3,000 BTU /hr , depending en how many canisters are used. Thus, the heat output cf each canister would be very roughly comparnble to the winter heating requirerents of a house in '#e stern :Tew York.
The powdered material in the canisters will ~not be a very good conductor of he at , due to the air spaces between the particle s. Many powdered or granular materials consist of about 30% sir (by volume ),
and I assume that this would also be the case with the calcined powder in the canisters. Consequently, the calcined powder in the canisters will be generating a lot of he at and, at the same time, it will be a good thermal insulater. This will cause the centers of the canisters to he at up to too high a temperature, unless the spaces be tween the p article s are filled with some thing that is a better heat conductor than air 13.
There are e number of meterials that cculd be used f or this purpose. Eccides hsving good thermal conductivity, such a material should also act as a binder, to help hold the particle s together in case the canister broke open in an accident; it should have a f airly low vapor pre ssure ; it should be a meterial that can be c onbine d f airly e asily with the pcwder, et a f eirly low temperature ; and it should be removabic pricr to vitrification, unle s s it can actually be incorpcrated into the glass.
Two of the most likely c andidate s f or this purpose are materials r
j,I s
- O- -
1.700a
- ~ .a 2
_ _ _ _ _ _ _ _ _ _ _ _ . _ r.__._ __ _ .- - . - . . _ _ _ . _ _ , , . _ . _ _ . . . . _ , . _ _ . _
'Inughan VITOIFICATIC.': 0 ?TI C'!S 2/k/7? - II -
t' et would bc inccrporated into the glass: either bcric oxide (3 0,)
, 7' cr a scclum silic ate mixture (He2 C + SiO2). Fath of these esterinis are glasses thetssives, but since the y me lt cr soften at lower temperature s than ordinary glasse s , sad since they will gradually dissolve in water, they would not be suitable for long-term containment cf the westes. However, as a temporary matrix for the es1cined powder, either boric oxide glass' or sedit.m silicate glass should work well.
Eech of these glesses is described in more de-tail in a following section of this paper.
Thermal conductivities of some of the c elcined powders and of the proposed glass matrix materials are shown in Figure 1. Note that these will determine the overall conductivity of the powder-in-glass composite in the canisters. For the sake of illustration, I will assume 0.002 cal /( sec-cm- C) for the overall thermal conductivity; this is a reiner conservative e stimate .
If t're r ste of heat generation snd the thermal conductivity are i
bcth ur! en throughout the canister, and if he at flow is strictly radic1, then the tempe r a ture difference AT between the center and the </all of the canister can be expressed as 9.,2 AT 3 (Eq. 1)
- here q is t he he at geaerotion rete per anit volume ; r is the canister radius; and k is the theraal conductivity, here as s ume d t o be abcut 0.002 cal /( se c-,, - C) , .titerna".ively, Equation 1 c an be rewritten as Q (Eq. 2)
AT =
4nh.z where Q is the tctal he at generation rate within the canister and h is the length or heicht c; the c r:is te r . 6' G.'~5 O 3 av
^
c Js u.wa
- - - - - . . . - ~ . - . . . . . . . - , . - . _ . . . . _ . - , , -.y_-.
/7/--
......nn ,
,,-.._.-.e, v2 s .s. -.v O 2. ,. r m.
t .e c f
.. n--
2 Equation 2 indic ate s that AT i s p.- cpc r t i cn el t o h./h , the rcte r
cf he at gener 9 tion per unit le ngth c ' c onis ter, but is inde pe nde nt of the csnister rndius r (32). This re lecienship is snc cm in Table 3,
' 'ne r e the .: ostes are considered to be divided among ten, twenty, or forty canisters. The cniculated values of AT ere 413 C, 2C9 C, 'a n d ICh C, re spe ctively. The first of these v91ues see ms uvece pt nbly high, implying that either the therma. :nductivity or the number o'r cenisters must be incre ased. The second value' (AT = 2C9 0C) would probably be acceptable. The third value (AT = 10hcC) seems quite satisfactory.
'Tnile the boric oxide glass cr sedium silicate 61ass would be expected to fill most of the spece between the partic_es of calcined powder, there still might be some porosity in the pcwder-in-gless ,
Table 3 DIVISION OF '#ASTES A.lC.iG '
10, 20, CR
- u. . ,:. ,..DI. ,,a-a C,,.,, y. C...
. . . . hr .~. . .O u n..a u ~ ~l C uc us
--- .w,h 0:...n C A.u dC A L n- :.Re. S us n,1 a .n s
U u .be r of Q Q h k AT canisters used ( BTU /hr ) ( c al/se c ) (cm) ( cal /( se c-cm- C ) ) ( C) 10 h5,000 31h9 300 0.002 bl8 20 22,500 1575 300 0.002 207 h0 11,250 787 300 0.002 10h Q, the heat generation rste per canister, is equal to h30,C00 ETU/hr divided by the number of c aniste*s use d. The c enister length h is 3 meters or 300 cm, as specified by 2CZ. The thermal conductivity k is a s s e.e d , as explaine d in text. The te .per atu~e dif fe rence AT be t teen ~
canister :, enter end canister " tall is calculate d frcm Equatior 2.
6b'.-) LoV a onm
_f ts.y O + _
. - - . ,_. __ . _ - , _ _ _ _ _ . _ . _ . ~ . _ . . _ _ . _ _ _ _ _ . . _ .
it'.shnn 71TElr ICATIC:; C? IICI;S 2/5/~2 .l.:t uru in the canisterc. The redue:'_cn in thermsl cc,c ativity du; I
tc porosity 'mc been investicntad 'cy Eceb (33) nrd .: r sn:1 and Tingsry (3h) 'riho find that, for isctropic parcsity,'
kp = k3 (1 - Py ) (Eq. 3) where k g is the thermal conductivity of a solid or nonperous pie ce of a given material; kp is the thermsl conducuivity of a pcrous piece of the came material; and Py is the volume pcre fraction of the forcus picco. Since the porosity would probably not exceed 105 by volune (P y = 0.1), the thermal conductivity should not be greatly affected.
Radiation of thermal energy from the outside sur_'ce of e ach canister should be an adequate method of he et re je ction, as long as e ach canister is kept away from other hot s urf ace s (including other canisters) that would radiate thermal energy back toward the canister.
Assuming that e ach canister has a radius of 30 cm, a length of 300 cm, and an emiscivity of 0.8, the rate of thermel radiatien from the outside surf ace of e ach canister (excluding both ends) would be about 16,900 BTU /hr or 1135 c al/sec at e surf ace te mpe r a t ure of 100 C, cr about 23,000 STU/hr or 1960 cal /see at 130 C, cr about h3, Soc ETU/hr er 3065 cal /see at 200 Cc. These v alue s , in ccmbination . tith the v alue s in Table 3, suggest that the number of canisters cculd be anywhere between twenty andcforty. If twenty canisters were used, the surface of each canister could radiate enough heat to stay belca 130 0C, so that the temperature at the center cf the canister could st ay belcw 350 c. If fcrty canisters were used, the surface cf e ach canister could radiate enough he at t o stay be lc 2, 100 C, so that the temperature at the center could remain belcw 2000C. , , .
l bh3 iu m n m, G u U*2
.---=M' -. .Y. w.- + ,e+. e- % . ,,w- O .a .,,pw .e.,qy_ -w -
w e- e..w e-y-- a
/c chnn 'll :Gi1C ATIC:. L:TIO::S 2/T /7 - l'; -
Rodio,ctivity of Crniaters of Colcired Fowder 1
7thile I have no tnckground ir r 'diclodic al me ns ar ment and prctection, I will attempt to sho'cr that the;tecnspertation of the tcienty to forty canisters of c alcina d pcwder (in beric cxide or ocdium s
- licate matrix) , oses no anusual rodiolcgical hasard. It appanrs from the published lite rature that a comparison can be made with the trensportation of spent fuel elements, and that the radio-ectivity of e ach of the proposed canisters of, calcined powder is less than the radioactivity of 1 'QU spent fuel. Since 1 MIU is typic al of the quantity of spent fuel shipped in a truck cask, it appeers a that a similar cask would provide adequate shielding fer a canister of calcined powder.
According to Fitsgerald (35'), e ach pre ssurised .: ster re actor ( FilR) fuel element contains approximately 0 5 '.2U (retric tons of uranium),
while e ach boiling water re actor ( E;iR) fuel element cont ains appr oxi-mately 0.25 MTU. Until commercial r eprocessing ce ased in this country
- w ith the shut-down of the Viest Valle y plant, the usual practice was to hold esch fuel element at the reoctor site for about l$0 days after removal from the reactor, before shipping it to be reproce ssed. The .
spent f ue l e le me nt s , still highly radicective, were shipped in casks designed to cut the radiation down to accept ablh levels (e .g. , no =cre than 10 mrem /'cr at six feet from the vehicle s ur '. a c e , as is also ass umed in tho ECE report ) .
Fitsgerald (36) also states that
" Casks containing spent fuel may be shipped in trucks , r ailr c ed cars, and en barges. A truck c esk may be de s igne d t o c arry 1 t o 3 F.*a fue l e le ment s and fr om 2 t o 7 Ela e le ne nt s . A truck-c o s k will be cylindric al in shape , approximately 5 ft in diemeter and 17 ft 1cng. Such a cask may weigh up to 35 i.2. A railroad-cask is similar in shape but bigger and may creigh .' rom 70 t o 100 :.2. The railroed-cask m.ay be designed to c arry up to 7 Fla or up to lo Ela e le me nt s . "
nno g!*
e
,Q % . .6 fg L'.
l )~ R /^
.j ,
.,_ _[' . . , . - O - - . - - - - - ' " " * * " " ' " "
V v. 3han 7ITRIFICATION CFTICNS 2/E/7; The casks proposed in the DCE report for trnnsporting the 22h c9nisters i
of titrified westes would weigh 27 ' T loaded (37), end nre thus appr.rently truck casks, even though shipment 'cy rail was assumed by DCE fcr the vitrified wastes (33).
In any case, the information giren above implies that a truck cask typically centeins about 1 IJTU cf spent f ue l , thile a railroad cask would carry more. Table h shcus the approximate levels of radioactivity for 1 ?;TU spent fuel af ter 150 -days cooling, and also for one of the proposed canisters of calcined ponder, assuming that the calcined powder is divided among either 20 or h0 canisters. The comparison should be regarded as approximate, since the distribution of radioactivity for the calcined pcwder would be similar but not identical to the distribution of radioactivity for the spent fuel elements. Even le aving some roc = for this uncertainty, it appe ars from Table h that e ach canister of calcined powder would be less radioactive than 1 MTU spent fuel and could thus be shipped in a typical truck cask. If more chielding uere ne e de d, a railroad cask could be used.
The rate at which heat is generated by radioactive decay in 1 '.:TL spent fuel after 130 days cooling is about 2C kw cr abcut 6S,5CO ETU/nr (39). since the heat generntien rate in a canister cf calcined pcwder wculd be less thsn this - i.e., about 10,000 to h$,000 ETU/hr, -as de scribe d previously - there should be no unususi he et-dissipation problem during shipment in a truck cask.
[ f i e ,J - "ha (l ~ - -'*)
L-.
4*) %}a3 L *_ g
.. ,. ,. .. _., . . n n y.r . . . .r '~
1' C 4. v'". co .i . 'v' ". . _" 2/',
" 'A -
.I O
Table h P6 A 1E ,.s0... C I ./1,1. Cr, S rr .. e r :.L:.v
.-,_o
- c. .<.:. .
CC'.: PAP.ED TO C ANISTERS OF C; ECI'3D PC.',EER 1 ~'U of spent fuel after 150 days cccling:
Fission products h.39 x 10 -0 curies Actinides 1.36 x 102 c urie s TOTAL 14.53 x 10 0 cuales
^ne canister of ca.'.cined powder, arsuming that 20 canisters are used:
Fission products 2.1 x 10 0 curies Actinides h.3 x 103 curies TOTAL 2.1 x IO D cu"les One canister of calcined poxdor, vssuring that h0 c enisters are used:
Fission products 1.0 x 10 0 cu"les Actinides 3 cu.tes
_2.1 x 10 TCTAL 1.0 x 10 6 cu"ies 51gu"e s f cr spent fuel efter 150 days cooling a"e from Fit zgerald, op. cit., p. 222, Table $E.ll. A similar figure fcr total radicactivity pe r I.Z U s f t e r 15C days cooling is gi /en in Cerran! cr Re pcrt , p . 5 -h .
Figures for calcined pcwder are bFsed en the scnawnar incornistent data in Concanicn Raccrt, pp. 3 -22, 3 -23, 3 -2h , 3 -2 8, 3 -29, snd 3 -62, cnc in the bac ce lle -J olumbus re port , cp. cit., pp. 19 and 20. Tot al radioactivi'7y be h.1 x 10 crie cf fissicn products frcm tanks SE2 and 8Eh is tsh n to s ; this is divided by the number of cen'.sters use d.
Tctal radic,nctivity of cctinides from tanks 8D2 snd SEh is taken to be ? .5 x 104 c urie s ; this is divided by the number of cenisters used.
- g* 8"%, [
A
.! U G ..F 3
-- - -~---4 ~ . . . - _ _ . , - . . - - - - . ._ ._ . _ ,
Vnu2hnn VIT?.1;- I C e tid:! 0? Tid:S 2/11/~7 Celcined Powder in Bcric 0xirie :,In t r i x Euric oxide (502 3) gin 3 is cne of the metrix mnterials that I prepcce mixing with the e nleine d rn;1c 9cti .;e "in s t e pcwder, in crder te fcrr a temporary solid ns: in em:h conister. This 3 ocs 3 melts or acrtens et a relatively Icw tempere ure and will gradunlly dissolve in st a t e r . Boric oxide has a high nffinity for water, and a smn11 c= cunt of wetor will tend to remain as en e ssential17 stable constituent of the glass, unless the glass is held at a high temperature for an extended period to drive off this residual water (h0).
I propose mixing the calcined waste powder into the molten glass, et as low a temperature as possible, which would probably be about 600 C. The viscosity-temperature curve for beric oxide glass is shown in Figure 2. The proposed mixing or kneading process could be tested with a non-radioactive calcined pcwder to determine it s fe asibility.
Such a mixing process will not be e asy, but with proper design may be fe a sible . It would be roughly comparsble to the problem of mixing a powdered material (such as talcun powder) into a fluid whose viscosity is like cold honey, but whose temperature is verging on visible red heat, withruc mixing in too many air bubble s . Jigher te mper at ure s would make mixing e asier by reducing the viscosi37 of the beric cxide, but *tould incre ase the required oper ating temperat are of the mixing e quipment and might also incrense the volatilisation of scce of the radioactive substnnees. For ccrperisen, calcinatica temperature s are in the neighborhood of 3CO OC, hile vitrifie stion temper ature s are in the neighborhood of 11C0cc (h1). - .
It nsy be possible to add scoll nmounts of some other material to the boric oxide to reduce its visccsity. Various " fluxes" are commonly added to silica for this purpose , in the manufacturing of
.. ,.c 1).e;_
_ = .. .-
S /, /-,-
. .,,..,L,
.g..
,/..
. . . n. .,..;*L 7 , . ~.AL7 - u U.A lw..w m.,,
- r. / _ _ / #f
, 30 tiliente ginssac, bus it is not cla=r + ether this t e chnique can .
i L_gnifienntly reduce the viscosity cf ;ric oxide _c the vicinit3 of C
3: 0 C. Spe aking of vnrious simple cxide ginsses such as silica, boric cxide, and ger an19, Dorenus (h2) stctes that:
"The viscccities of the s imple cnides decrense she. ply with the addition cf most im,curity icnn. Such i purities as weter, in the form of -CH groups, and el'. celi azide s are particularly effective in Icwering the vinccsities.... The eddition cf 0.165 cole 5 Nn 00 to germania lowers the viscosity abcut n factor of h6 at 1c000c... The addition of echer oxides to silica invariebly lowers its viscosity. . .. The viscesity of 3 02 3 elso decre ase s when other exides are ndded, but much less then for SiO result is expected because of the lower viscosity of 32b ,This -
resulting frca some weaker bcnds elre ady pre sent in the ,ure oxide . A summary of viseccitie s and other properties of bcrate melts is given by Mackencie ."
Mack 2nsia (43) in turn indicates that, at 600 c, the addition of v aricus other oxides aill not reduce the viscosity of boric oxide by core than a factor of about 2. At higher temperature s , the viscosity reduction is somewhat gre ater. Residual water in boric oxide glass msy reduce the viscosity by a f actor of two or more , perhaps up to a f9ctor of about six, according to 3ccw (hh) and others (h5). It does not appear, however, that the viscosity can be reduce d much more than this. A ten-fold or hundred-fold re duction, if it could be achieved,
.. ,,, , a -, u, .og v,_5 m e r-
.. . 3. e g . s _ u o
_evav. _ y
.._ . u . % .
It is possible that mixing could be done, albeit r=ther sicwly, by simple gravitational settling of the relatively dence c alcine d p,wder into the less dense molten beric oxide . This could e asily te de ternined with non-r9dio2ctive pcwders.
Up to now, it has been essumed that the c elcine d radioactive weste powder and the boric cxide glass vould e ach cccupy $C5 of-the vclure of e ach canister, alth the g19ss filling the speces between the particles cf powder. It may be ccre practical to increase the ratio of gless to c elcined pcuder, especially if gravitational settling
/Fr -
o,yr /j eonoa OJJ LL v > .I
. _ , O , - . - . . w
o.
. . ,..._ _ n .I .. ,:u I u, . to.-
, w u n iC,,,,.a ,,/ ., , /,,no m
-y -
is used for mixing. Thus , e och cnnister might te c nlarge d 311gn:1y, tre- z _ _ _ *. tc 2.5 feet diameter, cc that it could scacer. date 30$
col ined pender aad 7C$ boric oxida glc::, by voluna. By waight, ench cf these canicters vould cont ein rcughly 2230 kg ( ?7j) calcine d
- owder and roughly 1720 ':g (h31) borie oxide glass, for e total net sight of about h000 kg. This enisegement of tha canister dieneter chould not heve any signific ant effe ct on he at dicsipaticn ( see Table 3 end Equation 2 ' except insofar as the gre ater proportion of boric oxide xlass re duces the overo11 thercel conductivity. The ECE vitrification formula (h6) c alls for roughly equal weights of calcined powder and boric oxide in the final glass; thus, the propoce d amount of bcric oxide glass in cach cenister c. auld not be too much for the vitrification process.
Some of the radionctive and non-redicactrre materials in the calcined powder may dissolve to some extent in molten beric oxide,
? hich might affe ct the viscosity. At 1200cC, Fos x (h7) reports that Cs00 is s oluble in all prcportions < tith 5 0 , and that some of the
- 2s2 other oxide s pre sent in the calcined pcxder have the following solubilities per 100 moles of boric oxide : 1.EO mole s Sr0,1.50 mela:
CcC, 1.53 mcle s ' no, 1.35 mole s NiO, 0.30 mole Cr2 0-J, 0.72 mole Aln0 ,
c s and C.13 mole Th0 2. At the te mpe r a t ure of about 600 CC under censideration here,1the solubilities may be lower. In any casa, = cst cf the calcined l
powder would nct be dis s olve d , but wculd renain ac individual particle s .
wo The powder-in-glass mixture culd either be mixed directly in a i
stainle ss-ateel cenister or be put inte the c anicter ::hile still molten; it would then be cooled and se Ple d into the cenister. Fcr vitrification, the canister would be reopene d and the pcxder-in-glas s mixture rerelted. The remelted cixture 0 ould be mixed alth SiO2 ' SE2' r.nd perhaps some extra 302 3, in order to for~ the finsl glass.
,'y,.y 1L o L.
r.oJ.2 n
gh}
. ., ._3 . .. n. .n . ,. . r_ .r c1 . , u ... n o .=r.1 c n~e y/q~_/,.2 , o m r. -
C -I c ir- d Po.2er in Sodium Silic,te '2"trix A cedium siliento glass ( s ome time s known ns " = te r glas s" ) could be used inste ad of bcric oxide glass as a metriz materisl for the c alcine d pcwde r. Sodium siliente glasses, consisting of Na2O and sic 2 ir v arious propertions, re nersle beric oxide ginsc in their low reiting or sof tening point, their gradual solubility in .: ster, and their high effinity for water.
Anhydrous sodium silicate glasses typic' ally censist of 505 to 90% SiO 2, with the rerninder being !.'a20. Viscosity-temperatur e curves for representative scdiun silicste glasses are shown in Figure 2.
The composition of the glass is frequently expressed as i3.e ratio of sic 2 to Na2 0 by weight (48), so that a 2.0:1 ratio anhydrous glass consists of 66.75 sic 2 and 33 35 Na20-Sodium silicate; are use d 1,n indus try as water-base d adhe sive s, ,
nna they are sold on a c om.ne rci ni s c ale as aque ous solutions containing various proportions of SiO2 ' U"20, and H2 0. Viscesities of these solutions rnnge from about 1 poise to 700 poises and up't?rd. The se end cther properties of sodium silicates are reviewed in two papers by 7,' ills (49,50) that de al bcth tith the a que ous adheslVe solutiens 9nd crith the particily cr fully d"ie d scdiun silic ote glssses cttain3d as the solutions dry and harden. .7 ills (51) de scribe s the trensicion frcr sodiun silicate soluticn to nnhydrcus glass in this manner:
"A soluble silicate film having a viscosity as Icw as 50 centipcises initially, dries to a hard vitrecus filr .rhich does nct readily dissolve but will ccntinue to hold scne mcissure antil heated tc about ICCC C F ($$C OC),
- hich me sna shas shs cdhesive bond will have some rasiliency pnd be le ss brittle then the enhydrogs gissa.
Figure 1 shows that et ordinary humiditic r the silicate bond asy centein as much as h0$ tater; ir fact, even et caly 1C$
1, , e ~ .7,., cw. . . . . # d ' "- , ' "u 't.iil ~'
-- - ,e ,0 n . c. F. .-..
- 7 : *c . , a '<a %u..... ' . c.
nest ne arly insoluble silict.e bonds are obtained by drying at te mpe r a t ure s sufficiently high to rencve all of the water. The y have the char 9cteristics of glssses.... In drying a codiun
"?O d( J.
C r) L00 e n%q l.v .) -
.w , a r y --. ,-
. , . .h- . .; _.te-- , - t. u..7_w m.- n c / ,_ , < i f - o1< -
silicate fil.?
re:nin. 3 ':ingin etnir,cCnbout will 15 tc 20$ of iter 'ill crdinnrily 100 lee.s cpprcxi.nately 1 to ICj .atar.
. e. . .o. + a p-~ano
.-a,.
u m- . - , c_
...g. . :. e- s w. 3 -- c _eo .,. .. %. ., ui _. e .e.
. u cv . ii
- propcso m_4 xing u ne c a ,_ c _4ned ;sa poctder intc en aque ous 1 o sclution cf sodium silicate, then drying t o re ,ove .c s t cc ell of
- he water ($2) . The process might h-;c to be done gradually, in layers, to avcid problems due to tha shrin
- ing of the silicate as it dries. Thus, a s' lurry of calcined pcuder in sodium silicate solution might be made up, and thin layers of the slurry might be added and dried, added and drie d, e tc. , in e ach canister. Altarnatively, if a c onister were made to rotate en a herisontal axis (mcre er lecs like a bell-mill j ar ) , and if sr.all quantities of slurry c ere ad'ad paricdienlly, it mi 6ht be f ound that the slurry would dry and harden in a gredually incre asing layer on the incide of the c anister. The out side of the canister might be insulated in crder to utill e the se lf-he ating propertie s cf the radioactive calcine d powder during this accumulstica proces s. Alternatively, a gra_ually incre asing 7 97er mi6 ht be built up on the iccide cf the canister if the slurry were spraye d into the cenister.
It iculd probably be feasible to obtain 50$ c alcine d pcc der and 50$ sodium silicate ( by volume ) in the canisters, after drying and h2rdaning of the slurry. Thus, if a 2.0:1 ra ic sediam silicate .wre use d, and if a two-fcct-dieretcr canister ce re acad, the canister ciculd contain apprcximately 2273 kg ( 7CG by ici6 ht) calcine d powder, e
mL, ..,(n,e) a3 cts S _e n 2,
.- _. a Jc7
..3 ( ,_ Cf, . ) . y t. ,
- o
.c.. ,
.. . ru. c.
, m
~o u
._4 u
..,.,m... ce _.
about 3230 kg. .
u * .o e.
,o e r . + , _ 4 m, _ _e_
r.-__ , o ~- e p. .g
.c __. . m o_ _see w_ u _5 , ". u y^
- ^
4.. 7 e# _ e , _ ' ' , ".._3..'.
to anna nle d be f ore the cenistor is se ala d. The e niste" 70ulu 1 ster be re opened for vitrific ation, and the p c eide r -in-6' ' S S mixt ure ~0 bid be 4ir U s; J n,-
c g 'f
y.,.,.,4...,
.-. .. .v,.,,,.g.
s-
. . . u.
.. ., 9 s f,; , , / -, e y n
<2 -
, co.c
- c.e. i , . . .^ u l " "_. ., d ~.
- - 8, c'. n. 3
. . ' . ' . . -ad_..'
_- cm. . . '. o ~4. 0,., - , c'
,-1
". . , 4 00,
- 4. 1 re. r: e n. +. o .eo r. a.
- ".,b.- . r. .c . .s.
. <n. 7 3 . : . c. ..
c c . . _,w .1. .
n, v- ., ,_-,,- < n ,,. ,- . o . .,u.; . .
_,_? . m+ n n.., e. 3 g .r -v). .. ,. u, n J -r...- _t .. , } p g ...
.m.. . m . .. . .e . 1. (.'. ., o s% .c- i ,3 - . ' . -.
. a. n. Ln .n a %. . .n. .e.
crenting a glasc matrix frcm either T.31 ten bcric oxids er a sedlun o
- .e , ,, ,. . .. a , n u. . r ~. . .
..i,c m._' n. q u=- o- '. .i o.n. *
.".~..'v'.'.c.- ^* . . c~ o. ' ^ _- ' ~. . . d c o .. d a ."
con be sintered to form a solid mass of low enough po"Osity. If the
.. c" - o" 4 "v y i s *w C ow. 3.. , k. .a, p. '. .d'3e4pe'v
..* -k 0-4 vn. .2 1. 1 b a. 9. ,.,
""'i b 7. = . ...
. propese using either anhydrcus beric oxide gless or anhydrous scdium silicate glass as a bindor, so thet the sintering could be done et or near the sof tening temper ature of the gless - i.e., roughly 50C C. By v olu~e , the resulti.ng sintered mass in each canister might consist of something like 305 glass, 60$ celcinec powcar, and 10%
vcids.
The first step in the sintering prccess aculd be tc propsrc a mixture of properly-sised particles cf enhyd cus B lass and calcined pcuder. The impcrtence of the particle s '. s e distributicn and its e .' .e c *v ^-. " . .oc" -i
. - og "- c." t h..e o _4 .f..a. ".--a d ~ c. .e -
~
a ". a.
_ " a ". ..
. 4 a "s' e- " k-s ~ M.. .a .. _i 'v e w
- ' ~..sai - ..
( ,+.33 , . ... s%..wu. u, A,, ...a..cc3 - ,,
oue" tc ad4 - 9.
. - '. ' . ' m
-~ o u." .". ( ~ ~".. - ~, o
. a. '.,'2' 'o g~
weight) o f' e f u~.e d s ili c a pr od uc t such ns " Cab-0-Sil" 30 the ixt u"e of glass particles and calcined powder particle s.
v.; C im -o- ,. ,.-," # V. e- -"..c. w...4 . -a"e "* s , ~-, b.~ "=-
^-
- m. w. . a4 ,, . . i _4.v~ s. . + , . . e o.c p 8,. .. ~ '-~a "_w,"+- . v .
e: ,,*a. 4&.
.i 4- v ., O wm
. ..,A o
'., o, a.u-%na .; <,,..C' n w. ,,so eaAu v, o4 ~ ". . s. t. 7- a.. w a. <c v . ,,- C u31.C %v.
i s U y" ,D '. .' ' d . ". .'".
- o" c ~..." , a Y.
a,A" .".ec7 . C "w" - '. , .# . "."7. a' t". " C 'v' O. '_ -- ' . ' ' - ^ ".
v'2 '.1 a,., e--" 4.
i e'--"
t 3.ngoinsg a u * %.~
v C u'o s .4 d
- C .f' 'vb. 2 - C : ri .'. a" . ' " . . # n.. C."#'" .. "v ^. u's"s 's.~b _i T. . 3 ".r4u -
-o,,.
3 . . n. c 2ed 2 v %.. 8'v . ". c .~. " .c ..#. I C o. c F .I "., O d "., u- .
a . ~'..~' " ".,C"..*#""
z . ~ . ~..# '.~."w' " -'
. ." h. o "u l _ d ' r' y e.a - -
e . o d or "v F2
~
..D, ^ d 'C 4 C r , 3.4T. 0"4 3,..T* #',, ~.-b-* _ i -Y c"- ~I*"
- --6** " O "- "* 'a- a~ d '" O b o,,
n.n 2 .n .e o g d A o u.w.i . q ., Av N..- %. ., v .sm. 3 C y"C 1 - .
& O D ,D D r3 6 4 ',' T~ ,,Q ~ ~
- G T.:
. . - . . _ _ . . .. ,m ._- . . . . . - - _
. t ..a.1 . .
.._ u .. v .2 - .1 r , . . c , /1, ,/ -- It mLFm1t be advicob]O to .onitor the t'rerm1 c and;cti elty of each coniater for a chcrt period terc'a s a alin - it, ;3ine a thercoccuplva y sitioned et the center and cgainst the tell of the canister. After it ina se ale d, the c nnictor would 'ce rend . f or shi,c r.e nt . E ach canister we ld cubseducatly be reopened for thz vi;rification precosa, and its cont =nts ticuld be removed by he ating it to scrten the tonic oxide or ccdlum siliente glass binder holding the calcinca pc.vder partic133 together. The remaining quantities of glass-forming additive n would be mixed in then, in ceder to form the final glass.
~
O
( i: c n -
Ga_3 a e l
.r,._,- M
, . . . . ' . ." *i ... ..-v
,.,..,3,.. ,.~
- . , - . - w .-
w - .1L
,3 / 1
- c. / -l. / / n/ Ol.
'-M r _2
. s, .J, . .s - 1-
..L.' A[ ,
(., t .vv-. .,q...,__...~ ..L ~
) , 2.. . % -.a T .. . oJ , e (' sT . ,\)
0.o32. . .
4
. .. . ._ ,,. . .n . . _ . . _ _ . . _ . _ . . .
4._...-..
{.
.6..
.,\
._l..._
. _. ..l.
.l._._.._...-
. l,.. ..
1...
.1
._.- _._.1._.
+_.. . .
. 1. .. _ . _....l_..__.__
.- _ . ..~._.4
._ . .-. ._. 4 .-. ....~..J.
. .. . . . . . . . . . _ ., __..._.. .. _.__. ._ _ . . . _ ._- .__..._...71_..- __..
O. s.aD
_ _ .1. .... .._ .
.4 ..- ..
. . .{. .
... .. ... _ .....}._,.....
... ._ . _ . _ _ ...._m....._..._..+_...._...l..I.._.
. .. . . , .. .....t.____.a._._-.~.
_,..4___.__. _
. __ ..~~_.. .. _._.. _ .. .. .. ._.. ._..u.... _. ... . . . . . .---_._...__t.-.._._._.~~ .
.~._-,.. ~.... .
k __ _ ... . , . . _ _ . ......
.-g_...._-...._....,.
- 4. _ . . . _ . _ _ _ . _ .__._.-.._J m.- . _ _ .
_ _ _ . . _ _ _ . _ . _ . _ .-r-.
4._.u_._. .
. . . - - ... . _ . . _ ~.. - . . . _ . _ .._.. . _ . . _ . _ . _.-. _. ... ._ ._ _. _ . _ . _ _ _ _ . _ _ _ _...
~ . _ . . . . _ . . . .._.. _. .... . _ .__
_ [_.. .__..
0.0.g4........._.._....._.,_..
.._ _ . ~~. _ _ . . _ . . .. _ . .. ______.._____.g...-_.___y._. .
.4 ~.._$._.- . . . . .._J_.. _ . _. __ . . . , _ . _ _ . . .. . .
.-4..........
+ . _ ... .
_a . . .
_ . _ _ - _ . ..._. m ._ _._. __ __ _f _ ,_.
1 o
.-+~_
. _ _ . .....,_.,~..
. . . _ _ _ _ . . 4. _ ,
+._. _.__. .__.
._.. _ r. _._ . _ __ t .
r_ . . _ .
.f ,____.4._._+.... .
. . . . _ .{ _ _ . _..-r-._.._,__.-.__..l.._._~_.t_...._.I
. ~_...._m~~._._1_
. ,. _ . _ _ _ _ _ _4 . ~ , . _ .. t. ..
v ..
_ ...._..,.._.,_...__r.~.
r__ _ - . . .. .
4
. _ _ . ._ . _ J_._._._ .. ._.4. ..,___.- 1 0.02.0 __ _ .
y m
_.__.I . __._.t'-.._..___.___
_._._._..._.,_.._._m._. .... 1 .._,
____._. _. .._ .. . ____ _ . _ _ _ ._.. . . _ + - _ .
,_~._, _... ___._t---
_._.I.__.a,.__. t. . . . _ ._
3
... _ _. . . _ . +.... _... .... _ .__.. _ __, .__ _ 4._.. ___ .,_ . _. ,_____.
1 _. . _ ...
-._.- 4__.,_.___._..__t 4 ._ . . .. m- _ . _ ._._ _._
y . _ . . . . _ _.__. _. .._ . . _ ~ .
_ . _ . .. _ + - ..__.t.~.-.,_.__
_.....a _. _.... ___.
. ..w _ p_._. _ - . _
%,j
_ _ -m ._.. _ . , ...
_._ x
._.,...___..__ p O _.__ _.,...
3 .___y..._._._....__.t._.._,__.____.___t___..._.._._,____+.4 ..
. . ._...{.. . .. ..-. _ . _._._._
_ . _ __ __._ .._ . ___+. - _._ .g .._. _ y-_.__. _
.-+- .__._.._._.i....4_._._._.
_ _._+ _ . . . . _ . .
_.~.
,.._____.__._m__...-__._.__
_.4
_.m.____.____.
__ a. _.
. } . __
. _. _ . _. . __. _ . _.__ . __ __ ____.1__..__...-._.___f.______._
._. ,_ . . . _ _y. ..__
y 3 _-._._.__~....a._~
- ..__ _.___ _ ,. _ . _ 1 . - _ _
.. . - __ _ _ _ _ . -Q__...__...a. -n s
Q
. _ - . ~ . . .. _ .. . _ . _ _ .. _ _ .
___A__--_-.. _
_. . _ f @ , _ _..
~~1 v
_ _ .. .__ _ . _ _ . _ +. .
0 .0 t9 -_.- __ .... .
+ _.
_,_, ,[._._..._._____.._.________.
. _ _ _ . - . _ _ _ . _._ .. .. __. __ . _ - _. _.. _.t__.._ _._.__._
. L_____ _. _.. _ . _ _ __ r_
a_
, g._...__-..._____._.__,___.__
l__.__._._._._...._._._...__...____._.4_._..._.
_ T ._ _ _
.1
. , _: _ .._...~... _ _. 4... - ._
.._..__.r__..
g ..__.4.. .
._ .... . D . _ . _ .
- . . _ _ .. _.y_. -~ _.-t__..--.*.---.---
y * - - _ _ _ . _ + - ..- ._
.w _. y a p-
.1,.____. ., , __ _ . _.._ _ .. _ _ .
-., ~J 4 l 2+ n m n . L,
-. .L__ ___, _ _ _ _ _ _ _ -
J 0,00% . .
~
.m t<
4
-.f. .
43, _ _ _ - - . . . _ . _ . _ . _ _ _ _ . _
.1 t _ . .
-_. . L., . , , . _Q, . __.
-.._+_._.___.I___.. ._ w .
i t .. - _ _. . _ . _. ,__ . . _.- _ . . . .-_ .. __ ... . _ . . , _ _ . . . __- _
4 .."_T_._._._+_..._.t..--.-4_.___ .
f . - _
d g
. ._._ ._ . . _ , _ ....,m.+._.-..._-_e_._ . _ . . . _ _ . . . _ _ .+.. - _ - . _
y_.-.______.-_...-_.. _ . _ . - - _ __ _
-..p.-
L. .... p. . ... .._ . - .____ Q ,)
... ._ .._ ..__+4___..__.._ _ - .u... . ..-.&,.__. _
._._u__. ,
gw.-
e
._...___._.4___.__.._.....4__.__.__._._.___...____._____.._...___.__.___, ._ .. . _ . . _ . . _ . ..g.._e...g'_-...g.,_ ..
4.e. _.se.. ..$. _ee..._.e_...._e_--u 9
vn . C O M,
. + . . . - . -.. _. - _ .
{ .}....
. . ge ,cJ . .. _ .
-. ._._. . __... _ . .. ,_.._. ... .. 4. .__.g.._ . . . .. g ] M_d _ . _ _ _
k.
B__.a.._
._..L_ _ _ _ . _ . _._
- g. y _. 5 g . .. -
4 .
. . en f s,)
. ._.__.7.___. _
- - '. . _ . ...& g
.4___._____.____ . . _ _ + _
s ,
.g
.'_* ,-~,,, L
.^ :
.4 [,_ .o p. .p g._.. G p $ $.. y ~. ~ 7 _-'"~~ T. V-'- Ps_y
-- . . _ . . . . . . ... -- j 4- ... Q
- }.... _. . _. _. _ l .___. ____..___. _ _.__ _ ___..-..4...___.._--__.4,
. . _ . _ _ . t. .
. 1 . . , _ .
_ . ... . t
. _ . . _. ... . . .._._e .._ . . _ . ..e.- _ . .*_....__..._._:_ a.e-......e . + _ . _ _ _. _. _.(.__._._._...e.e _ - - - gea.-._.-._.e ~ _ ~_ _-. .- -._L _ .J. _._._ _---- .
__...._,e__._.._
-.J . -- .p - d h* .g w O
O 200 400 600 800 1000
- 1. e - p e o . h < e. C __-__ w e .9 m,
=== **#
4 s %# M
. .- ~.m .L. :;L ,s .l . ; Gm.. . , m ,eny-
' . . . , 4. , . y v .-- _ 1. G . . a e,,
- r. p..l ,/ =i mj -
es zy Fiwe 2
,,v,, m,,p.,...,. .. . , . , . . , . .
W L w, s L U .
- L.*,1 (. 2. ..s u...,,,
.L. .- e. > e ep 7. . -+ e w-= 7 M r T's '*r*- . . '. a.'. V" '_*.'"' --a C 60 0 P': n O S 3 * (33) .
l0 Cao 000 .
7
-*' *
- 4
- 4 . . . . . .
- - = - -* =* . e e ., . _ . . . _ _ _ _ ,
-* *- - - + - * * -h-.. a. . _ _ . . ... ._, . __ __,4,
- -h- * **+- * - . e a
.+ -. .,-. , .,. . _ . . .. _ _.m _ , .
! I I g $
j _. . - . . _ , . . , - .
l 1 )
l 6 # 1
[
. .f _L_ __! 7 _. .
2 ___. . . __ _ _ _ ,_
ll - il il
, i . -l i ,
.j,- i! 'li i . , i, 4
,I i 1000 000 i
hw-.--
e
==e-* <
. . _ _ . -w.
i i
b
-- \--*
- *6 -N . e eew e w ee-e. e m
.* -*-.- - - e .. - _= . _ ; ,_ ---
- * . ~. __ _ _ , _ . .-.__ _ . _ . . t
-- -~ _. E-e .._,.m ..
,,; ;, , , p- r - q - --- - - -- - - - --
i,;.
i '
I I i
! 'l .
j . jl i, e ! I' ' t ' !.ii.I
(. l. . i.
!1i 100 000 1
_.__\ -eee_ j _ ___ . _ . _ _ ____
f
-W .- . ,en m , _ - .
-P=_ w.. . .-.% -.. m.
.+ - . _ _ b _.e e_
, ..-- T
- - - * - ~ - - - -- --
m --- '
i
.-~i-~ -
i g
_1 m_ . - -. . . . .
!' \ !I ff,!
ll '
i i
![f ,
10000 __ _ _ _ . . . _ _ _ .._. .. . _ _ . _ . . _ , __ _ _ _ _ _ . _ _, ,, lt
-,_4__
-- ~ . -._- -
. . _ . + , ..
l____ __
s - . . _ _ . - - ___ __ . . . ..._ _ _ _ _ _ __ _ _ _ _ _ . _ ,
- _._. - _ ._ 1
"*-"" -- O _ - . . _ . .- - _.
L _.. .- ___ __ ._. _ _ . . .. __ _ _ , , _ _ _ k 8o
\ O__
(
n '
t l-
@' i )O a* i
'~
g c c o .- ___- _ Y O. ,ln.3 k e
H.--
.} - ___ F, . p _. .
__vg__,
___N _ _ _ , . _
+
L- ,
%.g Y..
- ~ - _ __y
__ 4 . _ _ . _._
- g. M
- . - . _._-.f...__ ._ X _;p___,.; . _
g h gp --. p! v
, .- ..-- - x _. - a,_
,+
' J, t .
~
ii
- U" -~~ y 9.
3 < 1 ,3 o , . C w
,y p
.e
=
1 i
i
, 9x ,
%--l 9I i, ,
<o 100
- 94.___.,. 8 s _._ _ ' . _ 2_.
- - i._ ._ __, . .~.t_r_.___,___..__
___--r.__. .%~ .13 g .
J y---
. _ . _a
-[ \ .. } . 4G ...
%A
- _I_.
4
. gl 2 A _ }w g y l_.
. _ _ _ . ____ _ _ _ ____ L
, I l
I I '
l I 4co 5co 6N ~10 0 Sco 900 accc oco lloo 13co i4co 15'00
}en ?e, akA ( C) -> u v -.. ., m.
,3
...._n a3..< ..-.7.._A.,-
, . 7. L . . L.n r .rv., ~ ; 1,h. ' ,' 0 - 9.6 -
c
'l: M a nnd Oe fere nce s
- 1. Actually t.;o re" orts: 'le c t.c nn ' -_ . 7:r'c ':cc1c o n Sc v i c e Ce n te r S t u 2 7:
. .: ,. c - v. .. . . . 'v
<cn : b ,> c z~,u-....e =c , v . .e . . =.-u. . . . . , ~ , o .< = .~. - . m.. - , ,
- 7. . > . .. 1a, .
'.^.~,Q, .T' 0 a 0 m .," ;"' - 1,
. . . ,. . 'n,.*-
. . - ~ . . " . . .. _; - . -
2,,,, , , - . ,
.~-,e..
. " . w .
.'. 3 w ...'...s n 6
,..a. , .c.,'.,,'...
an.
Ccr.onnien Recort, U.S. De p artme nt of 2.nergy, n. d . , CID-2 2?O3-2.
- 2. See Final Rencrt fer Public Comment , p. 19, end Ccmponicn Renort, pp. h-15 through h-29 and Appendix C . '
3 . .* a y be added as boric acid cr at bcra.x.
- h. Presumably, the long-term stora;; site ce repository will be in on are a that has a very low populet; :n density and a very dry climato .
For the purpose of estinating costs e:d radiological doses associated with transportation, DCE a s s ume d tha t .he distance to the repository would be h300 km (Cononnion 'eport, p. E-27) cr 3C00 miles (Final Recort for Pub li c C o.r_me n t , p. 19).
- 3. Ecvitrificetion refers to the tende.cy of glacces to change, under cartein circunst=nces, frce their ncr nl state ( gles sy, vitre ous ,
3 crphcus) to a crystalline state. A crude nnalcgy car. be made to the
. a - % c ,,, c x<- w
. - . ..e..n. . , 5. 0 u, .o u 21,4-m.
- 6. G.7,. '*cre y , The h ocerties of Glocs, 2nd e dicicn , " C5 '.:cnogr aph .
Serie s/P.einhold Publishing , :7cw York, las!., p. 36.
-r. . . < . a. . c e m u m.
p . ~; ...e. -
- 1 c u, . , " .: 2. ,. ~. = _. , e. 4 . ~.r_-. ..~..
- c. m m,,.,,e.-.,,,, ..
Oxido-Cilica", ~ou nel cf the Americ,- Cerr.ic S:ciec7, v cl . h S' ( 19 63 ) ,
-. 7 s:'
, 3s a. 0 ,
/ s < . , ,
f,*
d
'y n o 't
<9 O e q .*
E~' L ' T '
..u, . 1 . - .-._. ~..
. .v .. v... .., C.~5.
-.u-
.. ./,
y i q/ , y m7-c
- 3. The :olor ratio of SLC,, to B,0, - u a
.u ; ; be a p e r or.. : =tely !;:1, .
cc e.,,.>".
,. . . , *c ' ~ . ~" e l o n" - .b..
. . . c'.~ .t ~ ' o n c 0 , - ~.~'. " .- .3 '" ~_ .a r . .".." "v l '.~' . *. ,
..i. Fi nn o <t , e t, ol., "Borosiliente G1sraec for Fi':e." C,r tic al "lnve sui d: a" ,
%ter' ole o e se arch Eulle tin, vol. 8 ( 19 73), pp. h 73 -7h .
- 9. Fcr e xample , in Final Repcrt fer Public Cem ent, p. 19
- 10. Comonnica Renort , pp. k-23, C-2, C-3, and C-3, c;here T able s h.3 end C.1. both indicate $7 3% bcrosilicate cente nt , T able C.2. shc ils 335 to $$$ bcrocilicate, end Table C.3. shccia either $2.1$ cr 30.C$.
- 11. R.H. Dcremus, Glass Science, llile y, 'Te .c York, I?73, pp. kk-73,
- 12. Ibid., p. hh.
- 13. Ibid., p. 51.
Ih Ibid , p. k9
- 13. Ad Ecc Panel of Earth Scientists (3. Giletti, R. Siever, J. Handir, J. E7 cnc, and G. Finder), State of Ge cicric ?1 Ec :J e dce cenedine Potential Trnncocrt of Rich-Leve l P a di:oc tive ll9s"e Frcm Eeen
,.. .e..
, a_. n. ' s,1 pm_,c_
_~,n,:_m_o ,
-. L.q . ~. 4 ., .. m.. ,.._.u- - 1
- 0. .,m, ....._m.. ,,
. .a n . ,
.-. -, s -
n- a s r. .,,;a C / 4 - t a-vub , p p . v-8.
,e -
_ v, . l os _,s.,- p. (.
- 17. Doremus, cp. cit., p. 73.
- 13. Bat ,elle-Columbus re port , p. 13 2. This repcrt ces scrit te n by
,.c,. , a . - m. . . ~....:_,c. :. . ._,,4. . . . . n n ,_. y c a,,.
2 ,
u, u, ,m. .o, s..-
, , e-- ,: e u os c . .a . n vi r. c,. ,.,-
. .m... _a
..4_,_,..,,
. . v.... . 1. ...,,e __m
,c...' . . c .. n
.d.'. ' = . -- . 4 . > _e
. N.,_-_.._'__,_t.o.._i.., . c M. . .
Futu e Use of the 'le s te rr 'Te :t Ter' ' .:cle er Se r rice s Center, 3sttelle Columbus Lab e" s t cric s , De c e mbe r 19 73, 3"I-X59 3.
., n -. -
h . ,I
,, e,
- 2vc -
. ' ;,0 " n .,......,,.,.,-.,u-_1.u.;
....w n,-.tv -
,/.n m ,
- 17. }lnnl neocrt for Public Ccr n- nt , ". l?.
'c. v' . %. . ~~ s- -l a .". .. u a ". b^ a. c m. . . n 'v '. b .7...> " ' '. . . ' . . .- .a._d ' o n. " ' ' "s --
- s ' a. n " t ., . - .
s canaine d in Tnble 1. The cubstances '" Table 2 r.ny c" ~.my not to 4 ~. . .amu ,.u.,d * *k ~7 - A - 4- d N 4 n , v . .e 6 a- s s "-F n*dtn- <'
- n- - - -'- * --*w -r--*
--6
- -' _a c. n n -*_ o *. " '_.* c'.'e 'e *. . . .
- w codlun salts fecm t nk 22 tiould not be included in the glasc; the y
,;o uld 'ce recoved prior to enlcinaticn.
- 21. In-Tsne Solidification is descri'ced in Final o.eport for Public Oc rent, p. IS, and Companion Reoort , pp, h-29 through h-35. By contrast, twenty pnges are devoted to Shnic Fr at'.L"ing in Ccr.ranten Recert ( pp. h-35 through h-$$), but no descripticn of this option is given in Final Report for Pu'ulic Cc rent. Isn't the .oublic s u p o s ee d t o c cr._ .e nt on Shalc Fracturing?
22._Ccmaanion Rercrt, p. h-28.
- 23. Ibid., p. h-27 2h. Final Repcrt for ublic C c~.e n t , p. 19. "atric dimensions fcr ths C D .4 u. a v a.~a .3,., e e.,o,n am o.e,
.- 4 , -
. . . tm,. e d i om . .. . ". =. ." c .. 4 ,- . . ~ 'v..'".. '_ a . . m- '. k. . cw.
%. - _: w...w 'v ,
. 4. n
. l'a., . .. . eu n .1.i C n O ^. '.'. ^ " 'u py , " ' ' . h7 - .. : ". " ,'I ,' .
9".
up -- g e o su.. m.u 4 -. a -
T. m.. ,.,. 3 & g. o. u 3 a c. mo _4.' v> 7. m .n ma A.m. . n u. .e C-atn _... k.v .a. m. . . . . ~e--n- , n .i' Cm o ,.,. 4. .,.v4 2 .na-a .
nw o . . - ,- a, au c un ,m..-7 ' C, ,o, *s 'v w. ,n 3 ,3 O.n 'v e,,kv.eC n.. c C oc . ., ., 4 ,, o. %.4. 4 p 's s C r. b ..
..u . . v ,. .wn c e l ..,o n .- - -; c,.
. .n.: uov c .o .C,,uu 7 a, r w, 3 e s-o -
e ,m _. . e ,. p l _,.
a ..
,,,.,,.1 ,. uc, n a . . r r. L 4 s .
. r- _L. ..._o .v..o_s..v -
%.. m 5 OSv A...3
..3
.n
.. .-v%..C c o
-n e .,
2-, c c o- 4soe . . a.n , 3' _t o 7 C ).
.o. n. -
3 .4 . .,1 C:. . a- 3 (' .*_..ai..
v Cn --2 .-.,'o s ~ f ,n. ). % -2
+_.,,,,,--w ),_
m m e .. , .". ,. ,.J _9_0v ') . C"#
v .I.,, 0/.
m ,
T *-
v -r-y o--a2 ..
. ~ ~s . ' . ' . ' ' ., " o d_c* '. 'v i ^v ".. ^-a" o, C o" ' '." . -o *C v
,, n,.,n7
, . . e _ c.o
~
'l. _t .7.4 n. i e-o_ 1A C ". 3'v'.".'~ 'v "..' ". . o ,"s C". 'v . '. _#
- ^*
v.- " ^"u"u^-
'a
' , 3 "..#- .c. C .'. --'a n u.'. . .b .". . C .P
~
( p.n..t on '. a n g
,,. . o e3 %n, +n ,- - A u , q q "v m
v .e. &v.%.n, n g . .~ L.4v g ..e' ne n _ C .C ~ .' . ** .c. * ' *s ." .' *1 ^* y -
~f
, . . m . .'...";.",5 T. n* 3, e
. .. .w n wo- k..n, 7_ n o o , 4-w k. . .tw- .t o e g 'ywt 7 _vh _4 .q {p - . . . n a nv.e s
. -- ~ pw h..a.
~ ;O
.s w .s e ,a *w4m o
- A: *n -
u . o i.,
- 6
-o L ',
~ * *7 C C' s
.. ,. n m ,
'b ,1 g L. I w.
- e. . . - +- - - . ,_ wp. m . - __ . . %-%.. , e- % . .-.w.ev.. . - .
..u...2,.. ,,
-.,_r_,...c.,
- n. . . u ,u . . n m /,: f ,. .
- ,3. ,,3 c, l o n g m. redi-tion _ro.- the v e hi c '_ e srface dce nct c li .O eiuve
, .c r ,.: u l n t e r "s 12. . .i t of 10 v.re./hr s; c '. .- f c a t . " TI .-: prcblem with
- 6. : ,,
. . _ _ , r.:rg .
., 3., v.s ,,. c .,, _- ,,. +.1..,'.
. .. _t m- .t , kv r_ o. n: .is7 7 .. .: . - ....4....u.
. . . n
- n. . *'.~3
. . . u.m..b,p.. o A"
- r. . i p ..e n t e , " according to the 39tte12.-Oclumbus repcrt, op. cit., p. 135
- 26. Comernicn Percet, p. h-15
- 27. Ibid., pp. 4-15 through h-21.
- 23. Bet te11e -Columbus re pcrt , op. cit., p. INO (" . . .it is pos 71' le to vitrify only the sludge, or only the sludge and the eluste from the supernate stripping process...") and p. 192 (" . . .the fe asibility of stripping the radienuclides from the supernatant.").
- 29. Ibid., pp . 13 S -141, 166-16S, and 172-193
- 30. Ibid., pp. 139 and 111. 4 The quantity of glass is given as th ee thou:end canisters of 100-gallen c ap =c'_ty, which is equivalent to bC,000 ft3. Cne paragraph on p. 1h0 e c.<n enle dge s that elirination of the codium compounds could reduce the volu a of ginss to 7000 ft3, c.ich is close to the DCE' estimnte cf 6300 ft3. The quentity of
_.,a.
v- - .
v .so n I,
_e.
3 . s ,- .
,3 oa n e)vn , L-. n s, _
w .L.; n ,....w ...,:,....- .
,,.-,,...,.,.3
. ;J ; .-nvy T.i c pr in t for 30,0CC ft3. '!c .e ntion _ s m da cf the uch crn11er Iclura cf calcin2d pcrdar ( obout 1200 ft I) t h c.c :culd ':e obtained if the sodium ccmpcunds .ve re c lirin ste d. Se e elc o T eb'_e h-1 on p. 21.h .
- 31. Cc: r rnicn Ec "crt , p . 4 -29 y.
e .: e_c,. < 4 .., . . _- m ma c ,.,
r-..u4 e
..._v
~.
.. u.... . ... _ _. .., _, _, _., . 4 .e, . . .._m._, ,- . , _ , _
,,.- ., a .e_ ,3 ,_ _ n_ . . a_uwv ..e &u u
- x. ..-. ,3 v -.
m
,a.m,"'
..- c.2 * -' .-' . = _ . . , ' _ c c . . d ~ '. _4 .d_ 'v ~j m.
, e " '-. ' . , .
unif crr. t':u cushout the cenister. In re elity, these assu ptions may nct quite te .et, so that r .cy ofre ct AT elightly.
Ig a f tD 7 <4 ua .) L *
. _ _ ~ _ _ . , . . __ . . _ . . _ . _ . . . . . _ . . , . . . _ . _ m._ . . . . _ . . . . - _,. _ _ _ . ,. _.
, r . . . ,s . . v , .- , . ., ..e. >i/, ,/ - -
-- ,. . . 2
. ., ,... . . . . . . .- - . _ a0 -
?
,. f. . { . T. .. 1, ,
'r**
en
. . . - . . n 1. c c. m.- . r' L. ' 2? s. _' .'. -, . - * .. -~.T, *
~'..r
. ,v.,--
e ." ~".. -. . . ". . n 7-cp . " " C l.' ..: "v u' ". **'.(.
L .,. ) 4. " 'a .~; " ,u* - "_* l_
,. , ...vs .,4 vg
- -. 4 'v' ., ".1" .
_ _I 'v '.'1 -' ~ " "._' ^""
t,- , , . o 7_ . ,' ';.' ( 7_ '; c _l ) , n. >; - ^ r, .
~
- a m .
- p. _
7' -
.c .-
w q. ,, .1- .q., .1- m
-t.u. ;
.r..?,,.,,.., n.. ... , .,7
-- a,.,-...,,+.s av... s ( .. .4
. s . . .r y. . , 7 ...y-.;, ,, [ , , m. 4. s ,1-7
. . . u . . . _ . , . . .
-1 .q .. . g . *v.t 4.gti. C ".- C .P 7 t' A# 0- m "v O . . O ". v" ^ u *e ,,.- - . ' ' . '.'..^"~..<'.l. C v" *. ' 's' v' 's' _' '.*.-4 ' "s " , V" O U " " ' l.
u_
o n..,.,. .ec n. . . C 0 " .n. . . m' cmc c i. e "v
. ., vol. .'., "r f,1_^.^%),
., "g.
e N, f '. ^s ', .
3 5. J. J. 7itzgerald, "~ orce R.,diologic al Scur'c.e s end Safeguards" , .
in II . I . S ax e t al., Danzercus Pr o pe r t ie s er Induntri al " ate"ials ,
L, t h e ua .r m l o.. , l ,, . . r. c - 2.+. , a n d <. %. .t m.n o 7. d ,
. .. -.. , v c. 4.. , 19, 0e , - . ,
ye. 09,.22.
e4 jv. Ived.,va . 299 p --
- 37. Cc .nenicn Re pert , p . 14 -2.< .
- 33. Ibid., n. l.4 -2 .
,rc.
- 14.u , ~.
. w.~e.1 d , o. c c l 'u . , p . 2 9. 3 , " a". ' =- :' ', . l .',, , a n e c. o . . . .' ". .' c n. . *u .~ ' ..
- p. 3"-4 I
,hC. .e, ' .' c ." a .o . e. '- a- ,
. u' . 2.^~.~., N.... "._' a~~-.. u _: '_ '. ,v, c . .7--' ' - > .'~ m" .' a v 0,-.m 4 d a " ,
r,.,., o
- ( ,_ ^y v -( ')py, -. - ~
L'. ) ,:-) .
c -L,.e -
. ..a& -a ., . v2
%. a..-s +. .
C. a ea- , ,C_. ,
sl *.t . 7, n.c . a <. 3 77g cv o 7.
- .. m.~.. ,. .,,n.,,,~r. v, A.
u, v., . ., 4. . . , -,., . 7. x* ^ vn. . a 7 ' ,1,~ a n. . u 1
.p ; .. 1 .
N. - u- w. *u o. c. n .
32--., 1 4 (s'C*...".."..",
. . 10, .
., o_ . n C.. n , -,
u, .t 4 .., r 7
~G 9 .,~.' ' -~f=
7no a u . ,J.,2 , ny. de 1, ; ,,.'
- 7 -
., s .
- m a.,.
u
. n. , .,, . ._a, "e....,4.....e
~. .- - .. :--r.... . , , , , -.-_v
-.3 - , , , v _ .. ~. -a. . , , , , .'1 t, u,.~j ,,.,,..3 L.
v m
.. .c.,v a. . . _--A 4 . ., " , q * '. C u#
- u. ' " ". . . " " ^-' *
- . - - -' -.' s..-
- . ' ' ' . ' " . _ - . . .**"*.,*2.'s-a,
. , . - C<*.'.'.-'.'
t r .; ,, ' P -: '^f^ * * *
- wy.. e .
- k. v . .a.. - ., f-s ,. O . , J.us 4 3-~.,., . .. --.w.%A %. . a,, - . . ... . , -;--,
yy. ".'n*
-, 4,..s---.
n ,,, 7 . , ,a. .! ,
. , ..S E . t, d"e S 13 0.'.d 1b . [Ll 0 7 g.
,e -; ;
ci , ,y
^n .
....rt. .. t .- ._;..-
,!,7,. .
- at -
., c. . G,.*.,.
,-, ...-,.s'_s
.h.
a r ,, y . ,7.., ?' :
--va.'.,..,
cs .e
' 6-
, : q.
2,,",
+
JG-..
- _,1
- o,
- 3. -, ,,e.,-,,.. c~. . ., , . e e.n . .. -. ,,
v.
, s' , w- ) , c--.- . w(7,_59.
'.< v . . . n. . , g n . c. y y_ , *. ,
,h _m9} .
Ln o/ . . . . v ..e. , " a r 7 , , w t i _r.
- f. d o. 3 OX y A n si,_
e a. m. . . a
. '1 t - o. .. gMm -
.n _4m L ~C.4pon _p- .eC "i . d u ,
A 1200 ", CCmotes Renduc, vol. 206 ( I,03 3 ) , pp. 3h)-3C.
.~. ".. c b~ n.
- v , a '. S .4 c 2 or.d "n9 0 m ". . " .m.
. a %. v . . . _- 1.~._4 1 a- ~... ' " c u ' r .-
.._i~'..*v, 3 .
a" C + ..2 t ,. e m..t r -w p' a ~d . a. , _ . , p < are a- ,_ .. . C a s <w = >ns.C 4
.a
.< n 'v .."..> .=< c ~ r, g
3 o 9
.e .,. ., e m .
h9 . J .H . '// illa , "Incrganic .'. dhe s ".v o s end Cements: Solutie Silicatec", . i in Adhesien nndj.dhecives, edited by P.. Ecuttink and G. S ale =Cn, 2nd
.u
.m e
nv e,., rl.y. <4 cr, , , . ~...e4,,.a.,....,
. . - 17 4,,: , ...a_ . . 1, ,
- p. h1,9 -60.
p"O . v' . n. . . '".117 . , " N. . 1 ~r " e- n _' a
. . f d". .e o .' ". e .e., a . . d_ C .- ...a . . c .e. " , 4.. ra n. d b o ot. . c ."
..f M .,. -c> , t u. n -o , ed.e'ocd b y "1. S 'c". u4 . .. '. , 2.4m " ' c' _' ', _i o '. . , V n.. . . ". .,a 'm ". -v o.c .t .im. 7 d ,
- . - , u. . . -
All s a* e.
..c.. .,C,,,, . . i,f ( ( , ye.
-'n
,: ,," . -w:1 , . ,.: -.,
yy. _1 f - c. v
- c, u..a aO-.
_ a... p, e.+. ., .,. ,
= u
,' . .g,n- 'v ' ,. , u
. ,_.. v. ,
.v g e . .-v..--.g
. . . .?. :_ n. .. g . . . _. c -. , ,- _: . . , a.. ,_.~.-,,
-- 7 u, c, . O .-m n _-e.,
1
, ., v. . -a ,, , .. -
.. c
,a4..
2v w.. o.7.:Cs-
. , 7_1 -s. , .
. . . . . 4.%.2.,,...,
v u ;
4 t . . ., .m 7. a u
. 1_ ."s C*'" v ",. u^. ^. ." i '.', '1 ^, "L, "v U ."., *a L' .' "., O. . s ". -' ' ' . . " ' ~ , . ' , " .~.. Cs .#'%'.~... o
~
l '. '. v~
. O. '., ^, v.'.
^
c', ,'/ C " .'. C c.
..ms .: .. ( ,;o,
.q,2v . :-) a v
-7
...a e.cn. - n..v..
c . . a, ,,
, 7 _ c. -
.,2 sv. -,:s..
sv .c, e_ _ ,, 4.
v n s d .e:
- v. . .s. .a u s,
..,. ..v.
e
_ovv-o r ,..c 4. ., r m s.. .v.-iv.n.,.4 -,., 4. C ,, v.. . :_ . a .. . ,. -
ra
?
?
.r .e g . , m
,., n, c
t-- c. w. . v.
., s y
.i...,..3 i
..,,,7..a.
.v %
~~ A m .;. .c . , . u.v
,5 , - ..
m.._ .>..-
.. u- .
u
, e ,, , e,,a 1_ . w i , r ..
ms._.sy
....s.,.
ov. , w..v, n C c, , q o O . , .v_u <
, u t ,, n a m m .- . . . , n e.. , ., a . ' ..
v
.a.. s ---v .
- 4. ,
, . 3, v.- ,d ee ae C, 7_ . -3a s,.* u vu. u,C n,g o,
,. . vC %v C O ~. .a 3 " 's 'u ".t' 'v u' d- o m .~ e' V "; ,' ^ ". '." .# O .^4 C v^ C U." .~s , o" ^u *..' " . ' " . n" l 1 "v ."'. a w-.etc. A C 0.y t. .a.t,.. . s . , . . , C n- v. . . n l l ./y.em C t e.s , y
- u,,*,-
.m---
n-o -2.C v,
"C'- "v.""'
a "1 -.7 ", .
/d G ') 7 O
.> ! ~J L/ /
._. _ .e -
..s
.,n,..g~
- t. . .
/,
2 / 1.S r-.
- o
..y.
.a ., 0-..>- V'>."..,"1_~-,
. . t ..--..tc ~
' ' . . J. < . , ' ' .. ., v 'v .-* ' , ' )r
. ,.'s C ,
- n. 19- -;, 0 nn ;onA -; ,v 3
-t.
_,..=..,_u,.
v 2
v ,j ,..m,_..
-m v v .,,,. . . -.._v
.., ., ,, . : 4 ..
.s -
, ,-, , ., .-a e_-..
. , g. : .-4., .
.-__e.
,,,,,. u
.~
u.,., ..
-. +..u.
., u ;
.- - a .-.,,,
e . . -. - -
- .. .u
.s
,--<--n. - s -. , , s-. - c . . , : ,. m-- p- .
- ~ =v <. t. ,, o , qm e.1 cnc y, p . .= _7 n. .- - .= . ;- .=. ,.. c',
...a., u , ,. c ,-
- ..u .. . ~. uv s. c ,. . ,
- . , .- .m Enzineerin p adboo' , 2nd edition, l'c .'-r r.7 -E i ll , '.'r.; T or % , 19 53, pp.
26-30; and A. I.ndreis, Porcelnin Enersla, 2nd editicn, Serrard Pre ss ,
C h a m .c a i g n , Illino's, 1;61, p. 53. "cre y, ca. cit., any pessibly give tatter thermnl-conductivity data for these glas s e s . '"".o r :a l-c enduc tiv '.t7
'd Th0 2 ""* b" d " EI'E "I' F"" l' *D *l*'
c arve s fcr Al 02 3' NiC'
" Thermal Conductivitv: X, Data fcr Several Pure Oxide Materials Corrected to Zero Forosity", Jou"nel of the A erican Cernmic Societz, 101. 3 7 ( 195h ) , pp . 10'7-10 ; Ceramte c at a Eock, Cahners Publishing Company, Chice ;o, 1974, p. 266; and ?.yshkewitch, cp. cit., pp. 12?-30 and h11.
pp. ..iscosity
- v. curves are based on ,oc.7, c op. cit., ras _,e ; ; r., p ple r ,
cp. cit., '"able 1; 3c cl-"is , Icekencie, end Eltch=n-r, " V '. s c o u s F l o e.
e
_ n. ;,_1__ _eey c. ,. . f m..u.
O.,,.. ,;
r ; -
,,14. a. .e, _t ..v
, e ,, a "s "m -
3
."_c,..a. a'"s' m, -
. ,> s_
's.~.- c'--
. n. V.a.v_
c
- ,, , 4-
.s - u _r . v ,. , .c_.
.- 7 J"7- ( T:"
- j "," ,, )_. 1t',7%. - .
"2 u_ ',
-- t. ...~.:
,~.
r.,
r
.~4
..a*
u..o ,
,a,, t ,.r c. e e-- -.s . e.
-A>
- 6
., ,.,, I 1 ds., . : ' .46* - 9
- --, 77 "'+-
,,,,A
'l-3 8
2- r, . , . '
a;.
' --~ u
, r ,,
d ,- C. ,
V.'*
,
- I,
'.). n ,. N . .e .,. C.
- 1
- . . , ,- y . 1 0)-'
~- 9.- 4 , ' a k l. .-- -
- g. s d.J cod ,
A
..e..
-,,.-e. . . . ---,=e.-g..,ve .~e =.o r - wa w , w a% - -
,==ha-*-=ge-*.+ y wews.sammerg *.wa-o *.-*-=**--ew'* -e-- * * * - -' - - " * - - ~ ~