IR 05000412/1987065
| ML20147H323 | |
| Person / Time | |
|---|---|
| Site: | Beaver Valley |
| Issue date: | 02/26/1988 |
| From: | Eselgroth P NRC OFFICE OF INSPECTION & ENFORCEMENT (IE REGION I) |
| To: | |
| Shared Package | |
| ML20147H305 | List: |
| References | |
| 50-412-87-65OL, NUDOCS 8803080454 | |
| Download: ML20147H323 (154) | |
Text
. _ _ _ _ _ _ _ _ _ _ _.. _ _ _ - -.
U. S. NUCLEAR REGULATORY Com !SSION REGION I OPERATOR LICENSING EXAMINATION REPORT
.
EXAMINATION REPORT NO.
50-412/87-65 (OL)
FACILITY DOCKET NO. 50-412 FACILITY LICENSE NO. NPF-73 LICENSEE:
Duquesne Light Co.
P. O. Box 4 Shippingport, PA 15077 FACILITY:
Beaver Yalley Unit No. 2 EXAMINATION DATES:
December 2-3, 1987
~'~"
" I APPROVED BY:
P. Eselgroth, Chief. PWR 5ection Date SUMARY:
Operator licensing examinations were conducted for 3 Reactor Operator (RO) candidates and 4 Senior Reactor Operator (SRO) candidates. All candidates passed their respective examinations and were issued licenses, r
8803000454 880226 ADOCK 050 g 2 DR
,
REPORT DETAILS TYPE OF EXAMS:
Replacement x
EXAM RESULTS:
R0 l
SR0 l
l Pass / Fail l
Pass / Fail l
I l
I i
i i
l IWritten Exam i 1/0
3/0 l
l l
l l
I I
I l Oral Exam
2/0 l
1/0 l
l l
l l
I I
I ISimulator Exam l
-/-
l
-/-
l l
l l
I I
I i
10vera11 l
3/0
4/0 l
l l
l l
l l
1 1.
CHIEF EXAMINER AT SITE:
R. M. Keller, NRC Region 1 2.
OTHER EXAMINERS:
Ivan Kingsley, Sonalyst (Contractor)
0FFICIAL RECORD COPY OL EXAM BV - 0004.0.0 02/17/88
-
_
.
1.
Summary of generic strengths or deficiencies noted on operating exams:
i
~
i
'
There were no generic strengths or weaknesses noted on the operating _
examinations.
-2.
Summary of generic st?engths or deficiencies noted from grading of written exams:
-There were no generic strengths or weaknesses noted from grading of the written exams.
3.
Personnel Present at Exit Interview:
NRC personnel R. M. Keller, Region I J. E. Beall, Senior Resident Inspector Facility Personnel J. V. Vassello, Director, Licensing W. S. Lacey, Plant Manager l
J. O. Crockett, Senior Manager, Nuclear Operations J. D. Sieber, Vice President, Nuclear T. P. Noonan, Assistant Plant Manager T. W. Burns, Director, Operations Training T. F. Kuhar, Nuclear Operations Instructor R. J. Brooks, Nuclear Operations Instructor j
A. J. Morabito, Manager, Nuclear Training 4.
Summary of NRC Comments made at exit interview:
The NRC stated _ that a significant improvement had been observed in the quality of the facility learning objectives. This should result in an improvement in the acceptability of the exams by candid:tes and training staff, since the NRC will use questions which relate to facility supplied learning objectives whenever possible.
The NRC stated that some discrepancies were noted between procedures and training material supplied by the facility. Specific discrepancies are given in Attachment (5).
The NRC expressed concern with the use of abnormal operating procedures (AOP's) in that apparently there are no immediate or time dependent operator actions. Operator actions are called Manual Actions. Although there may, in fact, be few AOP's with time dependent er immediate actions, these procedures should be reviewed to ensure that time dependent or immediate operator actions are appropriately identified and to provide an acceptable basis for non-time dependent actions.
OFFICIAL RECORD COPY OL EXAM BV - 0005.0.0 l
02/17/88
g,,,,_._.
--
-
--
--
- - - - -.. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - _ - - - - - - - - - - -
.,
.
,.
,
6. --
. CHANGES MADE TO WRITTEN EXAM DURING EXAMINATION REVIEW:
See' Attachment 3 Attachments:-
_
_.
.
1.
R0 Written Examination with Answer Key-2.
SRO Written Examination with Answer Key 3.
Facility Coments on Written Examinations 4.
NRC Response to Facility Coments 5.
NRC Comments on Facility Reference Material r
OFFICIAL RECORD COPY OL EXAM BV - 0006.0.0 02/17/88
__
_-___-__ _
-
......
~
'
A 7 7/)c# # h T
/a\\
,
-U.
S.
NUCLEAR REGULATORY COMMISSION L
REACTOR OPERATOR LICENSE EXAMINATION FACILITY:
.BWAYKB.lAbbELl&.L..._ __..
REACTOR TYPE:
1M R.WKO L _.. _......
.
DATE ADMINISTERED: $//12/0%_ _..._.._.
EXAMINER:
KlMQGLEL._L.__ -
___
CANDIDATE:
_. _. _
LHSIBQGIlORD TO CAHDID6TEi.
02o separate paper for the answers.
Write answers on one side only.
Stcple question sheet on top of the answer sheets.
Points for each qu:stion are indicated in parentheses after the question.
The passing grcde requires at least 70% in each category and a final grade of at least 80%.
Examination papers will be picked up six (6)
hours after tho examination starts.
'
% OF CATEGORY
% OF CANDIDATE'S CATEGORY
_ Y6WE_._ TOTAL SCORE _ _.
YAWE__
_
_ _ _ C A T E G Q B L _ _ _ _ _._... ~.
'?,b,.92__.W.00 1.
PRINCIPLES OF NUCLEAR POWER PLANT OPERATION, THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW S t>. QQ.
.2f. 00 2.
PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS Rh2 90__
2L92
-_ _ _. _ _
._
_
_
3, INSTRUMENTS AND CONTROLS
% QQ..
2bJ Q
- - - -. _ _ _
4.
PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL U L.0G__
__
_ -... _
___ ____%
Totals Final Grade All work done on this examination is my own.
I have neither given nor received aid.
Ca n d i d a t e ' s S i gla tIu r o~~~ ~ ~ ~ ~ ~~~~ ~
~
~
-
- - - - - - - - - - - - - - - - - - -
NRC RULES AND GUIDELINES FOR LICENSE EXAMINATIONS I1oring the administration of this examination the following rules apply:
Cheating on the examination means an automatic dental of your application end could result in more severe penalties.
Restroom trips are to be limited and only one candidato at a time may
'
,
leave.
You must avoid all contacts with anyone outside the examination room to avoid even the appearance or possibility of cheating.
lise black ink or dark pencil only to facilitate legible reprodnet lonn
'
4.
Print. your name in t he blank provided on the cover sheet of the examination.
b Fill in the date on the cover sheet of the examination (if necessary ).
Use only the paper provided for answers.
?
Print your name in the upper right-hand corner ot the first page of gach cection of the answer sheet.
Consecutively number each answer sheet, write "End of Category as
"
appropriate, start each category on a Qaw page, write QDlX QD OOM E. ids of the paper, and write "Last Page" on the last answer sheet.
9.
Number each answer as to category and number, for example, 1.4, 6.3.
lo. Skip at least three lines between each answer.
Separate answer sheets from pad and place finished answer shents face down on your desk or table.
(1se abbreviations only if they are commonly used in facility l it e ra.tu re.
13. The point value for each question is indicated in parentheses af t er the question and can be used as a guide for the depth of answer required.
14. Ghow all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not l
Partial credit may be given.
Therefore, ANSWER Ali, PARTS OF THE QUESTION AND DO NOT LEAVE ANY ANEWER BLANK.
It if part s of the examination are not clear as to intent, ask que.stions of t.be exa.mine.r only.
1I. You must e.ign the statement on the cover sheet that indicat es t. hat the work is your own and you have not received or been given assistance in completing the examination.
This must be done after the examination has been complete n-
?!fi. When:yc.u complete your. examination, you'shall:
ai.
Assemble yourtexamination as follows:
-
- ( 1 )
Exam ~ questions on top.
'
(2). Exam aids'- figures, tables,.etc.
~(3). Answer pages including figures which are part of the answer.
b.
Turn in your copy of the examination and all pages used to answer the' examination questions, c.
Turn in all o^ rap paper and the balance of the paper that you did not use for answering the~ questions.
d.
Leave the examination area, as defined by the examiner.
If after leaving, you are found in'this area while the examination is still in progress, your license may be denied or revoked.
.
_ _ _ _ - _ _ _ - _ _ _ _ _ _ _ _
_
L.__._EBIHQ_IELES OF NUCLE 68_EQWEB_ELAHT OPERATION.
PAGE
.THEBMODYNAMICS, HEAT TRANSFER AND FLUID FLOW-QUESTION 1.01 (1.00)
Why in the core safety limit established such that the enthalpy of coolant exiting the core will generally be LESS THAN the enthalpy of saturated liquid?
Include in your answer any instrumentation that may be affected and any impact on core protection.
QUESTION 1.02 (2.00)
Beaver Valley Unit 2 has a total reactor coolant flow rate of 9.566 E7 lbm/hr at a hot leg temperature of 606 degrees F and a cold leg temperature of 546 degrees F.
Steam generator pressure is 770 psig.
Assume the fcedwater entering the steam generators is at saturation.
Calculate the total feedwater flow rate in Ibm /hr.
Neglect all other heat inputs and losses.
Assume the specific heat capacity of the reactor coolant is 1.0
.
State all other assumptions.
SHOW ALL WORK.
QUESTION 1.03 (1.50)
The plant is operating at 20% rated power with rod control in Manual.
Assume no operator action is taken, a.
Which condition will result in a higher INITIAL startup rate:
a rod ejectica of equal reactivity worth at BOL or EOL7 WHY7 (0.75)
b.
Which condition will result in a higher final average RCS temperature:
a dropped rod of equal reactivity worth at BOL or EOL7 WHY7 (0.75)
l QUESTION 1.04 (2.50)
l Explain HOW and WHY reactor power AND Tave respond during and for ONE (1)
,
hour following ONE (1) minute of Emergency Boration at the following power l
1evels until equilibrium conditions are attained.
No other operator actions are taken.
Assume rod control is in manual and no manual or automatic protection signals are generated, a.
100% equilibrium rated power (1.50)
b. Critical at 1 E-8 amps following a refueling outage (1.00)
(***** CATEGORY 01 CONTINUED ON NEXT PAGE *****)
l
- - _ _ _ _ _ _ _ _ _ _ _ _ _.
_ _ _ _ _ _ _ _ _
_ - _ _ _ _ _ _ _ _
~
j lL__EBJH0JP_1.EjLQF NUCLEAB POWER PLANT OPERATIQHt PAGE 3'
]
IBEEMQDYNAMICS. HEAI_IBAHSEER AND FLUl]LELOW L
QUESTION 1.05 (1.50)
Tfie plant. is operating at equilibrium 60% rated power at,'EOI. with rod control in Manual.
Explain HOW and WHY RCS boron concentration will have to be changed to keep Tave on the program during AND for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> following a. ramped load decrease to 20% rated power over the next hour.
Assume no
~
other operator actions.
Include parameters changed and reactivity coefficients involved.
No calculations are necessary.
QUESTION 1.06 (1.50)
Since thn.DNSR is not a directly observable parameter, name SIX dissimilar parameters the operator monitors and/or controls to ensure the DNBR limit is not violated.
QUESTION 1.07 (1.00)
Which set of parameters below best describes centri fugal pump runout, conditions?
a.
High discharge pressure, low flow, high power demand b.
liigh discharge pressure, low flow, low power demand c.
Low discharge pressure, high flow, high power demand d.
Low discharge pressure, high flow, low power demand e.
Low discharge pressure, low flow, high power demand
QUESTION 1.08 (1.00)
During a natural circulation cooldown, it is noticed that pressurizer level suddenly increases soon after auxiliary spray flow is initiated to the pressurizer.
Explain WHAT has occurred and Wily 7 l
,
l l
l l
(***** CATEGORY 01 CONTINUED ON NEXT PAGE
- 1
1.
PRINCIPLES OF NUELEAB POWER PLANT OEERATION, PAGE
THERMODYNAMICS, HEAT TRANSFER AND FLUID FLOW QUESTION 1.09 (1.00)
Both Pu-239 and Pu-240 concentrations increase over core life.
Which ONE of the following statements is correct?
a.
The buildup of Pu-240 increases the average delayed neutron fraction.
b.
The buildup of Pu-239 increases the average delayed neutron fraction.
c.
The buildup of Pu-239 causes the Doppler Power Coefficient to'become more negative.
d.
The. buildup of Pu-240 causes the Doppler Power Coefficient to become more negative.
QUESTION 1.10 (1.50)
The reactor is at 80% rated power.
Explain HOW (MORE NEGATIVE or LESS NEGATIVE) and WHY Axial Flux Difference is affected by the following occurrences.
Consider each separately and assume no reactor protection signals are generated unless specified.
a.
A spurious OT Delta-T runback decreases turbine load by 10% with rod control in automatic (0.5)
b.
Feed flow is inadvertently increased and raises all steam generator levels by 5% with rod control in manual (0.5)
c.
Xenon is building in to the bottom of the core with rod control in manual (0.5)
QUESTION 1.11 (2.00)
The reactor is at 100% equilibrium power at EOL.
Rods are in automatic at 200 steps on Bank D.
Boron concentration is 300 ppm.
Power is then rcduced to 25%.
Calculate the FINAL RCS BORON CONCENTRATION required for EQIULIBRIUM conditions of 25% reactor power with rods at 100 steps on bank
~D and Tave on the program.
Use the attached figures (CB-5b, CB-10a, CB-10b, CB-12, CB-21, CB-22, and CB-23) as required.
SHOW ALL WORK and STATE ALL ASSUMPTIONS.
(***** CATEGORY 01 CONTINUED ON HEXT PAGE *****)
.
CURVE BOOK - BVPS 11 C
CB-5b
'
O,
__.
...
_._
.'.g..i._....q.__.. g ;.
_.
"7
'
,__...__.
,
=
_,
__
-
-.;
-_._
,
-_.. _.
O
_
-
_.
___..._wx.
,
__ _ _ _...
_ _ -
i
_4
--
._,
F
'
-200-
.~
,
(
__.
.
.. _ _ _ _ _
.
~
-
.m
.
--
-M y
_ _ _. _
h N.._
_ _...
m.
_ a._:
.,
.
_.. _.
Q
C
' L ',
Q7
.
,. _.
dM_
_. _r-EC-400=
, L. Q g_.
.-
.._ _ _. _ _
._
g
'i __\\
d
-
..
.
-
1.
A
.
U
'.
'
x.
_
_.
E-600a
__
\\.
'-
O
$
N.
',
k
,
W
-_
'x,
,
m, y
-
.
x
,'
_.
y
',
':
C d-800 -
--
'N.
.,.
m 1,.
m
d I
--
'x TE01=
g y
..
x
- v.
___
___,
-1000-
.
)sx
'
'r,
.
N.
.'
.i-1200-
&'
. =.
-.
I)
-1400
,
,
,
20
60
100 POWER LEVEL (percent of full power)
.
DOPPLER-ONLY POWER DEFECT AT BOL I
(150 MWD /m) AND EOL (16,280 MWD /m)
\\..
.
(CTCLE 1. UNIT 2)
Issue 1 Rev 0 l
.
'
CURVE BOOK - BVPS 11 CB-10a i
FOR LNFORVA_;iO,i i
m OK Y/
.
.
20.0 2000
.
._.
.
_.
. _. _.. _.. _._ _...._
.
- _ ;, ;,,,
.,
,.....
. _.
N..::=..
.._._.---
=:.
-
-.
---
---
C
..
_ _.. =<. =:_ ___ - -.,
-
-- -. - -'i-2 ii:
-
.
_.:- ---
_ =..
- - n. -
"" ::iQ::
_.,- -x, _
..
~i? :'
.
=i_m-N--
-
-
-
.
.
- --
.
._
-h
=- F :x.
15.0 e 1500 _
.._
f x...
-
-
,
-
.-.j._g p.-
c
=- :5
_g
.. _......
=.;- - -=-
-.
. m.- n._.
,
.; _
.
.
E
-.--- -
h-t h- --
-~
-- --
'
~-
- - "::. '
. _..
.}
l
', ;'-
-~-
~;=* : :.*:
'.
x
.. _ _
. :
-._.. _
.. t.=._: :.
.L x.
x
,
_ _ _.. -
,
-
,,
_.
.g
.
-~~
V,
-
',..
-A-.
..,....~
ga m
..
w
'.
--..=:-
=10.0,
?!
'x.
_%_.-
-
-
(
1000 -
.-
.
~x
.
.
- __..
.. - -
.
s
- ,.: ;*. -
r_.'
- F.X. -
\\-
C w
= - _
.
[~
'--
-
- -- _n-- p: -l==-
'.. - * -
. _ '..
--
--
- _. -
-
_
.:w
--._.. _---
.-
g
-
=
,,
..:. = :.
- :=.: :27 w==5;
. :.:
=: :. :_--
u... +-
.x.
~
--.
,
. _-. _
..._.
. -
- ~.. - ~. _
.
~~*
_x. - - -N:
_;;;;
g eJ
....
....
.
T._
'mm--
Nm
'.:. *,. i i C'
.
~; ".--
e
..
g C
............ - -
N- --
'm~~_
.. ~ ~
_
.
'
,
.
.::. :'. : L...
.%___.
.-.~.-N-
- * ~
'
!
=
~
500
-*
N
_
.:= n:n
_...
... z.....=...
%
~,..
- n = -
>
~
s
'-
'm
-^t-
... _..
....
mm
-
x,
-
...J....,
...l
--
.
_
,
__
\\-
,
..
._.
'
h"
.... : n - --l
....
. _:::. r - _: ----.
x_'x X _- g i
__.
.....
N.
== :
.. -. -
_ _,.
_.
x
%
..
'm
'. --
_ _-
0_
- -
~
'
' BANK D i
i i
'
'
50 100 150 200 228 I
I I
1C8 168 228 BANK C ROD BANK POSITION STEPS WITHDRAWN DIFTERENTIAL AND INTECRAL ROD WORTH vs STEPS WITHDRAWN FOR BANKS D AND C MOVINC WITH 100 STEP OVERLAP NO PL'S, BOL, HTP EQUILIBRIUM IENON CONDITION (Cycle 1 Unit 2)
Issue 1 Rev 0
.
.
......
-
.
c C'B-10b
.
l[
cuave soox - sves ii
,
'
O R lN OM/ A"iOL '
^ OI
_Y,/
-
25.0 2500 - i.@..@r_ i.,[_.'~;f=d"ili?
- " E 5F
-- 5:5~-% 2:, -l:
3-o
-
- =_ _a -
....
.___.
. _.. _ _ __
___..q........
..;
........,....._
. u. n.
-
.
- =-- + -
-
-....._n:::::=. :
-
.w
- r n= -
.
-
(
-- :=_J.._ g,,
A
-
- - - - -
.
-
x
..
=:=_y _
-....._.....
2000 - _._..^..%
__
..... _ _.
_ _. _ _.
_... ".,- 20.0
.
_g g
._..___g
...... _.
, =..,.
,O.
L_ '
-y
- --. _ _..._.
c.
s..-...
a
-
g
-
- -=W
.
==:-
- gg;.,
y
-
---i - -
_
,
--
-
-
g C
i
- -- IC C.-~
15.0 w{
~'
- n
-- '~ ";..__ ~. 1
_1500 -
"
=
.. __. - _
%-
__, _ _.
.
=
=.
- _ __....
.
o
..
_
,,,
m
-
-
p C
. i-x ',..
-- Cli?
,
- -..--
ae m
g
- .
_...---t_.....f
..__
w.
-
-#i c
g
. _ _._. 4. _.. f _.. _..._.
,-
_...._
.. _.,, -
x
.._.__..._#.__
- - - -
- sa.
- _ _
. _...
a
""
-- t -- > - :.----
'-
-
- = r.
.
N7
~ ~b
- 10.0 l5
~ ~ ~##
~
1000 -
'
i.cQj
~~ y,
y
_.:--q!/ ::- x::"E==
Q5
.
.
m
_ _. J =-
--- 5 :5 _ _.
-
_
7_
9,. _..- - - =......
mg
.
.
..
'.:
'-x, f
_:Nn.u=. -..
m
== r/g.=_= u:...
..
--
--
.,
-
.
.
.
- -- x f
_.
.
_..f_.
._
.
_M
-- +
nn=:.
p:---:_:_ ::
- - - -
'- '- -.
x. --
-
"
.. _..
N 4: = =:-
. _ _
,
'm.
_
._
..
.
.._. l...
._ :... :- -
__
500 _
..
.w. _.
_.__
y
-
__;_._...- __
.____
..
.
- 5.0
,
___
.
- V.. _._.-.
._
.... _.. _..._.
n
.-
..
12 =_=_ __ _ _ ~
N.
i"J._.
__.
...
\\
--.-3Y......
- - - -
-...
- :'
~diECIE..
. 1---
= _=== : : = -- - -
-
'x
---11u -
. _ _. _
2:--
w: u ti:---_.
-
~. _ _...N
=. :-
. - -
_.._.,
. _....
_.--"~~-"g_"-*"-"
.
.
- - - - ~ ~ -
-
0.0
l I
I I
I I
O
100 150 200 228 BANK D
,
I i
108 168 228 BANK C (
ROD RANK POSITION STEPS WITHDRAWN DIFFERENTIAL AND INTEGRAL ROD WORTH vs STEPS WITHDRAWN FOR BANKS D AND C MOVING WITH 100 STEP OVERLA.P MO PL'S, EOL, HTP EQUILIBRIUM IENON CONDITION (CTCLE 1 UNIT 2)
Issue 1 Rev 0
?
D D
D
'
POWER LEVEL-3000--
li l
ll
I l
i
8 l
e Il!ils,
gy,j 4l',
_
.
_
_____
_._
._
_._
_
~___
!,
,!i
.._._
i
!'l l
1001
,;.I
'
,r4
,,
,
~~
!;Il
'
j 75%
--
-
-
ll'l1
-
,
,
-
-
,!
/
-- --~~~~~~'
?l-2500<
-
-
,
-
- -
,
/
'
pf 501 l
/
/
,f..
... /
3,_----==-.--
...
.__
-...--
.-.
.
.
R
/
- /
"
-
-
-
/
,
/
'
,v
,
y-2000-
.
'
>
/
/
/ /
/
,
l /
/
151 l
,
,
- q
/
-/-
/
,____----
/
/
_--,
e
.
/
/
/
'
m
"
-
-
-
,-1500.
.
j/(
l
./
,
,
/
,< '
/
/
/
/
/
---,
,
..
$
h
/
j-lootr
,
ac
/
.E
/
/
Cl
../---/
.
._
__
.
__
.
.
/
/
/
-500-J
>
ll
/
/(
..--..
---_
.-....
.
-
--.
...._
....
.
---._
.-
.-.
..-.
....
.-
_..
.
.
...
...
..
_
m M
.
C
'
O 2b Ab
NO Ib.
e Q
.a
Time After Startup (HRS)
h o
CURVE BOOK - BVPS 11
<
O INTECRAL WCATH OF IENON vs TIME FOLIEWING PLANT STARTUP L
FOLLOWING PLANT STARTUP AT BOL (0 NWD/MTU)AND VARIOUS POWER LEVELS r c..
i o i
..., n
.
CURVE BOOK - BVPS.Il p n __ n 4
,
..
.
%# D
& I
- 2400
._.,. _.,.
,___.._,_..__,_...._e___,
., _...
_ = =-t
- -- -
._
_.. _ :
E
' EE= ~ EEi." !
- - s
...
=
'.T __ 0 ppe M
Fower Defect vs Peteent Power ::::-
...
.
~
~~N/
~
--"-
- 2200
.
-
-
-
~
(Cycle 1. Unit 2)
_g:pI==f;.'
O-i
~
....
...;.
...
- t--
~
..
t
/. i31'
r=......"~ 7 :::=
-E= e.
. _.. _ _
- .-E-
...
...
_. _...
.___
.. _
_ -. _
.....
. _=r : - =.=_5=j..a :../
- 300 pp, i
_= e.--
i,. r =.._ :..... : : =._... =. _.. -
_ _ _._- _"e.-
-
_
.
u
,,
--
--
.
_.a..
.
__. 3
.. m
,
,
_
_...
.._. ;g.g.;- -.:=.t,t_ -.gju
-
.y._: ;.
- = = :--.--
..
_,.......
...... _ _-_;- _ -_ =.. --
.
.. _
...., _..
.
- -
z....
b,, p
_._..
_. _.
..
. _.,.. _
,
. _..
___
_.. _
. _ _
_,,_.-
-_..
. _ _
..p..
.f -...
, _ _ _.
. _..
_
y
_
n.:.=. :.= - ---
-, - - -
---
. - - - - -u- =t--- n.n 1800
, :_~;_=. _==H
-
%.,i.._g,/_:_=_i=.
-
. _ _ _._..
._.
.
__
,,,
W
-
(-
.
.
. ;_.:._
_
.
w.___
- - =
--,:g=p =-= _. _ =
.
- .__._.
_
.
- __._.-
-- :
-
- - _
--
e-- _ __ _ _ _.._. _ -
._
_
.,._=- f _ _
- :.
.
-
_ = = =
-
- 1600
- 3-
'
_
r_
K
,
-
--
=
-
9%
.... _
....,
,
-p._
_
s n ~-==
'
'#
~ ~ ~ - ~
--"-'-
g
{."_.. _ _'._ : --.Z.
-
_
,
- - ~.. _. _._ = - -
-
._.-
- a=2:==. = - - --
..._/ -: _
_..]
u
- 1400
-
_
-
.
s-
.
_ -..
-._.
y
..
__
..r-y
. _ _. _ - _ _ _
_._
__.
f_ f
.
,
--
___.
. _. _ _
. _ -. _. _
- ._:
_
b
..
_
no
. (
-
/ if
_ 900 ppe
g
- 1200
-
.___
.
... _ _ _ _
._,
_ _., _ __
n.
.
_.
.
.=.
i 4.:==_. --- 1200 ppe
..._:._-.. _
_-
-
__
m__
_... -
.. -
.- -__./
-
.
.
_.
-
_
_
'N
' - - -
~=
- 1000
~~
~ - ~ ~ -- --
-
. ' --
j
_
1500 ppe
-
=
,
_.w.
s--+-
_a.+
_.-.s_ _ _, _
-
.
_.a--s _..
.. _ _ _.._._. _ _ _ __
r
-
_... =-f= _., _...
_.a....
- =_
. _ _. -.
. _. _ _
__.r
,
_... - ;
s..,
_ - _..- - - -
_;
-
4-f
-
,.- : 7
- .
800
__ =rX.
--
- [l--'
_.-y.'=~-&
i f "~
ci=
-
- .+
- -s.
y,__ 4 _-
..
+_-._..u
._..
._:
,
a+,.
.a_..
.- n.. -
.
....
.
-
,.
f;
_ :-
=
-
+
---r
_
- y
.. =,_=:;
-.=
- .-s-s-
.__.
.
_//E==:_ _.
,/=-xb.
- 600
== = +. _
_.
_ a:=-
-
=:3-. -_ 5 7j..
.... _... yzi-y-
-~
_ _. _
...._.:.
.
' =#iEE-// i I - = =SP$L_'.. _= _ __ _. _ __ _l _.. _ _ - ~
.
ii?E- =-Nif/?
dd id _-
-.
-, _.
-_
~
f
= ~ _. - -.2
_.
_
~_:
- .. =_.=O' _ #
- 400
' "
. _;:N:.
s-
. =.: =:_
.
. _ _". - -- ~ ~, ~ ~
= '_--+_--,---
. _.
-
" ::
=
,
. a_.. ;#- ::ggj-
.. _
g.
.... _..
~. =
._...
.. _ _
.=u r
_
.;=
...
. ~.. _
.
_.
_
~ -M -. [!55M[.E@,_.E -.!=:.?_ ~-I-==i~ T- --"::E i:0 ~. -
~-
f;. //45
= = - ~
'
E' 2.-52E1==
~_L
. 1=E%=E
.
..
_ _ _
.- _
_. _... _
_ ___.
,. _.. _ _
. _ _..
'
_E-
--- - -
- - - + - = w_.
'
'
'"
"=
E
"'
'
- 200
-
..:*.
'
-]
f.//. '
- iss :._. -
- .
- - _
....= - - - = r ::: =t- :.==-= =1=
==z-
t
-
.
.
-. -..=.: :. -
w
,
i
. /. g _... _
.. : :
....._:.m... _.
_,...
--5- ~
........
..q.....
._
. _ -
..
...
=Y
. _ '. _. _
- N
-
. _ '...
l
[
.
....
v: _.
=i-
- -
_...
.. _, =. _
, = _ _. -e-
-,... _
.
. -
Issue 1 Rev 0
. _.....
.
. _,.
-
.
.
i i
l l
20
60
100 Power Level (Percent of Full Power)
.
,,.
.
_
_
i
,D D
'
!
.
fj 3I.
-.
- , ;Jj~j";
li ;jj,
- !.
-
.-
- .
-
-
-~
i;
."
jj: h,;. H j"
....
ire
!;l,,,;.
.,
- 3;! j j
- '
3l
.:
j.
h,[ql
..
[j; i
"r
--
]!,,,,3
- 3 a
l'!
NI;!
jij ij l i y ;-
',
,
(CYCLE 1. UNIT 2)
I 0; l'
,
,
H
!
I '
t.
- j
,
Samarium Buildup After Shutdown
- j ij;i lj. y
'
j g j i
- lj j j
~lj
{ {
.
,
.
Condition: Samarium Equilibrium ii fji.
jj, i.l
- , j j
.
l
. fj llll
'
i, ;;;j h-j ljj h, :,
- i:
q; il
'
I d.,
.
g
.
'". !:::
i.n !.a: '.l.
i.
!
..
..
-
ij
,
O...
..
.
.
.t., i,.e [: ii.,:.:
'
i.
.
[ l'
!
'i ; l i
, '..
.
.
!
.
.
I l
I
..
t U
0I Y N
Ib U pM E
'
I I ! lh
!
'
'
l
.
,
.a.
.l
,
!
k E
"
I'
1000 -
':-
!
'
'
'
'
d
'
I'
- 3
'
'
i ij F- :lil
!
I i
i I! lI l h F8'
"- "l l@
ll i
g!l}i
.l ll
'
!
!
i l
?:
100% Power
'
'
'
'
'
'
"
'
'
.
"
i
!l
!!!
I l i
,
.il: 'f.ij! }f l f jill HU j!l. j lpl
.@ l 1flll h 1 -!ji il~
l ji i l ! l j j 1:
' ' ' Ii i i j - 0 ! ! al:- . j f l :l:I ! I' ! j '
- j l"'.
l " l-l i f' Pr ' s., ! i E!$ @fri T S, "i! - i s !!
!'; 'T i'i' II l i: '.;J - ' !. !Ih :i:!
- i l
- ' ' " lj i! f! ? ld'UllO ;iI g i ij - F h.
d : !
- <
% 900 - I l ' ' i. !iY : d=h_/....v.
' " U ' ' ' r a: :M...l bt: r d i 8li
l in e i Jd ""l.
- l il.
I- - u !: , . n i;;; "..j c r ; ,/ a: 1 - i - - 1- 'M "i ... . I u - l.l'[: ft !!i e ]: iii: ]l
- j i d.:in ' I' :
.,
m: '" ' " 751 Power ,3 'i. l.I:! i k
- E
'- n 3: Ti!: g!i i ' 4% n-gi i; ;^ , . - T-3 :' . o
i
- !"
ti!::i m .o g I I p g ' ,,..
- .
p -
-- i ,a
- -
a - i:a i , ,. ,
,- .l l " 'l i E....$l - [.t :h'i !N, :. . :: l4 . .. i ... ..
- a g: '- . i
!- II El 52 l i f'! !!I !i Nl lp.
- t r
- fi! h"I! h';II-l
- dl
- i i !' Ig'- i l N-hfih N:'....li... ,- . :: '- I . ri e - . .: p i
t . - !d -lI ! .. A-i: li / t - - - S< !ll ' Nl ilk l hl: - I ! i i I!! i ll i ! ",' P iii.
Ii lt.
i i'.! h.- - F !i:
il i - ';: - i !;' li:.. ' ..
-- lfi, If1 .. !'i j-- ' ' ' "' '
- i
. I
1- ?!: il'- Il 'ni !Fi li - u 800 -
-
- ..
-
- /q
- , li:: g i.h '* i I !Ij! ! '; l.l Al 'W -
N;;','r :ii' Ni / !!il ! P'
! ' ' ' - .
' '
- .
- - d ol; l-- 1' ;:ij ^
- I!i !]
l"}f ! ~ l j l N!! d.ji id i' ! i bl ' i i 'l f t- +i .- i i' 501 Power !
" - i li i u .- e-s i.
n-,l:1 h. ala:, l Id: , . in el ni I i 'r
- ' o m
- n
- . - , , u iij. ";.b /! iU 3l,iQMI
- 1' i ! i.l'..!'.fg qj h il'
ihl i' l 8j ]; ' 'fr ~:!!;i' i !; j j yll ' - - '
- '
I hii 1 ' l.:l,p;*: -;:i "
- i
d ' I ..:!! N;ij. g {j.,["' " l'"l: . , j';!. ; d'.a'i i:!j lip ij," W 1.: , , . .y: - li 4 '
i
i ... .,
" S -
b I $ 1 I 700 -
!. !!!l ;;,p. !. ~ .;p ,n 3 3
. j.
,
- l ].'
' ' - .'. p': l. p{. ' '
' g !! ' 'j !itt R! :!q li jj ! !I 'u - ". , l 4:! r I'- l
- !
- a
- !
.m.
i . . a .
. i,.o - n - fin h}; 3;J. j,,l, .... h-lt jijl 'd.M" t !, '.!i "j: ' ii!: .-
- "
251 Power l I: } jIi
- . i ;;.;;;
l li a1
j ' ei s3 dlj l I i i, !i 'i'! ll I l. l.
' If " n
- r
l ~ 8"kb hl
- IU !l
!l j) l !!b ilf. U -' i I' ...::
- c
!!
. I !! f 'I l.I - y
- t r
- fp
! d!. W: iNi l 'l - n!I l"i; p:.. !
-
- t-
-" i;: ... . i.
- .- g I' ntl --j 4. c
- ! 3
- -
- fr
,r; ;j:- ..
- l!
'. j1 p;--l-i ", p,: .:: .l.: ~
- l" l
. id r "... - r . -
- .
-
- .. :
, i i .. :- in - .n . .; b' =j!
.. [- - - x r!: m - '-
- .
r .: ol.
' ;~a
, N . . l. -. li: d '. . .' 600 h;
U
W 3: .. i -l J C - . li i . .I -%jpi
- g!
- t{r : i' g-ji : : i; -mi p1:ji..: g 'lj ij i , .- it' N I: : ll
h ! ""
. 'in e:' . li,h!Pl' F! Ti . ' .- .. ,
- i !. i F:
- 594
,
- '!
- o
!pi l'g ;; y.i;. ;!r - "-
. ii itji : :: -
- -
e, - 'i . . e ..I i.' .: I.. "-
, i
- -
~ ... - - -
i g i l l
l l
l-l l l Bours
50 100 150 200 250 300 350 400 450 500 550 Ccys
- 0:
10
20
O O Time After Plant Trip .4 Samarium Buildup After Shutdown I from Samarium Equilibrium N s FOR iMOM/iMiON N conve soox - sves ii ONLY
., .
- d i CM C i , O i e P-- O , , m.
. . . ' .% - a I-- e e i i +- t. =.+. s. , @ > s-r.
-, . - , . M b b ~ C i g gn
t-
0 . m" lN i i U
y y 4b U ' j o. e a e . 5h M ' E , i H* C O i h w.
- e U n et l!.
_C N'> 0 a b a> ll N , l H G-K i lli
- *
= M 2g~ llF te U ! IIr - t.
. l&n lif M > '
. til - y w pe i il f _O s O
- 11
$ g III b Z a xz lll 1-w e ill I O . H M lli k n g
M flI i ^
/1 II I b 3]
' i ll/ f f W M g . ' ' I/ I 1 _C $$ C~"4 / i I I O
'% f / l! I I
,,, a l Iif I set >- i ! / / i' l
tY j i
/ / /
o~ see W r / / 1 I }w } / i I q L,, / / / I I ' ' l,l a O- + / / / 'i-o t i . n m' I / / / ll a-f "' / / / l , " l i /* / /
' i i / / / I.
i
/ / /
} A / / / 1N I / / / / I O / / / I ' _o / / / / n 8g L / / / / - / / _ f / ~ / / / / ~ / / / / g s' / / V / / / / , / / / I > n '
/ / / g .V / -f / / _o / / / / N l . j / / / ' / / / / M w H / / / / O / / / / / / / O i o / - ~ f f s r' / m g-= . , f_/ Q / __ / _/ f l , s y l / m / . g _o > / 5 / / m / - E_ i i N / T _ ' , \\ l I f
/ ~ \\ \\ l J O A \\ l
N . x N N
, _, _ _ l N N- \\ k . ; ' '
- "
x % % .o I
il I f H ~e " I. ', * ' * . . . e - (M3d) ! Y Y A T 19V*21f I..... 4 M mee A
. -. PAGE b (m__EBIHCIPLES QE_HUQLB&BLPOWER EL&HI OPERATION t THEBdQDlHAMICS, HEAT TRANSFER AND_ FLUID FLQH QUESTION 1.12 (2.00) Indicate how the associated narrow-range pressurizer level indication will change as a result of each of the following occurrences (i.e., INCREASE, DECREASE. NO CHANGE).
Consider each separately.
(0.50 each) Reference leg temperature decreases by 30 degrees F a.
b.
Reference leg ruptures o.
Bellows ruptures d.
Variable leg temperature increases by 30 degrees F QUESTION 1.13 (1.00) The reactor is at 50% power.
Indicate how indicated steam generator level is INITIALLY affected (INCREASE, DECREASE, NO CHANGE) by each of the following occurrences? Assume no pratection signals are generatod.
a.
A rapid increase in turbine load.
(0.5) -b.
A. rapid decrease in feed flow.
(0.5) QUESTION 1.14 (1.00) What are the TWO primary factors that provide the driving mechanism for Natural Circulation flow? QUESTION 1.15 (2.25) The reactor is at 30% of full power.
Briefly explain HOW and WHY each of the following parameters will change if one reactor coolant pump (RCP) is shut off with rods in manual.
Assume NO reactor protection signals are generated and turbine load does NOT change.
a.
Indicated reactor coolant flow in the unaffected loops (0.75) b.
Indicated reactor coolant flow in affected loop (0.75) c.
Indicated steam pressure in the unaffected loops (0.75) (***** CATEGORY 01 CONTINUED ON NEXT PAGE *****) i - - -.
~ l '. ~ PRINCIPLES OF NUCLEAR POWER PLANT OPERATIQL PAGE
IBEBMODYNAMICS. HEAT TRANSFER AND FLUID FLOW QUESTION 1.16 (2.25) How will the following occurrences affect the Moderator Temperature Coefficient (MORE NEGATIVE, LESS NEGATIVE, or NO CHANGE)? BRIEFLY EXPLAIN your answer.
Consider each separately.
a.
The charging pump suction inadvertently switches to the Refueling Water Storage Tank during normal power operations.
(0.75) b.
The core ages from BOL to EOL.
(0.75) c.
The RCS is cooled down by 80 degrees F.
(0.75) (***** END OF CATEGORY 01 *****)
.L PLANL.D_ESlgB_ INCLUDING _SAEETY AND_EMEBGENCY SYSIEMS PAGE 'I QUESTION 2.01 (1.50) a.
State the function of the RCP number 1 seal bypass valve. (0.50) b.
What provision is made for maintaining RCP no. 1 seal leakoff upon isolation of the normal seal return line? (0.50) c.
Regarding the RCP seals, explain the reason for maintaining a minimum of 15 psig in the VCT.
(0.50) QUESTION 2.02 (2.50) a.
List TWO (2) reasons for automatic Main Feedwater Isolation during actuation of a Safety Injection Signal.
(1.00) b.
In addition to closing Main Feedwater Regulating Control Valves and Main Feedwater Isolation Valves, list THREE (3) other dissimilar automatic pump and/or valve operations that occur directly as a result of a Main Feedwater Isolation Signal.
(1.50) QUESTION 2.03 (3.00) The plant is at the point of adding heat (approx. 1 percent power) during a reactor startup with normal letdown (60 gpm) and charging in service.
An inadvertent safety injection signal is generated resulting in a reactor trip.
State what position (OPEN or CLOSED) the following valves will be in THREE (3) minutes (sufficient time for valve stroke) following the safety injection signal? Assume no operator action is taken and all valve controllers are in AUTOMATIC as applicable.
Also assume that NO Reciro Mode Initiation Signal is generated.
(0.50 each) a.
AOV200B, Letdown Orifice Isolation Valve b.
LCV460A, Letdown Line Isolation Valve c.
MOV378, RCP Seal Water Return Isolation Valve d.
PCV145, Nonregenerative Heat Exchanger Discharge Pressure Control Valve e.
LCV1150, Charging Pumps Suction From VCT Isolation Valve f.
LOV115D, Charging Pumps Suction From RWST Isolation Valve (***** CATEGORY 02 CONTINUED ON HEXT PAGE *****) [
L.__ELANT DESIGN INCLUpl8G SAEEILAHD_.EMEBGENCY SYSTEMS PAGE
QUESTION 2.04 (3.00) Q.
The plant is in Cold Shutdown with all RCPs secured.
It is desired to start an RCP for enhanced pressure control.
Which RCP would be LEAST effective for_ pressure control if started and WHY7 (1.00) b.
State TWO (2) reasons for maintaining a minimum continuous bypass pressurizer spray flow.
(1.00) c.
List TWO (2) annunciators available in the control room to warn the operator that there is insufficient bypass spray flow.
(1.00) QUESTION 2.05 (3.50) a.
What THREE (3) signals / conditions will cause an RCP thermal barrier CCP discharge isolation valve to close? Do not include loss of air or loss of electrical power in your answer.
(1.50) b.
In addition to the thermal barriers, what other THREE (3),RCP compot.ents are cooled directly by Primary Component Cooling Water? (1.00) c.
List FOUR (4) components cooled by Primary Component Cooling Water (in addition to thermal barrier heat exchangers) which, if in operation and leaking, would cause CCP surge tank level to rise.
(Identical components used in multiple trains or locations will be graded as ONE component.)
(1.00) QUESTION 2.06 (1.00) Given the following methods / paths of secondary heat removal: 1.
One residual heat release valve, UCV-104 2.
Or.e SG atmospheric steam dump valve, POV-101A . 3.
One condenser steam dump valve, TCV-106H a.
Which ONE method / path has the greatest capacity for heat removal? (0.50) b.
Which ONE method / path can be controlled from the Alternate Shutdown Panel? (0.50) (***** CATEGORY 02 CONTINUED ON NEXT PAGE *****) { .
i R._P ANT D_ESIGN INCLUDING SAFETY AND EMEBGENGLSYMEMS PAGE
J QUESTION 2.07 (2.50) a.
List TWO (2) reasons NAOH is added to quench spray water during containment depressurization following a LOCA7 (1.00)~ b.
HOW and WHERE is NAOH added to the Quench Spray System water? (1.00) What happens to the NAOH remaining in the chemical addition tank after c.
RWST level drops to the low-low RWST level setpoint? (0.50) QUESTION 2.08 (2.00) Upon receiving a start signal, an emergency diesel generator wlil begin cylinder fuel injection if FOUR (4) 3-way valves are properly aligned.
' Describe the function of EACH of these 3-way valves.
QUESTION 2.03 (1.50) a.
When SI accumulator level is being raised, what is the source of makeup water? (0.50) b.
What are the undesirable consequences of EXCESSIVELY HIGH (out of specification) and EXCESSIVELY LOW (out of specification) SI accumulator nitrogen pressure? Consider each separately.
(1.00) QUESTION 2.10 (2.50) a List TWO (2) sources of water that can directly supply the suction of the auxiliary feedwater pumps. (1.00) b.
What design feature prevents excessive AFW flow to a faulted (depressurized) steam generator, thereby ensuring adequate AFW flow to the remaining intact steam generators? (0.50) c.
'During a routine surveillance test of a motor-driven auxiliary feedwater pump during power operations, no discharge flow was noted.
Upon completion of associated electrical and valve lineup checklists, no discrepancies were noted, although the pump casing and discharge piping were unusually hot (approx. 185 degrees F).
1. What was the most probable cause for the lack of discharge flow experienced? (0.50) 2.
What was the most probable cause for the hot casing and dischargo piping? (0.50) (***** CATEGORY 02 CONTINUED ON NEXT PAGE *****) ,
2.
PLANT DESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE
. -QUESTION 2.11 (2.00) " a.
List the MAXIMUM RCS TEMPERATURE and PRESSURE at which the Residual Heat Removal System (RHS) may be placed in-service during a plant cooldown.
(1.00) b.
The RHS train B is in service providing shutdown cooling for the RCS with a steam bubble in the pressurizer and plant pressure at 250 psig.
What design feature (other than relief and/or check valves) will protect the RHS system from overpressurization in the event of a continuous increase of RCS pressure to 950 psig? Include setpoints.
(1.00) .
' (***** END OF CATEGOP.Y 02 *****) . - - -. - ...
3m._l HSIRUtStiTE_AHQ_QQNlgqLS PAGE
, QUESTION 3.01 (2.00) The plant is operating at 30% turbine load with all control systems in cutomatic and a load. ramp to 100% is in progress.
Operator error results .in a 25% turbine runback which causes control rods to' insert at maximum speed, a.
How will'the control rods respond (STOP or CONTINUE INSERTING) when turbine load drops below C-5 (15% load)? Assume the reactor does not trip and a rod insertion demand signal still exists.
Assume no operator action.
BRIEFLY EXPLAIN your answer.
(1.00) b.
The rods are subsequently placed in Manual and withdrawn. Nuclear power decreased to 8% before recovering and the load increase was resumed.
Prior to reaching the initial turbine load (30%), a reactor trip occurs as a result of setpoints exceeded in the Nuclear Instrumentation System.
EXPLAIN which reactor trip setpoint was exceeded and DESCRIBE HOW and WHEN operator action could have AVOIDED the trip while continuing the load increase. (1.00) QUESTION 3.02 (1.50) Indicate how the affected OT delta-T and OP delta-T SETPOINTS wil) INITIALLY change (INCREASES, DECREASES, or NO CHANGE) if the following events occur with reactor power at 50%. Consider OP delta-T SETPOINT and OT delta-T SETPOINT for each event separately, c.
Prsssurizer pressure decreases from 2235 psig to 2150 psig.
(0.50) b.
N-41 lower detector fails low.
(0.50) c.
The narrow-ran6e loop 3 T-hot RTD output fails low.
(0.50) QUESTION 3.03 (2.50) a.
Which positions on the Reactor Coolant Makeup Mode Selector switch will allow either all or some makeup water to be delivered directly to the suction of the charging pumps? (1.00) h.
State the VCT (%) levels at which automatic makeup is initiated and terminated.
(0.50) c.
Explain what automatic pump and valve actuations occur when automatic makeup is initiated.
(1.00) ' (***** CATEGORY 03 CONTINUED ON NEXT PAGE *****) P - .,. ~ - , -
3.
INSTRUMENTS AND CONTROLS PAGE
QUESTION. 3.04 (2.00) The plant is operating at 80% turbine load with all control systems in automatic.
A reactor protection system sr.rveillance test of Train A is about to commence.
a.
Which reactor trip bypass breaker will have to be racked in and closed to prevent a reactor trip during the test? (0.50) h.
List TWO (2) annunciators provided in the control room that will alert the operator when the reactor trip bypass breaker is closed.
(1.00) c.
How will the Reactor Protection System respond if a technician attempts to rack in and close both reactor trip bypass breakers concurrently? (0.50) QUESTION 3.05 (2.50) The plant is enerating at 40% of rated thermal power.
c.
State THREE (3) function / bases of Rod Insertion Limits 'uring Mode 1.
d (1.50) b.
Refer to the attached figure, Rod Insertion Limits, and list the SETPOINT for the following annunciators.
(0.50 each) l 1. ROD CONTROL BANK C LOW (Set at 10 steps above RIL) 2. ROD CONTROL BANK D LOW-LOW (Set at RIL) l , QUESTION 3.06 (2.00) The plant is operating at 70% turbine load with the first stage pressure transmitter used for T-ref generation (PT446) failed low.
Rod control is in Manual and the Steam Bypass System is in the Steam Pressure mode.
! ! a.
Describe the INITIAL response of the control rods (direction and rod l speed) if the Rod Control System is placed in Automatic. (1.00) i b.
Deecribe the INITIAL response of the steam dump valves if the Steam Bypass System is placed in the T-ave mode.
(1.00) l (***** CATEGORY 03 CONTINUED ON NE)T PAGE *****)
( . . . !
. l (Fully Withdrawn) ' l '
' i - ' , /. 228- _ l ' / [~ ! ) '
j i . . . , ~. - BANKC' j , . N5 f . . . . I 200 . c , , , ,
t ' .. ... . ... C.).
'. ' '/
- * *
. . . . . . , b.
' . . .. ! . . . .. . . . I j ,
a.
150 .. . . I , i .... . . g, ~
Lu .:
- '.
" ' . . ' y ' '
.. [ I.
- B A MK D . ( M g i -. .. .. , . , O i .. /: - I - . ..
/.- i . f.
, . a ' ..
r , . . i . .. i . . I - i .. ( . .. . g . . 0- .
.2 .4 .6 .8 1.0 (Fully inserted)
FRACTION OF RATED THERMAL POWER . . FIGURE 3.1-1 ROD GROUP INSERTION LIMITS VERSUS \\ THERMAL POWER THREE LOOP OPERATICH BEAVER VALLEY - UNIT 2 3/4 1-26 <
_ _ _ _ _
PAGE
3.
'IHSIBUMENTS AND CONTEQLS QUESTION 3.07 (2.00) The plant is operating at 45% turbine load with all control systems in automatic.
A feedwater flow transmitter (FT496) used for control room fcedwater flow indication and steam flow / feed flow mismatch for steam gsnerator 21C is out of service and its associated protection bistables are tripped.
A malfunctioning emergency trip header drain valve causes a turbine trip.
The reactor trips several seconds later and the main generator output breakers trip even later.
Assume no operator action.
Why didn't the reactor trip directly as a result of the turbine trip? a.
(0.50) b.
What is the most probable cause for the reactor trip? (0.50) c.
How-soon after the turbine trips will the main generator output breakers trip? (0.50) d.
What is the basis for the time delay associated with tripping the main generator output breakers? (0.50) QUESTION 3.08 (3.00) a.
Describe an Intermediate Range channel response if the circuitry is overcompensated during a reactor startup.
Include any effects on Intermediate Range instrumentation.
(1.00) b.
Describe an Intermediate Range channel response if the circuitry is undercompensated during a reactor shutdown.
Include any possible effects on Source Range instrumentation.
(1.00) What switch manipulation is required to continue a rea/ctor shutdown c.
if one Intermediate clenelh es tWle/ N/GM(Inc/v e esy sel MS- , aglie eWL P QUESTION 3.09 (2.00) I The plant is operating at 50% turbine load with all control systems in I f automatic when the controlling pressurizer LEVEL transmitter fails HIGH.
Describe the ACTUAL pressurizer level changes and the AUTOMATIC level control actions (setpoints are not required) that occur and the EVENTS leading to a reactor trip.
Assume NO operator actions and be sure to IDENTIFY the reactor protection signal that CAUSES the reactor trip.
(***** CATEGORY 03 CONTINUED ON NEXT PAGE *****) ,
l f.
. _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ - _ - _ _ _ __- _
._ I :. 3.
INSTRUMENTS AND CONTROLS PAGE 14.
R QUESTION 3.-10 (1.50) Refer to the attached figure, 4-KV Distribution, and indicate whether the.
following breakers.are normally OPEN or CLOSED with the reactor at 1 E-8 cmps during a. plant startup. (0.15 each) 1.
ACB42A 2.
ACB142A 3.
ACB242B 4.
ACB342B 5.
ACB42C 6.
ACB242D 7.
ACB342D 8.
ACB2D10 '9.
ACB2E7 10. ACB2F10 QUESTION 3.11 '2.00) The plant is operating at 75% turbine load with all control systems in automatic.
How will the affected steam generator Main Feedwater Regulating Control valve (s) INITIALLY respond (OPENS, CLOSES, or NO CHANGE) to each of the following events? BRIEFLY EXPLAIN YOUR ANSWER.
Consider each event ocparately and assume no operator action.
(1.00 each) a.
HIGH failure of controlling steam generator pressure compensating transmitter.
b.
HIGH failure of associated turbine impulse pressure transmitter.
QUESTION 3.12 (2.00) a.
List the FIVE (5) interlock signals / conditions required for a cold leg isolation valve to open when its control switch is taken to OPEN.
Assume electrical power is available.
Include setpoints. (1.00) b.
On which Motor Control Centers are the motor breakers for the Loop B Hot Leg Isolation Valve and the Loop C Cold Leg Isolation Valve located? (1.00) (***** END OF CATEGORY 03 *****)
. . . . i ,(
. . . . . . . . ' . SSST 2A .' USST2C
. . . , . ' 42A (' 42C a men A .
, ' . 142A ' I . 142C ' O mun si % A
j . < . ' 2428 3420 A
.. A sua e s '
) ) . . . .. J . . 3428 3420 I A mus e N A
> . " > y
. , USST20 SSST 25 ( 2A10
2C'S 2n (1 ..,. - . .... . . ) SE7 - . .. . m . BUS 207 EUS 2AS , . ' ^_ . , 2E10
' . . 2 P10 EDG2-1
. b .- .
. ! ' 4-XV DISTRIBUTION . . . %
! . f > ', . . . , , (
- - ~ . . . . . - . ,
.
O
d-i I . , A .
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ 4.
PBQCED_(JBES - NQBM6L d BHQBMAL. EMERGENCY AHD PAGE
B@lQhQG_LC_6L CONTBQL . QUESTION 4.01 (2.50) a State TRUE or FALSE for EACH operation listed below.
Consider each separately.
According to Station Administrative Procedures, the Nuclear Control Operator (NCO) is allowed to do each of the following WITHOUT first obtaining permission from the NSS or NSOF.
(0.50 each) 1.
Reduce power upon a request by the System Operator.
2.
Increase power upon a request by the System Operator.
3.
Manually trip the reactor if a situation exists that in his/her opinion jeopardizes public safety.
b.
Under what TWO (2) conditions may an NCO leave the "controls area" of the control room without first obtaining a qualified relief operator? DO NOT include conditions that result in a control room evacuation.
(1.00) l-QUESTION 4.02 (1.50) The plant is operating at 75% turbine load with the most recent leak rate data as follows: 11.2 gpm - Total leakage (not including seal injection) 7.0 gpm - Leakage from letdown relief valve to PRT 2.5 gpm - Valve stem leakage into the PDTT 0.4 gpm - Primary to secondary leakage in "A" SG 0.3 spm - Primary to secondary leakage in "B" SG l 0.2 gpm - Primary to secondary leakage in "C" SG l 9.0 gpm - No. 1 seal injection flow to EACH RCP l Rofer to the attached technical specification and state which, if any, specific leakage limit (s) has/have been exceeded.
QUESTION 4.03 (1.00) State the TWO (2) PARAMETERS and their LIMITS which, if either is exceeded, constitutes "Adverse Containment" for Emergency Operating Procedure usage.
(***** CATEGORY 04 CONTINUED ON HEXT PAGE *****) ' ,
REACTOR COOLANT SYSTEM OPERATIONAL LEAKAGE LIMITING CONDITION FOR OPERATION ~ 3.4.6.2 Reactor Coolant System leakage shall be limited to:
a.
No PRESSURE BOUNDARY LEAKAGE, j b.
1 GPM UNIDENTIFIED LEAKAGE, - . c.
1 GPM totaT reactor-to-secondary leakage through all steam generators ' not isolated.from the Reactor Coolant System and 500 gallons per day , _ through any one steam generator not isolated from the Reactor
Coolant System,
, d.
10 GPM IDENTIFIED LEAKAGE from the Reactor Coolant System, and ,. i , I e.
28 GPM CONTROLLED LEAKAGE at a Reactor Coolant System pressure of
2235 t 20 psig.
- APPLICABILITY: MODES 1, 2, 3, and 4.
) ACTION: a.
With any PRES $URE BOUNDARY LEAKAGE, be in at least HOT STANDBY ( within 6 hours and in COLD SHUTDOWN within th next 30 hours, b.
With any Reactor Coolant System leakage greater than any one of the above limits, excluding PRESSURE BOUNDARY LEAKAGE, reduce the leakage rate to within limits within 4 hours or be in at lesst HOT STANDBY , ithin the next 6 hours and in COLD SHUTDOWN within the following w
- 30 hours.
SURVEILLANCE REQUIREMENTS - 4.4.6.2 Reactor Coolant System leakages shall be demonstrated to be within each of the above limits by; a.
Monitoring the containment atmosphere particulate and gaseous radioactivity monitor at least once per 12 hours, b.
Monitoring the containment sump discharge at least once per 12 hours.
c.
Measurement of the CONTROLLED LEAKAGE to the reactor coolant pump seals when the Reactor Coolant System pressure i. 2235 1 20 psig at least once per 31 days with the modulating valve full open, d.
Performance of a Reactor Coolant System water inventory balance at least once per 72 hours during steady state operation, and , BEAVER VALLEY - UNIT 2 3/4 4-19
. _ 4.
PBQQEQQBES - NORM 6 6_ ABNORMAL. EMERGE _HCY AHQ PAGE' 18' B&Q1QLOGICAL CONTBQL QUESTION 4.04 (2.00) a.
Upon what TWO:(2) signals / conditions should the _ operator manually initiate transfer to cold leg recirculation following a major RCS loss of coolant accident (LOCA), assuming the system fails to align automatically? (1.00) b.
List TWO (2) reasons for initiating hot leg recirculation following a major RCS LOCA7 (1.00) QUESTION 4.05 (1.50) Rcfer to'the attached figures, ES-0.2, Attachments 6 and 7.
Select the ONE group of indications which indicates the presence of Natural Circulation in accordance with ES-0.2, Natural Circulation Cooldown, Attachment 7.
Assume normal containment conditions.
RCS S/G CORE EXIT PRESSURE (psig) PRESSURES T-HOT T-COLD TilERMOCOUPLES e.
885 Constant Constant Constant 506 degrees F b.
1185 Increasing Constant Increasing 528 degrees F c.
1485 Constant Decreasing Decreasing 554 degrees F d.
1685 Decreasing Decreasing Constant 579 degrees F e.
1885 Decreasing Decreasing Decreasing 610 degrees F QUESTION 4 06 (3.50) FR-S.1, Response to Nuclear Power Generation, requires Emergency Boration initiation as an immediate action.
a.
Describe the pump / valve manipulations necessary to initiate Emergency Boration in accordance with FR-S.I.
(1.50) b.
Describe the valve manipulations required to initiate Emergency Boration via the TWO (2) alternate boration paths available if the normal Emergency Borate path cannot be properly sligned in accordance with FR-S.I.
(2.00) (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****) l l
~ N BVPS - EOP 2.53A.1 -. f,. 11L M,ER TITLE ES-0.2 Natural Circulation Cooldown ATTACRMENT 6 SUBCOOLING ERROR BASED ON CORE EXIT TCs ' _ Minimum Subcooling (F) ( RCS Pressure (PSIG) NORMAL CN?fr ADVERSE CN!!T* 2485
46 2385
46 2285
46
2185
- 2085
46 1985
46 1885
46 1785
46 1685
46 1585
46 ( 1485
46 1385
47 1285
47 ' 1185
47 1085
47 985
47 . 885
47 785
47 685
48 585 .
48 485
59 l 385
50 ( 285
52 ' l ( 185
59 l
- Adverse CN?!T:
l l l l
-END-l s IS S'JE * PAGE 1 of 1 .E'/*S:~N 2
- - - _ -. . _ _ _, _ _ _ _ _ _ _. - _
. . , g-BVPS - E0P 2.53A.1 o ' TITLE NUMB,ER ES-0.2 Natural Circulation Cooldown , I
ATTACHMENT 7 INDICATIONS OF NATURAL CIRCULATION COOLDOVN The following conditions support or indicate natural circulation flow: RCS subcooling based on core exit TCs - GREATER THAN SUBC00 LING LISTED ' . ON ATTACHMENT 6.
. 2.
SG pressures - STABLI OR DECREASING.
3.
RCS hot leg temperatures - STA3LE OR DECREASING.
4.
Core exit TCs - SThBLE OR DECREASING.
, 5.
RCS cold leg temperatures - AT SATURATION TEMPERATL*RE FOR SG PRESSURE.
6.
IF natural circulation can NOT be verified, THEN increase dumping ~,j . steam.
( -% 7.
GO TO Step 2 of this procedure, i I - END - - L_
- S 5 's E *.
PAGE 1 of 1 REV!S::s :
.- . L__EBQQEDURES - NORMALuABliQBtiAL,._ EMERGENCY 6 tid P5GE-17 l-BAD 1QLQQ1 GAL CONTBQL , QUESTION 4.07 (2.50) For EACH of the E-0, Reactor Trip or-Safety Injection, immediate action steps listed below, list ALL actions required to fully complete the step (left column items only).
c.
Verify _ reactor trip (0.50) b.
Ensure reheat steam isolated (1.00) c.
Verify generator trip (0.50) d.
Verify Service Water System in service (0.50) QUESTION 4.08 (2.00) List FOUR (4) ple.nt parameters that are monitored to determine if safety injection flow can be terminated in accordance with E-0, Reactor Trip or Safety Injection.
QUESTION 4.09 (2.25) Refer to the attached figure, Axial Flux Difference Limits.
Given each of the following indications, state whether axial flux difference (AFD) is being maintained INSIDE or OUTSIDE the target band.
BRIEFLY EXPLAIN your answer.
(0.75 each) POWER AFD AFD AFD AFD LEVEL CHANNEL 1 CHANNEL 2 CHANNEL 3 CHANNEL 4 ' a.
75% -14-12-13-17 ' b.
GS% - ' -1 +2-2 &1 , c.
55% -11 INOPERABLE-15-11 (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****) .
'm W. + -
.- w x . y cuave Boox - sves ii CB-14 ffl . [ (CYCLE 1. UNIT 2) th% c r
\\ - ws , & ' }lvyl - ) - { -
EFPD p if..< ', .,., 100 Power 5.q' ~ l ' Avg. Target '.' N.
'#U' '"
._ -10.4 Specific g _ _. Targets - , ja-f5 Target A .N41 - -10.4
h - , F K42 = -10.4 - a . -10.4 [ N43 = - % N44 = -10.4 100 --: 3, NDR d (-11.ok - (11, to) f.. C; 90 - E E . p . _ p 80 - -
u
. ~ - ( l
- ( ,, r.
_.x-cI - . t [
-
. . N E n. so)- / -(n. 50)
- T
- I e - E as " g
- m n + E E-
- E -
_ r - y '- '
r ~ .: , --
> - _
- -
m
i i - 6 i i i i i
- ' ' -30-40-30-20-10
10
30
50 Flux Difference (6%) : - Axf al Flux Difference Li: sits as e Function of Rated { . Themal ?over < E FOR INFORMAT ON '.. E ' ~ issue i Rev 0 i - * Of\\_Y/ a
. _ -- .
.-. _ _ -. - _. 4.
. P R ) C E Dl] B E S _ _ H Q B M A L 2 _ A M Q R M A L. EMERGENCD@ PAGE. 18 BADIOLOGICAL._QQHIBQL QUESTION 4.10 (1.50) Briefly explain the purpose / reason for the following precautions found in OH-6.2, RCS.
(0.50 each) .e.
If all RCPs have been stopped for more than five (5) minute 4 curing solid plant-operations, an RCP may not be restarted unless the reactor coolant system temperature is less than or equal to the temperature of seal injection water.
I k b.
When the RCS pressure is less than 100 psig, the number 2' seal leakoff isolation valves must be closed.
c.
A Nitrogen blanket should be maintained in the PRT during powe operation.
QUESTION 4.11 (2.75) a.
What is the normal limit for annual nonemergency Whole Body radiation exposure to an NCO (on shift) in accordance with the BVPS Radiation Control Manual? (0.50) b.
List TWO (2) individuals (by title) who are authorized to INCREASE the above (part a.) annual nonemergency Whole Body radiation exposure limit.
(1.00) c.
A 20 year old radiation worker (BVPS employee) has received 1 rem during the current quarter and has a lifetime accumulated whole body dose of 8.6 Rem (including current quarter exposurei.
Assuming this worker has a Form NRC-4 on file, calculate how long (in hours) he could remain in a 250 mrem / hour gamma radiation field without exceeding any nonemergency Whole Body exposure limits of 10 CFR 20 or BVPS Radiation Control Manual.
SHOW ALL CALCULATIONS AND ASSUMPTIONS.
(1.25) (***** CATEGORY 04 CONTINUED ON NEXT PAGE *****) _
j^ : .L.__PROCEDUBES - NOBMALu ABHQBMALi EMERGENCY-AND-PAGE
RADIOLQGICAL COMIBQL QUESTION 4.12 (2.00) ECA-0.0 Loss of All AC Power, directs the operator to depressurize all intact steam generators at the maximum rate if AC power cannot be restored, What is the reason / basis fee depressurizing the steam generators at the a.
maximum rate? (0.75) b.
Why shouldn't_the steam generators be depressurized below 145 psig? (0.75) c.
If pressurizer level is lost or reactor vessel head voiding occurs during the depressurization, should the depressurization be STOPPED, -SLOWED, or CONTINUED AT THE MAXIMUM RATE 7 (0.50)
,
' , l- ! . i (***** END OF CATEGORY 04 *****) (************* END OF EXAMINATION ***************)
_ -. ,
-; EQUATION SHEET f a ma v = s/t Cycle efficiency = (Net work - out)/(Energy in)
w = mg s s. V,t + 1/2 at
E = mc ~ KE = 1/2 av a = (Vf - V,)/t A = LN A=Aeg PE = men Vf = V, + at w = e/t A = m2/t.1/2 = 0.693/t1/2 1/2 " * Utu9 M
t
w.y,p. ,n ((g /2) * I*b)) A= l
- E = 931 an
- m = V,yAo e (,Ieo . . Q = mCpat Q = UAa T I = I,e-"* I = 1,10-*/ M Pwr = W ah f TYL = 1.3/u sur(t) HYL = -0.693/u P = P,10 P = P,e*/I SUR = 26.06/T SCR = S/(1 - K,ff) CR = S/(1 - K,ffx) x CR (1 - K,ffj) = CR (I ~ Eeff2) SUR = 26s/t* + (s - p)T j
T = (t*/o) + ((a - oV io] M = 1/(1 - K,ff) = CR /G, j T = L/(8 - 8) M = (1 - K,ff,)/(1 - K,ffj) T = (8 - o)/(Io) SDM = (1 - K,ff)/K,ff o=(X,ff-1)/K,ff=AK,fgK,ff t' = 10# seconds I = 0.1 seconds-I o = ((L'/(T K,ff)] + (T,ff (1 + IT)] / Ij j = I d d 2,2 2 P = (t*V)/(3 x 1010) Id gd j
2 I = cN R/hr'= (0.5 CE)/d (meters) R/hr = 6 CE/d2 (feet) Water Parameters Miscellaneous Conversions 1 gal. = 8.345 lem.
1 curie = 3.7 x 1010eps 1 gal, = 3.78 liters 1 kg = 2.21 lbm 3 Stu/hr = 7.48 gal.
I np = 2.F4 x 10 1 ft3 Oensity = 62.4 Itvn/f t3 1 mw = 3.41 x 100 5tu/hr
lin = 2.54 cm Density = 1 gm/c..r Heat of vacorintion = 370 Stu/ lcm 'F = 9/5'C + 32 Hest of fusion = iaa Stu/lem 'C = 5/9 (*F-32) 1 Atm = 14.7 asi = 29.9 in. Hg.
1 BTU = 778 ft-lbf I ft. 4 0 = 0.4335 lbf/in.
Table 1.
Saturated Steam: Temperature Table Abs Press.
Specific Volume Enthalpy Entropy Temp Lb per Sat.
Sat.
Sat.
Sat.
Sat.
Sat.
Temp fahr SqIn.
Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr I p v, veg vg hl h ig hg s, sit Se i 37 0 0 08859 0 016022 33047 3304.7 0 0179 1075.5 1075 5 0.0000 2.1873 2.1873 32 0 34 0 0 09600 0 016021 3061.9 3061.9 1.996 1074 4 1076.4 0 0041 2.1762 2.1802 34 0 36 0 0 10395 0 016020 2839 0 2839.0 4 008 1073.2 1077.2 0 0081 2.1651 2.1732 36 0 38 0 0.11249 0 016019 2634.1 2634.2 6.018 1072.1 1078.1 0 0122 2.1541 2.1663 38 0 48 0 1.12163 0 016019 2445.8 2445.8 8.027 1071.C 1079.0 0 0162 2.1432 2.1594 48.0 42 0 0.13143 0 016019 2272.4 2272.4 10 035 1069 8 1079.9 00202 2.1325 2.1527 42 8 44 0 0 I4192 0 016019 2112.8 2112.8 12.041 1068 7 1080.7 0 0242 2.1217 2.1459 44 8 45 0 0 15314 0 016020 1965 7 1965 7 14 047 1067.6 1081.6 0 0282 2.1111 2.1393 45.8 48 0 0 16514 0 016021 1830 0 1830 0 16.051 1066.4 1082.5 0.0321 2.1006 2.1327 48 0 50 0 0 17796 0 016023 1704 8 1704 8 18 054 1065.3 1083.4 0 0361 2.0901 2.1262 58 8 57 0 0.19165 0 016024 1589 2 1589 2 20 057 10642 1084.2 0 0400 2.0798 2.1197 52 B 54 0 0 20625 0 016026 1482.4 1482.4 22 058 1063.1 10851 0 0439 2 0695 2.1134 54 0 56 0 0 22183 0 016028 1333 6 1383 6 24 059 1061.9 1086 0 0 0478 2.0593 2.1070 55 8 58 0 0 23843 0 016031 1292.2 1292.2 26 060 1060 8 1086 9 0 0516 2.0491 2.1008 58 0 50 0 0.25611 0.016033 1207.6 1207.6 28 060 10593 1087.7 0.0555 2.0391 2.0946 50 0 52 0 0 27494 0 016036 1129 2 !!?9 2 30 059 10583 1088 6 0.0593 2.0291 2 0885 52 0 64 0 0 29497 0 016039 1056.5 1056.5 32.058 10574 1089.5 0 0632 2.0192 2.0824 54 0 EE o 0.31626 0 016043 989 0 989.1 34 056 1056.3 1090.4 0 0670 2.0094 2.0764 EE a 68.0 0 33889 0 016046 926.5 926.5 36.054 1055 2 1091.2 0.0708 1.9996 2 0704 58 0 70 0 0.36292 0016050 868 3 868.4 38 052 1054.0 1092.1 0 0745 1.9900 2.3645 10 0 72 0 0.38844 0 016054 814.3 814.3 40 049 1052.9 1093.0 0 0783 1.9804 2 0587 12.0 74 0 0 41550 0 016058 7641 764.1 42.046 1051.8 1093.8 0 0821 1.9708 2 0529 74 0
76 0 0 44420 0 016063 717.4 717.4 44 043 10501 10941 0 0858 1.% 14 2.0472 15 0 18 0 0 47461 0 016067 673 8 673.9 46,040 1049.5 !095 6 0 0895 1.9520 2.0415.
78 0 80 0 0 50683 0 016072 633.3 633.3 48 037 1048.4 1096.4 0.0932 1.9426 2.0359 80 0 82 0 0 54093 0.016077 595.5 5953 50 033 1047.3 1097.3 0 0969 1.9334 2 0303 47 0 84 0 0 57702 0 016082 560 3 560.3 52.029 1046.1 1098 2 0.1006 1:9242 2.0248 84 0 86 0 0 61518 0 016087 227.5 527.5 54 026 1045 0 1099 0 0.1043 1.9151 20193 85 0 88 0 0 65551 0 016093 4968 496 8 56 022 1043.9 10999 0 1079 1.9060 -2.0139 88 8 90 0 0 69813 0016099 468.1 468.1 58 018 1042.7 1100 8 0.1115 1.8970 2.0086 90 0 97 0 0 74313 0.016l05 441.3 4413 60 014 104: 6 1101 6 0.1152 1.8881 2 0033 37 0 94 0 0 79062 0 016111 416 3 416 3 62 010 1040 5 1102 5 0 1188 1.8792 1.9980 94.0 96 0 0 84072 0 016117 392 8 392.9 64.006 1039 3 1103 3 0 1724 1.8704 1.9928 SE O 98 0 0 89356 0 016123 370 9 370.9 66 003 19382 1104 2 0 1260 1.8617 I9876 38 8 . --
_ Abs Press.
Specific volume Enthalpy Cotropy Temp tb per Sat.
Sat.
Sal.
Sat.
Sat.
Sat.
Temp fahr SqIn.
Liquid [vap Vapor liquid Evap Vapor liquid bap Vapor Fahr t p v, vgg vg he hg h s, s,g s t g g 1000 0 94924 0 016130 350 4 350 4 67.999 1037.1 1105.1 0.1295 1.8530 1.9825 108.8 192 1 100789 0 016137 331.I 331.1 69.995 1035.9 1105.9 0.1331 1.8444 1.9775 102.0 184 0 106965 0 016144 313.1 313 1 71.992 1034.8 1106 8 0.1366 1.8358 1.9725 164.8 IBE O 1.1347 0tr,6151 29616 296.18 73.99 1033 6 1107.6 0.1402 1.8273 1.9675 Its I 108.0 1.2030 0 :t6158 28028 280 30 7598 1032.5 1108.5 0.1437 1.8188 1.9626 108.I 118 0 1.2750 0 01'165 265 37 265.39 77.98 1031.4 1109.3 0.1472 1.8105 1.9577 118 s 1128 1.3505 0 016173 251 3i 251.38 79.98 1030 2 1110.2 0.1507 1.8021 1.9528 112e 114 O 1.4299 0 016180 238 21 238 22 81.97 10291 1111.0 0.1542 13938 1.9480 114.I 115 0 1.5133 0 016188 225 84 225 85 83 97 1027.5 1111.9 0.1577 13856 1.9433 115 3 118 8 1.6009 0016196 21420 214.21 85 97 1026.8 11123 0.1611 13774 1.9386 118 s 128 0 1.6927 0 016204 203.25 20326 87.97 1025 6 1113.6 0.1646 13693 1.9339 128.8 122s 13891 0 016213 192.94 192.95 89.96 1024.5 1114 4 0.1680 13613 1.9293 122.8 124 0 18901 0 016221 18323 183.24 91.96 1023.3 1115 3 0.1715 13533 1.9247 124.8 12E D 1.9959 0 016229 174 08 174 09 93.96 1022.2 1116.1 0.1749 13453 1.9202 125 8 128 8 2.1068 0 016238 16545 165.47 95.56 1021.0 1117.0 0.1783 13374 1.9157 128 8 1300 2 2230 0 016247 157.32 157.33 97.96 1019 8 1117.8 0.lM 7 13295 1.9112 138 I 1320 2.3445 0 016256 149.64 149 66 99.95 1018 7 1118 6 0.1851 13217 1.9068 1328 1340 24717 0 016265 142.40 142 41 101.95 1017.5 1119.5 0.1884 13140 1.9024 134.5 135 0 2 6047 0 016274 135.55 135 57 103.95 1016 4 1120.3 0.1918 13063 1.8980 13E.8 135 0 23438 0 016284 129 09 129 11 105.95 1015.2 1121.1 0.1951 1.6986 1.8937 138 8 140 0 2.8892 0 016293 122.98 123 00 107.95 1014 0 !!22.0 0.1985 1.6910 1.8895 140 e 142 0 3 0411 0 016303 11721 117.22 109 95 1012.9 1122 8 02018 1.6534 1.8852 1428 144 0 3 1997 0 016312 !!!14 11136 111.95 1011.7 1123 6 02051 1.6759 1.8810 144 s 145 0 3 3653 0 016322 10658 106 59 113 95 1010 5 11243 0 2084 1.6684 1.8769 14E 0 148 0 3 5381 0 016332 101.68 10110 115.95 1009.3 1125.3 0.2117 1.6610 1.8727 148 O 150 0 33184 0 016343 97.05 97.07 117.95 1008.2 1126.1 0 2150 1.6536 1.8686 158 s 1520 3 9065 0 016353 92.66 92.68 119 95 1007.0 1126.9 02183 1.6463 1.8646 152.s - 1540 4 1025 0 016363 8850 88 52 121.95 1005 8 11273 0 2216 1.6390 1.8606 iM I 15ED 4.3063 0 016374 84.56 8457 123.95 1004 6 1128 6 02248 1.6318 1.8566 156 a 1580 4.5197 0 016384 80 82 80 83 125.% '1003.4 1129.4 0 2281 1.6245 1.8526 158.8 15e O 4 7414 0 0!6395 77.27 77.29 127.96 1002.2 1130 2 0.2313 1.6174 1.8487 158 s 152.0 4 9722 0 016406 73.90 7392 12996 1001.0 1131.0 02345 1.6103 1.8448 152.8 1640 52124 0 016417 70 70 70 72 131.96 999.8 1131.8 02377 1.6032 1.8409 154 8 155 0 54623 0 016428 67.67 6768 13397 998.6 1132.6 02409 13961 1.8371 16E I 168 5 5 7223 0 016440 6438 6480 13597 997.4 1133 4 0.2441 13892 1.8333 158.3 170 0 59926 0 016451 62.04 62.06 137.97 996 2 1134.2 0.2473 13822 1.8295 178 8 1720 6 2736 0016463 59 43 59 45 13998 9950 1135 0 02505 1.5753 1.8258 172.s 174 0 6 5656 0 016474 56 95 5697 141.98 993 8 1135.8 02537 1.5684 1.8221 1748 115 0 6 8690 0 016486 54 59 54 61 143 99 992 6 1136 6 02568 1.5616 1.8184 17E I 118 0 7.1840 0 016498 52.35 5236 145.99 991 4 1137.4 0 2600 13548 1.8147 178 8
Abs Press Specific volume Enthalpy Entropy Ternp tb per Sat.
Sat.
Sat.
Sat.
Sat.
Sat.
Temp-fahr Sqin.
Liquid Evap Vapor Liquid Evap Vapor Liquid Evap vapor Fahr s
t p v vgg vg hg h it h sg sgg_& g 188 8 7.5110 0 016510 50 21 5022 148.00 990 2 1138 2 0.2631 1.5480 1.8111 1880 182.8 7.850 0 016522 48.172 18.189 150 01 989 0 !!39 0 0.2662 1.54' ? 1.8075 182 8 , 184 8 8 203 0.016534 46 232 46349 152.01 987.8 1139 8 0.2694 1.5346 18040 184 0 186 0 8.568 0 016547 44.383 44.400 154.02 986 5 1140.5 0 2725 1.5279 1.8004 186 0 188.0 8.947 0.016559 42 621 42.638 156.03 985 3 1141 3 0 2756 1.5213 13 % 9 1880 198 0 9.340 0 016572 40.941 40.957 158 04 984.1 1142.1 0.2787 1.5148 13934 198 0 192 0 9.74 7 0.016585 39337 39 354 160.05 982.8 !!42.9 0 2818 1.5082 13900 152 6 194 0 10.168 0 016598 37.808 37.824 162.05 981.6 11433 0.2848 1.5017 13865 194 8 196 0 10.605 0.016611 36348 36364 164.06 980 4 1144.4 0 2879 1.4952 13831 ItsI 198 0 11.058 0 016624 34.954 34.970 166.08 979.1 1145 2 0.2910 1.4888 13798 198.0 200 0 !!.526 0016637 33.622 33 639 168.09 977.9 1146 0 0 7940 1.4824 13764 280 0 204 0 12.512 0 016664 31.135 31.151 172.11 975 4 11475 0.3001 1.4697 1 7698 204 0 208 0 13.568 0 0s6691 28 862 28.878 176.14 972.8 1149 0 03061 1.4571 17632 2880 212.0 14 696 0 016719 26382 26.799 180.17 970 3 1150.5 03121 1.4447 17568 212 0 215 0 15.901 0.016747 24 878 24.894 18420 967 8 1152 0 03181 1.4323 13505 216 0 220.0 17.186 0.016775 23.131 23.148 18823 965.2 !!53.4 0 3241 1.4201 13442 220 0 224.8 18.556 0.016805 21.529 21.545 192.27 962.6 1154.9 03300 1.4081 13380 224 8 2280 20 015 0.016834 20.056 20 073 19631 960 0 1156.3 0 3359 13961 13320 221 0 232 0 21.567 0 016864 18301 18.718 20035 957.4 1157.8 03417. 13842 13260 2320 236 0 23.216 0.016895 17.454 17.471 20440 954 8 1159.2 0 3476 13725 13201 236 0 2480 24.% 8 0.016926 16304 16 321 208.45 952.1 1160 6 03533 13609 11142 240 0 2440 26 826 0.016958 15 243 15.260 212.50 949 5 1162.0 0 3591 13494 13085 2440
248 0 28.796 0.016990 14.264 14.281 216.56 946 8 IN4 0 3649 13379 13028 241 0 2520 30 883 0.017022 13.358 13 375 220 62 944,1 1164.2 0 3706 13266 16972-252 0 256.0 33.091 0 017055 12.520 12.538 224 69 941.4 1166.1 03763 13154 16917 255 0 260 0 35 427 0.017089 .11.745 11.762 22836 938 6 1167.4 03819 13043 1.6862 260 0 264 0 37.894 0017123 11.025 11.042 232.83 935.9 11683 03876 1.2933 1.6808 264 0 258.0 40.500 0.017157 10 358 10 375 236.91 933.1 !!70 0 0 3932 1.2823 1.6755 268 s 272.0 43.249 0 017193 9 738 9355 240 99 930 3 1171.3 03987 12715 1 6702 2720 215 0 46.147 0017228 9.162 9.180 245 08 927.5 1172.5 0.4043.1.2607 1.6650 216 0 2I00 49.200 0 017264 8 627 8.644 249 17 924 6 1173.8 04098 1.2501 1.6599 280 0 2840 $2.414 0 01730 8 1280 8.1453 253 3 921 3 1175.0 0 4154 12395 16548 2840 288 0 55395 0 01734 76634 7.6807 2574 9188 1176 2 0.4208 12290 1.6498 288 0 292 0 59 350 0 01738 7.2301 7.2475 261.5 915 9 1177.4 0 4263 12186 16449 292 0 255 0 63.084 0 01741 6 8259 6.8433 265 6 913.0 1178 6 04317 12082 16400 295 0 - - ~ _ -. -.. _, - - . _. _ _ ._ .
-_ _. __ _ _ _, Abs Press.
Specific Volume Enthalpy Entropy Temp Lb per Sal.
Sat.
Sal.
Sat.
Sal.
Sat.
Temp Tahr SqIn.
Liquid Evap Vapor liquid Evap Vapor liquid Evap Vapor Fahr i p vg vf8 vg he h ig h se sig s t g g 388.8 67.005 0 01745 6 44s3 64658 269 7 910 0 11793 0.4372 I1979 16351 388 8 384.8 71.119 001749 6 0955 6 1130 273 8 907.0 1180.9 0 4426 1.1877 16303.
384 0 388 8 75 433 0 01753 51655 5 1830 278 0 9040 1182.0 04479 1.1776 16256 388 0 3128 79 953 001757 5 4566 54742 2821 901 0 1183.1 0.4533 1.1676 I6209 312 0 315 5 84 688 001761 5 1673 5 1849 286 3 897.9 1184.1 0 4536 1.1576 1.6162 3160 328 8 89 643 0 01166 4 8961 4 9138 290 4 894 8 1I85 2 04640 1.1477 !.6116 320 0 324.8 94 826 0 01770 4 6418 4 6595 294 6 891.6 1186 2 04692 1.1378 16071 374 0 328 8 100 245 001774 4 4030 4 4208 298 7 8835 1187.2 04745 1.1280 16025 328 0 332.8 105.907 0.01779 4.1788 4.1966 302.9 885.3 1188 2 0.4798 1.1183 15981 332.0 335 8 111.820 0 01783 3 9681 39859 307.1 882.1 1189 1 0.4850 1.1086 1.5936 336 0 348 8 117.992 001787 33699 3 7878 311.3 878 8 11901 04902 1.0990 15892 340 0 3448 124 430 0 01792 3.5834 3 6013 315 5 875.5 1191.0 0 4954 1.0894 1.5849 3440 3488 131.142 0 01797 34018 34258 3193 8 72.2 1191.1 0 5006 1 0799 1.5806 3480 352 I 138.138 001801 3 2423 3 2603 323 9 868.9 11923 0.5058 1.0705 15763 3570 355 8 145.424 001806 30863 3.1044 3281 865 5 1193 6 0 $110 10611 1.5721 356 0 358.8 153 010 0 01811 2 9392 2 9573 332.3 862.1 1194 4 0.5161 1.0517 1.5678 360 0 354.8 160.903 001816 2.8002 2 8184 336 5 858.6 1195 2 0 5212 1.0424 1.5637 364 0 358 8 169.113 0 01821 26691 2 6873 340 8 855.1 1195.9 0.5263 10332 1.5595 368 0 3728 177 648 0 01826 2.5451 2.5633 345 0 851 6 11963 0 5314 1.0240 1.5554 3720 376 0 186 517 0 01831 2.4279 2.4462 349 3 8481 1197 4 0 5365 1.0148 15513 3760 388 0 195 729 0 01836 2.3170 2.3353 353 6 844.5 1198 0 0.5416 1.0057 1.5473 380 0 384 8 205 294 0 01842 23120 2 2304 3579 840 8 11983 0 5466 0 9966 1.5432 384 0 3888 215 220 0 01847 2.1126 2.1311 362.2 83A2 1199 3 0.5516 0 9876 1.5392 38 0 392.0 225.516 001853 2.0184 2.0369 366.5 833.4 1199.9 0 5567 0 9786 1.5352 192 0 396 0 236 193 0 01858 1.929! 1.9477 370 8 8293 1200.4 0.5617 0.9696 15313 3SE o , 4000 247.259 0.01864 1.8444 1.8630 375.1 825.9 1201.0 0 5667 09607 1.5274 400.0 4040 258325 001870 13640 13827 3794 822.0 1201.5 0.5717 09518 1.5234 404.0 408.8 270 600 0.01875 1.6877 13064 383 8 818 2 1201.9 0.5766 09429 1.5195 4080 412.0 282.894 001881 16152 1.6340 388I 814.2 1202.4 0 5816 0.9341 1.5157 412 0 415 0 295 617 0 01887 1.5463 1.5651 392.5 810 2 1202.8 05866 0.9253 1.5118 416 0 420 0 308380 0 01894 1.4808 1.4997 396 9 806 2 1203.1 0.5915 0.9165 1.5080 420 0 4240 322.391 0 01900 1.4184 1.4374 401.3 802.2 1203.5-05964 0.9077 1.5042 4240 4280 336 463 001906 1.3591 1.3782 405 7 798 0 12033 0 6014 0 8990 1.5004 428 0 4320 351.00 0 01913 1.30266 1.32179 410 1 793 9 1204 0 0 6063 0 8903 1.4966 4320 435 0 366 03 001919 124887 1.26806 414 6 789 7 1204 2 0 6112 0 8816 I.4928 436 0 - 443 0 381.54 0 01926 1.19761 1.21687 419 0 785 4 1204 4 0 6161 0 8729 l4890 440 0 4440 39756 001933 I.14874 1.16806 4235 781.1 1204 6 0 6210 0 8643 14853 4440 4430 414 09 0 01940 1.10212 1.12152 428.0 176 7 12047 06259 0 8557 I4815 44s4 4528 431.14 0 01947 1 05764 1 07711 4325 772 3 1204 8 0 6308 0 8471 1 4778 4524 456 0 448.73 0 01954 1.01518 103472 4J10 767 8 1204 8 0 6356 0 8385 14741 ews
_ m Abs Press Specific Volume Enthalpy Entropy Temp Lb per Sat.
Sat.
Sat.
Sat.
Sat.
Sat.
Temp Iabr SqIn.
Liquid Evap Vapor Liquid Evap Vapor Liquid Evap Vapor Fahr t p v, vtg vg he h ig h s, sig 5, t g 460 0 466 87 0.01961 0.97463 0 99424 4415 763.2 1204.8 0.6405 0 8299 1.4704 468.8 4640 485.56 0.01969 0 93588 0 95557 4461 758.6 1204.7 0.6454 0.8213 1.4667 454.8 46a a 504 83 001976 0 89885 0.91862 450.7 754.0 1204.6 0.6502 0.8127 1.4629 468 8 1.4592 472.8 472 0 524 67 0 01984 0 86345 0 88329 455 2 7493 1204.5 Ot6551 0 8042~~ 1.4555 475.8 416 0 545.11 001992 0 82958 0.84950 459.9 7445 12043 'O6599 07956 4800 566.15 0 02000 039716 0 81717 464.5 739.6 1204.1 0.6648 0.7871 1.4518 488.8 4840 587 81 0 02009 0.76613 0 78622 4691 734.7 1203 8 0.66 % 07785 1.4481 484.8 4880 610.10 0 02017 0 73641 035658 473.8 729 7 1203.5 0.6745 03700 1.4444 488.8 492 0 633 03 0 02026 030794 032820 4783 724.6 1203.1 0.6793 0 7614 1.4407 492.8 496 0 656 61 0 02034 0 68065 0.70100 483.2 7195 12023 0.6842 03528 1.4370 485 8 500 0 680.86 002043 0 65448 0 67492 487.9 7143 1202.2 0.6890 03443 1.4333 588 8 504 0 705 78 0 02053 0.62938 064991 492 7 709 0 1201.7 0.6939 03357 1.42 % 584.8 508 0 731.40 0 02062 0 60530 0.62592 4975 7033 1201.1 0.6987 01271 1.4258-588.8 512.0 75732 0 02072 0.58218 0 60289 5023 6982 1200.5 0.7036 0 7185 1.4221 512.8 516 0 784.76 0 02081 055997 058079 507.1 6923 1199.8 0.7085 0.7099 1.4183 515.8 520 0 812 53 0.02091 053864 035956 512.0 687.0 1199.0 03133 0.7013 1A146 528.8 5740 841.04 0 02102 051814 0.53916 516.9 6813 1198.2 03182 0 6926 1A108 524.8 578 0 870 31 0 02112 0 49843 051955 521.8 675.5 11973 0.7231 0.6839 1.4070 528 8 537 0 900 34 0 02123 0 47947 050070 5268 669.6 1196 4 03280 0.6752 1.4032 532.8 5360 931.17 0.02134 0 46123 0.48257 5313 663.6 1195.4 03329 0.6665 13993 535.8 540 0 96239 0 02146 0 44367 0 46513 536.8 657.5 11943 0.7378 0.6577 13954 548 8 5440 995 22 0.02157 0 42677 0 44834 541.8 6513 1193.1 01427 0.6489 13915 544.8 - 548 0 1028 49 0 02169 0.41048 0 43217 546 9 645.0 1191.9 07476 0.6400 1.3876 548.0-557 0 1062.59 0 02182 039479 0 41660 552 0 6385 1190.6 0.7525 0.6311 13837 552.8 5560 1097.55 0 02194 0 37966 0 40160 5573 632.0 1189.2 03575 0.6222 13797 55E.8 . 560 0 113338 0 02207 036507 0 3 8714 562.4 6253 11873 03625 0.6132 13757 558.8 564 0 1170 10 0 02221 035099 0 37320 567.6 618 5 - 1186.1 0.7674 0.6041 13716 564 8 568 0 120732 0 02235 0 33741 0 35975 572 9 611.5 1184.5 0 7725 0 5950 13675 568 8 572 0 1246.26 0.02249 0 32429 0 34678 578 3 6043 1182.7 0.7775 0 5859 1.3634 5728 516 0 1285 74 0 022E4 0 31162 033426 583 7 5973 1180.9 07825 05766. 13592 578.8 5 00 1326.17 0 02279 0 29937 0 32216 589.1 589.9 ~1179 0 03876 05673 13550 588 8 584 0 13673 0 07295 0 28753 0 31048 594 6 582.4 1176.9 03927 05580' 13507 584.8 588 0 1410 0 0 02311 027608 029919 600.1 5743 !! 74.8 0.7978 05485 13464' 588 8 597 0 1453 3 0 02328 0.26499 0 28827 6057 566.8 1172.6 0.8030 0 5390 13420 592.8 596 0 1497.8 0 02345 0 25425 0 27770 611.4 558.8 1170 2 0 8082 05293 13375 596.8 - -..
. !, Abs Press.
Specific Volume Enthalpy Entropy Temp lb per Sal Sat.
Sat.
Sat.
Sat.
Sat.
Temp fahr SqIn.
Liquid Evap Vapor liquid Evap Vapor Liquid Evap Vapor Fahr I t p v, vi8 vg hg h ig h sg sig s g s 508 0 15432 0 02364 0 24384 0 26747 617.1 550 6 1167.7 0.8134 0.5196 13330 888.8 EB4 0 1589 7 0 02382 0 23374 0 25757 622.9 5422 1165.1 0.8)87 0.5097 13284 584.8 508 0 16373 0 02402 022394 0 24796 628 8 533 6 1162.4 0.8240 0.4997 13238 68s.8 512 0 16861 0 02422 0 21442 0 23865 634 8 524 7 1159.5 0.8294 0.4896 13190 E12.8 515 E I735 9 0 02444 020516 022960 640.8 515.6 1156 4 0.8348 0.4794 13141 E1E 8 $70 0 1786 9 0.02466 0.1%IS 022081 646.9 5063 1153.2 0.8403 0.4689 1.3092 624.8 E74 0 1839 0 0.02489 0.18737 0.21226 653.1 406.6 1149.8 0.8458 0.4583 1.3041 524.8 E210 1892 4 0 02514 0.17880 0 20394 659 5 4867 1146.1 0.8514 0.4474 1.2988 828.8 E32 0 19470 0.02539 0.17044 0.19583 665.9 476.4 1142.2 0.8571 0.4364 1.2934 532.8 535 0 2002.8 0 02566 0.16226 0.18792 672.4 465.7 1138.1 0.8628 0.4251 1.2879 $3E.8 540 0 2059 9 0 02595 0.15427 0.18021 679.1 454.6 !!33 7 0.8686 0.4134 1.2821 548.8 544 0 2118 3 0 02625 0.14644 0.17269 685.9 443.1 1129.0 0.8746 0.4015 1.2761 544.8 54:0 21781 0 02657 0.13876 0.16534 692.9 431.1 1124.0 0.8806 03893 1.2699 548.s 552 0 2239 2 0 02691 0.13124 0 15816 700 0 418 7 11181 0.8868 03767 1.2634 652 8 E55 0 23011 0 02728 0.12387 0.15115 707.4 4053 1113.1 0.8931 03637 1.2567 558.8 E50 0 2365.7 0.02768 0.11663 0.14431 714.9 392.1 1107.0 0.8995 03502 1.2498 668.8 M40 2431.1 0 02811 0.10947 0.13757 722.9 377.7 !!00.6 0.9064 03361 1.2425 564.2 E68 0 2498.1 0 02858 0.10229 013087 731 5 362.1 1093.5 0.9137 03210 1.2347 568.8 $12.0 2566 6 0 02911 0.09514 0.12424 7402 345.7 1085.9 0.9212 03054 1.2266 572.8 $75 0 26368 0.02970 0.08799 0.11769 749 2 328.5 1077.6 0.9287 01892 1.2179 575.8 880 0 2708 6 0.03037 0.08080 0.11117 758.5 310.1 1068.5 0.9365 02720 1.2086 ses.s El4 0 2782.1 0.03114 0 07349 0.10463 768 2 2902 1058.4 0.9447 0.2537 1.1984 584.0 - Ess a 2857 4 0 03204 0 06595 0 09799 778.8 268.2 1047.0 0.9535 0.2337 1.1872 588.8 E12 0 2934.5 0 03313 0.05797 0 09110 790 5 243.1 1033.6 0.9634 02110 1.1744 802.8 535 8 3013.4 0.03455 C04916 0 08371 804 4 212.8 1017.2 0.9749 0.1841 1.1591 586.8 700 0 3094 3 0.03662 0.03857 0 07519 822.4 1723 995.2 0.9901 0.1490 1.1390 7ss a 707 0 3135.5 0 03824 0.03173 0 06997 835.0 1443 979.7 1.0006 0.1246 1.1252 782.8 7040 3177.2 0 04108 0 02192 0.06300 854 2 102.0 956 2 1.0169 0.0876 1.1046 784.8 105 0 31983 0 04427 0.01304 0.05730 873.0 61.4 934 4 1.0329 00527 1.0856 Iss a 705.47* 32082 0.05078 0.00000 0 05078 N60 0.0 906.0 1.0612 0 0000 1.0612 785.47*
Table 2: Saturated Steam: Pressure Table Specific Volume Enthalpy Entropy Abs Press.
Temp Sat.
Sat.
Sat.
Sat.
Sat.
Sat.
Abs Press.
Lb/Sg in.
Fahr Liquid Evap vapor Liquid Evap Vapor tiquid Evap vapor Lb/Sg in.
S S P p t vg v ig
- g hg hgg h
r l fg - E 0.08855 32.018 0.016022 3302.4 3302.4 0 0003 1075 5 1075 5 0.0000 2 1872 2 1872 8ses55 8 25 59 323 0 016032 1235 5 1235 5 27382 10601 1087.4 0 0542 2.0425 2 0967 8 25 0.58 79 586 0 016071 6415 64IS 47 623 1048 6 10 % 3 0 0925 1.9446 2 0370 8 58 1.8 10134 0 016136 333 59 333 60 69 73 1036I 1105 8 0.1326 I8455 I9781 Ie
162.24 0 016407 73 515 73532 13020 1000 9 1131.1 0 2349 1.6094 1.8443
18 8 193 21 0 016592 38404 38.420 161.26 982.1 !!43 3 0.2836 1.5043 13879 18 8 14.596 212.00 0 016719 26 782 26399 18017 970 3 1150 5 03121 1.4447 13568 14596 15 8 213.03 0 016726 26 274 26390 18131 % 93 1150.9 0 3137 1.4415 13552 15 8 2s 3 227.96 0016834 20 070 20 087 196 27 %01 1156 3 0 3358 13 %2 13320 28 8 3s s 25034 0 017009 133266 133436 218 9 945 2 1164.1 0 3682 13313 16995 38 3 48 s 267.25 0 017151 10.4794 10.4 % 5 236.1 933 6 1169 8 0 3921 13844 16765 40 8 58 8 281.02 0 011274 8 4967 85140 250 2 923 9 11741 0 4112 1.2474 1.6586 58 e 58 3 29211 0 011383 71562 7.1736 262 2 9154 1177 6 0 4273 12167 16440 68 8 70 s 302.93 0 017482 6.1875 6 2050 2723 9078 1180 6 0 4411 1.1905 1.6316 78 8 88 0 312 04 0.017573 5 4536 5 4711 282.1 900 9 11831 0 4534 1.1675 1.6208 se s 90.0 32028 0 017659 4.8779 4.8953 2903 894 6 1185 3 0 4643 1.1470 1.6113 90 0 168 8 327.82 0017740 4.4133 4.4310 298 5 888 6 1187.2 0.4743 1.1284 1.6027 100 t 110.0 33439 0 01782 4 0306 4 0484 305.8 8831 1188 9 0 4834 1.1115 1.5950 115 0 120 0 341.27 0 01789 33097 33275 312.6 877.8 1190.4 0.4919 1.0960 15879 120 8 130 0 34733 0 01796 3,4364 3.4544 319 0 872.8 11913 0 4998 1.0815 1 5813 130 0 140 s 353.04 001803 3 2010 3.2190 325 0 868 0 1193.0 0 5071 10681 15752 14e 0 150.0 358 43 0.01809 2.9958 3.0139 330 6 863.4 1194.1 05141 1.0554 1.5695 158 0 150.0 363 55 001815 2.8155 2.8336 336.1 859 0 11951 0 5206 10435 1564I 150 0 " 178 0 368.42 0 01821 2.6556 2 6738 341.2 854 8 11 % 0 0 5269 1.0322 15591 170 0 180 0 373 08 0 01827 2.5129 25312 346 2 850 7 11 %.9 0.5328 1.0215 15543 180 0 190.3 377.53 0 01833 23847 2.4030 350.9 8463 1197.6 0 5384 1.0113 15498 198 0 200 0 381.80 0 01839 2.2689 2.2873 355 5 842.8 11983 0 5438 1.0016 15454 200 0 218 0 385.91 0 0!844 2.16373 2.18217 359 9 839.1 1199 0 0 5490 0.9923 15413 ' 218 0 228 8 389 88 001850 2.06779 2.08629 3642 835 4 !!99.6 0 5540 0.9834 15374 220 0 230.0 39330 0 01855 1.97991 1.99846 368 3 831.8 12001 0 5588 0 9748 1.5336 230 e 2400 39739 0 01860 1.89909 1.91769 3723 828 4 1200.6 05634 0 9665 15297 248 8 heD 400.97 0 01865 I82452 1.84317 376I 825 0 1201.1 0 5679 0.9585 15264 258 0 250 0 404.44 001870 135548 137418 3 79.9 821.6 1201.5 0.5722 0 9508 1.5230 260 e 2TO O 407.80 0 01875 169137 131013 383 6 818 3 1201.9 05764 0.9433 15197 278 0 280 0 411.07 001880 1.63169 I65049 387.! 815 I 12023 05805 0.9361 1.5166 200 0 230.0 414.25 0 01885 157597 159482 390 6 812.0 1202.6 05844 0.9291 1.5135 290 8 ' 3000 4I735 001889 157384 154274 394 0 808.9 1202.9-05882 0 9223 15105 3s0 e 350 0 43133 0 01912 1 3 % 42 132554 409 8 794 2 1204 0 0 6059 0 8909 1.4%8 350 0 4000 44460 0 01934 1.14162 1.16095 424 2 780 4 1204 6 0 6217 0 8630-1.4847 400 e i
Specific Volurne Enthalpy Entropy Abs Press.
Temp Sat.
Sat.
Sat.
Sat.
Sat.
Sat.
Abs Press.
Lb/Sg in.
Fahr tiOMd Evap Vapor Liquid Evap Vapor-Liquid Evap Vapor tb/Sq In.
V V hg hgg h sg s,g s p g g P I V I ig g 4500 456.25 0 01954 1 0!224 1.03179 437.3 767.5 1204 8 0 6360 0 8378 1.4738 450 0 5000 467 dl 001975 0 90787 0 92762 449.5 7551 1204 7 06490 0 8148 1.4639 5000 550 0 4N 94 0 01994 0 82183 0.84177 460.9 743.3 1204 3 0 6611 0 7936 1.4547 5500 E00 0 48620 0 02013 0 74962 016975 4713 732.0 12033 0 6723 0 7738 14461 E00 0 650 0 494 89 0 02032 0 68811 030843 481.9 720 9 1202.8 0.6878 03552 1 4381 E50 0 7000 503 08 0 02050 0 63505 0 65556 491.6 710 2 1201 8 0 6928 07377 1.4304 700 0 7500 510.84 0 02069 058880 0 60949 500.9 699 8 1200.7 0 7022 0 7210 14232 750 0 800 0 51821 0 02087 0 54809 0 568 % 509.8 689 6 1199 4 0 7111 0 7051 14163 800 0 350 0 $25 24 0 02105 0.51197 0 53302 518 4 679 5 1198 0 03197 0 6899 1 4096 850 0 900 0 531.95 0 02123 0 47968 0.50091 526 7 669 7 1196 4 0 7279 06753 1.4032 900 0 950 0 538.39 0 02141 0 45064 0 47205 5343 660 0 !!943 03358 0 6612 1.3970 950 0 10C00 544.58 0 02159 0 42436 0.44596 542.6 650 4 !!92.9 0.7434 0 6476 1.3910 1000 0 1050 0 550.53 0 02177 0 40047 0.42224 550.1 640 9 1191.0 0 7507 0 6344 1.3851 10500 11000 556.28 0 02195 0 37863 0 40058 557.5 631.5 II89.1 0 7578 06216 13794 1100 0 1150 0 561.82 0 02214 0.35859 0.38073 564.8 622.2 1187.0 0 7647 0 6091 1.3738 1150 0 1200 0 567.19 0 02232 0 34013 0 36245 571.9 613 0 1184 8 03714 0 5969 1.3683 12000 12500 572.38 0 02250 0 32306 0 34556 578 8 603 8 1182.6 0 7780 0 5850 1.3630 1250 0 13000 577.42 0 02269 0 30722 0 32991 585 6 594 6 1180 2 0 7843 0 5733 1.3577 1300 0 1350 0 582.32 0 02288 029250 0 31537 592.3 585 4 1177.8 07906 0.5620 1.3525 13500 14C0 0 587.07 0 02307 0 27871 0.30178 598 8 576 5 1175.3 03966 0 5507 1 3474 14c0 0 1450 0 591.70 0 02327 0 26584 0 28911 605 3 5674 1172 8 0 8026 0 5397 1.3423 1450 0 15000 596 20 0 02346 0 25372 0 27719 611 7 558 4 11701 0 8085 0 5288 13373 15000 1550 0 600 59 0 02366 0 24235 0 26601 618 0 549 4 !!67 4 0.8142 05182 1.3324 1550 0 1600 0 604 87 0 02387 0 23159 0 25545 624 2 5403 1164 5 0 8199 0 5076 13274 15000 1650 0 609 05 0 02407 0 72143 024551 630 4 531.3 1161 6 0 8254 0 4971 1.3225 1650 0 17000 613.13 0 02428 021178 0.23607 636.5 522.2 1158 6 0 8309 0 4867 13176 1700 0 11500 617.12 0 02450 0 20263 0 22713 642.5 5131 1155 6 0 8363 0 4765 13128 1750 0 18000 62102 0 02472 0 19390 0.21861 648.5 503 8 1152.3 0 8417 0.4662 13079 1800 0 18500 624 83 0 02495 0 18558 0 21052 654.5 4S' 6 1149.0 0.8470 0.45Gl 1.3030 1E50 0 19000 628.56 0 02517 0.17761 0 20278 660 4 485 2 1145 6 0 8522 0 4459 1.2981 19000 1950 0 632 22 0 02541 0.16999 0.19540 666 3 475 8 1142 0 0.8574 0 4358 12931 1950 0 - 2Cc0 0 635 80 0 02565 0 16266 0 18831 672.1 466 2 1138 3 0 8625 0 4256 12881 2000 0 2100 0 64236 0 02615 0.14885 0 17501 683.8 446 7 1,130.5 0 8727 0 4053 1.2780 21C0 D 22000 649.45 0 02669 0 13603 0.16272 695 5 426 7 1122.2 0.8828 0.3848 1.2676 22000 23c00 655 89 0 02727 0.12406 0.15133 707.2 4060 1113 2 0.8929 0.3640 1.2569 2300 0 24000 662.11 0 02790 0.11287 0.14076 719 0 384.8 11033 0.9031 0.3430 1.2460 24c0 0 25C00 668.11 0.02859 0 10209 0 13068 7313 361.6 1093 3 0 9139 0 3206 1.2345 2500 0 2E00 0 673 91 0 02938 0 09172 0.12110 744.5 337.6 1082.0 0 9247 0 2977 1 2225 2600 0 27c0 0 679 53 0 03029 0 08165 011194 757.3 312 3 1069 7 09356 0 2741 12097 2700 0 2800 0 684.96 0 03134 0 07171 0 10305 7703 2851 1055.8 0 9468 0 2491 1.1958 2300 0 25000 69022 0 03262 0 06158 0 09420 7851 2547 1039 8 0 9588 0 2215 1.1803 29000 3000 0 695 33 0 03428 0 05073 0 08500 8018 218 4 1020 3 0 9728 0 1591 1.1619 3:00 0 3I00 0 70028 0 03681 0 03771 0 07452 824 0 169 3 993 3 0 9914 01460 11373 3100 0 32000 705 08 0 04472 0 01191 0 05663 875 5 56 1 931 6 1 0351 0 0482 1.0832 3200 0 33282-70547 0 05078 0 00000 0 05078 906.0
906 0 1.0612 0 0000 1.0612 320s2-
- Critical pressure
-
, _ _. _ _. _ _ - _ _ ______ -- 'N '".hJ p,fih JWM] " . TT't: " j ' HlI i
fJ4I df 1:
- l
'
h
- q.
r.s Jf- . . 1 y $ 'r e
.
!I 7,$Ddb . b, ti. L .t a " ?.. f ; " , y%}yF"JJNi PM,it h ". ! " j:p
- f
. J.. )' -l ' p.. h My;~$w o L-
== if idiffg hi!* Y i$r=Y ", ~.p- .A i' O.f = = [ r , . ' *.,. ". 7.' r ? -? , it u .;,;%:;b ' r-q"q r t-m;' .
h+t-m t
. (WQt ;hffI$ o 3.qu:::$f'y-h ~ W}7 a p'=%wk;]tp&m - ' s - rt ; h\\ n,., _ t'; *
- .T 1;
~
f ikb h.4 hu@, b g.- yy.F,O.,h!.e
l f F =. ,5 .. . Zh ~h - l-titi' [ 21,1f t jn -%{,,,. j,FW'* 3lg'y y',f ' ,tif~jy 't MQ m " l' I f i -. . y - - w . $b. c - b *S -
- i,W 14k.
' "
- ' 1:1
.,. -
g, itSN ki k;*[I 2tt *# Arlit h,f N i
.W "f/..w W;gdifgsig-! If4 15IS! 4eb2 Mmb4 W@gd[-l im - . [4 3 n#'.y.yt.*'MNIIS'; J' K n,lt* g %n L m:s*4 ...r fj- . . ditr, Cizi.
4' rp, 4 d.U,ab3 .. . , g.
Mt,y.:i, , ". 10, " -.. N::2 W".[l'+y' gi n $W . p . Gw -; . ~.,. .= 'tr..f', $W'g. 'E 1 %.H.tu @?j[njd -+ = p w if* ,s' I" g
y me ,,. .-,,e,. c .~ .y. x n .. . . ykEffYfs i Lp $0,
- JY Y
dapg., g >. = m [
- P n%im.
gau. f ' hxl< k G-@r b d N N N4 bM $
- "
" &fw ..
+,W.m..?{, ?y,p'.& h;,.3 Y i f;'g.= Y rt d 15ye - - ~ < .w 7*' n - u.. W r "I inI't
- pIL;t;*K.*;h; 21W,
" f.
g2*yg./A,Z.,;q:.cr,.Y$z +r."- dP!NNhii+!r * 'If} :f4 , " ! E
- y.s c.~.m.,
as.~. ~ ].x, .,C
. %p.,. . r.
- J;1,*%* g.
o %.yo "
- '
Ap*LYM*Y } 'f1 fr.~1N}t%.- E'V?%G
- 'n !* $ %noN
! !! i D5 Li.
dL..n W $4 t' .. . y l4GP' fun"%Uiff/H ! I +- r , J t tnii$p 5~ MiR'$ ' eur,=W=;[=i#EF '- i Wr'H l = ex;.Fi w n 55.. *:pF ;v+Mp!;t:;,j_
qd:+ - .- -'rW;r%:4} +
- yp'n'M, thy;'n,p;f;'#g.{MV"
{!gy ." g"Ih9
- nr
- r. rg..;r
- .:'
n
. n!!? Q:).g.,,FC, -= L-r - ...
- . wh{., L.... Ir;G...%,;,r. =
+;.,c. 2.,; .
g:_ 7.g&egy..f.. ,,a w nt g = .w.
r ,rg:i - +n * = u~ c= ,
g 7;.rr-nc g "= it::...p;t t :: " f r= Mf h,;;r/,.{.; fa..g;:r:::n nt L:e;@,y,5 y< 7.,mg;?::$ !=
.:I tJ N . . =a e
mt:
1 , . su ".x,,,y*.,, - a,,..:= u a,u
m.q rs:r.b..n - uxlF.
a - ....,..x.
=.It .v D.If*E. /.; . . . 4. *t
u* u. g r'= t' :
- h'
- f;20.M3
- r.4.. ;< ya j.W.r.,d
- ' d' I0'ird 1TfT' N
- d
f;' ;" ;;'
" ' -* _ " L*IV' %
- <.m;n;5'"E/!!%'
-- i/'I ~
- E;-+ii;;, P'
' ,. f ; m". - 1, :r,-.. g 7jin,Q:i;pt. " r .TJ yJit '1,i, g; - n y-f.r g" R{}itilg t
- . u.
- y-....
. n:; y.
g; ;iy. ot , .., .t
nf3.Efi
N f,g:.J },4 ' _ w"V* o
ES - . ~ I M' jM, 4Myd@OJ.dI'b ' {.r,;., vh}# .., M.
,= .nf, - nP ;h/;<;j's' A .!* ... Mp{J%y
- g
yGl;h: . 3 - , =
-
tefaQrt
, ANSWER KEY BEAVER VALLEY 1&2 RO EXAM KINGSLEY, I.
87/12/02 i
r- 't.
PRINCIELES OF NUCLEAR. POWER. PLANT OPERATION.
PAGE
IHEBMQDYHAMICS. HEAI IBABSEER AND E]d]ID. FLOW ' ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
ANSWER 1.01 (1.00) This_ ensures that core power output is proportional to core delta-T. (0.5) This is necessary to ensure the ability of OP delta-T (0.125) and OT dolta-T (0.125)' instrumentation to provide core protection. (0.25) REFERENCE BV EXAM BANK, QUESTION 1-31 BV LP-TMO-7, LO. 14 3.1 3.7 KA.VALUE(S) 017020K502 193009K105 ...(KA*S) l ANSWER 1.02 (2.00) krx mic(T(hot) - T(cold)] where ml : mass flow rate of RCS (0.25 for formula) ksg=m2[h(stm) - h(feed)) where m2 : mass flow rate of feedwater (0.25 for formula) (brx=bsg, therefore.) mic[T(hot) - T(cold)] = m2[h(stm) - h(feed)] (0.25 for relationship) mic(T(hot) - T(cold)] . therefore, m2 :
h(stm) - h(feed) from steam tables, h(stm) = 1200 BTU /lbm (0.25) h(feed) = 507 BTU /lbm (0.25) 9.566 E7 (1) (606 - 546)lbm . therefore, m2
1200 - 507 hr , therefore, m2 = 8.28 E6 lbm/hr (0.75) r REFERENCE
BV EXAH BANK, 1-32 BV LP-THO-5. LO. 3
BV LP-THO-3, LO. 7 3.3 3.1 4.0 KA VALUE(S)
002000K501 002000K511 193003K125 ...(KA'S) l .
-_ _ _ ______ ___ __ 1.
PRINCIPLES OF NUCLEAR POWER PLANT OPERATION.
PAGE
THERMODYNAMICS. HEAT. TRANSFER AND FLUID FLOW
- ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
m ANSWER 1.03 (1.50) a.
EOL (0.25),.because of a lower effective beta-bar. (0.5) b. EOL (0.25),-because of a more negative MTC. (0,5) REFERENCE BV EXAM BANK, 5-27 BV LP-RT-5, LO. 3,5 BV LP-RT-6, LO. 2 3.4 3.2 3.1 KA VALUE(S) 001000K549 192003K106 192004K106 ..(KA'S) ANSWER 1.04 (2.50) c. Power decreases initially (0.10) due to negative reactivity added by boration (0.20), but will subsequently increase (to match secondary - power) (0.20) due to (positive reactivity added from) decreasing Tave (0.20).
Tave decreases initially (0.20) due to primary to secondary power mismatch (0.20) and continues to decrease until after boration is stopped (0.20) and will stabilize when reactor power equals secondary power. (0.20) b.
Power decreases initially (0.10) due to (negative reactivity added by) boration (0.20), and continues to decrease (0.10) until it stabilizes at a level caused by equilibrium suberitical multiplication (0.20).
Tave does not change (0.20) because it is independent of power (at power levels < POAH). (0.20)
- REFERENCE BV EXAM BANK, 5-28 REFERENCE BV EXAM BANK, 5-28 BV LP-RT-7, LO.
3,
3.8 KA VALUE(S) 192008K120 ...(KA'S) i . l l
____ _ _ _ _ 1...PBlH91ELES OF NUCLEAB_ POWER PLANT __OPERATIQL PAGE '21 IHEBMQDXHAMICS. HEAI_IBAHSFER AMD FLUID FLOW ' ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY,- I.
ANSWER 1.05 (1.50) RCS boron concentration will have to be increased during the load change.(0.25) to lower Tave (0.125) and compensate for (positive reactivity added by) Doppler power coefficient. (0.125) . During the several hours following the power change, boron concentration will have to be decreased (0.25) to compensate for increasing Xenon, (0.25) Throughout the remainder of the 24 hours, boron concentration will have to be increased (0.25) as Xenon decreases (toward its new equilibrium value).
(0.25) REFERENCE BEAVER VA1. LEY REACTOR THEORY LP, CH. 7, LO.
3,
BEAVER VALLEY REACTOR THEORY LP, CH. 7. P. 6, 7 3.2 KA VALUE(S) 192006K114 ...(KA'S) ANSWER 1.06 (1.50) (any 6 at 0.25 pts each) 1.
RCS pressure 2.
RCS temperature 3.
RCS flow 4.
Rx power 5.
AFD 6.
QPTR 7.
Rod position (sequencing.. overlap, alignment) (CONSIDER OTHERS ON CASE-BY-CASE BASIS) REFERENCE BEAVER VALLEY THERMODYNAMICS, CH.
7, P. 17,18 BEAVER VALLEY TECH. SPECS., BASES, P. 2-2 THROUGH 2-5 BV LP-TMO-7, LO. 11 2.9 3.4 KA VALUE(S) 001000G006 193008K105 ...(KA'S) ANSWER 1.07 (1.00) c REFERENCE BEAVER VALLEY THERMODYNAMICS, LP, CH., 4 LO. 8 BEAVER VALLEY THERMODYNAMICS, CH., 4, P.7 2.5 KA VALUE(S)
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _. - _ _ _ _ , 1.
'PRIHQ1ELES OF NU.QLEAB POWEB PLANT OEERATION1 PAGE
IEEBMQDXHAMICS. HEAT TRANSFER AHD FLUID EL9M ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
191004K112 ...(KA'S) > ANSWER 1.08-(1.00) The initiation of spray flow to the pressurizer caused (temperature and) pressure to decrease (0.25).
A higher temperature in the core is causing the formation of a new steam bubble in the reactor vessel head (0.5) and thereby forcing water into the pressurizer. (0.25) REFERENCE BEAVER VALLEY THERMODYNAMICS, LP, CH. 7, P. 12 BEAVER VALLEY THERMODYNAMICS, CH, 7, P. 24 3.7 KA VALUE(S) 010008K301 ...(KA'S) ANSWER 1.09 (1.00) d i REFERENCE BEAVER VALLEY REACTOR THEORY, LP, CH. 6. P.
BEAVER VALLEY REACTOR THEORY, LP, CH. 6. LO. 3 2.9 KA VALUE(S) 192004K107 ...(KA*S) ANSWER 1.10 (1.50) ! c.
More negative (.25) because rods are inserted and push the flux to the
botto,n of the core (.25) ~ ' b.
More negative (.25) because more moderation will occur in the bottom of the core due to T-cold decreasing (.25) c.
Less negative (.25) because Xe inserts negative reactivity in the bottom of the core and thus flux moves to the top of the core (.25) REFERENCE i BEAVER VALLEY REACTOR THEORY,LP, CH. 8 LO, 2 BEAVER VALLEY REACTOR THEORY,LP, CH. 7. LO, 5 3.8 3.3 2.9 KA VALUE(S) i ' 001000K506 192006K108 193009K107 ...(KA'S) l l '
\\ - t t'
A:.. PRIHg1ELES_9I_HUCLEbR POMEB_ PLANT OEEBAIIDH2 PAGE
IBEBtt9DINAtiLCL_ BEAT _lBAHSEEB_AND ELUID ELQW ANSWERS -- BEAVER VALLEY-1&2-87/12/02-KINGSLEY, I.
ANSWER 1.11 (2.00) Power Defect: 2050 pcm - 590 pcm : +1460 pcm (+/-50) (0.4) Xe: 2775 pcm - 1775 pcm = +1000 pcm (+/-50) (0.4) Rods: 150 pcm - 910 pcm = - 760 pcm (+/-50) (0.4) +1700 pcm Boron must supply 1700 pcm of negative reactivity 170 ppm (0.4 for reasonable boron worth) 1700 pcm X (ppm /10 pcm) = 300 ppm + 170 ppm = 470 ppm (+/-11) (0.4) REFERENCE BEAVER VALLEY REACTOR THEORY, LP, CH. 9. P. 2 BEAVER VALLEY REACTOR THEORY, LP, CH. 9, LO, 3 BEAVER VALLEY REACTOR THEORY, LP, CH. 8 LO, 3 3.5 3.4 3.2 KA VALUE(S) 001000K528 001010K521 001010K522 ...(KA*S) ANSWER 1.12 (2.00) a.
DECREASE b.
INCREASE c.
INCREASE (0.50 each) d. DECREASE REFERENCE BEAVER VALLEY THERMODYNAMICS LP, CH.
7, LO. 6 2.6 2.8 KA VALUE(S) 191002K108 193001K103 ...(KA'S) ANSWER 1.13 (1.00) o.
INCREASE (0,5) l B.- INCREASE (0.5) REFERENCE g ' BEAVER VALLEY THERMODYNAMICS LP, CH 7. P.
BEAVER VALLEY THERHODYNAMICS LP, CH. 7 LO. 17 3.6 2.8 KA VALUE(S) 035010A101 035010K503 ...(KA*S) u
1_.
PRIN91ELES OF NUCLEAR POWER PLANT OPERATIQ]L PAGE _24 ,IHEBttQDYNAMICS. HEAT TRANSFER AND FLUID FLOW ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
ANSh2R 1.14 (1.00) 1) Density difference between cold and hot leg (or delta-T between Heat sink and Heat source) (0.5 for each) 2) Height difference between heat source and heat sink (or S/G and Core) REFERENCE BEAVER VALLEY THERMODYNAMICS LP, CH. 7, LO. 16 BEAVER VALLEY THERH0 DYNAMICS LP, CH.
7, P. 21 3.9 KA VALUE(S) 193008K121 ...(KA'S) ANSWER 1.15 (2.25) a.
Flow will increase (.25) due to reduced head loss caused by lost RCP.
(0.50) b.
Indicated flow will initially decrease (to zero) (0.125) as the RCP coasts down (0.25) but will increase (0.125) due to backflow. (0.25) c.
Steam pressure will decrease (0.25) due to increased steam flow (or lower Tave). (0.50) REFERENCE BEAVER VALLEY THERMODYNAMICS LP, CH. 4, LO. 14 BEAVER VALLEY THERMODYNAMICS LP, CH. 7, LO. 18 3.7 3.5 KA VALUE(S) 003000K301 003000K302 ...(KA'S) ,. . _ _ _ _ -
, _ _ .. li_ EBISOIfl.lCS_DE NU9 HEAR _EQ_ WEB _ELANT OfRBAI1QL PAGE
' IDEBHODYHANICS....HEALTBAHiiEEB_.AUD ELUJD_ FLOW ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
ANSWER 1.16 (2.25) c.
LESS NEGATIVE (0.25) More boron to leave core area per degree temperature change. (0.50).(Cb thermal utilization f actor decreases) b.
HORE NEGATIVE (0.25) Less boron, opposite result as above.(0.50)(or neutron leakage increases) c.
LESS NEGATIVE (0.25) Water density rate of change is less as temperature is reduced.(0.50) (or resonance escape probability decreases, or leakage decreases) REFERENCE BEAVER VALLEY REACTOR THEORY LP, CH. 6. LO. 2 BEAVER VALLEY REACTOR THEORY TEXT, CH. 6, P.
16,17 BEAVER VALLEY REACTOR THEORY LP, CH. 6. P. 6,7 3.1 KA VALUE(S) 192004K106 ...(KA'S)
2.
PL&HI_QESIGN INCLUDING SAFETY AND EMERGENCY SYSTEMS PAGE
ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
ANSWER 2.01 (1.50) a.
They provide additional seal injection flow through the (lower) pump bearing (for cooling purposes).
(0.50) b.
Seal leakoff is diverted to the PRT via a relief valve (or no.2 r.eal gap increases to provide sufficient cooling).
(0.50) c.
This ensures there is enough backpressure in the seal water return line to force seal water through the no. 2 seal.
(0.50) REFERENCE BVPS EXAM BANK QUESTION # 2-40 BVPS 2LP-SQS-7.1, ELO 5.b.m.
3.3 2.7 5.4 KA VALUE(S) 003000K103 003000K602 004000K104 ...(KA'S) ANSWER 2.02 (2.50) n.
1. To prevent excessive RCS cooldown.
(0.50) 2. To reduce the consequences of a steam line break inside containment.
(0.50) b.
1. Stops Startup Feed Pump 2. Closes SG Bypass Feedwater Control Valves 3. Stops Main Feed Pumps 4.
Trips Main Turbine (any 3 @ 0.50 each) REFERENCE BVPS EXAM BANK QUESTION W 2-7 BVPS 2LP-SQS-24A.1, ELO 7 BVPS EOP E-0, ATT. 2 3.2 KA VALUE(S) 059000K419 ...(KA'S) l
_
c 2.
ELANT DESIQ1LIELUDJH9_EAEETY_AHD_EMEB9ENCY SYSTEMS PAGE
ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY. I.
ANSWER 2.03 '(3.00) c.
CLOSED
- b.
OPEN , o.- CLOSED d.
CLOSED (0.50 each) c.
CLOSED f.
OPEN REFERENCE BVPS 2LP-SQS-7.2, ELO 8 BVPS'OM-7, PP. 47,52,55,64,81,82 BVPS 2LP-SQS-1.1, ELO 8 3.3-KA VALUE(S) 013000K111 ...(KA'S) ANSWER 2.04 (3.00) c.
RCP B (0.50) because loop'B does not have a spray line connection.
e (0.50) b.
1. Reduce thermal stress to spray nozzle 2. Maintain uniform Pressurizer /RCS chemistry (any 2 @ 0.50 each) 3. Maintain uniform Pressurizer temperature 4. Reduce thermal stress to surge line c.
1. SPRAY LINE (A OR C) LOW TEMP 2. SURGE LINE LOW TEMP (0.50 each) REFERENCE BVPS EXAM BANK QUESTION # 2-39 BVPS 2LP-SQS-6.2, ELO 2, 4, 6.B. 8, 9.C 2.9 3.6 2.7 KA VALUE(S) 003000A106 010000K103 010000K401 ...(KA*S)
. _ _. _ , [ "2.
PLajit,_pKSJGN IELUD1HG SAEETY AND EMEBQEEY SYSTEL4S. PAGE
ANSWERS -, BEAVER VALLEY 1&2~ -87/12/02-KINGSLEY, I.
ANSWER 2.05- -(3.50) c.
1. Control switch to CLOSE' 2. High CCP flow (58 gpm) (0.50 each) -3.
High CCP pressure (122 ps'tg) b.
1. Upper bearing oil cooler 2. Lower bearing oil cooler (0.33 each) 3. Motor air coolers , c.
Sample coolers Excess letdown heat exchanger RHS heat exchanger (any 4 @ 0.25 each) RHS pump seal heat exchanger ' Nonregenerativa heat exchanger REFERENCE BVPS EXAM BANK, QUESTION W 2-38 BVPS 2LP-SQS-15.1, PP. 10,19 BVPS 2LP-SQS-15.1 ELO 2.f,9 2.8 2.9-4.1 KA VALUE(S) 000015A202 000026A201 008030K302 ...(KA'S) ANSWER 2.06 (1.00) ] o.
(0.50) b.
2.
(0.50) REFERENCE BVPS 2LP-SQS-21.1. PP. 5-8, 17 PVPS 2LP-SQS-21.1, ELO 4,15 , 030050K102 039050K106 0410 BOA 202 0410 BOG 009 KA'S . . .
2.
PLANT. DESIGN. INCLUDING _ SAFETY _AND EMERGENCY SYSTEMS PAGE
ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY.
I.
ANSWER 2.07 (2.60) -c.
1. Raises the pH of the quench spray water (or containment sump water) OR, reduces (hydrogen generation from) corrosion of containment components.
(0.50) 2. Removes iodine from containment atmosphere (following a LOCA).
(0.50) b.
Injected by chemical injection pumps (0.50) to suction of quench spray pumps.
(0.50) c.
NAOH is drained to the containment sump.
(0,50) REFERENCE BVPS 2LP-SQS-13.1, PP. 26,27 BVPS 2LP-SQS-13.1, ELO 14,16 4.2 3.1 KA VALUE(S) 026000K101 026000K402 ...(KA's) . ! ANSWER 2.08, (2.00) ! One 3-way valve selects the starting air header that will supply the fuel ' rack (B normally).
(0.50) One 3-way valve provides the diesel overspeed shutdown.
(0.50) One 3-way valve provides the diesel protection shutdowns (other than OS).
[ (0.50) ' One 3-way valve vents the air headers after engine start.
(0.60) REFERENCE BVPS 2LP-SQS-36.2. ELO 3.A.7 BVPS 2LP-SOS-36.2
064 bOK105 06405 K408 KA' )
[ ! l ! t > I h , .
2.
_ PLAN't DESIGN INCLUDING SAFETY AND EMERGENCY SYSIENS PAGE
-ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
,, , ANSWER 2.09 (1.60) , c.
RWST (via positive' displacement hydrostatic test pump) (0.bo) b.
1. IIIGli - increases amount of water lost via the break (or, increases the possibility of Nitrogen injection into RCS).
(O.60) 2.
LOW - delay core recovery (due to less rapid delivery of accumulator water to-reactor) (0.50) REFERENCE- . BVPS 2LP SQS-11.1, ELO 14,17 ' BVPS OH-11. PP. 5,6 3.5 3.3 KA VALUE(S) 006020A107 006020K402 ...(KA'S) ANSWER 2.10 (2.50) a.
1. PDWST (0.50) 2. Service Water System (0.50) b.
Cavitating venturi flow elements (located in the conimon AFW supply - line to each SG) (0.50) , c.
1.
Pump cavitation (steam binding of MDAFPs) (0.50) 2. Backleakage of hot feedwater (from SGs) (0.50) , . REFERENCE BVPS OH-24.1, PP. 3.4 BVPS OH-24.4, P. Q1 ' BVPS 2LP-SQS-24.1, ELO 2.0, 2.J. 5, 9.A.15 061bA201 0610bA206 0610b K401 0610bOK404 K' ) . ANSWER 2.11 (2,00) , c.
1. 350 degrees F (0.50) 2.
360 psig (0.50) b.
RHS supply (0.25) and outlet (0.25) isolation valves will auto close (0.25) at 700 psig. (0.25) , REFERENCE BVPS 2LP-SQS-10.1, PP. 1,13,15 3.6 3.0 3.2 3.2 KA VALUE(S) 005000K109 005000K401 005000K402 005000K407 ...(KA'S) ! r
,- '3.
INSIBUL4ENIS._AND._.QQtLTBQLS PAGE. 31 ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
r ANSWER 3.01 (2.00) f a.
Continue inserting (0.50) because C-5 blocks automatic rod WITilDRAWAL only.
(0.50) , b.
25% IR flux (or PR flux). (0.50) This trip could have been avoided by
blocking the low power trips (0.25) immediately after the F-10 , permissive was satisfied (10%). (0.25) REFERENCE BVPS Oh-1.1, PP, 6.11.12 BVPS 2LP-SQS-1,3, ELO 12 ~BVPS 2LP-SQS-2.2, ELO 4.f 3.7 4.3 3.9-3.7 KA VALUE(S) 001000K40" 015000K405 015000K406 015000K407 ...(KA'S) ANSWER 3.02 (1.50) c.
OT delta-T setpoint DECREASES.
(0.25) OP delta-T setpoint NO CHANGE (0.25) b.
OT delta-T setpoint DECREASES (0.25) . OP delta-T setpoint DECREACEO ^ (0.25) /VO C Mi!*C E C.
OT delta-T retpoint INCREASES 0.25) A ((0.25) OP delta-T setpoint INCREA5E5
itmo c Me n'G C ' REFERENCE HVPS TECHNICAL SPECIFICATIONS TABLE 2.2.1 BVPS 2LP-SQS-1.1 ELO 7 3.1 2.9 KA VALUE(S) 012000A205 012000K611 ...(KA'S) i
-
JL ~ ' ' ' / 3.
'TNSTRUMENTS AND'CONIBQLS PAGE-321 ANSWERU'i ! BEAVER VALLEY 1&2 ~ -87 /12 /02-KI'NGSLEY, 1.
%y ep s f - c <-
- /'
ANSWER 3.03 (2.50) a.
AUTO '" BORATE (0.25 each) MANIIAL ,g ALTERNATE' DILUTE b.
Initiated a+, J 20% (0.25) Terminated at.43% (0.25) c.
Boric acid pump starts MUW stop valve (FCV113B)' opens (0.25 each) > Primary grade water FC'!-(FCV114A) opens ' Boric acid FCV~(FCV113A) opens.
' REFERENCE BVPS 2LP-SQS-7.1, P.
BVPS 2LP-SQS-7.1,'ELO 5,7 'BVPS OH-7.1, P. 71 3.1 3.9- . KA VALUE(S) 004000K106 004010A403 ...(KA'S) x ANSWER 3,04 (2.00) .,e, ,Il (0.50) bl REA0TC$ NROTECTION LYSTEM TRAIN A(B) TEOUBLE SAFETY SYSTEM-TRAIN'A(B)~ INOPERABLE (any 2 of first 3 @ 0.50) REACTOR TRIP BYPASS BKR A(B) RACKED IN/ CLOSED General Warning alarm (accept for half credit) r4 actor trip-_ bypass--breakere-wi-1-1-tr&b ( 0. 50 ) Et~m my 4 c.
-REFERENCE / /BVPS OH-2/1.1, P.
'l R,VPS OH-2.1.4, P. AAF1, AAI1, ABY1 e 'BVPS 2LP-SQS-1. 2, ELO 12,14,16
4.0 3.2 2.8 KA VALUE(S) ,012000A307 012000K406 012000K408 ...(KA'S) -
ha . - -
. f ~ l3 _;[MSTRUMENTS;AND1 CONTROLS PAGE-33 A ~ ANSWERS -- PEAVER. VALLEY 1&2-87/12/02-KINGSLEY, I.
- _
' ANSWER 3.05 (2.50) a.
Ensures adequate shutdown margin.
T-Ensures adequate: power distribution.
(0.50 each) , ' Minimizes the effects of an ejected rod.
. b.
l1. - 205 steps (on bank C) +/- 3 steps (0.50) 2. 67' steps.(on bank D) +/- 3 steps (0.50)- REFERENCE BVPS TECHNICAL SPECIFICATIONS, FIGURE 3.3-1 BV PS - OM-1. 4, PP. AAM1, AAP1-BVPS 2LP-SQS-1.3, ELO 17-BVPS EXAM BANK, QUESTION # 6-27 2.9 3.8 KA VALUE(S) 001050G006-001050G012- ...(KA'S) ANSWER 3.06 (2.00) c.
The control-rods.will insert (0.50) at 72 spm. (0.50) b.
-M4--stea m dum kves-tor 60-)-wi-11 f ulls open----tov 50[ CHECK AT /l/o - .pytae (r,co) FACILITY! REFERENCE .BVPS LER 08/16/87-017
- 3VPS 2LP-SQS-1;3,ELO 11
!BVPS 2LP-SQS-2161, ELO 18 3.1 3.0 KA VALUE(S) '001000A102-016000A201 ...(KA'S)
- - 3.
' INSTRUMENTS AND CONTROLS PAGE
ANSWERS -- BEAVER-VALLEY 1&2-87/12/02-KINGSLEY,'I.
e ' ANSWER 3.07 (2.00) a.
Reactor power was below P-9 (49%) (0.50) -b.
F.G 21C low level coincident with SF/FF mismatch (0.50) c.
-30 seconds (after turbine trip) (0.50) d.
Prevent turbine overspeed ( 50) h r N'CI' >h\\ (& l.
REFERENCE
- g
- g)
- '
BVPS LER 08/25/87-019 BVPS OM-35.1, P.
du/ gc [M, 'BVPS 2LP-SQS-1.2, ELO 21 (No ELO for parts e and d) 4. 3' 3.7 3.0 2.5 KA VALUE(S) 015000K405 015000K407 062000G007 062000K402 ...(KA'S) ANSWER 3.08 (3.00) a.
Overcompensation results in a lower than actual IR reading (0.50) with Andicated power increasing at a higher than actual rate (causing a false high SUR indication). (0.50) .b.
Undercompensation results in a higher than actual IR reading, (0.50) and the SR detectors may be prevented from automatically energizing.
(0.50) .c.
-The operator should manually energize the SR detectors with the SR Block-Reset switch (0.50) when the operable IR channel decreases below 1E-10 (P-6). (0.50) REFERENCE BVPS. EXAM BANK, QUESTION # 6-14 BVPS OM-2.1, PP. 15 - 18 3.1 KA VALUE(S) 015000A202 ...(KA'S) - ,. _ - _ _. ,
, 3 _'INSTRUMENTB'AND CONTROLS PAGE 35' _ 'J NSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
A ' ANSWER-3.'09 (2.00) . 1' ?ressurizer heaters on (at tS%) 2. Charging' flow decreases'to minimum
. 3. Actual pressurizer level decreases-4. Letdown isolates (at 14%) (0.25 for each) 5.
Pressurizer heaters turn off (at 14%) 6.
Actual pressurizer level increases ,7.
Pressurizer backup heaters turn on (at > 14%) 8. Reactor trip on High Pressurizer Level (at 92%) - REFERENCE BVPS EXAM BANK, QUESTION # 6-39 1 BVPS 03-6.1, P. 63 3.4 3.7 KA VALUE(S) 011000A210 011000K405 ...(KA'S) ANSWER 3.10 (1.50) 1.
CLOSED 2.
CLOSED 3.
CLOSED 4.
CLOSED-5.
OPEN 6.
OPEN (0.15 each) 7.
OPEN 8.
CLOSED < 9.
CLOSED 10. OPEN-REFERENCE .BVPS EXAM BANK. QUESTION # 6-44 BVPS 2LP-SQS-36.1, ELO 4 2.7 KA VALUE(S)
- 062000K407
...(KA'S) - , _ . -
___ _ - . i % ' 3 '. INhISQUENTS AND COMIBQLg PAGE
. ANSWERS -- BEAVER VALLEY'i&2-87/12/02-KINGSLEY, I.
( .: ' ANSWER '3 11 (2,00) . 'a.
OPENS (0.50) as steam flow appears.to be higher than feed flow (0.50) b.
tK) CHANGE (0. 50) as programmed level is limited to its current setpoint .(o,f 44%).(0.50) REFERENCE BVPS EXAM BANK, QUESTION # 3-20 BVPS OH-4.1, PP. 14 - 18 2.3 3.0 KA VALUE(S) '059000A211 059000K608 ...(KA'S) ANSWER 3.12.
(2.00) a.
1. Hot leg temperature within 57sO degrees F of auctioneered temperature of operating loops. A (0.20) CHECK TEMP AT FACILITY.
2. Cold leg temperature within 572S degrees F of auctioneered temperature of operating loops. A (0.20) 3.
Isolation valve vent relief line flow >/= 200 gpm for 90 minutes.
(0.20) 4.
Isolation bypass valve open for 90 minutes.
(0.20) 5. Hot leg isolation valve open for 90 minutes.
(0.20) b.
Hot Leg valve - MCC-2-19-1 (0.50) Cold Leg valve - MCC-2-18 (0.50) REFERENCE BVPS OM-6.3, PP. 6,7 BVPS 2LP-SQS-6.2, ELO 8 3.2 3.1 KA VALUE(S) 002000K409 062000A204 ...(KA*S)
_, -_ , 'PROgFDURES - NORMAL.' ABNORMAL. EL4ERGENCY 'AND PAGE
41 E R&DIOLOGICAL CONIBQL ANSWERSj--~ BEAVER VALLEY-1&2-87/12/02-KINGSLEY, I.
' ANSWER 4.01 (2.50)' -c.
1.
FALSE 2.
FALSE (0.50 each) 3.
TRUE b.
1.
To verify the receipt of an annunciator alarm.
(0.50) 2.
To init.4. ate corrective action.
(0.50) REFERENCE BVPS OM-48.1, P.
6,
NO ELOs PROVIDED FOR ADMIN PROC.
3.8 KA VALUE(S) 012000G001- ...(KA'S)~ ANSWER 4.02 (1.50) 500 GPD primary to secondary leakage in one SG (A SG) (0.75) 10 gpm identified leakage (0.75) REFERENCE .BVPS TECHNICAL SPECIFICATION 3.4.6.2 BVPS TECHNICAL SPECIFICATION DEFINITIONS NO ELOs PROVIDED FOR TECH. SPECS.
3.2 KA VALUE(S) 000009G008 ...(KA'S) -ANSWER 4.03 (1.00) 1.
Containment radiation (0.25) - 1 E5 R/hr (0.25) 2.
Containment pressure (0.25) - 1.5 psig (0.25) ' REFERENCE.
BVPS EOP, ES-1.3, ATTACH. 3 BVPS LP-LRT-VII-62, ELO A.4 4.0 KA VALUE(S) 000011G012 ...(KA*S) .-.
. -_ D O ROCEDURES - NORMAL ABNQEMAL J MEB9ENCY AND PAGE
2 A ADIOLOGICAL CON _IBQL ' D - iANSWERS " BEAVER VALLEY 1&2- -87/12/02-KINGSLEY.
I.
LANSWER' 4.04 (2.00) c.
1.
Low Low (450 inches) RWST level (0.50) 2.
SI signal present (0.50) b.
1.
Terhiinate boiling in the core (or quench void in vessel head).
(0.50) 2.
Prevent boron. precipitation-(or to wash off boric acid which plated out on fuel assemblies).
(0.50) REFERENCE BVPS LP-LRT-VII-62, P.
BVPS EOP EXECUTIVE VOLUME, ES1.4, P.
BVPS EOP ES-1.3, ATTACH. 2 BVPS_OM-11.1, P.
BVPS 2LP-SQS-11.1, ELO 5, 6,
4.4 4.0 3.8 KA VALUE(S) 000011A104 000011G012 000011K313 ...(KA'S) ANSWER 4.05 (1.50) a.
REFERENCE BVPS EOP ES-0.2, ATTACH.
6, 7 STEAM TABLES BVPS LP-LRT-VII-61, ELO A.2 4.2 2.6 4.1 KA VALUE(S) 000009A237 000009G012 194001A108 ...(KA'S) f
E ! L._;EBOGEQUEEE - NQBt!6b u6BNORMAL, EMERGENCY AND PAGE 39'
- BADlQLQGIGAL CONIBQL ANSWERS -- BEAVER' VALLEY 1&2-87/12/02-KINGSLEY, I.
' . ANSWER 4.06 (3.50) c.
l'. Start the charging /HHSI pumps 2.. Open the Emergency Boration isolation valve (MOV350) (0.50 each) 3.
Start the inservice boric acid transfer pump b.
1.
a) Open the alternate emergency boration isolation valve (SOV206) (0.50) - b). Open the boric acid flow control valve (FCV113A) (0.50) 2.
a) Open the suction valves from the RWST (LCV115B and D) (0.50) b) Close the suction valves from the VCT (LCV115C and E) (0.50) REFERENCE BVPS EOP FR-S.1, PP. 3, 4 BVPS 2LP-LRT-VII-61, ELO B.1 4.0 KA VALUE(S) 000024G010 ...(KA'S) _ _ . _. ._
~4.
PROCEDj]BES - NO.BMAL. ABNORMAL. EMERGENCY-AHD PAGE~ 40 S B6DIOLOGICAL CONTROL ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
' ANSWER 4.07 (2.50) a.
-- Verify Rod bottom lights - lit.
(0.25) - Verify Neutron flux - decreasing (0.25) b.
1.
Depress reheat controller pushbutton (0.25) 2.
Check reheat control' valves (FCV100E and F) closed (0.25) 3.
Verify closed - Reheater steam supply valves (FCV100A and C) (0.25) - MSR isolation valves (MOV100A and B) (0.25) c.
1.
Verify Main generator output breakers open (0.25) 2.
Verify Exciter circuit breaker open (0.25) d.
1.
Verify Service water pumps running (0.25) 2.
Verify Service water header pressure between 80 and 85 psig (0.25)- REFERENCE BVPS EOP E-0, PP. 3, 4, 8 BVPS LP-LRT-VII-61. ELO B.1 4.2 KA VALUE(S) '000007G010 ...(KA'S)
~4. PROCEDDEES. _ NORM.6L. ABNORMAL. EMERGENCY AND: PAGE '41- - RADIOLOGICAL CONTROL ~ ANSWERS.-- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
. ANSWER 4.08 (2.00) 1.
Subcooling (CETCs) 2.
Pressurizer level c,3.
Steam' generator level (any four 0 0.50 each) 4.
Steam generator feedwater flow 5.
RCS pressure _ REFERENCE-BVPS EOP E-0, P.
BVPS LP-LRT-VII-62, ELO A.1 3.9 KA VALUE(S) 000011A211 ...(KA'S) ! ANSWER 4.09 (2.25) a.
Inside the target band, (0.50) because less than 2 AFD channels are outside the target band. (0.25) b.
Outside the target band, (0.50) because 2 AFD channels are outside the target band. (0.25)- c.
Inside the target band, (0.50) because less than 2 AFD channels are outside the target band. (0.25) REFERENCE BVPS TECHNICAL SPECIFICATIONS, 3/4.2.1 NO ELOs PROVIDED FOR TECH. SPECS.
3.7 3.4 3.5 KA VALUE(S) 001000G005 001000G011 014000A104 ...(KA'S)
. .- 4i PROCEDURES-- NORMAL. ABNORMAL. EMEBQENCY AND-PAGE
. RADIOLOGICAL CQHIBQL .ANSWERSE- ' BEAVER VALLEY 1&2 --87/12/02-KINGSLEY, I.
ANSWER' 4.10 (1.50) a.
To avoid excessive pressure increase from thermal expansion of cold seal injection water. (0.50) b.
To prevent contaminants from seal leakoff line from being forced back into seal chamber.
(0.50) c.
To prevent formation of an explosive oxygen / hydrogen mixture (or to exclude air).
(0.50) REFERENCE BVPS OH-6.2, P. 5, 6, 7 BVPS 2LP-SQS-6.2, ELO 11 BVPS 2LP-SQS-50.51.52.1, ELO 2 3.4 3.3 3.3 KA VALUE(S) 002000G010 003000G010 010000G010 ...(KA'S) ANSWER 4.11 (2.75) a.
_5 rem (0.50) b.
1.
Senior VP, Nuclear Group-2.
VP, Nuclear Group (any 2.@ 0.50 each) 3.
Senior Manager. Nuclear Operations c.
. LIMITED BY 5(N-18)=10 rem lifetime whole body limit (0.50 for correct limit) 10 rem - 8.6 rem = 1400 mrem (0.25 for correct method) 1400 mrem =5.6 hours (0.50 for correct answer)
250 mrem /hr REFERENCE BVPS RADIATION CONTROL MANUAL, PP.
6, 7 NO ELOs PROVIDED FOR RAD CON 2.8 KA VALUE(S) 194001K103 ...(KA'S)
7; -e , -3 PROCEDJJRES' - NORMAL. : ABNORMAL. EMERGENCY A.)LD PAGE
-BADLQLQgICAL CONIBOL _ -ANSWERS -- BEAVER VALLEY 1&2-87/12/02-KINGSLEY, I.
-ANSWER .4.12 (2.00) ~ Minimize RCS inventory loss (minimize RCP seal damage / leakage).
(0.75) o.
b.
To prevent injection of accumulator nitrogen into the RCS.
-(Ot.75) c.
CONTINUED AT THE MAXIMUM RATE (0.50) REFERENCE BVPS EOP ECA-0.0, P.
BVPS LP-LRT-VII-61, ELO B.5 3.6 4.3 KA VALUE(S) 000055G007 000055K302 ...(KA'S) ,
k
( kTTncHM1AW'K
- h U.
S.
NUCLEAR REGULATORY COMMISSION SENIOR REACTOR OPERATOR LICENSE EXAMINATION FACILITY: _@EAVER_yALLEY_2_________ REACTOR TYPE: _PWR-WE93________________ DATE ADMINISTERED: _@Zl12f92________________ EXAMINER: _YAgHIMIAKfKELLER________ CANDIDATE: INSTRUCTIONS TO CANDIDATE:
Uze separate paper for the answers.
Write answers on one side only.
Staple question sheet on top of the answer sheets.
Points for each question are indicated in parentheses after the question.
The passing grade requires at least 70% in each category and a final grade of at luast 80%. Examination papers will be picked up six (6) hours after the examination starts.
i % OF CATEGORY % OF CANDIDATE'S CATEGORY __Y8LUE_ _191@L __._SGQBE___ _y9LUE__ ______________gglEGQBY_____________ 39199__ _2@t99 ___________ ________ 5.
THEORY OF NUCLEAR POWER PLANT OPERATION, FLUIDS, AND THERMODYNAMICS _29299-- _29199 ___________ ________ 6.
PLANT SYSTEMS DESIGN, CONTROL, AND INSTRUMENTATION 29 99-- 39199 ---________ ________ 7.
PROCEDURES - NORMAL, ABNORMAL, EMERGENCY AND RADIOLOGICAL CONTROL 29199__ _29199 ___________ ________ 8.
ADMINISTRATIVE PROCEDURES, CONDITIONS, AND LIMITATIONS 199199__ ___________ ________% Totals Final Grade All work done on this examination is my own.
I have neither given nor received aid.
Candidate's Signature <
v ., . NRC RULES AND GUIDELINES FOR LICENSE. EXAMINATIONS
'During_the administration of this examination the following rules applyt Ll.
Cheating on,the examination means an automatic denial of your application and could result in more severe penalties.
12.
Restroom trips are to be limited and only one candidate at a time may leave.. You must avoid all contacts with anyone outside the examination
- room to avoid even the appearance or possibility of cheating.
3.
Use' black ink'or dark pencil only to facilitate legible reproductions.
4.
Print your name in the blank provided on the cover sheet of the examination.
S.
Fill in the date on the cover sheet of the examination (if necessary).
6.
Use only the paper provided for answers.
7.
Print your name in the upper right-hand corner of the first page of each section of the answer sheet.
8.
Consecutively number each answer sheet, write "End of Category __" a r-apprcpriate, start each category on a ngw page, write gnly gn one side of the paper, and write "Last Page" on the last answer sheet.
9.
Number each answer as to category and number, for example, 1.4, 6.3.
10.' Skip at least three lines between each answer.
11. Separate answer sheets from pad and place finished answer sheets face down on your desk or table.
12. Use abbreviations only if they are commonly used in facility literature.
'13.
The point value for each quection is indicated in parentheses after the question and can be used as a guide for the depth of answer required.
14. Show all calculations, methods, or assumptions used to obtain an answer to mathematical problems whether indicated in the question or not.
15. Partial credit may be given.
Therefore, ANSWER ALL PARTS OF THE QUESTION AND DO NOT LEAVE ANY ANSWER BLANK.
16. If parts of the examination are not clear as to intent, ask questions of the examiner only.
1 7'. You must sign the statement on the cover sheet that indicates that the work is your own and you have not received or been given assistance in completing the examination.
This must be done after the examination has been complete.,. _-_. _ _ _ _ _ _ _ _ _ _ - . .18. When you complete your examination, you shall: a.
Assemble your examination as follows: (1) Exam questions on - top.
-(2) Exam aids - figures, tables, etc.
(3) Answer pages including figures which are part of the answer.
b.
Turn in your copy of the examination and all pages used to answer the examination questions.
c.
Turn-in all scrap paper and the balance of the paper that you did not use for answering the questions, d.
Leave the examination area, as defined by tae examiner.
If after leaving, you are found in this area while the examination is still in progress, your license may be denied or revoked.
_ _ _ - _ _ - _ -
,_ - _ - 5-THEORY OF NUCLEAR POWER PLANT OPERATION _ELUIDg1_6ND PAGE
1 IHERMODYN@MIC@ - . l QUESTION 5.01 (2.50) c.
Calculate reactor power (MWt) using the following information.
(1.50) feedwater temperature = 420 F.
3.60 E+6 lbm/hr (Per S/G) feedwater flow = 785 psig S/G pressure = 2.5 psia condenser pressure = 3.0 E+6 lbm/hr drain pump flow = 735 psig 1st stage-pressure = b.
WHAT are TWO (2) components which, if not accounted for, cause the calculated value for reactor power to be greater than actual reactor power 7 (1.00) QUESTION 5.02 (2.25) Explain HOW the reactivity effects due to the Doppler-Only power coefficient assist in the prevention of excessive fuel temperatures during up-power transients from control rod withdrawals.
Include in your answer how neutron production, fission rate and fuel temperature are affected.
QUESTION 5.03 (3.00) c.
Explain, in terms of neutron flux, WHY a dropped rod is worth approxi-mately 200 pcm whereas a stuck rod is worth 1000 pcm even though the same rod could be considered in both cases.
(2.00) b.
WHAT are TWO (2) reasons for having control rod bank overlap? (1.00) QUESTION 5.04 (3.75) Complete Parts B,D, and E of the attached Estimated Critical Position Calculation (Attachment 1) given the following information: - A reactor trip occurs at 2030 on 11/28/1987 from 100% power after the plant had been operating for 30 days with Bank D rods at 190 steps.
- Boron concentration was 930 ppm before the trip and has been increased to 1190 ppm and is now steady at this value.
.The estimated time for criticality is 1000 on 11/30/1987.
(***** CATEGORY 05 CONTINUED ON NEXT PAGE
- )
- _ _ _ _ - _ _ _ _ _ - - _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ _ _
5___IHEggy_QE_ NUCLE @B_EgWEB_EL@NI_ GEE 6@llggt_ELulpS _989-PAGE
t IHEQUODyN@d1CS . QUESTION 5.05 (2.00) Using the. attached Shutdown Margin' Calculation (Attachment 2), complete the f orm and calculate SHUTDOWN MARGIN in percent delta K/K.
Assume baron concentration is 900 ppm and the reactor has been at'100% power for 5 days.
QUESTION 5.06 (2.00) Answer the following questions TRUE or FALSE: a.
If a centrifugal pump's speed is DOUBLED, its flow will DOUBLE.
.b.
If a centrifugal charging pump is in service and the operator INCREASES its flowrate, the pump's available Net Positive Suction Head (NPSH) will INCREASE.
c.
If a condensate pump was operating at "RUNOUT" conditions motor current would indicate LESS than normal values.
d.
When starting a condenser circulating water pump, motor starting current is REDUCED by CLOSING the pump's discharge valve.
QUESTION 5.07 (2.00) a.
Explain WHY xenon concentration increases to a peak after a reactor trip from power operations.
(1.50) b.
Reactor power has just been decreased from 75% to 30%. HOW long will it take for the transient xenon concentration to reach its peak? (0.50) QUESTION 5.08 (2.00) HOW would the operator change the following parameters (Increase, Decrease, No Change) in order to aid natural circulation.
Consider each separately.
a.
Pressurizer level at 5% b.
RCS cooldown rate at 50 F/hr c.
steam generator level at 30% WR d.
RCS pressure at 1950 psig (***** CATEGORY 05 CONTINUED ON NEXT PAGE
- )
r_ .5.
THEORY OF-NUCLEAR POWER PLANT OPERATION _FLUIQ@t_AND PAGE
t IHE6dgpYN@dlC@ - . QUESTION 5.09 (2.25) HOW (Increase, Decrease, No Change) and WHY would each of the following parameters affect the margin to DNB.
a. Pressurizer temperature increase 5-degrees b.! Mass flow rate through the core increases 10% c.
AFD increases to +10% QUESTION 5.10 (2.05) a.
WHICH initial temperature, 300 F or 547 F, will give the largest change in the_ magnitude of MTC as boron concentration is lowered from 1000 to 500 ppm? Justify your answer.
(1.35) b.
WHY does power defect become more negative as the core ages? (0.70) QUESTION 5.11 (1.20) Explain WHY a cold calibrated pressurizer level instrument will indicate LOWER than actual when the plant is at 100% power.
(***** END OF CATEGORY 05
- )
6 __PL@NI_SYgIEd@_QEg1GN _CgNIBgL _@NQ_INgIBUBENI@IlgN PAGE
t
- . QUESTION 6.01 (2.50) a.
List THREE (3) conditions / signal s that will cause a steam generator feedwater pump to automatically trip.
DO NOT include manual or motor / bus electrical trips) (0.75) b.
The reactor operator tries to start a main feed pump by placing the control switch to the START position and immediately releasing it.
The pump does not start.
Briefly explain WHY the pump did not start and HOW the operator should have manipulated the control switch.
(0.75) c.
WHAT is the maximum flowrate for a single feedwater pump operating alone? WHY does it have this limit? (1.00) QUESTION 6.02 (2.50) a.
During refueling operations radiation monitor 2HVR*RQ104A, Local-Containment Purge, alarms high.
Before the alarm, WHERE is _this effluent being released, and WHAT automatic actions occur to prevent this release from continuing? (1.00) b.
State the automatic actions which occur, if any, when 2 ARC-RolOO, Local-Air Ejector Discharge, alarms high.
(0.50) c.
WHY are there two (2) sampl e flow paths for the Wide Range Gas Monitor, 2HVS*ROI109B, and WHAT type of effluent does it monitor? (1.00) QUESTION 6.03 (1.75) a.
WHAT TWO (2) chemicals are added to the RCS to control pH and oxygen when in MODE 5? Indicate which chemicals for which f ur.c t i on. (0.50) b.
During which type of dilution operation (alternate dilute or dilute) will reactor coolant hydrogen concentration become depleted faster? Justify your answer.
(0.75) c.
WHY must the VCT be maintained at a minimum pressure of 15 psig? (0.50) (***** CATEGORY 06 CONTINUED ON NEXT PAGE
- )
r i . 6___P(@NI_@YSIEU@_QE@lGN _CgNIB9L _@NQ_IN@IBUDENI@IlgN PAGE
2
- ,
QUESTION 6.04 (2.40) a.
List FOUR locations where SR indication can be found.
(1.40)
- b. A reactor shutdown is in progress with the source range (SR) detectors reading about 10,000 cps and both intermediate range (IR). detectors reading 1X10E-11. amps.
Ten minutes later the SR detectors read about 1,000 cps but the IR detectors still read 1X10E-11 amps.
WHY does the IR detector output remain the same? (0.50) c.
The plant is operating at 100% power with NI-44 out-of-service.
If an automatic reactor trip occurs and NI-43 is failed as is, WHAT effect, if any, will this have on the nuclear instrumentation system's ability to monitor neutron flux? (0.50) QUESTION 6.05 (2.00) Answer the following questions TRUE or FALSE: a.
If reactor c ool an t system (RCS) loop isolation valves 2RCS*MOV590 and 591 are closed, reactor vessel level indication system (RVLIS) Loop A connection will become isolated from the reactor vessel, b.
Even if RCS loop isolation bypass valves 2RCS*MOV585,586,and 587 are fully closed, a small amount of flow continues to pass through the valve to ensure baron equalization.
c.
Cold leg isolation valve 2RCS*MOV593 will not open unless hot leg isolation valve 2RCS*MOV592 has been open for a predetermined time.
d._ Reactor vessel level indication during refueling is made possible by installing 2RCS-LGIO1 to a pressurizer drain line.
QUESTION 6.06 (3.00) a.
WHAT PCCW realignment occurs on a low-low PCCW surge tank level? (0.50) 6.
Component cooling water pump 2CCP*P21C is racked in on bus 2AE and is in auto.
WHAT THREE (3) conditions need to be satisfied before the pump will automatically start? Assume all associated equipment functions properly.
(1.00) c.
WHAT are SIX primary component cooling water (PCCW) containment loads that are isolated by a containment isolation phase B signal? (1.50) (***** CATEGORY 06 CONTINUED ON NEXT PAGE
- )
6 __P(@NI_@X@IEd@_QE@lG@t_CQNI6Q6t_@Np_lN@IBUDENI@IlgN PAGE
. QUESTION 6.07 (1.50) a.
WHAT uninterruptible power supply (UPS*VITBS2-1) component allows for a . transfer from the normal to the alternate power source and WHAT conditions will cause this transfer to occur automatically? (1.00) b.
If vital bus uninterruptible power supply UPS*VITBS2-1 loses all AC power, from WHERE will it receive its power supply? (0.50) QUESTION 6.08 (1.45) a.
Can quench spray pump 20SS*P21A supply water to both quench spray ring headers? (0.25) b.
WHEN (setpoi nt (s) not required) and WHERE do the chemical injection pumps, 20SS*P24A/24B, realign their discharges to during the recirculation phase of a LOCA? (0.70) c.
When the recirculation spray pumps, 2RSS*P21C/21D, are realigned to the safety injection system, WHAT signals (logic required) automatically cause the low head safety injection pumps to stop? (0.50) QUESTION 6.09 (3.00) For the f ollowing reactor protection trips, state its Technical Specification basis AND at what point, if any, the trip is blocked, a.
pressurizer high water level b.
low feedwater flow c.
low reactor coolant flow d.
overpower delta-T , e.
pressurizer low pressure l f.
power range high negative neutron flux rate ! g.
reactor trip on a turbine trip l (***** CATEGORY 06 CONTINUED ON NEXT PAGE
- )
6:__E60NI_@ySIEUS_DESl@N _CQNIBQ61_@NQ_INgI6UDENI9IlgN PAGE
t . QUESTION 6.10 (3.00) The plant is operating at 50% power when a control system hot leg RTD fails high.
Does this failure INCREASE, DECREASE, or NOT AFFECT the following: Consider each item independently.
Assume no operator action and that all control systems are in automatic.
a.-affected channel overpower delta T trip setpoint b.
steam bypass cooldown valves (first bank) c.
cha ging flow (initially) d.
control rod bank position e.
rod insertion limit setpoint f.
affected channel actual overtemperature delta T indication QUESTION 6.11 (1.90) a.
For a large break LOCA, WHAT are the minimum emergency core cooling system pumps required to cover exposed fuel and limit possible core damage? (0.70) b.
Following SI reset, WHAT operator action (s) must be performed in order to reinstate automatic re-initiation of SI? (0.50) c.
The accumulators arc isolated during a normal plant cooldown.
WHAT RCS system safety limit can be violated if this is not done? (0.70) (***** END OF CATEGORY 06
- )
l i l I l l
l l l ,
- - _ Z __PSOGEDUBES_;_UgBd86t_8@NOBd@6t_EDESGEUQy_AND PAGE
68 Dig 69GlG96_G9NIBQ6 . QUESTION 7.01 (1.50) For the following questions assume B.V.P.S.
- 0.M.
51, Station Shutdown Procedure, is in use.
c.
When using condenser steam dumps, WHAT operator action (s) must be taken to cooldown the RCS below the Lo-Lo Tavg setpoint? (0.50) b.
With Residual Heat Removal System (RHS) in service, WHY should at least one reactor coolant pump remain in service until RCS temperature is less than 200 degrees F? (0.50) c.
If minimum RCS flow requirements can NOT be met while in Mode 4, the operator's immediate response is to refer to WHAT procedure? (0.5v) QUESTION 7.02 (1.80) a.
WHO has the authority to instruct the use of water on an electrical fire AND WHAT FOUR precautions must be followed if water is used? (1.30) b.
HOW are personnel warned of imminent carbon dioxide release after the audible alarm has sounded? (0.50) OUESTION 7.03 (1.75) a.
WHAT ar e FOUR conditions that need to be met before a fuel assembly can be released in the core by the manipulator crane operator? (0.85) b.
WHEN during fuel movement do the main noist drive Upper and Lower slow zone interlocks actuate? Include hoist and gripper positions.
(0.90) (***** CATEGORY 07 CONTINUFD ON NEXT PAGE
- )
-
- Z __EB9CEQUBES_;_NQBd@61_@BNQBd@6t_[ DEB @ENCy_@NQ PAGE
- 609196gg1C86_CgN1896 - . QUESTION 7.04 (2.00) a.
A reactor coolant-pump-trips when the reactor is at 100% power.
B.V.P.S.
- E.O.P.
E-0, "Reactor Trip or Safety injection" is entered.
WHAT are the TWO actions / expected responses which are used to determine if a turbine trip has occured? (1.00) b.
If a reactor trip can NOT be verified, WHAT operator action must be performed before transitioning to FR-S.1, "Response to Reactor Pr 7r Generation /ATWS"? O.50) c.
Before initiating emergency boration, WHAT action (s) should the reactor operator take to control reactor power while in FR-S.1 if the reactor has not tripped? (0.50) QUESTION 7.05 (2.00) a.
WHAT would be TWO Reactor Coolant Pump indications that a loop isolation valve was drifting closed? (1.00) b.
WHAT TWO (2) physical actions should the reactor operator take if loop A isolation valve 2RCS*MOV591 is confirmed to be drifting closed? (1.00) QUESTION 7.06 (2.50) a.
HOW (Increases / Decreases /No change) does an immov&ble control rod affect the required shutdown margin and by how much (non-numerical)? (0.50) b.
If a control rod is HIGH with respect to its bank position, HOW does an operator prevent all the rods in the bank from moving when realigning the misaligned rod? (1.00) c.
If control rod misaligment is indicated with reactor power at 90%, to WHAT level must reactor power be reduced and HOW is this done? (1.00) l . (***** CATEGORY 07 CONTINUED ON NEXT PAGE
- )
_ _ -. _ _ _ - _ _ _ _ _ -_ _ _._.
. _. 7; PROCEDURES - NORMAL _A@NgRMAL _EMERGENQY_ANQ PAGE
t t 6091969G1C66_GQN18Q6 - O
, QUESTION 7.07 (2.50) During'a pla'nt startup with reactor power at 12% a loss of 125 VDC from y switchboard 2-2 occurs.- r a.
WHAT FOUR (4) atomatic actions will occur? (2.00) b.
What would be the most likely cause of a trip during this transient? (0.50) QUESTION 7.08 (2.40) a.
Under WHAf conditions should the reactor be manually tripped if a loss of station instrument air is suspected? (0.60) b.
If the reactor has been tripped and instrument air pressure decreases to less than 30 psig, HOW will steam generator level be controlled? (0.60) c.
WHAT TWO (2) valves can be used during the preferred method of RCS temp-erature control if instrument air pressure is less than 30 psig? (1.20) QUESTION 7.09 (2.351 A DLC worker must enter containment to perform necessary correctivo maintanence.
The radiation field where *he worker will operate in is 600 mrem /Hr gamma and 600 mrem /Hr neutron.
The worker is 25 years old, has a lifetime (NRC Form-4) exposure of 33 rem through the last quarter, and has accumulated 0.5 rem of exposure this current quarter, c.
l/OW long can the worker remain in containment without exceeding his 10 CFR 20 exposure limit? Show all work.
(1.35) b.
If during an emergency sititation the worker volunteers to enter a hazardous area to search for and remove inhfred person (s), HOW much exposure does B.V.P.S.
- R.C.M.
(Radiological Control Manuai) allow hia to receive? (0.50) c.
WHO can grant the necessary authorizat)on for exposures up to the emergency exposure limit? (0.50) (***** CATEGORY 07 CONTINUED ON NEXT PAGE
- )
e - _ - _. -
. Zt__BBggEQyBE@_;_NQBd@(t_@BNQBd@(t_EdEBgENgy_ANQ PAGE
B89196991G86_GQNIBQ6 - . QUESTION 7.10 (3.00) For_the following questions, assume that a main steam line break from steam generator 21B has occured inside containment.
c.
As directed in B.V.P.S.
- EOP E-2, "Faulted Steam Generator Isolation," WHY are the supply valves to tte turbine-driven auxiliary feedwater (AFW) pump closed? (0.65) b.
Because of elevated secondary radiation levels, the operator transitions to E-3, "Steam Generator Tube Rupture."
After asking for steam generatnr (SG) samples to be taken, the chemistry department informs the operator that SG 21C has high activity.
If the turbine-driven AFW pump is the only available source of feed flow, which SG should be used to supply it with steam? Justify your answer.
(1.35) c.
If pressurizer pressure control is lost and the operator transitions to ECA-3.3, 'SGTO Without Pressurizer Pressure Control" (Attachment 3), WHAT are TWO (2) reasons for NOT using auxiliary spray at step 3 when normal PRZR spray cannot be established? (1.00) (***** CATEGORY 07 CONTINUED ON NEXT PAGE
- )
l l l l l
_ _ _ _ _ _ _ _ -. 'ZL__EggggDUBgg_;_Nggd@bt_@gggggggt_ggg6@gygy_AND PAGE
' RADIOLOGICAL CONTROL .
l QUESTION 7.11 (3.20) -The following questions deal with the Emergency Operating Procedures' usage rules: c.
While implementing the actions required by accident recovery procedure ES-1,2, "Post LOCA Cooldown and Depressurization," the STA reports the following critical safety function status tree conditions.
Place the below conditions in the order they should be addressed.
(1.20) Containment Integrity - ORANGE Inventory - YELLOW Core Cooling - ORANGE Heat Sink - YELLOW b.
WHAT is the significance of bullets (c) when used to designate ACTION / EXPECTED RESPONSE subtasks? (0.50) c.
HOW is the operator made aware of tasks that must be fully completed before proceeding to another instruction? (0.50) d.
ARE CAUTION statements from E-O still applicable after transitioning to E-1? (0.50) e.
The-Symptomatic Response / Unexpected Conditions page for ES-1.2 is applicable for which procedure series? (0.50) (***** END OF CATEGORY 07
- )
! l l I l t
.s 91__8901Ni@IB911VE_P89CEQUBE@t_CQNQlIlgNgt_@NQ_LidlI@IlgNE PAGE-14
OUESTION 8.01 (2,00) An ILC technician has been trouble-shooting a problem with the rod control system when he requests permission f rem the SRO to ster rtds in one step.
The plant is at-90% power.
SHOULD the SRO grant the trchnician . e permission to operate the controls? ' Justify WHY or WHY NOT.
(2.00) OUESTION 8.02 (2.00) Answer the following questions TRUE or FALSE: a.
The NSS, NSOF, and the STA (or NCO) all must sign the "Authorization for Removal From Service" lines of the Emergency Safeguards Equipment Clearance Checklist.
b.
Only the NSS needs to sign the Equipment / Radiation Cl earance Log f or the clearance to become effective, c.
A Master Clearance can be used to cover maintenance that requires equipment to be operated in order to perform th6 necessary work, d.
A Caution Tag may be removed by Test Group Personnel without obtaining NSS/NSOF's permission.
QUESTION 8.03 (2.00) Answer the following questions regardir.g the Operations Shif t Complement and Functions at B.V.P.S.
- Unit 2: a.
HOW long can the plant remain at a steady power level (Mode 1) with one person less than the minimum functional shift complement? (0.50) b.
WHAT action (s) must be taken if the minimum shift complement cannot be met in time? (0.50) c.
WHEN can nuclear operators perform radiation monitoring surveillance of an area which needs to be occupied by other operations personnel? (1.00) (***** CATEGORY 08 CONTINUED ON NEXT PAGE
- )
L\\-
- .c
$2__0DMlUISIB0I1YE_EB9CEgyBESz_CgN9111gN@1_@NQ_blM11@IlgNS PAGE
' . V 'dUESTION -0.04 (2.10) .s . Answer the following questions regarding Logs and Reports at .B.V.8. S. : Uni t 21 Whehi making a change to a high-high radiation monitor alarm setpoint, a.
WHAT TWO individuals are required to initial.the Radiation Monitor Alarm Setpoint Log Sheet? (1.00) b.
HOW can log entry errors be corrected? (0.60) c.
HOW many licensed reactor operators must sign each shift's Nuclear Control Operator's Report? (0.50) QUESTION 8.05 (2.50) The plant is operating at 95 percent of thermal rated thermal power.
At 0800, indicated Axial Flux Difference (AFD) reads outside the target band, a. WHAT are the TWO actions which an operator can perform, per Technical Specifications, which would terminate this Limiting Condition For Operation? Include applicable time constraints.
(1.50) b.
50 penalty minutes were accumulated on thL previous shift from between 0100 and 0150.
If the AFD remains outside of the target band until 0815, WHAT action (s) must the operator tare? Include applicable time constraints.
(1.00) QUESTION F. 06 (2.60) tjsing the attached sections of B.V.P.S.
- Unit 2 Technical Specifications (Attachment 4), CHOOSE the ONE st atement below which would require operator action to be initiated, within ONE hour, to place the unit in a Mode in whzch the Technical Specifications does not apply.
JUSTIFY your answer.
Assume the plant is in Mode 1.
A.
4160 VAC Emergency Bus #2AE and 120 VAC Vltal Dus #III have been inoperable for 6 hours.
B. Battery bank 2-1 was just gitcl ar ed inoperable.
C.
Both battery banks 2-1 and 2-2 have. undergone surveillance testing and have connected cells which reqvster less tnan 2.00 volts.
' D.
Diesel generator No.1 has an inoperable fuel transfer pump AND diesel generator No.2 just failed sur veill ance test 4.8.1.1.2.a.5.
(***** CAU' GORY 08 CONTINUED ON NEXT PAGE
- )
a r-
_ _ _ _ B __0Dd1N1516671yE_P6QQEDU64@t_CQNQlligN@t_6ND_(ldlI@llgNS PAGE
1 . . QUESTION 8.07 (2.40) l ! For the following questions, utilize Attachment 3.
l~ c. WHAT would be the effect on the Safety injection System during a LOCA if CONTROLLED LEAKAGE had exceeded the Technical Specifiaction limit prior
to the event? (0.60) b.
Would Limiting Condition For Operation 3.4.6.2 be exceeded if containment sump discharges totaled 625 gallons during the last hour? Justify WHY or WHY NOY.
(1.40) . c.
Is reactor-to-secondary leakage included as part of IDENTIFIED LEAKAGE? (0.40) QUESTION 8.08 (3.40) Using Attachment 6, classify the following events in accordance with BV-2 , EPP/I-1, Recognition and Classification of Emergency Conditions, AND briefly justify your answer and any assumptions.
Consider each case separ-ately.
a.
A main steam line break occurs upstream of MSIV 2 MSS *HYV101C causing a f tube leak in steam generator 21C to increase to 55 gpm.
b.
With the plant operating at 100% power, an earthquake occurs registering greater than the OBE envelope, but only at the lower frequencies.
The plant did not automatically trip and no damaged was sustained.
c.
A large-break LOCA occurs when the plant is at 100% power.
The combination of equipment failures and the loss of onsite and offsite power has caused fuel damage.
Containment pressure is 40 psig with a hydrogen concentration approaching the combustible limit.
Offsite power is being restored and should be available within the hour.
d.
A truck delivering diesel fuel on site is in.olved in a collision with a passenger vehicle.
The truck is leaking fuel and the passenger vehicle driver will require medical attention.
QUESTION 8.09 (2.00) Diesel Generator 21's operability load test, which is required every 31 days, in scheduled for today.
The last three tests were completed 35, 67, and 100 days ago, respectively.
The plant is at 1007. power.
Are Technical Specifications being met? Explain why or why not.
(***** CATEGORY 08 CONTINUED ON NEXT PAGE
- )
.. _.
- _ _ _ _ _ _ _ _ - _ _ _ _ - _ _ _ _ _ _ _ _ _ _ -
r- 'n ] Es._@DMINISI69IlyE_EBOCEDUSES'_COND'!TIONS _At!D LIMITATIONS PAGE
i
< . . ' QUESTION 8.10 (2.50) . .For each of the following events, use Attachment 7 to deterte.ine whether the NRC operations center must be notified within 1 hour? c.
During a liquid ef fluent release, radiological concentrations exceeded the 10~CFR 20 limits by 50%. b.
Chemistry samples indicate that RCS specific activity levels exceed Technical Specification limits.
c.
A DLC worker was contaminated and injured while perf orming maintenance while inside the auxiliary building.
d.
The gas decay tanks were sampled and determined to contain in excess of the Technical Specification limit of 19,000 curies.
o.
a reactor trip breaker fails to operate properly during a test.
QUESTION O.11 (1.50) A surveillance procedure which contains "on-the-spot" thanges is in use.
a.
HOW long can this procedure remain in use before facility management review and approval is required? b.
WHO must approve the change within the approval time frame? c.
WHAT document must be used to make this "on-the-spot" change permanent? (***** END OF CATEGORY 00
- )
(************* END OF EXAMINATION ***************) e - _~
_-_ , 5 '_110EgBy_gE_ NUCLE 88_EQWEB_E(@NI_gEEB@IlgN _ELU1gS _8Ng _PAGE
x
z T_H_ER_MO_DYNAM__ICS_ ,m, __ _ ___ _ ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER . ANSWER 5.01 (2.50) a. h (f eedwat er ) 396.9 BTU /lbm CO.503 = h(steam) 1200 BTU /lbm CO.503 = (10.8 E+6 lbm/hr)*(12OO - 396.9 BTU /lbm) reactor power =
- (0.293 W/ BTU /hr)/(1.0 E+6 W/MW)
2541 MW CO.503 = b.
PCPs CO.303 (2 / O.6c] (1 PZR heaters E^. 50 F b h ctount gow f REFERENCE B.V.P.S.
LP-TMO-6 Enabling Objective 11 B.V.P.S.
Thermo Text Chapter 6 page 373 Question 48 B.V.P.S.
LP-TMO-6 page 18 K/A 193007 K1.08 3.4 193OO7K108 ...(KA'S) ANSWER 5.02 (2.25) rod withdrawal causes neutron productior, to increase CO.453 this means that more fission interactions occur within the fuel, heating it up CO.453 however, as the fuel heats up, more neutrons are absorbed in the reasonance peaks CO.453 and the fission rate is reduced CO.453 thus limiting the number of interacti ons in the fuel and the rise in fuel temperature CO.453 REFERENCE B.V.P.S.
LP-RT-6 Enabling Objective 4 B.V.P.S.
Reactor Theory Text Chapter 6 page 43 K/A 192004 K1.02 3.2 192OOAK102 ...(KA'S) -- ~
5 '__IUEggy_g[_NgC(E@B,EgWEE_E6@NI_gEEg@IlgN _{LylgS _@NQ PAGE
t t IMEBUDDYN@DICS . ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/iSLLER ANSWER 5.03 (3.00) a.
Rod worth is a f unction of the ratio of l oc al flux to average flux (squared) CO.503. If a rod is dropped with all other rods withdrawn, the r*od depressed the local flux relative to the rest of the core so the rod worth is small (200 pcm) CO.753.
When a rod is stuck with all other rods ' nserted, the tip of that rod is exposed to a much higher flux than the rest of the core, thus increasing its worth (1000) CO.753 b.
- to maintain a more uniform differential rod worth - minimize the possibility of creating a positive delta I C2 X O.S T3 - to ensure that any control rod motion will have some effect on total core reactivity REFERENCE B.V.P.S.
LP-RT-8 Enabling Objectives 2,B,11 B.V.P.S.
Reactor Theory Text Chapter 8 pages 20-24,27 K/A-001000 K5.02 3.4 K/A 001000 A2.03 4.2 OO1000A203 OO1000K502 ...(KA'S) ANSWER 5.04 (3.75) B.1.1-1400 pcm i do PC P B.2.I-9068 pcm fSe f C 7" B.2.II-11231 pcm e 7s (c m B.2.III +2163 pcm i LAC pe ns D.3.I-3000 pcm a goe gc p B.3.II-1500 pcm a g oo pcf.
B.3.III-1500 pcm3 73e geni d'~}. 3.4.I-610 pcm 3 g pey3 CIS X O.253 B.4.II-760 pcm + gg fg7,, B.4.III +150 pcm 3,o,.cm D.II-9^ "rm .tye peril
- M (c '"
D.III 76&' r"m-7R7 r ge T io s D.IV Bank D Step W.
cre f to 4 4p0 E.IV Bank D Step FBG 167 if o E.V Bank D Step M IS jfo f e REFERENCE B.V.P.S.
LP-RT-9 Enabling OLjective 6 D.V.P.S.
- OM 1.50.4 K/A 192008 K1.07 3.6 192OO8K107 ...(KA'S) i
, S i_IMEQBy_QE_NQCLE@B_PQWE8_P(@N1_QPE6@llgN _ELQlgS _@ND PAGE
t t t IdEBMQQYN@MlCS , , ANSWERS -- BEAVER VALLEY'2-87/12/02-YACHIMIAK/KELLER ANSWER 5.05 (2.00) 1.b.
+1225 pcm CO.403 Q# PC W j[~u rod worthst SDA 2589 SDB 1287-CO.403 for right group of numbers CBA 1167 CBB 1960 CO.407 for conversion f rom */. del ta rho to pcm CBC 1324 CBD 1300 CO.403 for Bank D at 190 steps oG shutdown martin = ,.36 delt k/k CO.403 Q g REFERENCE l gg g gjef3 cow] B.V.P.S.
LF -RT-9 Enabling Obj ective 4 B.V.P.S.
- OM 7.55A.4 K/A 192002 K1.13 3.7 192OO2K113 ...(KA*S) ANSWER 5.06 (2.00) c.
TRUE b.
FALSE C4 X O.50) c.
FALSE d.
TRUE REFERENCE B.V.P.S.
LP-TMO-4 Enabling Objective 7,0,14 B.V.P.S.
Thermodynamics Text Chapter 4 pages 12-15,22,32,33 K/A 19'004 K1.05 2.4 K/A 1V1004 K1.07 2.9 K/A 191004 K1.12 2.7 K/A 191004 K1.15 2.8 191004K105 191004K107 191004K112 191004K115 ...(KA*S) ANSWER 5.07 (2.00) a.
Xenon concentration increases because the "burn-up" term from neutron absorption is Icst CO.403 while iodine decay to xenon CO.403 in greater than xenon decay CO.403 until the time of the peak when xenon decay i s greater CO.303 b.
' 5 hours +/- 1/2 hour CO.503 REFERENCE B.V.P.S.
LP-RT-7 Enabling Objective 4 B.V.P.S.
Reactor Theory Text Chapter 7 pages 13.16
y, - . _ -- -. ' ,a; ~ , l g; 5]* THEO'RY'OF' NUCLEAR POWERcPLANT OPERATIONi h ulD@i_AND' .PAGE ~21 , .; ; IHEBOOQMAd1C@ JANSWERS.-- BEAVER. VALLEY 2 - -87/12/02-YACHIMIAK/KELLER . - K/A=-192OO6'K1.06-3.4 1192OO6K106.
...(KA'S)' . ANSWER-5.08 (2.00)'- c.' Increase ~ .b.
Decrease-c.. Increase C4.X O.503 .d.
No: Change-REFERENCE 8.V.P.S.~LP-TMO 7' Enabling Objective-16 l
B.V.P.S.-Thermodynamics Text = Chapter 7.pages 20-25 ( -B.V.P~.S.
EOP ES-0.2. steps 5,9 'K/A 193OOO K1.~23 4.1-193OO8K123 ...(KA'S) ' ! , ANSWEF, 5.09 (2.25) V k.
'c.' Increases CO.253 as:PRZR temperature rises, so does saturs.lon pressure CO.503 b.
Increases CO.253 because core delta T will decer ase (to bevp power-constant) -CO.253 reducinc, T(hot) CO.253 c.
Decreases C0.253 because mire power-is being produce; in tie t',p half of .the core CO.253 causing thir/8 ot channel factor bo sr.c s in-tl is area to be approached CO.253
A DNB Ok gpd
- REFERENCE 14'N d'
B.V.P.S.
LP-TMO-7 Enabling Objective 12 o' B.V.P.S.
Thermodynamic Text Chapter 7 page 17-K/A 193008 K1.05 3.6 193OOOK105- ...(KA'S) ANSWER 5.10 (2.05) ' a.
547 CO.353 because the change in density / degree F is much greater than 'at lower temperatures CO.503 so more boron atoms enter or leave the core causing a larger reactivity change for a given temperature change CO.503 b.
MTC, a component of the power defect, becomes more negative CC,353 dur ici Hncroscod hneem cencentration r e _7 5p p,9gg T' REFERENCE B.V.P.S.
LP-RT-6 Enabling Obj ecti ves 1,2,10 B.V.P.S.
Reactor ~ Theory Text Chapter 6 pages 6.13,16 K/A 192004 K1.06 S.* THEORY OF NUCLEAR POWER PLANT OPERATION _FLUlDS _ANQ PAGE
t t IHg6dQDyN@dlCS , ' ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER , 192OO4K106 ...(KA'S) . ANSWER S.11 (1.20) pressurizer temperature is much higher CO.303 and this reduces the water's density CO.303 the level is determined by a difference in the density times height of the actual level CO.303 and reference level CO.303 REFERENCE B.V.P.S.
LP-TMO-7 Enabling Objectives 5,6 B.V.P.S.
Thermodynamic Text Chapter 7 panes 9.,9a.,9b.
K/A 193OO1'K1.03 2.6 193OO1K103 ...(KA'S) ! t l >
r __ . - _ _ . _ _ _ - _ _ _ - _ _ , 6 ;_P(@N1_SYSIEdg_QESlGN _CQNIBO(g_@NQ_lNS1890ENI@llgN _PAGE 12 3
t t ANSWERS'-- BEAVER VALLEY.2-87/12/02-YACHIM1AK/KELLER.
? , ' ANSWER-6.01-(2.50) ~ -gpg. p)& 4%A% ,:/LLm$'7hCW.M All1*nh r %A CYf, . .. a.
- feed water i sol'atic i signal OR SI o /2, dd Lo S[C. LestO ' - sustained low-suction pressure [0.25 X 33 - - lube oil pressure extreme low . , b.
switch must be held in the START position [0.353 until the feedwater recirculating water. valve is fully open [0.403 , g7n .(( c.
16,000 gpm-(8.0 mpph) [0.503
- 6%Y)
L prevent runout conditions CO.503 REFERENCE Beaver Vall ey 2LP-SOS-24.1. Enabling Obj ecti ves 7.,16.
B.V.P.S.
- O.M.
2.24.1 page 20,21; 2.24.2. page 2,3
K/A 059000 K4.16 3.2 l K/A 059000 GO.09 3.1 i K/A 059000 GO.10 2.9 - 059000K416 059000G010 059000 GOO 9 ...(KA*S)
t ? ANSWER 6.02 (2.50) !
[cvL$Cl$v)Ma$ LLfm'at i er
(
a.
atr*444ar y b ' 'i l d ' n c "e^ t - '?3) [0.503 '= ' contranment purge exhaust isolation dampers close CO.253 eratainment purge air supply dampers close [0.253 b.
none [O.503 c.
Samples different radiaton levels at different flow rates [0.63 I Moni tors (noble) gases CO. 403 REFERENCE i Beaver Valley 2LP-SOS-43.1 Enabling Objectives 2.p.,4.,12.
B.V.P.S.
- 0.M.
2.43.4. page ACN,ACX 2.43.5.
Table 43-1 page 3 2LP-SOS-43.1 page 27 of 48 L K/A 072000 K4.01 3.6 i K/A 072000 A3.01 3.1 072OOOK401 072OOOA301 ...(KA*S) i > ! f
i
i f I . ' . ,, _, _. _ _.. - ~. - - . - - - -
a 6 __P(@NI_Sy@lEUS_DE@lGNt_CQNIBQLt_@ND_lNSI6UDENIQIlgN PAGE
s
ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER ANSWER 6.03 (1.75) c.
Li70H - pH CO.253; Hydrazine - 02 CO.253 b.
alternate dilute CO.253 because this flow path partially bypasses the VCT [O.253 preventing the hydrogen cover gas from being absorbed by the di l uti on flow E0.253 c.
required backpressure for the reactor coolant pump seals [0.503 REFERENCE Beaver Valley 2LP-SQS-7.1 Enabling Objectives 1.,10.,17.
B.V.P.S.
- O.M.
2.7.1 pages 3,4,37; 2.7.1.
pages 1,5 K/A 004000 K4.01 3.3 K/A 004000 K4.02 2.6 K/A 004000 K4.08 3.2 K/A 004000 GO.10 3.4 OO4000K408 OO4000K402 OO4000K401 OO4000G010 OO4000 GOO 9 ...(KA*S) ANSWER 6.04 (2.40) Re.ute ILeeccaea. c. a Nme Ntuts) 0 0-MS wnPUp.g^ a. NIS rack benchboard-section B (" emergency shutdown panel (SDP) [O.35 X 43 alternate shutdown panel (ASP) b.
1X10E-11 amp signal is used as a reference for gamma compensation CO.503 c.
source range detectors cannot be energized [0.503 REFERENCE Beaver Valley 2LP-SOS-2.2 Enabling Objectives 4.g.,8.a.,16.
B.V.P.S.
- O.M.
2.2.1.
pages 11.16,27; 2.2.2 page 1; 2.01.1 page 11 K/A 015000 K5.01 3.2 K/A 015000 GO.06 2.8 K/p.015000 GO.07 4.0 K/A 015000 A3.03 3.9 015000K501 015000 GOO 6 015000A403 ...(KA'S) l
1
y.
. -- - p $$11.268NI@y@IgMS,QE@l@$iCQNI6Q(i_@NQ_IN@l6LggNI@Ilg,N, PACE-25-
~ p
' 87/12/02-YACHIMIAK/KELLER.
- ANSWERS - - BEAVER VALLEY; 2 -
- ' l , ANSWER ^ f6.05 (2.00) .c.: FALSE.
b._ FALSE c..TRUE CO.'50 X-43 . ~d.-FALSE - , z REFERENCE' ' Beaver; Valley'2LP-SOS-6.2. Enabling Objectives 2.k.,6.,0.
' Beaver. Valley 2LP-SQS-6.2 pages 2,26,27 of 34 ' K/A 002000 K1.07 3.7 .K/A OO2OOO K4.02 3.8 K/A 003000 K1.10 3.2 ' -K/A OO3OOO K4.11 3.0 , -OO3OOOK411 OO3OOOK110-OO2OOOK402 OO2OOOK107' ...(KA'S) ANSWER' '6.06 (3.00) OS Co wt"$.5 v? M al1 tc>rf/2C'24448 CS HOI C N . a. 2CCP*MOV175-1,176-1,177-1,178-1 (non-nuclear saf ety portion of PCCW) i PCCW system supply and return isolation valves close CO.503.
'( b.z - no containment isolation phase B signals present ' , -- PCCW system header pressure low op & ' n1GW C3 X O.333 .
' ' - diesel. loading sequence signal present'ctd @l Q g gdhp'y; - CRD1 hroud c 1 ng col s' Y DfM OT , - shield tank cooler h ! - excess letdown heat exchanger y.
CO.25 X 63 ' ~ residual-heat removal. heat exchanger - residual heat removal pump seal coolers ! - primary drains cooler ! ! " REFERENCE Beaver Valley 2LP-SQS-15.1 Enabling Objectives 2.,4.,9.
l - .B.V.P.S.
- O.M.
2.15.1 pages 9,17,24,25 l K/A 008000 K1.02 3.4
K/A 008000 K3.01 3.5 K/A 008000 A3.04 3.7 OOBOOOK301 OOBOOOK102 OOOOOOA304 ...(KA'S) ' , & i . i ! ,
< , .. .. . .
, . .-- -. -. 6 L_E60NI_gySIgdS_QggigN1_ggNI6ght_69Q,1NSI6gMgyI911gy PAGE
t
ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER ANSWER 6.07-( 1. 50 ) .c.
automatic / manual bypass static switch [0.503 - low inverter output voltage OR inverter failure [0.503 b.
125 VDC batteries CO.503 REFERENCE Besver Valley 2LP-SOS-38.1 Enabling Objectives 2.a.,6.
B.V.P.S.
- O.M.
2.38.1 page 3 .K/A 062000 K2.01 3.4 K/A 062000 K4.10 3.5 062OOOK410 062OOOK201 ...(KA'S) ANSWER 6.08 (1.45) c.
yes CO.253 b.
extreme low-low RWST level CO.353 containment sump CO.353 c.
limit switch signals from RSS pumps' discharge valves (2 SIS *MOV8811A and 88118) open CO.253 and 2/4 extreme low RWST level CO.253 REFERENCE Beaver Valley 2LP-SOS-13.1 Enabling Objectives 2.,3.,14.,16.
B.V.P.S.
- 0.M.
2.13.1 pages 1,21 2.11.1 page 12 Beaver Valley 2LP-SQS-13.1 page 49 K/A O26000 K1.01 4.2 K/A 026020 K4.03 4.3 K/A 026020 A2.03 3.7 026020K403 026020A203 026000K101 ...(KA'S)
r .6 __P(@NI_@Y@ LED @_QEgl@N _CgNISQL _@NQ,1NSISUDENI@IlgN PAGE
t z t
ANSWERS -- BEAVER VALLEY 2- -87/12/02-YACHIMIAK/KELLER ANSWER 6.09 (3.00) c. RCS overpressurization CO.303 blocked below P-7 CO.203 b.
loss of heat sink CO.303 c.
low DNBR protection CO.303 2 out of 3 loop trip blocked below P-7 CO.153 1 out of 3 loop trip blocked below P-B CO.15] d{E d.
fuel rod rating protection CO.303 c.
Iow DNBR protection CO.303 blocked below P-7 CO.203 g g[dd f.
low DNBR protection CO.30P Co,iS]
g.
provides additional protection beyond that required CO.30] ' blocked below P-9 CO.20] REFERENCE Beaver Valley 2LP-SCS-1.1 Enabling. Objectives 5.,7.
B.V.P.S.
- 0.M.
2.01.1 pages 6 through 9 B.V.P.S.
- Unit 2 Technical Specifications 82-3 thru B2-6 K/A 012000 K4.02 3.9 012OOOK402 ...(KA*S) ANSWER 6.10 (3.00) c. NOT AFFECT b.
NOT AFFECT c.
INCREASES d.
DECREASES CO.50 X 63 o.
INCREASES f.
NOT AFFECT REFERENCE Beaver Valley 2LP-SDS-1.1 Enabling Objective 6.
Beaver Valley 2LP-SOS-1,3 Enabling Objective 10.,12.
Beaver Valley 2LP-SQS-7.1 Enabling Objective 7.
Beaver Valley 2LP-SOS-21.1 Enabling Objective 4.
B.V.P.S.
- O.M.
2.01.1 page 12,20; 2.7.1 page 35; 2.21.1 page 22; O.M.
2.6.1 page 64 Beaver Valley - Unit 2 Technical Specifications table 2.2-1 K/A 001050 K5.01 3.6 K/A 004010 A1.01 3.6 K/A 041020 A3.02 3.4 041020A302
_ 6i__P(QNI,@Y@lEDg_QE@lgN _CgNIBg6t,@NQ_lN@lBUDENI@llgN PAGE
t
ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER ANSWER 6.11-( 1. 90 ) c.
1 HHSI pump CO.353 1 LHSI pump CO.353 b, close the reactor-trip breakers [0.503 c.
RCS overpressurization EO.352 at rduced "CC temper 2turar-rn 752
REFERENCE Beaver Valley 2LP-SQS-11.1 Enabling Objec ives 1.,4.,12.
B.V.P.S.
- 0.M.
2.11.1 page 2 B.V.P.S.
- E.O.P.
2.53A.1 ES-1.1 page 2 Beaver Valley - Unit 2 Technical Specifications page B3/4 5-1 K/A 006000 K6.02 3.9 K/A 006000 K6.03 3.9 K/A 006020 K4.06 4.2 OO602OK406 OO6000K603 OO6000K602 (KA'S) ...
m.
' ZI'_ PRQQEDURES' NORMALE_ABNQRMAl _gMEBQgNQY_AND .PAGE
~ ' . t . 599196991996_G9NIBQL ' ..-
- ANSWERS - 2 BEAVER VALLEY 2~
-87/12/02-YACHIMIAK/KELLER ~ . I ! ANSWER-7.01 ( 1. 50 )- c.; place steam bypass; interlock selection switch tofthe DEFEAT TAVG i position CO.503 , . . Eb.(prevent-' reactor. vessel-' void f ormation, maintain RCS subcooling) CO.503 ' ' c. B. V. P. S.- - E. O. P.
ES-0.2,-"Natural Circulation Cooldown" CO.503 REFERENCE B.V.P.S.
2LP-SGS-21.1 E.O.
4.; 2LP-SOS-50.51.52.1 E.O.
2.,3.
B.V.P.S.
- 0.M.
2.51.4 page C9,D2,D4;-2.51.2 page 3; 2.53C.4 page'3- --K/A 005000 GO.10 3.5 K/A 005000 GO.15'3.9 ,K/A 041020-A4.08 3.1-041020A408 OO5000G015 OO5000G010 ...(KA'S) ANSWER ~7.02 (1.80) a. Iire brigade chief CO.503 cQ-GYl1ER&&M* f SQO A0 CNSES (O*S0] k i - a minimum distance 415' feet) from the nozzleman to any electrical equipment in contact with the water must,be maintained E-er20 3-F1 - hose handlers'should'not stand in water 007203 NO.M O) - high velocity fog should be used C 972tM - he-alert of additional problems that could result from'the use of water, i.e., additional el ec tr i c al faults or hot pipe ruptures CC.202 b.
odorizers CO.503- ) g.g y Jg REFERENCE B.V.P.S.
- 0.M.
2.56B.1 page 4; 2.56B.3 TAB 5 page 2; 2.568.4 page B7 K/A 086000 K5.04 3.5 K/A 086000 K4.03 3,7 K/A 086000 K4.04 3.4 , l~ -K/A 086000 GO.04 3.3 K/A 194001 K1.16 4.2 194001K116 086000K504 086000K404 086000K403 086000 GOO 4 ...(KA'S)
Zt__BB9GEROBES_:_NQBd@(t_@BNQBd@bt_{dg6GENQY_@NQ PAGE
' 6091969 GIG 06_QQN16QL , ANSWERS -- BEAVER VALLEY 2 ~87/12/02-YACHIMIAK/KELLER ANSWER 7.03 (1.75) c.
- 1/M plot completed CO.153 rnd indicating it is safe to continue CO.103 - TUBE DOWN light on CO.203 - SLACK CABLE light on CO.203 - Z-Z axis tape indicates that the fuel assembly is seated CO.203 b.. upper' slow zones when the bottom of the fuel assembly enters CO.153 or leaves the top of the core CO.153 with the gripper engaged CO.153 lower slow zones when the bottom of the fuel is near the full down position in the core CO.153 with the gripper engaged CO.15] or-disengaged CO.153 REFERENCE B.V.P.S.
2LP-FHP-1.0 E.O.s 6.,8.,9.,10.
B.V.P.S.
FP-DMW-IF pages 81,88,276 K/A 034000 K4.02 3.3 K/A 034000 A4.02 3.9 K/A 034000 GO.01 2.9 034000K402 034000 GOO 1 034000A402 ...(KA'S) P ANSWER 7.04 (2.00) c.
throttle governor valves closed CO.503 reheat stop and intercept stop valves closed CO.503 b.
manual trip the reactor CO.503 c.
manually insert control rods CO.503 REFERENCE B.V.P.S.
LP-LRT-VII-61 E.O.
B.1.
B.V.P.S.
- EOP 2.53A.1 Procedure E-0, "Reactor Trip or Safety Injection," page 1; Procedure FR-S.1, "Response to Nuclear Power Generation /ATWS," pages 1-4 K/A 000024 EA1.17 3.9 K/A 000024 GO.10 4.0 K/A 000024 GO.11 3.9 OOOO24G011 OOOO24G010 OOOO24A117 ...(KA*S) . . - -
21__PBQCEQQBES_;_NQBM@L _@gNg6M861_EME6@ENCy_@NQ PAGE
' t .= deo1ocoo1Cet_ con 1eou . ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER ANSWER 7.05 (2.00)
bW2%2C Oh O n' Y ( Lu f C K fL h Q 41a.h Edy o,9 Q $[' c.
low flow [97500 low pump amps C.GV5&3 b.
trip the reactor CO.50] trip RCP "A" CO.503 REFERENCE B.V.P.S.
2LP-SQS-53C.1 E.O.s 4.,5.
B.V.P.S.
- O.M.
AOP 2.6.3 K/A 000017 EA1.10 2.6 K/A 000017 EA1.12 3.1 K/A 000017 GO.11 3.6 OOOO17G011 OOOO17A112 OOOO17A110 ...(KA*S) ANSWER 7.06 (2.50) a.
increases the shutdown margin requirement by an amount that is greater than or equal to the worth of the stuck rod CO.503 b.
lift coil disconnect switches CO.503 for all but the misaligned rod are placed in the ROD DISCONNECT position CO.503 c.
75% reactor power CO.503 by borating CO.503 REFERENCE B.V.P.S.
2LP-SOS-53C.1 E.O.s 4.,5., B.V.P.S.
- O.M.
AOP-2.1.6 pages 2,3 K/A 000005 EK1.05 4.1 K/A 000005 EA1.02 3.5 K/A 000005 EA1.04 3.9 K/A 000005 GO.06 3.5 l OOOOOSK105 OOOOO5 GOO 6 OOOOOSA104 OOOOO5A102 ...(KA'S) i
r Zi__E89GgggBES_;_UQSd661_8@NQBd@(1_EdgBgENgy,@NQ PAGE
60919L991G06_G90IB96 , ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER ANSWER 7.07 (2.50) c.
- feedwater flow control valves CO.403 and feedwater bypass flow control valves CO.403 fail closed CO.203 - letdown isolation valve (2CHS*AOV204) [0.403 fails closed CO.203 - steam driven auxiliary feedpump starts (0.403 AM CO.QCD b.
- steam generator low level ir cc;nciden " "i t a Ined!!c.'-Aca,Tflow tris.wA c ;, CO.SG4_ REFERENCE B.V.P.S.
- O.M.
AOP 2.39.5 page 1 K/A 000058 EK3.02 4.2 K/A 000058 EA2.03 3.9 OOOO58K302 OOOO58A203 ...(KA*S) ANSWER 7.08 (2.40) a.
air pressure less than 70 psig CO.303 and decreasing rapidly CO.303 b.
with auxiliary feedwater (main and bypass feedwater control valves fail closed) [0.603 c.
re idual heat release valve CO.603 atmospheric steam dump valves [0.603 REFERENCE B.V.P.S.
2LP-SOS-2.53C.1 E.O.s 4.,5.
B.V.P.S.
- 0.M.
2.53C.4 AOP-2.34.1 pages 3,5 K/A 000065 EK3.03 3.4 K/A 000065 EK3.08 3.9 K/A 000065 EA2.06 4.2 K/A 000065 EA2.08 3.3 OOOO65K308 OOOO65K303 OOOO65A208 OOOO65A206 ...(KA'S) l l l l l , ~^ ______
, . . _ - _ _ - _ _ _ - _ _ _ __ _ _ _. _ _ _.._ _ _ _ _ - _ - _ __- _ __ _ _ _ _ _ _ _ ^ iZd__PBQQEgyBgS_d_Ng80861_@BNQBD961_Edg69ENQy_6NQ PAGE' 33 80919699190b_QQNI696-
- ..
,
ANSWERS'-- BEAVER _ VALLEY 2! -87/12/02-YACHIMIAK/KELLER l ANSWER 7.09 (2.35)- c. "radi Ation field calculation: 600 mrem /He gamma + 600' rem /Hr neutron = 1.2 rem /Hr-CO.25] 5(N-18)' = 5(25-18)'= 35 rem lif etime allowable dose CO.253 lifetime dose = 33 rem + 0.5 = 33.5 rem CO.253 - maximum allowable dose = 35.0 - 33.5 = 1.5 rem (0.403 1.25 hours CO.203 stay _ times (1.2 rem)/(1.5 rem /Hr) = b.
75 rem CO.503 c.. Emergency Director or his delegated representative CO.503 REFERENCE BVPS - RCM (Radiological Control Manual) pages 8,9 10 CFR Part 20 section 20.4 194001K103 ...(KA*S) ANSWER 7.10 (3.00) a.
minimize RCS cooldown 0.653 {}, q{Q.j$~. b. Ett 10.303 Q t #9 CCS {{ Cat.06 d h 7 f% p } M "W{ ggdh to isolate steam from e S/Gs CO.653 g hi tco EO 21n es utet n-TGoinW w,i nc neew f n,- pr 9 c o ci d c r:,. - SG 21n.= avaitaote, but 21C g,ust be used tc ctemm the AFW noma.
[0,00] c.
possible spray nozzle failure rn nn, (2 )( O.So] insufficient pressure differential C^* k REFE E C-B.V.P.S.
LP-LRT-VII-65 E.O.s B.3.,B.4 3 LP-LRT-VII-67 E.O.
B.3.
DVPS - EOP 2.53A.1 Procedure E-2 page 2 Executive Volume 2.538.4 Background Information for Procedure E-2 page 14 B.V.P.S.
- EOP Executive Volume 2.535.4, page 14 K/A 000038 EK3.06 4.5 K/A 000040 EK3.04 4.7 OOOO40K304 OOOO3OK306 ...(KA'S) . - . - -
_ ._ __ _ _ - _ _ _ _ _ _ _ _ - _ -. _ a.- E 7 PROCEDURES -' NORMAL _ABNgRMAL _gMgRggNgy_ANg PAGE 34' . t t 6091969 Gig 86_ggNI696 .- , ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER ANSWER 7.11 (3.20) c.
1) Core-Cooling 2) Containment Integrity CO.30 X 43 3) Heat Sink 4) Inventory ' b.
sequence of perf ormance is not important [0.503 c.
the step ( 7ntaining the task or an associated NOTE will explicitly state the requirement CO.503 d.
yes (0.503 o.
E-1 series CO.503 REFERENCE .B.V.P.S.
- O.M.
2.53.D.2 pages 3,4,5 K/A 194001.A1.02 3.9 194001A102 ...(KA'S)
' <at__0901NISIS@IlVE_P6QQEQU6ESg_QQNQlllQNgt_@NQ_(idlI@IlgNS PAGE
- ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER ANSWER O.01 (2.00)
No CO.503 because only licensed operators CO.503 or individuals in training CO.50] under direct supervision of an licensed operator can can operate the controls CO.503 REFERENCE B.V.P.S.
- O.M.
1/2.48.1 Section B page 9 10 CFR Part 55.4, 55.9 K/A 194001 A1.03 3.4 194001A103 ...(KA'S) ANSWER 8.02 (2.00) a.
TRUE b.
FALSE ~ k C( t (), fi O c.
FALSE " d. M4E pdg REFERENCE DLC SAP Chapter 41 pages 17,47,50; Chapter 42 page 6 K/A 194001 K1.02 4.1 194001K102 ...(KA'S) ANSWER 8.03 (2.00) a.
2 hours CO.503 b.
bring the plant to Mode 3 CO.503 c.
during emergency situations CO.503 when health physics coverage is not available CO,503 REFERENCE B.V.P.S.
- 0.M.
1/2.48.1 Section a pages 3.4,5 K/A 194001 A1.02 3.4 194001A102 ...(KA'S)
,, _ _ _ _ _ _ __ _-. _ _ _ _ _ _ _ _ _. 8('__eQulNIS16611VE_E69QEQQBgS _QQNQlllQNS _@NQ_(ltllellQ6S PAGE
t t ANSWERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAX/KELLER , ANSWER 8.04 (2.10) c. radiation technician CO.503 NSS CO.503 ~ b.
the error-is crossed out with a single line CO.203 the correct entry made CO.203 and the correction initialed CO.203 c.
Four CO.503 REFERENCE B.V.P.S.
-- 0. M. 1/2.48.5 page 5,7,8 K/A 194001 A1.06 3.4 194001A106 ...(NA'S) ANSWER 8.05 (2.50) a.
- reduce power to less than 90 percent CO.503 - restore AFD to within the target band CO.503 both options must be performed within 15 minutes CO.503 b.
reduce power to less than 50 percent CO.503 within 30 minutes CO.503 REFERENCE B.V.P.S.
- Unit 2 T.S.
3.2.1 K/A 001000 GO.05 4.1 K/A 001000 GO.11 3.9 OO1000G011 OO1000 GOO 6 OO1000 GOO 5 ...(KA'S) ANSWER 8.06 (2.60) C CO.753 both battery banks should be declared inoperable CO.503 because of the connected cell voltage < 2,07 CO.353 if two battery banks are inoperable, 3.8.2.3 does not apply CO.503 and "motherhood" statement 3.0.3 becomas effective CO.503 REFERENCE B.V.P.S.
- Unit 2 T.S, 3.8.1.1 thru 3.8.2.3.
K/A 000062 GO.11 3.7 062OOOG011 ...(KA'S)
__ ___ _ _ _ _ _ _ _. _ _ _ _. _ ai__6901N1Sl@@llVE_PBgCEQUBEgt_CgNQlIlgN@t,@Ng,LlylI@llgN@' PAGE
- ANSWF.RS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER ANSWER O.07 (2.40)
c. safety injection flow would be less than assumed by the FSAR accident analyses CO.603 b.
no CO.403 600 gallons (10 GPM X 60 mins) of IDENTIFIED LEAKAGE CO.503 plus 60 gallons of UNIDENTIFIED LEAKAGE CO.503 is the limit-for 1 hour c.
yes CO.403 REFERENCE B.V.P.S.
- Unit 2 T.S.
3.4.6.23 Definition 1.14; B 3/4 4-4 K/A 006000 GO.05 4.2 K/A 006000 GO.06 4.0 OO6000 GOO 6 OO6000 GOO 5 ...(KA*S) , ANSWER B.08 (3.40) a.
Alert CO.503 Tab 7 RCS leakage > 10 gpm without fuel failure CO.353 OR Site Area CO.503 tab 7 RCS leakage > 50 gpm w/o fuel failure CO.353 b.
Alert (0.503 TAB 24 earthquake > OBE CO.353 c.
General Emergency CO.503 loss of 2 of 3 fission product barriers with a potential loss of the third CO.353 d.
no classification CO.503 only contaminated and injured individuals make this a unusual event CO.35) (similar explanation acceptable) graders award 1/2 credit if event is classified more conservatively award full credit if clasification is also justified properly REFERENCE B.V.P.S.
- Unit 2 Implementing Procedures BV-2 EPP/I-1 Table i K/A 194001 A1.16 4.4 . 194001A116 ...(KA'S) ! l l l ANSWER O.09 (2.00) l ! YES CO.503 each test is within 25*/. of the required time interval CO.753 cnd the three consecutive combined test intervals do not exceed 3.25 uf the required interval CO.753 REFERENCE BVPS - Unit 2 Technical Specification 4.0.2 K/A 064000 GO.06 3.9 064000 GOO 6 ...(KA*S) L
T~~- - at'__0D01NigI6611VQ_P6QQEQQ6 Egg _QQNDillQN@t,6ND_(ldlI@IlgNS PAGE
' AN WERS -- BEAVER VALLEY 2-87/12/02-YACHIMIAK/KELLER
. ANSWER B.10 (2,50) c.
NO b.
YES c.
YES C5 X O.503 d.
NO o. NO REFERENCE SAP 3B Attachment D pages D1, D2, and D3 BVP5 - Unit 2 Exam Bank question 8-33 (modified) K/A 002000 GO.03 4.1 K/A 068000 GO.03 3.4 K/A 071000 GO.03 3.3 OO2OOOGOO3 068000 GOO 3 071000 GOO 3 ...(KA'S) ANSWER 8.11 (1.50) a.
14 days CO.503 b.
Plant Manager CO.503 c.
Operating Manual Change Notice (OMCN) CO.503 REFERENCE BVPS - 0.M.
1/2.48.2.B pages 5-8 l-
_ g; -- -
- '
TEST CROSS REFERENCE PAGE
DUESTION VALUE REFERENCE
T 05.01 2.50 EAYOOO1308 '05.02 '2.25-EAYOOO1309.
-05.03 3.00 EAYOOO1310 05.04' 3.75 EAYOOO1311 05.05 ~7.00 EAYOOO1312 05.06 2.00 LEAYOOO1313 05.07 2.00 EAYOOO1314 05.08 2.00 EAYOOO1315 05.09 2.25 EAYOOO1316 05.10 2.05 EAYOOO1317 05.11 1.20 EAYOOO1318
25.00 06.01 2.50 EAYOOO1241 06.02 2.50 EAYOOO1242 06.03 1.751 EAYOOO1243 i .! 06.04 2.40 EAYOOO1244 06.05 2.00 EAYOOO1245 06.06 3.00 EAYOOO1246 < 06.07 1.50 EAYOOO1247 ' 06.08 1.45 EAYOOO1248 06.09 3.00 EAYOOO1249 06.10 3.00 EAYOOO1250 06.11 1.90 EAYOOO1251
24.00 07.01 1.50 EAYOOO1218 07.02 1.80 EAYOOO1219 07.03 1.75 EAYOOO1220 07.04 2.00 EAYOOO1221 07.05 2.00 EAYOOO1222 07.06 2.50 EAYOOO1223 07.07 2.50 EAYOOO1224 07.08 2.40 EAYOOO1225 , 07.09 2.35 EAYOOO1226 07.10 3.00 EAYOOO1228 07.11 3.20 EAYOOO1322
25.00 08.01 2.00 EAYOOO1240 08.02 2.00 EAYOOO1252 08.03 2.00 EAYOOO1254 08.04 2.10 EAYOOO1255
08;O5 2.50 EAYOOO1256 OE 06 2.60 EAYOOO1257 08.07 2.40 EAYOOO1258 08.08 3.40 EAYOOO1259 l t n-v: I
. _, o TEST CROSS REFERENCE PAGE
- QUFSTION VALUE REFERENCE ________ _____ ______ ___ 08.09 2.00 EAYOOO1319 08.10 2.50 EAYOOO1320 08.11 1.50 2AYOOO1321 ______ 25.00 ______ ______ 100.00 , ' ~ '.[,'I[ - g [ {[= - : ~ .. . ' , . . . . .. - . . ., ! . 2 ~s.k. y.. '; u;.. ? ' , ,.. ,- . . .. ~. -. < #7 - 7. b ;;3...,' EQUATION SHEET '.,.; -4.,,. s. ;c y.. ',. .... _.., .. . . . ' . .. . r
- og .. f = ma v = s/t Cycle efficiency = (Net wrk cut)/(Energy in)
s = V t + 1/2 at -=q ~ "
E = mc-At .
KE = 1/2 av a = (Vf - V,)/t A = AN A=Aeg PE = agn V7 = V, + at w = e/t i = in2/t.1/2 = 0.693/t1/2
t e# * Mm%M y.,,p.
, o 1/2 A= ((t1/2) * II )3
b ti = 931 t.m-Ex - m=Y Ao g ,
- "
h = ECpat = I = I,e" # Q = UAa T I = I,10-*/ M pwr a w ah f TYL =.1.3 /y. _ _ _ g sur(t) HVI. = -0.693/u -~ P = P 10
P = P,e*II , l SUR = 26.06/T SCR = S/(1 - K,ff) CR = S/(1 - K,ffx) i x beff2} CR (1 - K,ff)) = G I ~ SUR = 2Ep/t= + (s - p)T j
. M = 1/(1 - K,ff) = CR /CR, T = ( t*/c ) + ((a - o V Io ] g T = 1/(o - a) M = (1 - K,ff,)/(1 - K,ff;) T = (a - o)/(Io) SDM = ( - K,ff)/K,ff t' = 10 seconcs o = (K,ff-l)/K,ff = AK,ff/K,ff
- I I = 0.1 seconds
o = ((t=/(T K,ff)] + [i,ff (1 + IT)] / I ilj = I d 2 =2 2 j P = (teV)/(3 x 1010) !)dj
Id
R/hr = (0.5 CE)/c (ceters) I = cN R/hr = 6 CE/d2 (fe,g) Water Para:neters - t4iscellaneous Conversions
1 gal. = 8.345 lem.
1 curie = 3.7 x 1010eps igaj.=3.78 liters 1kg=2.21't=]Stu/nr 1 ft = 7.48 gal.
I hp = 2.54 x 10 Oensity = 62.4 lbm/f t3 1 w = 3.41 x 100 6tu/hr
lin = 2.54 cm Oensity = 1 gm/c r Heat-ci vacornation.= 370 ltu/lem
- F = 9/5'C + 32
~~~ ~ ~- mut ef-fvsien -iaaatu/le, = c 3/U =F;321- ~ ~ ^ ' ~ - - ~ ----- 1 A t.m = 14. 7 p s i = 29.9 i n, nc.
1 giu. 778 ft.lbf
I ft. H O = 0.4335 it,f/in.
-- .. _. _ , i% ATTACHMENT 1 - l ~ ' o' 3.V.P.S. - C.M.
1.30.4 -[ F.
ESTr'.AUD CRITICAL POSITICN CAIC'IATION .
TORM ECP-1 (Page 1 of 7) NOTE: Reference Guide in Chapter 49, Section 4. Procaiure M.
Tavs Assumed to Equal 547T 2 1T at Startup A.
CRITICAL DATA ' ,
PRIOR TO $NL M N LUsw.d CRITICAL
Date*JJ_ Time Date _ / J _ Time , Baron Conc ppa Power % 8eron Conc.
ppa , . Xenon % Xenon % . . $amarium % samarium %
t t . Control Rod Position: Control Rod Positice: j i A C A C
D
,. _ D . ( ,
- 3.
REA m y u i IAIANCE I II III -
. Reactivity Prior to exposted at Difference Oefects Shutdown criticality I-II , i .
pcm pea (2) pc:s
1. Power (Tig.
- - 50 7) - l I 2. Control Rods g,12. 50-8) pea pea () pcm
or Baron (Fig.
- - i 30-10) I pea pea (=) pca - 3. Xenon - i pca pea (2) pcm I - 4 Samarius - f
, 5.
Reactivity Change (sum of 1-4) = (2) pc:a ! ' l
, ( IS$CE : ' REVISION 1
-35- , ,i i .. - l . . _, -
q; ' - ~ - . . - 3.V. P.S. - 0.M.
1. 5 0. /. '
@;, F.
ESTIM.ATED CRITICAL ?OSITION CALCULATION (continued) FORM ECP-1 (Page 2 of 7) ' MOTE: If Reactivity huigs is greater than 1500 pcm. perform I/M plot, Table 50-1.
, C. ' CRITICAL BORON CONCENTRATION (Use if critical boren concentration is . desired.)
I II III IV V Reactlyisy Boron Vorth Boron Change Boron Conc Boron Conc , Change (3-5) (Fig. 50-10) I div'.ded by I.I at shutdeun for startup
, III + IV , (2) pcm gg (2) spm ppm ppa ' PPe , - -: 3- , iii . C25TICAL ROD POSITION (7ae )if critical rod pos'it<7 is Nasired)' ~ D.
, I' I?,' III IV ' l ( Reactivity Rucrivity dne to Reac:1vity for Critical Red a Change (3-5) Rod Pdier to Shutdown Criticality (I+II) Position (713 50-8) ' >' r , j (yig. 50-8) .
- ~
(2) pcm pcm (0) pcm steps - > = . . . ISSUE 2 . P2VISICN 1-36- , e I .- .. - , .--...m . ... - -. _ _. _.. - - - -. - - ..- - -.,, .., - -,..
. f . .
B.Y.P. S. - 0.M.
L. 5 0. t.
. . '
L< ESTIMATID CRITICAL POSITICN CALCULATICN (continued) ' h F.
L TORM ECP-1 (?sge 3 of 7) E.
RCD LDiITS ' ' ' ' \\ I II III IV V ) i '
- Expected Rod I + 500pcm Rod Position Rod Position
' , Defect at crit (use o if I-500pcm * for II from for III from ' (3-2 or D-III) positive) Fig. 50-8 Fig. 50-8
1 I pca pcm pcm Bank at : 3ank at - - -
- . i at Scaps !dEM RCD EIGHT TO'R CRITICALITT (Itsm'E-IV) = 3ank . NOTE: If criticality is not achieved 'oy Maximum Red Height: insert rods Scaps and recalculsta ECP.
to (Icas E-V) bank at .tINIMCM RCD E%GE FOR CRITICALITT = 3ank C at 115 Sceps (T.S. 3.1.3.5) ' ( s . . ISSt2 2 ' . REVISION 1-39- . =- h
... . . . - - > c . ,. - ~., - .
'O ppe . .. -4.... . de" 1300 '
.- Figure 50-7 . - q... ...< >_......, . . _ , Powe2 Defact vs Power - 4.. / q- _ , -- p.
. 300 ppe, f
- - -
- - ' .-1600 /i /-
- i
~'" ., _ _/ ., . -- ,_ .i - /- A- . / /' 900 ppm / < . / -/ ! J '.. - - I- _f.=I . -- . .. . i-1200 ppm . / -/ /
- / / / / /' /_. - .
' ' ' ' -_ -1200 -- _f.4. ' ,/ l,/ j i '- / / - 1500 ppo , -. ,/ ,/ /, j , i /. i --/ l _ . ' ' ~ , I / / /~_l '/ / g / t / / / / / u-1000 I / l' / /s < 3.
I l _/
/* / / t ,
l / / i / /
- 1, _/
g / s/ / . } y / / e
fy /
} / I.
W i ft ./J _ f / * , i !
,
S
~/L/ f / ~r.
. a > / / . / k - - - - a.800 . i '
/ / /~ ,
- ~, ,- f= , , , C - - , h as , e / t"- "" ~ q c
/ / ~ . . ~ , . e [- i V __.u . '._ - . e /, i i . . i
-: - _/. _ -.. ,
, -- - . . - - . / - i i-400 - ' _ ._ . ' ' p . i ' ._ . . i ' . .._ (.i..j. _; _ _ _.. , _ . , . - / ~.~_. -.y
- -._. -
_ , t , . . .... ' ~/ . E - ~ ~ ' ~4 - , ' ~' . -400
, , - . - , .4 .. _2
, ' . ._ _ __ q -.. . r l-r .. _ _ I
- ---
> -- . _. _. _.
- .
, _.
i.... . . , . ,
. _ _.. . ..,. ..g , ._ .. . , ---- ' - . --
- --
- - ' - --- I-200
. ...+_..._q_ ... . ...._....!. . .._.
.. . .. _ __ , . i 1 i .. .. _. . ... _ . , .. .. . o ? -
. .. _..... _ i._ J .L.. .._ _ .... ._. 4._ _ - ; . .......... . ......... ... ._ . , . .. . .. .... _ _. . '. .. _... " ~ ~ * ~ ~ ' ~ ' - ' ' ~ - ~ ~ ~ ~ _,* j .. ..... ...... ~ ~ ~ ~ ' - ~ ~ - -
- ~
,
, i l i i l i . i I g.
0
40
SO 100 . ' -
V Pcuer Lavel (?arcent of Full ? cur) - Fever Defect vs Pever ~ ISSCI 2 Figura W 7 (9 13) giv 3;cs ! -51-
... i + - - - , - ~. - - - - ., -- - - -,, - - -, - - -, _.,,-- . - ,. - - - -,, - -,,
. _.. . T-sr*%
f ( (./ . .. . .
. - i i, g[ l
- !
LI ! !r . "y
- gi
- , y-3
' ' t ! , i: iii !T ii ji !; : ' _.. . ;I
.: m. h,. ' J;p -ji.
{j ~i' '[ ~:{i if}, " ~~ .
- _.
- ! Figure 50-5 !!. 21, g. p3 .
! lid.i*.
-? .g. ti! j'
- h - i II
- !!! lI
- g:{ I
['k' :! {, Reactivity Insertion nua to Xenon vs Time r - l'[i S !!:.;ii 'li:
- '
. !j !!!: !h 5500 - --- - r; e fg...g... .;j.;;.}l, ' "ji pgfij !!,: N!' '19
" i l ., _ a g.j ;g,
- .
"- ii.;,.t , .. ,
- 7r
- blyolicwingPlantTripAfterSteadyStata l $ If li,i ! ! ! ' ih l- . . q..f j{. I ! t,! ;:!; j..[ . M arious Power Levels for ij jij' .I - -
- .
. ]: iiii ~,~; ji;!, {!6,i
- j-
.g. operation At -;; i 5000 , e ..; at.
.n r- .- - ,
- ..
t.e.m;:i .. - i i q.
cp yi , . i:,' il :g :i.l5._i-n; - ,..i. ::i.:.. r.
i.:
- i i y.
, ! \\.
- i
. .t, .
- i.
i i s . t, i '*.. . - - .. . ... e, u i'l ilp[ p.
ii.
. -. - [- !ra p, Cycle 3 .: i jj! .. ..
- !!
, ;. T; ~T ]/i.@t:.V;ji.i!: ;;j',..:dl' .. ! .ii It..ll . T 4500 - - - ' "
- --
wy,
- ,
i-u.i l1 Id.l -- . .u - - .a: tr . i p. N
- l
- +. i
, n"... i.
' . , .. ' .e .. ,.f 7; 5 !ii; fi"!!}.i []:j![ i . P .:_ - -- - [i- . r - 'i'.! !J
%. 4000 -: - ,'iE m I . .e,,t .., a;i in.
t it ,, h hik it Y !! h h.!..
v.
!!{ $
-r: 9i'jij, ifs [g!n!;[,i'l.[m!}J].},F,u.!Eh ':ll~ iNi iliiIII; 7 il$ a # .w... 4'j.
kt i+i;!ji-i=.
b i i jjji'lii'I,[ lit5Mif,{ifji$ I-i i 350a._- .=.,u i#
i..i.f.' =. s'i p o. :;.. t
.. bu N' i.c m i.
i i i . i .. -.. m g .it!g$: .
,. d!!
E li! jiii 10 3 :.:
!! . in ' .. t !
it: _S ! 4 il . > 3000 - d"9 Em%I _. %.; E C
- .
l i !, J , ' I ! ! ll i! I'i ! '!!i. pjeIn llrgf: iig er.i
- j. E
!.:
- 2. : n.
i;
- i.
ii.p! i;i' 2
n li - ij (
lI - iTr 's* ~ ~ N '. ;i- - i; irti :jt l ?
- l [ij[
' ji a: .r;: .M,q-.i.3;!! p tiji 4,: :,, j7 ; gjj 'lgjj q E" i- =' - -ii- -if +.
" ..I - 4
.:,i.!!! ;;;: :. A.. r :a v 'illE:.:1 it i.i i-g i: ]in flNdj! i a = H '- l 'f.3 - p,g gi jp p,gi,;;fj y:. !
- k,2[. hi 9 n!l
...;ig:lli iii. !i" ,f f ly;jji jj{{"ly; ' . ta-E ;;r k.
' iTi !l! f E k 2500 . lii O! ';'! } 1.d 31 .:! . {' ' i
a .Ji it; 3 1 3y
- j 4 g 4 jj gj
- i ' a
i
' ,. , lh ~ . . i I i ' ' i
- i! Oi t!h h ih h N!!!;ii M h h h ii l'
I h !i !! E N I k !N ! hl II! hiih h ! ! . , i !i; lIlI .,;I ! i ' !
I 1500 _ !.- iii:..: .a.
i ; . [. -}.; j - ll !! x-. i.ir ;; : ;i: 4 ;.i.N 'i N tj g'I ll
- '
"- - ii.:.. :!:; <:;;iia. %[ ," !"- nu s:: v:i.
- -p
- :;p ;.-i.1r.
' i li {' {, ; .'.! dji ! ',l l lik,l 'il.i , . ~ . gi !g,
_..!"; i,;. :,jp!?.,3 ! ~ c - a c: y 3:!s ..x c - .. !! hg . ~e -... ,c
.. Ii !i!.!II i!!i :" 'i!' '-g!
- i'
. ;!ljl i
- is ph;i 'j!
i l ii ~ l 1:5 'rI ;".' if iM.~.T .' i~ Tj' ' -j, sM$ lii!i J > g~
- V.A b'M A ;j.!;;
l i
1000 - r =..:i: a-. 2 i 't.
- ii: :-;:
! ! 11!
- in grji,lta ;j li!
i ia i;1 -
- j!
' .j...;r'p,i . hi:'. :. : ' 4 d,. g:;-;i
i.: , .:- 3;- f..j[i ;;t.y!c t gr
- p" t-
- *,lt i jy ji j h
- tl:<
,
- .
.
- t --
.r.
.2,. O a.r y-'4 i - r...
- r
" ?: i .. ,, " "* ' 'u'i ' i "'
- 46;. 2r.';== =. 3 it;a i
- a
. t t' 4 h
- ""
<: ar u. ':.- - 500 - - -=-rr i-
- .
- j. t!!'. 1.g
" . ' ' :i iji :.:-
" "
- L i ~
":'- .- [[ [,'$,,, o'.Un*b I I"i I" ' " '[' ' l " " ) "['. ' 1 I' "' F ' ! " ' " "
- a
- 2.
'.:. - at -
' ' ' '
. .o ' '
0 15
25 30
40 45 50
60 65
75
85 90 95 J00 . . Tiene Af ter Shutdown - es un m
- 5 Yl.
(liRS) m en , e-4
. O ts
- 4
- C - - . -,-m-- - -, _.. - . , . - -. -., - -.. - .i-.
-
- a ',
. W ' . sue
' .
- ,*
NO -.): l- - -l - u .
- u s.
u
- J
~b o U U 'A t.1 , '
3 -
== _
3 - C . b l d US ~4
U** > I
~ Q o - h.
A - A - ::g . . j .. C c-_ N N -* N.
N C n
- _
\\ _ C-m o_ N,' I I - -e C -: o ' s . A - ._ C J - - z.-- - ---. . .C .
at a r i - b
-
C
C
f f - ! ~ n _ Ca c M .
' -5 1- ' n a,e
a e
- -
= $ m % m c w I .3 s.
- ~- &. o . w n .
a e n
N u.
e' w ?
e -- l c "I , , y, .. m
'A C l
f, - . C n - . -
Q
l " " C C w J - c w = e k .
- A
, N w
=
2.
- _
C < = =
, a
- s.
' A C M
>
S
- n
- p
- - c w = w c ! N --
-. _ _ _ _ _ _ . = - 3 * = b - "3 .3 g% a an( . a m , ., a$ N.6 i- - a
- /)
I __ w-e
y u 'a e N Q e w 3 _ -_ . g "'
1 bn
- C <, * - u % " k*a Q 3 $ __ w ac c _ _ _ 3 m C/l so e - - -- -se , _ _ - '
- y
_
- =.=
C b 20 ^ E .C.e . _ _
f . = w x.e- - A - ^_- j , b ed '.jg q - . ! %. . <- e, c y-g c[
8
4
l l ( - g l l i - - - C -
X X .
C - ~ ~ ! a @ U N I s
= m.
( od) co;:nscI i:747::vit yE .
, , -56- ,. -- . . . . ! -..,. --.-e.. _.. _-. _ _ _.,. .a.. . - . .. ..__._.._._..._,_.__ ...._,,,., _,. _ _., ,,.... _ ,m_ ,--,_. -...
,.- . w 1.50.5
4 3.V.F.S.
. . . -- Cg .............. .,_..........,... .. .... . .g.
. .f................., .. . .. ...................-....... ,.3 ...... . -... ... . .. ...1.... ...... ....... .f.
. . .. ......... .. , . .. . . .. ... ..t..-...... .. _ o ... -... _. ...d...4...-4..... . .. ... ... {....$........ ...... ....... .... _............. . ...l ... 4 .. .....o..... . ...... O e.. i.
... .. . . ... ..... . a...... . . ...i. ..J ... .J . .. ............. ... .... .+ ......... ~............... .. ,.. ..6.. .. ... ..... m.
............. .... . ...... ... ......... . .... f . . l.... ...... ......-..... ...e .. ... ..6 . . ....... ...g.
_ . e . .s5...$....=.... ..... ...,.U.......-...o.
. ...... . ......e.-... e......* .p ..... .....$..k... .e.. . .. ..4 . . .. ..... .. ... .4 ........ ......... 6.
....4 .., ... ... . a . .g . e...e.
"==*t-*===*....* p ,... .. . _ ..
- -.
..9 ... .. .. _ . -e.
.-. ... ... . _ .---.. . I.,._-...-....- . .... ....... .. 4.
._ ...e .. . .. - ,_ _ . - .. _,.. . 1_.
._ - ... ,... .. _:.-...p..._.
.. ... .1 _ .. -.... . - _... ...... = ...,. ... -........- ._....__..4...... __ . .. w-J.".... - .. -.. ........ _ -
.........,.......,...........a..... _ ..q...
- .
_ ...... ..... ..+".T . .*"'t.
.... ... q t ...... . ...... .. ... .. ... .. ._ -...- . .t'. ...4 ......... . .,.. ... -.. - . . ......_......._..,.!..."."1.
,,. . ...... ~....~.s . .g .. ---- g.. ... . ... -. .... ......... ..g - ....... _e...-,,.4 . ..... ... . ,n ..._.).. ..... .. .~ -. . ._ - . ,. -. - w s.
...-"T............1_.a.,--.. - C w v.
._ gg .... ...... e.
.. - ..s..... 4 ~.. _ - . ....... ... - . L.
.- . .... +....
. ... .. - .. .-4,.... .... ...-...........J- - e g, . _., + . ... _ ....... _.. . . . . - _ -_ y. _.. }. . .-.. .~. y, . .. -.. ..,...;.s_. _.- I. - ee . .. -. y :=. - - ....... . _.. - ....s~-., s.... ..... . - .... .. . - . m ,% - . -.. -. , n ..... .. . . .-... -, .4 ......... .-_ ... -- g G%@ .. .- --., ... _ . - 4> . g, ..._.p.- ,.. ,-
g
--r----- -. ... -. ....... o g o, ... C.. I' 6__-._,.. - v , . _ --. _ m , -. - +. -
. .. [ -.._*"1 ..... _ _ _..... __ -. ....- - f ,C C ~
- .,
,C C,,,, C,,, __ .. .. - _.4 - .. { ~ ..i_.. a -- - -- -.. .., - , t g e.4 C .,- w _. f" g.,. ,- ) . g . - . ~.g... _ . - '... -.--
- _
...~.
i - -.
y c
- -- -
... ". - -..g..~ O .- . . g.
. p..~ - y -. +. -_ c "w"" e w W .\\. y uo9 g b g.
- g.. - -. .. -. y oy .. -. I g .'$."'".__ . ...... _. uy .
. %. . ,,. I ... - g .. .. .p-...- - -_ q ., . ....- - . e. . = .. _ _ _ _ C,, U^ n___ - - g\\ i. ~. ! . g .p . i........._ .. ~ _. ._.
g yg
. . o o l o %....g 4.
p.... . - - - - - - - .
= %,
..., _.. _................. .. _. _ _
O E . _.......... .. .... ......... . .. _ & -6-C _ I.
... % ... 4.. g ge .. .. . l .._!...._2.6.___----.__ gg . C ..a..... ... .. ......l.._-...--.. ~...---; a . .... - -..- - _C =.e - I w .s.
- ....- - - e =v . . - C w a.- C .. _. ~. - , ..-..-.........~"1.2-..-..........._.F-. ~ _.. w.,,; . . ....... -.......... +. A C .l...._.__; .. - -- y . - - ...-. . . O C.4 . o .. 3 a ......, _ gC _._.._..-r=....._....__L...... ... . . . _- c's > c.,,, . . , ..... _ _.... g I.. ~ ... . -. .. .... -....._ . .
- . --
> ~. _. . ,,,, _ . .. ..... ~... ...... _.
g , %, i . . ....... >.......... ....!. - -.. _' -.-. e . i w ... .. _.......... - - _...... ., .M,,. ........ . ..-
-- . y -- ............. -. . . .-. .... C
....... ..........""T.C-...,--
."3 . .........._!, ... 6.
..... . .....C..._=---!. - - -. -. = . . ~. -.... .. .. -..... .M, .. ..-. . C e .. _ . - .. -.... .-..._.._,.._._....-!. . ~. _ Q^ ...
. ....._.. . . -...... .. _... ,...-.-e .. . ... .... w O . - -., . -: _. _.... -..... - -..q.,....-.l..._.. _........ _ _ M = ... _ - -.... _. .g __ _ .. .. .. _ ,,,.,. ... .. -. .......... -. .! ... .._...l-. .......-. . ... . ..........l................................ ......... ... ........... ....p... ..!......... -. 4 ** . .. .. gie .. w .- .**"1.............:..._......> ..... C C, _...%..... .. ... .........o.......... - . .. ... . , .... -.. . -... . m...... W% .. _. ... ..... w . .i,.__._._....... .... ....... _.. .......... ..................... _.......... .............._.
. : ....,.... _. ... ...._........ . _............ _...... ........... . .. ,,, C.
........ . . . .......... .. , -....... ..a,._..... ._ v._......_.._.._....................,.................. _.... ...... _... ... - .. t.
. 4 _...... _. . ..... _.. _................ _ e C ...... . ........... . ....... ...... .. . .. I .. . ' '
I l l l I ( ,
' ' . ' C.
e.
C.
e.
C.
o.
.4 Os es C C.4 .4
== I
1 I i I . (cdd/ mod) q:. ton uo2cq Intuoso;;n . Isscr 2 REVISION 1-54 .
. . .
. I l -... ' - - - ..--.-r-.- ._ __ .',., _
- ~ ~ ' " ~ ~ *
.wg,,r--,,
~ ~ ' ~
- ~ ~ ~ ~
........ -... - - - - ,,. _. .. _.. 1.30.5,
- '
3.V.F.S. - 0.M.
.... ' ( 1500 ( i; - Figure 50-3 ] i'. 1500 -- , - - - , . J Incagral Rod '*orr.h' vs Steps tiithd: 2'.n2 1400 - - Banks _D, and C, Moving..ri:h 100 Step Cverlap .' No Ianon, 30L, EZ? ._ 1300 , 1200
_ 1100 - _ _ 1000 - ._ 900 .- n - :. ad - w 800 ( Cw C3 700 - m , Ca s - - 3 600 - -s '.J " . 500 _ ~ x
. 400 - y's 300 .. . 200 _ .N 'N
. . 100 _ . '\\ { { l , g.
g g l [ q > i .
, , , , 0 - , , ,
20
60
100 120 140 160 130 200 220 2a0 Rod 3ar.k Posi: ion Scaps 'Jithd: 2*. a s - 71gure $b-8 (9-14) ISSUE 2 RS'I S10': '-:ag:21 Iod 'Jorth vs. 5:eps 'Jithd:s m . -52- ..... , ., -,
. ATTACHMENT 2
- ..
B.V.P.S. - 0.M.
2.55A.4
- 1 OST 2.49.1 Page 2 of 8 SlIlTTDOWN MARGIN CALCULATION (PLANT CRITICAL)
PURPOSE Ta determine the SHUTDOWN MARGIN with an inoperable control rod or prior to initial operation above 5 percent rated thermal power after fuel loading.
. ACCEPTANCE CRITERIA 1.
The SHUTDOWN MARGIN is 2 1.77 percent a k/k.
NOTE: If any control rod (s) are declared inoperable due to being ' immovable or untrippable, the above required shutdown margin shall be increased by an amount at least equal to the withdrawn worth of the immovable or untrippable control rods.
INITIAL CONDITIONS Initials / Date 1.'The NSOF's or NSS's approval has been obtained for the performance of this test.
/ . 2.
The operatar(s) performing the test has reviewed this procedure.
/ 3.
The reactor is critical.
/ 4.
Both shutdown rod banks are fully withdrawn.
/ 5.
If in initial operation after fuel loading, the plant is s 5 percent rated thermal power.
/ 6.
Within one hour after detection of an inoperable rod (s) and at least once per 12 hours thereafter while the rod (s) is operable.
_/
PRECAtTTIONS AND LIMITATIONS ( ' l 1.
If a SHtTTDOVN MARGIN is calculated to be < 1.77 percent A k/k, ' ' immediately initiate and continue boration at 2 30 gpm of 7000 ppm boric acid solution or equivalent until the required SHUTDOWN MARGIN is restored.
( ISSUE 1 REV 2 _
. B.V.P.S. - 0.M.
2.55A 4
. OST 2.49.1 <- Page 3 of 8 INSTRUCTIONS Initials / D ate NOTE: This ~ SHUTDOWN MARGIN calculation does not include the reactivity due to xenon, samarium, or boron; therefore, it is only accurate to ~ determine how much the reactor would go subcritical when shut down by insertion of control rods only. To determir.e the SHUTDOWN . MARGIN when the reactor is shut down, use OST 2.49.2,."Shutdown Margin' Calculation (Plant Shutdown)."
The reference condition for the shutdown margin calculation is the just critical condition at zero power, Tavg at 547F and 2235 psig pressure.
1.
Calculate reactivity associated with power.
a.
Record Percent Full Power [2NME-NR45) on Vertical Board - Section B.
/ Percent Full Power / b.
Using the Percent Full Power value, obtain the-power defect from Attachment A.
/ , -[- ) pcm = + pcm / 2.
Determine control rod reactivity worths.
a.
Record the rod position from the rod group counters on Benchboard - Section B.
/ / Position (Steps) Rod Bank Group 1 Group 2 Average 1) Shutdown Bank A 2) Shutdown Bank 3 3) Control Bank A ., 4) Control Bank B 5) Control Bank C 6) Control Bank D ISSUE 1 REV 2 L . . .
-. .. .B.V.P.S. - 0.M.
2.55A.4 ' - OST 2.49.1 - .Page 4 of 8 . b.
Using the rod bank average positions, obtain the rod bank worth values from Attachment B . for partially inserted banks and Attachment C for fully withdrawn banks.
/ /- NOTE: Record the algebraic difference between bank worth at.zero steps and the recorded steps for partially inscrted banks.
( Rod Bank Worth (pem) 1) Shutdown Bank A , 2) Shutdown Bank B , 3) Control Bank A 4) Control Bank B 5) Control Bank C 6) Control Bank D - k Total pcm c.
Calculate Integrated Rod Worth.
Integrated =. Total Rod - (Uncertainty x Total Rod) ! Rod Worth Worth ( Percentage Worth ) = pcm - (0.1 x pcm) Steo 2.b Step 2.b / = pcm / 3.
Calculate SHVfDOWN MARGIN in pcm.
( Shutdown = Power + Stuck - All Margin Defect Rod Rods j (pcm) ! pcm + 2080 pcm - pcm = l Step 1.b Rod - H-02 Step 2.c _/ l ' pcm / = ISSUE 1 REV 2 . iN
' .. . . s' B.V.P.S. - 0.M.
2.55A.4
'OST 2.49.1- "' Page 5'of 8
t c 4.
Calculate SHUTD0k'N MARGIN in percent 4 k/k.
/ Date/ Time Calculation performed / / . Shutdown Margin = pcm x % Ak/k = % Ak/k step 3 1000 pcm (Acceptance Criteria 2 1.77% Ak/k) 5.
Complete the cover sheet of this test and report ' the. completion of the test, includinF a a t-abnormalities to the NSOF and NSS.
/ REFERENCES 1.
BVPS-2 Technical Specifications 4.1.1.1.1.a, 4.1.1.1.1.d.
2.
BVPS-2 FSAR Section 4.3.1.5 3.
Core Design Report .i .
ISSUE 1 REV 2
. B.V.P.S. - 0.M.
2.55A.4 - OST 2.49.1
Page 6 of 8 (' - 3600 6.L-= i.:.M :- :-s_- =.- t=- . i e--.. r- -'
- e
@L Power Defect es Perseet Power _ 0 p,e - 2200 Eh j ' E (Cycle 1. Omit 2) / = -p - ! t i i '/ m,,, , > /_ i i i ' . :ooo _ t / /
- t- \\t-
- - - if f
Isoo // "- . >/. L. ' 3.i-- - _. - .- . y t-j;+-.- (. fb-Ei.;_:. t. _s.
r- - i.. ~" ' '- b.
% =. ' ' = khlM=W- - 1600 ^ :- -- =;- . .
- . 4: =.! 1 EsWd '.
_ _ - . -f .g-..= t. -_ [ - = /'.ft 1: --:' - !. , (t -,. ..,. - 1400 . . .; _.
. g _ .-).J -. - .a , - -- . .. J. f - - .. - E j.j.
, .- i > ' 900 p.m - ff ,- .., . .- l - 1200 _ ) / .' / ... . / /.
- ,
/. im m
// 's / / // i/ /
- 1000 t500 pp.
.j 7 j jf_ , , i / / I / / / I / / / // ' // I /I/ / S00.
tf / / ll . . N A// ! - /) /// \\ ' '~ ' - soo ~// / // //. /// ! ' - !/ l /// \\ t U /// t < ! - E /H I I . Soo i I /// ' ' I; /// r e/ ( l /# ! - 200 I // / / // I I V I !
. , , .
to
60 to 104 p er t ei (r.r et er rett tower) ATTAC101ENT A , POWER DEFECT VS. PERCENT POWER ( ISSUE 1 REV 2
' B.V.P.S. - 0.M.
2.55A.4 - OST 2.49.1 , Page 7 of 8 =~ .:;=4 +^' _ --. _9-L.:
.-.R.C~T: _.' =ti'=ft:.' _. L' ~ J.. L= l. ?. i +- L :.- teco -
- -
. , -- ---
_\\ ~~'.:... F t.; i (CTC12 1. UWIT 2) - .; 1700 p g _ - ty13csAg, ace WoaTE Ts. m __ - nf.; viruneAm. not. an. co m er.
u,,, 1600_= ' SA8ES. A. e. C. AirD D.
I' I t- . :.-. l - t
i
. - - -.. , =:. y. - - -- 2- .
- g I..
.. -- ' ' 1500 - 2:- __~'l IL J M _i. .._. } a a. t. -... [ _., , ... . ._. _. d h - l-l l .i.
. b.. -j.. . p.,-- =-- sic: L_...t = -%.- p.;- e:.:..g=.__.
. ___ . y - r i j j.... - - - - - -- -3 w-3- = _ = : _.. =:u.- . _.. 1300-EiD .__ l l I. i, ; i:.; 2.
.t_
' G... J.' ' =_=.; y.-- t . . -;:0 u s q-
- .
-.. _ --_..;=- -=, _....=... t... .. ,,,, - . ., .
- =
_ _m ..... ..-ay:: 3 . t.. - . ... - ._ =__.__ n. u.
~ ..u......... - _ _ =. .. ,300 v-V.. r ! ' -
- + sw
. . ;.;+. - - , =-M ;.h h: i I . . .. j, ; . ,:
- t=- - :=
a . .g k .\\\\-.\\.. D maer p . 1.- - - - -- _;,g.
=.: _ i. ; 1000 . -- r_.c=g_ w e r:.1 \\N.\\.- E.
I-m-;_=.4 --=
- .. j =_. w -\\\\.v.\\_ ._t ..i.. ...t. r- = =. . .. -.. =... =:.=... ,,, -
- :-
- ir\\\\-\\ \\
um A -
- .
- :.m-.4 _.
i.i.. ,,, - _. ss gi \\ i .,i ...i.- s , _ _. - - _.
m.- . .
l i\\ \\ i-i um e . L.
_ , .i ' - i ! \\\\ \\
~~T ! IF
- .
i.! ,,,,. - ! \\\\ \\ i i
- -
.- t .. ! \\\\ \\ i ! ! l- .o0 _ ! -- i\\\\ \\- -
i i ,- \\\\ \\ ' ~ ! I i 3, . i. .- % V i I .t i r- =- =.- +nn ANN i 2.
i ! . , . ' I TA. ' -. -... -. . , , g_ ..' 2
- .- i-
\\\\ } - - iM i ' , i 200 - \\\\ l -._l.. .I g . . g _=.' Mg --; . _ .- .. . . r yg g j 0 ' I l ' l I I I I I I i i i i l
0
W W
100 120 1M 164 160 200 220
W Bank Feetties ($tepe WitWrawa) NITACHMENT B INTEGRATED ROD WORTH VS. STEPS WITHDRAWN ISSUE 1 REV'2 . .
.* B.V.P.S. - 0.M.
2.55A.4 OST 2.49.1 . Page 8 of 8 -- E , L ATTACHMEhT C - ' ROD WORTHS Beaver Valley Unit 2 Cycle 1 Calculated Integral Rod Worths HZP Rod Worth (Percent Delta Rho) BOL No Xe EOL Eq Xe Bank Wth Cumul Wth Bank Vth Cumul Wth SD Bank A 2.632 2.632 2.375 2.375 - ( SD Bank B 0.957 3.589 1.008 3.383 Control Bank A 1.193 4.782 1.206 4.589 Control Bank B 1.805 6.587 1.837 6.426 Control Bank C 1.132 7.719 1.169 7.595 Control Bank D 1.342 9.061 1.159 8.754 3,. . RFP Rod Worths (Percent Delta Rho) BOL Eg Xe EOL Eg Xe Bank Wth Cumul Wth Bank Wth Cumul Wth (: SD Bank A 2.589 2.589 y2.320 2.320 SD Bank B 1.287 3.876 1.335 .3.655-Control Bank A 1.167 5.043 1.247 4.902 Control Bank B 1.960 7.003 1.931 6.833 Centrol Bank C 1.324-8.327 1.358 8.191 Control Bank D 1.451 '9.778 1.326 9.517 . ... % ISSUE 1 ( REV 2 . D
ATTACHMENT 3 ~
BVPS - E0P 2.53A.1 / NUMBER TITLE ECA-3.3 SGTR Without Pressuri ter Pressure Control g , ACTION / EXPECTED RESPONSE } ' RESPONSE NOTOBTAINED$ 1.
Check Ruptured SG(s) Narrow GO TO Step 6.
Range Level - LESS THAN 75% [54* ADVERSE CNMT) 2.
Try To Establish Normal PRZR Spray a.
Check RCP status - AT a.
Try to start one RCP in LEAST ONE RUNNING IN loop with spray line.
Refer . LOOP WITH SPRAY LINE to Attachment 1.
IF an RCP can NOT be started, THEN GO TO Step 3.
b.
Normal spray - AVAILABLE b.
GO TO Step 3.
c.
GO TO E-3, "Steam Generator Tube Rupture," Step 21 i NOTE PRZR PORV block valves (2RCS*MOV535, 536, and 537] close automatically when PRZR pressure is less than 2185 FSIG, to reopen block valves [2RCS*MOV535 and 537), the PORVs must be closed ana THEN ARM the cold overpressure protective system.
3.
Try To Restore PRZR PORV a.
Attempt to open a PRZR PORV a.
IF no PRZR PORV can be opened, THEN OPEN RCS head vents.
GO TO Step 4.
b.
GO TO E-3, "Steam Generator Tube Rupture," Step 22 - ISSUE 1 PAGE 2 0F 20 REVISIOS 2
' -O ' BVPS - E0P 2.53A.1 - < ' NUMBER TITLE ECA-3.3 SGTR Without Pressurizer Pressure Control __ 'l
f ffff ACTION / EXPECTED RESPONSE } l RESPONSE NOT OBTAINED 12. (Continued) 4) OPEN excess letdown heat exchanger inlet valve [2CHS*MOV201).
5) Slowly OPEN excess letdown heat exchanger letdown valve [2CHS*HVC137).
6) Monitor excess letdown heat exchanger outlet temperature to ensure 140F is NOT exceeded.
7) Monitor pressure downstream of [2CHS*HCV137) at [2CHS-PI138] to ensure proper RCP seal leakoff back pressure.
13. Alitn Charging /HHSI Pump Suction To VCT a.
OPEN VCT isolation valves [2CHS*MOV115C and 115E) b.
CLOSE RWST isolation valves l [2CHS*MOV115B and 115D) l 14. Try To Establish Auxiliary Spraj a.
Establish auxiliary spray flow: 1) OPEN auxiliary spray valve , [2CHS*MOV311] l 2) CLOSE normal charging flow path to loops (2CHS*MOV310) t I l (Step continued next page) l ISSUE 1 PAGE 7 0F 20 REVISION 2
ATTACHMENT 4- . .s 3/4,8 ELECTRICAL POWER SYSTEMS 3/4'8.1 A.C. SOURCES .. OPERATING LIMITING CONDITION FOR OPERATION 3.8.1.1 As a minimum, the following A.C. ' electrical power sources shall be OPERABLE: a.
Two physically independent circuits between the offsite transmission network and the onsite Class 1E distribution system, and b.
Two separate and independent diesel generators each with: 1.
Separate day tank containing a minimum of 350 gallons of fuel, 2.
A separate fuel storage system containing a minimum of 53,225 gallons of fuel, 3.
A separate fuel transfer pump, 4.
Lubricating oil storage containing a minimum total volume of 504 gallons of lubricating oil, and a 5.
Capability to transfer lubricating oil from storage to the diesel generator unit.
" APPLICABILITY: MODES 1, 2, 3 and 4.
ACTION: a.
With either an offsite circuit or diesel generator of the above re-quired A.C. electrical power sources inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by perfoming Surveillance Requirements 4.8.1.1.1.a and 4.8.1.1.2.a.5 within one hour and at least once per 8 hours thereafter; restore at least two offsite cir- ! cuits and two diesel generators to OPERABLE status within 72 hours or ! be in COLD SHUTDOWN within the next 36 hours.
b.
With'one offsite circuit and one diesel generator of the above re-quired A.C. electrical power sources inoperable, demonstrate the OPERABILITY of the remaining A.C. sources by performing Surveillance Requirements 4.8.1.1.1.a and 4.8.1.1.2.a.5 within one hour and at least once per 8 hours thereafter; restore at least one of the in-operable sources to OPERABLE status within 12 hours or be in COLD ! SHUTDOWN within the next 36 hours.
Restore at least two offsite circuits and two diesel generators to OPERABLE status within 72 hours ! from the time of initial loss or be in COLD SHUTDOWN within the next 36 hours.
. . BEAVER VALLEY ~ UNIT 2 3/4 8-1 . -
l . . ELECTRICAL POWER SYSTEMS LIMITING CONDITION FOR OPERATION (Continued) . , c.
With two of the above required offsite A.C. circuits inoperable, demonstrate the OPERABILITY of two diesel generators by performing Surveillance Requirements 4.8.1.1.2.a.5 within one hour and at least once per 8 hours thereafter, unless the diesel generators are already
operating; restore at least one of the inoperable offsite sources to OPERABLE status within 24 hours or be in at least H01 STAN06Y within the next 4 hours.
With only one offsite source restored, restore at least two offsite circuits to OPERABLE status within 72 hours from time of initial loss or be in COLD SHUTOOWN within the next 36 hours.
'
d.
With two of the above required diesel generators inoperable, demon-strate the OPERABILITY of two offsite A.C. circuits by performing ' Surveillance Requirement 4.8.1.1.1.a within one hour and at least once per 8 hours thereafter; restore at least one of the inoperable diesel generators to OPERABLE status within 2 hours or be in COLO ' i SHUTOOWN within the next 36 hours.
Restore at least two diesel gen-erators to OPERABLE status within 72 hours from time of initial' loss or be in COLO SHUTOOWN within the next 36 hours.
SURVEILLANCE REOUIREMENTS 4.8.1.1.1.
Two physically independent circuits between the offsite trans-mission network and the onsite Class 1E distribution system shall be: < a.
Determine OPERABLE at least once per 7 days by verifying correct breaker alignment, indicated power availability, and b.
Demonstrated OPERABLE at least once per 18 months by transferring (manuilly and automatically) unit power supply from the unit circuit to the system circuit.
4.8.1.1.2 Each diesel generator shall be demonstrated OPERABLE: a.
At least once per 31 days on a STAGGERED TEST BASIS by: 1.
Verifying the fuel level in the day tank, 2.
Verifying the fuel level in the fuel storage tank, . BEAVER VALLEY - UNIT 2 3/4 8-2 N
_ _ . .. A
ELECTRICAL POWER SYSTEMS i
SURVEILLANCE REQUIREMENTS (Continued) - , 3.
Verifying that a sample of diesel fuel from the fuel storage i tank is within the acceptable limits specified in Table 1 of ' ASTM D975 when checked for viscosity, water and sediment, 4.
Verifying the fuel transfer pump can be started and transfers fuel from the storage system to the day tank, 5.
Verifying the diesel starts from ambient condition, 6.
Verifying the generator is synchronized, loaded to > 4,238 kw, and operates for at least 60 minutes, and 7.
Verifying the diesel generator is aligned to provide standby . power to the associated emergency busses.
8.
Verifying the lubricating oil inventory in storage.
I b.
At least once per 18 months during shutdown by: 1.
Subjecting the diesel to an inspection in accordance with pro-cedures prepared in conjunction with its manufacturer's recom-mendations for this class of standby service, 2.
Verifyin the generator capability to reject a load of > 825 kw without tripping, 3.
Simulating a loss of offsite power in conjunction with a safety injection signal, and: , a) Verifying de-energization of the emergency busses and load shedding from the emergency busses, b) Verifying the diesel starts from ambient condition on the auto-start signal, energizes the emergency busses with per-manently connected loads, energizes the auto-connected emergency loads through the load sequencer and operates for > 5 minutes while its generator is loaded with the emergency Toads.
4.
Verifying that on a loss of power to the emergency busses, all diesel generator trips, except engine overspeed, generator differential current, and generator overexcitation are
automatically disabled.
5.
Verifying the dies <:1 generator operates for at least 60 minutes while loaded to > 4,238 kw.
BEAVER VALLEY - UNIT 2 3/4 8-3
. . ELECTRICAL POWER SYSTEMS- . SU9VEILLANCE REOL IREMENTS (Continued) - 6.
Verifying that the auto-connected loads to each diesel generator do not exceed the 2000 hour rating of 4,535 kw.
7.
Verifying that the automatic load sequence timer is OPERABLE with each load sequence time within 110% of its requjred value.
c.
Check for and remove accumulated water: 1.
From the day tank, at least once per 31 days and after each operation of the diesel where the period of operation was greater than 1 hour, and 2.
From the fuel oil storage tank, at least once per 92 days.
d.
At least once per 92 days and from new fuel oil prior to its addi-tion to the storage tanks by verifying that a sample obtained in accordance with ASTM 0270-1975 meets the following minimum require-ments and is tested within the specified time limits: 1.
As soon as a sauple is taken (or prior to adding new fuel to the storage tank) verify in accordance with the tests specified in ASTM 0975-1977 that the sample has: a) A water and sediment content of less than or equal to 0.05 volume percent; b) A kinematic viscosity at 40'C of greater than or equal to 1.9 centistokes, but less than or equal to 4.1 centistokes;
c) An API Gravity of within 0.3 degrees of 60*F, or a specific gravity of within 0.0016 at 60/60*F, when compared to the ! supplier's certificate or an absolute specific gravity at 60/60*F of greater than or equal to 0.83 but less than or equal to 0.89, or an API Gravity of greater than or equal to 27 degrees but less than or equal to 39 degrees; and 2.
Within one week after obtaining the sample, verify an impurity level of less than 2 milligrams of insolubles per 100 milliliter is met when tested in accordance with ASTM D2274-1970.
The analysis on the sample may be performed after the addition of new fuel oil.
3.
Within two weeks of obtaining the sample, verify that the other properties specified in Table 1 of ASTM 0975-:.977 and Regulatory Guide 1.137 Position 2.a are met (when tested in accordance with ASTM 0975-1977).
An analysis for sulfur shall be performed in accordance with ASTM 0129, ASTM D1552-1979 or ASTM 02622-1982.
BEAVER VALLEY - UNIT 2 3/4 8-4
. . ELECTRICAL POWER SYSTEMS SURVEILLANCE REOUIREMENTS (Continued) At least once per 10 years or after any modifications which' e.
could affect diesel generator interdependence by starting ** both diesel generators simultaneously, during shutdown, and verifying that both diesel generators acc.elerate to at least 514 rpm in less than or equal to 10 seconds.
. f.
At least once per 10 years by: 1) Draining each main fuel oil storage tank, removing the accumu-lated sediment, and cleaning the tank using a sodium hypochlorite solution or other appropriate cleaning solution, and 2) Performing a pressure test, of those portions of the diesel fuel ' oil system designed to Section III, subsection ND of the ASME Code, at a test pressure equal to 110% of the system design pressure.
.
l i - I
- This test shall be conducted in accordance with the manufacturer's recommen-i dations regarding engine prelube and warmup procedures, and as applicable regarding loading recommendations.
. l BEAVER VALLEY - UNIT 2 3/4 8-5 l [
.
ELECTRICAL POWER SYSTEMS SHUTDOWN .. LIMITING CONDITION 80R OPERATION . 3.8.1.2 As a minimum, the following A.C. electrical power sources shall be OPERABLE: - . a.
One circuit between the offsite transmission network and the ons'ite Class 1E distribution system, and b.
One diesel generator with: 1.
Day tank containing a minimum of 350 gallons of fuel, 2.
A fuel storage system containing a minimum of 53,225 gallons of fuel, 3.
A' fuel transfer pump.
APPLICABILITY: H0 DES 5 and 6.
ACTION: With less than the above minimum required A.C. electrical power sources e OPERABLE, suspend all operations involving CORE ALTERATIONS or positive reactivity changes until the minimum required A.C. electrical power sources are restored to OPERABLE status.
SURVEILLANCE REOUIREMENTS 4. 8.1. 2 The above required A.C. electrical power sources shall be demonstrated OPERABLE by the performance of each of the Surveillance Requirements of 4.8.1.1.1 and 4.8.1.1.2 except for requirement 4.8.1.1.2.a.6.
. a O BEAVER VALLEY - UNIT 2 3/4 8-6 - - ~, ' ~ , -. . . - .
. a ELECTRICAL POWER SYSTEMS 3/4.8.2 ONSITE POWER DISTRIBlT I'ON SYSTEM I A.C. DISTRIBUTION - OPERATING LIMITING CONDITION FOR OPERATION . 3.8.2.1 The following A.C. electrical busses shall be OPERABLE and energized from sources of power other than the diesel generators with tie breakers open between redundant busses: 4160 volt Emergency Bus #2AE and 480V Emergency Bus #2N 4160 volt Emergency Bus #2DF and 480V Emergency Bus #2P 120 volt A.C. Vital Bus #I 120 volt A.C. Vital Bus #II 120 volt A.C'. Vital Bus #III l 120 volt A.C. Vital Bus #IV APPLICABILITY: MODES 1, 2, 3, and 4 . ACTION: l With less than the above complement of A.C. busses 0FERABLE, restore the inoperable bus to OPERABLE status within 8 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTOOWN within the following 30 hours.
SURVEILLANCE REOUIRENENTS ( 4.8.2.1 The specified A.C. busses shall be determined OPERABLE and i energized from A.C. sources other than the diesel generators at least l once per 7 days by verifying correct breaker alignment and indicated power availability.
. . ! l - BEAVER VALLEY - UNIT 2 3/4 8-7 , - . _ - _ .. -. ._. . ELECTRICAL POWER SYSTEMS A.C. DISTRIBUTION - SHUTDOWN .. LIMITING CONDITION FOR OPERATION . 3.8.2.2 As a minimum, the following A.C. electrical busses shall be OPERABLE and energized from sources of power other than a diesel generator but aligned to an OPERABLE diesel generator.
- 1 - 4160 volt Emergency Bus '. 1 - 480 volt Emergency Bus 2 - 120 volt A.C. Vital Busses APPLICABILITY: MODES 5 and 6.
ACTION: With less than the above complement of A.C. busses OPERABLE and energized, establish CONTAINMENT INTEGRITY within 8 hours.
. % SURVEILLANCE REOUIREMENTS 4.8.2.2, The specified A.C. busses shall be determined OPERABLE and energized from A.C. sources other than the diesel generators at least once per 7 days by verifying correct breaker alignment and indicated power availability.
.
BEAVER VALLEY - UNIT 2 3/4 8-8
' . . ELECTRICAL POWER SYSTEMS D.C. DISTRIBUTION - OPERATING .. LIMITING CONDITION FOR OPERATION 3.8.2.3 The following D.C. bus trains shall be energized and OPERABLE: TRAIN "A" (orange) consisting of 125-volt D.C. busses No. 2-1 & 2-3, 125-volt D.C. battery banks 2-1 & 2-3 & charger 2-1 and rectifier 2-3.
' TRAIN "B (purple) consisting of 125-volt D.C. busses No. 2-2 & 2-4, 125-volt D.C. battery banks 2-2 & 2-4 and charger 2-2 and rectifier 2-4.
APPLICABILITY: MODES 1, 2, 3 and 4.
ACTION: a.
With one of the required battery banks inoperable, restore the ' inoperable battery Snk to OPERABLE status within 2 hours or be in at least HOT STANDBY within the next 6 hours and in COLD SHUTDOWN within the following 30 hours.
b.
With one of the required full capacity chargers or rectifiers inoper-able, demonstrate the OPERABILITY of its associated battery bank by performing Surveillance Requirement 4.8.2.3.2.a.1 within one hour.
Within 4 hours place in service spare charger 2-7 or continue the Surveillance Requirement of 4.8.2.3.2.a.1 at least once per 8 hours thereafter.
If any Category A limit in Table 3.8-1 is not met, declare the battery inoperable.' , SURVEILLANCE RE0VIREMENTS 4.8.2.3.1 Each D.C. bus train shall be determined OPERABLE and energized at least once per 7 days by verifying correct breaker alignment and indi-cated power availability.
l l 4.8.2.3.2 Each 125-volt battery bank and charger / rectifier shall be demon-l strated OPERABLE: i a.
At least once per 7. days by verifying that: l 1.
The parameters in Table 3.8-1 meet the Category A limits, and i 2.
The total battery terminal voltage is greater than or equal to j 127.8 - volts on float charge.
l b.
At least once per 92 days and within 7 days after a battery discharge with battery terminal voltage below 110 -volts, or battery overcharge with battery terminal voltage above 150 -volts, by verifying that: BEAVER VALLEY - UNIT 2 3/4 8-9
. . ' ELECTRIC POWER SYSTEMS SURVEILLANCE REOUIREMENTS . 1.
The parameters in Table 3.8-1 meet the Category B limits.
2.
There is no visible corrosion at either terminals or connectors, or the connection resistance of these items is less than 150 x 10 8 ohms, and . 3.
The average electrolyte temperature of every tenth cell of connected cells is above 60*F.
., c.
At least once per 18 months by verifying that: 1.
The cells, cell plates, and battery racks show no visual indica-tion of phys,ical damage or abnormal deterioration, 2.
The cell-to-cell and terminal connections are clean, tight, and coated with anti-corrosi'on material, 3.
The resistance of each cell-to-cell and terminal connection is less than or equal to 150 x 10.s ohms; and 4.
The battery charger will supply at least 100 amperes at 140-volts for at least 4 hours.
d.
At least once per 18 months, during shutdown, by verifying that the battery capacity is adequate to supply and maintain in OPERABLE status all of the actual or simulated emergency loads for the 2-hour design duty cycle when the battery is subjected to a battery service test.
. e. At least once per 60 months, during shutdown, by verifying chat the . battery capacity is at least 80% of the manufacturer's rating when subjected to a performance discharge test.
Once per 60 month interval, this performance discharge test may be performed in lieu of the battery service test.
f.
At least once per 18 months, during shutdown, performance discharge tests of battery capacity shall be given to any battery that shows signs of degradation or has reached 85% of the service life expected for the application.
Degradation is indicated when the battery capacity drops more than 10% of rated capacity from its average on previous performance tests, or is below 90% of the manufacturer's rating.
. BEAVER VALLEY - UNIT 2 3/4 8-10 - - - -..
. .. . TABLE 3.8-1 , . BATTERY SURVEILLANCE REQUIREMENTS ' , . ll) CATEGORY B(2) CATEGORY A Parameter Limits for each Limits for each A11owable(3) designated pilot ' connected cell value for each cell connected-cell , ~ Minimum level > Minimum level Above top of Electrolyte > ' Level indication mark, indication mark, plates, and < %" above and < %" above and not maxiium level maxiium level overflowing indication mark indication mark , Float Voltage > 2.13 volts > 2.13 volts (C) > 2.07 volts . CD) > 1.195 Not more than Specifig > 1.200 Gravity,) .020 below the average of-all ' > connected cells Average of all Average of all connected cells connectet cells > 1.205 > 1.195(D) .
, ., l l (a) Corrected for electrolyte temperature and level.
l (b) Or battery charging current is less than (2) amps when on charge.
(c) Corrected for average electrolyte temperature.
' (1) For any Category A parameter (s) outside the limit (s) shown, the battery may be considered OPERABLE provided that within 24 hours all
the Category B measurements are taken and found to be within their allowable values, and provided all Category A and B parameter (s) are , i restored to within limits within the next 6 days.
(2) For any Category B parameter (s) outside the limit (s) shown, the battery may be considered OPERABLE provided that the Category 8 para-meters are within their allowable values and provided the Category B parameter (s) are restored to within limits within 7 days.
(3) Any Category B parameter not within its allowable value indicates an inoperable battery.
. l BEAVER VALLEY - UNIT 2 3/4 8-11 l L
. ATTACHMENT 5 e REACTOR COOLANT SYSTEM OPERATIONAL LEAKAGE l l - LIMITING CONDITION FOR OPERATION ' 3.4.6.2 Reac' tor Coolant System leakage shall be limited to: a.
No PRESSURE BOUNDARY LEAKAGE, -
b.
1 GPM UNIDENTIFIED LEAKAGE, c.
1 GPM total reactor-to-secondary leakage through all steam generators not isolated from the Reactor Coolant System and 500 gallons per day through any one steam generator not isolated from the Reactor - /, Coolant System,. d.
10 GPM IDENTIFIED LEAKAGE from the Reactor Coolant System, and . 28 GPM CONTROLLED f.F.AKAGE at a Reactor Coolant System pressbre of e.
- 2235 t 20 psig.
APPLICABILITY: MODES 1, 2, 3, and 4.
s ACTION: , a.
With any PRESSUSE BOUNDARY LEAKAGE, be in at least HOT STANDBY s, ' ' , , ' i ll, within 6 hours and in COLD SHUTDOW within the next 30 hours.
'; -
b.
With any Reactor Coolant System t akage greater than any one of tha above limits, excluding PRESSURE POUNDARY LEAKAGE, reduce the leakage rate to within limits within 4 hours or be in at-least HOT STANDBY .within the next 6 hours and in COLD SHUTDOWN within the following 930 hours.
' < u s , SURVETLLAMCf REQUIREMENTS [C
, , x 4.4.6.2 Reactor Coolant System leakacle shall be demonstrated to be within each of the above limits by: ' a.
Monitoring tha containment atmosphere particulate and gaseous radioactivity monitor at least once per 12 hours.
b.
Monitoring the containment sump discharge at least once per 12 hours.
c.
Meas 9erment of the CONTROLLED LEAXAGE to the reactor coolant pump ! ' . seals when the Reactor Coolant System pressure is 2235 t 20 psig at least once per 31 days with the modulating valve full open.
" d.
Performance of a Reactor Coolant System water inventory balance at least once per 72 hours during steady state ope. ration, and BEAVER VALLEY - UNIT 2 3/4 4-19
-- - -
.. E PP, := . * ' ten t I ng P recadu re E PP/ 81;-1 -
R cogne.
- o) Classir
- cation or [merg.
Con <litions
, ACTION LEVfL CRITERIA FOR CtASM F..;AllON OF 1HLHGLHCY C6doillgMS INi TIATING
- 10SUAL ALERT S TE CAREA GENERAL CONDITIOC JENT EMERGENCY EMERGENCY
._.
Orr-normal Events Events Which involve Events Which Events are in progress Fhich could-Indicate or bive occurred which Actual or Likely involve Actasal
N'm.tial Deg ra d-Involve an actual or Major Fallures or or Imminent
- -
.n or the Level potential substanting Plant functions Needed Substantial Core for Protection or the Degradation or mo s t- ' irety or the degradation of the ., n t. Pul:I l c.
Ing with Potential
hevel of safety of for loss or the plant.
Containment integrity.
. . Radioactive Errluent unplanned a i rborne Unplanned ai rborne Rosesse Corresponds Radiological effluent release gives orrsite rolesse gives orralte to )20 mres/hr. at t elease results in Applicable to Any dose rate greater dose rate grqater Site Boundary orrsite dose proJocted Helems; PoIntf51 than 0.5 mrem /hr.
than 2.0 mRes.fhr.
- ' or-to exceed 1 rem - g~ cnd 'te su l t l nc f rom Orrsite Dose Due to the Whole Body ._, Any initlatinq Event to Event Is or 5 rem to the > -a r- -or-Pro.Jncted to Exceed child Thyroid.
Q Unplanned liquid Unplanned l' quid 170 area to Whole i-release in excess release results in Body or Child it.yrold.
EU - or HPC limits, downstrJan community
water radioactivity ,. greater than 12 times and/or EPA standards.
., Release or toss or Fuel Handlin? Acci-Major Damage to Spent Radiological effluent Controp adioactlve dr - Resulting in Fuel Due to Fuel corresponds to greater Material thin the L Ro.,ase of Radioactiv-llandling Accident than 125 mRea/hr. whole ~ por-bodt doses rate or Plant.
Ity to Occupied . Uncontrolled Decrease 600 mrem /isr. child Areas Such That the Direct Radiation In Fuel Pool Water thyroid at time site Levels in the Areas to Below Levut bounda ry.
c ' increase by a factor of Fuel; F or -1000
- L g-o r-
' '
Other Veri rled, uncon- - ' trolled Events Which $% b Result in an Unexpected At. . - Increase or in-Plant /A-Direct Ra61stion Levels 'T . by a fact.or or > 1000.
.
' ' ~ . . _
- - - - _ - - _ _. - - _ _ - _ _ _ -______________ _ _ - -__ - -___._______- . m . EPP/8-1 EPP/IP Implementing Procedure Recognition and Classificat ion . of Emergency Conditions . _6ETION LEVEL CRITERIA FOR ClASilFICATION Of_Lt![PGtNCY CONQlTIONS INITI ATING UNUSUAL ALERT SITE A GENERAL CONDITlON EVENT EMERG EMERGENCY Reactor Coolant System Below Tech Spec loss of 2 or 3 Fission (RCS) L.imiting Conditions Prodisct Barriers With a Temperature Low fcr Ope ration (LCO) Potential loss or lhlrd Barrier, eent1Embin dg _Anv inl11111ns RCS Prcssure High Exceeds LCO Limit [Y Dl_1ht M Y lefd 10 TAB 4 -* s "" '" ' o Any Initiating Events, rrom RCS/ Containment Leak Exceeds LCO Exceeds 50 gpm Exceeds Make-up Capacity Whatever Source that Makes Release or Large Amounts or Radioactivity In a . TAB 5_ Saort " me Prodanie.
For Example: RCS/ Secondary Leak Exceeds LCO > 200 g pa >50 gpa w/ MSL TAB 6-o r-Break w/ indication i. i OCA Wi th ra i s ure or (CCS.
Maan Steam Lane ' i >10 gpm w/ MSL Break of Fuel failure 2.
LOCA With Initially Succ-Break or Rapid Depressurization-or- .-or-estrul ECCS.
Subsequent of Secondary Side - ' Failure of Heat Removal MSL Break w/ MStV > 1000 gpm Systems with Likely- " Failure of Containment.
Failurs c TAB
3.
toss or an Onsite and ~ Orrsite Power Concurrent 131 Fuel Cladding RCS Activity Exceeds RCS 1 Activity Degraded Core-Possline With Total Loss or Deg ra da t ion LCO-or- > 300 uCI/gm Loss of Coolable I mergency Feedwa te r.
Reactor Coolant Ceometry.
Mon to r Ala rm, o r -
Loss of Feedwater and or analyses 1 uCl/ Condensate followed by gm, steady State failure of Emergency TAB 8 reedwater System.
RCS Safety 9r Leak Exceeds LCO or 5.
Reactor Protection System Falls to initiate or Reller. Valve Vaive ! nope rab l e Failure
Complete a Required Scram, . Followed by loss of Core TAB 9 _ ' -or-Cooiing and asse-up Syst.as Loss of Plant Control Occurs RCS Temperature High Exceeds LCO , TAB 3 ' . , RCS Pressure Low Below LCO + ~ TAB 4 l . ~
1
_ _.
_ . EPP/l-1 ' ErP/IP *mplementing Procedure R; cognition and Classification = . cr Imergency Conditions _bCTl01 LEVEL CA11[RIA FOR CLASSIFICATION OF EHERCENCY CONDITIONS
INITI UNUSUAL ALERT SITE AREA GENERAL CONDI EVENT y,' EMERGENCY EMERGENCY I v.
Initiation of ECCS Valid Safety Circuit '1 Loss or 2 of 3 Fission Product Barriers With a Irlp er Necessa ry n Manual Initiation.
,' Potential Loss or Third e , lf/\\E3 1C) t_ sa rri e r.
' a)d n OEE11EEb1E 19 iny initiating CCS Pemp Failure ' k' to uel that Hav Lead to E ve, n t P' 'r/LE! 11 + ra n ure _ _ _ en,cono,tioy, , -ur- . Less of Containment Requiring Shutdown / Containment Pressure Any Initiatic9 Events, from - Entcgrity by LCO >5 & C45 psjg Whatever Source that Hakes ^ Release of Largs Amounts r/iEl 1:2 or Radioactivity in. Short Time Probable, Less of Engineered Requiring Shutdown for Example: Safety or Fire by LCO Protection features
LOCA With Failure of ECCS.
lfjal3 1 3 2.
LOCA With initia Hy Succ- ' essful ECCS.
Subsequent follure or Reactor Ranctor Not Fallure of Heat Removal Protection System mm Suberitical arter Systoms with likely to Initiate or r-Va lid Scram failure of Containment.
Couplete a scram Signal (s).
3.
Loss of All Onsite and lf;$j3 12h _ With Total Loss or ~ orrsite Power Concurrent Loss or Plant Loss or Capability Loss of Capability Emergency feedwater.
L to Achieve Cold to Achiave flot Control /forsty r' Shutdown Shutdown 4.
Loss or feedwater and Systems Condensate followed by , 17413 1 5 ra nure or Emergency Feedwater System.
Loss or indicators.
Loss on Process Loss or All Loss of All Annunc i a to rs o r or Erriuent Para-Ala rms ( Annuncla-Alarms 15 min 5.
Reactor Protection System Alarms meters, Requiring tors) Sustained for with Plant Not in Falls to initiate or Shutdown by LCO 5 nins.
Cold S/D Complete a Requi red Scram, -o r-Followed by loss of Core Plant T ransient Cooling and Hake-up Systems , Occurs While Alf-o r-Alarms a re Lost.
Loss or Plant Control Occurs.
TAB 16 - Control Room Requi red or Anti-Required. Shutdown ci ia ted.
Control of System Control at tvecuatlun l Shutdown Systems Remote Shutdown Panel F Established at . Not Established .Remoto Shutdown Within 15 min.
"*"* _ TAB 17 a.-
_ - _ - _ - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - --_ - _____-_- __- -__ ____ _. -_ _ - _. . EPP/IP Impicment ing Procedure EPPft-1 Recognition and Plassification of Emergency Com.itions ACTION LEVEL CRITERI A FOR CI AS$lFICATION OF IMERGENCY CONDIT10M INITI ATIN G UNUSUAL ALERT SITE -AREA GENERAL CONDITION EVENT EMERGENCY EMERGENCY s Toxic or Flamm-Nea r-by or On-Si te Enters Facility.
Enters Vital Areas Loss or 2 of 3 Fassion able Cases itelease Potentially Potential lia b i t-and Restricts Product Barriers With a Harmful, abili ty Problems.
Necessa ry Access.
Potential toss of Third TAB 18 aarrier.
Securi ty Compromise in A.ccordance with Security Plans Imreinent Loss of Mejlsabig_ to Anv Igulating Physical Control (YGDL.thttJay Lead t2 of Plant.
Ih[3_fcgndjil20 TAB 19-o r-Any initiating Events, from Loss of On-Site Loss of Capability Whatever Source that Makes Release of large Amounts AC Power of Radioactivity in a Short Ilme Probable, TAB _2D__ __ _ _ Both.
Exceeds 15 mins.
1emporary toss or toss or noen rc.- Exampie: Loss or All Off-Upon Occurence 1.
LOCA WILL Failure or ECCS, Site Power 2.
LOCA With initially Sucr-TAB
essrui ECCS.
Subsequent Failure or Heat Removal Loss of All On-Upon Occurrence Loss of Vital DC Systems With Likely g Power for More Failure of Containment, Site DC Power
than 15 mins.
TAB
3.
toss or An Onsite and Orrsite Power Concurrent Tornado or Other Warning. Probable Strikes Vital Winds ire Excess With Total Loss or Errect on Station.
Plant Structures, of Design Levels Emergency feedwa ter.
liigh WindIAR 22 a.
l.oss or Feedwater and s . Flood or Low F lood < 105 fees Flood > 705 feet MSL Flood >735 feet MSL Condensate followed by Water MSL, l<equiring-o r-Failure of Emergency S/D. Low Water Dassage,to Vital f eedwater System.
< LCO.
Equipaent.
. - _J. AB 23 5.
neactor erotection System ~ Falls to Initiate or Earthqu re Dc!ected on Site Greater than OBE Gruater thah SSE Complete a Required Scram, . So.smic Instrumenta-Occurs Occu rs :*^ Followed by toss or Core ~ TAB 24 . Cooling and Make-up Systems l tion.
-o r- . toss or Plant Contrci Occurs, F i re F i re wi thia protected Potentially Arrecting Arrecting Sarcty a rea lasting more Safety Systems.
Systems itequired than 10 minutes.
For, Shutdown.
. TAB 25 . .
. .
. _ _ - - _______ _ _.. __ - _ _ _ - _ _ _ _ _ _ _ _, _ _ _ _ _ _ _ _ ' . E PP/ I'-l Err /IP leriplemer: ting Procedtire Recognition and Classification or Emergency Conditions ACTIOtt LEVEL CRITERI A rOR CL AS$1[1 CATION OF EMERGENCY COllDLl[OJE INITI ATING UNUSUAL ALERT S TE ARE A GENERAL CONDITION EVENT ENERGENCY EMERGENCY fxplo lon Nea r or On-si te Known Damage to Severe Damage to Loss or 2 of 3 rission Explosion rotential racility, Arrecting Safe Shutdown Product Barriers With a Significant Damage Ope ra t ion.
Equipment.
Potential loss or lhlrd TAB 26 earrier.
. < +b Ai rt'ta rtf 4N ' '#" I' * V - Unusual Activity * e v
- Ai rcrerti or;Mesed leS
,,x. crash drrectaivital, _ g gsygtigghjgj o Anv initjgt}gg,,T.e Over racility f rom Whatever Source Structures by " LYtDL _tha g M,_.ay_L.ggd__tg - -- c** "- -or-Strikes and Signirl-Impact or fire, th11_Gondillgn.
Ai rcra f t Crashes cantly Degrades a-or- , Onsite Station Safety Any initiating Events, from
Structure.
Winatever Source that Makes Release or Large Amounts TAB
or Radioactivity la a Short t ime Probable, T ra f.e Derailment in Onsite ror Example: Areas 1.
LOCA With rallure of ECCS.
2.
LOCA With initially Succ-Watercraft Strikes Intake essful ECCS.
Sub sceguent , Structure, Resulting railure of lissat Removal < in riow Reduction Systems with I.lkely TAB
- rai sure or Containacut.
Contanalnated Transportation or 3.
Loss of All Onsite and injury injured and Contam-Orrsita Power Concurrent inated Individual (s) , With Total toss or to Of'rsite llospital.
Emesgency Feodwater.
, 81. Loss or reedwater and Oil Pipeline Rupture or Pipe-Condensato rollowed by Rupture line Onsite w/ rallure or Emergency . reedwater System.
" " ' " '* ~' TAB 28 5.
neactor rrotection Syst.. '"' * Turbine rotating Turbine railure } l Turbine Rupture component railure causing casing ^ ' Complete a Requi red Scram * causing rapid plant pene tra t ion rollowed by a. usa of Core shutdown.
j 9" Cooling and Hake-up Systems . TAB 28-or- , S/G Tube Failure rallure of one S/G Rapid-rallure or S/G toss of I-lant Control Occurs, with loss or orrsite Tube with loss or Tubes (.V 200 gpm) orrsite power.
with loss of . power.
TAB 29 orrsite power.
h ..
y ,g . -- . n.
.. a
- - m w w am mag p p p p e m p pe:m g, pr
-- - - -m
- %
2 ATTACHMENT J i C,ip <i 2'd - , m. ' 4 r ,
' Site Adelnistrative Procedure 30 . .
02/09/87 Attathsent D ~- Master Index Of Reporting Requiresents Fage No. D 1 ' in m m m e m m m es m m m esisis m e m m m m m inis m m inisi m m inise m iisisessissi m is m ias m . \\ Note latediate NRC RED FHONE & DLC Nanagestnt Notifications are outlined in all CAFliAL LEliERS.
. Key Words Subject teport No.
553538838 3338888 533 ACTS OF NATURE ACT OF NATURE - THREAT TO FLANT SAFETY ! Clais - CLC or Outside Co. Clais - Indennity Clala Involving Radioactive Mat.
Clala - Internal BVPS Site Clala - Indennity Clain Involving Radioactive Nat.
, ContainsentIntegrity . Containment Structural Integrity Report
Containeent Leal Test Containeent Leat Test Report
Cooling Tower Lights tooling Toner Aircraf t Light Trot.ble
CR!i!CALITY - ACCIDENTAL
- CIDENTALY CRITICALITY
DESIGN BASIS - CUTSIDE E l iGN BASIS - CONDITION OUTS!CE BA315
Orinking Water Drinking Water - Total Califere
Crinking Water Orinking Water - Turbidity Re pri
ECCS ECCSACTUAil0N
Effluent - Gas Effluent - Gas: Beta or 6 ansa Air Dose E:ceeds Lie.
EFFLUENT - GAS EFFLUENT - 6ASiEFFL'UENT CONC. TWICE 10CFR20 LIMITS
Effluent - Gas Effluent - Gas: Organ Dose Exceeds Lisits
Effluent - Bas Effluent - Sas Total Pody of Organ Dose frice Lisit
Effluent - Sas Effluent - Gastfotal fedy, Skin or Organ Exceeds Lis
Effluent - Liquid Effluent - Liquid Cent. Exceeds 10CFR20 Limits
EFFLUENT - LIG'J1D EFTLUENT-L100!DC0hC.TWICE10CFR20 LIM!!S
Effluent - Liqaid Effluent - Liquid: Total Body or Crgan Exceeds Limit
Effluent - Liquid Ef fluent - Liquiditetal Body or Or pa inice Lietts
Effluent - Total Effluent - Total Body or Organ in excess of limits
( Effluent Re;crt Ef fluent - Sent Annual Effluent Release Report
Effluent Treatment Effluent Treataent - Sas Discharge e/o Treatment
Effluent Treatsent Effluent Treatsent - Liquid Discharge n\\o treatment
Envirennent Envireneent - Exceeding Environmental Rad. Levels IS Eavironnent Environment - Land Use Census Saaple Locat. Change
Environment Environeent - Radiological Environsental Report
EFP EMERCENCY ASSESSMENT CAPABILITY - MAJOR LOSS
EFF Energency Plan Changes
EFP GFFSITE RESFONSE CAFABILITY - MAJOR LOSS
EFP EMERSENCY CLASS EPP EERGENCY CLASS LECLARATION
ESF/KFS ACTUATICN ESF/RFS. ACTUATION
EVENT EVENT OR COND] TION THAT FREVENTS SAFETY FUNCTION
- Event Event Reportable Per 10 CFR 50.73 (30 DayLER)
Financial Report Financial Report - Annual CAFC0 Financial Reports
Fire Fire Detection Instrusent inoperable
Fire Fire Mcse Station Inoperable
^ FIRE FIRE OUT CF CCNTRCt. - SITE FERSONNEL CANXOT MAN LE 3D Fire Fire Frotection - 10 Ton CO2 Systen Inoperable
Fire Fire Protection - Halon Systes Inoperable
Fire Fire Frotection Instrumentation inoperable
Fire Fire Rated Assembly ineperable
Fire fire Spray / Sprinkler Systes Inoperable a3 FIRE FIRE SUFFRESSION SYSTEM INCFERABLE
Fire F' ire Suppressien Systes Redundany loss
Fay Peport Fay Fc er Distributien Report
< Watardous Waste - Unit i Hazardous Waste Manifest - UNIT 1
Hazardous Waste - Unit 2 Haaardous Waste - C'4!T 2 RCRA 4S ' ISI Fre;ran Inservice Inspectica Frc; ras 10 Year Update /D.ne.
- - IST Fro; rat inservice Test Frogras (!!T) 10 Year l'pdate/ Chases
. LICENS") MTERIAL LICENSED MTERIAL - TKEFT OR LCSS
- eteore c;y Meteorolc;ical !cstrusents in:;erable
.' NEWS RELEAa nWS RILEASE TO THE FUitit OR ECV!KMENT AGENCY $3
.. c m. m .m- . ... k ,., g,vu m+ ' 3xy 3(., _ 3, q: ggg g$,hi$ iNg ^ y 3. ;, - ' QtQp g ._c (+,V M N!hM(; i.
.f ( E
- ' e m..,:. 3g.
., , , ; ; hg ' so . s; , - Mpg l . ,, ! . . , q ,-* g
, , , , ' A ~
Site Adelnistr'ative Proc'edure,38 f' * ' -02/09/87J Attachunt D - Muter Inde Of Reporting Requirements - Page W. D 2 , utunuunumunu nnin u ai smunin ununusinuunnun nenunuumennu s in uu nnain u (', Note: leeediate NRC RED PHONE & DLC Managesent Notifications are outlined in all CAPITAL LEliERS.
'( ......................................................................................... Key Noris Subject Report No.
- 333 333143333 3333333
- NOM-EMER6ENCYCLASS NON-EMER6EPCY CLASS DECLMAi!ON
NPDES NPDES - Dischuge Monitoring Reports (OMR)
MPDES NPDES - Non Cospliance Reports (NCR)
, NPRDS.
NPRDS Failure Reports
. hclear Material hclearjMaterial - Adunced Shipsent of SP Nut Mll.
Nuclear Material hclear Material - Calls Not Recieved During Trans.
NUCLE'3 MATERIAL NUCLEAR MATERIAL - LOSS OF SPECIAL NUCLEAR MATERIAL
Nuclear Material helear Material - Lost or Unaccosnted For
helear Material Nuclear Material - Sp. Nuclear Material Fore 741
helear Material helear Material - Sp. hoclear Material Fore 742
hclear Material Nuclear Material - Sp. Nuclear Material Packagn
Gil Spill.
Oil Spill ' 65 Operating Report Operating Report - Monthly and Annual
Package Contaaination Package Contamination 6T.01 uti/100 cen2 67-PACKA6E CONTAM! Nail 0N PACKA6E CCNTAMINAi!0N GT 200eRee/HR CONTACT OR...
P:tkage Effectiveness PackageEffectivenessReduction
PackageRegistratica Package - Registration
Package ir.nspettatica Package - Advance Notification of Neste Shipeent
Persits - Envirenuntal Pereits or Certificates for Environeental Protect.
PCdSONNELFATALITY PERSONhEL FATALITY
Personnel Injury Personnel Injury
PERSONNEL INJURY PERSONNEL INJURY. INJURED CONTAMINATED PERSON
Pressurized Thereal Shock Frenurized thereal Shock Screening Crit. Exceeded
PROCEDURES - IMACEGUATE PROCEDURES - INADEtt' ATE CCND, NOT COVERED BY PRDC.
Public Inter nt Event Public Interest Event
GA Pre; ras CA Program - Reduction in Ccesiteents
Radiatica Esposure Radiation Espesure - Annual Report
padiation Expcscre Radiation Expesure - Bio assay fervices
Radiation Expcsure Radiation Espesure and Monitoriq Report - Person.
, Radiation Espesure Radiation Espesure at Espicyeent Tersinatien - Ind.
Radiation Exposure Radiation Espesure at Employment lereination - NRC
Radiation Esposure Radiation Espesure Data to Foreer Eeployees
Radiation tiposure Radiation Espesure Data to Terminating Employees E6
Radiation Moniter Radiatien Moniter Incperable $7 RADIATICNCVEREIFCSUR! RADIATION CVEREIFDSURE OF !NDIVIDUALS BS RADICACTIVE RELEA!E RADICACTIVE RELEASE - INADVERTENT DISCHARSE
RC10ACTIVERELEASE RADICACTIVE RELEASE - DUT OF CONTROL
RADICACTIVITY - RCS RADIDACTIVITY - HIGH SPECIFIC RCS ACTIVITY fl Reactor Vessel AEME Inservice Inspection Report
Ructor Vessel Reacter vessel Capsule Esasinations
Reactor Venel Reactor Vessel Fracture Toughnen Report
Relief n Safety Valves Relief 6 Safety Valve Challenges
Respirators Respiraters - Equipment Variance
Red Positica Red Petition - Instrunestat ha M4H unctions
SAFEff PARRIER CE6 RATED SAFETY IARRIER (FISS!CN TR MUsil t!6RADED
Safety Evaluation Safety ful.atiens - Annual Suesary Pe;crt if Safety Evaluation Safety F<. sue'ms for Cheeistry Frecedu es 100 r Saf etr Evaluatten Saf e ; h %tions f cr DCFs. TERs, % 101 Saf ety Evalsatic,a Safety Evaluatic+s for 0;eraticns, Paint. and 1st 102 Safety Evaluation Safety futuations for Testing Precdures 103 SAT!!?ilPli SMITY LIMIT V10 Lei!CW 104 S.JETY SiSTEM I G EKa KE SMETY SYSTER UNARE TO PERF0M 115 FUNCTICN 105 Security Plan Security Flan Cha9ges 106
" ftMm TSP"pi;m7 ut"gqmLq W y-=vnnww:7%::gymy[;[rpqw yr,=wcqv
'
Qq,4 y vg-v-q v, pq + g; . < m
- 2
, . ,
+ .. . . ,. , . q' y - + . . , 1t SiteAdAinistrativeProcedure3B j
, 02/09/87 Attachment D'- Master Index Cf Reporting Requirements Page No. 0 3 i a m m m u m u n m m u n m e m um m m u m m mia m u m u n m m m m m u n m u n n m m m m
~(' Note : leaediate NRC RED PHONE & DLC Management Notifications are outlined in all CAPITAL LETTERS, . .................................................................................................. Key Werds Subject Repori No.
881888888 5388888 SSE SECURiiYPROTECTION PHYSICAL PROTECT!DN - MAJOR LOSS 107 SECURITYPROTECT10N-PHYSICAL PROTECTICN - MAJOR LOSS COMPENSATED 10B SECURiiYPROTECTICN PHYSICAL PROTECTION - MODERATE LOSS 109 SECURITT THREATS-THREATS - EIPLICIT SECURITY THREAT 110 'SECURlitTHREATS THRIATS, POTENTIAL SECURITY THREAT !!! SECURITY THREATS THREATS ~ SUSPECTED PLANT SABOTAGE 112 SEISMIC SEISMICEVENT !!3 Seisaic Seisaic Ennt Analysis _ !!4 Seisaic Seisaic lastrueents inoperable 115 Siren Actuation Siren Actuation !!6 S!RENS & EPP COMUNICAi!ON COMUN!CAi!0M CAPABILITY - MAJOR LOSS 117 SOURCE SOURCE - INCIDENT 118 Source Source - Sealed Rad. Source Centanis. 61.005 uti 119 StartupReport Startup Report 120 Stese Generater Steae Generator - Inservice Inspection 121 Stets Senerater Steae Generator - ISI Category C-3 Inspections 122 Steae Sentrator Stras Generater - intes Plugged 123 Tank Tanks - Gas : Quantity exceeds 52,000 Curies 124 Tank Tanks - Liquid Activity in eness of 10 Carles 125 TECH SPCC DEVIAi!CN TECHNICAL SFECIFICAtlCN CEVIAi!Ch CR V101.AT10N 126 TECH 1PEC PLANT SHUTOOWN TECH SPEC REQUIRED PLANT SHUTDOWN 127 - ( THREATS TO SAFE OPERAi!CN THREATS TO SAFE PLANT 0FERAi!CN 128 T0!!C 6AS RELEASE TOIlt 6AS RELEASE - THREAT TO PERSONNEL SAFETY 129 1011C RELEASE 1011C RELEASE - OUT OF CCNTRCL 130 Training Prcgrae Operator Accelerated Requalification Progras 131 Training Progran Operator Lice n e Application 132 Training Progras 0perater License Renewal 133 Training Prograe Operator Medical - Disability Notification 134 , Training Pregras 0;erator redical Emaninaticas 135 j Training Progran Training Pr gras Reduction 136 l TRIP OR SHUTDCiN TRIP, SHUTDOWN CR FORCED kEMOVAL FRCM SERVICZ 137 j UFSAR Updated Final Safety Analysis Report (UFSAR) 139 UNANRYZED PLANT CCM0! TION UXANRYZED PLANT CC3DITION 139 l
I . $ e s . ' . }}