ML17262B120: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:ATTACHMENTCYENDOR'SDOCUMENTREVIEVIIg~Mfgsexyproceed2QApprovedgobrcttgottdoA.Mfgortyproceed3QApprovedexceptesnotedMetechsogcsecdsobroitBottdodhMfgoreyproceedsscpprovcdCQstotsptvovcdCorrecteodresobea,5QRevie>>ootrertvhcdIlfg,rosyproceedApprovxlofthisdocororeddocsoolregevosreoherfreerfvgccophsrcewithooratrectorporehesoorderreqrrtrecertLByDxteROCHESTERGAS8ELECTRICCORP.ftOCHESTER,NYR.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudyNovember1992Preparedby:c..zWChristopherJ.McHhJeph.SpryshakTransientAnalysisIIWestinghouseElectricCorp.ContainmentDesignandBWRTechnologyWestinghouseElecricCorp.9',Pgq9~8o921Zaop,AD<<idOrOOogg4.PVR R.E.GlnnaBoricAcidStorageTankBoronConcentrationReductionStudy.0ThisreportpresentsanalysesoftheR.E.Ginnaplantsteamlinebreak(SLB)containmentintegrityandassociatedLOCA-relatedanalyses,withareductionoftheboronconcentrationintheBoricAcidStorageTanks(BASTs)from20,000ppmto2,000ppm.AboronreductiontothislevelwillallowtheremovalofcreditfortheBASTsfromthelicensingbasisaccidentanalyses(andsubsequentlyremovaloftheassociatedheattracingrequired).TheBASTswillberetainedforoperationrequirementsandredundantflowpathsasdiscussedinTechnicalSpecifications.'o~'R.E:Ginnacurrentlymustmaintain20,000ppmboronintheBASTs,whichrequiresheattracingtopreventboronprecipitation.TheBASTsandtheirheattracingarepartoftheSafetyInjection(SI)systemandthustheymustbemaintainedaccordingtorequirementswhichcanimposeoperationalrestrictions.Theonlyaccidentanalyseswhicharesignificantlyaffectedbyboronconcentrationreductionarethesecondarysidesteamlinebreaktransients.Thecoreandthecontainmentresponsesareaffectedbythesteamlinebreaktransientsandthereforewereconsideredintheboronconcentrationreductionanalysis.2.0co-TheSLBcoreresponseanalysisisdocumentedinReference1andsupportsareductionintheBASTsboronconcentrationto2000ppm.3.0NTAINMENTINTERITYANALYSIS3.1Pur~seThepurposeoftheContainmentIntegritySteamlineBreakanalysisistodemonstratetheacceptabilityoftheContainmentSafeguardsSystemstomitigatetheconsequencesofahypotheticalruptureofasteamlinepipe.Theimpactofsteamlinemassandenergyreleasesoncontainmentpressureisaddressedtoensurethecontainmentpressureremainsbelowitsdesignpressureof60psigatthereducedboronconcentrationconditions.
{{#Wiki_filter:ATTACHMENT CYENDOR'SDOCUMENTREVIEVIIg~Mfgsexyproceed2QApprovedgobrcttgottdoA.Mfgortyproceed3QApprovedexceptesnotedMetechsogcsecdsobroitBottdodhMfgoreyproceedsscpprovcdCQstotsptvovcdCorrecteodresobea,5QRevie>>ootrertvhcdIlfg,rosyproceedApprovxlofthisdocorored docsoolregevosreoherfreerfvgccophsrce withooratrect orporehesoorderreqrrtrecertL ByDxteROCHESTER GAS8ELECTRICCORP.ftOCHESTER, NYR.E.GinnaBoricAcidStorageTankBoronConcentration Reduction StudyNovember1992Preparedby:c..zWChristopher J.McHhJeph.SpryshakTransient AnalysisIIWestinghouse ElectricCorp.Containment DesignandBWRTechnology Westinghouse ElecricCorp.9',Pgq9~8o921Zaop,AD<<idOrOOogg4.PVR R.E.GlnnaBoricAcidStorageTankBoronConcentration Reduction Study.0ThisreportpresentsanalysesoftheR.E.Ginnaplantsteamline break(SLB)containment integrity andassociated LOCA-related
It>i0,gr~i~n~Z'(p R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudy3.2RelevantAccetanceriteria~:"TheBASTsarecomponentsoftheSafetyInjection'Systemdesignedtomitigate'theconsequences.ofpostulatedsteamlinebreakaccidentsbyprovidingahighconcentrationofboricacidtothereactorcoolant.Ahighconcentrationofboricacidcausesadecreaseintheposttripreturncorepowerlevelandsubsequentlyadecreaseinheattransferredtothesecondarysidefluid,whichresultsindecreasedcontainmentpressuresduringaSLB.Thecontainmentpressuresresultingfromthemassandenergyreleasesmustremainbelowthedesignpressureofthecontainmentbuilding.ForR.E.Ginnathecontainmentdesignpressureis60psig.3.3Evaluation3.3.1MethodologyCalculationofthesteamlinebreakcontainmentresponseisatwostepprocess.TheLOFTRANcomputercode(Reference2)isfirstusedtocalculatethemassandenergyreleasedasafunctionoftime.ThereleasesarethenusedasinputtotheCOCOcode(Reference3)tocalculatecontainmentpressuresandtemperaturesasafunctionoftime.Attachment1providesabriefdescriptionoftheLOFTRANand.COCOcodes.1ThecasesthatwereanalyzedforpeakcontainmentpressuresarelistedinTable1.Thebasicinitialconditions,heatsinkmodel,fancoolerdata,andcontainmentsprayparametersforthesecasesareoutlinedinTables2through5.Thefollowingconservativeassumptionsaremadeforthemassandenergyreleaseanalysis:1.Maximumdecayheatequivalenttothe1979ANSdecayheat+2euncertainty.2.Nocreditforwaterentrainmentintheblowdownresults.3.Conservativelyhighvaluesforreversesteamgeneratorheattransfer.4.Conservativemoderatortemperaturecoefficientfortheroddedcoreatend-of-life.
: analyses, withareduction oftheboronconcentration intheBoricAcidStorageTanks(BASTs)from20,000ppmto2,000ppm.Aboronreduction tothislevelwillallowtheremovalofcreditfortheBASTsfromthelicensing basisaccidentanalyses(andsubsequently removaloftheassociated heattracingrequired).
TheBASTswillberetainedforoperation requirements andredundant flowpathsasdiscussed inTechnical Specifications.
'o~'R.E:Ginnacurrently mustmaintain20,000ppmboronintheBASTs,whichrequiresheattracingtopreventboronprecipitation.
TheBASTsandtheirheattracingarepartoftheSafetyInjection (SI)systemandthustheymustbemaintained according torequirements whichcanimposeoperational restrictions.
Theonlyaccidentanalyseswhicharesignificantly affectedbyboronconcentration reduction arethesecondary sidesteamline breaktransients.
Thecoreandthecontainment responses areaffectedbythesteamline breaktransients andtherefore wereconsidered intheboronconcentration reduction analysis.
2.0co-TheSLBcoreresponseanalysisisdocumented inReference 1andsupportsareduction intheBASTsboronconcentration to2000ppm.3.0NTAINMENT INTERITYANALYSIS3.1Pur~seThepurposeoftheContainment Integrity Steamline Breakanalysisistodemonstrate theacceptability oftheContainment Safeguards Systemstomitigatetheconsequences ofahypothetical ruptureofasteamline pipe.Theimpactofsteamline massandenergyreleasesoncontainment pressureisaddressed toensurethecontainment pressureremainsbelowitsdesignpressureof60psigatthereducedboronconcentration conditions.
It>i0,gr~i~n~Z'(p R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study3.2RelevantAccetanceriteria~:"TheBASTsarecomponents oftheSafetyInjection'System designedtomitigate'the consequences.
ofpostulated steamline breakaccidents byproviding ahighconcentration ofboricacidtothereactorcoolant.Ahighconcentration ofboricacidcausesadecreaseintheposttripreturncorepowerlevelandsubsequently adecreaseinheattransferred tothesecondary sidefluid,whichresultsindecreased containment pressures duringaSLB.Thecontainment pressures resulting fromthemassandenergyreleasesmustremainbelowthedesignpressureofthecontainment building.
ForR.E.Ginnathecontainment designpressureis60psig.3.3Evaluation 3.3.1Methodology Calculation ofthesteamline breakcontainment responseisatwostepprocess.TheLOFTRANcomputercode(Reference 2)isfirstusedtocalculate themassandenergyreleasedasafunctionoftime.ThereleasesarethenusedasinputtotheCOCOcode(Reference 3)tocalculate containment pressures andtemperatures asafunctionoftime.Attachment 1providesabriefdescription oftheLOFTRANand.COCOcodes.1Thecasesthatwereanalyzedforpeakcontainment pressures arelistedinTable1.Thebasicinitialconditions, heatsinkmodel,fancoolerdata,andcontainment sprayparameters forthesecasesareoutlinedinTables2through5.Thefollowing conservative assumptions aremadeforthemassandenergyreleaseanalysis:
1.Maximumdecayheatequivalent tothe1979ANSdecayheat+2euncertainty.
2.Nocreditforwaterentrainment intheblowdownresults.3.Conservatively highvaluesforreversesteamgenerator heattransfer.
4.Conservative moderator temperature coefficient fortheroddedcoreatend-of-life.
J1PI\gl14eI~
J1PI\gl14eI~
R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudy3.3.2SpectrumofBreakAssumptionsAcomprehensivesetofbreaksizes,initialpowerlevels,singlefailureassumptions,andoff-sitepoweravailabilitymustbeconsideredsothatthereisreasonableassurancethatthelimitingcaseshavebeencovered.ThecompletesetofsteamlinebreakcasesthatwereaddressedfortheR.E.GinnaplantislistedinTable1.Thesinglefailuresconsideredinthisanalysishavebeenselectedbasedupontheirpotentialforincreasingtheamountofmassandenergyreleasedintocontainmentorforreducingtheamountofheatremovedfromcontainment.Thefourpostulatedfailuresareasfollows:FailureoftheMainSteamIsolationValve(MSIV)tocloseFailureoftheFeedwaterControlSystem(FCS)Failureofonecontainmentspraypump(tooperate)FailureofonedieselgeneratortostartThebreaksconsideredinclude4.37ft'oubleEndedRuptures(DER)upstreamoftheflowrestrictor,1.4ft'ER'sdownstreamoftheflowrestrictor,andsmallbreaksof1.1ft'rsmaller.Todeterminethelimitingbreaksizeforthesmallbreaks,severalcaseswererunwithbreaksizesfrom0.3ft'o1.1ft'n0.2ft'ncrements.Afterithadbeensufficientlydemonstratedthatthetwolargestofthesmallbreaksconsistentlyresultedinhigherbreakflowsandlimitingpeakcontainmentpressures,theremainderofthesmallbreakcaseswererunwithonlythetwolargestbreaksizes,0.9ft'nd1.1ft'.3.3.3ConsistentOff-SitePowerAvailabilityOneoftheconservativeassumptionsthathashistoricallybeenmadeiswithrespecttotheavailabilityofoff-sitepower.UndertypicalSLBcontainmentanalysismethodology,themassandenergyreleasesaregeneratedassumingoff-sitepowercontinuestobeavailableforthedurationofthetransient.Thisgivesmaximumprimary-to-secondaryheattransferbecauseoftheforcedreactorcoolantflowfromtheReactorCoolantPumps(RCPs).Thecontainmentintegritycalculationisthenperformedassumingthatoff-sitepowerisnotavailable,whichextendsthesafeguardsequipmentstartupdelaysduetodieselsequencingtiming.Thesetwoassumptionscontradicteachother,butresultinananalysiswhichboundsbothwith rIkgA3<<P'I+vl"'A'~at),
R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study3.3.2SpectrumofBreakAssumptions Acomprehensive setofbreaksizes,initialpowerlevels,singlefailureassumptions, andoff-sitepoweravailability mustbeconsidered sothatthereisreasonable assurance thatthelimitingcaseshavebeencovered.Thecompletesetofsteamline breakcasesthatwereaddressed fortheR.E.GinnaplantislistedinTable1.Thesinglefailuresconsidered inthisanalysishavebeenselectedbasedupontheirpotential forincreasing theamountofmassandenergyreleasedintocontainment orforreducingtheamountofheatremovedfromcontainment.
R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudy.andwithout,off-site.power,withonecase.Toremovethisunnecessaryconservatismthelimitingcaseswereanalyzedwithaconsistentoff-sitepoweravailabilityassumption.Asmallnumberofcaseswereanalyzedwithinconsistentassumptionsanddemonstratedahighmargintothepressurelimit.3.3.4MassandEnergyCalculationAssumptions3.3.4.1MainandAuxiliaryFeedwaterFlowasaFunctionofSteamGeneratorPressureThecasespresentedinthisstudyassumedamainfeedwaterflowrateasafunctionofboththesteamgeneratorpressureandthefeedwatercontrolvalveposition.Thefeedwatercontrolvalve(FCV)positionvarieswithpowerlevelandpostulatedbreaklocation.ThebreaklocationaffectstheFCVpositionin'hata'steamlinebreakresultsinanincreaseinsteamflowandsubsequentlyasteamflow/feedflowmismatch.Inresponsetothemismatch,thefeedwatercontrolsystemisassumedtoincreasefeedflowtomatchsteamflow.ThetypicalanalysisassumptionistoassumethatthefaultedloopFCViswideHowever,withabreakupstreamofthesteamlineflowrestrictor,nosteamflow/feedflowmismatchwouldbepresent.Assuch,forcaseswithabreaksizelargerthantheflowareathroughtheflow-restrictor,itisassumedthatnomismatchsignalispresentandthatthefaultedloopFCVstaysinitsnominalpre-break-position.-TheintactloopFCVisconservatively-assumedtoremaininitsnominalpre=-breakpositionuntilreactortrip.AturbinetripisassumedtooccuratthesametimeasreactortripandtheintactloopFCVisassumedtocloseinstantlyinresponsetothedecreaseinsteamdemand.Forsteamlinebreakslocateddownstreamoftheflowrestrictorsandthosebreakshavingabreakareasmallerthantheflowrestrictor,itisassumedthattheFCVonthefaultedloopgoeswideopeninresponsetotheincreasedsteamflow.Aswiththeupstreambreaks,theintactloopFCVisassumedtobeinitsnominalpositioninitiallyandclosesinstantly,coincidentwithreactortrip.Auxiliaryfeedwaterflowratesasafunctionofsteamgeneratorpressurewerealsoassumedintheanalyses.,Auxiliaryfeedwaterflowratesvarieddependingontheavailabilityofoffsitepowerandthesinglefailurebeingevaluated.AtHZP,themainfeedwaterpumpswillnotdeliverfeedwatertoeithersteamgenerator.Thus,noneof e\~E~
Thefourpostulated failuresareasfollows:FailureoftheMainSteamIsolation Valve(MSIV)tocloseFailureoftheFeedwater ControlSystem(FCS)Failureofonecontainment spraypump(tooperate)Failureofonedieselgenerator tostartThebreaksconsidered include4.37ft'oubleEndedRuptures(DER)upstreamoftheflowrestrictor, 1.4ft'ER'sdownstream oftheflowrestrictor, andsmallbreaksof1.1ft'rsmaller.Todetermine thelimitingbreaksizeforthesmallbreaks,severalcaseswererunwithbreaksizesfrom0.3ft'o1.1ft'n0.2ft'ncrements.
R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudythezeropowercasesassumeanymainfeedwater.Thesecasesassumeauxiliaryfeedwateronly,initiatedatthetimethesteamlinebreakoccurs.3.3.4.2CoreReactivityCoefficientsLOFTRANutilizesapointkineticsmodel,whichusesreactivityfeedbackcoefficientstocalculatethekineticsconditionsinthecore.Steamlinebreaktransientsinitializedathot-zeropower.assumerodded-reactivityfeedbackcoefficientswithanallowanceforthemostreactiveRodClusterControlAssembly(RCCA)stuckinitsfullywithdrawnposition.SteamlinebreaktransientsinitiatedwiththereactoratpowertypicallyassumeEnd-Of-Life(EOL)reactivitycoefficientscalculatedassumingthatallRCCAsarefullywithdrawn.However,fortheseanalyses,sincethemajorityofthetransientispostreactortrip,roddedcoefficients(againwithanallowanceforastuckRCCA)wereassumed.Confirmationoftheconservatismoftheoverallreactivitymodelhasbeenobtainedbymoredetailedcoreneutronicscalculations.3.3.5ContainmentIntegrityAssumptionsThemajorcontainmentintegritycalculationalassumptionsusedwithCOCOareasfollows:1.Themassandenergyreleasetothecontainmentisfor-abreakopeningtimeofzero.2.Thesaturationtemperaturecorrespondingtothepartialpressureofthecontainmentvaporisusedincalculatingthecondensingheattransfertothepassiveheatsinksandtheheatremovalbycontainmentfancoolers.3.TheWestinghousecontainmentmodelutilizestheanalyticalapproachesdescribedinReferences3and4tocalculatethecondensateremovalfromthecondensatefilm.Aconvectiveheatfluxrevaporizationmodelisusedforsmallbreaks.100%revaporizationisassumedforlargebreaks.4.ThesmallsteamlinebreakcontainmentanalysesutilizedthestagnantTagamicorrelation,Reference5.
Afterithadbeensufficiently demonstrated thatthetwolargestofthesmallbreaksconsistently resultedinhigherbreakflowsandlimitingpeakcontainment pressures, theremainder ofthesmallbreakcaseswererunwithonlythetwolargestbreaksizes,0.9ft'nd1.1ft'.3.3.3Consistent Off-SitePowerAvailability Oneoftheconservative assumptions thathashistorically beenmadeiswithrespecttotheavailability ofoff-sitepower.UndertypicalSLBcontainment analysismethodology, themassandenergyreleasesaregenerated assumingoff-sitepowercontinues tobeavailable forthedurationofthetransient.
44~rr R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudy5.Thedieselfailureconditions(minimumsafeguards),thatweremodeled,assumedthattherewere2fancoolersandonecontainment.spray-pump(1300gpm)wereoperating;-Thetime--delaysthatwereassumedforinitiationofcontainmentspraysandfancoolerswithadieselfailurearegiveninTable3.3.4Desin-BasisContainmentlnteritAnalsisResults.Figures1and2providethepressureandtemperaturetransientcurvesforthe4.37ft'ERupstreamoftheflowrestrictorcaseproducingthehighestpeakcontainmentpressureofthistypeofbreakandallotherbreaksanalyzed.Thiscaserepresentsamainsteamisolationvalve(MSIV)failureat30%powerwithoffsitepoweravailable.TheBASTsboronconcentrationof2000ppmwasassumedinthiscaseandallothercasesidentifiedinTable1.ThemassandenergyreleasesforthiscaseareshowninFigures3and4.Thelimiting1.4ftdownstreamDERcontainmentpressureandtemperaturetransientsareshowninFigures5and6.Thiscaserepresentsthefeedwatercontrolsystemfailureat70%powerwithoutoffsitepoweravailable.Notethatthepeakpressureislowerforthe1.4ft'reakthanforthe4.37ft~break.Thesmallerbreakareareducestheblowdownmassandenergyreleaseratewithoutsignificantlydelayingactuationofprotectivefunctionsand,therefore,resultsinalowerpeakcontainmentpressurethanthe4.37ft'ase.ThemassandenergyreleaseratesforthiscaseareincludedinFigures7and8.ThelimitingsmallDERisa1.1ft'reak,resultinginthepressureandtemperaturetransientsshowninFigures9and10.Thiscasewasanalyzedassumingadieselfailureat102%power,withoutoffsitepoweravailable.ThemassandenergyreleaseratesforthiscaseareincludedinFigures11and12.Thecontainmentpressuresreachedbythelimitingbreakswiththeboricacidstoragetankconcentrationof2000ppmremainbelowthecontainmentdesignlimitof60psig.
Thisgivesmaximumprimary-to-secondary heattransferbecauseoftheforcedreactorcoolantflowfromtheReactorCoolantPumps(RCPs).Thecontainment integrity calculation isthenperformed assumingthatoff-sitepowerisnotavailable, whichextendsthesafeguards equipment startupdelaysduetodieselsequencing timing.Thesetwoassumptions contradict eachother,butresultinananalysiswhichboundsbothwith rIkgA3<<P'I+vl"'A'~at),
3'iCJiEk~',IfIaxe R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudy4.0EVALUATIONOFLOCA-RELATEDANALYSES4.1LareBreakLOCAThecurrentLargeBreakLoss-Of-CoolantAccident(LBLOCA)analysisofrecordforR.E.GinnawasperformedusingtheNRC-approved1981ECCSEvaluationModel,Reference6.TheproposedreductionintheboronconcentrationintheBASTswillnotadverselyaffecttheLargeBreakLOCAbecausetheEvaluationModelcodesusedinanalyzingthelargebreakdonotexplicitlymodelboronconcentrationinthereactorcoolantsystem.4.2SmallBreakLOCAThecurrentSmallBreakLoss-Of-CoolantAccident(SBLOCA)analysisofrecordforR.E.GinnawasperformedusingtheNRC-approvedSmallBreakLOCAECCSEvaluationModelwithWFLASH,Reference7.TheproposedreductionintheboronconcentrationintheBASTswillnotadverselyaffecttheSmallBreakLOCAbecausetheEvaluationModelcodesusedinanalyzingthesmallbreakdonotexplicitlymodelboronconcentrationinthereactorcoolantsystem.4.3Post-LOCALonTermCoreCoolinSubcriticalitReuirementTheWestinghouselicensingpositionforsatisfyingtherequirementsof10CFR50.46Paragraph(b)Item(5)"LongTermcooling"isdefinedinWCAP-8339,Reference8.TheWestinghousecommitmentisthatthereactorwillremainshutdownbyboratedECCSwaterresidinginthesumpfollowingaLOCA,Reference9.SincecreditforthecontrolrodsisnottakenforlargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulatorsandtheRWSTmusthaveaconcentrationthat,whenmixedwithothersourcesofboratedandnon-boratedwater,willresultinthereactorcoreremainingsubcriticalassumingallcontrolrodsareout.ThelargereductioninboronconcentrationintheBASTswillhaveasignificanteffectontheReactorCoolantSystemboronconcentrationsassumedforthiscalculation.ThecalculationsfordeterminingwhetherthereductionintheboronconcentrationintheBASTswill
R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study.andwithout,off-site.
*al,~Jgp1~g44I R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudyresultinthecoreremainingsubcriticalwasre-donewithanewconcentrationof2000ppmintheBASTs.AnewRCSboronconcentrationcurveforthe2000ppmvaluewas.generatedandusedinthecoredesign,processto.ensure-thatthecorewillremainsubcriticalwithaboronconcentration-of2000ppm.---4.4BoronPreciitationDurinLonTermCoolinThepost-LOCAboronprecipitationlongtermcorecoolingrequirementensuresnoboronprecipitationinthereactorvesselfollowingboilinginthecore.SinceGinnahassimultaneousinjectionfromtheresidualheatremovalsafetyinjectionsystemintotheupperplenumandthehighheadsafetyinjectionsystemintothecoldlegs,thisrequirementismetbyrequiringalternateinjectionwithin20hoursafteraLOCA.Thistimeisdependentonpowerlevel,andtheRCS,RWST,accumulator,andotherwatersourcesvolumesandboronconcentrations.AreductionintheboronconcentrationintheBASTswillhavenoeffectonthepowerlevel,orvolumesassumedfortheRCS,RWST,accumulators,andotherwatersources.Althoughtheboronconcentrationswillbeaffected,itrequiresanincreaseintheconcentrationtoadverselyaffecttheboronprecipitation.Sincetheboronconcentrationwouldbedecreasingwiththeproposedchange,therewillbenoadverseeffectonthepost-LOCAalternateinjectionrequirementof20hoursfortheR.E.Ginnaplant.4.5Post-LOCALonTermoreCoolinMinimumFlowPost-LOCAlongtermcorecoolingminimumflowisdeterminedtoensureadequateflowforlargebreakandsmallbreakatthetimeofrecirculationswitchover.AreductionoftheboronconcentrationintheBASTswillhavenoeffectontheinputsforthiscalculation.Therefore,thischangewillhavenoeffectonthepost-LOCAlongtermcorecoolingminimumflowfortheR.E.Ginnaplant.4.6LOCASummaandConclusionsTheeffectofreducingtheboronconcentrationintheBASTsontheLOCA-relatedanalysesforR.E.GinnahasbeenevaluatedbyWestinghouse.ThepotentialeffectofthechangeontheUFSARanalysisresultsforeachoftheLOCA-relatedaccidentswasevaluatedanditwasshowninallcasesthattheeffectofthechangedidnotresultinexceedinganyofthefollowingdesignorregulatorylimits:1.-.Thecalculatedpeak-fuelelementcladdingtemperatureisbelowtherequirementsof2200'F.  
power,withonecase.Toremovethisunnecessary conservatism thelimitingcaseswereanalyzedwithaconsistent off-sitepoweravailability assumption.
Asmallnumberofcaseswereanalyzedwithinconsistent assumptions anddemonstrated ahighmargintothepressurelimit.3.3.4MassandEnergyCalculation Assumptions 3.3.4.1MainandAuxiliary Feedwater FlowasaFunctionofSteamGenerator PressureThecasespresented inthisstudyassumedamainfeedwater flowrateasafunctionofboththesteamgenerator pressureandthefeedwater controlvalveposition.
Thefeedwater controlvalve(FCV)positionvarieswithpowerlevelandpostulated breaklocation.
ThebreaklocationaffectstheFCVpositionin'hata'steamline breakresultsinanincreaseinsteamflowandsubsequently asteamflow/feed flowmismatch.
Inresponsetothemismatch, thefeedwater controlsystemisassumedtoincreasefeedflowtomatchsteamflow.Thetypicalanalysisassumption istoassumethatthefaultedloopFCViswideHowever,withabreakupstreamofthesteamline flowrestrictor, nosteamflow/feed flowmismatchwouldbepresent.Assuch,forcaseswithabreaksizelargerthantheflowareathroughtheflow-restrictor, itisassumedthatnomismatchsignalispresentandthatthefaultedloopFCVstaysinitsnominalpre-break-position.
-TheintactloopFCVisconservatively-assumed toremaininitsnominalpre=-breakpositionuntilreactortrip.AturbinetripisassumedtooccuratthesametimeasreactortripandtheintactloopFCVisassumedtocloseinstantly inresponsetothedecreaseinsteamdemand.Forsteamline breakslocateddownstream oftheflowrestrictors andthosebreakshavingabreakareasmallerthantheflowrestrictor, itisassumedthattheFCVonthefaultedloopgoeswideopeninresponsetotheincreased steamflow.Aswiththeupstreambreaks,theintactloopFCVisassumedtobeinitsnominalpositioninitially andclosesinstantly, coincident withreactortrip.Auxiliary feedwater flowratesasafunctionofsteamgenerator pressurewerealsoassumedintheanalyses.,Auxiliary feedwater flowratesvarieddepending ontheavailability ofoffsitepowerandthesinglefailurebeingevaluated.
AtHZP,themainfeedwater pumpswillnotdeliverfeedwater toeithersteamgenerator.
Thus,noneof e\~E~
R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Studythezeropowercasesassumeanymainfeedwater.
Thesecasesassumeauxiliary feedwater only,initiated atthetimethesteamline breakoccurs.3.3.4.2CoreReactivity Coefficients LOFTRANutilizesapointkineticsmodel,whichusesreactivity feedbackcoefficients tocalculate thekineticsconditions inthecore.Steamline breaktransients initialized athot-zeropower.assumerodded-reactivity feedbackcoefficients withanallowance forthemostreactiveRodClusterControlAssembly(RCCA)stuckinitsfullywithdrawn position.
Steamline breaktransients initiated withthereactoratpowertypically assumeEnd-Of-Life (EOL)reactivity coefficients calculated assumingthatallRCCAsarefullywithdrawn.
However,fortheseanalyses, sincethemajorityofthetransient ispostreactortrip,roddedcoefficients (againwithanallowance forastuckRCCA)wereassumed.Confirmation oftheconservatism oftheoverallreactivity modelhasbeenobtainedbymoredetailedcoreneutronics calculations.
3.3.5Containment Integrity Assumptions Themajorcontainment integrity calculational assumptions usedwithCOCOareasfollows:1.Themassandenergyreleasetothecontainment isfor-abreakopeningtimeofzero.2.Thesaturation temperature corresponding tothepartialpressureofthecontainment vaporisusedincalculating thecondensing heattransfertothepassiveheatsinksandtheheatremovalbycontainment fancoolers.3.TheWestinghouse containment modelutilizestheanalytical approaches described inReferences 3and4tocalculate thecondensate removalfromthecondensate film.Aconvective heatfluxrevaporization modelisusedforsmallbreaks.100%revaporization isassumedforlargebreaks.4.Thesmallsteamline breakcontainment analysesutilizedthestagnantTagamicorrelation, Reference
: 5.
44~rr R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study5.Thedieselfailureconditions (minimumsafeguards),
thatweremodeled,assumedthattherewere2fancoolersandonecontainment.
spray-pump (1300gpm)wereoperating;
-Thetime--delaysthatwereassumedforinitiation ofcontainment spraysandfancoolerswithadieselfailurearegiveninTable3.3.4Desin-BasisContainment lnteritAnalsisResults.Figures1and2providethepressureandtemperature transient curvesforthe4.37ft'ERupstreamoftheflowrestrictor caseproducing thehighestpeakcontainment pressureofthistypeofbreakandallotherbreaksanalyzed.
Thiscaserepresents amainsteamisolation valve(MSIV)failureat30%powerwithoffsitepoweravailable.
TheBASTsboronconcentration of2000ppmwasassumedinthiscaseandallothercasesidentified inTable1.ThemassandenergyreleasesforthiscaseareshowninFigures3and4.Thelimiting1.4ftdownstream DERcontainment pressureandtemperature transients areshowninFigures5and6.Thiscaserepresents thefeedwater controlsystemfailureat70%powerwithoutoffsitepoweravailable.
Notethatthepeakpressureislowerforthe1.4ft'reakthanforthe4.37ft~break.Thesmallerbreakareareducestheblowdownmassandenergyreleaseratewithoutsignificantly delayingactuation ofprotective functions and,therefore, resultsinalowerpeakcontainment pressurethanthe4.37ft'ase.ThemassandenergyreleaseratesforthiscaseareincludedinFigures7and8.ThelimitingsmallDERisa1.1ft'reak,resulting inthepressureandtemperature transients showninFigures9and10.Thiscasewasanalyzedassumingadieselfailureat102%power,withoutoffsitepoweravailable.
ThemassandenergyreleaseratesforthiscaseareincludedinFigures11and12.Thecontainment pressures reachedbythelimitingbreakswiththeboricacidstoragetankconcentration of2000ppmremainbelowthecontainment designlimitof60psig.
3'iCJiEk~',IfIaxe R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study4.0EVALUATION OFLOCA-RELATED ANALYSES4.1LareBreakLOCAThecurrentLargeBreakLoss-Of-Coolant Accident(LBLOCA)analysisofrecordforR.E.Ginnawasperformed usingtheNRC-approved 1981ECCSEvaluation Model,Reference 6.Theproposedreduction intheboronconcentration intheBASTswillnotadversely affecttheLargeBreakLOCAbecausetheEvaluation Modelcodesusedinanalyzing thelargebreakdonotexplicitly modelboronconcentration inthereactorcoolantsystem.4.2SmallBreakLOCAThecurrentSmallBreakLoss-Of-Coolant Accident(SBLOCA)analysisofrecordforR.E.Ginnawasperformed usingtheNRC-approved SmallBreakLOCAECCSEvaluation ModelwithWFLASH,Reference 7.Theproposedreduction intheboronconcentration intheBASTswillnotadversely affecttheSmallBreakLOCAbecausetheEvaluation Modelcodesusedinanalyzing thesmallbreakdonotexplicitly modelboronconcentration inthereactorcoolantsystem.4.3Post-LOCA LonTermCoreCoolinSubcriticalit ReuirementTheWestinghouse licensing positionforsatisfying therequirements of10CFR50.46Paragraph (b)Item(5)"LongTermcooling"isdefinedinWCAP-8339, Reference 8.TheWestinghouse commitment isthatthereactorwillremainshutdownbyboratedECCSwaterresidinginthesumpfollowing aLOCA,Reference 9.SincecreditforthecontrolrodsisnottakenforlargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulators andtheRWSTmusthaveaconcentration that,whenmixedwithothersourcesofboratedandnon-borated water,willresultinthereactorcoreremaining subcritical assumingallcontrolrodsareout.Thelargereduction inboronconcentration intheBASTswillhaveasignificant effectontheReactorCoolantSystemboronconcentrations assumedforthiscalculation.
Thecalculations fordetermining whetherthereduction intheboronconcentration intheBASTswill
*al,~Jgp1~g44I R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Studyresultinthecoreremaining subcritical wasre-donewithanewconcentration of2000ppmintheBASTs.AnewRCSboronconcentration curveforthe2000ppmvaluewas.generated andusedinthecoredesign,processto.ensure-that thecorewillremainsubcritical withaboronconcentration-of 2000ppm.---4.4BoronPreciitationDurinLonTermCoolinThepost-LOCA boronprecipitation longtermcorecoolingrequirement ensuresnoboronprecipitation inthereactorvesselfollowing boilinginthecore.SinceGinnahassimultaneous injection fromtheresidualheatremovalsafetyinjection systemintotheupperplenumandthehighheadsafetyinjection systemintothecoldlegs,thisrequirement ismetbyrequiring alternate injection within20hoursafteraLOCA.Thistimeisdependent onpowerlevel,andtheRCS,RWST,accumulator, andotherwatersourcesvolumesandboronconcentrations.
Areduction intheboronconcentration intheBASTswillhavenoeffectonthepowerlevel,orvolumesassumedfortheRCS,RWST,accumulators, andotherwatersources.Althoughtheboronconcentrations willbeaffected, itrequiresanincreaseintheconcentration toadversely affecttheboronprecipitation.
Sincetheboronconcentration wouldbedecreasing withtheproposedchange,therewillbenoadverseeffectonthepost-LOCA alternate injection requirement of20hoursfortheR.E.Ginnaplant.4.5Post-LOCA LonTermoreCoolinMinimumFlowPost-LOCA longtermcorecoolingminimumflowisdetermined toensureadequateflowforlargebreakandsmallbreakatthetimeofrecirculation switchover.
Areduction oftheboronconcentration intheBASTswillhavenoeffectontheinputsforthiscalculation.
Therefore, thischangewillhavenoeffectonthepost-LOCA longtermcorecoolingminimumflowfortheR.E.Ginnaplant.4.6LOCASummaandConclusions Theeffectofreducingtheboronconcentration intheBASTsontheLOCA-related analysesforR.E.Ginnahasbeenevaluated byWestinghouse.
Thepotential effectofthechangeontheUFSARanalysisresultsforeachoftheLOCA-related accidents wasevaluated anditwasshowninallcasesthattheeffectofthechangedidnotresultinexceeding anyofthefollowing designorregulatory limits:1.-.Thecalculated peak-fuel elementcladdingtemperature isbelowtherequirements of2200'F.  
'y,i4T(
'y,i4T(
R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudy2.-.-Theamountoffuelelementcladdingthat.reactschemicallywithwaterorsteamdoesnotexceed1percentofthetotalamountofZircaloyinthereactor.3.-Thecladding-temperaturetransientisterminatedatatimewhenthecoregeometryisstill.amenabletocooling.Thelocalizedcladdingoxidation-limit-of17percentis-notexceededduringorafterquenching.4.Thecoreremainsamenabletocoolingduringandafterthebreak.5.Thecoretemperatureisreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-livedradioactivityremaininginthecore.Therefore,itisconcludedthattheproposedmodificationtoreducetheboronconcentrationintheBASTsisacceptablefromthestandpointoftheUFSARaccidentanalysesdiscussedinthissection.5.0ConclusionsAreductionoftheBASTsboronconcentrationto2000ppmattheR.E.Ginnaplantwillbeacceptable.fromthestandpointofcoreresponse,steamlinebreakcontainmentintegrity,andLOCA=,evaluation.-.
R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study2.-.-Theamountoffuelelementcladdingthat.reactschemically withwaterorsteamdoesnotexceed1percentofthetotalamountofZircaloyinthereactor.3.-Thecladding-temperature transient isterminated atatimewhenthecoregeometryisstill.amenable tocooling.Thelocalized claddingoxidation-limit-of 17percentis-notexceededduringorafterquenching.
0~I'gc".3KiII>ftlf~.tC~h' R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudyReferences1.RG&EtoNRCRequestforAmendmenttoTechnicalSpecificationsdatedOct.16,1985,purpose-ReviseContainmentInternalPressureLimitations.2.Burnett,T.W.T.,et.al.,"LOFTRANCodeDescription,"WCAP-7909-P-A(Proprietary),WCAP-7907-A(Non-Proprietary),April1984.3.Bordelon,F.M.andMurphy,E.T.,"ContainmentPressureAnalysisCode(COCO),"WCAP-8327,July1974.4.Hsieh,T.etal,"EnvironmentalQualificationInstrumentTransmitterTemperatureTransientAnalysis",WCAP-8936,February1977(Proprietary)andWCAP-8937,February1977(Non-Proprietary)5.Jens,W.H.,andLottes,P.A.,"AnalysisofHeatTransfer,Burnout,PressureDrop,andDensityDataforHighPressureWater",USAECReportANL-4627,1951.n6.WCAP-9220-P-A(Proprietary),WCAP-9221(Non-Proprietary),Eicheldinger,C.,"WestinghouseECCSEvaluationModel-1981Version",Revision1,1981.7.WCAP-8200(Proprietary),"WFLASH-AFORTRAN-IVComputerProgramForSimulationOfTransientsInAMulti-LoopPWR",Esposito,V.J.,etal.,July1973.8.WCAP-8339(Non-Proprietary),Bordelon,F.M.,et.al.,"WestinghouseECCSEvaluationModel-Summary",June1974.9.WestinghouseTechnicalBulletinNSID-TB-86-08,"Post-LOCALongTermCooling:BoronRequirements",October31,1986.10  
4.Thecoreremainsamenabletocoolingduringandafterthebreak.5.Thecoretemperature isreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-lived radioactivity remaining inthecore.Therefore, itisconcluded thattheproposedmodification toreducetheboronconcentration intheBASTsisacceptable fromthestandpoint oftheUFSARaccidentanalysesdiscussed inthissection.5.0Conclusions Areduction oftheBASTsboronconcentration to2000ppmattheR.E.Ginnaplantwillbeacceptable
~r Table1:ContainmentIntegrityAnalysis-SteamLineBreakCasesCS-FailureofOneContainmentSprayPumptoOperateDIESEL-FailureofoneDieselGeneratortoStartMSIV-FailureofMainSteamIsolationValveFCS-FailureofFeedwaterControlSystemCaseBreakTeBreakSizeft~Power%FailureM&EContainmentOffsitePower1AUPSTREAMDER4.37102CSAVAILAVAIL1BDIESELNOTAVAILNOTAVAIL2AMSIVAVAILAVAIL.2BMSIVNOTAVAILNOTAVAIL3AFCSAVAILAVAIL3BFCSNOTAVAILNOTAVAIL4A70AVAILAVAIL4BDIESELNOTAVAILNOTAVAILSAMSIVAVAILAVAIL5BMSIVNOTAVAILNOTAVAIL6AFCSAVAILAVAIL6BFCSNOTAVAILNOTAVAIL7A30CSAVAILAVAIL7BDIESELNOTAVAILNOTAVAILMSIVAVAILAVAIL8BMSIVNOTAVAILNOTAVAIL9AFCSAVAILAVAIL9BFCSNOTAVAILNOTAVAIL10AAVAILAVAIL10BDIESELNOTAVAILNOTAVAIL11AMSIVAVAILAVAIL11BMSIVNOTAVAILNOTAVAIL12AFCSAVAILAVAIL12BFCSNOTAVAILNOTAVAILMQEMassandenerayreleasedintocontainment b81~
.fromthestandpoint ofcoreresponse, steamline breakcontainment integrity,and LOCA=,evaluation.-.
TablelcontinuedCaseBreakeBreakSizeft'ower%FailureM&EContainmentOffsitePower13ADWNSTRMDER1.4102CSAVAILAVAIL13BDIESELNOTAVAILNOTAVAIL14AMSIVAVAILAVAIL14B102MSIVNOTAVAILNOTAVAIL15AFCSAVAILAVAIL15BFCSNOTAVAILNOTAVAIL16A70CSAVAILAVAIL16BDIESELNOTAVAILNOTAVAIL17AMSIVAVAILAVAIL17BMSIVNOTAVAILNOTAVAIL18AFCSAVAILAVAIL18BFCSNOTAVAILNOTAVAIL19A30CSAVAILAVAIL19BDIESELNOTAVAILNOTAVAIL20AMSIVAVAILAVAIL20BMSIVNOTAVAILNOTAVAIL21AFCSAVAILAVAIL21BFCSNOTAVAILNOTAVAIL22AAVAILAVAIL22CDIESELAVAILNOTAVAIL23AMSIVAVAILAVAIL23BMSIVNOTAVAILNOTAVAIL24AFCSAVAILAVAIL24CFCSAVAILNOTAVAIL25A125A225A325A4SMALLDER0.30.50.70.9102CSCSCSCSAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAIL S~~a Table1continuedCase25A525B125B225B3BreakTe.SMALLDER1.1102CS0.3102DIESEL0.50.7DIESELDIESELBreakSizeft'ower%FailureOffsitePowerM&EAVAILContainmentAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAIL25B425BS0.9DIESELDIESELNOTAVAILNOTAVAILNOTAVAILNOTAVAIL26A426AS0.9102FCSFCSAVAILAVAILAVAILAVAIL26B426B50.9102NOTAVAILNOTAVAILNOTAVAILNOTAVAIL27A427AS0.970AVAILAVAILAVAILAVAIL27B327B427B50.70.970DIESELDIESELDIESELNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAIL28A428AS0.970FCSFCSAVAILAVAILAVAILAVAIL28B428BS0.970FCSFCSNOTAVAILNOTAVAILNOTAVAILNOTAVAIL29A429A50.930AVAILAVAILAVAILAVAIL29B429BS0.930DIESELDIESELNOTAVAILNOTAVAILNOTAVAILNOTAVAIL30A430AS0.930FCSFCSAVAILAVAILAVAILAVAIL30B430BS0.930FCSFCSNOTAVAILNOTAVAILNOTAVAILNOTAVAIL31A10.3CSAVAILAVAIL13 II~IAt,t<II~g Table1continuedCaseBreakTeBreakSizeft'ower%FailureM&EContainmentOffsitePower31A231A3SMALLDER0.50.7AVAILAVAILAVAILAVAIL31A40.9AVAIL~AVAIL31A5AVAILAVAIL31C631C732C132C232C332C432C51.31.50.30.50.70.9DIESELDIESELFCSFCSFCSFCSFCSAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAIL33A133A233A333A433A50.31020.50.70.9MSIVMSIVMSIVMSIVMSIVAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAIL33B534C434C50.9701021.1102MSIVMSIVMSIVMSIVNOTAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAIL35A435A50.930MSIVMSIVAVAILAVAILAVAILAVAIL35B536C136C236C336C436C50.30.50.70.9MSIVMSIVMSIVMSIVMSIVMSIVNOTAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAIL 5.ql)(
0~I'gc".3KiII>ftlf~.tC~h' R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction StudyReferences 1.RG&EtoNRCRequestforAmendment toTechnical Specifications datedOct.16,1985,purpose-ReviseContainment InternalPressureLimitations.
Tablelcontinued/CaseBreakeBreakSizeft'ower%FailureM&EContainmentOffsitePower37AS37C4SPLIT1020.9102MSIVMSIVAVAILAVAILAVAILNOTAVAIL37CS38A438AS38BS39A439AS39BS40C140C240C340C440CS0.90.90.30.50.70.970703030MSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVAVAILAVAILAVAILNOTAVAILAVAILAVAILNOTAVAILAVAILAVAILAVAILAVAILAVAILNOTAVAILAVAILAVAILNOTAVAILAVAILAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAIL 0~6 Table2-LOFTRANInitialConditions/InputAssumptionsParameter------InitialPowerLevel-----~102o~70o30%0%NominalAverageRCSTemperature('F)RCSFlowrate(gpm)RCSPressure(psia)FeedwaterTemperature('F)1740002250425174000225038517400017400022502250322100573.5565.55554.95547.0NominalPressurizerWaterLevel(%NRS)'-">49.040.228.4"19.5NominalSteamGeneratorWaterLevel(%NRS)52.052.052.052.0'Theactualsteamgeneratorlevelatzeropoweris39%NRS+uncertainties.52%NRS+uncertaintieswasconservativelyassumedintheanalyses.r.<<"'v>,'NRS-=NarrowRange.SpanIInitialConditionUncertaintiesAverageRCSTemperature=4'FPressurizerWaterLevel=5%NRSSteamGeneratorWaterLevel=3.5%NRS(Somecasesassumed5%NRS) 0/lyA Table3:MajorContainmentAssumptionsInitialPressureInitialTemperatureInitialHumidityContainmentVolumeContainmentFanCoolersHigh-1SetpointUsedActualSetpointInstrumentUncertaintyInitiateonHeatRemovalRatesWithoff-sitepoweravailableNumberofFanCoolersDelayWithoutoff-sitepoweravailableNumberofFan,CoolerswithoutDieselFailurewithDieselFailureDelayContainmentSpraysFlowrateperSprayPump~RWSTWaterTemperaturePressureSetpointUsedActualSetpointPressureInstrumentUncertainties15.7psi120'F20%1.0E+06k';~'.0psig4.0psig2pslSI(orHigh-1signalifearlier)Table534.0sec44.0sec1300gpm80'F32.5psig28.0psig4.5psig17 4II'lI Table3(continued):MajorContainmentAssumptions.WithOff-sitePowerAvailableNumberofSprayPumpsOperatingwithoutcontainmentsprayfailurewithcontainmentsprayfailureDelaywithoutcontainmentsprayfailurewithcontainmentsprayfailureWithoutOff-sitePowerAvailableNumberofSprayPumpsoperatingwithoutdieselfailurewithdieselfailureDelay27.3sec28.5sec45.5secHeatSinksTable418 Table4:PASSIVEHEATSINKSWallDescriptionHeatTransferArea2MaterialThicknessft1.Insulatedportionofdomeandcontainmentwall36285.0stainlesssteelinsulationsteelconcrete0.001580.10420.031253.3642.Uninsulatedportionofdomeandcontainmentwall12370.0steelconcrete0.031252.53.Basementfloor6576.0concretesteelconcrete2.00.02082.04.WallsofsumpAundersumplevel8.24steelconcrete0.02083.05.WallofsumpAoversumplevel2052.75steelconcrete0.02083.06.FloorofsumpsAandB366.0concretesteelconcrete2.00.02081.07.WallsofsumpB189.0concretesteelconcrete2.00.02081.08.Outerrefuelingcavitywall9.Innerrefuelingcavitywall5870.05870.0concretestainlesssteelconcrete0.02082.010.Bottomofrefuelingcavity1143.011.Loopcompartments(LoopsAandB)'8846.0stainlesssteelconcreteconcrete0.02084.01.411512.Floorofintermediatelevel'672.0concrete0.2513.Operatingfloorandstructureonoperatingfloor'5570.0concrete1.0 Table4(continued):PASSIVEHEATSINKSWallDescriptionHeatTransferAreafthmMaterialThicknessft16I-beam'592.017.I-beam,cylindricalsupportsforS.G.5536.0andRCPs,andcontainmentcranerectangularsupportcolumns14.I-beamandbeamsforcranestructure'120.015.I-beamand-beamsforcranestructure'458.0steelsteelsteelsteel0.06250.034550.02170.058618.Containmentcranerectangularsupport342.0columnssteel0.16719.Beamsforcranestructure236.0steel0.1214000.020.Grating,stairs,misc.steel'teel'-Areaaccountsforbothsidesofheatsinkwalls,thicknessishalfofactualthickness0.0625ThermohsicalProertiesofContainmentHeatSinksInsulationConcreteSteelStainlessSteelThermalConductivity0.02080.8128.010.9VolumetricHeatCapacityTU/ft~'F2.031.554.460.0 f'II Table5:ContainmentFanCoolerHeatRemovalRatesContainmentTemperaturedegF>>200210220230240250260270280287290300GroupA:withOffsitePowerAvailableBTU/hr(~10')15.9017.4020.7025.8030.6034.5038.1041.7045.0047.0048.3050.70GroupB:withoutOffsitePowerAvailableBTU/hr(*10')15.2216.6619.82'A.7029.3033.0336.4839.9343.0945.0046.2448.54 t~Y7~k Table6-SequenceofEventsAccidentEventTimesec1.MainSteamlineBreaka.30%Powerb.MSIVFailurec.4.36ftbreakd.OffsitePowerAvailableSteamlineBreakOccurs0.0RodMotionStartsSteamlineIsolationOccursFeedwaterIsolationOccursAuxiliaryFeedwaterStartsContainmentSpraysStartFanCoolersStart2.47.414.425.034.542.0High1ContainmentPressureSetpoint1.0(6.0psig)isReachedPeakContainmentPressureisReached149AuxiliaryFeedwaterisTerminated600.0FaultedSteamGeneratorDriesOut(i.e.,massreleasesstop)-610.022 ICFpVIf),
2.Burnett,T.W.T.,et.al.,"LOFTRANCodeDescription,"
Table6-SequenceofEvents(continued)Accident2.MainSteamlineBreaka.70%Powerb.FCSFailurec.1.40ft'reakd.OffsitePowerNotAvailableEventSteamlineBreakOccursTimesec0.0.SISLowSteam.PressureSetpoint(372.7psia)reached2.7High1ContainmentPressureSetpoint3.8(6.0psig)isReachedRodMotionStartsFeedwaterIsolationOccursAuxiliaryFeedwaterStartsContainmentSpraysStartFanCoolersStart4.725.047.8126.8PeakContainmentPressureisReached569AuxiliaryFeedwaterisTerminated600.0FaultedSteamGeneratorDriesOut(i.e.,massreleasesstop)-625.023 I~IA.l~k Table6-SequenceofEvents(continued)AccidentEventTimesec3.MainSteamlineBreaka.102%Powerb.CSFailurec.1.10ft'reakd.OffsitePowerNotAvailableSteamlineBreakOccursHigh1ContainmentPressureSetpoint(6.0psig)isReachedRodMotionStartsAuxiliaryFeedwaterStartsFeedwaterIsolationOccursContainmentSpraysStartFanCoolersStartAuxiliaryFeedwaterisTerminated0.04.77.025.027.048.8128.1600.0FaultedSteamGeneratorDriesOut(i.e.,massreleasesstop)-760.0PeakContainmentPressureisReached76224 r,P~P<a4%1 ContainmentPressure(psigjC3o~COC)fUC)C)bJC)C)C)C)lltCICCD13t:NCDC)CDo0IBtC)C)COC)CDBC)C)COC)25  
WCAP-7909-P-A (Proprietary),
WCAP-7907-A (Non-Proprietary),
April1984.3.Bordelon, F.M.andMurphy,E.T.,"Containment PressureAnalysisCode(COCO),"WCAP-8327,July1974.4.Hsieh,T.etal,"Environmental Qualification Instrument Transmitter Temperature Transient Analysis",
WCAP-8936, February1977(Proprietary) andWCAP-8937, February1977(Non-Proprietary) 5.Jens,W.H.,andLottes,P.A.,"Analysis ofHeatTransfer, Burnout,PressureDrop,andDensityDataforHighPressureWater",USAECReportANL-4627, 1951.n6.WCAP-9220-P-A(Proprietary),
WCAP-9221(Non-Proprietary),Eicheldinger, C.,"Westinghouse ECCSEvaluation Model-1981Version",
Revision1,1981.7.WCAP-8200 (Proprietary),
"WFLASH-AFORTRAN-IV ComputerProgramForSimulation OfTransients InAMulti-Loop PWR",Esposito, V.J.,etal.,July1973.8.WCAP-8339 (Non-Proprietary),
: Bordelon, F.M.,et.al.,"Westinghouse ECCSEvaluation Model-Summary",
June1974.9.Westinghouse Technical BulletinNSID-TB-86-08, "Post-LOCA LongTermCooling:BoronRequirements",
October31,1986.10  
~r Table1:Containment Integrity Analysis-SteamLineBreakCasesCS-FailureofOneContainment SprayPumptoOperateDIESEL-FailureofoneDieselGenerator toStartMSIV-FailureofMainSteamIsolation ValveFCS-FailureofFeedwater ControlSystemCaseBreakTeBreakSizeft~Power%FailureM&EContainment OffsitePower1AUPSTREAMDER4.37102CSAVAILAVAIL1BDIESELNOTAVAILNOTAVAIL2AMSIVAVAILAVAIL.2BMSIVNOTAVAILNOTAVAIL3AFCSAVAILAVAIL3BFCSNOTAVAILNOTAVAIL4A70AVAILAVAIL4BDIESELNOTAVAILNOTAVAILSAMSIVAVAILAVAIL5BMSIVNOTAVAILNOTAVAIL6AFCSAVAILAVAIL6BFCSNOTAVAILNOTAVAIL7A30CSAVAILAVAIL7BDIESELNOTAVAILNOTAVAILMSIVAVAILAVAIL8BMSIVNOTAVAILNOTAVAIL9AFCSAVAILAVAIL9BFCSNOTAVAILNOTAVAIL10AAVAILAVAIL10BDIESELNOTAVAILNOTAVAIL11AMSIVAVAILAVAIL11BMSIVNOTAVAILNOTAVAIL12AFCSAVAILAVAIL12BFCSNOTAVAILNOTAVAILMQEMassandenerayreleasedintocontainment b81~
Tablelcontinued CaseBreakeBreakSizeft'ower%FailureM&EContainment OffsitePower13ADWNSTRMDER1.4102CSAVAILAVAIL13BDIESELNOTAVAILNOTAVAIL14AMSIVAVAILAVAIL14B102MSIVNOTAVAILNOTAVAIL15AFCSAVAILAVAIL15BFCSNOTAVAILNOTAVAIL16A70CSAVAILAVAIL16BDIESELNOTAVAILNOTAVAIL17AMSIVAVAILAVAIL17BMSIVNOTAVAILNOTAVAIL18AFCSAVAILAVAIL18BFCSNOTAVAILNOTAVAIL19A30CSAVAILAVAIL19BDIESELNOTAVAILNOTAVAIL20AMSIVAVAILAVAIL20BMSIVNOTAVAILNOTAVAIL21AFCSAVAILAVAIL21BFCSNOTAVAILNOTAVAIL22AAVAILAVAIL22CDIESELAVAILNOTAVAIL23AMSIVAVAILAVAIL23BMSIVNOTAVAILNOTAVAIL24AFCSAVAILAVAIL24CFCSAVAILNOTAVAIL25A125A225A325A4SMALLDER0.30.50.70.9102CSCSCSCSAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAIL S~~a Table1continued Case25A525B125B225B3BreakTe.SMALLDER1.1102CS0.3102DIESEL0.50.7DIESELDIESELBreakSizeft'ower%FailureOffsitePowerM&EAVAILContainment AVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAIL25B425BS0.9DIESELDIESELNOTAVAILNOTAVAILNOTAVAILNOTAVAIL26A426AS0.9102FCSFCSAVAILAVAILAVAILAVAIL26B426B50.9102NOTAVAILNOTAVAILNOTAVAILNOTAVAIL27A427AS0.970AVAILAVAILAVAILAVAIL27B327B427B50.70.970DIESELDIESELDIESELNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAIL28A428AS0.970FCSFCSAVAILAVAILAVAILAVAIL28B428BS0.970FCSFCSNOTAVAILNOTAVAILNOTAVAILNOTAVAIL29A429A50.930AVAILAVAILAVAILAVAIL29B429BS0.930DIESELDIESELNOTAVAILNOTAVAILNOTAVAILNOTAVAIL30A430AS0.930FCSFCSAVAILAVAILAVAILAVAIL30B430BS0.930FCSFCSNOTAVAILNOTAVAILNOTAVAILNOTAVAIL31A10.3CSAVAILAVAIL13 II~IAt,t<II~g Table1continued CaseBreakTeBreakSizeft'ower%FailureM&EContainment OffsitePower31A231A3SMALLDER0.50.7AVAILAVAILAVAILAVAIL31A40.9AVAIL~AVAIL31A5AVAILAVAIL31C631C732C132C232C332C432C51.31.50.30.50.70.9DIESELDIESELFCSFCSFCSFCSFCSAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAIL33A133A233A333A433A50.31020.50.70.9MSIVMSIVMSIVMSIVMSIVAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAIL33B534C434C50.9701021.1102MSIVMSIVMSIVMSIVNOTAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAIL35A435A50.930MSIVMSIVAVAILAVAILAVAILAVAIL35B536C136C236C336C436C50.30.50.70.9MSIVMSIVMSIVMSIVMSIVMSIVNOTAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAIL 5.ql)(
Tablelcontinued
/CaseBreakeBreakSizeft'ower%FailureM&EContainment OffsitePower37AS37C4SPLIT1020.9102MSIVMSIVAVAILAVAILAVAILNOTAVAIL37CS38A438AS38BS39A439AS39BS40C140C240C340C440CS0.90.90.30.50.70.970703030MSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVAVAILAVAILAVAILNOTAVAILAVAILAVAILNOTAVAILAVAILAVAILAVAILAVAILAVAILNOTAVAILAVAILAVAILNOTAVAILAVAILAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAIL 0~6 Table2-LOFTRANInitialConditions/Input Assumptions Parameter
------InitialPowerLevel-----~102o~70o30%0%NominalAverageRCSTemperature
('F)RCSFlowrate(gpm)RCSPressure(psia)FeedwaterTemperature
('F)1740002250425174000225038517400017400022502250322100573.5565.55554.95547.0NominalPressurizer WaterLevel(%NRS)'-">49.040.228.4"19.5NominalSteamGenerator WaterLevel(%NRS)52.052.052.052.0'Theactualsteamgenerator levelatzeropoweris39%NRS+uncertainties.
52%NRS+uncertainties wasconservatively assumedintheanalyses.
r.<<"'v>,'NRS-=
NarrowRange.SpanIInitialCondition Uncertainties AverageRCSTemperature
=4'FPressurizer WaterLevel=5%NRSSteamGenerator WaterLevel=3.5%NRS(Somecasesassumed5%NRS) 0/lyA Table3:MajorContainment Assumptions InitialPressureInitialTemperature InitialHumidityContainment VolumeContainment FanCoolersHigh-1SetpointUsedActualSetpointInstrument Uncertainty InitiateonHeatRemovalRatesWithoff-sitepoweravailable NumberofFanCoolersDelayWithoutoff-sitepoweravailable NumberofFan,Coolers withoutDieselFailurewithDieselFailureDelayContainment SpraysFlowrateperSprayPump~RWSTWaterTemperature PressureSetpointUsedActualSetpointPressureInstrument Uncertainties 15.7psi120'F20%1.0E+06k';~'.0psig4.0psig2pslSI(orHigh-1signalifearlier)Table534.0sec44.0sec1300gpm80'F32.5psig28.0psig4.5psig17 4II'lI Table3(continued):
MajorContainment Assumptions
.WithOff-sitePowerAvailable NumberofSprayPumpsOperating withoutcontainment sprayfailurewithcontainment sprayfailureDelaywithoutcontainment sprayfailurewithcontainment sprayfailureWithoutOff-sitePowerAvailable NumberofSprayPumpsoperating withoutdieselfailurewithdieselfailureDelay27.3sec28.5sec45.5secHeatSinksTable418 Table4:PASSIVEHEATSINKSWallDescription HeatTransferArea2MaterialThickness ft1.Insulated portionofdomeandcontainment wall36285.0stainless steelinsulation steelconcrete0.001580.10420.031253.3642.Uninsulated portionofdomeandcontainment wall12370.0steelconcrete0.031252.53.Basementfloor6576.0concretesteelconcrete2.00.02082.04.WallsofsumpAundersumplevel8.24steelconcrete0.02083.05.WallofsumpAoversumplevel2052.75steelconcrete0.02083.06.FloorofsumpsAandB366.0concretesteelconcrete2.00.02081.07.WallsofsumpB189.0concretesteelconcrete2.00.02081.08.Outerrefueling cavitywall9.Innerrefueling cavitywall5870.05870.0concretestainless steelconcrete0.02082.010.Bottomofrefueling cavity1143.011.Loopcompartments (LoopsAandB)'8846.0 stainless steelconcreteconcrete0.02084.01.411512.Floorofintermediate level'672.0 concrete0.2513.Operating floorandstructure onoperating floor'5570.0 concrete1.0 Table4(continued):
PASSIVEHEATSINKSWallDescription HeatTransferAreafthmMaterialThickness ft16I-beam'592.0 17.I-beam,cylindrical supportsforS.G.5536.0andRCPs,andcontainment cranerectangular supportcolumns14.I-beamandbeamsforcranestructure'120.0 15.I-beamand-beams forcranestructure'458.0 steelsteelsteelsteel0.06250.034550.02170.058618.Containment cranerectangular support342.0columnssteel0.16719.Beamsforcranestructure 236.0steel0.1214000.020.Grating,stairs,misc.steel'teel
'-Areaaccountsforbothsidesofheatsinkwalls,thickness ishalfofactualthickness
 
==0.0 625ThermohsicalProertiesofContainment==
HeatSinksInsulation ConcreteSteelStainless SteelThermalConductivity 0.02080.8128.010.9Volumetric HeatCapacityTU/ft~'F2.031.554.460.0 f'II Table5:Containment FanCoolerHeatRemovalRatesContainment Temperature degF>>200210220230240250260270280287290300GroupA:withOffsitePowerAvailable BTU/hr(~10')
15.9017.4020.7025.8030.6034.5038.1041.7045.0047.0048.3050.70GroupB:withoutOffsitePowerAvailable BTU/hr(*10')
15.2216.6619.82'A.7029.3033.0336.4839.9343.0945.0046.2448.54 t~Y7~k Table6-SequenceofEventsAccidentEventTimesec1.MainSteamline Breaka.30%Powerb.MSIVFailurec.4.36ftbreakd.OffsitePowerAvailable Steamline BreakOccurs0.0RodMotionStartsSteamline Isolation OccursFeedwater Isolation OccursAuxiliary Feedwater StartsContainment SpraysStartFanCoolersStart2.47.414.425.034.542.0High1Containment PressureSetpoint1.0(6.0psig)isReachedPeakContainment PressureisReached149Auxiliary Feedwater isTerminated 600.0FaultedSteamGenerator DriesOut(i.e.,massreleasesstop)-610.022 ICFpVIf),
Table6-SequenceofEvents(continued)
Accident2.MainSteamline Breaka.70%Powerb.FCSFailurec.1.40ft'reakd.OffsitePowerNotAvailable EventSteamline BreakOccursTimesec0.0.SISLowSteam.PressureSetpoint(372.7psia)reached2.7High1Containment PressureSetpoint3.8(6.0psig)isReachedRodMotionStartsFeedwater Isolation OccursAuxiliary Feedwater StartsContainment SpraysStartFanCoolersStart4.725.047.8126.8PeakContainment PressureisReached569Auxiliary Feedwater isTerminated 600.0FaultedSteamGenerator DriesOut(i.e.,massreleasesstop)-625.023 I~IA.l~k Table6-SequenceofEvents(continued)
AccidentEventTimesec3.MainSteamline Breaka.102%Powerb.CSFailurec.1.10ft'reakd.OffsitePowerNotAvailable Steamline BreakOccursHigh1Containment PressureSetpoint(6.0psig)isReachedRodMotionStartsAuxiliary Feedwater StartsFeedwater Isolation OccursContainment SpraysStartFanCoolersStartAuxiliary Feedwater isTerminated 0.04.77.025.027.048.8128.1600.0FaultedSteamGenerator DriesOut(i.e.,massreleasesstop)-760.0PeakContainment PressureisReached76224 r,P~P<a4%1 Containment Pressure(psigjC3o~COC)fUC)C)bJC)C)C)C)lltCICCD13t:NCDC)CDo0IBtC)C)COC)CDBC)C)COC)25  
'4*\+'tP(%11~:
'4*\+'tP(%11~:
ContainmentTemperature(degreesFjA3CDooC)0C)CAC)C)CDC)C)P3C)C)C)00fVCT)C)C)fVCDC)C)llLDCCDoOCDonOC)COC)C)C)COCO26 MassReleaseRate(ibm/sec)OO0A3OOOOOOCDOQlOOOOCDOOOOOOOOOCVOOOOTlECICD43OOOA3OOOCkb3OrnCAPlnOOOU)UlOOOBCDCAOOOOOO27 6EnergyReleaseRate(E6Btu/~<<<=j-o>OOOfVOOCAOCDOOOfUOrltlat3CDOOR3OOObJOOrnMPlOn0'OUlOOOV<CDGlOOOOOO28 ContainmentPressure(psigjC)oofUC)C)bJC)C)COC)UlC)C)CT)C)C)3CUoCDC)CDo0I(ClC7OU)CUC)COC)
Containment Temperature(degreesFjA3CDooC)0C)CAC)C)CDC)C)P3C)C)C)00fVCT)C)C)fVCDC)C)llLDCCDoOCDonOC)COC)C)C)COCO26 MassReleaseRate(ibm/sec)
L'EIg'PVI%Mtl+EP ContainmentTemperature(degreesFjfUoooJh.ooCDoo03ooA3oooA3A3oofVoofVCDooCVCDoob3ooorlU3CCDCDCDCUCCD(BO3IEC)C7OCDCDoCDo0ooooooo  
OO0A3OOOOOOCDOQlOOOOCDOOOOOOOOOCVOOOOTlECICD43OOOA3OOOCkb3OrnCAPlnOOOU)UlOOOBCDCAOOOOOO27 6EnergyReleaseRate(E6Btu/~<<<=j-o
>OOOfVOOCAOCDOOOfUOrltlat3CDOOR3OOObJOOrnMPlOn0'OUlOOOV<CDGlOOOOOO28 Containment Pressure(psigjC)oofUC)C)bJC)C)COC)UlC)C)CT)C)C)3CUoCDC)CDo0I(ClC7OU)CUC)COC)
L'EIg'PVI%Mtl+EP Containment Temperature(degreesFjfUoooJh.ooCDoo03ooA3oooA3A3oofVoofVCDooCVCDoob3ooorlU3CCDCDCDCUCCD(BO3IEC)C7OCDCDoCDo0ooooooo  
~l4'ClIV~~f%
~l4'ClIV~~f%
MassReleaseRate{ibm/sec)OooUlOOOOC)OOUlOOOfUOOOfUUlOO4OlltC)C:OOOfUOOO43OOrnCOPlO0OUlOCAOOOOOO31 EnergyReleaseRate(E6Btu/sec)OOOOUlOOfVOlltlat'CDOOOfOOOO.b3OOrnMOlOOOUlOOOCD,OlOOOOOO32 ContainmentPressure(psiglooooofVooQJooooUlooQloollECICDMCDoCDoC7ooooooo33 III4iE"AI'g1iif ContainmentTemperature{degreesFj'C)C)oo(SlC)C)P3COC)C)A3UlC)C)COC)C)43UlCOC)lltelC(DCD13CDCUCDiCDCDC)oCDAoItlatC)COC)COC)COC)34 MassReleaseRate{ibm/sec)OOOfVOOOOOOgl~OOOCDOOOOOOOA3OOOOOCnOOOtl~otCICDOOOA3OOOOi:bJOrnCACllOOOUlOOOICDCAOOOOOO35 EnergyReleaseRate(F6Btu/sec)OOOOUlOOA3OrlLCI3OOOA3OOOMOO0)3UDCAPalOOOUlOOCAOOOOOO36 fi(
MassReleaseRate{ibm/sec)
R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudyAttachment1'omuterdessedforntainmentInteriAnalsisThefollowingisageneraldescriptionofeachofthecomputercodesusedinthisanalysis.LOFTRANTheLOFTRANprogramisusedforstudiesoftransientresponseofaPWRsystemtospecifiedperturbationsinprocessparameters.LOFTRANsimulatesamultiloopsystembyamodelcontainingareactorvessel,hotandcoldlegpiping,steamgenerator(tubeandshellsides)andthepressurizer.Thepressurizerheaters,spray,relief,andsafetyvalvesarealsoconsideredintheprogram.Pointneutronkineticsmodel,andreactivityeffectsofthemoderator,fuel,boron,androdsareincluded.Thesecondarysideofthesteamgeneratorutilizesahomogeneous,saturatedmixtureforathermaltransientsandawaterlevelcorrelationforindicationandcontrol.TheReactorProtectionSystemissimulatedtoincludereactortripsonhighneutronflux,OvertemperaturehT,OverpowerhT,highandlowpressure,lowflow,andhighpressurizerlevel.Controlsystemsarealsosimulatedincludingrodcontrol,steamdump,feedwatercontrol,andpressurizerpressurecontrol.TheEmergencyCoreCoolingSystem,includingtheaccumulatorsandupper;headinjection,isalsomodeled.LOFTRANisdiscussedfurtherinReferenceA.COCOTheCOCOcomputercode(ReferenceB)isusedtoanalyzethecontainmentpressuretransientresponsefollowingamainsteamlinebreakaccident.COCOisamathematicalmodelofageneralizedcontainment;theproperselectionofvariousoptionsinthecodeallowsthecreationofaspecificmodelfortheparticularcontainmentdesign.Thevaluesusedinthespecificmodelforthedifferentaspectsofthecontainmentarederivedfromplant-specificinputdata.TheCOCOcomputercodeconsistsoftime-dependentconservationequationsofmassandenergy,togetherwithsteamtables,equationsofstateandotherauxiliaryrelationships.Transientconditionsaredeterminedforboththecontainmentsteam-airmixtureandthesumpwater.Theenergyequationisappliedtothecontainmentshelltoobtaintransienttemperaturegradientsaswellasheatstoredinandconductedthroughthestructure.Heatremovalbymeansofenergystorageinequipmentwithinthecontainment,internalsprays,emergencycontainmentcoolers,andsumpwaterrecirculationcoolingsystemisconsidered.Thecontainmentair-steam-watermixtureisseparatedintotwodistinctsystems.Thefirstsystemconsistse 1
OooUlOOOOC)OOUlOOOfUOOOfUUlOO4OlltC)C:OOOfUOOO43OOrnCOPlO0OUlOCAOOOOOO31 EnergyReleaseRate(E6Btu/sec)OOOOUlOOfVOlltlat'CDOOOfOOOO.b3OOrnMOlOOOUlOOOCD,OlOOOOOO32 Containment Pressure(psiglooooofVooQJooooUlooQloollECICDMCDoCDoC7ooooooo33 III4iE"AI'g1iif Containment Temperatur e{degreesFj'C)C)oo(SlC)C)P3COC)C)A3UlC)C)COC)C)43UlCOC)lltelC(DCD13CDCUCDiCDCDC)oCDAoItlatC)COC)COC)COC)34 MassReleaseRate{ibm/sec)
R.E>>.GinnaBoricAcidStorageTankBoronConcentrationReductionStudyoftheair-steamphase,whilethesecondsystemisthewaterphaseinthecontainmentsump.Thisdivisionpermitsmoreaccuraterepresentationofthedistinctphysicalphenomenaoccurringineachsystem.Thesteam-airmixtureandwaterphaseareassumedtohaveuniformproperties.Inaddition,temperatureequilibriumbetweentheairandsteamisassumed.However,thisdoesnotimplycontinualthermalequilibriumbetweenthesteam-airmixtureandwaterphase.Sufficien'relationshipstosolvetheproblemindependentofthisrestrictionareprovidedbytheequationsofconservationofmassandenergyasappliedtoeachsystem,togetherwithappropriateequationsofstateandheattransferboundaryconditions.Airinsidethecontainmentistreatedasanidealgas.Thermodynamicpropertiesofwaterandsteamarederivedfromcompressedwaterandsteamtables.PeHeattransferthrough,andheatstoragein,interiorandexteriorwallsofthecontainmentstructureareconsidered.Structuralheatsinks,consistingofsteelandconcrete,aremodeledasslabshavingspecificareasandlayersofvaryingthicknesses.Thethermalconductivity,densityandspecificheatofeachlayerarespecifiedataninitialtemperature.Dischargemassandenergyflowratesthroughtheruptureareestablishedbyseparateanalysesofthesteamgeneratortransient.Thisinformationissuppliedastime-dependentdatatothecode.Forthelargersteamlinebreakcases,thecalculationassumestheTagamicondensationheattransfercorrelationandtherevaporizationmodel.Therevaporizationmodelassumesthatanequilibriumconditionexistsbetweenthecondensateonthecontainmentstructuresandthecontainmentsteam-airatmosphere.Ateachtimestep,theconservationequations(mass,energy,andstate)aresolvedsimultaneouslytodeternjneanewcontainmentair-steam-condensatecondition.Ifthecalculatedconditionisasaturatedstate,watermass(condensate)formsandisassumedtofallinstantlyintothesump.Iftheconditionisasuper-heatedstate,thewatermasswouldnotformatthattimestep.Thecondensatewhichisatasaturatedstatebasedontheinterfacialtemperatureataprevioustimestepmayre-evaporateundertheexposuretoarapidlyincreasingsuper-heatedatmosphere.TheCOCOcodehasbeenbenchmarkedagainsttheCVTRtests(ReferenceC).TheCVTRtestsweresuper-heatedsteamblowdowntests.Thecontainmentfreevolumeisaboutone-eighthofatypicalthreeloopPWRcontainment.Theblowdownsteamenthalpywas1195BTU/ibm,whichisaboutthesameas R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudythatforapostulated-steamlinebreakwithnomoisturecarry-over.~TheCOCOcalculationshowedgoodagreementwiththetestdatawhentherevaporizationmodelwas-used.Whennorevaporizationwasassumed,theCOCOcalculationpredictedamuchhighertemperature.thanthetest.Inbothcases,COCOover-predictedthecontainmentatmospherepressure.Forsmallsteamlinebreaks,thecondensationheattransferisbasedonstagnantconditionsandthewallcondensateisassumedtofalltothesumpwithnorevaporization.Theapprovedmassandenergyreleasemodelassumesnoentrainment,i.e.,drysteamblowdown.TheNRCstaffhasapprovedtheuseoftherevaporizationmodel,onpreviousplant-specificapplications,forbreaksizeswhichwouldhaveentrainment(ReferenceD).TheuseoftherevaporizationmodelhasbeenapprovedforlargesteamlinebreaksintheLOTIC-3codeusedforicecondenserplants(ReferenceE).
OOOfVOOOOOOgl~OOOCDOOOOOOOA3OOOOOCnOOOtl~otCICDOOOA3OOOOi:bJOrnCACllOOOUlOOOICDCAOOOOOO35 EnergyReleaseRate(F6Btu/sec)OOOOUlOOA3OrlLCI3OOOA3OOOMOO0)3UDCAPalOOOUlOOCAOOOOOO36 fi(
Oie R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudyReferencesforAttachment1A.Burnett,T.W.T.,et.al.,"LOFTRANCodeDescription,"WCAP-7909-P-A(Proprietary),WCAP-7907-A(Non-Proprietary),April1984.B.Bordelon,F.M.andMurphy,E.T.,"ContainmentPressureAnalysisCode(COCO),"WCAP-8327,June1974.C.Schmitt,R.C.,Bingham,G.E.,andNorberg,J.A.,"SimulatedDesignBasisAccidentTestsoftheCarolinasVirginiaTubeReactorContainment-FinalReport,"IN-1403,IdahoNuclearCorporation,December,1970.D."DiabloCanyonSafetyEvaluationReport,"NUREG-0675,June1980.E.Hsieh,T.andLiparulo,N.J.,"WestinghouseLongTermIceCondenserContainmentCode-LOTIC-3Code,"WCAP-8354-P-A,Supplement2,February1979.
R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction StudyAttachment 1'omuterdessedforntainment InteriAnalsisThefollowing isageneraldescription ofeachofthecomputercodesusedinthisanalysis.
p~lWa,-ll'lt,I ATTACHMENTDComparisonofExistingtoProposedTechnicalSpecificationsProposedverbageinboldprintDeletedVerbageCrossedout 0>CIV1 DoseEuivalentI-131ThedoseequivalentI-131shallbethatconcentrationofI-131whichalonewouldproducethesamethyroiddoseasthequantityandisotopicmixtureofI-131,I-132,I-133,I-134andI-135actuallypresent.Thedoseconversionfactorsusedforthiscalculationshallbethosefortheadultthyroiddoseviainhalation,containedinNRCRegulatoryGuide1.109Rev.1October1977.ReortableEventAReportableEventshallbeanyofthoseconditionsspecified1.20inSection50.73to10CFR.Part50.CanistersContaininConsolidatedFuelRodsCanisterscontainingconsolidatedfuelrodsarestainlesssteelcanisterscontainingthefuelrodsofnomorethantwofuelassemblieswhichhavedecayedatleastfiveyearsandarecapableofbeingstoredinastoragecellofthespentfuel121pool~ShutdownMarinShutdownmarginshallbetheamountofreactivitybywhichthereactorissubcritical,orwouldbesubcriticalfromitspresentconditionassumingallrodclustercontrolassemblies(shutdownandcontrol)arefullyinsertedexceptforthesinglerodclustercontrolassemblyofhighestreactivityworthwhichisassumedtobefullywithdrawn,andassumingnochangesinxenonorboronconcentration.AmendmentNo.121-8Proposed 4f,4 ChemicalandVolumeControlSstemAlicabilitAppliestotheoperationalstatusofthechemicalandvolumecontrolsystem.Todefinethoseconditionsof'thechemicalandvolumecontrolsystemnecessarytoassuresafereactoroperation.SecificationDuringcoldshutdownorrefuelingwithfuelinthereactorthereshallbeatleastoneflowpathtothecoreforboricacidinjection.Theminimumcapabilityforboricacidinjectionshallbeequivalenttothatsuppliedfromtherefuelingwaterstoragetank.3.2.1.1Miththisflowpathunavailable,immediatelysuspendalloperationsinvolvingcorealterationsorpositivereactivitychangesandreturnaflowpathtooperablestatusassoonaspossible.3.2.2 I4gfsl\~Ras%I Whenthereactorisabovecoldshutdown,twoboroninjectionflowpathsshallbeoperablewithoneoperablechargingpumpforeachoperableflowpath,andoneoperableboricacidtransferpumpforeachoperableflowpathfromtheboricacidstoragetank(s).~~4~Zfrequiredbyspecification3.2.2above,theBoricAcidStorageTank(s)shallsatisfytheconcentration,minimum volumeandsolutiontemperaturerecpxirementsofTable3.2-1.AmendmentNo.333~21Proposed  
LOFTRANTheLOFTRANprogramisusedforstudiesoftransient responseofaPWRsystemtospecified perturbations inprocessparameters.
~+~4h'N~IIPI 3.2'WithonlyoneoftherequiredboroninjectionflowpathstotheRCSoperable,restoreatleasttwoboroninjectionflowpathstotheRCStooperablestatuswithin72hours,orwithinthenext6hoursbe"'inatleasthotshutdownandboratedtoashutdownmarginequivalenttoatleast2.45%deltak/katcold,noxenonconditions.Iftherequirementsof.3.2.2arenotsatisfiedwithinanadditional7days,thenbeincoldshutdownwithinthenext30hours.WhenevertheRCStemperatureisgreaterthan200'FandisbeingcooledbytheRHRsystemandtheover-pressureprotec-tionsystemisnotoperable,atleastonechargingpumpshallbedemonstratedinoperableatleastonceper12hoursbyverifyingthat.thecontrolswitchisinthepull-stopposi-tion.AmendmentNo.3'2Proposed  
LOFTRANsimulates amultiloop systembyamodelcontaining areactorvessel,hotandcoldlegpiping,steamgenerator (tubeandshellsides)andthepressurizer.
Thepressurizer heaters,spray,relief,andsafetyvalvesarealsoconsidered intheprogram.Pointneutronkineticsmodel,andreactivity effectsofthemoderator, fuel,boron,androdsareincluded.
Thesecondary sideofthesteamgenerator utilizesahomogeneous, saturated mixtureforathermaltransients andawaterlevelcorrelation forindication andcontrol.TheReactorProtection Systemissimulated toincludereactortripsonhighneutronflux,Overtemperature hT,Overpower hT,highandlowpressure, lowflow,andhighpressurizer level.Controlsystemsarealsosimulated including rodcontrol,steamdump,feedwater control,andpressurizer pressurecontrol.TheEmergency CoreCoolingSystem,including theaccumulators andupper;head injection, isalsomodeled.LOFTRANisdiscussed furtherinReference A.COCOTheCOCOcomputercode(Reference B)isusedtoanalyzethecontainment pressuretransient responsefollowing amainsteamlinebreakaccident.
COCOisamathematical modelofageneralized containment; theproperselection ofvariousoptionsinthecodeallowsthecreationofaspecificmodelfortheparticular containment design.Thevaluesusedinthespecificmodelforthedifferent aspectsofthecontainment arederivedfromplant-specific inputdata.TheCOCOcomputercodeconsistsoftime-dependent conservation equations ofmassandenergy,togetherwithsteamtables,equations ofstateandotherauxiliary relationships.
Transient conditions aredetermined forboththecontainment steam-air mixtureandthesumpwater.Theenergyequationisappliedtothecontainment shelltoobtaintransient temperature gradients aswellasheatstoredinandconducted throughthestructure.
Heatremovalbymeansofenergystorageinequipment withinthecontainment, internalsprays,emergency containment coolers,andsumpwaterrecirculation coolingsystemisconsidered.
Thecontainment air-steam-water mixtureisseparated intotwodistinctsystems.Thefirstsystemconsistse 1
R.E>>.GinnaBoricAcidStorageTankBoronConcentration Reduction Studyoftheair-steam phase,whilethesecondsystemisthewaterphaseinthecontainment sump.Thisdivisionpermitsmoreaccuraterepresentation ofthedistinctphysicalphenomena occurring ineachsystem.Thesteam-air mixtureandwaterphaseareassumedtohaveuniformproperties.
Inaddition, temperature equilibrium betweentheairandsteamisassumed.However,thisdoesnotimplycontinual thermalequilibrium betweenthesteam-air mixtureandwaterphase.Sufficien'relationships tosolvetheproblemindependent ofthisrestriction areprovidedbytheequations ofconservation ofmassandenergyasappliedtoeachsystem,togetherwithappropriate equations ofstateandheattransferboundaryconditions.
Airinsidethecontainment istreatedasanidealgas.Thermodynamic properties ofwaterandsteamarederivedfromcompressed waterandsteamtables.PeHeattransferthrough,andheatstoragein,interiorandexteriorwallsofthecontainment structure areconsidered.
Structural heatsinks,consisting ofsteelandconcrete, aremodeledasslabshavingspecificareasandlayersofvaryingthicknesses.
Thethermalconductivity, densityandspecificheatofeachlayerarespecified ataninitialtemperature.
Discharge massandenergyflowratesthroughtheruptureareestablished byseparateanalysesofthesteamgenerator transient.
Thisinformation issuppliedastime-dependent datatothecode.Forthelargersteamlinebreakcases,thecalculation assumestheTagamicondensation heattransfercorrelation andtherevaporization model.Therevaporization modelassumesthatanequilibrium condition existsbetweenthecondensate onthecontainment structures andthecontainment steam-air atmosphere.
Ateachtimestep,theconservation equations (mass,energy,andstate)aresolvedsimultaneously todeternjne anewcontainment air-steam-condensate condition.
Ifthecalculated condition isasaturated state,watermass(condensate) formsandisassumedtofallinstantly intothesump.Ifthecondition isasuper-heated state,thewatermasswouldnotformatthattimestep.Thecondensate whichisatasaturated statebasedontheinterfacial temperature ataprevioustimestepmayre-evaporate undertheexposuretoarapidlyincreasing super-heated atmosphere.
TheCOCOcodehasbeenbenchmarked againsttheCVTRtests(Reference C).TheCVTRtestsweresuper-heated steamblowdowntests.Thecontainment freevolumeisaboutone-eighth ofatypicalthreeloopPWRcontainment.
Theblowdownsteamenthalpywas1195BTU/ibm,whichisaboutthesameas R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Studythatforapostulated-steam linebreakwithnomoisturecarry-over.
~TheCOCOcalculation showedgoodagreement withthetestdatawhentherevaporization modelwas-used.Whennorevaporization wasassumed,theCOCOcalculation predicted amuchhighertemperature
.thanthetest.Inbothcases,COCOover-predicted thecontainment atmosphere pressure.
Forsmallsteamlinebreaks,thecondensation heattransferisbasedonstagnantconditions andthewallcondensate isassumedtofalltothesumpwithnorevaporization.
Theapprovedmassandenergyreleasemodelassumesnoentrainment, i.e.,drysteamblowdown.
TheNRCstaffhasapprovedtheuseoftherevaporization model,onpreviousplant-specific applications, forbreaksizeswhichwouldhaveentrainment (Reference D).Theuseoftherevaporization modelhasbeenapprovedforlargesteamlinebreaksintheLOTIC-3codeusedforicecondenser plants(Reference E).
Oie R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction StudyReferences forAttachment 1A.Burnett,T.W.T.,et.al.,"LOFTRANCodeDescription,"
WCAP-7909-P-A (Proprietary),
WCAP-7907-A (Non-Proprietary),
April1984.B.Bordelon, F.M.andMurphy,E.T.,"Containment PressureAnalysisCode(COCO),"WCAP-8327,June1974.C.Schmitt,R.C.,Bingham,G.E.,andNorberg,J.A.,"Simulated DesignBasisAccidentTestsoftheCarolinas VirginiaTubeReactorContainment
-FinalReport,"IN-1403,IdahoNuclearCorporation,
: December, 1970.D."DiabloCanyonSafetyEvaluation Report,"NUREG-0675, June1980.E.Hsieh,T.andLiparulo, N.J.,"Westinghouse LongTermIceCondenser Containment Code-LOTIC-3Code,"WCAP-8354-P-A, Supplement 2,February1979.
p~lWa,-ll'lt,I ATTACHMENT DComparison ofExistingtoProposedTechnical Specifications ProposedverbageinboldprintDeletedVerbageCrossedout 0>CIV1 DoseEuivalentI-131Thedoseequivalent I-131shallbethatconcentration ofI-131whichalonewouldproducethesamethyroiddoseasthequantityandisotopicmixtureofI-131,I-132,I-133,I-134andI-135actuallypresent.Thedoseconversion factorsusedforthiscalculation shallbethosefortheadultthyroiddoseviainhalation, contained inNRCRegulatory Guide1.109Rev.1October1977.ReortableEventAReportable Eventshallbeanyofthoseconditions specified 1.20inSection50.73to10CFR.Part50.Canisters Containin Consolidated FuelRodsCanisters containing consolidated fuelrodsarestainless steelcanisters containing thefuelrodsofnomorethantwofuelassemblies whichhavedecayedatleastfiveyearsandarecapableofbeingstoredinastoragecellofthespentfuel121pool~ShutdownMarinShutdownmarginshallbetheamountofreactivity bywhichthereactorissubcritical, orwouldbesubcritical fromitspresentcondition assumingallrodclustercontrolassemblies (shutdown andcontrol)arefullyinsertedexceptforthesinglerodclustercontrolassemblyofhighestreactivity worthwhichisassumedtobefullywithdrawn, andassumingnochangesinxenonorboronconcentration.
Amendment No.121-8Proposed 4f,4 ChemicalandVolumeControlSstemAlicabilit Appliestotheoperational statusofthechemicalandvolumecontrolsystem.Todefinethoseconditions of'thechemicalandvolumecontrolsystemnecessary toassuresafereactoroperation.
Secification Duringcoldshutdownorrefueling withfuelinthereactorthereshallbeatleastoneflowpathtothecoreforboricacidinjection.
Theminimumcapability forboricacidinjection shallbeequivalent tothatsuppliedfromtherefueling waterstoragetank.3.2.1.1Miththisflowpathunavailable, immediately suspendalloperations involving corealterations orpositivereactivity changesandreturnaflowpathtooperablestatusassoonaspossible.
3.2.2 I4gfsl\~Ras%I Whenthereactorisabovecoldshutdown, twoboroninjection flowpathsshallbeoperablewithoneoperablechargingpumpforeachoperableflowpath,andoneoperableboricacidtransferpumpforeachoperableflowpathfromtheboricacidstoragetank(s).~~4~Zfrequiredbyspecification 3.2.2above,theBoricAcidStorageTank(s)shallsatisfytheconcentration, minimum volumeandsolutiontemperature recpxirements ofTable3.2-1.Amendment No.333~21Proposed  
~+~4h'N~IIPI 3.2'Withonlyoneoftherequiredboroninjection flowpathstotheRCSoperable, restoreatleasttwoboroninjection flowpathstotheRCStooperablestatuswithin72hours,orwithinthenext6hoursbe"'inatleasthotshutdownandboratedtoashutdownmarginequivalent toatleast2.45%deltak/katcold,noxenonconditions.
Iftherequirements of.3.2.2arenotsatisfied withinanadditional 7days,thenbeincoldshutdownwithinthenext30hours.WhenevertheRCStemperature isgreaterthan200'FandisbeingcooledbytheRHRsystemandtheover-pressure protec-tionsystemisnotoperable, atleastonechargingpumpshallbedemonstrated inoperable atleastonceper12hoursbyverifying that.thecontrolswitchisinthepull-stop posi-tion.Amendment No.3'2Proposed  
~~,C4'A4~0pj+,
~~,C4'A4~0pj+,
Table3.2-1BoricAcidStorageTank(s)Minimum-Volume-Temperature-Concentration+ConcentrationppmboronMinimumVolumegal.MinimumSolutionTemperatureF4700to5000to6000to7000to8000to9000to10000to~~-11000',to12000to13000to14000to15000to016000to17000to18000to19000to20000to21000to22000tolessthan5000lessthan6OOOlessthan7000lessthan8000lessthan9000lessthan10000lessthan11000less;than.12000lessthan13000lessthan14000lessthan15000lessthan16000lessthan17000lessthan18000lessthan19000lessthan20000lessthan21000lessthan22000lessthan2300084007800640054004700420038003500320030002700250024002200210020001900180018004052627078859197103108113118123127131137140143145AmendmentNo.3~22aProposed llDJf(~gL~~l4  
Table3.2-1BoricAcidStorageTank(s)Minimum-Volume-Temperature-Concentration+
~~BasisThechemicalandvolumecontrolsystemprovidescontrolofthereactorcoolantsystemboroninventory.+4e~~Q)  
Concentration ppmboronMinimumVolumegal.MinimumSolutionTemperature F4700to5000to6000to7000to8000to9000to10000to~~-11000',to 12000to13000to14000to15000to016000to17000to18000to19000to20000to21000to22000tolessthan5000lessthan6OOOlessthan7000lessthan8000lessthan9000lessthan10000lessthan11000less;than
~'r%46'~g~lf~t'h Thisisnormallyaccomplishedbyusingoneormorechargingpumpsin~~=-serieswithoneofthetwoboricacidtransferpumps.Abovecoldshutdownconditions,aminimumoftwooffourboroninjectionflowpathsarerequiredtoinsuresinglefunctionalcapabilityintheevent..thatanassumedsingleactive,failure.rendersoneoftheflowpathsinoperable.Theborationvolumeavailablethroughanyflowpathissufficienttoprovidetherequiredshutdownmarginatcoldconditionsfromanyexpectedoperatingconditionandtocompensateforshrinkageoftheprimarycoolantfromthecooldownprocess.Themaximumvolume*.;--~~'.recpirement-is.associatedwithborationfromjustcritical,hotzeropower,peakxenonwithcontrolrodsattheinsertionlimit,tocoldshutdownwithsinglereactorcoolantloopoperation.Thisrequires26q000@gallonsof2000ppmboratedwaterfromtherefuelingwaterstoragetankortheconcentrationsandvolumesofboratedwaterspecifiedinTable3.2-1fromtheboricacidstoragetanks.Twoboricacidstoragetanksareavailable.Oneof,thetwotanksmaybe,outofserviceprovidedtherequiredvolumeofboricacidisavailabletotheoperableflowpaths.Abovecoldshutdown,twoofthefollowingfourflowpathsmustbeoperablewithoneoperablechargingpumpforeachoperableflowpath,andoneoperableboricacidtransferpumpforeachoperableflowpathfromtheboricacidstoragetanks.Boricacidstoragetanksviaoneboricacidtransferpumpthroughthenormalmakeup(FCV110A)flowpathtothesuctionofthechargingpumps.Boricacidstoragetanksviaoneboricacidtransferpumpthroughtheemergencyborationflowpath(MOV350)tothe jfI  
.12000lessthan13000lessthan14000lessthan15000lessthan16000lessthan17000lessthan18000lessthan19000lessthan20000lessthan21000lessthan22000lessthan2300084007800640054004700420038003500320030002700250024002200210020001900180018004052627078859197103108113118123127131137140143145Amendment No.3~22aProposed llDJf(~gL~~l4  
(~)suctionofthechargingpumps.RefuelingwaterstoragetankviagravityfeedthroughAOV112Btothesuctionofthechargingpumps.--AmendmentNo.243~23Proposed  
~~BasisThechemicalandvolumecontrolsystemprovidescontrolofthereactorcoolantsystemboroninventory.+
~l>~~fi~a~i~~154~ih1$'5C<<+'~l0 (4)Refuelingwaterstoragetankviagravityfeedthroughmanualbypassvalve358tothesuctionofthechargingpumps.'Availableflowpathsfromthechargingpumpstothereactorcoolantsystemincludethefollowing:(1)ChargingflowpaththroughAOV392AtotheRCSLoopBhotleg.(2)ChargingflowpaththroughAOV294totheRCSLoopBcoldleg.(3)Sealinjectionflowpathtothereactorcoolantpumps.The.rateofboricacid~injection-must.besufficient.tooffsetthemaximumadditionofpositivereactivityfromthedecayofxenonafteratripfromfullpower.Thiscanbeaccomplishedthroughtheoperationofonechargingpumpatminimumspeedwithsuctionfromtherefuelingwaterstoragetank.Alsothetimerequiredforboricacidinjectionallowsforthelocalalignmentofmanualvalvestoprovidethenecessaryflowpaths.ThequantityofboricacidspecifiedinTable3.2-1foreachconcentra-tionissufficientatanytimeincorelifetoboratethereactorcoolanttotherequiredcoldshutdownconcentrationandprovidemakeuptomaintainRCSinventoryduringthecooldown.ThetemperaturelimitsspecifiedonTable3.2-1arerequiredtomaintainsolutionsolubilityattheupperconcentrationineachrange.ThetemperatureslistedonTable3.2-1aretakenfromReference(4).Anarbitrary5'FisaddedtotheReference(4)formargin.HeattracingmaybeusedtomaintainsolutiontemperatureatorabovetheTable3.2-1limits.Ifthesolutiontemperatureofeithertheflowpathortheboratedwatersourceisnotmaintainedatorabovetheminimumtemperaturespecified,theaffectedflowpathmustbedeclaredinoperableandtheappropriateactionsspecifiedin3.2.4followed.Placingachargingpumpinpull-stopwheneverthereactorcoolantsystemtemperatureis>200FandisbeingcooledbyRHRwithouttheover-pressureprotectionsystemoperablewillpreventinadvertentoverpres-surizationoftheRHRsystemshouldletdownbeterminated.">
4e~~Q)  
~'r%46'~g~lf~t'h Thisisnormallyaccomplished byusingoneormorechargingpumpsin~~=-serieswithoneofthetwoboricacidtransferpumps.Abovecoldshutdownconditions, aminimumoftwooffourboroninjection flowpaths arerequiredtoinsuresinglefunctional capability intheevent..that anassumedsingleactive,failure.rendersoneoftheflowpathsinoperable.
Theborationvolumeavailable throughanyflowpathissufficient toprovidetherequiredshutdownmarginatcoldconditions fromanyexpectedoperating condition andtocompensate forshrinkage oftheprimarycoolantfromthecooldownprocess.Themaximumvolume*.;--~~'.recpirement
-is.associated withborationfromjustcritical, hotzeropower,peakxenonwithcontrolrodsattheinsertion limit,tocoldshutdownwithsinglereactorcoolantloopoperation.
Thisrequires26q000@gallonsof2000ppmboratedwaterfromtherefueling waterstoragetankortheconcentrations andvolumesofboratedwaterspecified inTable3.2-1fromtheboricacidstoragetanks.Twoboricacidstoragetanksareavailable.
Oneof,thetwotanksmaybe,outofserviceprovidedtherequiredvolumeofboricacidisavailable totheoperableflowpaths.Abovecoldshutdown, twoofthefollowing fourflowpathsmustbeoperablewithoneoperablechargingpumpforeachoperableflowpath,andoneoperableboricacidtransferpumpforeachoperableflowpathfromtheboricacidstoragetanks.Boricacidstoragetanksviaoneboricacidtransferpumpthroughthenormalmakeup(FCV110A)flowpathtothesuctionofthechargingpumps.Boricacidstoragetanksviaoneboricacidtransferpumpthroughtheemergency borationflowpath(MOV350)tothe jfI  
(~)suctionofthechargingpumps.Refueling waterstoragetankviagravityfeedthroughAOV112Btothesuctionofthechargingpumps.--Amendment No.243~23Proposed  
~l>~~fi~a~i~~154~ih1$'5C<<+'~l0 (4)Refueling waterstoragetankviagravityfeedthroughmanualbypassvalve358tothesuctionofthechargingpumps.'Available flowpathsfromthechargingpumpstothereactorcoolantsystemincludethefollowing:
(1)ChargingflowpaththroughAOV392AtotheRCSLoopBhotleg.(2)ChargingflowpaththroughAOV294totheRCSLoopBcoldleg.(3)Sealinjection flowpathtothereactorcoolantpumps.The.rateofboricacid~injection
-must.besufficient
.tooffsetthemaximumadditionofpositivereactivity fromthedecayofxenonafteratripfromfullpower.Thiscanbeaccomplished throughtheoperation ofonechargingpumpatminimumspeedwithsuctionfromtherefueling waterstoragetank.Alsothetimerequiredforboricacidinjection allowsforthelocalalignment ofmanualvalvestoprovidethenecessary flowpaths.Thequantityofboricacidspecified inTable3.2-1foreachconcentra-tionissufficient atanytimeincorelifetoboratethereactorcoolanttotherequiredcoldshutdownconcentration andprovidemakeuptomaintainRCSinventory duringthecooldown.
Thetemperature limitsspecified onTable3.2-1arerequiredtomaintainsolutionsolubility attheupperconcentration ineachrange.Thetemperatures listedonTable3.2-1aretakenfromReference (4).Anarbitrary 5'FisaddedtotheReference (4)formargin.Heattracingmaybeusedtomaintainsolutiontemperature atorabovetheTable3.2-1limits.Ifthesolutiontemperature ofeithertheflowpathortheboratedwatersourceisnotmaintained atorabovetheminimumtemperature specified, theaffectedflowpathmustbedeclaredinoperable andtheappropriate actionsspecified in3.2.4followed.
Placingachargingpumpinpull-stop wheneverthereactorcoolantsystemtemperature is>200FandisbeingcooledbyRHRwithouttheover-pressureprotection systemoperablewillpreventinadvertent overpres-surization oftheRHRsystemshouldletdownbeterminated.">


==References:==
==References:==
UFSARSection9.3.4.2(2)(3)RG&EDesignAnalysisDA-NS-92-133-00"BASTBoronConcentrationReductionTechnicalSpecificationValues"datedDec.14,1992L.D.White,Jr.letterA.Schwencer,NRC,
 
UFSARSection9.3.4.2(2)(3)RG&EDesignAnalysisDA-NS-92-133-00 "BASTBoronConcentration Reduction Technical Specification Values"datedDec.14,1992L.D.White,Jr.letterA.Schwencer, NRC,


==Subject:==
==Subject:==
ReactorVesselOverpressurization,datedFebruary24,1977AmendmentNo.Proposed  
ReactorVesselOverpressurization, datedFebruary24,1977Amendment No.Proposed  
<4)Kerr-McGeeChemicalCorp.Bulletin0151"BoricAcid-Techni-calGrades"dated5/84AmendmentNo.3.2-5Proposed 3.3EmerencCoreCoolinSstemAuxiliarCoolinSstemsAirRecirculationFanCoolersContainmentSraandCharcoalHEPAFiltersTodefinethoseconditionsforoperationthatareneces-sary:(1)toremovedecayheatfromthecoreinemergencyornormalshutdownsituations,(2)toremoveheatfromcontain-mentinnormaloperatingandemergencysituations,(3)toremoveairborneiodinefromthecontainmentatmospherefollowingapostulatedDesignBasisAccident,and(4)tominimizecontainmentleakagetotheenvironmentsubsequenttoaDesign'BasisAccident.Secification3.3.1SafetInectionandResidualHeatRemovalSstemsaI03.3.1.1Thereactorshallnotbetakenabovethemodeindicatedunlessthefollowingconditionsaremet:a~b.Abovecoldshutdown,therefuelingwaterstoragetankcontainsnotlessthan300,000gallonsofwater,withaboronconcentrationofatleast2000ppm.Aboveareactorcoolantsystempressureof1600psig,exceptduringperformanceofRCShydrotest,eachaccumulatorispressurizedtoatleast700psigwithanindicatedlevelofatleast50%andamaximumof82~withaboronconcentrationofatleast1800ppm.c~Atoraboveareactorcoolantsystemtemperatureof350oFthreesafetyinjectionpumpsareoperable.AmendmentNo.243~31Proposed 1lNAc AtoraboveanRCStemperatureof350'F,tworesidualheatremovalpumpsareoperable.AtoraboveanRCStemperatureof350'F,tworesidualheatremovalheatexchangersareoperable.Attheconditionsrequiredinathrougheabove,allvalves,interlocksandpipingassociatedwiththeabovecomponentswhicharerequiredtofunctionduringaccidentconditionsareoperable.AtoraboveanRCStemperatureof350'F,A.C.powershallberemovedfromthefollowingvalveswiththevalvesintheopenposition:safetyinjectioncoldleginjectionvalves878BandD.A.C.powershallberemovedfromsafetyinjectionhotleginjectionvalves878AandCwiththevalvesclosed.D.C.controlpowershallberemovedfromrefuelingwaterstoragetankdeliveryvalves896A,896Band856withthevalvesopen.AtoraboveanRCStemperatureof350'F,checkvalves853A,853B,867A,867B,878G,and878Jshallbeoperablewithlessthan5.0gpmleakageeach.TheleakagerequirementsofTechnicalSpecification3.1.5.2.1arestillapplicable.Aboveareactorcoolantsystempressureof1600psig,exceptduringperformanceofRCShydrotest,A.C.powershallberemovedfromaccumulatorisolationvalves841and865withthevalvesopen.
<4)Kerr-McGee ChemicalCorp.Bulletin0151"BoricAcid-Techni-calGrades"dated5/84Amendment No.3.2-5Proposed 3.3EmerencCoreCoolinSstemAuxiliarCoolinSstemsAirRecirculation FanCoolersContainment SraandCharcoalHEPAFiltersTodefinethoseconditions foroperation thatareneces-sary:(1)toremovedecayheatfromthecoreinemergency ornormalshutdownsituations, (2)toremoveheatfromcontain-mentinnormaloperating andemergency situations, (3)toremoveairborneiodinefromthecontainment atmosphere following apostulated DesignBasisAccident, and(4)tominimizecontainment leakagetotheenvironment subsequent toaDesign'Basis Accident.
AtoraboveanRCStemperatureof350F,A.C.powershallberemovedfromSafetyInjectionsuctionvalves825AandBwiththevalvesintheopenposition,andfromvalves826A,B,C,Dwiththevalvesintheclosedposition.AmendmentNo.423~32Proposed  
Secification 3.3.1SafetInectionandResidualHeatRemovalSstemsaI03.3.1.1Thereactorshallnotbetakenabovethemodeindicated unlessthefollowing conditions aremet:a~b.Abovecoldshutdown, therefueling waterstoragetankcontainsnotlessthan300,000gallonsofwater,withaboronconcentration ofatleast2000ppm.Aboveareactorcoolantsystempressureof1600psig,exceptduringperformance ofRCShydrotest,eachaccumulator ispressurized toatleast700psigwithanindicated levelofatleast50%andamaximumof82~withaboronconcentration ofatleast1800ppm.c~Atoraboveareactorcoolantsystemtemperature of350oFthreesafetyinjection pumpsareoperable.
Amendment No.243~31Proposed 1lNAc AtoraboveanRCStemperature of350'F,tworesidualheatremovalpumpsareoperable.
AtoraboveanRCStemperature of350'F,tworesidualheatremovalheatexchangers areoperable.
Attheconditions requiredinathrougheabove,allvalves,interlocks andpipingassociated withtheabovecomponents whicharerequiredtofunctionduringaccidentconditions areoperable.
AtoraboveanRCStemperature of350'F,A.C.powershallberemovedfromthefollowing valveswiththevalvesintheopenposition:
safetyinjection coldleginjection valves878BandD.A.C.powershallberemovedfromsafetyinjection hotleginjection valves878AandCwiththevalvesclosed.D.C.controlpowershallberemovedfromrefueling waterstoragetankdeliveryvalves896A,896Band856withthevalvesopen.AtoraboveanRCStemperature of350'F,checkvalves853A,853B,867A,867B,878G,and878Jshallbeoperablewithlessthan5.0gpmleakageeach.Theleakagerequirements ofTechnical Specification 3.1.5.2.1 arestillapplicable.
Aboveareactorcoolantsystempressureof1600psig,exceptduringperformance ofRCShydrotest,A.C.powershallberemovedfromaccumulator isolation valves841and865withthevalvesopen.
AtoraboveanRCStemperature of350F,A.C.powershallberemovedfromSafetyInjection suctionvalves825AandBwiththevalvesintheopenposition, andfromvalves826A,B,C,Dwiththevalvesintheclosedposition.
Amendment No.423~32Proposed  


AtoraboveanRCStemperatureof350oF,A.C.powershallberemovedfromSafetyInjectionsuctionvalves825AandBwiththevalvesintheopenposition,andfromvalves826A,B,C,Dwiththevalvesintheclosedposition.AmendmentNo.423~32Proposed  
AtoraboveanRCStemperature of350oF,A.C.powershallberemovedfromSafetyInjection suctionvalves825AandBwiththevalvesintheopenposition, andfromvalves826A,B,C,Dwiththevalvesintheclosedposition.
.~*g 3.3.1.2Iftheconditionsof3.3.1.1aarenotmet,thensatisfythe~~~~~~~~~~conditionwithin1hourorbeathotshutdowninthenext63.3.1.33.3.1.4hoursandatleastcoldshutdownwithinanadditional30hours.Therequirementsof3.3.1.1band3.3.1.1imaybemodifiedtoallowoneaccumulatortobeinoperableorisolatedforuptoonehour.Iftheaccumulatorisnotoperableorisstillisolatedafteronehour,thereactorshallbeplacedinhotshutdownwithinthefollowing6hoursandbelowaRCSpressureof1600psigwithinanadditional6hours.Therequirementsof3.3.1.1cmaybemodifiedtoallowonesafetyinjectionpumptobeinoperableforupto72hours.Ifthepumpisnotoperableafter72hours,thereactorshallbeplacedinhotshutdownwithinthefollowing6hoursanda4-aa3.3.1.5belowaRCStemperaturelessthan350'Fwithinanadditional6hours.Therequirementsof3.3.1.1dthroughh.maybemodifiedtoallowcomponentstobeinoperableatanyonetime.More-thanonecomponentmaybeinoperableatanyonetimeprovidedthat-one..trainoftheECCSisoperable.Iftherequirementsof3.3.1.1dthroughh.arenotsatisfiedwithinthetimeperiodspecifiedbelow,thereactorshallbeplacedinhotshutdownwithin6hoursandatanRCStemperaturelessthan350Finanadditional6hours.a.Oneresidualheatremovalpumpmaybeout.ofserviceprovidedthepumpisrestoredtooperablestatuswithin72hours.AmendmentNo.243'3Proposed  
Amendment No.423~32Proposed  
.~*g 3.3.1.2Iftheconditions of3.3.1.1aarenotmet,thensatisfythe~~~~~~~~~~condition within1hourorbeathotshutdowninthenext63.3.1.33.3.1.4hoursandatleastcoldshutdownwithinanadditional 30hours.Therequirements of3.3.1.1band3.3.1.1imaybemodifiedtoallowoneaccumulator tobeinoperable orisolatedforuptoonehour.Iftheaccumulator isnotoperableorisstillisolatedafteronehour,thereactorshallbeplacedinhotshutdownwithinthefollowing 6hoursandbelowaRCSpressureof1600psigwithinanadditional 6hours.Therequirements of3.3.1.1cmaybemodifiedtoallowonesafetyinjection pumptobeinoperable forupto72hours.Ifthepumpisnotoperableafter72hours,thereactorshallbeplacedinhotshutdownwithinthefollowing 6hoursanda4-aa3.3.1.5belowaRCStemperature lessthan350'Fwithinanadditional 6hours.Therequirements of3.3.1.1dthroughh.maybemodifiedtoallowcomponents tobeinoperable atanyonetime.More-thanonecomponent maybeinoperable atanyonetimeprovidedthat-one..train oftheECCSisoperable.
Iftherequirements of3.3.1.1dthroughh.arenotsatisfied withinthetimeperiodspecified below,thereactorshallbeplacedinhotshutdownwithin6hoursandatanRCStemperature lessthan350Finanadditional 6hours.a.Oneresidualheatremovalpumpmaybeout.ofserviceprovidedthepumpisrestoredtooperablestatuswithin72hours.Amendment No.243'3Proposed  
:tl4lII,.l~
:tl4lII,.l~
b.,Oneresidualheatremovalheatexchangermaybeoutofserviceforaperiodofnomorethan72hours.c.Anyvalve,interlock,orpipingrequiredforthefunc-tioningofonesafetyinjectiontrainand/oronelowheadsafetyinjectiontrain(RHR)maybeinoperableprovidedrepairsarecompletedwithin72hours(exceptasspeci-fiedine.below).d.Powermayberestoredtoanyvalvereferencedin3.3.1.1gforthepurposesofvalvetestingprovidednomorethan-~--onesuchvalvehaspowerrestoredandprovidedtestingiscompletedandpowerremovedwithin12hours.e.Thosecheckvalvesspecifiedin3.3.1.1hmaybeinopera-ble(greaterthan5.0gpmleakage)providedtheinlineMOVsarede-energizedclosedandrepairsarecompletedwithin12hours.3.3.1.6DeletedAmendmentNo.24,333.3-4Proposed WP~w'A'I(*
b.,Oneresidualheatremovalheatexchanger maybeoutofserviceforaperiodofnomorethan72hours.c.Anyvalve,interlock, orpipingrequiredforthefunc-tioningofonesafetyinjection trainand/oronelowheadsafetyinjection train(RHR)maybeinoperable providedrepairsarecompleted within72hours(exceptasspeci-fiedine.below).d.Powermayberestoredtoanyvalvereferenced in3.3.1.1gforthepurposesofvalvetestingprovidednomorethan-~--onesuchvalvehaspowerrestoredandprovidedtestingiscompleted andpowerremovedwithin12hours.e.Thosecheckvalvesspecified in3.3.1.1hmaybeinopera-ble(greaterthan5.0gpmleakage)providedtheinlineMOVsarede-energized closedandrepairsarecompleted within12hours.3.3.1.6DeletedAmendment No.24,333.3-4Proposed WP~w'A'I(*
thatthemassadditionfromtheinadvertentoperationofsafetyinjectionwillnotresultinRHRsystempressureexceedingdesignlimits.Thelimitationonnosafetyinjectionpumpsoperableandthedischargelinesisolatedwhenoverpressureprotectionisprovidedbythepressur-izerPORV'sremovesmassinjectionfrominadvertentsafetyinjectionasaneventforwhichthis,configurationofoverpressureprotectionmustbedesignedtoprotect.Inoperabilityofasafetyinjectionpumpmaybeverifiedfromthemaincontrolboardwiththepumpcontrolswitchinpullstop,orthepumpbreakerinthetestrackedoutpositionsuchthatthepumpcouldnotstartfromaninadvertentsafetyinjectionsignal.IsolationofasafetyinjectionpumpdischargepathtotheRCSmaybeverifiedfromthemaincontrolboardbythedischargeMOVswitchpositionindicatingclosed,orthedischargevalveclosedwithA.C.powerremoved,oramanualdischargepathisolationvalveclosedsuchthatoperationoftheassociatedsafetyinjectionpumpwouldnotresultinmass.injectiontotheRCS.AmendmentNo.483.3-14Proposed ahdgr'g'>4P',c Highconcentrationboricacidisnotneededtomitigatetheconsequencesofadesignbasisaccident.Reference(10).demonstrates.that.thedesignbasisaccidentscanbemitigatedbysafetyinjectionflowofRWSTconcentration.Therefore,SIpumpsuctionistakenfromtheRWST.Requiringthatthesafetyinjectionsuctionvalves(825AandB,826A,B,C-and.D)are.aligned.withA.C..powerremovedensuresthatthesafetyinjectionsystemwouldnotbeexposedtohighconcentrationboricacidandtheassumptionsoftheaccidentanalysisaresatisfied.AmendmentNo.'483.3-14Proposed U
thatthemassadditionfromtheinadvertent operation ofsafetyinjection willnotresultinRHRsystempressureexceeding designlimits.Thelimitation onnosafetyinjection pumpsoperableandthedischarge linesisolatedwhenoverpressure protection isprovidedbythepressur-izerPORV'sremovesmassinjection frominadvertent safetyinjection asaneventforwhichthis,configuration ofoverpressure protection mustbedesignedtoprotect.Inoperability ofasafetyinjection pumpmaybeverifiedfromthemaincontrolboardwiththepumpcontrolswitchinpullstop,orthepumpbreakerinthetestrackedoutpositionsuchthatthepumpcouldnotstartfromaninadvertent safetyinjection signal.Isolation ofasafetyinjection pumpdischarge pathtotheRCSmaybeverifiedfromthemaincontrolboardbythedischarge MOVswitchpositionindicating closed,orthedischarge valveclosedwithA.C.powerremoved,oramanualdischarge pathisolation valveclosedsuchthatoperation oftheassociated safetyinjection pumpwouldnotresultinmass.injection totheRCS.Amendment No.483.3-14Proposed ahdgr'g'>4P',c Highconcentration boricacidisnotneededtomitigatetheconsequences ofadesignbasisaccident.
References(1)Deleted(2)UFSARSection6.3.3.1(3)UFSARSection6.2.2.1(4)UFSARSection15.6.4.3(5)UFSARSection9.2.2.4(6)UFSARSection9.2.2.4(7)Deleted(8)UFSARSection9.2.1.2(9)UFSARSection6.2.1.1(ContainmentIntegrity)andUFSARSection6.4(CREmergencyAirTreatment)(10)WestinghouseReport,"R.E.GinnaBoricAcidStorageTankBoronConcentrationReductionStudy"datedNov.1992byC.J.McHughandJ.J.SpryshakAmendmentNo.483.3.14aProposed IiA0 ChaDesction10.RodPositionBankCounters11.SteamGeneratorLevel12.ChargingFlowTABLE4.CheckS(1,2)N.A.Continued)CibrateTestRemarksVN.A.N.A.N.A.1)Withrodpositionindication2)Logrodpositionindicationseach4hourswhenroddeviationmonitorisoutofservice13.ResidualHeatRemovalPumpFlowN.A.N.A.14.BoricAcidStorageTankLevelDN.A.Note415.RefuelingWaterStorageTankLevelN.A.N.A.16.VolumeControlTankLevelN.A.N.A.17.ReactorContainmentPressureDM(1)1)IsolationValvesignal18.RadiationMonitoringSystemDAreaMonitorsR1toR9,SystemMonitorR1719.BoricAcidControlN.A.N.A.20.ContainmentDrainSumpLevelN.A.N.A.21.ValveTemperatureInterlocksN.A.N.A.22.Pump-ValveInterlockN.A."N.A.23.TurbineTripSet-PointN.A.R'(1)1)BlockTrip24.AccumulatorLevelandPressureN.A.AmendmentNo.224.1-6Proposed VE ChaDescrtion39.ReactorTripBreakersTABLE4.CheckN.AContinued)CaibrateTestN.A.MRemarksFunctiontest-Includesindependenttestingofbothundervoltageandshunttripattachment-ofreactortripbreakers.Eachofthetworeactortripbreakerswillbetestedonalternatemonths.40.ManualTripReactorN.A.N.A.RIncludesindependenttestingofbothundervoltageandshunttripcirc-uits.Thetestshallalsoverifytheoperabilityofthebypassbreak-er.41a.ReactorTripBypassBreakerN.A.N.A.MUsingtestswitchesinthereactorprotectionrackmanuallytripthereactortripbypassbreakerusingtheshunttripcoil.41.bReactorTripBypassBreakerN.A.N.A.RAutomaticallytriptheundervoltagetripattachment.NOTE1NOTE2:Logictrainswillbetestedonalternatemonthscorrespondingtothereactortripbreakertesting.Monthlylogictestingwillverifytheoperabilityofallsetsofreactortriplogicactuatingcontactsonthattrain(SeeNote3).Refuelingshutdowntestingwillverifytheoperabilityofallsetsofreactortripactuatingcontactsonbothtrains.Intesting,operationofonesetofcontactswillresultinareactortripbreakertrip;theoperationofallothersetsofcontactswillbeverifiedbytheuse-ofindicationcircuitry.Testingshallbeperformedmonthly,unlessthereactortripbreakersareopenorshallbeperformedpriortostartupiftestinghasnotbeeperformedwithinthelast30days.NOTE3Thesourcerangetriplogicmaybeexcludedfrommonthlytestingprovideditistestedwithin30dayspriortostartup.NOTE4:WhenBASTisrequiredtobeoperable.AmendmentNo.4.1-7aProposed  
Reference (10).demonstrates.
~Y" TABLE4.1-2MINIMUMFREUENCIESFOREUIPMENTANDSAMPLINGTESTSTestFrecruFencr1.ReactorCoolantChemistrySamples2.ReactorCoolantBoronChlorideandFluorideOxygenBoronConcentration3times/weekandatleasteverythirdday5times/weekandatleasteveryseconddayexceptwhenbelow2504FWeekly3.RefuelingWaterStorageTankWaterSampleBoronConcentrationWeekly4.BoricAcidStorageBoronConcentrationTankTwice/Week~+5.ControlRods06a.FullLengthControlRod6b.FullLengthControlRod7.PressurizerSafetyValves8.MainSteamSafetyValves9.ContainmentIsolationTrip10.RefuelingSystemInterlocksRoddroptimesofallfulllengthrodsMoveanyrodnotfullyinsertedasufficientnumberofstepsinanyonedirectiontocauseachangeofpositionasindicatedbytherodpositionindicationsystemMoveeachrodthroughitsfulllengthtoverifythattherodpositionindicationsystemtransitionsoccurSetpointSetpointFunctioningFunctioningAftervesselheadremovalandatleastonceper18months(1)Monthly,EachRefuelingShutdownEachRefuelingShutdownEachRefuelingShutdownEachRefuelingShutdownPriortoRefuelingOperationsAmendmentNo.224.1-8Proposed  
that.thedesignbasisaccidents canbemitigated bysafetyinjection flowofRWSTconcentration.
:12.13.ServiceWaterSystemFireProtectionPumpandPowerSupplySprayAdditiveTankTestFunctioningFunctioningNaOHConcentFreceeuencEachRefuelingShutdownMonthlyMonthly14.AccumulatorBoronConcentrationBi-Monthly15.PrimarySystemLeakageEvaluateDaily16.DieselFuelSupplyFuelInventoryDaily17.SpentFuelPit18.SecondaryCoolantSamplesBoronConcentrationGrossActivityMonthly72hours(2)(3)19.CirculatingHaterFloodProtectionEquipmentNotes:CalibrateEachRefuelingShutdown(2)Alsorequiredforspecificallyaffectedindividualrodsfollowinganymaintenanceonormodificationtothecontrolroddrivesystemwhichcouldaffectthedroptimeofthosespecificrods.Notrequiredduringacoldorrefuelingshutdown.AnisotopicanalysisforI-131equivalentactivityisrequiredatleastmonthlywheneverthegrossactivitydeterminationindicatesiodineconcentrationgreaterthan10'ftheallowablelimitbutonlyonceper6monthswheneverthegrossactivitydeterminationindicatesiodineconcentrationbelow10%oftheallowablelimit.(4)WhenBASTisrequiredtobeoperable.AmendmentNo.224.1-9Proposed 0,1}}
Therefore, SIpumpsuctionistakenfromtheRWST.Requiring thatthesafetyinjection suctionvalves(825AandB,826A,B,C-and.D)are.aligned.withA.C..power removedensuresthatthesafetyinjection systemwouldnotbeexposedtohighconcentration boricacidandtheassumptions oftheaccidentanalysisaresatisfied.
Amendment No.'483.3-14Proposed U
References (1)Deleted(2)UFSARSection6.3.3.1(3)UFSARSection6.2.2.1(4)UFSARSection15.6.4.3(5)UFSARSection9.2.2.4(6)UFSARSection9.2.2.4(7)Deleted(8)UFSARSection9.2.1.2(9)UFSARSection6.2.1.1(Containment Integrity) andUFSARSection6.4(CREmergency AirTreatment)
(10)Westinghouse Report,"R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study"datedNov.1992byC.J.McHughandJ.J.SpryshakAmendment No.483.3.14aProposed IiA0 ChaDesction10.RodPositionBankCounters11.SteamGenerator Level12.ChargingFlowTABLE4.CheckS(1,2)N.A.Continued)
CibrateTestRemarksVN.A.N.A.N.A.1)Withrodpositionindication 2)Logrodpositionindications each4hourswhenroddeviation monitorisoutofservice13.ResidualHeatRemovalPumpFlowN.A.N.A.14.BoricAcidStorageTankLevelDN.A.Note415.Refueling WaterStorageTankLevelN.A.N.A.16.VolumeControlTankLevelN.A.N.A.17.ReactorContainment PressureDM(1)1)Isolation Valvesignal18.Radiation Monitoring SystemDAreaMonitorsR1toR9,SystemMonitorR1719.BoricAcidControlN.A.N.A.20.Containment DrainSumpLevelN.A.N.A.21.ValveTemperature Interlocks N.A.N.A.22.Pump-Valve Interlock N.A."N.A.23.TurbineTripSet-Point N.A.R'(1)1)BlockTrip24.Accumulator LevelandPressureN.A.Amendment No.224.1-6Proposed VE ChaDescrtion39.ReactorTripBreakersTABLE4.CheckN.AContinued)
CaibrateTestN.A.MRemarksFunctiontest-Includesindependent testingofbothundervoltage andshunttripattachment
-ofreactortripbreakers.
Eachofthetworeactortripbreakerswillbetestedonalternate months.40.ManualTripReactorN.A.N.A.RIncludesindependent testingofbothundervoltage andshunttripcirc-uits.Thetestshallalsoverifytheoperability ofthebypassbreak-er.41a.ReactorTripBypassBreakerN.A.N.A.MUsingtestswitchesinthereactorprotection rackmanuallytripthereactortripbypassbreakerusingtheshunttripcoil.41.bReactorTripBypassBreakerN.A.N.A.RAutomatically triptheundervoltage tripattachment.
NOTE1NOTE2:Logictrainswillbetestedonalternate monthscorresponding tothereactortripbreakertesting.Monthlylogictestingwillverifytheoperability ofallsetsofreactortriplogicactuating contactsonthattrain(SeeNote3).Refueling shutdowntestingwillverifytheoperability ofallsetsofreactortripactuating contactsonbothtrains.Intesting,operation ofonesetofcontactswillresultinareactortripbreakertrip;theoperation ofallothersetsofcontactswillbeverifiedbytheuse-ofindication circuitry.
Testingshallbeperformed monthly,unlessthereactortripbreakersareopenorshallbeperformed priortostartupiftestinghasnotbeeperformed withinthelast30days.NOTE3Thesourcerangetriplogicmaybeexcludedfrommonthlytestingprovideditistestedwithin30dayspriortostartup.NOTE4:WhenBASTisrequiredtobeoperable.
Amendment No.4.1-7aProposed  
~Y" TABLE4.1-2MINIMUMFREUENCIESFOREUIPMENTANDSAMPLINGTESTSTestFrecruFenc r1.ReactorCoolantChemistry Samples2.ReactorCoolantBoronChlorideandFluorideOxygenBoronConcentration 3times/week andatleasteverythirdday5times/week andatleasteveryseconddayexceptwhenbelow2504FWeekly3.Refueling WaterStorageTankWaterSampleBoronConcentration Weekly4.BoricAcidStorageBoronConcentration TankTwice/Week~+
5.ControlRods06a.FullLengthControlRod6b.FullLengthControlRod7.Pressurizer SafetyValves8.MainSteamSafetyValves9.Containment Isolation Trip10.Refueling SystemInterlocks RoddroptimesofallfulllengthrodsMoveanyrodnotfullyinsertedasufficient numberofstepsinanyonedirection tocauseachangeofpositionasindicated bytherodpositionindication systemMoveeachrodthroughitsfulllengthtoverifythattherodpositionindication systemtransitions occurSetpointSetpointFunctioning Functioning Aftervesselheadremovalandatleastonceper18months(1)Monthly,EachRefueling ShutdownEachRefueling ShutdownEachRefueling ShutdownEachRefueling ShutdownPriortoRefueling Operations Amendment No.224.1-8Proposed  
:12.13.ServiceWaterSystemFireProtection PumpandPowerSupplySprayAdditiveTankTestFunctioning Functioning NaOHConcentFreceeuenc EachRefueling ShutdownMonthlyMonthly14.Accumulator BoronConcentration Bi-Monthly 15.PrimarySystemLeakageEvaluateDaily16.DieselFuelSupplyFuelInventory Daily17.SpentFuelPit18.Secondary CoolantSamplesBoronConcentration GrossActivityMonthly72hours(2)(3)19.Circulating HaterFloodProtection Equipment Notes:Calibrate EachRefueling Shutdown(2)Alsorequiredforspecifically affectedindividual rodsfollowing anymaintenance onormodification tothecontrolroddrivesystemwhichcouldaffectthedroptimeofthosespecificrods.Notrequiredduringacoldorrefueling shutdown.
AnisotopicanalysisforI-131equivalent activityisrequiredatleastmonthlywheneverthegrossactivitydetermination indicates iodineconcentration greaterthan10'ftheallowable limitbutonlyonceper6monthswheneverthegrossactivitydetermination indicates iodineconcentration below10%oftheallowable limit.(4)WhenBASTisrequiredtobeoperable.
Amendment No.224.1-9Proposed 0,1}}

Revision as of 12:04, 29 June 2018

Re Ginna Boric Acid Storage Tank Boron Concentration Reduction Study.
ML17262B120
Person / Time
Site: Ginna Constellation icon.png
Issue date: 11/30/1992
From: MCHUGH C J, SPRYSHAK J J
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML17262B116 List:
References
NUDOCS 9212290180
Download: ML17262B120 (116)


Text

ATTACHMENT CYENDOR'SDOCUMENTREVIEVIIg~Mfgsexyproceed2QApprovedgobrcttgottdoA.Mfgortyproceed3QApprovedexceptesnotedMetechsogcsecdsobroitBottdodhMfgoreyproceedsscpprovcdCQstotsptvovcdCorrecteodresobea,5QRevie>>ootrertvhcdIlfg,rosyproceedApprovxlofthisdocorored docsoolregevosreoherfreerfvgccophsrce withooratrect orporehesoorderreqrrtrecertL ByDxteROCHESTER GAS8ELECTRICCORP.ftOCHESTER, NYR.E.GinnaBoricAcidStorageTankBoronConcentration Reduction StudyNovember1992Preparedby:c..zWChristopher J.McHhJeph.SpryshakTransient AnalysisIIWestinghouse ElectricCorp.Containment DesignandBWRTechnology Westinghouse ElecricCorp.9',Pgq9~8o921Zaop,AD<<idOrOOogg4.PVR R.E.GlnnaBoricAcidStorageTankBoronConcentration Reduction Study.0ThisreportpresentsanalysesoftheR.E.Ginnaplantsteamline break(SLB)containment integrity andassociated LOCA-related

analyses, withareduction oftheboronconcentration intheBoricAcidStorageTanks(BASTs)from20,000ppmto2,000ppm.Aboronreduction tothislevelwillallowtheremovalofcreditfortheBASTsfromthelicensing basisaccidentanalyses(andsubsequently removaloftheassociated heattracingrequired).

TheBASTswillberetainedforoperation requirements andredundant flowpathsasdiscussed inTechnical Specifications.

'o~'R.E:Ginnacurrently mustmaintain20,000ppmboronintheBASTs,whichrequiresheattracingtopreventboronprecipitation.

TheBASTsandtheirheattracingarepartoftheSafetyInjection (SI)systemandthustheymustbemaintained according torequirements whichcanimposeoperational restrictions.

Theonlyaccidentanalyseswhicharesignificantly affectedbyboronconcentration reduction arethesecondary sidesteamline breaktransients.

Thecoreandthecontainment responses areaffectedbythesteamline breaktransients andtherefore wereconsidered intheboronconcentration reduction analysis.

2.0co-TheSLBcoreresponseanalysisisdocumented inReference 1andsupportsareduction intheBASTsboronconcentration to2000ppm.3.0NTAINMENT INTERITYANALYSIS3.1Pur~seThepurposeoftheContainment Integrity Steamline Breakanalysisistodemonstrate theacceptability oftheContainment Safeguards Systemstomitigatetheconsequences ofahypothetical ruptureofasteamline pipe.Theimpactofsteamline massandenergyreleasesoncontainment pressureisaddressed toensurethecontainment pressureremainsbelowitsdesignpressureof60psigatthereducedboronconcentration conditions.

It>i0,gr~i~n~Z'(p R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study3.2RelevantAccetanceriteria~:"TheBASTsarecomponents oftheSafetyInjection'System designedtomitigate'the consequences.

ofpostulated steamline breakaccidents byproviding ahighconcentration ofboricacidtothereactorcoolant.Ahighconcentration ofboricacidcausesadecreaseintheposttripreturncorepowerlevelandsubsequently adecreaseinheattransferred tothesecondary sidefluid,whichresultsindecreased containment pressures duringaSLB.Thecontainment pressures resulting fromthemassandenergyreleasesmustremainbelowthedesignpressureofthecontainment building.

ForR.E.Ginnathecontainment designpressureis60psig.3.3Evaluation 3.3.1Methodology Calculation ofthesteamline breakcontainment responseisatwostepprocess.TheLOFTRANcomputercode(Reference 2)isfirstusedtocalculate themassandenergyreleasedasafunctionoftime.ThereleasesarethenusedasinputtotheCOCOcode(Reference 3)tocalculate containment pressures andtemperatures asafunctionoftime.Attachment 1providesabriefdescription oftheLOFTRANand.COCOcodes.1Thecasesthatwereanalyzedforpeakcontainment pressures arelistedinTable1.Thebasicinitialconditions, heatsinkmodel,fancoolerdata,andcontainment sprayparameters forthesecasesareoutlinedinTables2through5.Thefollowing conservative assumptions aremadeforthemassandenergyreleaseanalysis:

1.Maximumdecayheatequivalent tothe1979ANSdecayheat+2euncertainty.

2.Nocreditforwaterentrainment intheblowdownresults.3.Conservatively highvaluesforreversesteamgenerator heattransfer.

4.Conservative moderator temperature coefficient fortheroddedcoreatend-of-life.

J1PI\gl14eI~

R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study3.3.2SpectrumofBreakAssumptions Acomprehensive setofbreaksizes,initialpowerlevels,singlefailureassumptions, andoff-sitepoweravailability mustbeconsidered sothatthereisreasonable assurance thatthelimitingcaseshavebeencovered.Thecompletesetofsteamline breakcasesthatwereaddressed fortheR.E.GinnaplantislistedinTable1.Thesinglefailuresconsidered inthisanalysishavebeenselectedbasedupontheirpotential forincreasing theamountofmassandenergyreleasedintocontainment orforreducingtheamountofheatremovedfromcontainment.

Thefourpostulated failuresareasfollows:FailureoftheMainSteamIsolation Valve(MSIV)tocloseFailureoftheFeedwater ControlSystem(FCS)Failureofonecontainment spraypump(tooperate)Failureofonedieselgenerator tostartThebreaksconsidered include4.37ft'oubleEndedRuptures(DER)upstreamoftheflowrestrictor, 1.4ft'ER'sdownstream oftheflowrestrictor, andsmallbreaksof1.1ft'rsmaller.Todetermine thelimitingbreaksizeforthesmallbreaks,severalcaseswererunwithbreaksizesfrom0.3ft'o1.1ft'n0.2ft'ncrements.

Afterithadbeensufficiently demonstrated thatthetwolargestofthesmallbreaksconsistently resultedinhigherbreakflowsandlimitingpeakcontainment pressures, theremainder ofthesmallbreakcaseswererunwithonlythetwolargestbreaksizes,0.9ft'nd1.1ft'.3.3.3Consistent Off-SitePowerAvailability Oneoftheconservative assumptions thathashistorically beenmadeiswithrespecttotheavailability ofoff-sitepower.UndertypicalSLBcontainment analysismethodology, themassandenergyreleasesaregenerated assumingoff-sitepowercontinues tobeavailable forthedurationofthetransient.

Thisgivesmaximumprimary-to-secondary heattransferbecauseoftheforcedreactorcoolantflowfromtheReactorCoolantPumps(RCPs).Thecontainment integrity calculation isthenperformed assumingthatoff-sitepowerisnotavailable, whichextendsthesafeguards equipment startupdelaysduetodieselsequencing timing.Thesetwoassumptions contradict eachother,butresultinananalysiswhichboundsbothwith rIkgA3<<P'I+vl"'A'~at),

R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study.andwithout,off-site.

power,withonecase.Toremovethisunnecessary conservatism thelimitingcaseswereanalyzedwithaconsistent off-sitepoweravailability assumption.

Asmallnumberofcaseswereanalyzedwithinconsistent assumptions anddemonstrated ahighmargintothepressurelimit.3.3.4MassandEnergyCalculation Assumptions 3.3.4.1MainandAuxiliary Feedwater FlowasaFunctionofSteamGenerator PressureThecasespresented inthisstudyassumedamainfeedwater flowrateasafunctionofboththesteamgenerator pressureandthefeedwater controlvalveposition.

Thefeedwater controlvalve(FCV)positionvarieswithpowerlevelandpostulated breaklocation.

ThebreaklocationaffectstheFCVpositionin'hata'steamline breakresultsinanincreaseinsteamflowandsubsequently asteamflow/feed flowmismatch.

Inresponsetothemismatch, thefeedwater controlsystemisassumedtoincreasefeedflowtomatchsteamflow.Thetypicalanalysisassumption istoassumethatthefaultedloopFCViswideHowever,withabreakupstreamofthesteamline flowrestrictor, nosteamflow/feed flowmismatchwouldbepresent.Assuch,forcaseswithabreaksizelargerthantheflowareathroughtheflow-restrictor, itisassumedthatnomismatchsignalispresentandthatthefaultedloopFCVstaysinitsnominalpre-break-position.

-TheintactloopFCVisconservatively-assumed toremaininitsnominalpre=-breakpositionuntilreactortrip.AturbinetripisassumedtooccuratthesametimeasreactortripandtheintactloopFCVisassumedtocloseinstantly inresponsetothedecreaseinsteamdemand.Forsteamline breakslocateddownstream oftheflowrestrictors andthosebreakshavingabreakareasmallerthantheflowrestrictor, itisassumedthattheFCVonthefaultedloopgoeswideopeninresponsetotheincreased steamflow.Aswiththeupstreambreaks,theintactloopFCVisassumedtobeinitsnominalpositioninitially andclosesinstantly, coincident withreactortrip.Auxiliary feedwater flowratesasafunctionofsteamgenerator pressurewerealsoassumedintheanalyses.,Auxiliary feedwater flowratesvarieddepending ontheavailability ofoffsitepowerandthesinglefailurebeingevaluated.

AtHZP,themainfeedwater pumpswillnotdeliverfeedwater toeithersteamgenerator.

Thus,noneof e\~E~

R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Studythezeropowercasesassumeanymainfeedwater.

Thesecasesassumeauxiliary feedwater only,initiated atthetimethesteamline breakoccurs.3.3.4.2CoreReactivity Coefficients LOFTRANutilizesapointkineticsmodel,whichusesreactivity feedbackcoefficients tocalculate thekineticsconditions inthecore.Steamline breaktransients initialized athot-zeropower.assumerodded-reactivity feedbackcoefficients withanallowance forthemostreactiveRodClusterControlAssembly(RCCA)stuckinitsfullywithdrawn position.

Steamline breaktransients initiated withthereactoratpowertypically assumeEnd-Of-Life (EOL)reactivity coefficients calculated assumingthatallRCCAsarefullywithdrawn.

However,fortheseanalyses, sincethemajorityofthetransient ispostreactortrip,roddedcoefficients (againwithanallowance forastuckRCCA)wereassumed.Confirmation oftheconservatism oftheoverallreactivity modelhasbeenobtainedbymoredetailedcoreneutronics calculations.

3.3.5Containment Integrity Assumptions Themajorcontainment integrity calculational assumptions usedwithCOCOareasfollows:1.Themassandenergyreleasetothecontainment isfor-abreakopeningtimeofzero.2.Thesaturation temperature corresponding tothepartialpressureofthecontainment vaporisusedincalculating thecondensing heattransfertothepassiveheatsinksandtheheatremovalbycontainment fancoolers.3.TheWestinghouse containment modelutilizestheanalytical approaches described inReferences 3and4tocalculate thecondensate removalfromthecondensate film.Aconvective heatfluxrevaporization modelisusedforsmallbreaks.100%revaporization isassumedforlargebreaks.4.Thesmallsteamline breakcontainment analysesutilizedthestagnantTagamicorrelation, Reference

5.

44~rr R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study5.Thedieselfailureconditions (minimumsafeguards),

thatweremodeled,assumedthattherewere2fancoolersandonecontainment.

spray-pump (1300gpm)wereoperating;

-Thetime--delaysthatwereassumedforinitiation ofcontainment spraysandfancoolerswithadieselfailurearegiveninTable3.3.4Desin-BasisContainment lnteritAnalsisResults.Figures1and2providethepressureandtemperature transient curvesforthe4.37ft'ERupstreamoftheflowrestrictor caseproducing thehighestpeakcontainment pressureofthistypeofbreakandallotherbreaksanalyzed.

Thiscaserepresents amainsteamisolation valve(MSIV)failureat30%powerwithoffsitepoweravailable.

TheBASTsboronconcentration of2000ppmwasassumedinthiscaseandallothercasesidentified inTable1.ThemassandenergyreleasesforthiscaseareshowninFigures3and4.Thelimiting1.4ftdownstream DERcontainment pressureandtemperature transients areshowninFigures5and6.Thiscaserepresents thefeedwater controlsystemfailureat70%powerwithoutoffsitepoweravailable.

Notethatthepeakpressureislowerforthe1.4ft'reakthanforthe4.37ft~break.Thesmallerbreakareareducestheblowdownmassandenergyreleaseratewithoutsignificantly delayingactuation ofprotective functions and,therefore, resultsinalowerpeakcontainment pressurethanthe4.37ft'ase.ThemassandenergyreleaseratesforthiscaseareincludedinFigures7and8.ThelimitingsmallDERisa1.1ft'reak,resulting inthepressureandtemperature transients showninFigures9and10.Thiscasewasanalyzedassumingadieselfailureat102%power,withoutoffsitepoweravailable.

ThemassandenergyreleaseratesforthiscaseareincludedinFigures11and12.Thecontainment pressures reachedbythelimitingbreakswiththeboricacidstoragetankconcentration of2000ppmremainbelowthecontainment designlimitof60psig.

3'iCJiEk~',IfIaxe R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study4.0EVALUATION OFLOCA-RELATED ANALYSES4.1LareBreakLOCAThecurrentLargeBreakLoss-Of-Coolant Accident(LBLOCA)analysisofrecordforR.E.Ginnawasperformed usingtheNRC-approved 1981ECCSEvaluation Model,Reference 6.Theproposedreduction intheboronconcentration intheBASTswillnotadversely affecttheLargeBreakLOCAbecausetheEvaluation Modelcodesusedinanalyzing thelargebreakdonotexplicitly modelboronconcentration inthereactorcoolantsystem.4.2SmallBreakLOCAThecurrentSmallBreakLoss-Of-Coolant Accident(SBLOCA)analysisofrecordforR.E.Ginnawasperformed usingtheNRC-approved SmallBreakLOCAECCSEvaluation ModelwithWFLASH,Reference 7.Theproposedreduction intheboronconcentration intheBASTswillnotadversely affecttheSmallBreakLOCAbecausetheEvaluation Modelcodesusedinanalyzing thesmallbreakdonotexplicitly modelboronconcentration inthereactorcoolantsystem.4.3Post-LOCA LonTermCoreCoolinSubcriticalit ReuirementTheWestinghouse licensing positionforsatisfying therequirements of10CFR50.46Paragraph (b)Item(5)"LongTermcooling"isdefinedinWCAP-8339, Reference 8.TheWestinghouse commitment isthatthereactorwillremainshutdownbyboratedECCSwaterresidinginthesumpfollowing aLOCA,Reference 9.SincecreditforthecontrolrodsisnottakenforlargebreakLOCA,theboratedECCSwaterprovidedbytheaccumulators andtheRWSTmusthaveaconcentration that,whenmixedwithothersourcesofboratedandnon-borated water,willresultinthereactorcoreremaining subcritical assumingallcontrolrodsareout.Thelargereduction inboronconcentration intheBASTswillhaveasignificant effectontheReactorCoolantSystemboronconcentrations assumedforthiscalculation.

Thecalculations fordetermining whetherthereduction intheboronconcentration intheBASTswill

  • al,~Jgp1~g44I R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Studyresultinthecoreremaining subcritical wasre-donewithanewconcentration of2000ppmintheBASTs.AnewRCSboronconcentration curveforthe2000ppmvaluewas.generated andusedinthecoredesign,processto.ensure-that thecorewillremainsubcritical withaboronconcentration-of 2000ppm.---4.4BoronPreciitationDurinLonTermCoolinThepost-LOCA boronprecipitation longtermcorecoolingrequirement ensuresnoboronprecipitation inthereactorvesselfollowing boilinginthecore.SinceGinnahassimultaneous injection fromtheresidualheatremovalsafetyinjection systemintotheupperplenumandthehighheadsafetyinjection systemintothecoldlegs,thisrequirement ismetbyrequiring alternate injection within20hoursafteraLOCA.Thistimeisdependent onpowerlevel,andtheRCS,RWST,accumulator, andotherwatersourcesvolumesandboronconcentrations.

Areduction intheboronconcentration intheBASTswillhavenoeffectonthepowerlevel,orvolumesassumedfortheRCS,RWST,accumulators, andotherwatersources.Althoughtheboronconcentrations willbeaffected, itrequiresanincreaseintheconcentration toadversely affecttheboronprecipitation.

Sincetheboronconcentration wouldbedecreasing withtheproposedchange,therewillbenoadverseeffectonthepost-LOCA alternate injection requirement of20hoursfortheR.E.Ginnaplant.4.5Post-LOCA LonTermoreCoolinMinimumFlowPost-LOCA longtermcorecoolingminimumflowisdetermined toensureadequateflowforlargebreakandsmallbreakatthetimeofrecirculation switchover.

Areduction oftheboronconcentration intheBASTswillhavenoeffectontheinputsforthiscalculation.

Therefore, thischangewillhavenoeffectonthepost-LOCA longtermcorecoolingminimumflowfortheR.E.Ginnaplant.4.6LOCASummaandConclusions Theeffectofreducingtheboronconcentration intheBASTsontheLOCA-related analysesforR.E.Ginnahasbeenevaluated byWestinghouse.

Thepotential effectofthechangeontheUFSARanalysisresultsforeachoftheLOCA-related accidents wasevaluated anditwasshowninallcasesthattheeffectofthechangedidnotresultinexceeding anyofthefollowing designorregulatory limits:1.-.Thecalculated peak-fuel elementcladdingtemperature isbelowtherequirements of2200'F.

'y,i4T(

R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study2.-.-Theamountoffuelelementcladdingthat.reactschemically withwaterorsteamdoesnotexceed1percentofthetotalamountofZircaloyinthereactor.3.-Thecladding-temperature transient isterminated atatimewhenthecoregeometryisstill.amenable tocooling.Thelocalized claddingoxidation-limit-of 17percentis-notexceededduringorafterquenching.

4.Thecoreremainsamenabletocoolingduringandafterthebreak.5.Thecoretemperature isreducedanddecayheatisremovedforanextendedperiodoftime,asrequiredbythelong-lived radioactivity remaining inthecore.Therefore, itisconcluded thattheproposedmodification toreducetheboronconcentration intheBASTsisacceptable fromthestandpoint oftheUFSARaccidentanalysesdiscussed inthissection.5.0Conclusions Areduction oftheBASTsboronconcentration to2000ppmattheR.E.Ginnaplantwillbeacceptable

.fromthestandpoint ofcoreresponse, steamline breakcontainment integrity,and LOCA=,evaluation.-.

0~I'gc".3KiII>ftlf~.tC~h' R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction StudyReferences 1.RG&EtoNRCRequestforAmendment toTechnical Specifications datedOct.16,1985,purpose-ReviseContainment InternalPressureLimitations.

2.Burnett,T.W.T.,et.al.,"LOFTRANCodeDescription,"

WCAP-7909-P-A (Proprietary),

WCAP-7907-A (Non-Proprietary),

April1984.3.Bordelon, F.M.andMurphy,E.T.,"Containment PressureAnalysisCode(COCO),"WCAP-8327,July1974.4.Hsieh,T.etal,"Environmental Qualification Instrument Transmitter Temperature Transient Analysis",

WCAP-8936, February1977(Proprietary) andWCAP-8937, February1977(Non-Proprietary) 5.Jens,W.H.,andLottes,P.A.,"Analysis ofHeatTransfer, Burnout,PressureDrop,andDensityDataforHighPressureWater",USAECReportANL-4627, 1951.n6.WCAP-9220-P-A(Proprietary),

WCAP-9221(Non-Proprietary),Eicheldinger, C.,"Westinghouse ECCSEvaluation Model-1981Version",

Revision1,1981.7.WCAP-8200 (Proprietary),

"WFLASH-AFORTRAN-IV ComputerProgramForSimulation OfTransients InAMulti-Loop PWR",Esposito, V.J.,etal.,July1973.8.WCAP-8339 (Non-Proprietary),

Bordelon, F.M.,et.al.,"Westinghouse ECCSEvaluation Model-Summary",

June1974.9.Westinghouse Technical BulletinNSID-TB-86-08, "Post-LOCA LongTermCooling:BoronRequirements",

October31,1986.10

~r Table1:Containment Integrity Analysis-SteamLineBreakCasesCS-FailureofOneContainment SprayPumptoOperateDIESEL-FailureofoneDieselGenerator toStartMSIV-FailureofMainSteamIsolation ValveFCS-FailureofFeedwater ControlSystemCaseBreakTeBreakSizeft~Power%FailureM&EContainment OffsitePower1AUPSTREAMDER4.37102CSAVAILAVAIL1BDIESELNOTAVAILNOTAVAIL2AMSIVAVAILAVAIL.2BMSIVNOTAVAILNOTAVAIL3AFCSAVAILAVAIL3BFCSNOTAVAILNOTAVAIL4A70AVAILAVAIL4BDIESELNOTAVAILNOTAVAILSAMSIVAVAILAVAIL5BMSIVNOTAVAILNOTAVAIL6AFCSAVAILAVAIL6BFCSNOTAVAILNOTAVAIL7A30CSAVAILAVAIL7BDIESELNOTAVAILNOTAVAILMSIVAVAILAVAIL8BMSIVNOTAVAILNOTAVAIL9AFCSAVAILAVAIL9BFCSNOTAVAILNOTAVAIL10AAVAILAVAIL10BDIESELNOTAVAILNOTAVAIL11AMSIVAVAILAVAIL11BMSIVNOTAVAILNOTAVAIL12AFCSAVAILAVAIL12BFCSNOTAVAILNOTAVAILMQEMassandenerayreleasedintocontainment b81~

Tablelcontinued CaseBreakeBreakSizeft'ower%FailureM&EContainment OffsitePower13ADWNSTRMDER1.4102CSAVAILAVAIL13BDIESELNOTAVAILNOTAVAIL14AMSIVAVAILAVAIL14B102MSIVNOTAVAILNOTAVAIL15AFCSAVAILAVAIL15BFCSNOTAVAILNOTAVAIL16A70CSAVAILAVAIL16BDIESELNOTAVAILNOTAVAIL17AMSIVAVAILAVAIL17BMSIVNOTAVAILNOTAVAIL18AFCSAVAILAVAIL18BFCSNOTAVAILNOTAVAIL19A30CSAVAILAVAIL19BDIESELNOTAVAILNOTAVAIL20AMSIVAVAILAVAIL20BMSIVNOTAVAILNOTAVAIL21AFCSAVAILAVAIL21BFCSNOTAVAILNOTAVAIL22AAVAILAVAIL22CDIESELAVAILNOTAVAIL23AMSIVAVAILAVAIL23BMSIVNOTAVAILNOTAVAIL24AFCSAVAILAVAIL24CFCSAVAILNOTAVAIL25A125A225A325A4SMALLDER0.30.50.70.9102CSCSCSCSAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAIL S~~a Table1continued Case25A525B125B225B3BreakTe.SMALLDER1.1102CS0.3102DIESEL0.50.7DIESELDIESELBreakSizeft'ower%FailureOffsitePowerM&EAVAILContainment AVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAIL25B425BS0.9DIESELDIESELNOTAVAILNOTAVAILNOTAVAILNOTAVAIL26A426AS0.9102FCSFCSAVAILAVAILAVAILAVAIL26B426B50.9102NOTAVAILNOTAVAILNOTAVAILNOTAVAIL27A427AS0.970AVAILAVAILAVAILAVAIL27B327B427B50.70.970DIESELDIESELDIESELNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAIL28A428AS0.970FCSFCSAVAILAVAILAVAILAVAIL28B428BS0.970FCSFCSNOTAVAILNOTAVAILNOTAVAILNOTAVAIL29A429A50.930AVAILAVAILAVAILAVAIL29B429BS0.930DIESELDIESELNOTAVAILNOTAVAILNOTAVAILNOTAVAIL30A430AS0.930FCSFCSAVAILAVAILAVAILAVAIL30B430BS0.930FCSFCSNOTAVAILNOTAVAILNOTAVAILNOTAVAIL31A10.3CSAVAILAVAIL13 II~IAt,t<II~g Table1continued CaseBreakTeBreakSizeft'ower%FailureM&EContainment OffsitePower31A231A3SMALLDER0.50.7AVAILAVAILAVAILAVAIL31A40.9AVAIL~AVAIL31A5AVAILAVAIL31C631C732C132C232C332C432C51.31.50.30.50.70.9DIESELDIESELFCSFCSFCSFCSFCSAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAIL33A133A233A333A433A50.31020.50.70.9MSIVMSIVMSIVMSIVMSIVAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAILAVAIL33B534C434C50.9701021.1102MSIVMSIVMSIVMSIVNOTAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAIL35A435A50.930MSIVMSIVAVAILAVAILAVAILAVAIL35B536C136C236C336C436C50.30.50.70.9MSIVMSIVMSIVMSIVMSIVMSIVNOTAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAILAVAILNOTAVAIL 5.ql)(

Tablelcontinued

/CaseBreakeBreakSizeft'ower%FailureM&EContainment OffsitePower37AS37C4SPLIT1020.9102MSIVMSIVAVAILAVAILAVAILNOTAVAIL37CS38A438AS38BS39A439AS39BS40C140C240C340C440CS0.90.90.30.50.70.970703030MSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVMSIVAVAILAVAILAVAILNOTAVAILAVAILAVAILNOTAVAILAVAILAVAILAVAILAVAILAVAILNOTAVAILAVAILAVAILNOTAVAILAVAILAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAILNOTAVAIL 0~6 Table2-LOFTRANInitialConditions/Input Assumptions Parameter


InitialPowerLevel-----~102o~70o30%0%NominalAverageRCSTemperature

('F)RCSFlowrate(gpm)RCSPressure(psia)FeedwaterTemperature

('F)1740002250425174000225038517400017400022502250322100573.5565.55554.95547.0NominalPressurizer WaterLevel(%NRS)'-">49.040.228.4"19.5NominalSteamGenerator WaterLevel(%NRS)52.052.052.052.0'Theactualsteamgenerator levelatzeropoweris39%NRS+uncertainties.

52%NRS+uncertainties wasconservatively assumedintheanalyses.

r.<<"'v>,'NRS-=

NarrowRange.SpanIInitialCondition Uncertainties AverageRCSTemperature

=4'FPressurizer WaterLevel=5%NRSSteamGenerator WaterLevel=3.5%NRS(Somecasesassumed5%NRS) 0/lyA Table3:MajorContainment Assumptions InitialPressureInitialTemperature InitialHumidityContainment VolumeContainment FanCoolersHigh-1SetpointUsedActualSetpointInstrument Uncertainty InitiateonHeatRemovalRatesWithoff-sitepoweravailable NumberofFanCoolersDelayWithoutoff-sitepoweravailable NumberofFan,Coolers withoutDieselFailurewithDieselFailureDelayContainment SpraysFlowrateperSprayPump~RWSTWaterTemperature PressureSetpointUsedActualSetpointPressureInstrument Uncertainties 15.7psi120'F20%1.0E+06k';~'.0psig4.0psig2pslSI(orHigh-1signalifearlier)Table534.0sec44.0sec1300gpm80'F32.5psig28.0psig4.5psig17 4II'lI Table3(continued):

MajorContainment Assumptions

.WithOff-sitePowerAvailable NumberofSprayPumpsOperating withoutcontainment sprayfailurewithcontainment sprayfailureDelaywithoutcontainment sprayfailurewithcontainment sprayfailureWithoutOff-sitePowerAvailable NumberofSprayPumpsoperating withoutdieselfailurewithdieselfailureDelay27.3sec28.5sec45.5secHeatSinksTable418 Table4:PASSIVEHEATSINKSWallDescription HeatTransferArea2MaterialThickness ft1.Insulated portionofdomeandcontainment wall36285.0stainless steelinsulation steelconcrete0.001580.10420.031253.3642.Uninsulated portionofdomeandcontainment wall12370.0steelconcrete0.031252.53.Basementfloor6576.0concretesteelconcrete2.00.02082.04.WallsofsumpAundersumplevel8.24steelconcrete0.02083.05.WallofsumpAoversumplevel2052.75steelconcrete0.02083.06.FloorofsumpsAandB366.0concretesteelconcrete2.00.02081.07.WallsofsumpB189.0concretesteelconcrete2.00.02081.08.Outerrefueling cavitywall9.Innerrefueling cavitywall5870.05870.0concretestainless steelconcrete0.02082.010.Bottomofrefueling cavity1143.011.Loopcompartments (LoopsAandB)'8846.0 stainless steelconcreteconcrete0.02084.01.411512.Floorofintermediate level'672.0 concrete0.2513.Operating floorandstructure onoperating floor'5570.0 concrete1.0 Table4(continued):

PASSIVEHEATSINKSWallDescription HeatTransferAreafthmMaterialThickness ft16I-beam'592.0 17.I-beam,cylindrical supportsforS.G.5536.0andRCPs,andcontainment cranerectangular supportcolumns14.I-beamandbeamsforcranestructure'120.0 15.I-beamand-beams forcranestructure'458.0 steelsteelsteelsteel0.06250.034550.02170.058618.Containment cranerectangular support342.0columnssteel0.16719.Beamsforcranestructure 236.0steel0.1214000.020.Grating,stairs,misc.steel'teel

'-Areaaccountsforbothsidesofheatsinkwalls,thickness ishalfofactualthickness

0.0 625ThermohsicalProertiesofContainment

HeatSinksInsulation ConcreteSteelStainless SteelThermalConductivity 0.02080.8128.010.9Volumetric HeatCapacityTU/ft~'F2.031.554.460.0 f'II Table5:Containment FanCoolerHeatRemovalRatesContainment Temperature degF>>200210220230240250260270280287290300GroupA:withOffsitePowerAvailable BTU/hr(~10')

15.9017.4020.7025.8030.6034.5038.1041.7045.0047.0048.3050.70GroupB:withoutOffsitePowerAvailable BTU/hr(*10')

15.2216.6619.82'A.7029.3033.0336.4839.9343.0945.0046.2448.54 t~Y7~k Table6-SequenceofEventsAccidentEventTimesec1.MainSteamline Breaka.30%Powerb.MSIVFailurec.4.36ftbreakd.OffsitePowerAvailable Steamline BreakOccurs0.0RodMotionStartsSteamline Isolation OccursFeedwater Isolation OccursAuxiliary Feedwater StartsContainment SpraysStartFanCoolersStart2.47.414.425.034.542.0High1Containment PressureSetpoint1.0(6.0psig)isReachedPeakContainment PressureisReached149Auxiliary Feedwater isTerminated 600.0FaultedSteamGenerator DriesOut(i.e.,massreleasesstop)-610.022 ICFpVIf),

Table6-SequenceofEvents(continued)

Accident2.MainSteamline Breaka.70%Powerb.FCSFailurec.1.40ft'reakd.OffsitePowerNotAvailable EventSteamline BreakOccursTimesec0.0.SISLowSteam.PressureSetpoint(372.7psia)reached2.7High1Containment PressureSetpoint3.8(6.0psig)isReachedRodMotionStartsFeedwater Isolation OccursAuxiliary Feedwater StartsContainment SpraysStartFanCoolersStart4.725.047.8126.8PeakContainment PressureisReached569Auxiliary Feedwater isTerminated 600.0FaultedSteamGenerator DriesOut(i.e.,massreleasesstop)-625.023 I~IA.l~k Table6-SequenceofEvents(continued)

AccidentEventTimesec3.MainSteamline Breaka.102%Powerb.CSFailurec.1.10ft'reakd.OffsitePowerNotAvailable Steamline BreakOccursHigh1Containment PressureSetpoint(6.0psig)isReachedRodMotionStartsAuxiliary Feedwater StartsFeedwater Isolation OccursContainment SpraysStartFanCoolersStartAuxiliary Feedwater isTerminated 0.04.77.025.027.048.8128.1600.0FaultedSteamGenerator DriesOut(i.e.,massreleasesstop)-760.0PeakContainment PressureisReached76224 r,P~P<a4%1 Containment Pressure(psigjC3o~COC)fUC)C)bJC)C)C)C)lltCICCD13t:NCDC)CDo0IBtC)C)COC)CDBC)C)COC)25

'4*\+'tP(%11~:

Containment Temperature(degreesFjA3CDooC)0C)CAC)C)CDC)C)P3C)C)C)00fVCT)C)C)fVCDC)C)llLDCCDoOCDonOC)COC)C)C)COCO26 MassReleaseRate(ibm/sec)

OO0A3OOOOOOCDOQlOOOOCDOOOOOOOOOCVOOOOTlECICD43OOOA3OOOCkb3OrnCAPlnOOOU)UlOOOBCDCAOOOOOO27 6EnergyReleaseRate(E6Btu/~<<<=j-o

>OOOfVOOCAOCDOOOfUOrltlat3CDOOR3OOObJOOrnMPlOn0'OUlOOOV<CDGlOOOOOO28 Containment Pressure(psigjC)oofUC)C)bJC)C)COC)UlC)C)CT)C)C)3CUoCDC)CDo0I(ClC7OU)CUC)COC)

L'EIg'PVI%Mtl+EP Containment Temperature(degreesFjfUoooJh.ooCDoo03ooA3oooA3A3oofVoofVCDooCVCDoob3ooorlU3CCDCDCDCUCCD(BO3IEC)C7OCDCDoCDo0ooooooo

~l4'ClIV~~f%

MassReleaseRate{ibm/sec)

OooUlOOOOC)OOUlOOOfUOOOfUUlOO4OlltC)C:OOOfUOOO43OOrnCOPlO0OUlOCAOOOOOO31 EnergyReleaseRate(E6Btu/sec)OOOOUlOOfVOlltlat'CDOOOfOOOO.b3OOrnMOlOOOUlOOOCD,OlOOOOOO32 Containment Pressure(psiglooooofVooQJooooUlooQloollECICDMCDoCDoC7ooooooo33 III4iE"AI'g1iif Containment Temperatur e{degreesFj'C)C)oo(SlC)C)P3COC)C)A3UlC)C)COC)C)43UlCOC)lltelC(DCD13CDCUCDiCDCDC)oCDAoItlatC)COC)COC)COC)34 MassReleaseRate{ibm/sec)

OOOfVOOOOOOgl~OOOCDOOOOOOOA3OOOOOCnOOOtl~otCICDOOOA3OOOOi:bJOrnCACllOOOUlOOOICDCAOOOOOO35 EnergyReleaseRate(F6Btu/sec)OOOOUlOOA3OrlLCI3OOOA3OOOMOO0)3UDCAPalOOOUlOOCAOOOOOO36 fi(

R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction StudyAttachment 1'omuterdessedforntainment InteriAnalsisThefollowing isageneraldescription ofeachofthecomputercodesusedinthisanalysis.

LOFTRANTheLOFTRANprogramisusedforstudiesoftransient responseofaPWRsystemtospecified perturbations inprocessparameters.

LOFTRANsimulates amultiloop systembyamodelcontaining areactorvessel,hotandcoldlegpiping,steamgenerator (tubeandshellsides)andthepressurizer.

Thepressurizer heaters,spray,relief,andsafetyvalvesarealsoconsidered intheprogram.Pointneutronkineticsmodel,andreactivity effectsofthemoderator, fuel,boron,androdsareincluded.

Thesecondary sideofthesteamgenerator utilizesahomogeneous, saturated mixtureforathermaltransients andawaterlevelcorrelation forindication andcontrol.TheReactorProtection Systemissimulated toincludereactortripsonhighneutronflux,Overtemperature hT,Overpower hT,highandlowpressure, lowflow,andhighpressurizer level.Controlsystemsarealsosimulated including rodcontrol,steamdump,feedwater control,andpressurizer pressurecontrol.TheEmergency CoreCoolingSystem,including theaccumulators andupper;head injection, isalsomodeled.LOFTRANisdiscussed furtherinReference A.COCOTheCOCOcomputercode(Reference B)isusedtoanalyzethecontainment pressuretransient responsefollowing amainsteamlinebreakaccident.

COCOisamathematical modelofageneralized containment; theproperselection ofvariousoptionsinthecodeallowsthecreationofaspecificmodelfortheparticular containment design.Thevaluesusedinthespecificmodelforthedifferent aspectsofthecontainment arederivedfromplant-specific inputdata.TheCOCOcomputercodeconsistsoftime-dependent conservation equations ofmassandenergy,togetherwithsteamtables,equations ofstateandotherauxiliary relationships.

Transient conditions aredetermined forboththecontainment steam-air mixtureandthesumpwater.Theenergyequationisappliedtothecontainment shelltoobtaintransient temperature gradients aswellasheatstoredinandconducted throughthestructure.

Heatremovalbymeansofenergystorageinequipment withinthecontainment, internalsprays,emergency containment coolers,andsumpwaterrecirculation coolingsystemisconsidered.

Thecontainment air-steam-water mixtureisseparated intotwodistinctsystems.Thefirstsystemconsistse 1

R.E>>.GinnaBoricAcidStorageTankBoronConcentration Reduction Studyoftheair-steam phase,whilethesecondsystemisthewaterphaseinthecontainment sump.Thisdivisionpermitsmoreaccuraterepresentation ofthedistinctphysicalphenomena occurring ineachsystem.Thesteam-air mixtureandwaterphaseareassumedtohaveuniformproperties.

Inaddition, temperature equilibrium betweentheairandsteamisassumed.However,thisdoesnotimplycontinual thermalequilibrium betweenthesteam-air mixtureandwaterphase.Sufficien'relationships tosolvetheproblemindependent ofthisrestriction areprovidedbytheequations ofconservation ofmassandenergyasappliedtoeachsystem,togetherwithappropriate equations ofstateandheattransferboundaryconditions.

Airinsidethecontainment istreatedasanidealgas.Thermodynamic properties ofwaterandsteamarederivedfromcompressed waterandsteamtables.PeHeattransferthrough,andheatstoragein,interiorandexteriorwallsofthecontainment structure areconsidered.

Structural heatsinks,consisting ofsteelandconcrete, aremodeledasslabshavingspecificareasandlayersofvaryingthicknesses.

Thethermalconductivity, densityandspecificheatofeachlayerarespecified ataninitialtemperature.

Discharge massandenergyflowratesthroughtheruptureareestablished byseparateanalysesofthesteamgenerator transient.

Thisinformation issuppliedastime-dependent datatothecode.Forthelargersteamlinebreakcases,thecalculation assumestheTagamicondensation heattransfercorrelation andtherevaporization model.Therevaporization modelassumesthatanequilibrium condition existsbetweenthecondensate onthecontainment structures andthecontainment steam-air atmosphere.

Ateachtimestep,theconservation equations (mass,energy,andstate)aresolvedsimultaneously todeternjne anewcontainment air-steam-condensate condition.

Ifthecalculated condition isasaturated state,watermass(condensate) formsandisassumedtofallinstantly intothesump.Ifthecondition isasuper-heated state,thewatermasswouldnotformatthattimestep.Thecondensate whichisatasaturated statebasedontheinterfacial temperature ataprevioustimestepmayre-evaporate undertheexposuretoarapidlyincreasing super-heated atmosphere.

TheCOCOcodehasbeenbenchmarked againsttheCVTRtests(Reference C).TheCVTRtestsweresuper-heated steamblowdowntests.Thecontainment freevolumeisaboutone-eighth ofatypicalthreeloopPWRcontainment.

Theblowdownsteamenthalpywas1195BTU/ibm,whichisaboutthesameas R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Studythatforapostulated-steam linebreakwithnomoisturecarry-over.

~TheCOCOcalculation showedgoodagreement withthetestdatawhentherevaporization modelwas-used.Whennorevaporization wasassumed,theCOCOcalculation predicted amuchhighertemperature

.thanthetest.Inbothcases,COCOover-predicted thecontainment atmosphere pressure.

Forsmallsteamlinebreaks,thecondensation heattransferisbasedonstagnantconditions andthewallcondensate isassumedtofalltothesumpwithnorevaporization.

Theapprovedmassandenergyreleasemodelassumesnoentrainment, i.e.,drysteamblowdown.

TheNRCstaffhasapprovedtheuseoftherevaporization model,onpreviousplant-specific applications, forbreaksizeswhichwouldhaveentrainment (Reference D).Theuseoftherevaporization modelhasbeenapprovedforlargesteamlinebreaksintheLOTIC-3codeusedforicecondenser plants(Reference E).

Oie R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction StudyReferences forAttachment 1A.Burnett,T.W.T.,et.al.,"LOFTRANCodeDescription,"

WCAP-7909-P-A (Proprietary),

WCAP-7907-A (Non-Proprietary),

April1984.B.Bordelon, F.M.andMurphy,E.T.,"Containment PressureAnalysisCode(COCO),"WCAP-8327,June1974.C.Schmitt,R.C.,Bingham,G.E.,andNorberg,J.A.,"Simulated DesignBasisAccidentTestsoftheCarolinas VirginiaTubeReactorContainment

-FinalReport,"IN-1403,IdahoNuclearCorporation,

December, 1970.D."DiabloCanyonSafetyEvaluation Report,"NUREG-0675, June1980.E.Hsieh,T.andLiparulo, N.J.,"Westinghouse LongTermIceCondenser Containment Code-LOTIC-3Code,"WCAP-8354-P-A, Supplement 2,February1979.

p~lWa,-ll'lt,I ATTACHMENT DComparison ofExistingtoProposedTechnical Specifications ProposedverbageinboldprintDeletedVerbageCrossedout 0>CIV1 DoseEuivalentI-131Thedoseequivalent I-131shallbethatconcentration ofI-131whichalonewouldproducethesamethyroiddoseasthequantityandisotopicmixtureofI-131,I-132,I-133,I-134andI-135actuallypresent.Thedoseconversion factorsusedforthiscalculation shallbethosefortheadultthyroiddoseviainhalation, contained inNRCRegulatory Guide1.109Rev.1October1977.ReortableEventAReportable Eventshallbeanyofthoseconditions specified 1.20inSection50.73to10CFR.Part50.Canisters Containin Consolidated FuelRodsCanisters containing consolidated fuelrodsarestainless steelcanisters containing thefuelrodsofnomorethantwofuelassemblies whichhavedecayedatleastfiveyearsandarecapableofbeingstoredinastoragecellofthespentfuel121pool~ShutdownMarinShutdownmarginshallbetheamountofreactivity bywhichthereactorissubcritical, orwouldbesubcritical fromitspresentcondition assumingallrodclustercontrolassemblies (shutdown andcontrol)arefullyinsertedexceptforthesinglerodclustercontrolassemblyofhighestreactivity worthwhichisassumedtobefullywithdrawn, andassumingnochangesinxenonorboronconcentration.

Amendment No.121-8Proposed 4f,4 ChemicalandVolumeControlSstemAlicabilit Appliestotheoperational statusofthechemicalandvolumecontrolsystem.Todefinethoseconditions of'thechemicalandvolumecontrolsystemnecessary toassuresafereactoroperation.

Secification Duringcoldshutdownorrefueling withfuelinthereactorthereshallbeatleastoneflowpathtothecoreforboricacidinjection.

Theminimumcapability forboricacidinjection shallbeequivalent tothatsuppliedfromtherefueling waterstoragetank.3.2.1.1Miththisflowpathunavailable, immediately suspendalloperations involving corealterations orpositivereactivity changesandreturnaflowpathtooperablestatusassoonaspossible.

3.2.2 I4gfsl\~Ras%I Whenthereactorisabovecoldshutdown, twoboroninjection flowpathsshallbeoperablewithoneoperablechargingpumpforeachoperableflowpath,andoneoperableboricacidtransferpumpforeachoperableflowpathfromtheboricacidstoragetank(s).~~4~Zfrequiredbyspecification 3.2.2above,theBoricAcidStorageTank(s)shallsatisfytheconcentration, minimum volumeandsolutiontemperature recpxirements ofTable3.2-1.Amendment No.333~21Proposed

~+~4h'N~IIPI 3.2'Withonlyoneoftherequiredboroninjection flowpathstotheRCSoperable, restoreatleasttwoboroninjection flowpathstotheRCStooperablestatuswithin72hours,orwithinthenext6hoursbe"'inatleasthotshutdownandboratedtoashutdownmarginequivalent toatleast2.45%deltak/katcold,noxenonconditions.

Iftherequirements of.3.2.2arenotsatisfied withinanadditional 7days,thenbeincoldshutdownwithinthenext30hours.WhenevertheRCStemperature isgreaterthan200'FandisbeingcooledbytheRHRsystemandtheover-pressure protec-tionsystemisnotoperable, atleastonechargingpumpshallbedemonstrated inoperable atleastonceper12hoursbyverifying that.thecontrolswitchisinthepull-stop posi-tion.Amendment No.3'2Proposed

~~,C4'A4~0pj+,

Table3.2-1BoricAcidStorageTank(s)Minimum-Volume-Temperature-Concentration+

Concentration ppmboronMinimumVolumegal.MinimumSolutionTemperature F4700to5000to6000to7000to8000to9000to10000to~~-11000',to 12000to13000to14000to15000to016000to17000to18000to19000to20000to21000to22000tolessthan5000lessthan6OOOlessthan7000lessthan8000lessthan9000lessthan10000lessthan11000less;than

.12000lessthan13000lessthan14000lessthan15000lessthan16000lessthan17000lessthan18000lessthan19000lessthan20000lessthan21000lessthan22000lessthan2300084007800640054004700420038003500320030002700250024002200210020001900180018004052627078859197103108113118123127131137140143145Amendment No.3~22aProposed llDJf(~gL~~l4

~~BasisThechemicalandvolumecontrolsystemprovidescontrolofthereactorcoolantsystemboroninventory.+

4e~~Q)

~'r%46'~g~lf~t'h Thisisnormallyaccomplished byusingoneormorechargingpumpsin~~=-serieswithoneofthetwoboricacidtransferpumps.Abovecoldshutdownconditions, aminimumoftwooffourboroninjection flowpaths arerequiredtoinsuresinglefunctional capability intheevent..that anassumedsingleactive,failure.rendersoneoftheflowpathsinoperable.

Theborationvolumeavailable throughanyflowpathissufficient toprovidetherequiredshutdownmarginatcoldconditions fromanyexpectedoperating condition andtocompensate forshrinkage oftheprimarycoolantfromthecooldownprocess.Themaximumvolume*.;--~~'.recpirement

-is.associated withborationfromjustcritical, hotzeropower,peakxenonwithcontrolrodsattheinsertion limit,tocoldshutdownwithsinglereactorcoolantloopoperation.

Thisrequires26q000@gallonsof2000ppmboratedwaterfromtherefueling waterstoragetankortheconcentrations andvolumesofboratedwaterspecified inTable3.2-1fromtheboricacidstoragetanks.Twoboricacidstoragetanksareavailable.

Oneof,thetwotanksmaybe,outofserviceprovidedtherequiredvolumeofboricacidisavailable totheoperableflowpaths.Abovecoldshutdown, twoofthefollowing fourflowpathsmustbeoperablewithoneoperablechargingpumpforeachoperableflowpath,andoneoperableboricacidtransferpumpforeachoperableflowpathfromtheboricacidstoragetanks.Boricacidstoragetanksviaoneboricacidtransferpumpthroughthenormalmakeup(FCV110A)flowpathtothesuctionofthechargingpumps.Boricacidstoragetanksviaoneboricacidtransferpumpthroughtheemergency borationflowpath(MOV350)tothe jfI

(~)suctionofthechargingpumps.Refueling waterstoragetankviagravityfeedthroughAOV112Btothesuctionofthechargingpumps.--Amendment No.243~23Proposed

~l>~~fi~a~i~~154~ih1$'5C<<+'~l0 (4)Refueling waterstoragetankviagravityfeedthroughmanualbypassvalve358tothesuctionofthechargingpumps.'Available flowpathsfromthechargingpumpstothereactorcoolantsystemincludethefollowing:

(1)ChargingflowpaththroughAOV392AtotheRCSLoopBhotleg.(2)ChargingflowpaththroughAOV294totheRCSLoopBcoldleg.(3)Sealinjection flowpathtothereactorcoolantpumps.The.rateofboricacid~injection

-must.besufficient

.tooffsetthemaximumadditionofpositivereactivity fromthedecayofxenonafteratripfromfullpower.Thiscanbeaccomplished throughtheoperation ofonechargingpumpatminimumspeedwithsuctionfromtherefueling waterstoragetank.Alsothetimerequiredforboricacidinjection allowsforthelocalalignment ofmanualvalvestoprovidethenecessary flowpaths.Thequantityofboricacidspecified inTable3.2-1foreachconcentra-tionissufficient atanytimeincorelifetoboratethereactorcoolanttotherequiredcoldshutdownconcentration andprovidemakeuptomaintainRCSinventory duringthecooldown.

Thetemperature limitsspecified onTable3.2-1arerequiredtomaintainsolutionsolubility attheupperconcentration ineachrange.Thetemperatures listedonTable3.2-1aretakenfromReference (4).Anarbitrary 5'FisaddedtotheReference (4)formargin.Heattracingmaybeusedtomaintainsolutiontemperature atorabovetheTable3.2-1limits.Ifthesolutiontemperature ofeithertheflowpathortheboratedwatersourceisnotmaintained atorabovetheminimumtemperature specified, theaffectedflowpathmustbedeclaredinoperable andtheappropriate actionsspecified in3.2.4followed.

Placingachargingpumpinpull-stop wheneverthereactorcoolantsystemtemperature is>200FandisbeingcooledbyRHRwithouttheover-pressureprotection systemoperablewillpreventinadvertent overpres-surization oftheRHRsystemshouldletdownbeterminated.">

References:

UFSARSection9.3.4.2(2)(3)RG&EDesignAnalysisDA-NS-92-133-00 "BASTBoronConcentration Reduction Technical Specification Values"datedDec.14,1992L.D.White,Jr.letterA.Schwencer, NRC,

Subject:

ReactorVesselOverpressurization, datedFebruary24,1977Amendment No.Proposed

<4)Kerr-McGee ChemicalCorp.Bulletin0151"BoricAcid-Techni-calGrades"dated5/84Amendment No.3.2-5Proposed 3.3EmerencCoreCoolinSstemAuxiliarCoolinSstemsAirRecirculation FanCoolersContainment SraandCharcoalHEPAFiltersTodefinethoseconditions foroperation thatareneces-sary:(1)toremovedecayheatfromthecoreinemergency ornormalshutdownsituations, (2)toremoveheatfromcontain-mentinnormaloperating andemergency situations, (3)toremoveairborneiodinefromthecontainment atmosphere following apostulated DesignBasisAccident, and(4)tominimizecontainment leakagetotheenvironment subsequent toaDesign'Basis Accident.

Secification 3.3.1SafetInectionandResidualHeatRemovalSstemsaI03.3.1.1Thereactorshallnotbetakenabovethemodeindicated unlessthefollowing conditions aremet:a~b.Abovecoldshutdown, therefueling waterstoragetankcontainsnotlessthan300,000gallonsofwater,withaboronconcentration ofatleast2000ppm.Aboveareactorcoolantsystempressureof1600psig,exceptduringperformance ofRCShydrotest,eachaccumulator ispressurized toatleast700psigwithanindicated levelofatleast50%andamaximumof82~withaboronconcentration ofatleast1800ppm.c~Atoraboveareactorcoolantsystemtemperature of350oFthreesafetyinjection pumpsareoperable.

Amendment No.243~31Proposed 1lNAc AtoraboveanRCStemperature of350'F,tworesidualheatremovalpumpsareoperable.

AtoraboveanRCStemperature of350'F,tworesidualheatremovalheatexchangers areoperable.

Attheconditions requiredinathrougheabove,allvalves,interlocks andpipingassociated withtheabovecomponents whicharerequiredtofunctionduringaccidentconditions areoperable.

AtoraboveanRCStemperature of350'F,A.C.powershallberemovedfromthefollowing valveswiththevalvesintheopenposition:

safetyinjection coldleginjection valves878BandD.A.C.powershallberemovedfromsafetyinjection hotleginjection valves878AandCwiththevalvesclosed.D.C.controlpowershallberemovedfromrefueling waterstoragetankdeliveryvalves896A,896Band856withthevalvesopen.AtoraboveanRCStemperature of350'F,checkvalves853A,853B,867A,867B,878G,and878Jshallbeoperablewithlessthan5.0gpmleakageeach.Theleakagerequirements ofTechnical Specification 3.1.5.2.1 arestillapplicable.

Aboveareactorcoolantsystempressureof1600psig,exceptduringperformance ofRCShydrotest,A.C.powershallberemovedfromaccumulator isolation valves841and865withthevalvesopen.

AtoraboveanRCStemperature of350F,A.C.powershallberemovedfromSafetyInjection suctionvalves825AandBwiththevalvesintheopenposition, andfromvalves826A,B,C,Dwiththevalvesintheclosedposition.

Amendment No.423~32Proposed

AtoraboveanRCStemperature of350oF,A.C.powershallberemovedfromSafetyInjection suctionvalves825AandBwiththevalvesintheopenposition, andfromvalves826A,B,C,Dwiththevalvesintheclosedposition.

Amendment No.423~32Proposed

.~*g 3.3.1.2Iftheconditions of3.3.1.1aarenotmet,thensatisfythe~~~~~~~~~~condition within1hourorbeathotshutdowninthenext63.3.1.33.3.1.4hoursandatleastcoldshutdownwithinanadditional 30hours.Therequirements of3.3.1.1band3.3.1.1imaybemodifiedtoallowoneaccumulator tobeinoperable orisolatedforuptoonehour.Iftheaccumulator isnotoperableorisstillisolatedafteronehour,thereactorshallbeplacedinhotshutdownwithinthefollowing 6hoursandbelowaRCSpressureof1600psigwithinanadditional 6hours.Therequirements of3.3.1.1cmaybemodifiedtoallowonesafetyinjection pumptobeinoperable forupto72hours.Ifthepumpisnotoperableafter72hours,thereactorshallbeplacedinhotshutdownwithinthefollowing 6hoursanda4-aa3.3.1.5belowaRCStemperature lessthan350'Fwithinanadditional 6hours.Therequirements of3.3.1.1dthroughh.maybemodifiedtoallowcomponents tobeinoperable atanyonetime.More-thanonecomponent maybeinoperable atanyonetimeprovidedthat-one..train oftheECCSisoperable.

Iftherequirements of3.3.1.1dthroughh.arenotsatisfied withinthetimeperiodspecified below,thereactorshallbeplacedinhotshutdownwithin6hoursandatanRCStemperature lessthan350Finanadditional 6hours.a.Oneresidualheatremovalpumpmaybeout.ofserviceprovidedthepumpisrestoredtooperablestatuswithin72hours.Amendment No.243'3Proposed

tl4lII,.l~

b.,Oneresidualheatremovalheatexchanger maybeoutofserviceforaperiodofnomorethan72hours.c.Anyvalve,interlock, orpipingrequiredforthefunc-tioningofonesafetyinjection trainand/oronelowheadsafetyinjection train(RHR)maybeinoperable providedrepairsarecompleted within72hours(exceptasspeci-fiedine.below).d.Powermayberestoredtoanyvalvereferenced in3.3.1.1gforthepurposesofvalvetestingprovidednomorethan-~--onesuchvalvehaspowerrestoredandprovidedtestingiscompleted andpowerremovedwithin12hours.e.Thosecheckvalvesspecified in3.3.1.1hmaybeinopera-ble(greaterthan5.0gpmleakage)providedtheinlineMOVsarede-energized closedandrepairsarecompleted within12hours.3.3.1.6DeletedAmendment No.24,333.3-4Proposed WP~w'A'I(*

thatthemassadditionfromtheinadvertent operation ofsafetyinjection willnotresultinRHRsystempressureexceeding designlimits.Thelimitation onnosafetyinjection pumpsoperableandthedischarge linesisolatedwhenoverpressure protection isprovidedbythepressur-izerPORV'sremovesmassinjection frominadvertent safetyinjection asaneventforwhichthis,configuration ofoverpressure protection mustbedesignedtoprotect.Inoperability ofasafetyinjection pumpmaybeverifiedfromthemaincontrolboardwiththepumpcontrolswitchinpullstop,orthepumpbreakerinthetestrackedoutpositionsuchthatthepumpcouldnotstartfromaninadvertent safetyinjection signal.Isolation ofasafetyinjection pumpdischarge pathtotheRCSmaybeverifiedfromthemaincontrolboardbythedischarge MOVswitchpositionindicating closed,orthedischarge valveclosedwithA.C.powerremoved,oramanualdischarge pathisolation valveclosedsuchthatoperation oftheassociated safetyinjection pumpwouldnotresultinmass.injection totheRCS.Amendment No.483.3-14Proposed ahdgr'g'>4P',c Highconcentration boricacidisnotneededtomitigatetheconsequences ofadesignbasisaccident.

Reference (10).demonstrates.

that.thedesignbasisaccidents canbemitigated bysafetyinjection flowofRWSTconcentration.

Therefore, SIpumpsuctionistakenfromtheRWST.Requiring thatthesafetyinjection suctionvalves(825AandB,826A,B,C-and.D)are.aligned.withA.C..power removedensuresthatthesafetyinjection systemwouldnotbeexposedtohighconcentration boricacidandtheassumptions oftheaccidentanalysisaresatisfied.

Amendment No.'483.3-14Proposed U

References (1)Deleted(2)UFSARSection6.3.3.1(3)UFSARSection6.2.2.1(4)UFSARSection15.6.4.3(5)UFSARSection9.2.2.4(6)UFSARSection9.2.2.4(7)Deleted(8)UFSARSection9.2.1.2(9)UFSARSection6.2.1.1(Containment Integrity) andUFSARSection6.4(CREmergency AirTreatment)

(10)Westinghouse Report,"R.E.GinnaBoricAcidStorageTankBoronConcentration Reduction Study"datedNov.1992byC.J.McHughandJ.J.SpryshakAmendment No.483.3.14aProposed IiA0 ChaDesction10.RodPositionBankCounters11.SteamGenerator Level12.ChargingFlowTABLE4.CheckS(1,2)N.A.Continued)

CibrateTestRemarksVN.A.N.A.N.A.1)Withrodpositionindication 2)Logrodpositionindications each4hourswhenroddeviation monitorisoutofservice13.ResidualHeatRemovalPumpFlowN.A.N.A.14.BoricAcidStorageTankLevelDN.A.Note415.Refueling WaterStorageTankLevelN.A.N.A.16.VolumeControlTankLevelN.A.N.A.17.ReactorContainment PressureDM(1)1)Isolation Valvesignal18.Radiation Monitoring SystemDAreaMonitorsR1toR9,SystemMonitorR1719.BoricAcidControlN.A.N.A.20.Containment DrainSumpLevelN.A.N.A.21.ValveTemperature Interlocks N.A.N.A.22.Pump-Valve Interlock N.A."N.A.23.TurbineTripSet-Point N.A.R'(1)1)BlockTrip24.Accumulator LevelandPressureN.A.Amendment No.224.1-6Proposed VE ChaDescrtion39.ReactorTripBreakersTABLE4.CheckN.AContinued)

CaibrateTestN.A.MRemarksFunctiontest-Includesindependent testingofbothundervoltage andshunttripattachment

-ofreactortripbreakers.

Eachofthetworeactortripbreakerswillbetestedonalternate months.40.ManualTripReactorN.A.N.A.RIncludesindependent testingofbothundervoltage andshunttripcirc-uits.Thetestshallalsoverifytheoperability ofthebypassbreak-er.41a.ReactorTripBypassBreakerN.A.N.A.MUsingtestswitchesinthereactorprotection rackmanuallytripthereactortripbypassbreakerusingtheshunttripcoil.41.bReactorTripBypassBreakerN.A.N.A.RAutomatically triptheundervoltage tripattachment.

NOTE1NOTE2:Logictrainswillbetestedonalternate monthscorresponding tothereactortripbreakertesting.Monthlylogictestingwillverifytheoperability ofallsetsofreactortriplogicactuating contactsonthattrain(SeeNote3).Refueling shutdowntestingwillverifytheoperability ofallsetsofreactortripactuating contactsonbothtrains.Intesting,operation ofonesetofcontactswillresultinareactortripbreakertrip;theoperation ofallothersetsofcontactswillbeverifiedbytheuse-ofindication circuitry.

Testingshallbeperformed monthly,unlessthereactortripbreakersareopenorshallbeperformed priortostartupiftestinghasnotbeeperformed withinthelast30days.NOTE3Thesourcerangetriplogicmaybeexcludedfrommonthlytestingprovideditistestedwithin30dayspriortostartup.NOTE4:WhenBASTisrequiredtobeoperable.

Amendment No.4.1-7aProposed

~Y" TABLE4.1-2MINIMUMFREUENCIESFOREUIPMENTANDSAMPLINGTESTSTestFrecruFenc r1.ReactorCoolantChemistry Samples2.ReactorCoolantBoronChlorideandFluorideOxygenBoronConcentration 3times/week andatleasteverythirdday5times/week andatleasteveryseconddayexceptwhenbelow2504FWeekly3.Refueling WaterStorageTankWaterSampleBoronConcentration Weekly4.BoricAcidStorageBoronConcentration TankTwice/Week~+

5.ControlRods06a.FullLengthControlRod6b.FullLengthControlRod7.Pressurizer SafetyValves8.MainSteamSafetyValves9.Containment Isolation Trip10.Refueling SystemInterlocks RoddroptimesofallfulllengthrodsMoveanyrodnotfullyinsertedasufficient numberofstepsinanyonedirection tocauseachangeofpositionasindicated bytherodpositionindication systemMoveeachrodthroughitsfulllengthtoverifythattherodpositionindication systemtransitions occurSetpointSetpointFunctioning Functioning Aftervesselheadremovalandatleastonceper18months(1)Monthly,EachRefueling ShutdownEachRefueling ShutdownEachRefueling ShutdownEachRefueling ShutdownPriortoRefueling Operations Amendment No.224.1-8Proposed

12.13.ServiceWaterSystemFireProtection PumpandPowerSupplySprayAdditiveTankTestFunctioning Functioning NaOHConcentFreceeuenc EachRefueling ShutdownMonthlyMonthly14.Accumulator BoronConcentration Bi-Monthly 15.PrimarySystemLeakageEvaluateDaily16.DieselFuelSupplyFuelInventory Daily17.SpentFuelPit18.Secondary CoolantSamplesBoronConcentration GrossActivityMonthly72hours(2)(3)19.Circulating HaterFloodProtection Equipment Notes:Calibrate EachRefueling Shutdown(2)Alsorequiredforspecifically affectedindividual rodsfollowing anymaintenance onormodification tothecontrolroddrivesystemwhichcouldaffectthedroptimeofthosespecificrods.Notrequiredduringacoldorrefueling shutdown.

AnisotopicanalysisforI-131equivalent activityisrequiredatleastmonthlywheneverthegrossactivitydetermination indicates iodineconcentration greaterthan10'ftheallowable limitbutonlyonceper6monthswheneverthegrossactivitydetermination indicates iodineconcentration below10%oftheallowable limit.(4)WhenBASTisrequiredtobeoperable.

Amendment No.224.1-9Proposed 0,1