ML18019A256
ML18019A256 | |
Person / Time | |
---|---|
Site: | Harris |
Issue date: | 07/02/1985 |
From: | CAROLINA POWER & LIGHT CO. |
To: | |
Shared Package | |
ML18019A255 | List: |
References | |
RTR-NUREG-0737, RTR-NUREG-737 NUDOCS 8507090321 | |
Download: ML18019A256 (236) | |
Text
CONTENTS I
850709032i 850702 PDR ADOCK 05000400 A PDR o INTRODUCTION OPERABILITY REVIEW FORM I. Valve Identification II. Operability Demonstration
- 1. Purge and Vent Valve Operability Documentation References A. Dynamic Torque Coefficient Test Reports B. In-Situ Test Reports C. Stress Reports 2 D. Seismic Report 2 E. Sketch or Description of Valve Installation 2' F. Torque Documentation
- 2. Specific Valve Type Questions
- 3. Analysis Review
- 0. In-Situ Tests
- 5. Valve Closure Time III. Considerations for Demonstration of Operability
- 1. Valve Closure Rate Versus Time
- 2. Flow Direction Through Valve 3.. Surge Valve Closure or Simultaneous Closure
- 0. Containment Back Pressure
- 5. Adequacy of Accumulator Sizing
- 6. Torque Limiting Devices
- 7. Effect of Piping System
- 8. Effect of Butterfly Valve Disc and Shaft Orientation (1422PSA/ccc )
o DYNAMICTORQUE CALCULATIONOF BUTTERFLY VALVE
- 1. Summary
- 2. Dynamic Torque Results
- 3. References
- 0. Dynamic Torque Calculation (a) Hand Computation of Several Test Cases 18 (b) Computer Results and Comparison with Hand Computation 26 (c) Revision Based on Ebasco Letter Dated August 22, 1982 38
- 5. Appendix o HYDRODYNAMICAND HEAD LOSS TEST OF 12ff 150B BUTTERFLY VALVE WITH DIRECTLY CONNECTED SHORT RADIUS ELBOW UPSTREAM
- 1. Introduction 2
- 2. Test Procedure
- 3. Equation Used for Calculation DYNAMICTORQUE AND HEAD LOSS TESTS OF CAST IRON STREAMLINE DISC VERSUS FABRICATED FLAT PLATE DISC
- 1. Abstract
- 2. Procedure
- 3. Conclusion
- 0. Figure 1 11
- 5. Figure 2
- 6. Calculation
- 7. Test Logs and Graphs 10 o SEISMIC ANALYSIS OF BUTTERFLY'VALVES I. Summary of Results II. Analytical Procedure III. References (1422psA/ccc )
'IV. 'alve Descr'iption-Natural Frequencies of the Operator
- 2. Analysis of the Support Bracket
- 3. Analysis of Operator Attachment Bolts 10
- 0. Analysis of Operator Attachment Plate 12
- 5. Analysis of Attachment. Plate Weld
- 6. Analysis of the Disc and Shaft
- 7. Analysis of the Shaft Shear Pin 20
- 8. Analysis of the Shaft Key 21 I
- 9. Analysis of the Valve Body 22
- 10. Appendices 25 A. Natural Frequency 26 B. Inertia Formulas and Their Values for Operators 27 C. Shear Pin Area 31 L
(1422PSA/ccc)
INTRODUCTION This report documents Carolina Power k Light Company's review of operability of the containment purge and vent valves and their ability to close during a design basis accident to assure containment isolation. This review is required by NUREG-0737, II.E.0.2, Containment Isolation Dependability.
The report follows the guidance presented in the Nuclear Regulatory Commission letter dated February 11, 1985 (attached)..
(1427PSA/crs )
~fl REQy~
P
+ O~ UNITED STATES I
NUCLEAR REGULATORY COMNIISSION Vl WASHINGTON, D. C. 20555 Cy
++*<<+
~O FEB 11 1985 Docket No.: 50-400 Mr. E. E. Utley, Executive Vice President Power Supply 8 Engineering ImI Construction Carolina Power 5 Light Company P. 0. Box 1551 Raleigh, North Carolina 27602
Dear Mr. Utley:
Subject:
Request for Additional Information on Containment Purge and Vent Valve Operability Continued staff review of the Shearon Harris, Unit 1 OL application has resulted in the need for additional information, as delineated in the enclosure, in the area of containment purge and vent valve operability.
Please inform the NRC Project Manger of your schedule for responding on this issue ~
Sincerely, 1
dF>c.'d'~4'~~
George lV. Knighton hief Licensfng Branch Ko. 3 Division of Licensing
Enclosure:
As stated cc: See next page
Shearon Harris Mr.~ E.~ E.~ Utley Executive Vice President Power Supply and Engineering and Construction Carolina Power 5 Light Company Post Office Box 1551 Raleigh, North Carolina 27602 George F. Trowbridge, Esq. Mr. George Jackson, Secretary Shaw, Pittman, Potts 5 Trowbridge Environmental Law Project 1800 M Street, NW School of Law, 064-A Washington, DC 20036 Univeristy of North Carolina Chapel Hill, North Carolina 27514 Richard E. Jones, Esq.
Associate General Counsel Dr. Phyllis Lotchin Carolina Power 5 Light Company 108 Bridle Run 411 Fayetteville Street Mall Chapel Hill, North Carolina '27514 Raleigh, North Carolina 27602 Mr. Travis Payne, Esq.
M. David Gordon, Esq. 723 W. Johnson Street Associate Attorney General Post Office Box 12643 State of North Carolina Raleigh, North Carolina 27605 Post Office Box 6?9
~--~ Raleigh, North Carolina 27602 Mr. Daniel F. Read CHANGE Thnnas S. Erwin, Esq. Post Office Box 2151 115 W. Morgan Street Raleigh, North Carolina ?7602 Raleigh, North Carolina 27602 Bradley W. Jones, Esq.
Mr. George Maxwell U.S. Nuclear Regulatory Comm.
Resident Inspector/Harris NPS Region II c/o U.S. Nuclear Regulatory Commission 101 Marietta Street Route 1, Box 315B Atlanta, Georgia 30303 New Hill, North Carolina 27562 Richard D. Wilson, M. D.
Charles D. Barham, Jr., Esq. 725 Hunter Street
'ice President'5 Senior Counsel Apex, North Carolina 27502 Carolina Power 5 Light Company Post Office Box 1551 Regional Administrator - Region II Raleigh, North Carolina 27602 U.S. Nuclear Regulatory Commission 101 Marietta Street Mr. John Runkle, Executive Coordinator Suite 3100 Conservation Council of North Carolina Atlanta, Georgia 3030) 307 Granville Road Chapel Hill, North Carolina 27514 Mr. Robert P. Gruber Executive Director Mr. Wells Eddleman Publi'c Staff - NCUC 718-A Iredell Street Post Office Box 991 Durham, North Carolina 27705 Raleigh, North Carolina 27602
~
Or. Linda
~ Little
~
Governor's Waste Management Board 513 Albemarle Building 325 North Salisbury Street Raleigh, North Carolina 27611
Enclosure I Attachment I.
Operability gualification of Purge and Vent Valves Demonstration of operability of the containment pur ge and vent valves and the ability of these valves to close during a design basis accident is necessary to assure containment isolation. This demonstration of operability is required by NUREG-0737, "Glar ification of TMI Action Plan Requirements," II.E.4.2 for containment purge and vent valves which are not sealed closed during operational conditions 1, 2, 3 and 4.
- l. For each purge and vent valve covered in the scope of this review, the following documentation demonstrating compliance with the "Guidelines 'for Demonstration of Operability of Purge and Vent Valves" (attached, Attachment 85) is to be submitted for staff review:
A. Dynamic Torque Coefficient Test Reports (Butterfly valves only) - including a description of the test setup.
B. Operability Demonstration or In-situ .
Test Reports, (when used)
I C. Stress Reports
- 0. Seismic Reports for Valve Assembly (valve and operator) and associated parts.
E. Sketch or description of each valve installation showing the following (Butterfly valves only):
- l. dir6ction of flow
- 2. disc closure direction
- 3. curved side of disc, upstream or downstream (asymetric discs)
- 4. orientation and distance of elbows, tees, bends, etc.
within 20 pipe diameters of valve
- 5. shaft orientation
- 6. distance between valves I
F. Demonstration that the maximum combined torque developed by the valve is below the actuator rating.
- 2. The applicant should respond to the "Specific Valve Type guestions" (attached) which relate to his valve.
Analysis, if used, should be supported,.by tests which establish torque coefficients of the valve at various angles. As torque coefficients in butterfly valves are dependent on disc shape aspect ratio, angle of closure flow direction and approach flow, these things should be accurately represented during tests. Specifically, piping installations (upstream and downstream of the valve) during the test should be repre-sentative of actual field installations. For example, non-symetric approach flow from an elbow upstream of a valve can result in fluid dynamic torques of double the. magnitude of those found for a valve with straight piping upstream and downstream.
ln-situ tests, when performed on a representative valve, should be performed on a valve of each sinze/type which is'etermined to represent the worst case load. Morst case flow direction, for example, should be considered.
For two valves in series where the second valve is a butterfly valve, the effect of non-symetric flow from the first valve should be considered if the valves are'ithin 15 pipe diameters of each other.
If the applicant takes credit for closure time vs. the buildup of contain-ment pressure, he must demonstrate that the method is conservative with respect to the actual valve closure rate. Actual valve closure rate is to be determined under both loaded and unloaded conditions and periodic inspection under tech. spec. requirements should be performed to assure closure rate does not increase with time or use.
Specific Valve Type Questions The following questions apply to specific valve types only 'and need to be answered only where applicable. If not applicable, state so-A. Torque Due To Containment Backpressure Effect (TCB)
For those air operated valves located inside containment, is the operator design of a type that can be affected by the containment
~
pressure rise (backpressure effect) i.e. where the containment pressure acts to reduce the operator torque capability due to TCB. Discuss the operator design with respect to the air vent and bleeds. Show how TCB was calculated (if applicable)-
~ 0 B. Where air operated valve assemblies use accumulators as the'fail-safe feature, describe the accumulator air system configuration and its oper-ation. Discuss active electrical. components in the accumulator system, and the basis used to determine their qualification for the environmental conditions experienced. Is this system seismically designed'? How is the allowable leakage from the accumulators determined and monitored-C. For valve'ssemblies requiring a seal pressurization system (inflatable seal), describe the air pressurization system configuration and
~ ~
main operation including means used to determine that valve closure and seal pressurization have taken place.~ Discuss. active electrical components in
~ ~ ~
this system, and the basis used to determine their qualification for the
~ ~ ~
~
environmental condition experienced.~
Is this system seismically designed7 D. Where electric motor operators are used to close the valve has the miniaam available voltage to the electric op'erator under both normal or emergency modes been determined and specified to the operator manufacturer to assure the adequacy of the operator to stroke the valve at accident conditions with these lower limit
~
voltages available? Does this reduced voltage operation result in any significant change in stroke timing? Describe the'emergency bivalve mode power source used Where electric motor and air operator units are equipped with handwheels,, does their design provide for automatic re-engagement of the motor operator following the handwheel mode of.
lity operation?'f not, what steps are taken to preclude the possibi of the being left in the handwheel mode fo11owing some maintenance.
test etc. type operation?
F. For electric motor operated valves have the torques developed during operation been found to be less than the torque limiting settings?
tnclosure l Attachment 2 GUIOEL INES FOR OEHONSTRATION OF OPERABILITY OF PURGE AND VENT VALVES OPERAB ILITY In order to establish operability it must be shown that the valve actuator 's torque capability has sufficient margin to overcome or resist the torques and/or forces (i.e., fluid dynamic, bearing, seating, friction) that resist closure when..stroking from the initial open position to full'seated (bubble tight) in the time limit specified. This should be predicted on the pressure(s) established in the containment following a design basis LOCA. Considerations which should be addressed in assuring valve design adequacy include:
- 1. Valve closure rate versus time - i.e., constant rate or other.
- 2. Flow direction through valve; hP across valve.
- 3. Single valve closure (inside containment or outside containment valve) or simultaneous closure. Establish worst case.
- 4. Containment back pressure effect on closing torque margins of air operated valve which vent pilot air inside containment.
Adequacy of accumulator (when used) sizing and initial charge for valve closure requirements.
For valve operators using torque limiting devices - are the settings of the devices compatible with the torques required to operate the valve during the design basis condition.
- 7. The effect of the piping system (turns, branches) upstream and downstream ~
of all valve installations.
- 8. The effect of butterfly valve disc and shaft orientation to the fluid mixture egressing from the containment.
DEMONSTRATION Oemonstration of the various aspects of operability of purge and vent valves may be by analysis, bench testing, insitu tes ing or a combination of these means.
Purge and vent valve structural elements (valve/actuator assembly) must be evaluated to have sufficient stress margins to withstand loads imposed while valve closes during a design basis accident. Torsional shear, shear, bending, tension and compression loads/stresses should be consid red. Seismic loading should be addressed.
Once valve'closure and structural integrity are assured by analysis, testing or a suitable combination, a determination of the sealing integrity after closure and long term exposure to the containment environment should be luated. Emphasis should be directed at. the effect of radiation and of containment spray chemical solutions on seal material. Other aspects such the effect gn sealing from outside ambient temperatures and debris should be considered.
e following considerations apply when testing is Chosen as a means for demonstrating val ve operability:
Bench Testin A. Bench testing can be used to demonstrate suitability of the in-service va1ve by reason of its traceabi li ty in design to a test valve. The following factors should be considered when qualifying valves through bench testing.
- 1. Whether a valve was qualified by testing of an identical valve assembly or by extrapolation of data from a similarly designed valve.
- 2. Whether measures were taken to assure that pip'ing upstream and down-stream and valve orientation are simulated.
- 3. Whether the following load and environmental factors were considered
- a. Simulation of LOCA
- b. Seismic lodding
- c. Temperature soak
- d. Radiation exposure
- e. Chemical exposure
~
- d. Oebris testing of installed valves to demonstrate the suitability of the
~ ~ ~ ~
Bench specific valve to perform its required function during the postulated
~
~
~
~ ~ ~ ~
design basis accident is acceptable.
~
- 1. The factor s listed in items A.2 and A.3 should be considered when taking this approach.
~t-Sit T 1n-situ testing of purge and vent valves may be performed to confirm the suitability of the valve under actual conditions. When performing such tests, the conditions (loading, environment) to which the valve(s) will be subjected during the test should simulate the design basis accident.
NOTE: Post test valve examination should be performed to establish structural integri ty of the key valve/actuator components ..
PURGE hND VENT VALVES OPERABILITY REVIEl'ORM Plant: Shearon Harris Nuclear Paver Plant Unit No. l U~tilit: Carolina Paver S Light Conpany h/E: Ebasco Services Incorporated I. VhLVE IDENTIFIChTION System Served: Moo,M Valve Tag Number(a):
~ Inside Containment 1t.P- S>Sh-l 0 icp- SSSP,-
~ Outside Containment SCAN-+<>+ ~ 5 2 C P SSSS )
Ebasco Specification: ck,a- sH
-s6-35'alve Data(*) hctuator Data(+)
Msnufacturer Model: H a2.\ e.- SR.60-C Serial Number: 466 t40TE 6E'LOB) ~eE eo% 6m ov4 Type Afv&A fc $ ttt.~~0 %M Sise:
(+') additional valve/actuator data is provided on the Pump and Valve Operability Review forms.
uog . ~e sHlgw. hlllMssUs wihl- as Pnovloep AN~K ~H PAp aiC~L010 l5 Cuff LGtEO ~
FAggtc,eT'toil Cg~~zr~ SERE a Afar SE'R~ RR 6 Ba'- gzsa 3 w-N57%6-x: gcP@558-2 su-h/gpgpg gas-Ls gSa ZSLr N-&7@-V1, gCP.8&58-4 S~.-MS'if~7~
4th Vi~~ <I4P>
iy
I. OPERABILITY DEMONSTRATION
- 1. Pur and Vent Valve erabilit Documentation
References:
(identify documents by title, number, revision and page no. as applicable, to aid review).
A. Dynamic Torque Coefficient Test Report(s)
(Butterfly valves only) - including description of the test setup:
<) Qqwhm<c 'Y~VG CAL.CU~0~ ~ +M~L'f VWW Q.O hvar~
pbbs& HY$8 btQ.ccTL:f cd<~Gc~ 5H00~ P.~>Qs g,gg ~~~g B.
<CsWef 4A-7 Hb ~TP-0660-45 b~
In-situ Test Reports (indicate N/A if not used forjy.gg 0
operability demonstration):
C. Stress Report(s):
lSMC kC. Sli 6f 4 Hb - N -lo7'f$ (o LA.A'.
Seismic Report(s) for Valve Assembly (valve and operator) and associated parts:
Co E. Sketch or Description of Valve Installation(s) (Butterfly valves only) showing the followingq
/
(l) direction of flow; (2) disc closure direction; (3) curved side of disc, upstream or downstream (asymetric discs); (4) orientation and distance of elbows, tees, bends, etc., within 20 pipe diameters
of valve; (5) shaft orientation; (6) distance between valves; A Ho@-5 cASE, P4,gg Qs 0p 5$ NPrb4'lC Qo+QVQ'GPOP+ NO 'DT 67'71k ~ +~~~
p~hc Q.'c OR, c.o &PA@.L SOQ Note: If a include worst case installation is analyzed, identify and documentation that establishes it as a worst case.
F. Documentation that the maximum torque developed by the valve is below the actuator rating: SEW '5 NAMlC 'T Q,6'POACH NOi0$ -6195&0.6V A, 0A 5 5 8 l WH 3
- 2. Specific Valve Type Questions >TEM5 6.C, TH@.V 6' >++ ~+
[Refer to Attachment A] ~~~ g,) ~g AORTA.65$ $ 7 i< ~+~ 0 aepoe.y NO OT-ale2.k <~ A <<
m~T 1AM~M ~pakC~vae ~l~NM
+~~"~'HY iwpeCT me CiOSiwk ~</~/'Fo OF O~~"~
- 3. Anal sis Review: gtvet4 sec ATTAc.HMEalf 8
~ +T
~qV>AC P>vie C,O~w<~eO~<'he reviewer is to answer the following questions, identify and provide the reference documentation. In addition, justification for any "NO" answers is to be included with the reference(s).
k
- a. Is the analysis supported by tests which establish torque coefficients of the valve at various anglesf vms [x] NO[ )
u
Reference:
AIF 'TB Q496Q- htOi 0 0650 ~ 8 H AMID.
0 . ihu a.r-L O.LVC gi gm. CTt.y coovBc~ %Hazy RheilIS cLA0A I'sfQcAR sP7G~ 9 2$ .82, ~
- b. For Butterfly valves, were disc shape aspect ratio, angle of closure, flow direction and approach flow accurately represented during tests'pecifically, piping installations (upstream and downstream of the valve) during the test should be representative (or worst case) of actual field installations.
vzs [g ] NO [ ]
Re ference( s)
- 4. In-situ Tests:
In-situ tests, when performed on a representative valve, should be performed on a valve of each size/kind which is determined to represent the worst case load.
In-situ Test Reference(s)
In-situ Tests Not Performed [g ]
- 5. Valve Closure Time:
Is credit taken for closure time vs. the buildup of contain-ment pressure'T (Nethod to be conservative with respect to actual valve closure rate).
vzs [gl NO [ ]
Re ference(s) R<P<%T f40 i9$ -67%$ 4 QSU' Ok 0 Cl S3 A~S 7 MAO 'l2
- b. Has valve closure rate been determined under loaded conditions?
vms [ M) NO [ ]
Reference(s) 8 OQ- t40 '5
~ -6 QLto k8V r 4 ~~ l~ ~ K2'83 f1~ 7 %KU l2.
II. CONSIDERATIONS FOR DEMONSTRATION OF OPERABILITY The reviewer is to address the following considerations, identify and provide the reference documentation for each (use additional sheets if necessary):
- 1. Valve closure rate versus time - i.e. constant rate or other.
Reference(s) R~< 44'C- 4f tf 4 ~'4'SCS WNCTAHQ V~ CtASV~
6, Me ~a lC l t M 0
- 2. Flow direction through valve; differential pressure across valve.
Reference(s) 0- No ST-6792k kN A 'Fi OV4 04 iS M~M 8'F D>RE<
~
%~CAT ~~ dp eN 'tHE a. GQ 8 ckgss, CH+
VPrWES Q QiSC P+E. ChiCv~0 5V Ii~ ld l'xRV 97
- 3. Single valve closure (inside containment or outside containment valve) or simultaneous closure. Establish worst case.
Reference(s)
NlW KLpWy 'fo FL(N
~
Simba V~E 7
C T
OSVQ.e ~v&s i~CA. FLOt4 AA76 L'p tbrH 'TQ vt E Mcgg tRSMFD~
~
SiwW6 VAUVG CL.c5VR& LS fag blQkkT C.PtsQ r
- 4. Containment back pressure effect on closing torque margins of air operated valves which vent pilot air inside containment.
Reference(s) ~Q'%g HO'O'7 6 924 QCV<A I A/5 ~ l~g Qpep~tg5 QMEQ cLd'slips gQpQQ5 ~ Qpg$ Q)Qg. r,4$
W U 0,5vp'p iclfhjf WHS MA~lhJ
'PC MAWiHlVMti.LQVi%40 5yNPrgte 04M 6 Atty AC~At- Ch phd tyf Ot- A~9JAT9k 6>575 46$ 4fGH3
~
- 5. Adequacy of accumulator (indicate N/A if not used) sizing an (566 Phbr6 %
op azpoay) initial charge for valve closure requirements.
Reference(s)
- 6. Torque limiting devices (indicate N/A if not used) - are the settings compatible with the torques required to operate the valve during the design basis condition2 Reference(s)
- 7. The effect of the piping system (turns, branches) upstream and downstream of all valve installations.
Reference(s)TH& Pl ~ 0~ f~m ss ~wHe W~ tT-6792l ~ >
5 C PIPi~ Sy8~
- 8. The effect of butterfly valve disc and shaft orientation to the fluid mixture egressing from the containment.
Reference(s) Q4 Okf HO 5 67'f24 k6V>4 4 E, 965<9.15E'5 'THE, Lt40A.S CA5E At-V6 ~b 5>5C aaiS ~ u~CiO JV VWe.
Wuqii5.
In addition to the above review, sealing integrity after closure and long term exposure-to the containment environment should be considered under the mechanical equipment environmental qualification program - refer to Pump and Valve Operability Forms for this information.
~
Reviewer: Print Name Sign/Date Y'hQAkWk Checker: Print Neee Sign/Dete E iZ/i(/Zq
PURGE AND VENT VALVES OPERABILITY REVIEW FORM ATTACHMENT A The following Questions apply to specific valve types only and need to be answered only where applicable. If not applicable, state so. A resonse is expected for each item.
5.1 Torque Due to Containment Backpressure Effect (TCB)
For those air operated valves located inside containment, is the operator design of a type that can be affected by the containment pressure rise (backpressure effect), i.e., where the containment pressure acts to reduce the operator torque capability due to TCB.
Discuss the operator design with respect to the air vent and bleeds.
Explain in detail how TCB was calculated (if applicable).
5.2 Where air operated valve assemblies use accumulators as the fail safe feature, describe the accumulator air system configuration and its operation. Discuss active electrical components in the accumulator system, and the basis used to determine their quali-fication for the environmental conditions experienced. Is this system seismically designed'ow is the allowable leakage from the accumulators determined and monitored'? Is the accumulator size and initial charge adequate for valve closure.
5.3 For valve assemblies requiring a seal pressurization system (inflatable main seal), describe the air pressurization system configuration and operation including means used to determine their qualification for the environmental condition experienced. Is this system seismically designedT 5.4 Where electric motor operators are used to close the valve has the minimum available voltage to the electric operator under both
normal or emergency modes been determined and specified to the operator manufacturer to assure the adequacy of the operator to stroke the valve at accident conditions with these lower limit voltages available? Does this reduced voltage operation result in any significant change in stroke timing? Describe the emergency mode power source used.
5.5 Where electric motor and air operator units are equipped with handwheels, does their design provide for automatic re-engagement of the motor operator following the handwheel mode of operation?
If not, what steps are taken to preclude the possibility of the valve being left in the handwheel mode following some maintenance, test etc. type opexation?
5.6 For electric motor operated valves have the torques developed during opexation been found to be less than the torque limiting settings?
AZZ A(HthCN users ~O Sm VM.ural Ore-aAWu aCVIM maW IfSN g ~
Q fP'ECII IC IIIltLVf'f'(PE QU&5$IOM5p ITSM Ig>( '
440 r
~ r'4 ~
I 4
~ r '
,./ "....,,;, ~
4 tp 4
,t ~
t
- 4 gJ LW'1T.- ~-
6'wetNES DISCO 4 aA-1 SO ~ t
~ 4 rt ~~ rg J' ~ ~
} . ~ + f: ~
~ 4- ~ t ~4
~ ~
44 .4 ~ ~
a 4 r 60<tHOlD V~ 1
~$ .
r~
W> It'AA ~ ~
VAIL (Mo96I .
xP 852.IQB) r ~
~ ~~
'"-.'~eu~~tI,~ f IP.I~% - cguieea-'.: ~
'-.,'; <im
'~
g<g p,usy~N4 9.':'~:,
'"4 .-'.i 5fkiNQ CQI.WQS.IL ...: ~
t~g;>
~ I
~'4 ~ '
~
- t. 'I."
~
r- ~ kr j~ I f 4 t 4 Qgf @II~ ' ~
S t,t rr It 4'
~ ,J Lrr
-sq is"Wt-TUP'fo<..soo8- 4 2,ic-'sa 4,0.
~ t. ': I
~
' ~ ~ "4
~ ~
~0<%A 0 ND VCtp VH.VW OpSRASviv. sg~ Ha~~g.3 ca~yAtwimggg egg +ted
~'2c.p-s $ eA-I 42 P (Nva.~u.Y C,LOGIC~)
'lrply ." g ~ir6
+2'P 2c p 84-zs-t z"f (NglLMlclLf cc15M)
A pep-$ 25g-( F'UlZC G (S" NOaMau.y VA. ivlAg.E-LlP'WAN;SSsgI 5 peg )
i 4.2, pcldf(ooLMAQ-'f Co&yAlt4ipl~ ~~g
~l
~fbi'/
y Yo~++
~
. o - gb fl a~ 8
~iA s lcZ"g P 55'-A P {Na~uy Cuesta)~~ 's.> (p8 g"45 II' gp qc('vP +' P5" NoRMAL C.og T. PLlQ.C,K
0 B IF A UNIT OF GENERAL SIGNAL 1600 DIVISION ROAD HEST WARWICK, R.I. 02893 QUALIFICATION OF CONTAINMENT PURGE BUTTERFLY VALVES UNDER LOCA CONDITION.
DYNAMIC TORQUE CALCULATION OF BUTTERFLY VALVE Uv ~ g i':J PREPARED FOR:
EBASCO SERVICES INCORPOPA ED SHEARON HARRIS NUCLEAR POWER PLANT VALVE SIZE: 8 INCH EBASCO CONTACT NO. NY-435211 6 435212 BIF ORDER NO.: N67926-U/N67927-U EBASCO IDENTIFICATION NO. 2CP-BlSA 2CP-B2SB 2CP-B5SA 2CP-B6SB Prepared by:
Date: kfbv. 8 p I f83 Checked hy:'ate Approved by:
Date:
REPORT NO. DT-67926 REVISION A
8 I F A UNI f OF GENE RAL S IGHAL 1600 DIVISION ROAD WEST WARWICK, R. I. 02893 QUALIFICATION OF CONTAINMENT PURGE BUTTFRFLY VALVES UNDER LOCA CONDITION.
DYNAMIC TORQUE CALCULATION OF BUTTERFLY VALVE PREPARED FOR:
EBASCO SERVICES INCORPORATED SHEARON HARRIS NUCLEAR POWER PLANT VALVE SIZE: 8 inch EBASrn CONTRACT HO. HY-435211 5 435212 BIF ORDER NO '67926-U/N67927-U EBASCO IDENTIFICATION NO. 2CP-B1SA 2CP-B2SB 2CP-BSSA 2CP-B6SB Prepared by: Debendra K. Das F
Date: June 1, 1983 Checked by:. Antonio M. Amaral Ci.~~9 /V. Lines"~
Date: June 6, 1983 Approved by:
Date:
XKPDRT 40. 'T-67926
TABLE OF CONTENTS SECTION PAGE
- 1. Summary
- 2. Dynamic Torque Results
- 3. References
- 4. Dynamic Torque Calculation (a) Hand computation of several test cases 18 (b) Computer results and comparison with hand computation 26 (c) Revision based on EBASCO letter dated 8/22/82 38 (A)
~
- 5. Appendix 44 (A)
(a) EBASCO letter dated Aug.~ 3, 1982 8 ~
~ ~
Attach. containing pressure,
~
density, and flow data. ~
(b) EBASCO data, Fig. 6.2.1.1, for containment. temperature rise.
(c) EBASCO letter dated 8/22/83
REYISION .(A) TO THE DYNAHIC TOR(UE CALCULATION REPORT DT-67926 This revision is prepared to answer 'the questions presented in EBASCO letter dated 8/22/83 regarding the original Dynamic torque calculation.
The response to these questions forms the basis of Revision (A) and are inserted in this report starting with page 38. These pages may be referred to for further details.
This report contains the dynamic torque analysis of an S inch butterfly valve. The analysis is performed for LOCA (loss of Coolant Accident) per Ebasco Specification, reference 1 on page four of this report. The analytical procedure and the assumptions are outlined in the section begin-ning on page five., Dynam'.c torque calculations have been performed. for the'alve't various angles of opening.
The ra,suits'f the analysis presented on pages two and three of the report indicate that the dynamic torques developed under the specified flow'on-ditions are le~s than the torque capability of the valve operator. Therefore, operator is capable of providing sufficient torque to bring the valve m fully open to fully closed position in the event of a LOCA. In the seismic and stress analyses of this valve, the design torque used is greater than the maximum dynamic torque, thus qualifying the valve for LOCA conditions.
SUNDRY OF RESULTS Table - 1, 8 inch Valve
'egas Angle Oynamic Torque ln-lb 90 (Full open) . 171. 3 80 671.0 70 783.0 60 720.7 50 593.5 40 366.0 30 198.0 20 91.5 T.
)0 32.6 Net '=.3648 in-1b 0.0 (Full 0.0*
closed}
- At full closed position the dynamic torque is zero and the net (T }
Net
'torque is due to seating and bearing friction..
NOTE: The design torque used in the Seismic analysis for this valve is 1648 in-lb, which is greater than the maximum dynamic torque of 783 in'-lb. Therefore the design is safe against the dynamic torque under LOCA condition.
~ I T
I I
l 6'/I 0
.I ~ I I
I I
'i too I SF3.5 .'
I"" I I
"I.- ' I
~ -- ~ !- ... I-
~ ~
'V0
~ i
.I l
I' I ~
- .' '. I
~ ~ ~ I bgHAMf I i l'fOg+VQ.:. I fpo ~:.
'" I I
I
~ ~
~ ~
~ ~
!':i (IN- LB), ~ ~
300 I I
~ I
~ ~
. ~
1'i I
4'Fdt.o IVI 3 I
I ~ I, I ~ ~ ~
I P
I.. I i
/oo I
~ I 32.
~ ~
I I
i, I.
I I i I: I'
~
T I
,. i 0.0 30 20 . Bo 40 !,. i ~> i -': .. i
'C 0.!:: I ..
'..I
-: 7i'.,'
i I
.I zo ~ ~
9oi ]:! l....
I ! e FULLY.. i EULER DBFI.) ANFIL5 'OF OPEMZN g .
- CLogg. I.
aprN::5 i
PREFERENCES
'1. Ebasco Letter dated Aug 3, 1982 with attachment containing pressure, density, and flow data.
Fig. 6.2.1.1, for containment temperature rise.
'basco'ata, I
- 2. ANSI/AWWA C504-80, AWWA Standard for'ubber-Seated Butterfly Valves.
American Water, Works Association, Colo. I I
I
- 3. Beard, C., Final Control Elements, Valves and Actuators, First Edition, imbach Publications, 1969.
- 4. Hutchison, .J.,W., ISA Handbook of Control Valves, 2nd Edition.
- 7. B I F Test Report 8TR-0650-43, Hydrodynamic and Headloss Test of 12"-
150 Lb. Butterfly Valve with directly connected short radius elbow upstream, dated 2/24/82.
- 8. Lyons, J. L., L on's Valve Desi ner's Handbook, Van Nostrand Reinhold Co.,-
NY, 1982.
- 9. Crane Technical Paper No. 410, 1981 printing.
ANALYTICAL PROCEDURE FOR DYNAMIC TOR UE CALCULATIOH The valve analysed in this report is a primary containment isolation butterfly I I ~
e used
~
in the purge system. ~
~
Valve size considered here is 8 inch.
~ ~ ~
During the normal operation, the valve is in
~ ~ ~
full open
~
position and should close completely in case of an accident. In the event of a LOCA (loss of Coolant
/
Accident), the valve has to close against ascending differential pressure.
I During I the closing operation, th'e valve disc will be in semi-open positions and will .'experience fluid dynamic forces due to uneven pressure distribution across I P the faces of the disc. The flow through the valve causes aerodynamic "effect on I
the disc that gives rise to the dynamic torque. This dynamic torque is given by the formula:
T C (h, P) D3 (Ref. 2)..........i.........(1)
D "T 'I Mhere T = Dynamic Torque (in.-Lb.)
D CT Coefficient of dynamic torque obtained from test (Dimensionless constant) (Ref. 7) hP = Differential pressure across the valve (psi)
- 5) ~ Disc diameter (in.).
During the closing operation of the valve, CT and h,P will be changing for varying closing angles of the disc. The dynamic torque will tend to close the valve
'I whereas the shaft bearing friction torque will oppose it. The bearing friction torque is given by the formula:
V
~ 02 ] (Ref..2)............(2)
Tg
[ fg (d/2) A p Tb = Shaft bearing friction torque (Lb.-in.)
0 Valve Port diameter (in.)
fb ~ Bearing friction coefficient (dimensionless
~ ~ ~ ~ ~ ~
constant) (Ref. 5) d = Shaft diameter (in.)
~ ~
~
gp Differential pressure (psi)
~ ~
~ ~,, a, Therefore, the net unbalanced torque ss TD - Tb
.The differential pressure gp across the valve shall be calculated from the I
flow rate establ.ished earlier under LOCA Condition. The equation used will I I be theI one for sub-sonic gas flow recommended by the Fluid Controls a
Institute:
I p2 1
p2 QS t
963 Cy GTy (Ref. 3 and 4).......... " " (3)
Mhere QS
= Gas flow in SCFH Py = Val ve ups tream pressure (ps i a)
P2 Valve 'downstream pressure (psia)
= Specific gravity (air = i ai 6OoF and i atm. pressure)
Ti = Upstream temperature in o Rankine CIt = Valve coefficient = 29.9D>
p Valve Port diameter (in.)
Kv ~ Coefficient of flow (dimensionless constant) (Ref. 7) 520 Pi Qs
= ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ (4)
QA ~
14.7 Tg Where QA = Actual flow rate in ft3/hr
that the'containment isolation signal which initiates valve
~ ~ ~ ~ ~ ~ ~
Ebasco recommends re is energized at 0.75 second into the LOCA and the time delay (instru-
~ ~ ~
~
~
mentation time) before the signal reaches the solenoid valve of the operator so that
~ ~
the butterfly valve starts to close is given to be 0.5 second. Time of closure I
from the-full-open. position to full-close position is 3.5 seconds. Therefore,
.from the onset of. LOCA to the full closure of the valve the time duration is 4.75'econds.
Using this time period we .have abstracted the pressure, density, flowrate, and temperature response under the LOCA condition from Ebasco data (Reference 1).
The enlarged plots for the period of interest are shown on pages 8 thru 11.
The period of closure of the valve has been divided into nine equal divisions each of 0.389
~ second dura'tion representing 10.00 degree
~ of closure of the Using these divisions the interpolated
~ ~ ~ ~
erfly valve at uniform rate;
~
a temperature density and volumetric'flov'( are extracted
~ ~
values of pressure, I from the plots on pages 8, thru 11 . These interpolated values are presented on. page 12.
'3X
~
..:.. '.. sd
-. 83 PRaSSORE: RC PoVSB I 'I 0 ACTUAL hhrh Pote"rS F~ioht RBE i;.- -: -.I
~
I
~ !
~ L gg I ~ !
I r V~C.ILPOXATe.> YALE)FS !
~
I 3I I
! ~ ~
- i.' '.:I..:: I I
.80 1
~
I
~
" "I I I'.i ~
~ ~ ~
Ig!st !
I
~
~ "I I
! ! ~ ' ~
I ~ ~
I ! ~ !
~ ter
~
'1
~
I Pssss.'sss i .. ~.. I
'I
- --'; -':-27 I I
- '(P* ") l .I .
~ ~
I 1
~
I s I I~
Igg ! ! ~
I I
~
i' I
- -.-'...: '-:'-.::L-::::
i:25 ! 1
~
1' lw I ~
I~ I I ! *
.I i I I
~
I
-:i ~
! ~
! ! ~,
..23 ~
I
- i. I I'
I
'22, !
I~ ~ ~ I
':. I. ~ ~
~
I 2I;. I I ~ 1 I I ~ I I ~ ~
~ I
' .. I
~
\
'b
! t ~
I
't ' 1
~ ~ ~
.J,..jt!
'-ct
~
2.ct ' 8'0 i::i "T/p18 (SCc) D.O Nab
- .-i i gtaso 2 C I 3 gal BATE: '3ay 43hZ :.
$ 7' I 1 (a.o) 90 'O 70 40 SO gg ~D - 20 'D FULL Fv1.L oPEr4 CtorL LAD'1hL LAC( PLUS l~i~~tiut:1;1jyh~gO~1 TZt 1C. C
~ IO TeHf'MAVVRp RsPo<S~
Oe At'~AL. DATA. POZhIT5, FROM IL+F; f L. I I e ~ I, I
e ~
lt4YBRPot.ATES YALUCS I I
I e
.....'.../$ o I I i I ~
t } ~ e -. ~ ~
'!. I I I ~
I I
",'j ~~
I
~ ~~ ~
't I
~ ~
e I
i ~ '! e, l
! t- ~
I
~
/Po i ~ ~
I
- . I;. ~
'I I I ', e
~ .I I i
...........'IS'o C e
I I ~ ~
ee ~
e I ~ ~:
e e l..! t "~; ~
I
'I l I ~
\ I '
I
~
r I -""" 'e
~ ~
I e I
~
~ ~ e
't
~ ~
i .;...I... I I
I e I e 1 !' ~ ~
~ i
~ e Qe t e I e~ I,.
I~
I I tr. ~
/]o ~ ~
~ e I l ~
e I
e I
~ ~
e e
I I
e
~ ' I =:L I .
I e ' ! ~ ~
}'r I .
e ~
~
~ ~ ~
e l'0:.
' - I ~
t ~
I e
~ e ~
I I ee e I ~, ~
e
~ ~
e e ~
eo /:o. I 25: I &zq geo i l
I t; R'ip: 2'e
~ ~
SIO,'eOr".S 3 I}5: $ 5'8'l '.
+o 3 'Iwa . f.36?. g;pg
'So
~ A g)
I fo 7d 6O 40'; 3o'. Zo': lo, I Fttu. ! !
. i}tJ 9'o'errs e
e at Lnf~ Pcs cLoW .
I I} tII>> '-
l<5TRll>tDITh~bh} TJmE.
I 7
~lj a
~tk<VRE 'DEHsz vFRsvs 'pghfQ a a I ~ I ~
.,Oo JI
~ I 8 ACT!jAL DA7h PolNTS FROM Rat=.i:
T!4'TERPbf ATE3) VAI.UCS ~ '
l ~ ~
Oa l0 I I
I l I ! a a
- 1.... 'saa O'I a ~ ~ a I.
I
~ .~ I I
's I
.Ii:, I I I E'N5'I 7p; I ..'.: ..I..
'~
I I
. .' ~
I I I
! I I
ff s 0~08 I s
~ a a a
I
~ ~~~ ~
I I I ~ ~
~ ~ ~ I a
I
~ ~ I I
i"-
ba07
~
s
. I
~ ~
. I I
I . ' ~; I
'a I ~ ~
~ I
.' ~
=
I "~
- l
~ "
~
'I
- J /
'I a
~
O.OC'...
I I I~
~
l I I I ~ ~
" ~ I '
O.OS TIP1E (sec) 1.o- ! ),.:. !
I s y
I I :50 ..
I
. I
~
I 2S /;AH 2aO28 '.lII7: g 86II! 3 IIIS' '.9 Qq.:3 'I'73 I+362. :. 4 'rs a
-(de)'aa gas .d'O,'I 'So I go -: .:.5o; .. 'Zo . BIO,! 0
~ ~
FULI. ', .
I PVI.L 'a ot'I.N ...1.: ..:. ! CLos6 Ion.cnL Lac Plvs Zhli7Illlew C hl T477OH TIIVIQ Ia r
4 I I
--.. Ib ooo I
VL4w RA7E poR VRLVE bChZHTAIME5 0 AnVAL bah PoieS F'>co~ RC OPSIA PoSZTzoN
~ ~ I I TATER PO}.hV Cy VhLue g I "} ~ I
~ ~ ~
~
I
~
l'=..! e I
/3 ooo
~ ~
I I. I e I '
l ~
': }.'.... I I ~
I'.
I I ! I I... ' ...
e e I I I
.'.:II,.
I ~ ~
}
I I I I I
- ~ - ~: ~ I ~
I(0oo
\ I
~e I ~
I Fco& Rare I" ' 9 9 ~
I-:i
~ +
I e
~
~ I (A/ere) 9 0 DD 9
i ~
I I I' ~
I I~ e e ~ ' ~
' ~
'I ~
I~
e
', ~~ .
~ ~
.': ~
I
~
.I I j I . i i'.
,'.. VOOo I . e I. I:
I e l .'"'
~
I ~ e
~ e.,}
I
" 'I.."
I I
..L I }
.L.,",
' ~ ~
};: ~,' '
I I I I I I oo ~ ~~
I
~ ~
s
}'
~
I
~
0 e
'I .
~ I I e OO i I-. e I
e I
I ~,
I...~I
~ r I
I ...I
~
e I
I Tisz I ~
I(S~C) ~
Il.o.oo i
e o: . ~
Jo i zs i
i 1 go.
i'zq z.o 7o'o'
..'.n2. I 2 I I}17 ~ Z;0: 2 }l4}','3965 I:".I' 3 SBQ 90
.:g;0'"l73
- 4 3}'a:."4 VS..I 0'
e ~
~ ~
(>.g) So 50 1o 20 IO . I FuLL i...i=-
'"~T>4L I 4C PLu= CL4-'C i:IS,'
I 9:
~~"~ 'E}IT471O}JTy iIIP~
'I ~ , TABLE - 2
~ Time Angl e < Pressure Temp. Dens i ty Full open flo<lrate (Sec. de '.) P Psia, T (oF Lb/ft> 0 ( ft3/min) I 1.250 90 Full 21.65 170 0.0845 10700 I Open 1.629 80 23. 52 . 179 0.0830 11780 2.028 70 25.25 187 0.0918 12600 2.417 60 26.85 .195 0.0955 13300 2.806 50 28.25 202 0.0985 13800 3.195 40 '9.63 207 - 0.1015 14300 3.584 30, 30.85 .210 0.1040 14700 3+973 20 32 10 214 OolU65 15000 10 33.28 217 0.1092 15350 t 0 Full 34.35 220 0.1117 15627 Closed .
Coefficient of flow XV and the dynamic torque coefficient CT for different . angles of valve opening are obtained from the testj report reference 7. F has conducted extensive tests on different types of disc geometry and shaft orientation with respect to the direction of flow which are summarized in reference 6 and 7. The test medium is water and no air test 'is undertaken. Reference 6 is for two types of discs; namely, cast iron stream-line disc and fabrigated flat plate disc. Measurements have been made for dynamic torque coefficient and flow coefficient for both flatside upstream and f3atside downstream of the disc. The comparison indicates that the di.sc orientation of flatside downstream always causes higher dynamic torque. Reference 7 incorporates a directly connected short radius elbow upstream to study the effect of flow non-uniformity on dynamic, torque. Several tests have been performed with shaft verti.cal and shaft horizontal, counter clock-wise opening and clockwise opening, with flatside upstream and flatside down-st earn. These test data are also compared with that of a straight pipe with-
~ I of the valve. careful study of there experimental C'y elbow upstream A results indicate that the most seve're case is a vertical shaft orientation (i.e, perpendicular to the plane of the elbow) with flatside of the disc downstream with a clockwise rotation of the disc.
This orientation results in approximately 30" increase in maximum dynamic torque coefficient than that would be obtained for a straight pipe. In this report, this most severe case is used to obtain torque coefficients at angle of valve opening. This approach results in higher torque values I'arious and represents the worst condition. The test data are presented in the tabular form.
~ ~
TABLE-3 Angle Ky CT X De. I 90 0.52 '0.185 80 I 0.62 0.560 70 I'.00 0.400
- 60. 1.70 0.225 50 3.70 0.125 40 8.60 0.070 30 . 20.00 0.035 20 60.:00 0.015 230.00 0.005 10'.0 Closed 0.0 volume flow rate, through the valve is presented earlier. This is the rate for valve in fully open position. However, the valve is closing gradually and the flow rate should decrease accordingly and when the valve is fully shut the flow rate should reduce to zero. Therefore, we have to obtain the percentage of full open flow corresponding to the appropriate per-QA centage of opening. References 3, 4, and 8 provide such information. In reference 3, page 38, the flow characteristic of a butterfly valve is presented..
This is a plot of percent of flow versus percent open. which shows an equal per-centage curve for the first 25~ of flow a linear curve thereafter for the re-maining 75K of flow. In reference 4, page'166, and reference Q, page 226, the flow characteristic of butterfly valve is shown tq fall between the linear and equal percentage curve. Therefore, from these plots the traction of maximum flow at a percentage opening can be determined. Before deciding whether to use linear or equal percentage curve some careful consideration has been given to determine which 'one should give the worst dynamic torque. Upon some reflection,
it 's observed from equation (1) that the dynamic torque increases when the ure drop'increases. It is also apparent from equation (3) that the pressure drop is greater when the flow rate is greater. This is achieved by using the linear curve which predicts higher flow than the equal percentage curve. There-fore, on the basis of this argument following flow rates are established for 'different degree of opening of the butterfly valve. t I TABLE-'4 Time Full open flow Angle oC Percentage open Per enta e flow. ~A I Sec.) q (ft~/v de .) ft~/min. ft3/Sec. 1.250 10700 90 Full 100 10700 178.3 Open 1;639 11780 80 89 10484 174.7 2.028 12600 70 78 9828 163.8 13300 60 67 8911 148.5 13800 50 :56 7728 128.8 3.195 14300 40 44 6292 104.9 3.584 14700 30 33 4851 80.9 3.973 1'5000 20 22. 3300 55.0 4.362 15350 10 1689 28.2 4.750 15627 . 0.0 Full ct. ose 0 0.0 0.0
I ~ Mhen the.'valve shuts off completely, the flow through the valve ceases
~
herefore.the dynamic torque vanishes. In this position, the differ-ential pressure across the valve disc is the containment absolute pressure
~
minus %he atmospheric pressure. This is equal to the gage pressure inside
/ ~ t I the c'ontainment. Thus the necessary torque to completely close the valve and maintain it in the fully-shut condition against the existing differential pressure is due to the sum of the shaft bearing friction torque and the rubber seat friction torque called the seating torque.
The shaft bearing friction torque is presented as equation 2: earlier. The seating torque is given by T. CSD2 (Ref. 2) .......... (5) Mhere T = Seating s or unseating torque (.in-lb). Cs = Coefficient of- seating or unseating torque (Re~. 5) D Valve port diameter (inch}
~ ~ 8 P O
Hith all data available, the necessary calculation is performed using equation
~ ~
hrough (5). Dynamic torque is calcualted for
~
each angular postion to
~
determine its
~
maximum value and at what angle it occurs. For nine equal divisions of closing period representing 10 each (90 to 0 ) altogether I S 10 sets of calculation are to be made, For this repetitive type of work, a computer program is written following the methodology described earlier. In order to validate the computer program, hand calculation of several test cases are performed in the beginning. Subsequently, the computer results are presented including the input and output. Comparisons between manual calculation and computer results show full agreement and therefore verifies validity of the computer program.
/
$ .6 SAMPLE CALCULATION VALVE SIKE: 8 Inch Hedium: AxR.- TEAQ MlxTVRz Valve opening angle of qo degree occurring at I 2s second I
Inlet pressure from pressure curve = 0 98+$ 4"7= Ri.4 5 /Sf'.O Inlet: temperature from temperature curve = t'o 'R.. r Density from the density curve
'I = o.oayS <<be Full oPen uilume floe rate from flourate cur;e = . f78 3 ~
ffa/a' rate in SCFH Qs =(~ "2 )10>> Percentage flow at percentage opening = ( t "-.3 } ~ o0 = 1 5zo(zi: s) 4ap { ~r:"O }
~
7gop9p i'/8.3
$Q H~'s 5/'low /j /~
29 9 n Xe 9(""".5) xoQ:.'::; ve coefficient 'Cv
~v f, rrr. = o.3P, f (g,'f vt)
I Specific gravity 0 = o-0845' j. i+~ based on air wieght density 0 0766
~ r at 60oF and l atm. pressure.
Downstream pressure I = -... (o 78' lo6 R6a {<.c 'i ) (o> i ~. cog I35QQ. Therefore pressure drop Ap - p>
- p2 .= 2-GH2 Is(,
Dynamic torque TD = CT~p d 3 = 274 3 CT-Of(<(Ref. 7 elbow effect plus .
'n-ll most adverse shaft orientation and disc rotation)
The shaft friction torque Tb = ( V os) ( <'(a.spy) 0) I I efore tl e net unbalanced torque is TN = TD Tb = 14o.o2,
~ I I
This is a set ef calculation for one valve angle. I . Simi3ar calcualations are performed for I I different angles and presented in subsequent pages. I I ' I I
- (s)
The shaft friction torque is negligibly sma.l. Therefore, no further calculation of this torque would be made. Since this is'subtracted
'rom the dynamic torque to obtain the net torque at any angular position, 4
this approach is conservative. I C
'I
I VE SIZE: A1R- STFAh1 SAMPI E CALCULATION QEX7'VR6 Inch
',O
~ Valve opening angle of Qo degree occurring at i.( 3g second Xnlet pressuie from pressure curve = 2 82. +f4'7= ? ~2.
~ ~
Xnlet temperature from temperature curve = + 46o GS9 Op i 6 u ~ ~ t.b/gyes I I I ~g 7 Density 'fiom the dens:ty curve = o o~o I Pull oPen viLume flow rate from flowrate curve = I 6.3 pie/6 Percentage flow at percentage opening = ('-- &.3 ) 0 89 = i>c~ 7 fC /> S~.o (-; f..:) Plow rate in SCPH Qs = l.= ~ay)to (
) - Se900o lve coefficient Cv = i 887.+ k = o. 61 (ucq,g) .f~o'(.X Specific gravity '='
L)7 '.based air wieght density o G = c.ccc~ on 0 0766 at 60 P and 1 atm. pressure. Downstream pressure $ = ?;.e- '<'"=lP )loe r , >> (. ~)C:=->> 2,0siO $ 5gQ Therefore pressure drop ap = pl - p2 = 6 42. )Sc Dynamic torque TD = CT~p d CT-o 54(Ref. 7 elbow effect plus in t.4 most adverse shaft
~ orientation and disc rotation)
2i SAMPLE CALCULATION
~ C I, VE SIZE. 8 Inch ~
Ai.a.- svzhw Mixe v~6
~
Medium: Valve opening angle of To degree occurring at 2 o~ second Inlet pressure from pressure curve = to SS +f4'7= xs 25's~~ Inlet I temperature from temperature curve = iS7 + 4.6o = G4'7 l
~ ~
C Density from the density curve = o ~ osis Lb/ygs Full open Mume flow rate from flowrate curve = ..: 2io Percentage flow at pe"centage opening = ( 4Lp )o>B Flow rate in SCPH Qs =(osage) (p qp( g7) ""8 4o lye coefficient 29 938 299[, .c.) Cv seek .k = s o g.qq,g. Specific gravity G = 0 C'N -
~
1 ~'l8 based on air wieght density at. 60oF and l atm. pressure. Downstream pressure $ = >< >> (> 8.'goCC) lo QQ3 (g ~~/ ) ]op ( I. IRS )(<47 ) =19 46/ Pg~ Therefore pressure drop Ap - p> - p> = 5.5Q, I t DynamictorgueTD = CTb,p d = 782 g CT--o 4 (Ref. 7 elbow effect plus
'n-t.4 most adverse shaft orientation ~
and disc rotation)
22 SAtIPEE CALCULATIOt) Valve Size: ~ I 8 Inch I l I m: Air-Steam Mixture N Va e opening angle of 50 degree occurring at 2.806 second Inlet pressure from pressure curve = 13,55 + 3,4.7 = 28,25 psia Inlet .temperature from temperature curve = 202 + 460 = 662 R ~ . I t -. Density from the density curve ='.0985 ib/ft
~
open volume
'ull flow rate from flowrate curve = 230 ft3/S ~ I Percentage flow at percentage openingl = (230) 0.56 = 328.8 ft3/S Flow rate in SCFH gs = (0.4637)106 520(28.25 6ggg46 ft3/hr 14,7(662)
Valve coefficient Cv
= 2 29;9(7.05 2 772'6 tRv 3'7 R f'7 gK ~3.7 Specific gravity 6 = 0 0 66 1.286 based on air weight density 0.0766 at 60 I= and 1 atm. pressure, =
tream pressure ) (1.286)'(662} 6,68 psjp 9.63(0.7726)10'ERM-A Howevt.r a downstream pressure I'2 = 6.68 psia is physically not possible since the lowest possible downstream pressure should be at least atmospheric i.e 14.7 psia. gs a matter of fact the downstream pressure of the valve should be more than 14.7 psia since there is piping and exit losses occurring in tl e system after the valve and the gaseous mixture eventually exhausts into .the atmosphere. 7 Therefore the Term A, shown above, which is proportional to the. valve pressure loss is becoming too large to give this non-physical result.
23 Term A is larger than a practically possible value because either the flow rate 9
/ ~ ~ S I o3 the temperature T1 or the specific gravity G being used here are larger than s
r actual values. s As a result of which, what this is essentially indicating is that to maintain a flow rate of 699946 ft3/hr through the valve the pressure must dro= 0 from 28.25 psia at the valve inlgt to 6.68 psia at the valve outlet. But physically the maximum possible pressure drop under the worst .situation is from 28;25 psia 2 at the inlet to 14.$ psia at the outlet. '
~ ~
I ' Using this. maximum'vailable pressure drop we can, in fact, calculate the maximum I ~ ~ flow possible through the valve. P1 = 28.25 psia P2 = 14.7 .psia (Lowest possi'~le) .:: I r \ qs2 = 28.25~ - 14.72 963 772.6 l2 t = 3.784 x 1011 (1.286)(662) Therefore gs = 615152.43 . ft /hr (maximum possiblej Versus 699946 ft /hr e the maximum pressure drop, taking downstream pressure of 14.7 psia is
'I AP= 28.25 - 14.7 = 13.55 psi Maximum possible dynamic torque Tp = CThp d = 593.5 CT = 0.125(Ref.7 elbow effect in lb plus most adverse shaft orientation and disc rotation)
Ti~~i7>> Iir~ ~ s ~
SAMPLE CALCULATION( . Valve Size: 8 Inch I um: Air-Steam Mixture opening angle of 40 degree occurring at 3.195 second Inlet pressure from pressure curve = 14.93 + 14.7 = 29.63 psia Inlet temperature from temperature curve = 207 + 460 = 667 R Density from the deqsity curve = 0.1015 Lb/ft3
, I Full'Open volume flow rate from flowrate curve = 238.3 ft3/S Percehtage flow at percentage opening = (238.3) 0.44 = 104.9 ft3/S s
Flow rate in SCFH gs = (0.37752)10 1~4~7
= 5936/0 ft /hr I667I J I
Valve coefficient Cv = 506 8 Kv 8 6 (Ref 7) QKv ~8. 6 Specific oravi ty G = 0.1015 = 1.325 based on air weight density 0.0766 at 60op and 1 atm. pressure. 0.59343 10 ~2 owns tream'pressure 29.632- (1 325)(667) s 963(0.5068)103
'ERtl-A In the above expression P1 = 29.632 = 878 TermA= 1307; Therefore Term A P1 This means that the flow rate is too high as explained earlier in the last page.
Calcualte the maximum possible flow for comparison. Pg 29.63 psia; P2 = 14.7 psia (lowest possible).
~
g 29.63 - 14.7 = 1.785 x 1011 (1.325)(667) Therefore gs = 422515 ft3/hr (maximum possible) Versus 593430 ft /hr pressure drop, taking downstream pressure of 14.7 psia is
~
e the maximum hIthChg,
= 29.63 ~ 14.7 ~ = 14.93 psi +cmmawsmmswMRIrmrR~ A'>alii', i 'rsaa 7 ~
~ ~
Haximum .possible dynamic torque TD = CT 4p d == 366 CT
= 0.07(Ref.6 elbow e feet ~ plus most adverse ~
in-Lb shaft orientation I and disc rotation) It should be noted that the calculations presented on pages 22 thru 24 re'present the upper limit of the valve pressure drops and the resulting dynamic torques; In reality, the downstream pressure of the valve should be much greater than 14.7 psia. Precise information on the density, temperature, and the flow rate of the 'ixture with respect to time is necessary to determine the actual downstream pressure. However, the dynamic torque values, obtained with the present con-servative approach, are much smaller than the operator torque capability. More-over, the valve design torque in sizing the shaft, key, taper pin, etc. is much higher than the calculated dynamic torque. Due to this reason, no further refine-J ment of the analysis is necessary. 4
. 'IILv'c. PO 4 ~ 4 t& ~ ~
WC.U t '
~
C4 I'IH I OQ 40t A
<<00<< ~ ~ ~ ~ ~~ 04<< 4 0~~
I ric VHLVC ~ Jl JHI'IC I CIA
~ ~
Ot<<,AA AA A ~ << ~ AI El'I I Eli <<I OA \ I nr lvul lr c,a ur JIH I H Qc I 0
~~ ~ ~ P 4 AP P tC.l'I \ A <<I I ~ PPO AO ~ 't ~ OA A ~ <<4 Ot'0 <<<<A rOR EA4H D HI H Qi I ~ 0 ~
I C.A I na rUI ~ ~ I UWJIILI JOH II1 Jl'I J I Q
~
Al AAt tO<< 't ncQrc4I Jvc ~ ~ GRDLR Ql f I Nit I C,IJ 0 I H 4UI'll IH UIL I I L>LI1l'll ~
~
Hl ~ ~ OAA PP Urol+CHII 0 4 ~0 AAAAPO OAt 4 raroau~c ~ Jn r QJLt LrA / 0 ~ ~ ~ OAr0<<At <<e OAO A <<0 OAA Bl ~ Ul Q I rOCHI'I
~ 0~
I
~
C.I'l r AM I Unc 4 J n DFGt r C> U/ DI I'IC I UI1L FLuw RI1 I E Jl'I I I mmo/ QC.4 LL1H I CI ~ tOAA LUQQ 4UCI AAA<<tr J4 ~ AP ~ 00<< t Ott JC.I'I I L liV /
~ ~
r
~ 0 I UILLIUC 4UI' I J 4$ C.I'I I L Lt I FHTFR DATA FGR Qc, T I'IG ~
I j7 ~ '74;J 7V t VO 14 J70 ~ 0 t5- t185 4 4 0<<P A P\ ~ << ~ t <<0OA CIVIC.IL JIHIH rue
~ API AO QC I nut tot02 J77 ~ vOBv 1t / t~ 7 t02 ~ 56 A <<0 ~ << ~ AP At <<\Itt n0<<t 'S/ ~ 4 I,CIL JIH I H I Ul\ Qc. I I'lu t J'V t 44 <<Att%
tV'/JO 4 t t t4 JOaoOI PO0<<AA A ~ 'P 4 t t4PO At P ~ OA c.n I CIL LIH I t1 r UIL Qc.l nut I 12 ~ 14I 1 74 t V744' J !O ~ 4 40 ~ Jt/ t225 INGOT 5ATA
&00<<P C'III PO PO ~
ICIL JIHIH
<<~ run P 'Qr I \ OA nut t AA<<'
J&t44 2v2i V 704, Qt /
~0 wt 0 JCD ~ 0 ~ 126 P 00<<API cnlctL <<4 << ~ t AA JII1IH I ua QCI Itut 0 I Jtt t 7Q CV/ t JV14 JV t ~ 7 ~ D ~ v7 0<<t A <<4 t un AP\ At << OA /
Eitlcn
~ ~
uHiil 04 ~ ~ Qc I 4<<
~
I'1LI t A A& ITO ~ J4 CJV tJVtV 4 00 OVt 00
~ V076 ~ 4~
CI'W Pt A 'A ~ I LI00 JIH I H
<<4 rt UhtOP At << ~ 44 QC I I'lu ~ ~
O Aj<<0 ~ 4t At 4 I J/ t iV04 44 ov t V15
~ 00 ~ J t ~ ~ 0<<P A 0\ ~ P 4 CI't I C,h LIH I t1 I Uh Qc ttt0<< At <<I I'Wu~ 0tt ~
A 7 A
~ j V7<<
POA I LS t 500A 217 ~0 PO CO ~ C 23v ~ vv5
~ ~ 0<<t A04t<<4 Ix I c,lt JOIE r H r ua ~
t Qc.l ~ OA nut 4 Jv 00 I JVeOOJ
~ P APO 4.4 V 00 ~ J1 J/ v~V CLO5H) 00 40 V~ V
'A ~ I r ~ ~
4V
~ ~
Lhr'UT LS AB ruLLuw'0: QcHntog BAac, Yqg IQP'uT) THcoT l)ATPt vFRI F: c'ATES% t r FOL U AP Qt LZi/'r T~m3
'A ~ ro IXV ~
CT IJL I I rI III'/ Ql 4 VIAA A 0~ / L/V ~ V A A ~I Vt VOriJ 4%
*/0pl t0 v I 4 A I AI VtIJC 0.185 44 OtO L77 t VVA vs vBovvA L/
4 4 tt/ 4 A VtGC 4 0.560
~ A LV ~ 0 L87 ~ V A44 4 V ~ VFLO 4 ~
LOG ~ 4% r 0 4 L AA t VV 04400 4 I LfJtV V t V7JIJ 4O
~ J Lt/V ~ A 0.225 rAA 44 A LQ ~ 0 <<V4" tV V ~ V /8 J AIP\
LCD ~ 0 tA VA 0 ~ /V 0.125 L'I
~ 4 4%
7
@%A V/ ~ VA % A 4 A4 P Vt LVLIJ Ity A ~ tA ~ ~
LV 0t
~ 4 ~
DV A 0.070 LD4 ~ L 44 ~ A CLVtV V ~ LV fv OVt 7 4%A AA CVtVV 0.035 J / ~ '4 CL I ~ V ~ A 4 A rtv Vt LVO> JJtv ~ A OVt AA VV 0.015 LO ~ 0 4%4 4" L /4
~ V A
VVA
~ LVV2 Pb P%
tt Dt4 CDV ~ VV 0.005 LV A L7 AD 4%I% 4" 4 A V~ V A V~ LLL/ VS V OLDS'.0
~ 4 AI ~ ~
I IJV 4
0
'I P
- q ~ I rEtg,E, 0 ~
=
//
Et *t ~ l. th tIIPI / P P Pl PEPEPI IP0% IPE t >>>>I LIlr I I MI
~
MIEIOLC, >>0 Qo LIC.V o u44vlxLI~v
~ ~
Ml ~ ~ VME Vl JJLMI'll I L~lk t, o ttttt ~ t ~ ~ ttottttttott Pl Et L< L M 7 o OPV iI'ICHFS P Pl Pl ~ I PE I PE ~ rACP)OVIWr>> t t t ~ o tttttt C L ~ CI r ELM
~ 0 ~
0 r LGw'ATF, iH SCI'H
&t ~
0th'E I rt thP>> ICI'll
~
rAMIVPrP ooooooooooo
~ ~
o o
~
t oooo o o t
~
o o oo IL UO 03vtv
>>IPE I aVCVPIPE-00 PE t\
uruo
~
I v r I~marna
~ ~ ~ I I ~ PE 7'.
AI rl VOV t pl rl v'ALv'c. CGFr r JCXr HT ~ oo ~ ooo ~ o ~ to ~ oto ~ ohio 4V ~ pE
~ ~ 'I PEP I PI >> t Et t00 PEP t arc,c Jr Ll . ualIVLEt IPlI t t t t t ~ ~ ~
o o t ~ tot~t ~ o ~ ~ tot Pl Q L ~ LV00I m Pl I>> 0>> PE ~ I PE raraaun,r ~ ooooo t ~ PI Pl I t J7ov PE IE rS JM
~ ~ I ~ ~
rlr>> VMI VC. I ~ Pt
~ ~
tooto L/r ea 2 ~ 6 t2 raL
~ h I ~
0 I HMI'ILC I VRI.tUC. tott~ttot o ~ t ~ o o ttttott ~ I l< L/Jt LB J I'I I E. t I
~ I ~ I .~ ~ 'I
~ r e
rl I
'Br e
CALCULATiGH AT AHGLF = 80 'ere uC.u ~ A GCCURLixa AT Tii'IF = ~ ere er e a ~ te VHLVC. L<LHI'lC. I r Ix a
~ ~
o o ~ ~ o o o o ~ o o o o tt o o o o DAA r OI=DDVOC.'
~ %We PIP% ~ ~ Ih ~
o o ooo ~ tttt A ' Writ t J e r &L H 4 ep ee&p ee 4 &e e&e ~e IC.I'l CAHIVAC. ooo ~ oooo IA DDT ~ V GF-8 ~ R
~ ~ tt ~ ~ ot oo ~ ~ otto ~
A PAR DLQD/ Jo
~ ~
r ~I:Ier,~
~ em mei rerim.
~ ~ vHI t vc.
~ ~ ep pl&t r 4uc.rr e L4icnl Kp%%'r e&~
tt ~ tttttt ~ ~ o ~ ~ tt ttt~ 4v
~ he ~ ee Lnn'7oa Bach ~ t%%
Dl C4LI L4 P+% I% Payee 4 QAHVLII ~ ~ V &% ~
~ t ~ t ~ ooo ~ tootootto to ~ ioi tV &t ee I
to &e eee AC.QQVthC e t~tt~t ra
~ e p% ee ~ h ee ~ MoA ~
r SXA F'RESSURF DRGr ACCRGSS lrlr we ~e 4 VHI Vr
~ ~ ~ ~ ew o ~ ~ t ~ ~ air . 0 ~ OLD raiv eery 9 I irIKI'IL4 TGRGUL ~ ~ o o o o ~ t ~ ~ ttt tt tt~ ~ ~ ~ ~ ~ D/Vt LB . LIY
~ ~
I speaks 70 LICu t pspsps U44UI'iLIIQ~ ~ Ps tfa <<<<st I err I LI'll
~ A eps Ce M P g ~ ~ ~ ~ ~ I~ p et YHI YC. L<LHI'ICICI'h ~ See <<I tttt ttt tttttttttt ~ ~ ~
e
~ t ~
her ~ ~ t ~LILtl . I t VIV
~ esp es thtSt API IPStr I ACOOUIXC t ~ ~ ~ ~ tt~t ~ ~ t ps I
tL ~ t aJ ~ eel I 8*A 4 r k 'sl <<I sl t I Ir I tIL ow) onoua lse' ~ I' Ulc urars I'r'
~ ~ ~
local<<cllrcn,vlunc ~ ~~ ~ ~ ~
~ tttttt ~ ~
tv LICQ t R I~ I~ I~ rLOW'ATC ~ ~ h I <<<< II LH
~ hh S4I=H ~ ~I ttt ~ tt t ~ tttttttttt ~ ~
Pe P1 MO res
~
PsJ Jes OL tVOU ~ lpe r I 'm~Qr'riii
~ ~ t ee 4UCII YHLYC ~ ~ Psrse ~ ~ p rs se \ I<<
L4LCI'll t~
~ tt ttt ~ ~ ttttt ttt t ~ ~
P1 4Y ~ ~ L ttOOtL rs psrst ts se Ol C4LI
~ ~ rs rsp 4 L4QAHYLI ~ ~ t <<\I ~
tt tt ttt tt tttttt
~ ~ ~ ~ ~ ~
ps Q hO LtL70 P\ P1 4AL4ULNI C LI LIUWI'%0 I IiC 8I'I
~ stsp r WCOOUliC pepe erst ~ ~ ttt ~ ~ ~ LVtl I OLD <<lnC I ~ ~ ~ ~ t Visa YC ~ ~ I pe tt~t~t ur ~ 1 PS 5 ~ sIOO I OL Pssts ~ ~ seve LI I IXI1I'IL1 <<tstsrsl I UAltUC t ~ t t ~~ ~ t ttt I ~ t~ ~ ttttt ~ t ~ I LI r OOt Ln-LIX I
~
l ~ ~
<<Jrlr a + <J7 'ALCU'TLGIH aAsreavaw ut a vs Jliu rlr v e vere I AT AHGt F / LIC.U ~ ~ r 4'NI ~ ~ I 'v r lrphI ptl 0cp LILltl'Ic ca t ~ ~ ttttt~t ~ ~ t~ttt~ttt~t LI JH r
7 VJV LI'ICHC 8
~
A PP recaauac
~6 t% ~ OP P ~ ttttt ~ t ~ rL ~
COtA t% rSJA rp prv er vr lcllrcnHluIIc
~ ~ ~
tt~t e ~ tt I J OJJtV JICIJ t A PI Pt rt uw ~ RATF Jh SCFrl ~ tttt ttt tt~ ~ ~ t ~ tt ~ ~
' C P tl JCVC. ~ Fy mf 3/HIR UAL'Vc CQFFFLCLcHT tt tt~ ~ ~ ~ ~ tt ~ ~ ttttttt CV JX37tS Atilt OrcCJI pvp JI vtb pl% 4 rvpr V&ttvLII ~ ~ ~ ~ t ~ tt ~ ~ ~ ~ tttt ~ ~ t ~ ~ tt V J Ak t Cril CALCULATc.D DGI JHSTRc.Atl rocaauoc ~pr ppl ops t ~ ~ ttt ~
PP rc J,c ~ c FS JA rRESSURc DIRGr ACCRGSS MO InC IP ~ ~ Vol r ~ ~ VC 1P t ~ Ltr 7tJr ~ rv IC
~ tlr ~ rvA &popo r t~ t~tt~ P 0% LB-Jh D I Ixltl'IJIr ~ ~ ~
I UAI.tuc t
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I LI CCJ ~ ~ ~
0-sl
1
~ 'L I ! ~ ~ ~ ~ ~ ~
S'o, LIC V POPOA ~ OA V '1 ~ Pe ua L ulx*l~u nl. O % et V ~ et I Jllc. Zt 806 e I lib ~ 0 ~e VtlLVC. LIJH\IC.IC.A l
~ P teel PP Pe t ~ ~ tttt tttttt ~ ~ ~ t ~'I ttt ~ ~ 'A V ~
LIJli 7 t 04v iHCclES e ~ t POPO AO HoQut ulr
~ O&P urP AVOAO ~ ~ O ~ P At AA OAO 0 I oc.oil roc.QQunc.
e ~ tttt ~ ~ t~t~t rJ 200A ~ 3 ' BiA r Ur
~ oAAv Al Q I lac t!I'I pt o oe ~ ~ \OA&Ao ep op I C I'Ir C fhtl I U AC. ~
ttt ~ stat IJt % 00~tV e ~ A eo LIEG t R 1 FLGtN'ATE Ji~ SCr'H tt ttt ~ ~ t~t~t ~ tt ttt AA IJIQ t AAA 0777 IDt
~ ot Apep p t v Avt ee+ AO AA ~ ~
Vol
~ ~
VC. 4UCCC J4JC.IoI I tt~ttt ~ t ~ tt tt~tttt ~ uv ~ r /Of.
~ ~ 0 POA&AVP VA AAO Ql C4JC J4 VIIPIYJ ~ ~ Vet I I ~~
t~tttt ~ ~ tttt ttt tt tt
~ ~ V. J t2PD C. t ~ ~ t ~ tt C~ Ot I PAV CQJtf O MARHiHG: Duw'HB"I'REAil rREBBURE vA JQ I CQ~ ~ AA ae ~ ~ ~ a weeAAAO Q I l1HIX tl I I'IUQI CIC 6 J4 ~ ~e A v pe AAO AAO OAe C lhl QQUIXl t A Va t J 1 TAKXHG 3GvJHBTREAil rREBBURF rA a L t t r f'QJH e
l to t\ \ e \t &
~ t ~ tt ~ ~ ~ ~ t~tt~t~t ~ LOQI'Irlh ~
OJ4J 0/ ~ r Mlm'mar
~ ~ e e .'e AAPOA AAAPOPOA AA rAAPOAAO AC.QQuacuaur OAO O fthm e
4auQ Q ePO I nr ~ P ~ ~ O ~ v ma
~ oe VC, ~ t t t t t L~l JQ t 44V p p ee I QJ 31 IXl11'IJC I UIXLCUF ~ t~tt tttt ~ ~ ~ ~ t ttt ~ ~ t ~ tt ILl tt 474te ~ LD J I'I tee' OP ~
~ ~ ~ ~ ~ 0 I ~
cAL4ULiTJGH AI @Hut E "- to JOCU t t1At1 rp rt rA u44ull ~ ~ Jl'ILI ~ HI rp rprtrrr pt I JI'IC. M~ 4 j ' Yttl
~ ~ ~ tee trp a rr rpe YC JtLHI'ICICr1 t t t ~ ~ ~ ~ ~ ~ t ~ ~ t ~ ~ ~ t t ~ t t t t t a JH~ -'
per pr
~
ret A 'verAr rr A V>V *Isa rILrD I AAt Ate PIP t t t AA 1 P\AAr HoQULUI ~ ~ Pe c,
~ rAAr>>Ar ura ~ 1~
lr1ctwrl rr1coouhc ~ ~
~ ~ tt ~ ~ tt A r JJ C7tO ~
rSJA ABSOLUTF- Ur STREAI'I TCI'Ir r IRATURc. ~ t~ttt OO/ tV I/I V ~
~ .
rLUw'nlc Pt At ~ t1 ~ pt rt 1 ~ Jn Atrpr a4rrl ~ t ~ tttt tttt ~ ~ ~ ~ ttt ~ ~ t P\ A LtD
~
Gr3iovt , peAP
~ 1 HLYC $ ~ t AA0 Apl J4 p prtt1etr rrp 4UCII-J4JCI'll '>>A Apr t raprt ~
tt tt
~ ~ t ~ ~ tt ~ t ~ ttt ~ ~ t Ar4V ~
sJVO 1'O pe A I r A orc4Jr vhnvJ I I ~
~ ~ ~ ~ t t ~ 't t t ~'I~ e t t ~ t ~ t ~ ~ ~ U *tOs ~ t ~
AAAr>>t al.ta I O// tt er ~ A JBVDt 7
~
r" W AP P PI ~ ro Jtt P 1
~ rr 1 Ar ~ t rpr t1Arr J 4 At1 ~ er A ~,p /
1 ~ 1 1 ~ re I'IHhJl'IUI'I ~ ~ ~ ~ I I UW pr AH I C ~ ~ ~ ~ t~ttttt ~ ~ ~ t ~ ~ tt ~ LtQI'Itlh~ ~ tCPOvr" ~ r ep>>
~
Im'mo/, I ~ HLVC ~ ~ r t ~ ~ ~ t t Jll ~ A J t ~ 74 0 P1A rt roJ PII1e1 9 I I'Ittn 1 J 1~ rr A Ja r>>AAAr I uaIIUC t t ~ ~ tt~tttt~t ~ ~ tttttt ~ ~ IJt ~ ODO t t LD J I'I
~ ~ ~ ~ ~ ~ ~ ~ ~ t, ~ ~
~ ~ /
CAI CULA I iUI'I AT ANGLE 30 l~c.Ll t - GCCURLHG N I I LI'lr- = 3t 5'83 e ~ s ~ ~ ~ VC, t a+ s te L~LNI'ICIl'A
~
tttttt tttt ttttt ttttt LILN ~ et
/tvuv LHCHES t's VIVE! ~ ~ ~ ~ tlt\t% ~
Ulc
~ ~ tl uraIAcNrl ~ ~ P%l% tl'% 4 lt rAcaaulic rttK ~ P%P% ~
Ot'arum t t t t t t t t t t t rL DVt0 tlat r&LN %'
~ t &Pit tt W,M Plt ~ I tt tt%t tl I t cl/%tlo't vtl ~
tlDOUI UIC Ul QIArNI'I ICI'll CAN IUAC. t t IL
~ ~ ~ ~ ~
ttt
~ ~ ~ t ~ GEGt R t OW F
Fa
~ tt ~ ~
ANlr Ph a tl tl mwt LI~ OLrrl
~ ~ ~ ~ tt ~ tt ~ t ~ ttttttttt ~ ~ LCD ~ 4 t A t/'h tD/Vt ~
r Tmm3/hR
~ ~ ~ ~ t I~
a urrrLat%+Lrnl J%At I ~ ~ ~ 1 W'NLvc.
~ tttt~tttt~ttttttt ~ ~
Wt It Y
~
po2 t s) I
~ ~ ~ &V\I t%'tI SIC.ILILI O'Pl the% 4 QANVJII ~ ~ t t1 t ~ t ~ t ~ ~ ~ ~ ~ .tt ~ tt ~ ttttt ~ i t 348 MARHXHGt TAKiHG LiGw'hSTREAII rRESBuRr HEGATivE ARGUIHIEHT ~ t t SORT(
P2 i tt/ r SiA
~
tte vuL t/ ~ iM /set tt / 0 ttat I'INhLI ~ I IVI'I
' 4~ ~ t ~ ~
I
~
LUW pl ~ ~ tI Atl tetI r t t ~ ~ tt~~ttttttt~tt~t t%A
~
0///tlt
%h a ~
r miai
~
Imm~/nA
~ tt et' ~a FAESSURE DRQr ACCRGSS THE v'ALv'E tttttt ~h Llrtli io t iaJv reL Pl t%% 'tll' ~ t LI IGNI'ILL ~ t lt'tA +ttlAP1 ~ tP I UAlCUI t~tttt ~ ~ tttttt~t ~ ~ ~ t ~ ~ t ttI LI tlI ~ it8 ~ LSS i I'I
20 LlcG ~ tItttI ~ ~ OA UUUUIXLI'IQ 8 I et \ et0 ~ A % et I Ite L I'lc I I III 4 t A ~ ete ototto ttott ~ ~ 4 ~ ~ 0~ YttLYC I~Llfl'II=ICING ~ ~
~ Ooo ~ o ~ t ~ ~ t t AtLtt ~ A /I OVJVAOAA AI'tlt0 IICV 40 ~ ~ Ot 0%
tI~ 40 t0 ~ OA Plt etl ttt0 I"ArICO QUILL
~ ~ 0 ttt t o o t ~ to I L Oa Its ~ L r @LA i r Itrirrno ~ 000 tI 8i un,c 4 ~ ttIt0 IA1 ~ .
t40 4 Ct/ t ~ V A
'cQt 000 A
~ 4 tI uw ~ ~
~ IiiiI C. tJlt'I t0 4 ~ ~ Plat Qttei 'I 'I ~ ~ ~ o ~ oott ttoooto tot~ ~ ~ ~ ~0 0 ltO ~
07<4 I tP'th J/ / o r Te:f 3/Hk 0 ~ t0 ~ ~
~ t ~ t o ttttttttttt o ~ Lt Y A7Lo7 I
Qrctat'Ll ettI 4000 ~ Ltt atI QAtlYLI I etA I
~ ~ ~
I ooo ~ ~ ~ tto ~ ~ ~ o ~ ~ ottoto tI Q L t37VVA I' tI 4 Wet 4P eA ~ ~ 4 lh ~ WhrII'ILIXQ ~ OtI 4 'I ~ t I'IC.QH e ~ ~ I I L YC, enQUI'lrl~ i tItI tI 40 ~ ~ ~ ~ P ~ 0%
~ t 4 at.tA I 4 A V4IV ~ t ~ NVJ"t ~ / l rricaaurIc ~ ~ ~ ~ ~ OA e . r " ARt 7 r SLA It 4 It et 000 \
rIttnAI'Iua ~ ~ rt.uW
~ ~ t0 ~ ~ 4 me On i C t OA ~ ~ ~ o o o o o ~ o o o ~ ~ o.o ~ ~ o 40 tII ~ It uallna ~
A / '2:-7 ~ r T'i-'I'3/f.if-PRc.SSURF DRGr AI CRGSS THE v'ALv'K o o o ~ ~ ~ Dr L/ ~ tVV raA 'F00 tI ~ ~ I ~ et tI et I t0 4 00 et Lt I lsl'll'IAV I urIltur AOP ~ ~ ~~ o o o ~ o o o ~ o o o o ~ o ~ o o o o ~ o ~ o I Ll 7At ~ I LI AIX~
~ ~
0
e e t ~ ~
~e ~ ~ e ~
e I ,e I C C I e ~ CALCULATEGl'I A I A I'CGLF ~ XO >>e t% Lec V ~ ua a unxlcu Ml I*llr>> = pi 36 I
~ ~
VMr J ~ Vre>>>> e ~ tete pl IeiMI'lrlro tttt ttttttt ttttt tt tt
~ ~ ~ @AM / t VJ V A I'4 Le I I C, O AnSGLUTF Ur BTRFAI'I th>>e ~ t%P1 ~ ~ >> P I AC.ODLIfbl t tt t C ~ ttt tt Pr* 4 P%A>>
raxM~ K p% e e>>e p>> ~ p ph t 0// tV e C I c.l Ir c.aM I ur r
~ ~
t t t ~ t't ~ tL IL +rut n, e tttt ~ ~ ~ tttt ttt ~
~ 8 J%
LCD L/DJOOt 1
>>e 0 p>>e ~ ~
r pI ~mo/nlrb
~ ~ ~ e teeM tt ~ t ~ ttt tt tt tt ~ ~ ~ ~ ~ t Ae ~
LeV '/0 t A V'. e orr s>>e>>a pp ~ I ir pa a e>>>>' aL OI~Mvi I
~
I
~ ~ ~ t ~ tttt ttttttt ~
I
~ ~ t tt LI IJ ~
J& ~ te O t
~ &p% e\te \~
MhVUI'eC.I'I I RFBSURc'tPW&
~
t t OLCAI
~ 4 4
J.IV/ tD ee ~ ~ >> e>> Q + ON// t/ / I Al(4.ICQ 'LeuWI'CB I Rl Al'I F r~ p 4XWt/'e>>raeLII
>> t% a p>> >>e a pp e %A tp ~ t ~ at >> sie et IIMhJI'Iulel ~
rL ee
~ ~
UW AMII t
~ ~ t~t ~ ~ t ~ t t t t t t t t t ~ t A&It LCD I'IM/e ~ 1~ ~ /VOTO ~
t F'RFSSURc. GROr ACCRGBS THc. v'ALv'r
~ ~
tttttt pl p LO t JOV Wee rat
~ %P%>> >>eie 0 >> t\ 0 pt>>epe ep >> +t DInMlliL ~ ~ ~~
I U~LCUC ~ tt~ttt~tttttt ~ ~ ~ ~ tt ~ ~ t ~
~
D& t Ln *I'c
~ ~ ~ ~
5 h. aee. ei
- ee ~v e
'e m ~
~ ~
I i full closed osition. Angle X 0 Upstream pressure H 65 + 14.7 ~ 3$ .35 psia o% < 7s Sec..
/
Downstream pressure ~ Atmospheric ~ 14.7 I psia, valve fully shut~downstream is
~
explosed to atmosphere; no flow in
~
the pipeline. I Ditferential pressure ~p ~ 3+ $5- f4. 7 i9 45 psi' Flow rate is zero since the valve i" fully closed>> 1 Therefore the dynamic torque's zero. Friction torque at the shaft bearing is b ~ (D ).(f .d) hp (ij~~ 2) 8
~ (7 os) {o x5)(,o.s75)(19 G5) -8$ ' ~ I alve seating torque due to rubber friction is 2
T C D = ~5(q.os~ (Eyn. 4) I i%43 c n- Q
'Met torque T. ~ T. + Ts ~ iS27 in-lb Actual valve torque used in selecting the operator and seismic analysis report is 1648 in-lb. This is based upon a higher differential pressure. Since this torque is greater than the static torque calculated above, this is more con-servative and we adopt this as our final value.
Therefore, the net torque for static condition is T ~ 1648 in-lb.
38 RESYISION (A) TO DYNAMIC TOR(UE REPORT NO.. DT-67926 Prepared in response to EBASCO's comments on the above report, outlined in their letter dated 8/22/83. EBASCO COMMENT A'1 A point by point response to Items 1.A,B,C,D,E,1,2,3,4,5,6,F,3,4 5 5 of the ophrability qualification of purge and vent valves and Item 1 thru 8 of Guidelines for Demonstration of Operability of Purge and vent lines are required by EBASCO.
~ ',4 A. Dynamic Torque Coefficient Test Reports are attached.
report gives the description of the test setup. B. Not used Stress report (included in the Seismic Report) E.'he ~ ~ Seismic Reports for valve assembly and associated parts are a'ttached.
.Description of each valve with'haft and disc orientation and the orientation of the fittings in the whole piping .system is not known to BIF, since the piping design is beyond the scope of BIF. Therefore, we present below the I
description of the valve installation that BIF has tested to determine the, dynamic torque coefficients. The dynamic torque-coefficients obtained with a Short radius 90 elbow directly upstream of the valve is higher than that obtained with straight pipe configuration and is assumed to represent the I worst condition in the evaluation of dynamic torque.
39
- 1. Direction of flow is from the elbow towards the valve.
- 2. Disc closer direction is clockwise rotation
- 3. Curved side of the disc is upstream
- 4. The elbow is directly attached to the upstream of the valve. The elbow is a 90 short radius elbow.
- 5. Shaft orientation is vertical. Elbow is iin horizontal plane.
- 6. No other valve present Combinations 1 thru 6 results in highest CT. See BIF Test Report TR-0650-43.
Under the response to EBASCO comment 82 it is shown that the maximum torque developed by the valve's below the actuator rating.
- 3. Analysis is supported by tests. The torque coefficients have been determined, considering the angle of closure,.flow direction, non-symnetric flow from an elbow upstream of valve. See two BIF test reports attached..
- 4. No In-situ. test performed
- 5. BIF has used 3.5 second as the maximum closing time, which is the actual closing time of the valve. In addition to that 1.25 second
~
of instrumentation time is used which lets the containment pressure
.build up. As higher pressure means higher dynamic torque the analysis 's conservative.
40 Item 1 thru 8 of the Guidelines of Demonstration of Operability. erabilit
- l. A constant rate of valve closure is used.
- 2. 'low direction is from the 90'lbow to the valve. The elbow creates the flow non-uniformity that increases the dynamic torque.
Flow impinges on the curved side of the disc. h,p values are given in this repor't at different angular positions. 30 Single valve closure, The valve inside containment is exposed to the containment pressure rise given in EBASCO letter dated Aug. 3, 1982. The calculation is based on this pressure on the valve inside containment and is assumed to be the worst case. '4, Containment back pressure will not affect the closing torque of spring to close air operator. The cylinder piston will have in-side containment pressure at both sides thus it will balance off, then the spring force will close the valve with its full fvrce ~
- 5. No accumulator used.
- 6. No torque limiting device is used for the operator.'
7 ~ The piping upstream is considered to be an elbow and downstream is straight pipe.
- 8. Effect of the disc and shaft orientation has been taken into account during the test. See attached test reports.
EBASCO Comment 82 response to the inconsistency pointed out by EBASCO for 60o to 90 position the following calculations are presented which are identical for
~ ~
10 to 50 positions and therefore are consistent with each .other. Between 60o to 90o the torque coefficients peaks at 80 . If the down-stream pressure is assumed to be atmospheric, as done for 10o to 50 , the the dynamic torque at 80 will be maximum and those at 60o, 70 , and 90 will be less than this. Therefore it is only necessary to calculate the torque at 80o opening. Valve opening of 80 occurs at 1.639 second Upstream pressure of the valve from pressure curve = 23.52 psia Minimum possible downstream pressure of the valve = 14.7 psia Maximum pressure differential p
= 23.52 - 14.7 = 8.82 psi Maximum dynamic torque TD.'= CT max p d =. 0.56(8.82)(7.05) = 1731 in-lb Actual torque capacity of the actuator given by the manufacturer 'ettis company is 2570 in-lb. The actuator torque, being greater than the macimum dynamic torque is adequate to close the valve in the event of a LOCA.
n the original seismic analysis report the
~ ~
static torque value
~
used
~
in calculating the stresses in various components was 1648 in-lb.
~ ~ ~ ~ Under the dynamic condition the torque increased to 1731 in-lb, which is a 55 increase on the previous value. The effect of this increase has been taken in to account by revising the original seismic report with the maximum torque value. This report marked N-67926 Rev.A is attached to this package.
BIF had stated in its quotation that,'he flow data for the valve under LOCA condition would be supplied by EBASCO and BIF would perform the dynamic torque analysis using EBASCO supplied flow data. Therefore, the flow calculation under Comment ¹2 of EBASCO letter dated 8/22/83 is beyond the scope of this contract.. EBASCO Comment ¹3 I I References 2 thru 4, and 8 are open literatures, e.g. journal and books. References 5 thru 7 are BIF reports which are attached with this package. EBASCO Comment ¹4 Equation (4) is the conversion of actual flow to flow under standard condition of 60 F and 1 atmospheric pressure. Pg, TI, and gA are actual pressure, temperature, and flow rate of the valve in1ei.condition. Ps = 14.7 Psia, Ts = 520oR, and gs are the same Parameters at ihe standard condition.
43 Por further clarification, refer to, Crane Technical paper No. 410~ 1981 rinting, page 4-9, Example 4-16. EBASCO Comment 85 BIF to ascertain that the valve closure period is 3.5 seconds. All valves will be tested for speed of closure at BIP before shipment. Valves above 3.5 sec. will be re)ected by BIF Q.C. However, BIF does not have any test data. of speed of closure of s'pring loaded cylinder when it is bled into higher than. atmospheric pressure. BIF's recommendation is to pipe the exhaust port of the solenoid valve to atmosphere to insure the 3.5 sec. closure period. EBASCO Comment P6 On page 14, reference 10 should have been reference 8. This has been corrected in this revision. EBASCO Comment 87 r The maximum dynamic torque recalculated under EBASCO Comment 82 with a valve downstream pressure of 14.7 psia is shown to be 1731 in-lb. This is lower than the operator capacity of 2570 in-lb. The valve components are reanalyzed with the higher dynamic torque in seismic report N-67926 Rev. A and are shown to be safe.
0 l ~ I!' I~ I
~ ~ ~
I ~ ~
~ ~ ~ ~
I I ~ \ ~ II
\
hPPENDIX
gBASCO SERVlCcS lfiCORPORATED EE~cCO TwoNorld Trade Cen(er, New York, N.Y. 10048
-- -.--.;,'-:.-,g3'F -9'75'M kugust 3, 1982 - Pile:9Q-BE-35 W
Jr R,. ~pop> Mr Daniel P Cyronak BEF dd.'~ <ZLLACYt 1600 Division Road Vest Varwick, Rhode Island 02893 d I
~ ~ CA" I: ~ 'ear Mr Cyronak:. ~ ~,
SUBJECT:
SHEARON HARRIS: NUCLEAR POLAR PLAIT PERFORMANCE OF 8" NOR~r~ CONTAIi~KNT PURGE BUTTERFLY VALVE
'CONTRACT NO. ilY-435211 & 435212 NUREG-0737'Item II.E.4.2 - Staff Interim '. 'osition
REFERENCES:
1 of October 23, 1979 Table of flow through 8" containment. purge valve for worst LOCA pressure 'utterfly
~ transient case 3 NRC Question No. 480.40 Xn order to satisfy tne Reference 1&3 requirements we must establish perability of the subject valve under the most severe design, flow conditions.
basis'ident We r~euest Rout confirmation that .the, reeuired valve thor ue during maximum flow conditions showm in Reference 7 wi 1 not exceed the capacity of the valve operator and that the valve will close and remain tightly closed. The following is pertinent data you may need to perform the analysis: I, The containment isolation signal which initiates valve closure is energized at 0.75 seconds into the LOCA when the containmant pressure reaches 4.5 psig. Processing time for the signal so that the solenoid valve Roses power is 0.50 seconds. The butterfly valve operability shall be demonstrated where the valve is 30 and 50 open taking no more than 3.5 seconds
-for the solenoid valve to bleed the instrumentation acr and close the butterfly valve. (BIF is to indicate at wnich point (
during the closing cycle the highest dynamic torque will be experienced.) O.
OI2a ~
~ ~
Should you require more information don't hesitate to contact us.
/ y o ~ ~ ' C I / % ~ ~ P 'l.
I o J f\
~ 8 ~ ' Very truly yours, ~ ~ ~
J Berenberg Supervising Engineer Mechanical Engineering By: ielaws~i H Gruen Enclosure HG:am CC~ I L Loflin L 8 Martin e
~ ~
L Hillis
~
R N Parsons
~e ~ ~ ~ ~ ~~ 0
~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~
e '0
v i ~sou g (pt cg 4.Cl ~ U ] ~n e
~~~ T'ocA I'P,E'55URE Tgh H 5l.=NT cA>E.
I
~ 1 '~ (Alit+ q 'time Containment Tr ~ib Mixture P1ov Through Nteso pressure, psia F'ensity Ibm/ft3 the purge line, cfm ~ . J 0,0 74.8410 0 0690- 1684.1 0.25 15.6067 0 0?23 .
4171.9'1(A.O 0 50 . 17.449'9 0,0756 ~ 0.75 0012 0.0786 8714 8
},00 -. %0 4054 Oo 0815 98'56.9 0 li~'.5 22 9289 0 0869 11464.0 2 0 25,1647 0.0917 12585.0 2.5 27.1488 0.0960 13415.4 3,0 . 28,9469 '0+0999 14068. 6 ~
3'5 30.6054 .Oe1035 14604.2 4,0 32.1655 Oi1069 15058.3
.4.5 33.6407 0+1101 15451.8 -I 6.0 - 34'538 '5.0648 3? 4830 .0;1117 0 1133 0,1185 . ..15626.9,'.
0.0, 0 0 7.0 40. 0838 0,1242 0.0 8,0 42.6072 0+1297 0,0 9 0 44.5073 0.1338 0.0
, 10 0 45.9028 0,1368 0.0 11;0 .47.3242 I ~
0+1399 .0.0 I BCA DEHLG MQi Sl ~ / o
~ ~
D FLotu t$ YyPtChg FoP E:S. e P) 2 cp- S3 s<-~ 2 (p- Bs sw-! z (P- Py g
>8+ <<> Sp="c Ccr.-;,. p-.,',
<~ g~ 2,ee-slsA. -u~ogZ't PR&85, g 3 2 cP-325$ -447927 RNIc W N70f. @vb gggug S - .= Z
~ ~ Caxw Ac~~ ~S~ 2CP-S&~B"%67927 VN.vG TczQUC Ilgo ~ P~ xE.Q~ <vtb/4, TbaQv l8D5 ~r* lb~/>> Lo g ~Pe r 0 ~ f ~ JI 2, ATTACHMENT 1, 0".TOBER 23, 1979" IHTERIH POSITION FOR CONTAINMENT 'PURGE AHD VENT V:".'lE OPERATION PENDING RESOLUTION OF ISOLATION VALVE OPERABI LIT f Once the conditions listed below are met; restrictions on use of the containnent pvrge and vent system isolation valves will be revised based on our review of your responses to the November 1978 letter on this subjec justifying your proposed'operational mode. The Novenber'978 letters to all licensees identified certain events related to containment puroinq of concern to the NRC and requested commitments to either cease purging or jus-i y purgirg operations. The revised restrictions can be established separately for each system. (1) Whenever the containment integrity, is required, enphasis shovld be placed on operating the containment in a passive mode as much as possible and on limiting all purging and venting .times to as low as achievable. To 50stify venting or purging, there mus~ be an established need to improve .. lrorking conditions to perform a safety-related surveillance or safety-telated maintenance procedure. (Examples of improved working conditions Mould include deinerting, reducing tenperature,"" humidity, and airborne activity sufficiently to pernit efficient performance or to significantly reduce o'ccupational radiation exposures.) (2) Haintain the containment purge and vent isolation valves closed whenever the reactor is not in the cold shu down or refueling mode until such time or owe ass r L aL VIIV'll4lr ) V4 ~ ~ 4OI ~ ~ ~ ) All isolation valves greater than 3-in. nominal'iameter vsed for containmept purge and venting operations are operabl.e tinder the most severe design-basis-accident (DBA) flow-condition t loading and can close within the tine limit stated in the technical specifications, design criteria, or operating procedures. The operability of bu'terfly . valves may, on an interim basis, be demonstrated by limiting the valve to be no more than 30 to 50 open"(90'eing full open). The maximum opening shall be deternined in consultation with the valve supplier. The valve opening must be such that the critical valve parts will not be damaged bv DBA-LOCA (loss-of-.coolant accident) loads and that the valve will tend to close when the fluid dynanic . - forces are irtroduced, and (b) Hodifications,. as necessary, have been made to segregate the contain>> Nugent ventilation isolation signals to ensure that, as a minimum, at least one of the automatic. safety injec ion actuation signals is Llninhibited and'perable to initiate val,ve closure when any other Isolation signal may be blocked, reset, or overridden. ~ 9 Previously referred to as DOE Interim Position..... ~ w ~ ytO~Q ~Only when temperature and .humidity controls are.+ot jn the ~pr.ese'nt design. ~ ~ ) ~: . ' $ ~ ~, ~ ~ ~ g I 4 p ~ r ~ M a ~ .1I.E.4. 2-4 3-93 ~ % 0,06 4. ao - s,aa, iz.oa >e.oc. ao.ae zc.ao .-a.oc sz.oo a6. ao rr<<E r."-:L-C) EBASCO SERVICES INCORPORATED Two World Trade Center, New York.N.Y. 10048 August 22,1983 Pile.: 9Q-BE-35 Reply requested by: Sept 12,198 Mr Dan Cyronak I BIF 1600 Division Road West Warwick, Rhode Island 02893
Dear Mr Cyronaki . t,
CAROLINA POWER & LIGHT COMPANY C'UBJECT: SHEARON HARRIS NUCLEAR POWER PLANT
~or -t PO NY-435211 & 212 EBASCO SPEC CAR-SH-BE-35 REV. 7 OPERABILITY QUALIFICATION OF CONTAINMENT PURGE VALVES '; - ~ 7 6 't-<
I
REFERENCE:
- 1) Dynamic Torque Calculation of Butterfly Valves dated 6-30-83
- 2) Ebasco letter to BIF datedt'April 8,1983
- 3) Ebasco letter to BIF dated September 1,1982
- 4) Sketches SK-1,2 & 3 dated 8-16-83 We are disapproving the reference 1 report due to the following:
The report does'not address the problem in its entirety: The reference 2 & 3 letters had enclosed sketches as well as NRC requirements that have to be met as regards the operability of the subject valves. We request a point by point response to Items 1.A,B,C,D,E,1,2,3,4,5,6,F,3,4&5 of the Operability Qualification of Purge and Vent Valves attachment (Item 2 will ~ be responded to by the client) and Item 1 thru 8 of the Guidelines for Demon-stration of Operability of Purge and Vent Lines attachment. These responses should be made part of the report.
- 2) The argument presented on page 22 thru 25 and pages 32 thru 36 point8 to an inconsistency in the entire approach to the report-for the 10 to 50 valve disc position, 14.7 PSIA (atmospheric) is taken as (P ) the downstream pressure while for the 60 to 90 valve disc position 17.7,19.$ ,20.1 and 19.0 PSIA respectively is used for (P2) as downstream pressure.
0 0 We calculate that when'4.7 PSIA (atmospheric) is used, as in the 10 to 50 position, with the 80 valve disc position the dynamic torque (T ) exceeds the design torque (1727 in-lb verus 1648 in-lb). (As a clarification please be advised that the flow data that were initially transmitted to you in the Aug 3,1982 letter was based on a fixed "K" of 2.92, for conservatism, with atomospheric pressure considered upstream of the valve.)
e are therefore enclosing (reference 4) sketches SK-1,2 6 3 dated 8-16-83 hich depict valve verus duct arrangements for your use and suggest that ou recalculate and take credit for the upstream and downstream ductwork pressure drops in order to reduce the flow rates to the extent that it will show not to produce undue forces on the valve disc. It should be noted that only seismic ductwork can be taken as credit for additional resistance.
- 3) Attach copies or excerpts of reference 2 thru 8 listed on page 4 of the report to report.
- 4) Equation (4) on page 6 is not referenced to a source. Provide reference.
- 5) Provide qualification that the valve will indeed close in 3.5 seconds from the receipt of signal to the solenoid valve to the full-close position.
- 6) Page 14 refers to reference 10 however is not listed on page 4 of the report.
- 7) Values should be quantified rather than using terms "much higher" and "much smaller" on page 25.
Should you have any comments or need more information, please advise. Very truly yours, J Berenberg Supervising Engineer
~
Mechancial Engineering HG:rob ~p~ ~A &Ac cc: L I Loflin L H Martin J L Willis R M Parsons
TRW650W3 2-2442 8 IF A UNIT OF GENERAl SIGNAL TEST REPORT HYDRODYNAMIC AND HEADLOSS TEST OF 12" -150B BUTTERFLY VALVE WITH DIRECTLY CONNECTED SHORT RADIUS ELBOW UPSTREAM. TEST PERIOD: May 8 June, 1980 TEST ENGINEER: K. Kormos APPROVED BY: D. Szila i Report prepared by: K. Kormos, January 20, 1982
PURPOSE Oc THE TEST To tablish Flow (Kv) and hydrodynamic torque (Ct-) coefficient of a Butterfly V with directly connected short-radius elbow. INTRODUCTION The test was conducted in the B I F Hydraulic Lab. Test setup is shown on Attachment ¹1. Prior to the eblow test the 12" pipe headloss without and with installed valve was measured in straight pipe (Attachment ¹2). The taps used to measure head-loss at the elbow test were located at the same distance from the valve as at the straight pipe test. Plotted headloss curve: Attachment ¹2A. The test val've shaft was provided with an adaptor for torque wrench, with a safety torque arm and a pointer for setting the valve disc to the desired test angle. The valve body- mounted heavy steel plate, was provided with holes for 5/8" bolts which were limiting the torque arm motion and was also used to fix the valve disc in any desired position. Valve and elbow dimensions: Attachment ¹2. Six elbow tests were performed as follows: Vertical shaft: (Atta'chment ¹3)
Attachment:
Flat side of disc upstream, CCW Opening: ¹5 Flat side of disc upstream, CCW Opening: ¹6
- 3. Flat side of disc downstream, CCW Opening: ¹7 Flat side of disc downstream, CW Opening: ¹8 For plotted data see Attachment ¹11, 12, 13 5 14 I I. Horizontal shaft: (Attachment ¹4)
Attachment:
- 1. Flat side of disc upstream, CCW Opening: ¹9
- 2. Flat side of disc downstream, CCW Opening: ¹10 For plotted data see attachment ¹15, 16', 'i7. fi 18.
0 TEST PROCEDURE Details of the operation of the Hydraulic Lab are not described here. The Lab provides the. means to collect water in a scale mounted 50,000 lb. tank and to measure collecting time accurately. The accuracy of this flow rate measuring method is better than +0. 1%. The flow rate thru the test valve was set by manipulating electrically driven valves. There were two limiting factors: the upstream pressure must not drop under 60 PSI (lower pressure would overload the p'umps); and the maximum differential could not be higher than the range of the manometer (50" Hercury). For every 5 setting of the disc from 10 position to 90 , the procedure was the same as follows:
- 1. The dis'c was set to the desired angle by wedging the safety torque-arm between the 5/8" bolts.
I
- 2. . Flow was measured by collecting more than 45,000 pounds of water and reading the differential pressure on the manometer at least 15 times during the run.
From the test data (weight of water, running time and average of the means meter readings), the flow rate,'elocity, valve headloss and flow coefficient were calculated.
- 4. 'he disc position was held by the torque wrench. while the wedges were removed. The opening and closing torque was read in motion of the disc by. turning the disc position a few degrees under and above the original setting and reading the torque wrench when the pointer passed the setting.
- 5. From torque wrench readings, the dynamic torque coefficient was calculated.
All test and calculated data were recorded on log sheets, and the coefficients also on graph paper.
E UATION USED FOR CALCULATIONS Differential Pressure thru Valve: Pv PSI Differential Pressure thru Pipe: Pp INHG Differential Pressure thru Valve 8 Pipe: Ps INHG Ps
+V g,+0+
Flow rate: g GPM Meight of collected water :: M LB Specific weight of water at water temp.: LB/FTS g< Collecting time: 1 SEC.
$ 48.8'5 tel
~ Fluid velocity:
~ ~
V FT/SEC ort Area:~ A FT2 A = 0.739 FT2 448.83A Bearing torque: TB INLB Bearing Dia. d IN d = 1.5" Di.sc area: AD IN AD
- 106.14 in2 Friction factor: ~ = 0.00 (Tefion per D.S.)
Dynamic torque: TD Opening torque wrench reading: To Closing torque wrench reading Tc Dynamic torque coefficient: C
<'isc diameter: D IN D =, 11.625" Flow coeffi.ci,ent: Kv Acceleration of gravity: g g - 32.17 FT/SEC2 Line 0F Temp. Kl... K2 V 76 7.220 149.054 62.1582 77 7.221 149.076 62.1493 78 7 223 , 149.097 62.1405 79 7.223 '149.118 62.1316 80 7.225 , 149.139 62.1228 81 7.226 149.163 62.1131 82 7.227 149.186 62.1034 83 7.228 149.209 62.0936 84 7.229 149.233 62.0839 85 7,231 149.256 62.0742 86 7.232 149.282 62.0636
NOTES: Torque readings on a calibrated hand held torque wrench is not better than +~ 10 because it is impossible moving the disc for reading opening and closing torque at any disc position with the same moving speed, and reading it when the pointer passes the test position; the torque wrench pointer vibrates and there is also a parallax problem.
- 2. The here published test data should not be used for extrapolation another disc shape is different from the tested one.
if Test in straight pipe with attached 8 x 12 increaser upstream of the valve points to shape effect. (see test report ). (~~ L ~J Wr
-'6-
O r ~4 A N C Z
%9oam~~m<~~MSoM sl 0 ) ~ll R,$
KR p ~l> W JSOESFKC;" BaM. I 84 NL3LVh; Wl=.iYih. ffj C7 . gl c c I A
..>hsz sat'uv.
Flbow uPSYRFQH OF 5.9, S Q a 0 p) C 0 g :.C
's7 I '1 .J )l:
r 2 0 l 1 rl
-)
f C p 3'3 0 0
?
0 0 0 0
I s
,I a '.I as Ii.1 ',: ~
et ~
$ ea Ie I ~ ~ i >> r r ~
t ~
~ ~ I ~ ~ ~ ~ ~ f ~ ~ ~
I ~ ~~ ~ ~ I~~
~
rIe ~ ~ I' I II4
~ ~
II jl ~ s
~ ~ ~ ~ a I ~ I~ ~ ~ ~ ~ sra .I )I I ~ IT)"I, lie! ~ ~ ~
I .Ise ela Tfi Is
~ I~ Is!i Ill I, II I I !la. ~ ~ !
I is III
!Ill I.
111
~ ~ ~
i-(
~
1 I I iI ! I II
~ ~ ~ ~ I ~
il!t lais 1
~
1 ~ f tsh IT 1 I II~ I II
~ ~ ) I.s !its II! II'.
Ili! i I ~ I
~ ~ Illj I';; ~ ~
4 !!J!
!,!l I
I"; 1
!!I sss I I l
I Ijl '.th 'I I
~ ~
I I
~ ~ I I
II ~l ~ I 1 't I II 11
! ~ !!.I 'I Isle 1' i!!I I Ii ij I I I!Is It IIII ~ ~
II
!~ ~
I-t. I 11 t. II
~ ~
alja I li!I ltl ! III Is II
,'I j llll II ij I I '.1! I Ie I I Jl I il II t ' /,I a !,I I Qii L (III I IIj ilsi I
L,l rjl > ~ 4~ I~ ~
)l .I. .!, ~ ~
ay I I III ! l t. :.Ili Il)
~ ! ri'; 'fi i! !'I I I !I"i ill I I'I .I I ,I I
I, j!Il
! I l ~
II :lot ll: ji 's Il II t :I ii;! il li 1 f ~
~ I ~
I I ll it J~i I, [I Leo 3.ooe J 'ar& w ~ ~ r-? Ca Ce Q~ $ e aae %~
~ W ~ ~
CCvl O'PE 'LQG,Kvv<~E cm
>RT 9>A oPp HiHC>
(l.C i" ~ ~ I l
'L I I
l I l ( z3+s 4'7 t e I I ~' 1
/+SCAl E.
A VNlT Ot OtNtltAI 5ICNA4 II LLAMA
~ ~
VA LV4 f .OO I) IA r
.I O'W. +LB.FC..UCl.'N:-
I I I ' l I 1 I I I DR DATE KiK C)"c.6, - 8Q 4 UK't 4CNCIIAI SIOKAI
~ ~ I~
I<< I
~
r t
~
V f't~t:, --" --
~ ~ ~ ~.
T
'+ ~
t
~ I ~ ~' ~ ~ ' I ~ ~ ~ ~
r2t 4 ~ ~ w'."PM':Xk
~ ~ ~ 4a ~ ~ ~ ~ ~ ~ + ~ t ~ ~ ~ t tI 2 ~ ~ ~ ~ ~ f ~ ~ f ~ ~ ~ ~ j ~ ~ I' ~ ~ ~ ~ ~ ~
4~
~ ~ -'lj +2=-::=-=
I ~ A I =-2'
~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ f ~ ~ ~ ~ ~ ~
I 4r t
~ ~ ~
- .:.i....:...'-
~ ~ ~ ~ ~ ~
I
~
f~ t
~ ~ ~ ~
f ~ ~ ~ ~ ~ ~
~ ~
tt ~ ~ ~
~ ~ ~ ~
4
~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
C;c.iV Rc7 Ai[o.~l-: f
~ ~ ~ ~ "~ ~ ~
II ~ ~ -
~
t.~- tt ~
~ ~ ~ ~ I a ~ ~ ~ ~ ~ ~ ~
t
~ ~
I
~ ~~ ~ ~ ~ ~ ' ~ ~ ~ "-'-2 t ~ ~ ~ ~ ~
2' r~ ~ t
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r ~ 4 ~ << ~ ~ ~ ~~ t ~ ~
Y
~ -- ISP.- ~
i It ~
~ I I ~ I =:2 ~ ~ ~
f I ..2- ~-- ~ ~ t~
~ ~
~ J ~ ~ ~ ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r t~ ~ ~ ~ ~
0 la Ro So 4o 5'o 6o 7o eo 9o
fo 0
~5 I ~ I I r '! I I 1
O 0 v I I I I I I I l I I Q I I I ~ I I I I g I 4 J LI I IA 0 6 %o AO 5Q fa Ga Sa
~ I~ ~ ~ ~ ~ ~ ~ ~ ~ 1 I 4 4~ ~ ~
4
~ 4
~'
"~
t I ~ ~ ~
L I 1 ~ ~ ~ ~ 4 t I 4 t 4 ~ I ~
- 4. ~ 1 ~
4
~ rl 4 4
1 ~ ~
~ )4 )
4 w+ ~ t ~ 1 4
~ ~ ~ I ~' ~ ~ ~
4
~ 1~ '
I
~ I 4 ~4 't~ I ~ +
4 I~
~ ~ ~ 4 t ~ '
I~ 4 t ~ t 4
~ l ~ t ~ ~ ~ 2 ~
4 I 4
~ ~ ~ I~ ~ Li ~ I ~ ~ I I~~ ~ ~ ~ ~ ~ ~ ~
44
~4 4 4 4 ~ ~ I \
I" 1 4
~ ~ ~ I ~ ~ I ~ . ~ ~ ~~
5XR~ r ~ ~ ~
~ ~ 4 ~ 4 4' ~ I.. ~ ~ ~
4 ~
~ ~ ~ ~ ~
4 4~
~ 4 ~ ~ ~ 4 ~ 'I ~ I~ ~
I 4 ~~ 4 4 I ~
'4 ~ ~ W ~ ~ ~ ~ ~ ~ I~ 4
- 4) t ~ 4 4
4 ~ ~ ~ ~ I ~ ~ t~ ~ 4 ~ ~ ~~ I
~ ~ I ~ ~ ~ 4 ~ ~ ~ ~ ~ ~ ~ 4 ~ ' ~ ~ ~ I ~ ~
I 4 ~ I
~ ~ ~ ~ ~ ~ ~' ~ ~ 4 I 444) 4 t ~ t W ~ <<a ~ ~ 4 4 ~ 4 I~~ ~ ~
I
'L ~ ~
t~ ' r ~ ~ 0 le ho 'bo Wo Sa i a 7O 8a 9oo
e Z e
~ I 1 ~ 1 0 Lo 'L Qo +~ 5o Go do o}0 0
1O 0 e I t o i>> 'Y.~~
; ~~~lC ~ y ~ \ ~ ~ I I ~ ~ ~ ~
y
'p Ls' I ~ y ~
I /- s I ~ 1 I ~ I
~ I I I I ~ C ~ ~ ~ \ ~ g ~ I ~
1 1
~ ~ l ~ ~
4 ~
~ ~ I, ~ ~ + "¹ ~ t~ ~ ' ~ l ~ I ~ ~ ~
I
~ r r ~ >> ~ ~ ~ ~ ~ I W~ ~ t ~
I ~ .~
~ ~ l ~ ~ ~
I
=r ~ ~ ~ ~ ~ ~ ~ ~ ~ +
I
~ t ~ ~
r
~ r R,4P.' ~ ~ ~ I 4 7-'v-!- ~ 4 4
Z.op~A, I ~ r44 V Wl I ~
~ ~ ~ ~ ~ ~ ~ ~ 4 ~ J I ~ ~ l I ~ ~~ "~r' ~ ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ ~
l
' ~ l ~ ~ ~ ~ ~
J .~ 4 ~ 4>> t~
~ ~
r ~ ~ I~
~ ~
I
~ ~ ~ ~
4
~ ' ~ t ~ ~ ~ ~ ~ ~ -'-'::gc.vJ Q.QTr ~7LQQ ~ ~ ~ 4 ~ ~ << ~ ~ I ~ - ~ r ~ ~ \ ~ 4>> ~ 4 ~
r 4. ~ ~ ~ ~ ~ ~ I
~ ~ ~ ~ ~ ~ '
4 I~ '
+ ~ ~ ~
0 lO 'Ko 3o 4a C'o Co Va a ~ 'lo~
1 0 S 7 ~ 2 1 I o to Z.o 5o 4o ~' 4+ 7o ba 4
4
~ ~ ~ f ~
- 56: 35.Y.
Ck
~ t Qr f
I:Q~
-H 6.BX:7 o3%TA.t~~H A'FF=-= ~ ~ ~ "g 3~ +g So 6a 1a do 5o
B I F A UNIT OF GENERAL SIGNAL TEST REPORT DYNAYiIC TORQUE 8 HEAD LOSS TESTS OF CAST IRON STREAYiLINE DISC VERSUS FABRICATED FLAT PLATE DISC P.repared By: F. E. Hart Approved By: ~-- $ ~2~ l600 Division Rd. Nest Marwick, RI 02893
TABLE OF CONTENTS
~Pa e.
ABST RACT ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ o 1 PROCEDURE ~ ~ ~ ~ 2 CONCLUSION . ~ ~ ~ ~ 5 FIGURE 1 . ~ ~ ~ ~ 6 FIGURE 2 . ~ ~ ~ 0 7 CALCULATIONS . e ~ ~ o 8 TEST LOGS 5 GRAPHS
ABSTRACT Performance tests were conducted on two 12" Class 150-B Butterfly Valves of the t1odel 0658 design with sewage rings. One valve was con-structed using the standard streamlined cast iron disc, the other a fabricated flat plate di.sc. The B IF Hydraulic Laboratory was utilized to perform tests on each valve. A 12" pipe line was used to mount each valve on individually to perform its series of tests. With flow passing through the valve, the disc was set at a specific angle of opening. These angles were 5, 7l;,. 10o and each 5 increment to the full open position of 90 . At each setting, torque-measurements were made with a torque wrench to determine he amount of torque required to
~
move the disc from the set position and return the disc to the set position. ~ After determining the torque, the disc was held in the set position while the flow rate was measured. This was accomplished by diverting the flow to a weighing tank. Weighing the amount of water in the tank and m asuring the time required to obtain ~ the amount of water. The differential pressure was measured at each setting by using a well type single tube mercury manometer. Each valve was subjected to two sei.ies of test runs, one with the . flat side of the disc upstream and one with the flat side of the disc downstream. These series of test runs resulted in determining the dynamic torque
'I and head loss for each disc positioned in the pipe line in both positions.
PROCEDURE Tests were performed to determine the dynamic torque coefficient (CT) and the coefficient of flow (Kv) of a 12" Class 150-B valve, t',odel 0658, with sewage ring. Two valves were used for the test. One valve was constructed with a standard streamlined cast iron disc (Part No. B-189325-1), the other with a fabricated flat plate disc (Part No. C-216994). Prior to the valve test runs a pipe calibration run was made, with-out the test valve installed, to determine the pipe head loss. For the calibration run, a 20" water micro "U" tube manometer was used to differential pressure. With the determined head loss,
~
measure the a
~ <eighing tank was filled with ~
a timer connected so that flow rate could be determined.
~
The results of this run appear on Test Log >1 and Graph 81. Each valve was installed in the pipe lineI'assembly (Fig. 1) in two positions; one position with the flat side of the disc downstream, the other position with the flat side upstream. Each position of the valve was with the shaft in the vertical position to eliminate the effect of hydrostati c torque. For test purposes a lever operator was installed on the valve with a socket adaptor located over the center of the shaft for a torque wrench. Each valve was tested at 5o, 7~, 10o and each 5 increment to 90 for
~
oth positions. part of the lever assembly to
~
A mounting plate made up permit "C" clamps to
~
be used to position the lever arm in the specified positions. The first test valve installed contained a cast iron disc with the flat side of the disc downstream. \ Two mercury well single leg manometers (one 50", the other 100"), were connected to the pipe at points indicated on the log sheets. The manometer used was determined by the differential encountered for the different angle settings. Water was introduced into the test line and ai r was bled from the manometers, manometer lines and test line. The manometers were zeroed with no flow through the test line. A
~
run consists of setting the disc at one of the desi red angles and
~ ~
adjusting the flow through the'est valve with the control valves located downstream. After the flow had stabilized, torque readings were taken and recorded, Tl being the torque required to move the disc from the set angle and T2.the torque required to return the disc to the set angle. The torque reading procedure was repeated until the torque readings themselves repeated and stabilized. Following the torque reading procedure 7 flow rate was measured. This was accomplished by diverting the flow
'he I
l through the line to a weighing tank by use of the vertical switchway. A timer was hooked up to determine the length of time the switchway diverted the flow to the weighing tank. With this data, the flow rate was 7 determined. While the weighing tank was being filled, differential pressure w 3
4& readings were taken from the mercury well manometer. The average of these eadings appear on the test log under&PS. This run procedure was followed for each desired angle setting and the results recorded on the log sheets . At the completion of the series of runs, the valve was relocated in the pipe line 180 from the first position resulting in the valve disc being located with the flat side upstream. Again the system was bled of all air and the same series of runs were performed trying as close as possible to maintain the same differential pressure. For the second test valve with the flat plate fabricated disc in-stalled, the same series of runs were performed with the valve located in the positions in the line. results of these tests appear
~ ~ ~ ~ ~
same two ~ The
~
n the following logs and graphs. ~ Cast iron disc with flat side downstream, Test Log 82, Graph 82 5 2A. Cast iron disc with flat side upstream, Test Log 83, Graph 83 8 3A. Fabricated disc with flat side downstream, Test Log J4, Graph 84 3 4A. Fabricated disc with flat side upstream, Test Log 85, Graph f/5 8 5A.
- 4
CONCLUSION For valves positioned with the flat side of the disc downstream, the coefficient of flow with the disc full open, for the flat plate disc was 1.58 times greater than the cast iron disc. The dynamic torque coefficient, with the disc full open, was 1.14 times greater in the . fabricated disc than in the cast iron disc with no negative torque . experienced from zero to ninety degrees. Each disc reached a maximum torque at seventy degrees. For valves positioned with the flat side of the disc upstrea", the coefficient of flow with the disc full open, for the flat plate disc
~
was 1.82 times greater than the cast iron disc. ~
~ The dynamic torque efficient, with the disc full ~
open, for the flat plate disc was 1.89
~ ~
times greater than the cast iron disc. ~ A
~
negative torque was experienced in the flat plate disc at 60 and at 75 for the cast iron disc and continued up to the 90 position. A maximum torque was reached at 45. for the flat plate disc and 25 for the cast iron disc. The same comparative results should be obtained on other discs tested under similar conditions and having the same disc diameter to C thickness ratio (Fig. 2). v/E) 6H[ wG-l ANtC A WASTE Tcsr vaLvE gras W t ya ~/v tv
DISC DIrYi'iEwER TO THI Clw>~)ESS RATIO STREAHLINED CAST IRON DISC FABRICATED FLAT PLATE DISC l FIG. 2
~i CALCULATIONS DIFFERENTIAL PRESSURE DP - DP 2.244
>Pv = differential pressure of the valve (PSI)
QPs = differential pressure of test valve and pipe (IN. Hg.) 'DPp = differential pressure of pipe (IN. Hg.) 2.204 = conversion factor (IN. Hg. wet to PSI) FLOW RATE (0.01607)(7.4805)(60) Q
= flow rate (GPN) ~
water collected in weighing tank (LBS.)
~
M = ~ t = time required to
~
fill weighing
~ ~
tank (SEC.)
~
0.01607 = conversion factor for water in cubic feet per pound 7.48 = conversion factor for water in gallons per cubic foot 1/60 = conversion factor (seconds to minutes) FLUID VELOCITY 60 7.5 A Y = fluid velocity (FT. PER SEC.) Q
= flow rate (GPM) 60 = conversion factors (minutes to seconds) 7.48= conversion factor (gallon to cubic feet)
A = area of valve port (ft.2) DYNAMIC TOR UE T - T TP= ~2 x 12 iTD = average dynamic torque (IN. LBS.) T1 = torque in opening direction (FT. LBS.) T2 = torque in closing direction (FT.LBS.) 12 = conversion factor (FT. LBS. to IN. LBS.) COEFFICIENT OF DYNAMIC TORQUE TD Z~Py D
.CT = coefficient of I dynamic torque (dim~nsionless)
TD = average dynamic torque (IN. LBS.) DPv = differential pressure across the valve (PSI) D = disc diameter (IN.) COEFFICILNT OF FLO',( 144 2 Kv = V w Kv = coefficient of flow (dimensionless) >+= differential pressure across the valve (PSI) 144 = conversion factor square feet to square inches V = fluid velocity (FT. PER SEC.) t g = acceleration due to gravity (FT. PER SEC.2) w = specific weight of water (LBS. PER FT.3)
- 4' i
EST LOG II TEST gl ZB Xm HYDRO" CALIBRAT ION LOG TYPE METER; tIPE LOSS CALISRATIOM R'PA FOR 12" 0/V TEST CALIBRATED BY Ie A4J~I~ '4C~ 444 I E: X P ETA:- S/ N I- ORDER N>,:- 03422 R DAT E: 4/3/75 Tl ME WEIGHT (4) TEMPERATURE t. PIPING SKETCH RUN TANK TIME 0< MANO DIFF. N PRESS. (PSI) A VG. bC h Pp X 1000 N t. OF (SEC'S) GPH USED PK-PK DIFF. DI F F. ('/.) V ~ Rp DAY SED START STOP LI N E ROOM MANO ('/o) R'DOS HROA MANO. A.II. 55 653 20" CONDITION OF PIPE: 8:44 A 6534' 495614 55.653 79 73 3 6328 1. 28. 1.4 1. 228 23 20" LEAK IN LOOP: 8:So 7604 I gIOO 68.623 79 73 3 5084 yet 64 10.090 10.03 0. 8
- g. 51 20" ECCENTRICITY: 9:17 A 7664 49170' 83.451 79 3 3905 If4 6.041 6.00 O.47 127. 720 I 2 04 4
Ml S MATCH 9:27 647// 4980M 127. 720 79 70 2778 IIV 65 3-105 3 '9 0.246 221.342 04I CONDITION OF METERI 9:37 A 74&F 4g705f 221.342 70 I 596 IM 1.0644 1.06 0.0 P(<Atria) IOO INCH MERCURY SINGLE LEG: 50 INCH MERCURY SINGLE LEG: IOOWM 50 WM 100 INCH WATER U- TJBEI 20 INCH WATER MII RO-U- TUBE: 20MW IOOUM METER FACTOR *
)a 20 INCH MERCURY RI,ICRO-U- TUBE. 20 MM &C 'l: CORRECEEO AVERAGE OlffERERTIA'L Ro FACTOR ~
26,520 D AP PROX. C
C) S
3=3Xm ~ 4 444
>>4r -
4>> t
'f ~
4>>
!:!.i l a , li \ ~ 4 ~ +I ~
f ~ f~ f~ ptl ~
~ ~
i' t
~
J (41
~
J+e
~ ~ ~ ~ i ~ it gs :j,'j l >>J ~ ~
Lf t~ 4>>rrf ~
~ .~
lt ~ ~ ~
~ ~
tli
~ ~
f~ . 4ait p>> ~ 1 ~ l ~ ~ ~ ~ 1
~ ~ ~ '
r I
~
L
~ ~ ~
tf ~
~ ~ ~
- ii!(!j ~l 1
~
i e ~ ' ~ si a 1
~ i I a ~ w 1 r ~ ~
4tq >>1 la 14 isJ s ~ 4 e ~ t ~ i~ ~ ~ ~ ~
- ),LjtV! I
~ ~ ~
4 l s' 4 ~ ~ ~
~ ~ ~ 1 ~
t.t E-: ASS! 'Y-. 'GAL T.IONf t'" er r
.".:-! j::,:-1 ~ ~ 4.1 i st'i ~ ~ ~ ~ I 'i ,
I ~
+, L ~ ~ ~ ~ ~ ~ 1 ~ ~ ~~ ~ ~
I
~ 1 f
4 ~ ~ v .r; sits ~ ~ ~ i IDD iii ~ ~ s ~ ~ Lr '
~
l
~
I ~ ~ ~ 1 ~ ~
'l s ~ ~ ,al ~ ~
4
>> ~ ~ 1 r ~
i ~ at ~ r 1 ~ ~
;:1 ~ ~ ~ .1 1 ~ 1 ~ ~ ! ~ e ~ ~ ~ ~ 1 i ~ ~ ~ i 1 1: ii ~
1,'f; ~ ~ ~ ~ e ~ ~ ~ ~ 1
' 1 ~ I ~ ~ ~ ~ ~ I ~ ~
0 1.2 r if I~ ~ ~ ~i siii e ~
'iii ii a..' i ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
- I f~ ~ i~ :i"- e ~ ~
~ ~ ~
i } if'
~ ~ ~ ~ ~
ft'h !:Isi,i:i e i
i 1 1 j i i is 1:! ~ ~ ~ ' ~ ~ ~ ~
r>> i
~
ill i l f
~ ~
j ~ ~ ~ 1
'tie J ~ ~ ~ ~ ~ ~ ~ ~ ~
1 ~ l 1'I f~ ~ f ~ ~ ~
) ~ ~ ~ ~ ~ 1 14 4 ~ 1 ~ 1 gi tile >>
ts.i ~ ~
'I ~ ~ ~ ~ ~ ~ ~ ~ ~
j,l
~ ~ ~
1>>1 ~ ~ ~ ~ r'..' e ~ ~ ~
- i la
~ ~ ~ ~ ~
I r
'il "~ f ~ ~ ~ ~ ~ ~ 1 ~ ~
il 1
~ ~ ~ ~ '(ll Ii>>1 ~ ~
aiba ~ 1 1 tiei ~ ~ ii i ~ ~ ~ ~ ~ ~
~~
I ~ sii ~ ~
~ ~ ~ ea ~ ~ ~ ~
f i' 1 ~ ~ ~ ~ ~ ~ ~ ~ . ~ ti
':li ~ ~ ~ ~ ~
I~ ~ ~ 1 1 s ~ ~ ~ ~ te 1 f~ I~ i~ ~ ~ 1 ~ I ~~ ~ ~ ~ ~
~~e le i~ 1>> tel r ~ ~ ~ ~ ~ ~ Is( ~ ~ la ~ ~ 1 ~ ~ ~ ~ ~
r'i ~. ~
~ ~
l ~ ~ ~ ifIl i ~
~
as
~
11 ~ tlf:
~ ~ ~ ~ s ~ ~ >>:;ijj ::, ~ ~ ~
a'.1'i
':s'ili lji.
s
~ s ~ a i ~ ~ ~ ~ I~ 1 ~ ~ ~
fi ~
~ 'j::[.::.: ~ ~ ~
Its ~ ~ L.
~ i~ ~
jb.! 4 (i Lifl Le
.'.1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ s 1! ~ ~
is i ~ ~ ~ ~ >>t( ~ >>I ~ 1 ~ ~
!1 I ~
e ~ ~ ~ ~ ~ f~ ~ ~ ~ ~ ~
! 1 ~ ~
I~ I ' i! . I. I .'. 1 1 is ii ~ ~ ~ ~ 1 1 ~ .1 1 ~ ~ ~ s ~ 1 1 ~
' t ~ 1 ~ 1 ~ ,a ~ ~ 1 (ii , ~ ~ ~ ~ \ ~ ~ ~ ~ ~ ~
1 ~ ~ 1 is ~ I s ~ ~ ~ i O.i 1.0 ~ ~ i
'll 1, !'s ~
- 1!: f!11 t ~at i i I>> '>> ~ l ~
~ ~ ~ ~
its i ~ i t s,
~ >>a, il a
1
~ i~
t,".
~
j Ii ~ ~
~ a ~
f ~ ~~ i
~ ~
1 i aI
,1,-
i~i
- I La
~ ~ ~ ~ 1 ~ ~ ~
i ::i:I:.: ::i.l 4 r ~ 1
" O':: ~ ,ij] hajj:
1 ~ ~ ~ j.i ~ j Laf i ~ i:lf
~ ~ 4 l i ~
i ~ ~ lilt CV;'
~
- il: ~ ~ ~
- i. Il~ ll e ~
~ ~ ;:a!l >>i ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
ie i :'t.' 'I' is I ~ W. I !1
~ ~ ~ ~ ~ ~ ~ ~
I f ~as r~>>>> ~ ~ ~ ~ a ~ 1 11 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~
~ ~ ~ ~'
ii'1 '1>> i ji I i r f l i ' I it lI ~ ~ till '1'I
~ 1 ~ ~ ) ~ ~
if!i
~ ~ ~ '1 i ~ ~ ~ , ~ ~ e l j. I I~1 ;~i ~ r e ~ ~ ~
l,f',I ; I I;~ af a i.
!>>lifi ~ ~ ~ ~ ' re ~ ~ ~ ~ 1 ~ ~
I~ I f j 11 i sir
~ ~
i1
!!elias!I .
j!'.ll i i
~
r
~ ~ ~ ~ ~ '.! 'I':.'i! i>> ~~ ~ ~ ~ ~ is>> if ei I',s la f 11!l, il'1 i 1 f1 f t~t I ~
- ! i'!i
~
1
~ ~ >>44 ~ !4~ if ~
ii LL! i4 jt i.l! t t>>" 1 1 1
.La 'a ~
L! rs
~ iL I'Il tjii ji:j j! I! itjl ;(','I f 1
- il'!i
~
f tt iti: .' 1!ee Istt ".. i !
't' rase (
0.
~ 1 e i
0>>8 i~ ~ ~ ~ i '
~ ~ ~ ~ ~ ~ >> ~ ~ s jli) 1',11 i ~ '. ~
(l
~ s ~
i~I '1 lII'.iiijI
~ ~ ~ ~
jj,',j l!j( ';l!
~ ~ ~ ~ ~ ~ >>
I ~ ~ sii ail r ~ ~ ll ~
; I '. t ~ 1 ~ s ~
ai i Ii I
~ ~ ~
ilia ~ ~ ~ 1 as
'L' i! l >> a ~ I~ ' ~
LL I ~ r ~
~
( ~ ~ ~ ~ 1 1 i I' i tjsfai li!LlI t(i
~ ~
I '
~ 4 ~ 1 ~
f ~ >>
'i! ~
fit! ~ i a! iti( j ~ lifi '!f Ll
~ 1 ~ 1 i!i ~ 1 !I ~
j li 1i'ji
~ '11! !.t a.' ~. ~ ~ ~ ~ ~ ~ ~ ~
l l jv ~ f
~ ~ ~ ~ ~ ~
ti ~ ~ ~ 1 ~ ! >>>>a ~ e i~ ri 4
'.i i 14 ~ ~ ~
I ~ ~ i
~ ~ ~
a ~ t( elf(
'.,l1 .'Lra ~ Jr ~ ~ ~ ~ !la!
- sj i'i',
j
~ ~ 'l1 i;j.f ~ ~ ~jl ';i.l ~
i I'l 1 trl'i
~ ~ 1 "!I !pi i' )at> f 1 ~ 1 ~ ;4 L I
1 1: LL>> s'e
~ ~ ~ ~
1 ~ ~
~ ~ ~ ~ .I f ~
t '. '
~ ~ ~ ~ ~
J
'. '.pg tpr il f}} itL! 1'1( '!sii t: Li: i .
i'I 1 ~ i I I ~ ~ ~ I ~~ f ~ ~ ~>>~~ >> ~ j 1
~ ~ f a i ~ ~ ~ ~
l i 1 ears ( I f.a' la(i
~ 1 ~ ~ ~ 1' ~ i ~ e ~ >>tata ~ ~ \1 ii I i~
1'll
~ ~
i ~ f it if ~ ~ i j islai It(I i aiba
,11' . ~ a ~ I asa efa f ~ ~
j.je ~ ~ i.l I ii >>1 1 I~ I i ~ ~ ~ 'f ~ e
~ s 0.;
fit
~ ~ ~
046 ir ~ ~ ~ a- ~ lsi
- ii' i.! lE 1 ~ ~ ~ ~
til l
~ ~ aalu i
- Q 1'
- :I l '
~ ~ 1 ~ ~
laij . '.liiii iili i ~ I I! 'I
~tjIi i~4 1
l
~ ~ I( ~, ~ ~ . ;I ~ ~ ~ ~ ~ I ~ ~
fli il;;
~
IL} !I)[libel ttj. ~ ~ l l
~ ~ W4 i ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ !fit i!f ~
i
'~t ~ ~ ~ ~ ~
f~
~ !1:t 1:t:
1
~
1 itlal e ~ ~ ~ e ~ I I
~ ~ ~ ~
1 ~ i T(.l (~ sf ~ ~ ii!j i :!iI j'iia ~ ~ ~ I ~ ~ i 1 ~ ~ ~
~ ~ ~ ~
i
~ ~ ~
r ~ i
'll
- 1 ifj ,tli li
~ ~ ~ ~ ~ ~ ~ ~ >> ~ 1 ~
1! 1 s
~
1
~ ~ ~ ~ ~ ~
I r~ 1 lt t'rLi
~ ~ ~ ~
i ~ ~ fi ~ ii 4
"'i f ~ ~ ~ e'i~ ~ ~ ~ ':I' ~ I I ~ ~ ~ ~ ~ ir ~ ~ ~
ls i 1 ~ a i pll ."., I i ~ s.
~ a>> ~
La ~ 1 I
~ ~
1 1 1 a aa ~ agl I ~ ~
'!jI ~ ~ 'lI>> ~
i~ 1 ~ tt ~
~
4 It tl 1! I I ~ ~ ~ 4
, i I
1
~ ~ Ii i l~~ ~ ~ ~
r
\
t 1 ~ 11 ~ Ii,i
~ ~
a a ~ 1 ai i!!i 1
- i ilia ;! I: ~ ~
~ ~ 1 ~ ~ >> ~ ~ ~ ~ fi ~ ~
il i 0.4 1 1
~
1 Ii ~
~ la ~ ~ ~ ~
j 1 f
~
I
~ ~ ~ ~ ~
I 1 il I l ~ ie le ~ il i
~ ~
l ~
~ ~
0.! i II i!it
~ ~ ~ ~ ~ ~ 1 l!1 I ftl' i. ~ ~
ii tl
~ ~ ~ ~ ~
teel '1>> C I ~ ~ ~ ~ i:li
~ 1 ~ !tent "1't;1 illi 1 I!a .l s ~
1!t; s i i 1'!'" 1 i.! I: .tl !'} t Lj 4
~
4 a ~ e i\ ~ ~
~ ~ ~ 1 r 4 ~ ~ ~ '2.0 4 ~
I'.
~ ~ ~
i~t j(t ~ ~ 1 ~ ~ il
>> ~ ~
I~t1 1T!: r j!t!
~ ~ ~ 1 'I !i ~
i ilia ~ I .'t
, "Lt ~
i'
'1 t ~ ~ ~ ~ ~ ~ ~ ~ e>> a ~ ~
ail ~ ls t ~ ~ I 1 el ~ I ~
~ 4 if Ii \
f(i >>if ll
~ ~ ~ ~ ~ ~ ~ ~
I ~ ~>> ~ ~ it 1 iat its! ff
~ ~ ~ ~ r ~
i~
~ ~ 1 I ~
I ~ ~ ~
~ ~ ~ ~ !.!i ~ ~ ~
1 ~ ~
. 1 liil li'!I 'a(: ~
i>>i>> . I
~ f ~ ~ ~ ~
I ~
".,!I!I (
e r r ~ e
~ I ~ ~ ~ a ~ g4$ ~ ~ ~ ~ f '
t:it t:'t i.i';.
~
- I
~ ~ ~
i tf
~ ~
I'.i! ii ! s f~ t ~ ~
'i ~ ~
a ~ b'av
~ ~ i ~ 1 ~ ~ ~ ~ j 1 ~ i ~ ~ ~ ~ ~ ~ s ~ set! 1>>si ~ ~
0 0.2 ( e
~ !i ~ ~ ~ ~ l ~ ~
r
'i ~ "il li i ~ ~ ~ ~ 1 ~ ~
r! 1
~
l'!:: :; I
~ ~
ii ~ ~ ~ ~ e il
~ ~ ~ ~ ~ ~ )(ti 44isa ~ ~
si,
~ I ~
1 ~ ~ e I.i!' 1 i '1 ~ i
~ ~ 'ill ~ je e I ~ ~ >> ~ ~ ~ ~
e
'jtJt ~ ~ ~ ~ ~ ~ ~ ~ 1 !ji't!i e ~ 4 ~ ~ i i 'Ii I I el( ~
o-,j iris p5 0. ":I I l L 00:I::: k-
~ ~
litt L!i 1I I; QQ
'si! }'I':I,'fa >> ~ ~ I~ >>!lai i aiij I~ / i ~
0,0':--. arel 4 I ~ I
~ ~ ~ ~ ~ ~ s ~ 'f f ~
4 i;'a ii l i' ii>>(i ;[(j
;,i:j "':. :;I! ~ ~ ra ~ ~ ~
l l1 I (
! 1 e,'
li i
~ ~ ~ ~ s ~ ~
r"
~ ~ 1
( ~ ~ I. 1 r 1 j ~ 1 ~ i'f,! :l!'.sj e I ((it I; til
~ ~ ! i,
e>> ~ ~ 1 Ll >> i ~ ~ ~
- 11 ii (s ~ ~
'I't ~ e i ~ ~ ~
isI i'.i b'av~
~ ~ ~ ~ ~ 1 il" f ~ ~ 1 ~ ~ il ~ ~
I.:i'l'.: s 1 I:, I ~ ~ li !fat I'i'!
~ ~
e i~~ '1 i( -: I~ ~~ ~ isl ~i: 1 ~ ~
!ls ! ~ I des ~ ~ ~
1
~ ~ ~ ~
i ,i ~l. ~ ~
~ ~ ~ ~ ~ 1 ~ 1 f 0 1000 2000 . 3000 40GO 5000 6000 ,
7000 8000 9000
'C) Clll (5
D ~ HYDRO - LAB CAI (3.58 16ST tTJ I BRAT ION LOG A ~ IN.
.795 FT.2 TYPE METER: IS" S.Y. TSC I II/CAST IASY AISC TIATSISS eeeeSTAIAA CALIBRATED BY; EIRE: X t3ETA:- S/ N:- ORDER Na.l 03422-II DAT E: 4-75 I Tl ME T <MP ";.RATURE '
WEIGHT (EIS) TIME V PIPING SKETCH OF TANK Ol APs APr hP TD Pl CT Kv DAY 'SED START STOP (SEC'S ) LINE R JUM hlANO 'He 'II2 Psl 5PH Ie ft PS I Fls ~ I CONDITION OF PIPE: SP 2:20 ~ Ia l 550/ I OSI OII 181.291 181 297 80 67 66 72 911 0 010 72 33 '70 53 392 'Io'98 63 I A19 .Oo3 46o 179 280 LEAK IN LOOP:- 7 I/2 2:35 175CIO I n.zgo 66 61. 5 0.018 61. 1 21. I 06 6 2.0 .00 o81 7I'Sole'754 I I c".0. 3 73 ECCENTRICITYI- 2:43 24784H IS). Y74 80 61 67 58.42 O.C38 58.880 5. "10 63 96o.o6 432 65 2. I .010 4&6 179.421 Ml SMATCH I- '1 10'5'0 2:53 764O 32645% 1 19. 921 80 69 67 56.162 0.072 '5S.090 26 350 77 -28 le!9.04- 63o 64 4 Cols 183 CONDITION OF METERI 179.536 3:04 75Rlf 489084 174.536 80 70 69 55.717 0.117 55 '00 25. 220 90 -38 1934 45 16S 61 s.68 019 108 143.654 0 I OF 5pcin4 143, SSC 80 68 ie8.318 j1.180 48 138 21.840 95 -48 2473e02 858 65 7. Sl .025 57 4
>>6. 390 0 4414 H ~C,. 84 80 64 .18 0. 21 1 .8 n 216 ~ 12 18 - 6z 8.4o .0 1 .2 0'5':56 7654 49512k I I I ~ 044 111.044 0.300 27.406 12 '30 -73 3168,18 1.008 64 9e63 052 19 9 80 70 69 27e706 95 F 103. 142 40 7741'9370!F '103e742 80 20.914 0 35G 20SC24 9 350 95 -78 341 5. 46 1038 62 10. 3 .071 12 ~ 9 45':05 48 1116 62 11. 66 -099 7.89 7454 43525H 79 60 15.346 0.450 15.896 7. 210 Sg 3837.37 90.472 50 772'I 4 /9 62 59 : I.658 0. 450 11.198 5. Ogo 91 -78 3274.48 1014 61 I I. 7 ~ 128 5.45 34IH'9990tT 55 8:53 7690 84.cg4 19 63 54 lo.ooS 0.540 g.S!0 4 330 91 -61 4199.82 1032 60 12.7 .153 3.95 75 ~ 175 I 61>> 41 SIP C 64 60 8.2 2 0.6 c .440 4686.98 lo86 61 14.24 .203 2.25 60'5 I 64.( Tls 9:20 774H 4956lg 69.673 65 6.804 P.785 6 0'9 2 730 91 -91 5053.61 Iogz 58 I se3 F 257 I 1'i
- 61. 648 70 9:25 77~ 4g78PP 61.64 79 5.785 I.pin 4.695 2 120 95 -95 5737 19 1140 6G 17e4 .346 61 '11 75 9:31 7654 49940H 61.611 3.426 1.025 2 901 1. 310 78 S160 43 816 60 17.51 .430 .635 0 60 599 Z 8o lo:37 44450I/ 60.549 70 73 865 3.228 I ~ 045 2-16 0. 940 56 -52 5799.10 648 57 17. 63 .473 61.494 AP)
K O 10:50 774H 49504$ 51.484 79 14 65 2.128 I .Clo 1.11ST 0.779 38 34 5720 '3 4lz SS 17.3 .351 .383 le OP 1 pl 61.783
- 61. r 65 2.8'1 1.000 I.M 0.8 6 22 -18 11 .86 240 I .3 .180 .421
!t (00 INCH MERCURY SINGLE LEG:
50 INCH MERCURY SINGLE LEG: (00 WM 50 WM 100 INCH WATER U- TUBE: 20 INCH WATER MICRO U TUBE: 20MW IOOUM METER FACTOR E
- 26. 023
'.0947 ((TIz) 20 INCH MERCURY MICRO TUSE: 20 hlM R D FACTOR + - ~
0 APPROX. C
CI) Cll
,!v! t3; ---) lv 1>> t-',I ~ t l';; 1 t 1 ~ ~
~r,-] ~ ~
ear f P)a ~ ) sv e ~ is
~ ~
tf 1
- 7
~ t t'v$ L 1
- j. 0at Iv r 1 L
~
o
~1 ee ~ e ~ ~
1 ~
- ljs
~ vtl 1 ~ ~ ~
- t. ~
Qt
~ ~ ~1 il ~ ~
f ~I
~ ~ ~
v
~ ~ 1 ~ ~ ~ ~
t ~.
~ t T~f.",t ~. t 1 sa ~ at iv ~
l ~ e
-.:I ~ ~ e! ~
fa st: ~ ~ ~ l e ~ I) I e I ~ 1.4 vs
>.l of. ++evca~ .4e ah 1>> ~ ~ o~ t ~ e ~ f ~ lva )
t I. ~ .st: lf
~ ~ ~
LLF'L'ow'. E)Sl': j
~
1>> i ~ t ~
~ ~ ~:~I:te'i ~
J$ 6g:. ~ ~ I ~ ~ ~ ~ ~ v~ ~ ~ ~ 1 H ~ II ~ l,
~ ~ ~ ~ ~ h ~ ~ ~ ~ .a ~ ~
BjV '} 50,'-:8: /.CAST Il RO g! s ~ s ~ ~ ~ ~
~ ~ ~
- 2(( )SO )a ~.
~ ~ ) ~ ~
t ~ ~
~ a ~ ~ ~ ~ ~
I.,s ~ ~ ~ l)j Sv ~ ~ a e [I I -;:F.LAT }DE'-.0 wH TR AH) f ~ t~ lo t ~ sJ L '
~ ~ ~ ~
I l I
~ ~ ~ !(;;I ~ ~ ~ t ~ 1 re.eh e ~ (
(tta
~ 1~
tiff
~ ~ 1 e ~ a ajl ~ 1 ee ~ ~
e ~ 'a I I 's> ' ~ ~ ~ ~ ~ ~ ~ ~ ~ a ~ tss).
~ 1 ~ ~ a 1V 1
1 ~ !)a. ~ ~ ~ !;t( la e ~
~ l, ical 1 e' ~ 1 e ~ ~
1 ~ ( (:il ls
~ t ~ ~
1 1 1 ~
~ ~
1 ~ ~ 1 ~ e ~ ~
~ ~ ) j.l ffs ~ r.;: ~
e f ~~ ~ t~ ~ ~ ~ ~ ~ ~ 1 a 1 ja!)ff.) l
~ ~ ~ l tl ~ ~ ~ ~ ~ ~ j ~ ~
I) :1:t -AL ~ f~ ~ ~
- ~1Lj t'l
~ ~ ~ ~ ~ 1 ~ ~
I ll '
~
t
~ 1 ~ 1 ~ 1 ~
li
~ f .
t ~ ~ f
)glj ~ !il ~ ~ ' ~ ~ ~ v ~ ~ ~ ~
a
~
la
~ ~
1 ~ ~ ~ ~ ~ a
- 0 '50:
~ ~ 1 ~ ~
lit )I, slag ~
~l e ~ ~ ~ ~ tev ~ 1 ~ ~
la ~ ~ ~ ~ (
,'i ~ ~ ~ ~ ~ 1 1 ~ 1 ~
't I ". !4 lt stt jti! gt'( tl !:! e ~ te ~ ~ ~ I':i ',!It'
~ ~ 1 ~ ...I ijt ('I. ) t ~ 1 ): I, ~ ~ 1 ~
I ji
~ ~
1 ~ '. ~ I illa 1 1'!)ji:::
~ ~
e asti :l 1I' j))et ~ f) I.'); it,)
~ ~ leo tt'! ~ ~ ~ 1 1 h
e
~ ~
L" ~fL '.i s>> 1: 1 j
~
11
~ ~ ~ ~
os'
~ ~ 1 tl te f i,'j' ~ ~ ~ 1 ~ 1 i ~ ~ ~ 1 1 ~. ~ ~ 1 ~
a
~ . t i:I jib tt j)a ~,' 'i je~
i,'ji) l"') ,')
- a. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 1 ~
I I I!}Ijjtl f
~ ~ ~ s ~ ~ ~ ~ ~ ~ ~ ~
1 ~ ~ ~ t
.I:l flit ~ ~ ~ 1 1 ~ ~ ~ ~ v ~ ~ ~ ~ ~
- i IjI tl t ~ ~I
~ ~ ~ ~ ~ 1 ~ ' ~ ~ l'1 ~~
1 ~ g
) ~ f, )tj ~ e'1 .f.l ~ ~ ~ ~ it il f I tit:is ~ ~ ,r js')ji ~
t(i> ~ ~ ~ ~
.I .. e.
tl; :(I) jtIi felt
~ ~ 1 ~ ~ ~ ~ ~ 1 ~
1 ~ 1 ~ t.)c as>: ~
- .:Ii ~ ~ ~
I t t!
~ ~ I ~ ~ ~ ~ >.( ~
a);I tv 1 I- I
- .it 1 ~ ~ ~ I
.st! t' Is) ' t ~ ~ ~ ~ )et .1 ~
f ! i). ~ ~ ~ t~ :!:",I'.,;I e ~ ~ ~ j:Ij a ~ ~ 1 ~ ~ ~ ~ t IiII
~ e l j I( ' ~ '. Ii ~
t 1
)
11 ~ l
~
l 1 ict 1 ~ 1 I ~ ~
~ ~ ~ 1 ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~ I )1' ~ej' ~ 1 1 ~ ~ ~ ~ ~ ~ e 'j ~
1'
~ ~
1 I
'; :I ',)',j .) ~
f g 1 a
! I I) ~ ~ ~ ~ ~ 1 des ~ I ~ ~ ~ ~ ~ ~ s.
l I l g ~
~ a t, ~ 1 I 1;' tv> ~ ~ ~ ~
1 ~ aje lf l'
~ ~ ~ ~ ~ ~ ~
jj 'll't7v lI 1 ~
~ ~ I~ ~ a ~ ~ 'j:eii ~ ~ .j. ~ ~ ~ ~ ~ l I~
11 ~ ~ ~ ~ ~ ~ ~ a ~ ~ 1 1 1
, ~ ~ ~ av ~ ~ '..'.:) ~ e' I::i ~
tell' 1 I~ s s ~f ~ 1 ~ ~ 1 jl' ie,! '.()l~
- .:)
~ ~
1 ~ ~ j ;sl:1 ljl :1 ! aiiI tg a.!
't t 'e ~ e,t~ ~ ~ ~ ~
it ~
~ ~ t 1 ~
ief ~ ~
~ ~ ~ ~
1
~ ~ f el e ~ ~ ~ ~ ~ I t1~~~~ Sr ~ at 1 ~ ~ ~ ,)j ~ e ~ ~ ~ 1 e ~
1
~
('f)g,'fjrjj ').I(It,t) I i:is
~ 1 ~
ae ~
~ ~
- a'I!l!:::
' ~ 1 ~ ~
~ ~ ~ 1 Tt 1 ~)! )s
1 ~
~ ~
st:. a
~ 1 if Ift' ~
1 ~ a
~la ~ ~ 1 ~ ~ ~ ~ ~ ~ 1 ~ 1 ~ ~
- !:j!)as..')s'.I,:a.'
v ~ 1
~ la ~ ~ ~
1 ~ g
~ it ~ ~ ~ > ~ ~ ~ ~ ~
ii I:!')' 1
- ( si ': 1
~ ~ \ iI:e ~ ~ al ~ )
il)a
~ t ~ ~ .. ~ ,~ ~ ~ ~ >I ~ 1 i;.i ~ ~ t jo I 1 ~ ~ ~ vts I
i f.:t '.)s ~ f .Is; 0; 30-' ~ ~ ~ 1 ~ ~ ~ ~ ~ ~ ~ ~ 1 ~ 1 ~ ~
~ ~ ~
I. l! el
'Ijt ~ I~ ~ ~ ~ ~ 1 ~ 1 ~
il f~It
~ ~ ~ ~ ~ t ~ ~
ates. iffy sl
~ )tt
( ~ ~
~ .;i".i:i t ~ ~ ~ ~
1 ~ t
~ ~ ~ ~ ~ 1 e ~ 1 ~ ~ ~ \ ~ ~ ~ ~ ~
3'i ~( ! t;
~ ~ ~ ~ 1 ~ ~ 1 ~ 1 ~ 1 tt ~ ) ) la j js l s ~ ~ ~ ~ 1 so 1 ~ ~ 1 ~ ~ 'e "lt )g ~ ) 1 j
te eg 1~ 1 ~ ~ ~ I~ I:I! 3'j g 1 ~
!(() ~ ~ ~ 1 ~ I ~
t- a ~
' tt:t ~ e ~ ~ ~ ~
pie la
~
-Pic I~ ~ ~
~ ~ ~ ~ 1 ~ 1 1 ~ ~ ~ t)l )I:>> ill I)tv :}1) r,a}! 1 ~ ~
i .I
~ ~ ~ ~ ~ e a:f) he ~ ~ ~ ~ ~ 1 e ia'.1} ~ e ~ ~ ~ ~ f~ h ~ ~ a
- t:::: ~ ~ ~
) )!.: ,') ji t i:.) ~ ej <<i;j ~ t i Ik}I ~ ~ !:4 1)
I a ~ 1 ~ 1
- le!a 1 ~ ~ a o
1 ~ t 1 r ~ -"-'.j:::-: ~ ~
~~
a ~ ~ ~ 1 ve e. v t ~
) ts i , ~ ~
1( ~ I i, ~
~ ~
1 as 1 sj ~
~ ~ ~ ~ F 1 '))j e
1 ~ ~ ~ ft ~ i>i :lti ~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~
jjj )(l" ;tti 1'
'at ~ ~
lcm' ~ ~
~ ~
e ~ ~ f
~ ~
1 1 ~ !:iI ~ ~ ~
)
t 1 ~ ~ ~ ~
~ sas ~ S ~ ~ ~ ~ ~ 11 ~ I~ ~ ~ ~
I) etil ~ e
~ ~ ~ ~ I ~ ~ ~ e ~ ~ ~ ~ 1 ~. ~ )jt 1 ~ ~ ~ i ~ ~ ~
- Ot 20:
~e ~ ~
t s+ 1': 1>>
- f::(: t~
~ ~ ~ 1 ~
I
~ ~ ~ lfl ~ ~ ~
t 1 t) !'L') a)s) 1 ~ ~ ~ (
~ ~
- ii ta t ~ ~
U I q! ~ a 1I~ ~ 1 t ~
~ K1 ~ ~ ~ ~ ~ ~ ~
1 ~ 1
~ f t ~ 'I! I ) ~ ~ ~ ~ ~
1 ~ II:
~ 1 ~ ~ 1 ~
1 ~j! ~
)
i~ ~ t '
~ ~ ~ !t 'sf:
v s ~ ~
~ ~ ~ ~ g s ~ ~ I ~ ~
- 1) ~ ~
I" e ~ t~ 1 ~ 1 l~ f1 i f '1) t~ ~ l ~ 1 1 ls'll f'. ~ I '. g
- l:: ~ ~ s ~
e
~ ~
f
~ e 1 ~ O 1 i' 1e s) ~ a ~ ".e:): ~ l ~ ~ ~~ 1 ~ ~ 1 ~ (.: }I ~ ~ t ~ ia 1 ti)s(
1
~ ~ I ~ ) ~ ~ e :,'ji t ~ f~ ~ ~ I ~
- 5-: 'eel~ l.~ 1)gl
~ ~ f1 o) i!ii ~ )a !
- ) I!
~ 1 I'ii t ~ ~ !jI 'ji: va~ It's ts) a ~ ~ v ~
l(t h s
~ ~ ~ ~ t e ~
li )t 't)j lit> ~ 1 1
~ ~ 1 11 ttt ~
to 11 ~ ~ ~
)f l)ss ~
1 c ~ ~
)Ip ic ~ ~ ~ ) I)a~
I
~ & la a' ~ ~ 1 I ~ 1 ~ 1 te ~
ass
~ t 1 ~ ~ ~ )a v~
e ~ I 1 ~ ~ ~ f~ ti t~~ lt.) ea)) j
'.: I ~ .(
ttl) '!'1 II
~ 1 ~ ~ ~ ~ ~ ~ ~ 1 ~ ~ ~ ~ ~h I~ : as ~ ~ ~
I
~ ~ ~
tl)t 1>
~ > ~ ~ 1
'.Og 1:0;
~ ~ v ~ 1 ~ ~ 1 ~ ~
I ~ ~
'1 ~, . 1 I ~ I~ ~~
11 LL:: e ~ ~ a~~~ li)t ~ jit! ~ ~ 1 ~
~ ~ ~ ~ a!
t ~
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
t!I': se, ~
- ',)1 )1 .
~ ~ ~ ~ ~ f 1 ~ ~ ~
l Is! I
~ )lt ii): (!)i ~ ~ ji ~ f ~
it
~ ~ 1 1 ~ ~ )Ij': ii',i' l ~ ~
e 1 li )tat ~ jl I 1 ~ ~ i
),". ~ 1 ~ ~ ~ t ~ ~ ~ ~ ~ ) )lj fl' Ie:j ~ ~ ~ ~ ~
I!]!. i+a des vv t
~ a g ~ ~ ~ ~ ~ ~ e .;J'.' ~
f,fj ~e
~ +~ )MM ) ij')) a itell ~ ~ ' ' ~ ~ ~ \a ~ ~ ~ ~ 111 ~ F 1 ~ ~ ~ ~ 'I: ~ ~ ~ ~ 1 ~ 1 ~ ~ ~ ~
t 1 1 ~
) lj ~ I ."i) i la t 11 ~ ~
1 ~ c
~ s jtil e IP, s ~
t j
~ ~ ~
f t~ s O ~ r
~ ~ ~ . 05- ~ ~ ~ ~ 1 ~ ~ ~ ~ ~
t~ '!'i tsl( ji
!)ai I!)i ;Il; ji!} ~ ~ ~ a ~ ~ ~ ~ ~ ~
e
~ ~
I
~
el,
~ ~ ~ ~ ~ )."'Ijtja ~ 1 1 ~ ~ 1 ~ 1 i a) ~ \~ ~ ~ ~ , sf 'e ~ ~ ~ ~
ta~ 1 1 f~ ~
' aL: W ail )I)) ~ ~
ts a>>
~ ~ 1 ~ ~ ~ 1 1 ~
vv 1
- s):
lt: ,l 1
~ + o ~ ~ ~ e ~ i el ~ ~ ~ 11 1 ~ ~ des ~
f Is. (: l.' I
~ 1 ~ ) ~ ~ ~ a ~ I ~
t) ~ ~ ~
~ ~ t ~ a ~ ~ ~ at ~ ~
1
~ , ~
f~ a 1 I j el ~
~ ~ ~
tj 1 ~ util
~ ~ 1 ~
1I's
~ ~ ~ ~ ~ ~ 1 t'~ ~ ~
vve e. 1'
.it(I ~ ~
0,', s ~ ~ ~ ~ ~ 1 ~ 1 ~ ~ ~
~
iI'. I ~ 1
;:f! 60 I i:.:80": i i:.. O':I .. j ~ fP f ':;: I~ ~ 1 ~ ~ ~
4
~ ,, ~
t ..4o..
~
5 ~ I1 1
~ ~ tf ~ ~
a ~ II>
~ ~ ~ ~ ~ ~
- I:. j
~ v ~ ~
(' I~ )I
\~ ~ e. ~ ,1 ~, 1st l 11 a ~ )
a
, 1 1. 1 ~
s' ~ ~ t ~ ~ ~ ~ l 1'
~
t'st
~ ~ ~ ~ ~ ~ ~ 1 1 ~- //2
Cl) C) (S
L 4'
~ '5 A I UO <):);)
60:)()0
.50 l>lI:J ~<0, () c)0 S0,000 20 000 30.000 6 OvU 6.000 P J l.55,50 000 S n00 2~0 0 G LJ 1~000 fi 00 600 .'56V 0 300 200 UJ O. Y C/l I
~ M Ch Ch CP 100
~5 b6 c5 c3 0 4-I +Z L5 ~
CJ O I;rI 20 r T 5 10 . L 1.0 (
~ ~ 0 .5 '3 Close 2
0 5 30 15 20 25 Disc Ar.t;le of
~Q c.:
35 ~() 4S SJ 55 60 65 j0 75 80 "J enlr.g ( decrees)
\
7 5 I
C) Clll
~
EST LOC g3 0 ~ 11.58 IN. TEST IT3 HYDRO- L CALIBRATION LOG A ~ .795 FT. TYPE METER:- 12" 89V9 iso-o V/CAST IRON OISC FLATSICE UPSTREA/I CALIBRATED 8Y I SIZE: X QETA:- S/N:- ORDER N<.: 0 422-11 DATE:-'-7-75 PIPING SKETCH TI ME TANK W E I G HT ( ¹') TIME TEMPI:RATURE
<< dFs d PP QPv d Pv TE Q PI OF Cr Kv DAY SED START STOP (SEC'S ) LINE R DOM MANO <<IIr R HS II IIO PS I I lt GF'rl PSI F/.5 'I I 0.102 CONDITION OF PIPE 5 10:30 A 67 I IP I 2647¹I teo.to2 Fo 73 '25 ~ 0>> 739 914 33.53 73 15 479 91 528 64 1.45 .010 2371 180.002 LEAK IN LOOP: 7 I/2 10:47 66211 186>>II IBO.CP2 78 70 55 449 ~ Ol 55.93 2 ~ 3 -14 I .6 42 64 2. 8 .0 0 ECCENTRICITYI-10'0'5':13 2 48oc 179.996 I
iep.i14
.0 C. 0 64'6 1021.66 MISMATCH: 666II 395164 180.>>4 78 I8 58.721 .oeo 57.64t 26.15 72 1556.73 438 65 4. .Oip I CONDITION OF METER:- 20':26 770/I 50067IIF 179 951 179.952 78 Iis 67 55. 313 132 .181 2 .0 10 9
146. 635 25'l:35 4992511 146.6!6 79 68 ~67 48.445 190 48 3CO 21.910 80 -25 241 .6 60 6 ~ 0 S 60.4 129 093 30 11943 70411 493794/ I2 ~ OEI 4. 42 .240 34.6813 68 30 272192 8.2 .024 4.2 ~
>>6.518 12:46 75911 49523 >>6.518 27. 42 .2 0 2 .I 12. I -34 020.4 40 108.537 40'2:56 760/I 4 36 /I 0 79 74 70 20. o1.7 .3 0 20.%0 -36 2 2.14 40 6 45':o6 49583II 98 571 98 571 So 24 70 I 6.408 395 I6.0tt3 7. 26 47 -36 3574 74 498 63 o.86 o44 .I 5 SB 9S7 50 I:13 75% 49746IT B. 4>> ~ .14 8 -2 90.051 55 I:20 74+ 49750II 0.052 So 10. 06 .480 o. 4. 4c e 2. 4 42 6o':2S 74ST 4992 5II 83.201 8 .201 80 8. 6 . 60 426 .8 40 65': 35 765¹'954'49JP
- 77. 320 77-3<< 73 /0 6.799'.
.602 6.1 So 2 79C 32 30 4552 75 b72 63 3.84 .oeS 2.i6 70'143 49841 IT 71.809 7i.809 /2 742 750 4. 2.2 2S -2 4934.02 336 62 5.00 ,0 5 I~4 74 '83
~9 75' ~ 48 766// 494t 8¹I 74.og3 Bo +2 3 ~ 813 .676 3 ~ 1 30 I ~ 420 15 -15 4682.81 180 62 .081 I 04 70,474 I 80':57 757'. 496IO/!- 70 974 eo /2 3.225 0.75 2.4 0 1.12ot 8 4967. 76 0 62 5910 ~ 051 0 73 70.0'I 3 EE 0 IS 85':06 773'9550II 70.013 Bo 2.6 I o. 2 1.84 0.8 8 o2S.t -24 62 -.0 OR 65.606 90 10:00 7771 4448 SIP 6E'.6o6 66 O. NO t. o75 0.8 6 8.2S 100 INCH MERCURY SINGLE LEG: 50 INCH MERCURY SINGLE LEG: IOOWM 50 WM 100 INCH WATER U- TUIIE: 20 INCH WATER MICIIO-U-TUBE;- 20 IOOUM MW METER FACTOR ~ 0.0999 (IIFI I 0'o I 20 INCH MERCURY MICRO-U TUBE: 20 MM FACTOR + ~p APPROX. C
C) 4)
f Ilro~ ~' 4f 4 o ~ ~ 4J - 4. Ii I
~ ~
jl Ii ~. ~ I rf ~
~ ~ ~ ~
I <4 J aw I ~ if. .
~ ~ ~ ls ~
4
~ ~ ~ ~ ~ ~ ~
) ~
~ ~ ~ ~ ~ 4 I~~ ~ A D ~ re ~ I I~ ~ ~ ) ~ ~
I ~ ~ I vs ~JIft ~ o. ! 4< ~ <
~ o ~ ~ ~
I
~ ~ ~
Ja I'. ~ ~ e. ~ ~ ~ 4 o~ o ~ It. -~ t
~
I a! 1 ~ TE T. a=ll )'jit14
;t:) ;.! ~
I
~ ~ ~ ~ 3tl ~ I L 'l ~
a
~ ~ ~ ~ ~ 4 ~ ~
t ~ e i I I~ Vs4
~
I J ~
~ ~ ~
3R.., 'Fl.OM.i'B
~ ~ ~ 4 ~
Jt 41 r< ~ I ~ ~ ~ I ~ ~ ~ ~ ~ ~ I 4
~ ~ ~ iso.] ..1.1,5b. i :I RO N' I $
ea ~ ~
*~ o' e ~ ~ ~ 4 ~
I I 'e ~ ~
~ ~
I ~ ~ ~ I 4 Is.') tJ )i
~ ) ).I; j I ASCII STi <al I oi <tie ~ ~ ~
I
~ ~ ~ I 4 ~ 'la I ~ ~
f il.ii ') ted) J le
~ 4~ ~ ~ ~ 1 ~
II
~ ~ ~ ~ ~ ~ 4 4 ~ ~ ~ ~ ~ ~
I I I:I! 'Is ..f. 1 ~ I1 I ~ ~ ~ ~ ~ ~ I ll
~ ~ ~
FLATS g DE UPSTR AM.-I I" si
~ ~ ~
j'e) i ~ ~ ~ ', I f~ 4~
~ ~ ~ ~
- lil1)
~ i'll 1 ~
4&It ~ 4 i!!;
~
).".iI ~ I~ I ~ II I << I I: ~ ~ ~ ~ i ~ )le ~ I I) ~ ~ ~ ~ P '. I1 1 e I 1:l,tj ~ ~ ~ e ai ~
~ ~ ~ ~ ~ ~ ~ ~ s ~ ,; I I ~ o Il I t'.ll ~ ~ ~ I~ I: ~ ~ 1 ~ ~ 1 ~ II ~ )'. ~ ~ ~ ~ ~ ~ fi ~ ~ ~
- I:::e is) t:'Jj l!ill a 1 I
+
I ~ ~ ~ ) ~ 1 s ~ ~ '
- f.:.:Is I
~ ~ ~ ~ ~
1 )es:1 , Ie ;1) f ~ ~ 4 ~ Ie ~ ~ ) ~ ~ J
~ ~ ~
I ~ Jrei y 44 ~
~
ro J ~ I. I ~ ~ ~
- I:!
~ ~ ~
~ ~ ~ ~ I ~ ~ I I~ ~ ~ ~ ~ ~ ~ ~ ~ ~ st e I s.,' I ~ ~
)) I:.I ~
f 1 ~ ~
~ ~ ~ 1 ~ ~ ~ ~ ~ ~ o ~ all< te I~
I I I
~ ~ ~ 1 t ~ ~ ~ << ~ ~ ~ ) ~ ~ ~ ~ t ~ ~ I I ~ ~ ~ ~
tI
~ ~
I
~
II
~
j ~ ~ 1
~ ~ ~ ' ~ ~ ~ ~ ~ ~ ~
I~I 'Iet t
~ ~ ~ ~ ~ ~ ~ ~ e ~ ~ ~ ~ 4 ~ ~ ~ ~ e i ~ ~ ~ ~
0-25 ~ ~ ~ elf
~ ~ ~ ~
- I
~
jtj.' I! I~ ~
) ~ 4 ~ ~ ~ ~ ~ ~ I ~ sl )ll'; )sjl I~ I lsjt )! ~ ) 'ilj I I ~ ~ It '< I ~ ig I I' !il) Il) 'gi ~ ~ ~ ~
I I I )I ) ~ I~ ~ ~ ~ ~ I 1; 'II):I I ,:: '.:,::::::! 4I) I I'i
) ~ ~ ~ ~ ~ ~ I~ ~ le ~ ) ~. ~ 44 i!'I!a Jo I,:
I::.Ie:: "
~ 4~ ~ ~ ~ ~
I f I I ~ 4 ~ ~ j ~ ~ ~ ~ I~ ~ ~ ~ ~ ~ ~ ~ ~ 4 a) ill)
~ ~ ~ ~ e I I ~ I) ' ~
I ~ ~ ~ ~ 1 ~ s'. ~ I fe) ~
~ e ~ ~
ftt: ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ 4 4 1
~ ~ ' :.:i:.j t I~ ' ~ I ~ ) ~ 4 ~ ~ ~ ~ ~
t at'. I ~ e ~ o ~ ~ ~ o
~ ~ ~ ~ e ~
It L't.44
~ ~ ~ tel ~ ~ ~ I ~
I j' +I
~ ~ ~ ~
e I t
~ ~ ~
II
~ ~ ~ ~ ~ ~ '.1 ja I;!s) I! iil ~ ~ s 1 4 e
I' )
~ ~ ~ I f
e
~ ~ ~ ~ ~ ~ ~ I ~ ~ 4 ~ 4 ~
1,, o
~ ~ ~
I, il) iII I s.i )II!I II Jl ~ ~
~ ~ ~ ~ ~
i)ta ~ ~ I
~ ~
- .'! j 'la I I
~ ~
4 I1 ~~ es)i I~ ~ ~
) ~ ~ ~ ~ ~ 'L ~ ~ ~ ~ ~ i ~
f
"-+-+ " ~ ~ ~ I sail I~ )~ I~ ~ ~ ~ 4 ~ a. ~ ~ ~
I
~ ~ ~ )I ) ~ ~
I e I
~ ~
I
. .. ..5. I~ ~
I
~ ~ ~
I
~ ~ ~ ) ~ ~ ~ ~ ~ o ~
a) ! !I I t:i,'I
~ ~ ~ ~ f ~
F: :ili'!i
~ a.)I ~ ~ ~ ~ ~
I ~
- - a!.I
~ ~
Ij!Il 4 ~
~ ~ ~ e ~ I ~ ~ ~ ~
lipr't
~ ~ ~
s!') I I~ m.:,ii 4 JJ I ' e'
~ ~ ~ ~
i)I! ~ ~ ~ ~ l',!:
~ l ;t! ;imp ~ ~ ~
Its ~
~
I'I i 4 1." ~ . ~ 1 Hi-,r 4! !j'I I ~
,+t; 4 ~ ~ ~ ~ ~
o ~
~ o 'I ~ ~ ~ ~ ~
I) e II'
~ ~ ~ ~Hl ~ 1 S ~ ~ ~ ) ~ ~ ~ ~ ~ 4 ~ I ~ ,T) j ~ ~ ~ I lj \ pjaa 4 ~ e ~
I ~ 4 ~ I
~, )"! ate 11<aI ~ ~ ~ e ~
ii,a l)ia iI:I )I I
~ 1 ~ ~ ~
I I I ~ ~ I ~ ~ e ~ ~ ~ 4' al j;
~ ~ ~ ~ ~ ~ ~ ~ ~ ) ', ~
I ~ i :,il) :ll'oll ~ fg }I
~ ~ I ~ ~
e ~ ~ I~ I I ~ ~ ~ tt. I'<I taf ~ ~ ~ ~ 4 ~ Ia 4+it ~ tfI I t) ~ ~
~ e )s' @Jl JtL ~ ~ ~ ~ I ~ 1 ~
i')
~
44 ~ e ) ~
)'il !I'I I ~~ ~I ~ I~ ~ ~ ~ ~ ~ ~ 44 )'.I: II~ ~
a... I.':1; lfr I~ I~ )~
~
I
~ 'II I) ~ ~ ~ ~
I III . ~ ~ I ~Ij ~
;;+I i I ' ~ a ~ ~ I ~ ~
Is ~ ~
,05' ~ ~ ~ t' ~ ~ ~ ~ 11 ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~
i
~ I lt e ~ ~ I~ ~ , II l)is li)a , ~
st I I', Ie .I:
'LL: I ~ ~ 1 ~ ~ ~ ~ ~ ~
I ~ <s j e 1 t~ I a
~ ~ ~ ~ 1 I ~ ~ ~ ~ ~
i ~ ~ ~ r ~ I e ~ do
~ el ~ ~ I~ ~ ~ ~ ~
e ~
' r ~ ~ ~ ~ s) ~ ~
I~ 1 ~ ~ t ~ ~
~ ~ ~ ~ ~ ia ~ ~ ~ ~ .I ',Jt:I ~
1 ~
! '1l 1, I st II!I ~ ~ < I~ ~ 1 ,sls 1:;)I ~ ~ ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ , ~ ~ ~
I~I
~ ',) I~ off) I ~ ~ I ~ ~ ~ ~
4)1 11
~ it ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ 4 ~ ~ 4 ~ ~ ~ ~ ~ I ' o'I I;-'lii sti< !:::I:p. ~ J e) I ~ '2 i!"' I:) ~ I ~
o
!5 I ~
jll;
~
i oo
~
Ii" o ~ illi lo7 )')
~ ~ ~ 'I' :.8 ~ ~ ~
lr"! i)it
~, ~
i .'),
~ !4 ~ ~ I ~ ~ I ~
Q 2! I 4 ~ )4 ~ ~ ~ r ~ ~ 1 !'1~ )e
) )i.
4~ a 4~ 4 ~
;)41 ~ ~ ~ I j ii, o ~ ~ ~ ~ ~ 1 ~
t'I ~ ~ Il :!I;
;1: o ~
- I
~ ~ < I 1!:t ;)i ~
It I I~ Il 'I ~ ~ !<s)
~ 4 4
I I ~ ) ~ ~ ~ ~ a
~ r" I ~
i 4 t ~ a ~ ~ I
~ ~ ~ ~ ~ ~ ~ If ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ 1 ~
r'.",",
';!ll:rl! Il !I!I tl .1!.l-.
1 ~ ~ 'e t,! I!
~ I~ ~~ ~I Ii!; Ir..;: 1,". I)'~ ~ ~
I .". i I
~ I I ~ ~ \ I ~
1
~
1 4 ~ Iji) f.il f 1 ~ ~ I ~,) ~ 4 ~
~ ~ ~ ~ !) ~ )
etl I e I ~ ~ r4
;. a II . ~ 4 ~ ~ ~ ~ ~ ~
tlf 'ile 1 NG OR 8I e 4 ~
')'i 4 ~ ~ 'e * ~ ~ ~ I
- I!I ~ ~ ~ ~ ~ ~
~
I ~ ~ ~ il:
~ ~ ~ ~ ~ f ~~ <I ;)ieI. I'I! It:: jei'F: ~ ~ ~ ~
I)e) ~ ~ e) li)!. ~ ~ I fI~ I<
<a ~ ~
t~
~ ~ ~
t '1 ~ ~
~ ~ ~ I j ~ ~ ~ ~ e o I ~ Je ~ ~
fl '
~ ~
ll ~ ~ ) ~ ~ I'
~ ~
i ' ~ ~ ' l! t 4
- I)I ~ I ~ ~
~ ~ ~
4 ) ~ o
~
e
.I ~ ~ ~ ~ I 'o ~ ~ ~ ~ , ) ~
I
- .Ised);: I I I) ~ ~
I ~ ~ ~
~ ~ 1 ~ ~
I-sf 1 ~ l :!):
! 4'. 'e)4 ~
jij ~ ~ ~ I
.!Ti gi tle ~ ~ ~ 'II ~ ~ ~ ~
I fff, fl ig ~ . ITr ::-::-:[I
~ ~ ~
I Ill!
~ ~ ~ 4 ti;.' I I:l! i~>
i I
~ ~ ~ ~ ~ ~ ~
i, 1.) e ~ Il a ~ ~ 1
~ ~ ~ ~ '
I ~ ~
,4 ~ ~ ~
0-;-.20. ,a I
'I' ~ ate
- 4:il::t.
~ ~ ~ ~ ~ ! I ~, ~ ~ ~ ~ ~ 'I e! ~
I~ s
~
I ~ ~ I
~ ~ ~ .!.al ~ ~
feei
'ata I .) 1< I:.L ~
I
':I:
1 e ~ ~
- 1:;I ' 1)
) .' ~
lo,~ e ~ ~
)! 11 ) ~ ~ 't I
I I: ',! mi ~ is)s ! <I) I ~
- .: I 4
F 4 s ~ l
~ ~ ~
I ~ ' e << ~ F 1 ~ I ~ ~ ~ ~ I
' sts I
4l ~ ~ i)I'T.': I'.J 1 ~ e 1 ~
~ ~ <l ~ ~ :
il ' 1 i. ~ I
't ~ , I~ "'Ij j'.l i o ~
4 ~ ~
, ~ e ~ ~ 1 ~ 4 ~ ~ 11 ~ ~ ~ ~ ~
I~ fl II
~ !!tl il ~ ~ ~ ~ ~ I
- I 1
tt,ilt I ~ e ~ ~ e II
~ ~ e ~ ; ! ~ ~ ~
i:;.l
~ ~ la Ilia ~ ~
1
~ ~ ~ ~ I ~ ~ e I~ ~ ~ ~ ~ '1!! ~ 1 ~ ~ ~ ~ I e
I' I I ~ ~ ~ ~ ~ ~
,:! I Iti: ' 4 1 ~ ;:it e
II ) el', I
~
I
~
i:i-' ~ ~ ~
~
I ~ ~ et
~
I~
~ ~ ~ ~ ~ ~ el "!:.,: I::.:I'.! I ~ ~
r I J
~ ~ ~
I
~
I ~ 4 ~ ~ ~ ~
',!!: I:: ". I' ~ ~ ~ ~
It
~ I o ~ ;.:.I:, I: s I'li"t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
I I
~ ~
s,...i... ' e
'.t -, :" ' ~ ~ ~
pa .
~
t ~ I ~ ~ ~ e GRAI H,'/3
C) 4)
60~:)t)0 6 CI0'0 l<<0 000 30 000 20 Oflo >0, OOO
~8 000 6 Onfl ~OU 0 3 000 2 000.
000 80{j 600 l;00 300 200 100
'0 eo 20 ~
g 0 1.0 b
.5 p 2 0 5 1015 "0 <5 '0 35 4045 SQ 55 60 6$ i0 75 iQ'"-"5 Close Disc Anole of opening (Degrees)
6) TEST LOG t14
~ X~ . D ~ 11.58 III.
TEST /j4 HYDRO" LAB CALIBRATION LOG A M 795 FT 2 TYPE METER: IP'.V. 150 d Wf FADRICATED DISC FIATSIDE DOIOI STREAM CALIBRATED BY I SIZE: X P ETA 1- S/N:- ORDER Nd .- 0 3422 R DATE: 4 8 75 TIME TEMPERATURE Q PIPING SKETCH TANK W EIGHT ( td') Tl ME. S hps lt Pr APv hPv OF DAY SED START STOP (SEC'S) LINE ROOhl MANO H Hp EF ZITI PS I G PIMI 179. 732 t CONDITION OF PIPE I 59 >> EDB 9 IAI~ 659>> 10324>> 179 733 7
'9 6g 71.032 .012 7'I ~ 02 329 22 51 3 388.10 288 65 1 ~ 17 -oo 446 16o.ce2 LEAK IN LOOP:. 7 I/ 'll:17 765>> 169508( 1 cA. C92 60 72 61.734 .025 6..71 27. 9 56 -10 648. 65 396 65 I~9 .00 1070 100.075 EGGENTRIGITY:- I:14 766>> 23009>> 160.076 60 6) 57-76't -033 57.75 26. 20I -14 891.47 4g2 63 2 71 .Ol 5)0 16o ojo Ml SMATCH:- lE2 744>> )9035$ 160.0 C 60 69 S7.SO<< O7S Sj.SI 26.09 45 -3 1534.70 28S 62 .66 .oo 178 15'0 17S..96 GONDITION OF METER:" I:36 76>> 49'46>> 173.OS6 80 63 54.315 9127 54.16 24. sB. 47 -13 I 958. 84 360 63 5 95 00 103 136.979 6 l/ 4 404>> 6. 80 66 .21 48. 4 21. 8 -14 2562.60 408 63 F 011 '120.140 30'5':53 770>> 493671 l20.140 .016 .2 4 4.7 1. 6D -20 2 20. 426 63 .8 . Ol '3 102.494 I:58 765>> 494761/ 102.<<95 80 69 27.699 -365 27.53 12.49 -26 3430.03 460 10.42 .02 17. 0 95 ~ '925 >>
40':07 757< 4o604f Bo 69 rr63 20. 887 . 420 20. 4 9.28 54 -32 2694.40 516 63 23 .03 I O.g 87 '96 45':15 755>> 49602>> 87.4o5 eo 68 16.519 sco 16.01 7.2 57 -39 4o2g.66 576 63 12 ~ 25 . 051 7. 20 87.143 O 2:21 704>> 497621/ 8 .14 eo 70 11.705 590 'Il.l'I 5.04 57 .40 4062.99 582 63 12.35 .07 4.91 e4 CAI 2:4 62 I>> 4TZI97>> 75 ~ 626
. 6926 80 72 109636 . 670 9.96 4.521 67 -54 4671.05 726 6) 14.20 .10 3 '3 70.<<05 -67 876 15.30 915 2.26 2:53 7651/ 49990>> 0.40 Bo 7'E 6.660 .780 7.83 3 ~ 57. 7c 503 .77 63 E9.259 15.69 . 23 I ~ 56 03 767IF 4 605>> 80 73 6.547. .619 5-7 2. 59 84 -75 5164.15 954 63 3
- 62. 873 70 3:ll 755IF 4 622>> 62. 4~ 2 60 .4 10 0. 6 1.0 1 1.10 68.056 -58 768 63 15.83 .36 .814 75 ):l7 708>> 499>> IF 69.055 31 72 3.858 .B)o ).02 I ~ 37 70 5207 27 67.875 Bo 3:25 750>> 497)8>> 67.785 81 72 3.2c6 .630 2.<<6 57 -46 5215.85 618 63 15.85 .35 .661 70.348 C
0 Bs 3:31 764IF 494)3 O. '1 61 72 r '70 2.66g -765 2-104 ~ 954 -32 4993.09 450 63 I S.'I 7 .30 .615 99 73.159 909 11:41 6 2>> 4c6 III .1 Bo 2.860 2.141 71 20 2 4831.82 3'12 6>>4.68 .2o 100 INCH MERCURY SINGLE LEG: 50 INCH MERCURY SINGLE LEG: IOOWM 50 VjM 100 INCH WATER U- T'BE: 20 INCH WAT ER MICRO- U- T UBE:- 20 IOOUM MW METER FACTOR 0 0997(99I p9 20 INCH MERCURY MICRO U- TUBE:- 20 MM Ro FACTOR APPROX C
C) Ill
~ ~ ~ I ~ t ~ ~ il ~ ~ ~
l )I ~ a ~ ~ ~ al' ~ ~ i~ r ;ii ~
;t ~
- t':I.'-:-
~ ~ ~ ~
b'av
~
a ~ ~ III
~ ~ ~ ~ ~ ) st ~ ~ ~ ~
I at
',ill ~ ~ ~
I~ ~ I '
~ ~ ~
lt ~ ~ iI ~ ~ ~ 'ta ~ ~
~ I ~ ~ ~ a ~ ~ ~ I ~ ~ ~ a ~ ~ I~ ~ ~ ~ ~ ~ ~ I I~ ~ ~ ~ a ~
O'O I:-12!!-.8',V..
":F LO'al'~.5o.-sl.
I-"':: I:. - I ~
'EST: ..I ~ ~ I' A I.CATEO 'I'2 rsc-.g ".'..:::. ~ Lit ~
tt
~ ~
- t....
~ t ~ a ~ aa ~ ~
i t
, F.LAT ' 'il I DE. 03 ~ . I ill. STREWN., ~ I li:ra ~ I~ ~ I I ~ ~ ~
a=
~
1
~ ~ ~ ~ , ,l ,a i i ~ I ~ ~
- al: ~ ~ a ~
l
~ ~ ~ ~ ~ ~ i Oa 5i5- ' ~
t li ~ ~ I t i ~ ~ ~ ~ 'I ~ ~ i ~ ~ i ~ ~
~ ~ ~
I ~~
~ ~ 1 ~ a ' ~ ~ ~ ~
a I ~ I I ~ a I t~-;..
~ ~ ~ ~ ~ a ~ a ~ ~ ~ ~ ~- ~ ~ ~ ~
I I
... ~ ~ . ~ ~ ~
t
- ~
I 0 50- ..I
'j " .'l 'I . I ~ 1 ~
I I1 ~ ~ ~ ~ ~ ~ ri ~ ~ a ~ = ~ a
~ ~
It ~" :
~ ~ ~ ~ ~ 1 ~ ~ ~ I ~ ~ ~ I ~ ~ ~ ~ I a. ~
i
'.,'.I:::'. a ~ -. - I a
I I I
~
ii ~
- i 0" ::::I:;.". I
~ 1 r ~
i - ~ 1 i II r
~ ~
a a l a ~ ~ ~ ~
~ ~ ~ ~ ~ l ~~ ~ I ~ ~ ~ ~
a
~. ~
J I I ~
~ ~ l: .'l.'.'
- i"'
~~ ~ ~ ~ ~ ~ I "l ~ a ~
l ~ ~
~, I: ::..:-I:.::. l :::f :::I ~ ~ ~ - ~ i ~ ~ 'I:.:: ~ ~
- ~ t ~ ~ ~ i o:4o. I~ ~ ~ - ~ t ~ 'I ~ ~ I a I ~
~ ~
i r ~
~ a ~ ~ i~ ~ ~ ~ 'a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
I ~
~,
i I i i
- !:</:'.::<
~ ~ 1 ~ I ::::I ..:I ~ ~
- , '. ~: ~
t I
'-::I -( "
I a ~ a ~ ~ ~ ~ I' t ' I a ~~
~ ~
l I- -i".a I * ~
- .."I I vi~3 l ~ ~
~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ 4 -I
~ I a ~ ~ ~
~ ~ \ a ~ ~ ~ ~ ~ i ~
II a
~ .- ,. - IP ~
a l'
~
a
~
I
.I...-"... t
~ ~ ~ a 4 t I
, ~ -I ~ =- ~ ~ a l
i I~ It a ~
'0.' 25-~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ I i ~ ~ i ~ at ~ = a I ~ I I~ ~
t ~ ~ I a I ~ i
""t:::".!
a
\ ~,I ~ ~ ~ ~ ~ ~
I :*:.'l.. i;
- I ~ =a- ~ ~
', l 4 ~ ~ ~
j:.:: I i
~l -20:-',': ~ ~
l i ~ ~ - a ~ ~ ~ ~ I a ~ ~ a a
~ ~ ~ ~ i ~ ~ ~ ~ ~ ~ ~ ~
I' ' r~ l
~ ~ ~ i~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
t
'I' I.:I Ial ~ ~
I . ~ .".I '
- 9. }.5.. ~ ~ ~
I
~ ~ fat I ~ '-- ~:I: -I i ~ ~ ~ ~ ~
il
~ ~ ~ ~ ~ ~
I
':::I:::.
a ~ ~
\ '.ll.'l b'av i 'I - ~ ~ ~
l ~ ~
' ~ I ~ ~ I ~ I ai ..l "...L ~ ~ ~ ~ ~ ~ ~ ~ ~
I- \ a a ~ ~ ~ I ~ ~ ~ 0;10-I ~ ~ 1 ~ ~ ~ ~ a
~ ~ ~ ~ ~ ~
tlj :i. :.
~ I ~ ~ I ~
I~ .:: I'..'.:
~ ~ 1 ~ ~ ~ I ;, I . -I' it ~ ~ ~ ' ~ ~ .:.:,.::::I ~
l~ iI
~ ~ ~
a ~ i
~:.: ~::I.;. l"I *:
- -:'-::::'I!.".'.<:;la:..-:I 1 ~
<I ~
4 l.=
~ ~
I I...l.. .
~ ~ ~ ~ ~
il ~ ~ a ~ ~ ~ ~ I:. L .::.I'; ~
~ ~ ~ I "l ~ ~ -. -. ~ - ~ a..-. - I ~ .e 4 I ...:'..o : .'.'.:: :i 0 ". ,20 NG.:.'.'-i:.:70: ":-'l so.'..:.:;:. .- 80 la ~ 0'J ~ ~ I I ~
i ~ I I ~
~ ~ ~
i ~ ~ <-'F: Of'EH I
~ ." ~ ~ ~ t ~ ~
C)
~ ~ ~
FAD~ ATED DISC FLAT PilNSTREAH t;y ='OEFFICIEftT OF FLO!')
&,W VI@ ,~
I o 4oi'=io.o i~ 4' Ij r I o,oco 8> o 0 o o o coo oo o 4D i I
~VjO'C'. o o ooio oo oC'Q ~.Q ~g o G (C o (Q ~ ~
o 'c: I
~ ) ~ ~ ~
h> ',Lh Q% C
.k I) ~ .
4g L I) L t'ai': o
.J I I
o C>> Ln
Ill TEST LOO ts TYPE METER! TEST t)5 12" bAYA
~ X~
Zso-b M/FADRICATEO DISC FI/I)SIDE lPSTIIEA1 HYDRO - LAB CALlBRATION LOG 0 4 11.58
/0 ~
CALISRATEO 8Y 1 IN.
.795 FT.Z SIZE: X lIKTA:- S/N:- OROER N>.1 DATE: 4 9-75 TI ME TAN)I Yl EIGHT I III) TEMPERATURE V Cv lIv PIPING SKETCH TIME nt APE bPp tt) Pv DPv Tb Pt OF OAY US~~ START STOP (SEC'S) LINF FIOCM MANO FF tlat t't "HII PS I I tt PS I F/s le t. 323 CONOITION OF PIPE: 5' "4IE 7303/ 11025/ 180 3 tt 40 70 73 '2): F 014 73.308 33 '61 49 26 412.04 138 62 I ~ 25 .002 3ISS I 0.170 LEAK IN LOOP:- I I/2 9-53 767/I 18927// Iec.l)o 61 336 025 61.3I'I 27.818 40 24 727045 96 63 .onz 046.1 Iee.ogz ECCENTRICITY)- 20'.40 10' Io:07 766/I 25724tt 140 0 ET 0 7) 570857 ~ 037 57.830 26. 238 49 10 )000019 234 63 3.04 F 005 42).I I gto. t t.l MI SMATCH:- 50 10:19 64)It 41228 180.142 90 7) 57.806 .oG) 57.)lg 26.180 69 -7 1626.00 456 63 4.94 Oll 159. )6). ZI53 CONDITION OF METER' 10:'33 49375/I 167./053 0 54. 099 .)48 53. 951 24.4)0 69 -7 2049-35 456 6 6.38 .011 0 131 ~ 5/9 250 10:42 726t/ 493674t I I~ )8 70 47 204 ~ 230 46.474 21.313 69 -13 2667099 492 63 8.11 .ol4 48.1 118.0)O ~ I OZ53 644/I 496004 110.0)0 4.624 .28 ~4. 44 1.82 6 2o42 ~ I 42 6 .Ozo 2).4; L 103.119 C 35 11:00 766tt 4ottggU 103.114 7') r $9 2).849 .365 27.48t Iz.4)o 64 -25 3410. 08 534 63 I o. 3 . 0) ) I ). 2 otI. 547 40'50 7664t 49506/I o4. Et,s 80 70 200621 ~ 425 20.146 g.163 66 -30 3720.54 576 63 II ~ 31'.040 10.6 04.6lo 11)20 84.610 80 70 16 250 ~ 5)O I 5.725 7.134 69 -35 4153.07 624 63 12 ' .056 6.65!
79 )n 494SSh'54IF
~
0 11:z6 45100// . EIF;I 7:) 11.538 Sz) 11.028 5.003 56 -28 4078.26 504 63 12.3 .064 4.01'3 OI )8.2n/
'I I: 35 50'5'0'5'0'5'1:07 7()l/ 4975)f 7'i, 2/07 7) IO.O)6'63O 9./ 46 4.286 57 -31 4518.65 528 6o ~ 7 0)9 3~ 3) 72 9)0 /I 4n 60.V 7z,nF>9 Go 63 8.317 .72O ).so) 3:447 47'22 4846.71 414 60 4a 73 ~ 07) 2.361 70 tg) .
Iz.44 7)oi/ 49565// 70- )97 74 6.764 ~ 760 6.004 2 '24 32 -13 49)4.27 270 63 5~ I '2 ~ 063 I ~ 7/I 12.49 756// 49024!! 40 7'0 50 743 ~ 8~ 4.423 2. 233 16 51 69.08 102 63 IS,)I 02g 1.34 74.045. 12 55 760tF 49832It 74 74 4-03> -705 3 329 I ~ 510 10 478. 07 -72 '4.54 .030 1.061 74.129 d 765/I 74.130 74 3.388 .690 2.698 I. 224 -2l 4742.41 -174 62 -009I .0/5 Z ' Go'5':02 A41 49475',959tttF 7S 735 a ES t" )!tA 74 r'64. 2.940 . 620 2. 320 I F 052 -31 16 t 483.22 -20z 62 0.62 -.172 .0' I:n. 097
>h. 90':14 775/I 49480/I 00.0II 01 72 20999 0591 2.408 'l.n92 -38 22 4389. 60 360 62 II 34 F 212 F 112 OI Tt/8E: 0.099T (AFI IOO INCH MERCURY SINGLE LEG:
50 INCH MERCURY SIVGLK LEGS IOOWM 50 WM IOO INCH WATER U 80 INCH V/hTFR /MICRO' TUOE: 2OMW IOOUM AIETER FACTOR Ar
~
Ii lt) F F ~ ~ ~ ~ ~ wa ~ ~ ~ ~ w WAS ~ ~ ~ rsr TON
4) a I~ ~ a ~ ~ I *I
~ ~, a a
I~ ~ ~
~ ~ ~ sl ~ ~ ~ .- . .I ~
a
~ ~
I/
~ ~ ~ ~ I
- .o 'tall;.8 . V t.l.50..8. l~,.FABRJCATED. D, ISC."
~ a ~ a i 35.1 ~ ~ ~ ~ ~ ~ ~ a ~ a ~ 4 ~ ~
a I :::l:.:: ~ ~ ~ ~ FLATS I I DL VPSTRcAH !'-:: ~ ~ ~ a
~ ~ ~ ~ ~ 4, ~ ~ ~ >> ~ ~
I' - ~ a ~ a 4 ~ s a ~ ~ ~ a
~ ~ ~ -a ~
a l ~
~ ~ ~ ~
j a
~ ~ I 4 ~ ~ ~ ~ I ~ ~ ~
la ~ ~ ~ a a a ~
~
a ~
~
a
~ 'a
I ~ l I
~ ~
l ~ ~
":I .:.i; ~ ~ ~
a ~ l << I' I ~ t ~ ~
.:::l, ~ " I I;:I ~ ~
r
~ s ~ / ~, ~
I 0.25. L
~ ~ ]I I ~ ~ .al~,,. a ~ = ~
l
""l"' :I:
T
~ ~ ~ ~
I I I ~ ~ l ~ ~ ~ ~ a
~ 4 -:,I:.::-:I I ~ ~ ~
r
~ ~
l
~ ~ l ~ ->> a ~ l ~ ~ ~ ~ ~
I
~ ~ ~ r l "s
a
' ~ ~ a a '..:: ':::::I I I~I ~ ~ t ~ ~ ~ ~ a- a a I J
CT ~ ~ ~ a ~ ~ ~
~ ~ ~
I
~
II4 I i'ai -: ~ I
~ ...,l.a.. . l I~ ~ ~
I::::
~ ~ ~ ~ ~ '. 'I ":I ~
a l
~ ~
l ~ ~ ~ Ii 4
~ a ~ ~ ~ ~
I
~ ~, ~ ~ ~ ~ ~ ~
0;1 5. I ~~
~ a ~ ".t. I ~ ~ ~ ~ ~ ~
- I: la
~ ~ ~ ~ ~
I
~ ~ ~ . a ~ ~ ~ ~ ~ ~ a ~
s 1 a trI
~ ~ ~
I ' l : 4': I ~ a ~
~, a ~ ~ ~ a ~ ~ ~ ~ a aa ~
l If:i'i:I a s a ~ ja ~
~
i ~. ~ ~
- I:
- I::.::-'
~
a
~ ~ ~ ~ ~ ~ ~ ~
la ! i:: ~ a ~ ~ I ~ a
'1Q 4 ~ ~ a ~ ~ ~ ~ r ~ ~ ~
- .:: I:.':...
~ I l ~ ~ a a ~ ~
s
~ J ~ rr a ~ ~ ~ ~ I ~ ~
4 ~ I:: :I s r ~
~ ~ ~ ~
I' ~ ~ -a
= ~ ~ I i'. ~ ~ =I I '0. 05. a :: LL I r~~ s ~ ' l' a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
l
~ ~ ~ ~
s 4 ~ ~ l ~
';:-:I:"--.'. ~ ~
a ~ ~ a r ~ ~
~ ~ 'a-' ~ ~ ~ ~
l l ~ ~ ~ ~
~ ra ~ r ~ I ~ ~ s' ::';..'I':.'." ",:lp' l !::20::
0
~
s
~ ~
I::60 ':I-':- 0";. 80: .i:.: QO s ~
- ..i."'.j ! a, I ~ ~
~ ~ l ~ ~ ~ ~ ~ ~ - ~ ~ at- ~ ~ ~ ~ ~ a :..:l... I I'::: I a I ~ ~ ~ a ~ ~
I ~ ~ Oa 05; . a.". I
~
s
~ ~ t l l ~ ~
a a, a)tl 4
~ ~ ~ ~ ~ ~ ~ ~ ~ I l:a -l '.::.'. A'G.'r-"CF Opal I ~ \ a -aI l .a..ia ,a..I
- I::::
s.".'.I
- : ~ ~
. a ~ ~ ~
a ~ I r ~ Oa)0-
~ ~ ~ t ~ ~ ~ ~ s ~ ~ t4 ~ sr ~ l ~ ~ ~ ~ ~ ~ 4 a ~ a ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
a
~ ~ a ~ ~
t t a 44.. ~
-I ~ ~ ~ ~ ~ ~
a ~ l ~
~ ~ I I~ ~ ~ as ~ ~ ~ ::::, ~ ~ .I I'i ~ 'a J ~
l I~ ~ . 0;15: ~ ~ ~ ~ ~ ~ ~
'i" ~ ~
I I 4I a a ~ ~ I
~ l ~ ~ *I ~ ~ I ....t a ~ a ;.s.". ~
j
'-;I: ~ ~ ~ ~ a ~
I :::.;I-' '
- ~ 4 I
~ ~ = ~ ~' ~ ~ ~
4 ~
.I ~ I ::a.l 'a, ~ r ~ ~ ~ l ~ ~ ~
a'
~ ~ ~
l
~
I I
""I:.:: ;'a ~
l
~ ~ ~ ~
a* ~ ~ l ~
~ ~
s a..l, a ~ ~ ~ 0.-'20 sl
~ ~ ~ ~ ~ ~ "'I ~ a ~ ~ ~ ~
a I'" l')
~ ~ ~ ~ ~ a ~ ~ ~ ~ ~ ~ ~ a - ~ ' ~ r '
l : ~ !'---a l: I ~
- I -- I
~ a ~
4
.G. 25, Q ~ a ~ ~ J I :. ..l ~ ~ ~
ls .ll=..' l, I ~ ~ ~ ~ ~ ~ ~
'I ~ ~ s ~ a: ~
I':. I i a I
,-.'; ~ a
~ i ~
I CX l. ~ C. i t, a Ei(~l 60 I) 0
)()0 ~l J 0~ ! I 0 '.I 40,V00 30,000 RO 000 io 000 8 000 6 000 "(i I.I 0 4 000 3 000 2 ~CCO a 000 800 600 WUU ':L l;00 300 C) 4 200 CD cC Ch. W O I 100 LLI IsJ I
OI 60 U U LxJ C) 30 20 10 a.o 2 0 5 )Oa5 '0 25 30 35 4,v 45 50 55 CO 65 10 75 80I".I5 Close Oper Df.sc Angle of c:.:enang (:!egrees ) I
C9 S
B I 2' UNIT OF GENERAL. SIGNAL 1600 DIVISION ROAD WEST WARWICK, R. I. 02893 SEISMIC ANALYSIS OF BUTTERFLY VALVES FOR EBASCO/CAROLINA POWER AND LIGHT Prepared by: Date: Checked by: Date: ll 3 3
. Approved. by:
Date: ll' 3 SEISMIC ANALYSXS REPORT NO. N-67926 REVISION NO. A
Sill B I P 1600A UNIT OF GENERAL SIGNAL DIVISION ROAD WEST WARWICK, R.I'2893 SEISMIC ANALYSIS OF BUTTERFLY VALVES POR
. EBASCO/CAROLINA POITER AND LIGHT
~ Prepared by: Date: by: 'hecked Date. st<41 ~ Appmved by:
~
Date SEISMIC ANALYSIS REPORT NO ~ N- 67926
Cll 4S 48
B IF A UNIT OF GENERAL SIGNAL 1600 DIVISION ROAD WEST WARWICK, R.I. 02893 SEISMIC ANALYSIS OF BUTTERFLY VALVES FOR ZRASCO/CAROLINA POWER AND LIGHT VALVE SIZE .INCH REPORT NO N- 67926 BIF SHOP ORDER NO. CUSTOMER IDENT NO. OPERATOR N67926g27,48g49g73g Ebasco Data Sht.$ 43,44, Bettis Pneumatic 74,98 & 99 1 47 & 48 ~ '721C-SR60-12 0 ~ ~ 7lf%
~ bk ~
SUM'1ARY OF REVISION A NO. DESCRIPTION Summary of results revised Oper. Supp. Brack. stress was 2588 psi ; Revision(A) 2607 psi Oper. Attach. Bolt. 18094 18152 Oper. Shaft 14048 14690 Oper. Shaft Pin 11470 12048 Oper. Shaft Key I'916 9365 Valve body II 1358 II 1359 Brack.Plt.Meld Load 749 Lb/in 753 Lb/in 4 Torque was 1648 in-Lb; Revision (A) Value is 1731 in-Lb. 8 Hx was 8408 Lb-in; Revision(A) Value 8491 Lb-in was 2096 psi; Revision(A) Value 2096 psi:. prin. was 2588 psi; Revision(A) Value 2607 psi 10 Hx was 8408 Lb-in; Revision(A) Value 8491 Lb-in
. was 8833 psi; Revision(A) Value 8906 psi prin. was 18094 psi; Revision(A) Value 18152 psi 16 ft was 578 Lb/in; Revision(A) Value 583 Lb/in f was 641 Lb/in; Revision(A) Value 646 Lb/in fr was 749 Lb/in; Revision(A) Value 753 Lb/in 007844 17 M was 0.078 inch; Revision(A) Value ~844 inch T was, 1648 iii-Lb; Revision(A) Value 1731 in Lb was 12529 psi; Revision(A) Value 13173. psi, t was 14048 psi; Revision(A) Value 14690 psi.
SUNNRY OF REVISION A (Con't) l DESCRIPTION Summary of results reviewed
'20 T was 1648 in-Lb; Revision(A) Value 1731 in-Lb was 11470 psi; Revision(A) Value 12048 psi 21 T was .1648 in-Lb; Revision(A) Value 1731 in-Lb Sb was 7386 pzi Revision(A) Value 7758 psi was 3693 psi; Revision(A) Value 3879 psi prin. was 8916 psi; Revision(A) Value 9365 psi 23 was 479 psi; Revision(A) Value 48'si 23 & 24 prin. was 1358 psi;Revision(A) Value 1359 psi P ' 'l ~ /
45 I I h ~ r 0 S e e 'h I' 0'ABLE
~ I ~ 'L OP CONTENTS ~ II ,. ~ 4 ..;,. ~ 'o Section .P,acCe Summary of Results........o ~ 0 ~ 0 ~ ~ ~ ~ 0 ~ '0 ~ ~ 0 ~ ~ 0 ~0 ~ ~ 0 ~ 0 ~ ~ ~ ~ ~ ~ ~
Analytical Procedure....... ~ 0 ~ ~ ~ ~ 0 ~ ~ ~ ~ e ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ 0 ~ ~ ~ 2 References........;.......'. 0 ~ 00 ~ ~ Seo ~ ~ 0 ~ 0 ~ ~ ee ~ ~ ~ ~ 00 ~ ~ 0 ~ ~ ~ ~ 3
.'iv .. Valve Descriptxon................. ~ .. ~ ~ ~ ~ 0 ~ 0 ~ ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ ~ ~ ~ 4 "'1 ..'atural Frequencies of the Operator.... ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ 5 =2 .-- Analysis of the Support Bracket........ ~ ~ ~ 0 ~ ~,' ~ ~ ~ ~ ~ ~ ~ 0 ~ ~ ~ 8 e .3 Analysis of Operator Attachment Bolts.'. <<0 ~ ~ ~ ~ 0 oeo ~ ~ ~ ~ 0 ~ ~ ~ ~ ~ 10 4 . Analysis of Operator Attachment Plate.. ~ 0 ~ ~ ~ ~ ~ ~ 0000 ~ ~ 0 ~ ~ ~ 12 5 Anal,ysG.S G f Attachment P late I'i~eld ~ ~ ~ ~ ~ 0 0 ~ ~ ~ 0 0 ~ ~ ~ ~ 0 0 ~ 0 0 ~ ~ <<r L4 6 ~
Analysis t of the'Disc & Shaft......'. '.. 'I
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0' I
0' ~ ~ ~ '1 8
.;7 Analysis of the Shaft Shear Pin.... 20 '1 . ~ ~ 0 ~ ~ ~ 0 ~ ~ ~ 0 ~ 0 ~ ~ ~ ~ ~ ~
I 8 Analysis of the Shaft Key......... ...... . . .. r 9 . Analysis of the Valve Body......... .0.......0 ;. .- ----
~ / ~ ,
22 0 .. APPendiCeS0 ~ 000 ~ 000 ~ ~ 00 ~ ~ ~ 0000 ~ ~ 000 ~ ~ ~ 000000 ~ ~ 000 ~ 0 ~ F 00000 25 g
,-',"A) Natural Frequency -..'.,'" "",:.. ' ') .' 26 ~
h
~
Inertia Formulas C),'. Shear'in Area and their Values for Operators. 1
~ h '27.
3i 0 i ~ I~
~
I 1
' I ~ ~
0
C) CS
L
SUMMARY
OF RESULTS
, JEST'tslow A MATERIAL ALLOWABLE{P SI) CALCULATED(PSI) rator Support Bracket SA 516GR.70 17500 ." 2607. -'.'
r rator Attachment Bo1ts SA 193GR.B7 25000 '.:I.Bl,32 rator Attachment PIate . SA 516GR.70 17500 ~
. "92.46 r
erator Shaft ..~ .SA 564TP630 21720
':1'4690 .
erator Shaft Shear Pin SA 564TP630 21720 ,.12048'- AXSZ'0.18 C.D .:" 9365 rator Shaft Key ~, 17500 ~ . alve Body SA 516GR.70 17500 k.358 racket Plate Weld E 7018 Lb/In.
'600 pe Lb/In. ~ ~ W ~ I Frequen'cy ... ~ t '~ ~r,, ~ 33'.Hz f ~ 423 '>r, fAt ~ ~ ~ ~
I
~ ~ '..~ .sq ~ ', ~ ", ~ '.. ~ ~
r '
~
f.XZ~ 320 Hz 95 HZ
~ \
t
~ ~ P 0
r
~
w
~ ~ 0 , ~ ~ 1 I ~' ~ ~ * '0 ~ ~ ~ ~ ~ ~
r r ~
~
I
ANALYTICALPROCEDURE
\ ~ "l
- 1. The natural frequencies of the valve operator vibrating on the
~
the operator support are calculated. The operator is supported as a mass at the end of a cantilever beam. Since the operator can have both translation and rotation this is a two degree of freedom system. The bending and torsional frequencies of'the operator system in mutually orthogonal planes are calculated. Minimum allowable natural frequency is maintained above 33Hz. 2 static seismic analysis is performed which considers the stiesses due to seismic load, dead weight, design pressure and maximum operator torque. The analysis is based on all
.above loads acting simultaneously, and the magnitude of re-salting stresses are added together to give the worst possible loading situation. ~ ~
in: rt Stresses are considered
\ 4 a) Operator support bracket b) Operator attachment bolts')
Bracket plate d) Bracket. plate weld e) 'perator Disc and shaft f) Shear pins "g) Shaft, key. h) Valve body
', .The maximum stress limits for different materials are taken from
- ~ 'ASME Boiler & Pressure Vessel Code Section III. =
0
'EFERENCES l
1, Ebasco Services Incorporated specification No. CAR-SH-BE-35 Revision - 3 and IEEE-344 (1975) 2 ASME Boiler 6 Pressure Vessel Code, Section .III, 1977. 3 Oberg, E., and Jones, F., Machinerv's Handbook, Nineteenth Edition, Industrial Press, Inc. 9 4 ~ Roark and Young, Formulas for Stress and Strain, Fifth Edition McGraw Hall, 975.
- 5. Blodgett, 0., Design of Welded Structures, The James F.
Lincoln Arc We ing Foundation, Fa. Printing 1972. 6 B. I. F. Drawings Name Number General Arrangement Drawing A- 902844 Disc Fab. Drawing 5- 9.030'13
- 7. Operator Drawing and Catalog Name Number
.Operator Drawing G.H. Bettis Dwg'. No. SPC-7825 Rev.A, and SK 1600 Catalog G.H. Bettis Catalog IHD478
Inch Lug Wafer Valve with Bettis N79.1C-SR60-12 Operator eneral arrangement drawing A- 902844 (Pneumatic) Job Identification Ebasco Data Sheet No. 43,'44,47 & 48 BXF Shop Order Number N- 67926,27,48,49,73,74,98 a 99 Loads Design Pressure=. 45 Psi Design Temperature= 366 - F ytAX. DINAH!<: TonZue= 1'73 I
- Differential Pressure= 'I 45 Psi Assembly Weight= 286 (Reft 6, Gen. Arrang. Dwg.)
Operator Weight= 143 (Ref: 7, Operator Dwg.)
... Disc Height 14 (Ref'. 6, Disc Fab. Dwg.)
Seismic Load Factors OBE, Horizontal = 3 g -Vertical = 4 g:( i g. due to seld weight) 'eismic Load Factors SSE . (Ref: l) Zori ontal ~ 3 g Vertical ~4 g The operator is in position- B
I'.;
~ ~ ':~"=. BATED'REQUENCY CALCULATION; he natural frequency will be that of the operator acting as a ass the end of a cantilever beam. Since the mass can have both ranslation and rotation this is a two degree of freedom system..The am supporting this mass is the operator support bracket. The length of His equivalent beam is the distance from the origin to the end of the upport bracket.
Y ~ ~
~ J " '1 PIC.. 1 2 '
Jt
, L.. It I 'I ~ I M ~ operator mass W ~ ~ 'I ~
Jx~Jy,Jz ~ mass moments of inertia about x,y,z Axes . (Appendix B)
~ ~
J J
.r ~ ~
I'~ . 6..75. ";inch
~ ~
Jf a 0.37 lb-S /in ~
' Jx ~ 127.88 I lb in-S 126.j4 . lh-in-S Jx ~ . 3.985 . lb-in-S 2 J ~ ~ ~
\ l>>
Natural frequencies are calculated for motion in the XZ and XY planes d for a torsional mode (rotation about X axis) . or on in the XZ plane the natural frequencies" are (Appendix A)
+ 2 2 '2 2 W
1 W 2 W +W~ W1W2 Wi 2W2 1 W 4EI /J L Wg 1 2E Iy/HL W>f ~ 6EIy/ZyL W2> ~ 6EIy/ML he operator support cross section is shown below. 3.3125 inch a a 8.0 inch b s* 4.0 inch tr 1 9'7C mich PIG+ 2 I ~ 2 (bt,'/ 12 + bt Z') 122.4 X~ ~ 2 (tb / 12) '~ . 14.67 E ~ 29x106 Psi 6. 75 inch st 16 67X10'z ~ 374X10 Wi~ m 3.7xl0 6 i m 1263xl0 xz
. Negative sign gives the minimum frequency.
CS motion in the Xy plane the formulas are the same except Jz and are, used. I ~ A Jz ~ 3 '85 Lb-s -in Iz ~ 14.67 In4 6 6 Wl ~ 63.26xlO W22'= 44.86xlOW12 W = 14 06xlO W212= 15lx10
~ ~
f~ s* 423 Hz A third possible mode is primarily a torsional mode of the operator on the operator support bracket. The torsional reaction is a shear force on the valve feet. J 127.88 . KT Mt/e 2FtZ/e N e ~ FtL3/3EIZ ~ Where I= tb3/12 7.33 'n4.
', Kt ~ '6Z IE/L3 ~ ~
45.52xlO 6 Lb-In.
'ft ~ 95 Hz ~ ~
( V The minimum frequency is greater than 33 Hz. LOADS The seismic load factors are: SSE OBE Horizontal 3g 3g Vertical 3tl=4g 3+1=4g $ 1g due to self weight) lnax max. The itesign pressure and temperature are: 45 Psi T ~ 366 1
STRESS ANALYSIS RATOR SUPPORT BRACKET esses are calculated in the operator support bracket by calculating the reactions to the seismic loading, dead weight and opexator torque at the intersection of the valve body and support bracket. Moments and forces can act in all possible directions. For the worst case forces and moments must act such that the combined loadings are add/tive in magnitude. 2 M Y CG=Location(Xo,Yo,Zo) T=Operator Torque 8=Operator Weight YotZo) gh pgv Hori zontal a Vertical ~G Mx ~* Seismic 'Coefficients 1
\
PIG. 3 Inertia mh h. h, h and dead load F=iPx+jFy+kPz=i (+ghW)+j (+ghW)+k h + (gv+1) W 429 2b [Pz) 572 Moment
~h A h arm r=x(L+Xo)+jYo+kZo and ~~~A h A Moment M=Fxr=iMx+jMy+kMz ~" ( 6.75 ) + 0 ( 2.39 ) + k 12.57 Resultant Mx~(+PyZo)-(+FzYo)+'operator torque T=FyZo+FzYo+T ~ ~ 429x12. 57 3 ~ + 572x2. 39 + 1Vgl '
84g( 2b-fn Qg Similar ly., My=PxZo+'Q.+To)Fz= . r in
~ ~
My 9253 . ~ ~ Lb
~ and- Hz=Fz Yo+Py {L+Xo)~
Mz ~ 4263 Lb-in The absolute value of each term is calculated and added together. 8
Cl) From Fig. 2 the operator support cross sect'ion at the valve v has the properties
.Iy ~ A/2.4 in A~2bt=
Iz ~ 14.67 in~ Normal Stress: a
'x . Mya Mzb Psi A 2Iy 2Iz Add the magnitude of all the stresses for the worst condition.
I t 0
~
g 39 + 302 + 581 ~ 922 Psi
'. J ,~
b (Mx) 3
~ 1.8 Shear Stress:
Ref 4~ .. v = 4 2 / 8 2 b 203f.. + 65..., ~ 2095 ps(. 'p I~ I Principal l Stress: prin; = a fo '(( ~ + z~
~
a + e p~(~ 26OF 'S(: The material of the support bracket is SA Sl6 Gr. 70 The allowable design stress Sm is Maximum stress developed a prin. = efore the design is safe for the. specified seismic loads. Qg, l7500 Psi . g(,'Op Psi Allowable stress Sm= 17500 Ps(.
OPERATOR ATTACEINENT BOLTS ~ operator. is attached to the valve feet by four bolts as shown below "in figure 4. Ho. of bolts N ~ 4 Size of the bolt=0-5 inch Nom. dia -13 UNC The bolt root area= 0.126In2(Ref:3} BCD~ 4. 5 In. Y ~ 1.59 In. Z 1.59 In. 90 The forces acting on the bolts are Y (F~l- 429 i5 ~ (FF[ 429 55. IFJ- 572
~94. 4 The moments at the bolts are calculated using the same formulas as for the valve feet described on page 8 except L = 3.94 inch.
84<> Lb-In.
+ Px Zo + Pz (L + Xo) 7646 Lb'-In.
(M [
+F~F +FF (L+2) '716 Lb-ln.
The tensile force on the bolt is Pt + ~ P + 4Z P ta 1736 Lb t The'tensile stress 1n the bolt is IO'" 4 Pt 13782 psi
CS ear Stress: W FY + Fz Nx
+'A where R= Bolt circle radius NRA 2 25 inch 1418 + 7488 QQO6 Psi Principal Stress:
oprin 0 + (cF ) + T prin.
'091 + 112GO 18l52 Psi QA \
mater'ial is
~ ~
SA 193 Gr. B7 9 I Allowable stress is Sm = 25000 psi
\
Principal stress nuprin. psi Allowable stress Sm = QA 25000 ps1 Therefore the design is safe for the specified seismic loads. I
CS
~
BRACKET PLATE ANALYSIS (BOLT CIRC'LE WITHIN THE VALVE FEET) Th acket plate is welded to the valve feet as shown below. The bo rientation drawn below gives the worst loading on the plate du the tensile pull on the bolt. M g
~g lf lf!g C ~'nnn .r ~
P
harp ~"' ,e urer tv (utVQ I ~lid Pl 7i i Pi I'7 (TF .1 'I FIG 5 I \
plate are calculat'e'd using the Y ments acting on the bracket -'s formulas as for the operator support except L = 3.565 inch
~ ~
Fx~o+Fz (L + W) 743.2 Xh-in " ' t. 0 ~ 75 inch.
.g ~,4-5 .. inch -:.,. ': "'...". hl ~ 1.035'nch h~ ~ 2.625 inch Mz ~ FxYo+FY (L + Xo) 1 ~ ~'here ~ ~ ~ ~
,. Bending stress in the plate due to bolt load at the weld juncture: Fbolt (hl ) wt'3782
. 2 "ay F = Maximum bolt stress x Ar~
holt (1/6) xi 0. 126 ~ 1736 12
~ ~
Psi I'518 0
~ 8 ~ ~
1 4 ' ~ ..'
~ ~ ..'l2i......
+ Fy ' My Mz ~1 ~ 5W+0 ~ 9t s stress v = > + / j t ~
2Wt hyatt H 90 + 839 + 1665 ~ 2594 Psi PrinciPal stress apyin = ob ~ f cb) + T 2 k 2.) c rin 4259 + 4987 ~ 924( Psi The plate material is SA 516 gr 70
'I able stress is Sm = 17500 . Psi Principal stress iprin ~ ~
9246 . Psi Allow. stress Sm= .17500 Psi Therefore the design is safe for the specified seismic loads.
4$ WELD STRESS ANALYSIS: 4.0 inch 5;25 inch
- 8.0 inch PIG, 6 The moments actin'g on the weld are calculated using the same formulas as for the operator support except L = 3.3.9 inch.
$ iy P Io + Fz (L+~o) I 217 Qz ~ PxYo + Fy (L+Xo) = 2394 Lb-in ~, ~
ating the weld 16 inch. as a line f (Re . 5) total length of the weld Aw ~. Px X-direction axial tension ~ Aw lb/in
~P Y~direction shear Aw 27 lb/in 8-direction shear . P~. 36 lb/in Aw
ion modulus Sv of the veld:
~ about. Y-axis = bl (dl + d2) 53 ins 2
Z-axis ~
.2bl 10.667 Swz about 3
Zengitudinal force per unit length carried by the weld are given by
""136 lb/in ~ '24 1b/in ~ ~ 'orque on the weld due to M Torsional section modulus Jw = Jvl + Jw2 ". bl +3bldl bl +3bld2 I ' + ins 6
65.8 + 138.7 204 ~ 5 ins
dl eld force is
~ ~
ft ftl+ft2 N 2Zwl: 6
+
2Jw2 lb/in
~
84&I 0.0399 .+ 0.0288 583 lb/in normal lead carried by the weld fn Fx,'otal
+ f + fz lb/in. ~ ~ Aw fn ss 4
27 + 136 + 224 ' 'l 387 lb/in Total shear load carried by the weld fs + Fz Fy
+ ft lb/in . fs 27 + 36,+ 563 66.6 1b/in re'sultant load fr ~ fn'+f ' . 7>S lb/in Actual force Recpx9red leg size ~
W r
.. " Allowable force Allowable force for E7018 electrode in fillet weld is 9600 lb/in C
I A
4S Therefore the leg size is H ~ .Q. Q78++ inch 9.600 Actual leg size Wa provided = 0.5625 inch Hence actual leg size W a 0.5625 inch Required leg size H ~ 0.078gg inch I
- 24
.. Therefore the weld size is adequate for the specified seismic conditions.
~ 1 ~
DISC AND SHAFT ANALYSIS: Wd ~ Disc
~
weight =
~
lg Lb
/ ~ l ~=Resultant seismic ~ ~
acceleration ~ acting on the disc
~ ~
Cm gh + gv 'I ' As the section modulus of the shaft 'is always less than that of the disc hub combination if failure would occur it would be at the shaft. 1
~ ~
Dd ~ Disc . diameter ~ 7.05 D ~ Diameter of the shaft ~ 0.875
';.:: Seismic load W Pressure load P Disc Dd Shaft PIG 7
.Total'hear force F 6 Wd
+
4'0 irDG P '. + 1757 ~ 1827 Lb Cross sectional area A= >D2. /~ ~ 0:6013 in Shear stress t: ~ 2A F ~ 1519 Psi
~ s h
ear stress in the operator shaft is developed by the . opezat oz torque T. P 179 I 'Lb-in Qp Shear stress where J = mD /32 = 0.0575 2J
~ e 1&hI Psi I ~ ~
s tal Shear stress <= 9 + l3 l7'1 I.QQ g O Psi The shaft material is SA 564 TP630 Age h'ardened at 107<oF
- k
, ~
towable stress,9.s Sm = 36200 Psi I
'A11owable shear stress S = 0. 6 Sm = 21720 Psi (Ref: 3),
sf I' Shear stress 't+= 14690 Allowable stress S= 21720 "Qp Psi Hence the design is safe for specified seismic loads. 1
~, I OPERATOR SHAFT PITY 0
isc attaches to the
~ ~ '
I shaft with taper l pins. These pins are
~
subjected to double shear due to the operator torque.
~
The shear area is an ellipse with major axis b and minor axis d. Disc hub ppendxx C) 'w T ~ operator torque = l79'l D ~ shaft diameter = 0.875 in Hp ~ number of pins = 2 r P Shear Pin
.M~ mean diameter of the taper pin ~ 0.232& .l PIG'S .-.shear area As = (m/4) d dD = 0.0821 in~
S'h.ear
~
stress'= x"2N+s 2T
'..=
l f2048 ~ Psl. QP l
~ s I %he pin material is: SA 564 TP630 Age-Hardened at 1075 F . Hormal design allowable stress Sm ~ 36200 Psi " The allowable pin shear stress S ~ 0. 6 S ~ 21720 Psi(Ref:3)
Actual shear stress v ~ gg04/Psi Allowable shear stress S ~ 21720 Psi Therefore the design is safe for the specified operator torque. h<
~i g
~ s ~ a ~ ~
N s ~ I s ~ ~, t Ke Anal sis s I The valve shaft.is attached to the oper ator adapter through ey whose dimensions are t x b x L; s ~
~ s '., 'L r \ ~ .. t ~ ~ 'p.g875 'as '
inch.
/ ~ ~,."" ' "~g '.'
b ~~
'.1875 '" " ~
inch
~ s 4 S, s, ~ g, ~ ' ~ ~:'".'. '- '- ". - '"'-:: PIG' '" '9'~ 0.875 inch p ', T ~ operator tortpxe = )PAL/=
The shear stress in the key is . = t ~ g~gg .'.Psj. s The bearing stress in the I':.:;.';.',,: key is Sb = '77++. Psi (P tLD
.".,.".::,-"" Xrincipal Stress e ~ SI, + ( b ) + < g$ g5'si Key material- A1SI lp18 Allowable Stress Sm= g7500 PR Cold drawn ~ ~ ~ ~
h s The allowable shearing stress S ~ 0 6 Sm ~ . 10500 - Psi
.. Shear Stress t ~ 3879 Psi Allowable Stress S = 10500 Psl I'x'incipal Stress c =9345 Psx, Allowable Stress Sm= 17500 Ps<
f
~
prin. Therefore the design is safe for the specified operator torque. Rl
CP BODY ANALYSIS:
~ ~ ~ l The valve body is modeled as a ring subjected to forces and moments as shown in the figures below.. (Ref. 4) gI ff~
Fy R~ My C.L Valve body cross section H ~':4:.0 inch 2.685 inch 6 ~ 75 inch (outer) 5.4075 inch (mean) ff.ZG 10 Membrane stresses are developed due to the internal pressure and Fx.
~,'.g ~ PR~+ Fx I
t 2Ht
'si ~ ~ .a 91 + 20 ill Shear stresses are generated due to the application of force F and moments Mx and Mz. Contributions of each of these are
- computed and added together on the next page.
4S 4S
3 7 + 1.8 P (Mz/2z) Psi 2Wt: 2Wt T . 400 + '0 + $ 42 4842 Psi Sending stresses in the valve body are caused due to the radial broad Px and the moment My.
- . 0 239PWRs (M /2)
+ Psi 1Ãt ww Cfb k H,t s
vb ~ 115 '.+ 963- 1078 Psi 1 Therefore the total normal stress is obtained by the summation of the membrane and bending stress.
~n ah + am 1078 + ill 1189 an an5 2 +v 2 Principal stress a prin 2 f 2J a 595 + 76/ 1359 Ps2 in Qg
material of the valve body is SA 516 Gr. 70 The allowable design stress Sm is 17500 Psi Qa Max&num stress developed a prin. = 135@ psi Allowable stress
~ 'm ~ 17500 psi Therefore the design xs safe for the specified seismic loads. ~ ~
26 .'
~ 'PPENDICES A, NATURAL FREQUENCY FORMULA Be INERTIA FOHN%>LAS AND TABULATION OF. RESULTS Co SHEAR PZN AREA
A endix A - Natural Pre uenc l Model of a mass with rotary inertia on the end of a cantilever . This is a two degree of freedom system. EI
.)c c $ 3 PL /3EI + CL /2EZ \ ...8 ~ FL2/2EI + CL/EZ P ( 6- er,/2)
L3 or C (8 - 3 5/2L) L tions of motion ~
~ ~ ~
p
- I J8 ~ <<C ~ -4zx e/r. + 6EZS/L MQ~ -F -12EZS/zP + 6zz e/r.
iwt iwt Using 8 ee for .simple harmonic motion
~ or e (-W2 +wl ) - GwIR =0 w2 +Rl 6(-w2+ w< ) = 0 W2 ~ 4EI/JL W2 ~ l2EZ/ML WI ~ 6EI/JL 2.
w, 6zx/ML Fore/0 gp0 w4- (w +w ) w + (w,'w' 0
~ w/2~
1 + W2 W++ V~< WI
- (w'w I g ~
wI2 wZI ) i~2
APPENDIX B - INERTIA FORMULAS FOR OPERATORS BETTIS PNEUMATIC OPERATORS K
~ t ~ ~ ~
The X Y Z coordinate system is located in line with the axes oE s~Zmmetry of the valve. The center of gravity'location of different components of the operator are given below. Total Operator Xo Yo Zo) Spring Cylinder {Xs~ Ysi Zs) Guide Cylinder (Xg~ Yg, Zg)
. Cylinder Support (Xp, Vp, Zp)
Total Operator Mass M0
-Spring Cylinder mass Ms Guide Cylinder mass Cylinder Support mass
45
~ ~
The mass moment of inertia of the cylinders and the cylinder support about the axes parallel to the coordinate system X,Y and 8'hrough their respective center of gravity are: Spring cylinder of length Ls and radius R Moment of inertia Jxs J'ys Ms (Rs 2 /4 + Ls 2 /12)
'I >zs . (Ms) (R 2)/4 Guide cylinder of length Lg and radius Rg Moment. of inertia Jxg = Jyg Hg (Rg /4 + Lg /12$
zg {Mg) (Rg )/4 C I I cylinder support is equivalent to a rectanqular prism of S . The height E and cross sectional dimensions Wx and Wy. Moment of inertia Jxp ~ (Mp/12) (H 2+.W~) a~ (Mp/12) (Hp +Wy )
+zp (Mp/12) (Wx2 + W 2)
Finally. the moment of inertia of the entire operator'bout the coordinate axes X,Y and Z are: J/ Jxs + Ms'(Ys + s ) + Jxg + Mg (Yg +Zg ) + Jxp + Mp (Yp +Zp )
+ Jyg+Mg (Xg2 +Zg 2.) + Jyp+Mp (X 2 +Zp 2 )
Jy J 8 + Ms(XS +Zs) P 2 2 Jz Jzs + Ms(Xs +Ys ) + Jzg+Mg(Xg +Yg ) +, Jzp+Mp(Xp +Yp )
W Mo Xo "o 'M xs Ys ZS 0 e 143 - 0;37 0;G '- ;39- 12. 57. 0; 25--. 0 0-- -2;5 ' 18:42 0.01' Lb-S2 Lb-S Lb S2
,fb Tnc~ Inch Inch Inch zinc I Inch Inch Inch znzcz Xg :. Y Z g .. M .....Xp...Yp ~
Zp Ls Rs 0.0 '=9'."94" ' 'WI 0 0 12.5
.Lb-S 2 nch 'Tnc?1" "in'ch 'T~EO Inch IICh TIrch.- ch -
Inch'Rg..... Hp ~ ."'x Ny.. JXS=Jys JZS xa .Jyg
.2. 12 Xl.12 s.Q" 8.6 38.38 0.88 0.14 0.011 l. 423 1.81 Inch Inch 'nch Inch Lb-S-II 2 Lb-S2Z b-S-Zn 2 Lb-S2In Lb-S2Zn Lb-S-Zn ~ 'ZP Jx ~ ~ '.0. 97 127.88'26.14 3.985
, -SZIn Lb-SZZn Lb-S2Zn Lb-SZIn
~ ~
t ~ I (Rel: 7 Operator Drawina and Cataloa)
~ ~ I ' .50 Nz
45 QJ A endix C - Shaft Pin Area I
)c /
d I
~(o(a-aQ 4'
Sect. A-A d~ean pin diameter D=shaft diameter Taking the shear area as an ellipse with semi-major axis b/2 and semi-minor axis d/2
~ I ~
A ~ bd 4 D 2 D C ~ -(- d)2 = dD-d 2 4 c=d+dDd=dD f'~d+ b dD A d ~do 4 31
4$}}