ML18040B149: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:REGULATORYINFORMATIONDISTRIBUTIONSYSTEM(RIDS>Qaddv'ISTRIBUTIONCODE:A001DCOPIESRECEIVED:LTRENCLSIZE:TITLE:ORSubmittal:QenevalDistributionACCESSIONNBR:8605280293DOC.DATE:86/05/f9NOTARIZED:NODOCKET0FACIL:50-387SusquehannaSteamElectricStationsUnitfiPennsglva0500038750-388SusquehannaSteamElectricStationsUnit2.Pennsglva'05000388AUTH.NAMEAUTHORAFFl'LIATIONKEISER>H.W.PennsylvaniaPower5LightCo.RECIP.NAMERECIPIENTAFFlLIATION*DENSAMiE.BWRPvobjectDivectovate3$CG
{{#Wiki_filter:REGULATORY INFORMATION DISTRIBUTION SYSTEM(RIDS>Qaddv'ISTRIBUTION CODE:A001DCOPIESRECEIVED:
LTRENCLSIZE:TITLE:ORSubmittal:
QenevalDistribution ACCESSION NBR:8605280293 DOC.DATE:86/05/f9NOTARIZED:
NODOCKET0FACIL:50-387Susquehanna SteamElectricStationsUnitfiPennsglva 0500038750-388Susquehanna SteamElectricStationsUnit2.Pennsglva
'05000388 AUTH.NAMEAUTHORAFFl'LIAT IONKEISER>H.W.Pennsylvania Power5LightCo.RECIP.NAMERECIPIENT AFFlLIATION
*DENSAMiE.BWRPvobjectDivectovate3$CG


==SUBJECT:==
==SUBJECT:==
ForwardssupplementalinfoveapplicationfovAmends805:33toLicensesNPF14CtNPF22irespectiveig>pev860428telconrequest.SRPSectionsvedesignoffifthdieselgenev'atorfacilitessedNOTES:fcgNMSS/FCAF/PM.LPDR2cg'sTv'anscv'ipts.icyNl"ISS/FCAF/PM.LPDR2cgsTranscripts.0500038705000388RECIPIENTIDCODE/NAMEBWRADTSBWREICSBBWRPD3PD01BWRPSB09INTERNAL:ACRSELD/HDS4NRR/ORASRQNiCOPIESLTTRENCL125ioOf1TSCB04RECIPIENTIDCODE/NAMEBWREBBWRFOBCAMPAQNONEBWRRSB*DM/LFMBNRR/LECOPIESLTTRENCLj1foffoEXTERNAl24XLPDRNSICNOTES:03051fOEQSQBRUSKE>S22oNRCPDR021Ogimn'es~/5JTOTALNUl']BEROFCOPIESREQUIRED'TTR34ENCLP5 PennsylvaniaPower8LightCompanyTwoNorthNinthStreet~Allentown,PA18101~215i770-5151HaroldW.KeiserVicePresident-NuclearOperations215/770-7502NY191986DirectorofNuclearReactorRegulationAttention:Ms.E.Adensam,ProjectDirectorBWRProjectDirectorateNo.3DivisionofBWRLicensingU.S.NuclearRegulatoryCommissionWashington,D.C.20555SUSQUEHANNASTEAMELECTRICSTATIONREQUESTFORADDITIONALINFORMATIONFORPROPOSEDAMENDMENTNO.80TONPF-14ANDPROPOSEDAMENDMENTNO.33TONPF-22PLA-2645FILESR41-2/A17-2DocketNos.50-387and50-388
Forwardssupplemental infoveapplication fovAmends805:33toLicensesNPF14CtNPF22irespectivei g>pev860428telconrequest.SRPSectionsvedesignoffifthdieselgenev'ator facilitessedNOTES:fcg NMSS/FCAF/PM.
LPDR2cg'sTv'anscv'ipts.
icyNl"ISS/FCAF/PM.
LPDR2cgsTranscripts.
0500038705000388RECIPIENTIDCODE/NAME BWRADTSBWREICSBBWRPD3PD01BWRPSB09INTERNAL:
ACRSELD/HDS4NRR/ORASRQNiCOPIESLTTRENCL125ioOf1TSCB04RECIPIENT IDCODE/NAME BWREBBWRFOBCAMPAQNONE BWRRSB*DM/LFMBNRR/LECOPIESLTTRENCLj1foffoEXTERNAl24XLPDRNSICNOTES:03051fOEQSQBRUSKE>S22oNRCPDR021Ogimn'es~/5JTOTALNUl']BEROFCOPIESREQUIRED'TTR 34ENCLP5 Pennsylvania Power8LightCompanyTwoNorthNinthStreet~Allentown, PA18101~215i770-5151HaroldW.KeiserVicePresident-Nuclear Operations 215/770-7502 NY191986DirectorofNuclearReactorRegulation Attention:
Ms.E.Adensam,ProjectDirectorBWRProjectDirectorate No.3DivisionofBWRLicensing U.S.NuclearRegulatory Commission Washington, D.C.20555SUSQUEHANNA STEAMELECTRICSTATIONREQUESTFORADDITIONAL INFORMATION FORPROPOSEDAMENDMENT NO.80TONPF-14ANDPROPOSEDAMENDMENT NO.33TONPF-22PLA-2645FILESR41-2/A17-2 DocketNos.50-387and50-388


==DearMs.Adensam:==
==DearMs.Adensam:==
TheattacheddocumentisbeingprovidedinresponsetoarequestmadeduringanApril28,1986teleconbetweenyourstaffandPP&L.TheteleconwasheldtodiscussourproposedtechnicalspecificationchangeswhichreflectinstallationofafifthdieselgeneratorintotheSusquehannadesign.SpecificallyyourStaffrequestedweaddresshowthecivil/structural/seismicdesignofthefifthdieselgeneratorfacilityandsupportingcomponentsconformstotheacceptancecriteriaofappropriateStandardReviewPlan(SRP)sections.Thespecificsectionsaddressedare3.3.1,3.3.2,3.5.1.4,3.5.1.5,3.7.1,3.7.2,3.7.3,3.8.4and3.8.5.Wehaveformattedtheattachedasfollows:oThefirstpageofeachoftheabovelistedSRPsectionshasbeencopiedfollowedbythepagescontainingtheacceptancecriteria.oOurresponsestoeachcriteriaistypedonbackofthepageprecedingthepagecontainingtheacceptancecriteria.DieselGeneratorFacility."860M80293860519PDRADOCK05000387PPDRgo>Py+oSomeresponsescontainnumberedreferences-whicharealsoprovidedintheencloseddocument.Referencenumber1isadraftcopyoftheproposedchangestothoseFSARsectionsoncivil/structural/seismicdesign.Referencenumber2isaDesignDescriptionReportforthefifthdieselgeneratorandReferencenumber3isaspecificationentitled"DesignCriteriaforCivil/StructuralWorkforNewEmergency NY191986Page2SSESPLA-2645FilesR41-2/A17-2Ns.E.AdensamIfyouhavefurtherquestions,pleasecontactD.J.Walters.Verytrulyyours,.W.KeisericePresident-NuclearOperationscc:M.J.CampagnoneUSNRCR.H.JacobsUSNRC AZ~~CICSCLOILollL~TAT)ORVIAULTORSCLSOL't'VSLa.sIORAARTAIIILVAIVCVAULTtoaalaAODoatt.ORSSSRCSISTAIITOookAlaRCCtlVSRSKIDROOPCL.ASS'CXHAUSTSACeactt~ICCICOCIRS,~dlORV/CC)OV74AII5SORIIICa~alITORIIADODirtPRSSS.RSSISTAeaOooILSjaaeeaerarerraet0~~,et~ImItIOWRAOR.IRIeaovAOLCwALLIaeaccs~I~F)RSoaot'tcTIO54)I*eat>>AUXSIROt544547SOPCSAZVCLLaeaatsCLCISTORVAOOOlttMSSLRCSISTAHTDOORSROOtIelrPLANEL.675-6AB~~OICSCL4CIICtUCLOILVro)IAACt4tISATTCRYSORSROOIIICSVOCcast.~AeataCO~PRCSBLOC.Avtotsr'te4coearaao>>OAIISLOSAT7CRVCIIARASROILYWal'ltSTOSASOTIAA00~SAIIaallSaaa~rIeeat~ILIIOI)SS>>lI5IBpETCXITS~III)CTfel4XgCSCI''~I4PADKL.CSYC70RAIeeAdSoveapftveaPSA.IceILVswatcHOcAR154Sal.re\54aell,Seaaaantar4LvstOILTOAlaSSCkPUUPJACRCTWATSRTRAIaottktoaaP1PLANEL.656-64/v/mtfu7PCnW/ne/DSSC7AAVSNnvoA/PA4le/5Sff)U/fule/7FelnsbfFnac77//<f/Ia)I/utah>7/ouFICINCJS'IE9>9g[ISIOOISSII>>=Jf~WetCw~redvvI~'I~~AlaiIeatantFII'Tt4~L'~!TOCIIAOOOlttPRCSSURERSSISTAII?OORROAlapsk~tLOIIUIIIDCTn<<C'/IaaVAI/Ae)fg//Vn/IIOtSbtct7'/n)c7/at)AtoaF:.s/nreSaAg74IC)SO5/4/fg/l7///fNIOF4CXUAUSTCUAeaot4Ig..TodeeAooSett.~RSSL,IISSISTAIITDOORIIAea\reaavtfcraea~ItToteaAOoOAeaPOIl~R~PLANEL.74I-6PLANEL.726-0CASKMENTISATTKRYltOOMKXUAUSTFANCXaUIUSTOIICRCSRlAIRIeaTAILSSILteaCSappaOllatoaeasatantaoDALoeeoIYrgCSIIAvsrTAll~3PLANEI.7p8'~~~NASTEASIELECTAICSTATIONUNITS1AN02FINALSAFETYANALISISREFOST/EaDIESELGENERATORBUILDINGFKANSATEIESE'~eTS+t~7OS"OATIE)72CC),F)auRESS-IOS 1~I%  
TheattacheddocumentisbeingprovidedinresponsetoarequestmadeduringanApril28,1986teleconbetweenyourstaffandPP&L.Theteleconwasheldtodiscussourproposedtechnical specification changeswhichreflectinstallation ofafifthdieselgenerator intotheSusquehanna design.Specifically yourStaffrequested weaddresshowthecivil/structural/seismic designofthefifthdieselgenerator facilityandsupporting components conformstotheacceptance criteriaofappropriate StandardReviewPlan(SRP)sections.
~VC.4~OSCL0%a%A.~tal>>rl~T~OIILAOLNt>>L%4~ISIIAS4TILTataa<<laosvl1%111~TPIIMT0041411OCC~Ir04~>>4g4I~I\f4BararTL40F4Slwalt4%1ClaOS<<V/IOOVCTOCl<<AOLT441Ne~IW>>atl0CEoAA'LI~%11$MSiSTA>>TOrO11'1%%>>MA~%%440Ptr~IIL\I~aft\f0%%1~L<<4%,Il-I.C~CCOssLrrTSFIN0ParrlcTIP>>FA~ITaa<<AOO~TAa%ILLOCSI41%>>fOaaaaTOO400>>~4Pa>>PLANEL.675'-6OA..OeTACSILOC>>'I~%1%Plat%ilIItPLANEL726-0A(PeOASCIACNTCPLANEL.74I6gr>>rAIOATTIOTISSAOI\%VOCStat,r>>ILFIATLAOATTCNVOOO>>SIN%1STFA>>AI~r<<TAIC~~II%It%a>>3CI<<AAILT~1114%~~<<<<SLSILAALrf\TI>>cr<<taaaaMILTOC>>ADOCAIN~Tcssuac.00>>afa<<T00%4G~GTILIL~ILTIIIIaltar>>f>>A~AAMIIOpt<<r~ILII0110%1I~IIi~%at%QC1<<%%%T~%4%40~V~I'I~40CL.OST1trC>>I41114%VSplrC<<SCANTOO<<AOOttITsrrrSTrM~%>>PIO4%4>>II>>II%A<<STtA<<IACACI>>AIINllWat%OP<<MI.5~~IPLANEL.6566Hop>IrfrSAICdrFN4SSrt>>VI>>PCA<<IAv4SIS7>>AIS<<rvrISI<<I<<TIACII'cctrrolvJarrrcrvortttrc.rfcvcr@d+pAvosoAto4~SFVfrtttrfOSFANS4'rFAIIISIOFACTrfrssovtrfvrfrfI<<racttrTIOVSSI~IIIIavFIIIFIVFIASOSISddTA4AIOJdPLANEL.7OB'-08<os-zooa9~-<(CICOUDEANNACTCAJCCLCCTNKSTATIONCNNTSIANOCFINALSAFETYANALTCI~NCFONTGIESELGEJCECCATOCICCJILCSICIGCLANSATELOSC'WICTS<<I7obO*NO7CQIO.FNN11C11Cad h.~rhIICr*TorotoAIIADSTt47''s'AIYCCxlcAVDTCNAICDCRAIR~rMS~NCNLROODSLADCL.14fGRATIICCOL.SLTts0TORNADOOIIO.RCCSLRts'ISTSNTOOOClrAMCSNAUSTCNAICDCRDvw4~~NDIADoorscADclTwt/0/0ELNAUST<<NA/40CRSLSDTto'.0TORNADOOIOO.Dttst.kt'DISTANTODORLSOOCCIMTAIC~ROOD.1IP'VoFI.CL.TOO.OCXNAUSTrAH)raIR/csAIRIMTAI40eASCMCMTtCATTCRYROONCSI4AUSI'AMFLEL.TOOIOAIRIMTAKSrllTSRDURRSCCIVCRI-'IOOFCLEXHAUSTSILCMCC4CMtRATDRCONT/COLCADIMCTCMCNMSCONTXOLCAIlNCI'OtOl~CllCL474I,IlSSVTANKo/4NII.SKID>>t<<oovlustcxlouor4COTOMCRAM\CXNAVSTSCLCIICCCLROOCCL.CC}R'~SRAOCCl4750NLCCIIC)INICICVOl7~%040,4o44DCRINTICTORNADOCertrtttsRCSISTANTDOORSDL0,47r.c.ICLI/P5/ItIVA/I4VPlotsA4//7$4<<7IOI/SSrrwPATPtt/IAt/Al/'/<<III<<rs8.g-/,zIfcsc/Iro/re~>p'rfC/AI/AINfr~TogrE/II/II/A/fg/'IItotH+ICC/tfSLAST4/NTNCRAocas7c'4~COILNCATCDCNANSCC~I~STNSIC<<CATCICNSSSCD'AlpKVSWITCNCCAROICSCL45KCRAIORTtkulOP4ltKV/4/}OVI'RAMSIOCCMSR0OlSCOMMCC7swITCN~OCC(IC)rl.cL.c7}lc44TL.CL.CSCCSlolsuttvtTCNCON'ItolOAKSLICSVOCswsoI77VCS<<44SrNANSEI>>TCRYROOMSECTION3-3suroLYsuoolftltsosTTCoOOOANAOCTClTtssOlsllulltANOOANNPSRDORSLARClTtp'8TORNADO04/O.OCCSthRtSISTAMTLADY0INTN~4FAIOSXHAUSTCNASIDSRSOf44NOILROOrSlstlCL7'o"nk'LCLTZCvoSuorlv~CCNNMsurNLYtAMgTOWOrOAAAOCT7~F4IINLNOOOSCADtl'74'lTOSNsdoosllrtcACCtSSOwlllll44CSKAVST~CL40/A*IR~MTAKDTORNADO44ttOOLSS,RCSIS'TANTDOORtL.SL.TOEco'I~~)j0CoToocCRAMDRCNOVASL0wklLOANCLSCRADRCLCTSIOMCVTILAL4/COUN0IM4SOUI~.ORAIICARCscoc}'O'KC,.oKIO4}'DSSO~~hlhICS.)000000I~I~To~0HH0ORI4NIOa(FYOISII5NASTAIRIMTAKSl.7/4'mAIDCSKIDAsst/COLTTorOtORANSRAILSLCSV44luOOllOAVTANICUISSCNLlllsvCSCNANosfutLCa,NtsxSCNANCSRrL.CL.CT~*IO'Vsv/ITCNCcA/LFL.CL:<<SCIL,[~I4'700OOCtlCop/44'CMOVADC,WAllOICSCLCCNLRATCNLOLcL,DTS'4CRADSCl4~7$~d0IlYSISTSRS5AlRATORrORAIMA4C'VIC0ILLAI~~~e~1tSECTIONAIRCONOR,~ICIO2ZAIRRSCRIVCRSKIDTDRMAOOOltg.RRCSSRCSISTAMT'aRoottlCOCCILARYRIMTHCOOOOCoutll~L.STS'~7dDICSCLCCCM.CIIIutlousfoKAccTANKI'CNOOCOIllit.SECTIONNNNNDCIRCCOMCOICllllt!rpboy>f0>~>SUSOUKNANNASTKASCELKCTRICSTATIONUNITSIANOKFINALSAFETYANALYSISREPORTEDIESELQENEAATOQBLIILDINQNECTIOHSFIGURESSOIO6 I
Thespecificsectionsaddressed are3.3.1,3.3.2,3.5.1.4,3.5.1.5,3.7.1,3.7.2,3.7.3,3.8.4and3.8.5.Wehaveformatted theattachedasfollows:oThefirstpageofeachoftheabovelistedSRPsectionshasbeencopiedfollowedbythepagescontaining theacceptance criteria.
II%,g~'j]'WiHCfpv-"si%~i~5.kRl%0LL4lmmkFPii'-"'+~~'IIl~~gf~RflI$%:lhf)~~g~sg~5'='=~X~%=-~)ll~m,-~~~~W~c0tasm~~vwJg/flval!EMMYl@eiiiS~Illlllllpk.,=elpga~~RR1'LSqI~VDo SSES-FSARThBLg3,9-16LISTOFCOMPUTERPROGRAMSUSEDINBOPNEC!IANIChLSYSTEMSANDCOMPONFNTS.-COMPUTERPROGRAMvn.NAMEDOCUMENTTRACEAPILITYSYSTEMIISEDME101,'IK)32'1~912"E913LinearElasticAnalysisofPipinqPipingSystemAnalvisThprmalStressProgramsNuclearClass1PipingS~resshnalvsis'IRI/STARDYH~3BochtelBechtolBechtelBechtelCDCormechanicsResearch,TncLos,AngelesUnivac1110Itoneyvell6000Univac1110Ilnivac1110Univac1110CDCeormCE79RANSYSSvan.=onAralysisUnivac]ll0Systems,Tnc.Elizabeth,PA15037~E351PIPERIJPCDCorQuadrexCDC175Con.Camphell,rh~a/gAbIPEP1Il59/QI-Hvr5,4;//le,&r.Cambrianc<,h'n.s-.,Rev.35,07/84 e
oOurresponses toeachcriteriaistypedonbackofthepagepreceding thepagecontaining theacceptance criteria.
SSES-FSAR3.10b.1.2.1FunctionalCriterionEveryinstrumentationdeviceshallbecapableofperformingitssafetyrelatedfunctionduringplantoperatingconditionsofstartup,constantpoweroperation,andnormaloremergencyshutdownwithoutimpairmentofitssafetyrelatedfunctionwhileundergoingseismicandhydrodynamicexcitation.Thesafetyrelatedfunctionofinstrumentationdevicescanbeeitherpassiveoractive.Whereonetypeofdeviceis,usedinbothtypesofapplications,thedeviceisqualifiedfortheworst-caseapplication.~~,FromtheplantOBE,SSE,SRV,andLOCAconditionsafamilyofaccelerationrequiredresponsespectra(RRS)wereeneratedfor[eachbuildingelevationfornorth-south,east-wes~erticaldirections.Thespectraforeachelevationwherenstrumentationislocatedwereexaminedtoestablishtheworst-caseresponsespectra.Pipe-mounteddevicesarequalifiedfor6gverticaland6glateralalongtheweakestaxissimultaneouslyapplied.Hangersandsnubbersareadded,ifrequired,tolimitpipingresponse.Thisvalueischeckedagainstthepipinganalysistoinsurethatthepipingreponsedoesnotexceedthequalificationlevel.Where,equipmentwasnotcapableofmeetingthisstandardvalue,theactual"g"valueggorthatequipment~~forqualification.~Wereepe~Q'eJQreaselpurchase.orderFordevicesmountedinpanels,theRRSusedwasderivedfromthepanelanalysis.3.10b.1.2.3InstrumentationSuortsInstrumentationdevices,assemblies,andcontrolpanelsshallbeseismicallyqualifiedusingthesupportsthatwillbeusedduringin-plantinstallation.Theseitemsofequipmentarerequiredtomaintaintheirfunctionalcapabilitywhileundergoingearthquakeexcitationattheequipmentsupports.3.10b-2 SSES-FSARI~~~~a~~~s3.10b.1.3DeviceQualificationTestCriteriaDevicesthatwerequalifiedbytestweretestedinaccordancewithIEEEStandard344-1975.Ingeneral,testrequirementsandacceptancecriteriaaresummarizedasfollows:sa)Devicesundertestaremounted,inamannerthatsimulatesintendeduse.b)Devicesaretestedwhileintheirnormaloperatingcondition(e.g.,energized)todeterminethatvibratoryconditionsdonotproduceamalfunctionorfailure.SeismicCategoryIdevicesshallnot-fnalfunctionduringorafterasafeshutdownearthquake.c)d)Devicesaretestedinallthreeaxes.Simultaneousexcitationinallthreeaxesispreferred;however,testsmayberunoneaxisatatimeand,thenberepeatedfortheothertwoaxesasanacceptablealternative.~gJ.Nhereappropriateafrequencysweep(aryingthefrequencyofexcitationwithtime)isonductedatalow"g"value,e.g.,0.2gasnotedinIEE44.Thistestwas=performedtoidentifyresonantfrequenciesintherangeofinterest.e)Devicesthatarefloor-orpanel-mountedaresubjectedtofiveOBEsandoneSSEineachaxistested.EachBEandSSEconsistsofrandominputmotionthatenveloptheRRSforthatdevice.Ief)Devicesthatarepipe-mountedaresubjectedtosine-beattestsoverthefrequencyrangeof1to100Hz.EachIsine-beattestisperformedatapeakaccelerationof6g*ortothepeakaccelerationforthespecificmountinglocation.g)Thecr'.eriaformalunctionorfailureincludeasmanyofthefollowingcharacteristicsasareapplicabletothesafetyrelatedfunctionofthedeviceduringandaftertesting:1)Lossofoutputsignal;e.g.,openorshortcircuit2)Outputvariationsgreaterthan+10percentoffullrange3),Spuriousorunwantedoutput;e.g.,relaycontactbounce3.10b-3 I'V0 SSES-FSAR4)Majorcalibrationshift;e.g.,greaterthanp10percentofrange5)Structuralfailure;e.g.,brokenorloosenedparts.3.10be2SEISMICCATEGORY'EQUIPMENTQUALIFICATIONDetailedinformationaboutseismicqualificationofNon-NSSSSuppliedSeismicCategoryIInstrumentationismaintainedinacentralfilewithinPP&L."AsynopsisofthisinformationwasbySQRTformspreviouslysubmittedtotheNRC.Vgp~gq'"p"g~~L'kgb5$RTf00~Qlv5llA'0~~~~e~f4~<so"~Pvapcu~d.!3.10'b.3MethodsandProceduresofAnalysisorTestingof,SuortsofInstrumentationInstrumentationequipmentwasqualifiedbytestusingthesupportdesignedforthatparticularequipmentasoneofthetest!elements.r3.10b.40eratinLicenseReview!ResultsoftestsandanalyseswereprovidedinindividualSQRTForms.3.10b-4 0E0 SSES-CESARfunctionsofelec+ricalequipmentorcomponents,whicharenecessaryforthefunctionalrequirementso.theequipment,shallnotheimpairedwhentheequipmentissubjectedtotheOBp.orSSEincon)unctionwithapplicableelectrical,mechanical,and"h"rmalloads.SSBisdefinedasanearthquakethatproducesthemaximumvibrato'rvgroundmotion"forwhichcertainstructures,systems,andcomponentsaredesignedtoremainfunctional.Thesestructures,systems,and,componentsarenecessarytoensurethefol]owinq:a)IntegrityofreactorcoolantpressureboundaryCapabilitytoshutdownthereactorandmain+aini'.insafeshutdovncondition/Capab'l:tytopreventormitiqatetheconsequencesofacciden+sthatcouldresul+inpo+entialoffsiteexposures+o.theradioac+ivematerialreleasecltotheonvironment.Theloadcombirationsincludegravityloadsandope"a+ingloads.Allovablestres..o.sinthestructuralportionsmaybeincreasedto150percen+ofallowableworkingstresslimits.Theresultinqdeflections,m'saliqnmentorbindinqofparts,oreffectsonclertricalperformancefmicrophonics,contartbounce,etc)donotorevent.heoperationoftheequipmentduringorafterthe."'.oismicdisturbance.3,10c,1.5Op~"atinaBasisEarthauake(OBE)Conditionsheloadrombinatinnsincludegravityloadsandopera+ionloads.All~..'~biostre-~sinthest;ucturalsteelportionsmaybeinr.easedto125percentoftheallovablevorkingstresslimits,assetforthintheappropriatedesignstandards,thatis,AISCManualofSteelCons+ruction,ANSIando~herapplicableindustrialcodes.Thecustomaryincreaseinnormalallowabl.eworkingtressduetoearthquakeisusedifacccrdinqtothe~npropriatecode,i+5slessthan25percent.Theresul+ingdeflections,misaliqnmentorbindingof.parts,oreffectsonelectricalperformance(microphonics,contactbounce,e+c);doesnotpreve'ntcontinuousnormaloperationoftheequipmentduringandafter+heseismicdisturbance.T'omr>c"i'")a~'l-'4,~~'4evaas'/i~+~<<~%dr)c'~gAP~4~4c'Aeo$oReudOd~Rev.~,~i310c-2/ac, o
DieselGenerator Facility."
SSES-FSAH7A10c.16PrevontiorofOverturninaandSlidina,9Stationaryelectricalequipmentisdesiqned+oprevent~verturninaorslidinabytheuseofanchorbolts,welding,orothe"suitablemechanicalanchnraqerlevices.3.10r..2WETHovsA~lPPROCEDURFSFOROUALIPYINGELFCTRICALEQUIPSEMT3.10c.2.1SeismicAnalysisNethodForthepurposeofanalysis,theequipmenthasbeenidealizedasamathematicalmodelconsistingoflumperlmassesconnectedbymasslesselasticstructuralmembers.Fordynamir.analysis,thefrequonciesandmorlo.shapeshaveheendeterminedforvibrationin+heverticalandtwoorthoqonalhorizontalrlirections,termedalohalrlirnctions.Theeffectsofcouplinqbetweenvthrationsinallhreealobaldirectionshavebeenconsidered.Thespectralaccelerationpermodehasbeenobtainedfromtheappropriater~soonsespectrumcurve,whichhasheenprcvidedfortheavpropriatedampinqvalue.Fordetermini.ngthespectralaccelerationfromtheresponsespectrumcurves,thevaluechosenisthelargestvaluoonthecurvewhenthefrequencyinquestionvarieshy+10percent.Seismicresponseintermsofinertiaforces,shears,momonts,stresses,'anrldo.flectionsaredeterminedforresponsetoseismicexcitation.ineachofthegloballir~ctionsforeachmnde.(SeeSubsection3.7b.3.7)pFor.heconsiderationofstressordeflectionatanypoint,tho.totalseismicloarlconsistsofthemostsevereseismicloadinononfthohorizontalqlobal.directionscombinedbythesumof+h~ahsolutevaluesmethodviththeverticalseismicloarl.(Seesubsection3.7h.3.61SeismicOualificationforElectricalEquipmentOggabil'gl.10c.2.2QLsUJu~.heseismicaualif-'ca+ionofCateqoyIelectricalequipment,auinmentsupports,andmaterialmeetsasaminimumtherequirementsofIEFE344-1971andprojectspecificationG-l0,"GenealProjec+ReauirementforAseismicDesiqnandAnalysisof.lassIFauimmentanrlFauipmentSupports"andcomplementedhypro'~ctSoecificaticnG-22>>DesinAssessmentandualificationTable3.9-31.gQ~+~~ofSeismicCa+eaoryIEquipment6EquipmentSupportsforSeismicRyrlrorlynamicLoads.>>Prefect.SpecificationG-10issummarizerlincomparisontnIEEE-344-1975andRegulatoryGuide1.100in3.10c-3 SSES-FSAR,";$ec<ricalecuinmeniisqualifiedforfunctionaloPerahility)urinqandafteranearthquakeofmagnitudeuptoandincludinq+heSSHaccordingtoatleastoneOfthefollovinginput~xci~ation+es+s:a)Singlefrequencysinusoidalmotionorsinebea~motionscontinuouslyinputeddurinqthetestatspecifiedrequenciestocover.hefrequencyrangeupto33Hz.b)Randomvavefom,multifrequencytests.1,1gc.2,~SeismicT~stgego",tparalysisandMethodsv~Qd)bu4mL~Q~gpTheanalysisandtestreportsfurnishedbythesupplierdemonstratetheab'li+yofelectricaleauipmenttoperfomitsrequiredfunctiondurinqandafterthetimeitissub)ectedtotheforcesresultinqfromoneSSEandarequirednumberofOBE.FourcategoriesofreportsareprovidedbythesupplierofelectricalequipmentandmaterialapplicabletoSeismicCategoryXaualification;a)Flectricalequipmentqualifiedby".estinqme+hod).)Electricalequipmentsupportandmaterialqualifiedbyanalysisandcalculati.onmethodoUlc)Electricalequipmentqualifiedbysupplier'scertificationofSeismicCateqoryIrequirements.d)Combinationofanalysisandtesting.+~-col~pp3.10c.2.3-1ElectricalEquipmentQualifiedbyTestingcSandCombinationofTestinaandAnalysisNethorlgrl'vooElo.ctrica.ipmentlitedbelovvastestedby+hesuppliersor..'-,stlaratoresbaseonsimilarityindesiqnandassembly,andal4'+ig>ropresntiQuipmentshovhirTables3.10c-4,~fci0throuqh3~10c-16:SsltjC~)hi)0C.-(yS.foe,-8Tndbctpowcl+A~5a)IndoorsecondaryunitsusaronseeIae.c>>1)b)480Vacmotorcontolcerters(seeTable3.10c-2)c)~d)e)Batterymonitorsandfuseboxes(seeTable3.10c-3)DCdistributionpanels(seeTa,hie3.10c-4)Batterychargerracksandcabinets(seeTable3.10c-8)i~~Rev.3.10c-4  
860M80293 860519PDRADOCK05000387PPDRgo>Py+oSomeresponses containnumberedreferences
-whicharealsoprovidedintheencloseddocument.
Reference number1isadraftcopyoftheproposedchangestothoseFSARsectionsoncivil/structural/seismic design.Reference number2isaDesignDescription Reportforthefifthdieselgenerator andReference number3isaspecification entitled"DesignCriteriaforCivil/Structural WorkforNewEmergency NY191986Page2SSESPLA-2645FilesR41-2/A17-2 Ns.E.AdensamIfyouhavefurtherquestions, pleasecontactD.J.Walters.Verytrulyyours,.W.KeisericePresident-Nuclear Operations cc:M.J.Campagnone USNRCR.H.JacobsUSNRC AZ~~CICSCLOILollL~TAT)ORVIAULTORSCLSOL't'VSLa.sIORAARTAIIILVAIVCVAULTtoaalaAOD oatt.ORSSSRCSISTAIIT OookAlaRCCtlVSRSKIDROOPCL.ASS'CXHAUSTSACeactt~ICCICOCIRS,~dlORV/CC)OV 74AII5SORIIICa~alITORIIADODirtPRSSS.RSSISTAea OooILSjaaeeaerarerraet0~~,et~ImItIOWRAOR.IRIeaovAOLCwALLIaeaccs~I~F)RSoaot'tcTIO54
)I*eat>>AUXSIROt544547SOPCSAZVCLLaeaatsCLCISTORVAOOOlttMSSLRCSISTAHT DOORSROOtIelrPLANEL.675-6AB~~OICSCL4CIICtUCLOILVro)IAACt4tISATTCRYSORSROOIIICSVOCcast.~AeataCO~PRCSBLOC.Avtotsr'te4coearaao>>
OAIISLOSAT7CRVCIIARASROILYWal'ltSTOSASOTIAA 00~SAIIaallSaaa~rIeeat~ILIIOI)SS>>lI5IBpETCXITS
~III)CTfel4XgCSCI''~I4PADKL.CSYC70RAIeeAdSoveapftveaPSA.IceILVswatcHOcAR 154Sal.re\54aell,Seaaaantar4LvstOILTOAlaSS CkPUUPJACRCTWATSRTRAIaottk toaaP1PLANEL.656-64/v/mtfu7PCnW/ne/DSSC7AAVSNnvoA/PA4le/5Sff)U/fule/7FelnsbfFnac77//<f/Ia)I/utah
>7/ouFICINCJS'IE9>9g[ISIOOISSII>>=Jf~WetCw~redv vI~'I~~AlaiIeatantFII'Tt4~L'~!TOCIIAOOOlttPRCSSURERSSISTAII?
OORROAlapsk~tLOIIUIII DCTn<<C'/IaaVAI/Ae)fg//Vn/IIOtSbtct7'/n)c7/at)AtoaF:.s/nreSaAg74IC)SO5/4/fg/l7///fNIOF4CXUAUSTCUAeaot4Ig..TodeeAooSett.~RSSL,IISSISTAIIT DOORIIAea\reaavtfcraea~ItToteaAOoOAeaPOIl~R~PLANEL.74I-6PLANEL.726-0CASKMENTISATTKRYltOOMKXUAUSTFANCXaUIUSTOIICRCSRlAIRIeaTAILSSILteaCSappaOllatoaeasatantaoDALoeeoIYrgCSIIAvsrTAll~3PLANEI.7p8'~~~NASTEASIELECTAICSTATIONUNITS1AN02FINALSAFETYANALISISREFOST
/EaDIESELGENERATOR BUILDINGFKANSATEIESE'~eTS+t~7OS"OATIE)72CC),F)auRESS-IOS 1~I%  
~VC.4~OSCL0%a%A.~tal>>rl~T~OIILAOLNt>>L%4~ISIIAS4TILTataa<<laosvl1%111~TPIIMT0041411OCC~Ir04~>>4g4I~I\f4BararTL40F4Slwalt4%1ClaOS<<V/IOOVCTOCl<<AOLT441Ne~IW>>atl0CEoAA'LI~%11$MSiSTA>>TOrO11'1%%>>MA~%%440Ptr~IIL\I~aft\f0%%1~L<<4%,Il-I.C~CCOssLrrTSFIN0ParrlcTIP>>FA~ITaa<<AOO~TAa%ILLOCSI41%>>f OaaaaTOO400>>~4Pa>>PLANEL.675'-6 OA..OeTACSILOC>>'I~%1%Plat%ilIItPLANEL726-0A(PeOASCIACNT CPLANEL.74I6gr>>rAIOATTIOTISSAOI\%VOCStat,r>>ILFIATLAOATTCNVOOO>>SIN%1STFA>>AI~r<<TAIC~~II%It%a>>3CI<<AAILT~1114%~~<<<<SLSILAALrf\TI>>cr<<taaaaMILTOC>>ADOCAIN~Tcssuac.00>>afa<<T00%4G~GTILIL~ILTIIIIaltar>>f>>A~AAMIIOpt<<r~ILII0110%1I~IIi~%at%QC1<<%%%T~%4%40~V~I'I~40CL.OST1trC>>I41114%VSplrC<<SCAN TOO<<AOOttITsrrrSTrM~%>>PIO4%4>>II>>II%A<<STtA<<IACACI>>AIINllWat%OP<<MI.5~~IPLANEL.6566Hop>IrfrSAICdrFN4SSrt>>VI>>PCA<<IAv4SIS7>>AIS<<rvrISI<<I<<TIACII'cctrro lvJarrrcrvortttrc.rfcvcr@d+pAvosoAto4~SFVfrtttrf OSFANS4'rFAIIISIOFACTrfrssovtrfvrfrf I<<racttrTIOVSSI~IIIIavFIIIFIVFIASOSISddTA4AIOJdPLANEL.7OB'-08<os-zooa9~-<(CICOUDEANNA CTCAJCCLCCTNKSTATIONCNNTSIANOCFINALSAFETYANALTCI~NCFONTGIESELGEJCECCATOCI CCJILCSICIG CLANSATELOSC'WICTS<<I7obO*NO7CQIO.FNN11C11Cad h.~rhIICr*TorotoAIIADSTt47''s'AIYCCxlcAVDTCNAICDCRAIR~rMS~NCNLROODSLADCL.14fGRATIICCOL.SLTts0TORNADOOIIO.RCCSL Rts'ISTSNT OOOClrAMCSNAUSTCNAICDCRD vw4~~NDIADoorscADclTwt/0/0ELNAUST<<NA/40CRSLSDTto'.0TORNADOOIOO.Dttst.kt'DISTANT ODORLSOOCCIMTAIC~ROOD.1IP'VoFI.CL.TOO.OCXNAUSTrAH)raIR/csAIRIMTAI40eASCMCMTtCATTCRYROONCSI4AUSI'AM FLEL.TOOIOAIRIMTAKSrllTSRDURRSCCIVCRI-'IOOFCLEXHAUSTSILCMCC4CMtRATDRCONT/COLCADIMCTCMCNMSCONTXOLCAIlNCI'OtOl~CllCL474I,IlSSVTANKo/4NII.SKID>>t<<oovlustcxlouor4COTOMCRAM\CXNAVSTSCLCIICCCL ROOCCL.CC}R'~
SRAOCCl4750NLCCIIC)INICICVOl7~%040,4o44DCRINTICTORNADOCertrtttsRCSISTANT DOORSDL0,47r.c.I CLI/P5/ItIVA/I4VPlotsA4//7$4<<7IOI/SSrrwPATPtt/IAt/Al
/'/<<III<<rs 8.g-/,zIfcsc/Iro/re
~>p'rfC/AI/AINfr~TogrE/II/II/A/fg/'IItotH+ICC/tfSLAST4/NTNCRAocas7c'4~COILNCATCDCNANSCC~
I~STNSIC<<CATCICNSSSCD
'AlpKVSWITCNCCAR OICSCL45KCRAIORTtkulOP4ltKV/4/}OVI'RAMSIOCCMSR 0OlSCOMMCC7swITCN~OCC(IC)rl.cL.c7}lc44TL.CL.CSC CSlolsuttvtTCNCON'ItolOAKSLICSVOCswsoI77VCS<<44SrNANSEI>>TCRYROOMSECTION3-3suroLYsuoolftltsosTTCoOOOANAOCTClTtssOlsllulltANOOANNPSRDORSLARClTtp'8TORNADO04/O.OCCSthRtSISTAMT LADY0INTN~4FAIOSXHAUSTCNASIDSRS Of44NOILROOrSlstlCL7'o"nk'LCLTZCvoSuorlv~CCNNMsurNLYtAMgTOWOrOAAAOCT7~F4IINLNOOOSCADtl'74'lTOSNsdoosllrtcACCtSSOwlllll44 CSKAVST~CL40/A*IR~MTAKDTORNADO44ttOOLSS,RCSIS'TANT DOORtL.SL.TOEc o'I~~)j0CoToocCRAMDRCNOVASL0wklLOANCLSCRADRCLCTSIOMCVTILAL4/COUN0IM4SOUI~.ORAIICARCscoc}'O'KC,.o KIO4}'DSSO
~~hlhICS.)000000I~I~To~0HH0ORI4NIOa(FYOISII5NASTAIRIMTAKSl.7/4'mAIDCSKIDAsst/COLT TorOtORANSRAILSLCSV44luOOllOAVTANICUISSCNLlllsvCSCNANosfutLCa,NtsxSCNANCSRrL.CL.CT~
*IO'Vsv/ITCNCcA/LFL.CL:<<SCIL,
[~I4'700OOCtlCop/44'CMOVADC, WAllOICSCLCCNLRATCNL OLcL,DTS'4 CRADSCl4~7$~d0IlYSISTSRS5AlRATORrORAIMA4C'VIC0ILLAI~~~e~1tSECTIONAIRCONOR,~ICIO2ZAIRRSCRIVCRSKIDTDRMAOOOltg.RRCSSRCSISTAMT'a RoottlCOCCILARYRIMTH COOOOCoutll~L.STS'~7d DICSCLCCCM.CIIIutlousfoKAccTANKI'CNOOCOIllit.SECTIONNNNNDCIRCCOMCOICllllt!rpboy>f0>~>SUSOUKNANNA STKASCELKCTRICSTATIONUNITSIANOKFINALSAFETYANALYSISREPORTEDIESELQENEAATOQBLIILDINQ NECTIOHSFIGURESSOIO6 I
II%,g~'j]'WiHCfpv-"si%~i~5.kRl%0LL4lmmkFPii'-"'+~~'I Il~~gf~RflI$%:lhf)~~g~sg~5'='=~X~%
=-~)ll~m,-~~~~W~c 0tasm~~vwJg/flval!EMMYl@eiiiS~Illlllllpk.,=elpga~~RR1'LSqI~VDo SSES-FSARThBLg3,9-16LISTOFCOMPUTERPROGRAMSUSEDINBOPNEC!IANIChLSYSTEMSANDCOMPONFNTS
.-COMPUTERPROGRAMvn.NAMEDOCUMENTTRACEAPILITYSYSTEMIISEDME101,'IK)32'1~912"E913LinearElasticAnalysisofPipinqPipingSystemAnalvisThprmalStressProgramsNuclearClass1PipingS~resshnalvsis'IRI/STARDYH~3BochtelBechtolBechtelBechtelCDCormechanics
: Research, TncLos,AngelesUnivac1110Itoneyvell 6000Univac1110Ilnivac1110Univac1110CDCeormCE79RANSYSSvan.=onAralysisUnivac]ll0Systems,Tnc.Elizabeth, PA15037~E351PIPERIJPCDCorQuadrexCDC175Con.Camphell, rh~a/gAbIPEP1Il59/QI-Hvr5,4;//le,&r.Cambrianc<,h'n.s-.,Rev.35,07/84 e
SSES-FSAR 3.10b.1.2.1 Functional Criterion Everyinstrumentation deviceshallbecapableofperforming itssafetyrelatedfunctionduringplantoperating conditions ofstartup,constantpoweroperation, andnormaloremergency shutdownwithoutimpairment ofitssafetyrelatedfunctionwhileundergoing seismicandhydrodynamic excitation.
Thesafetyrelatedfunctionofinstrumentation devicescanbeeitherpassiveoractive.Whereonetypeofdeviceis,usedinbothtypesofapplications, thedeviceisqualified fortheworst-case application.
~~,FromtheplantOBE,SSE,SRV,andLOCAconditions afamilyofacceleration requiredresponsespectra(RRS)wereeneratedfor[eachbuildingelevation fornorth-south, east-wes~erticaldirections.
Thespectraforeachelevation wherenstrumentation islocatedwereexaminedtoestablish theworst-case responsespectra.Pipe-mounted devicesarequalified for6gverticaland6glateralalongtheweakestaxissimultaneously applied.Hangersandsnubbersareadded,ifrequired, tolimitpipingresponse.
Thisvalueischeckedagainstthepipinganalysistoinsurethatthepipingreponsedoesnotexceedthequalification level.Where,equipment wasnotcapableofmeetingthisstandardvalue,theactual"g"valueggor thatequipment
~~forqualification.
~Wereepe~Q'eJQreaselpurchase.
orderFordevicesmountedinpanels,theRRSusedwasderivedfromthepanelanalysis.
3.10b.1.2.3 Instrumentation SuortsInstrumentation devices,assemblies, andcontrolpanelsshallbeseismically qualified usingthesupportsthatwillbeusedduringin-plantinstallation.
Theseitemsofequipment arerequiredtomaintaintheirfunctional capability whileundergoing earthquake excitation attheequipment supports.
3.10b-2 SSES-FSAR I~~~~a~~~s3.10b.1.3 DeviceQualification TestCriteriaDevicesthatwerequalified bytestweretestedinaccordance withIEEEStandard344-1975.
Ingeneral,testrequirements andacceptance criteriaaresummarized asfollows:sa)Devicesundertestaremounted,inamannerthatsimulates intendeduse.b)Devicesaretestedwhileintheirnormaloperating condition (e.g.,energized) todetermine thatvibratory conditions donotproduceamalfunction orfailure.SeismicCategoryIdevicesshallnot-fnalfunction duringorafterasafeshutdownearthquake.
c)d)Devicesaretestedinallthreeaxes.Simultaneous excitation inallthreeaxesispreferred; however,testsmayberunoneaxisatatimeand,thenberepeatedfortheothertwoaxesasanacceptable alternative.
~gJ.Nhereappropriate afrequency sweep(aryingthefrequency ofexcitation withtime)isonductedatalow"g"value,e.g.,0.2gasnotedinIEE44.Thistestwas=performed toidentifyresonantfrequencies intherangeofinterest.
e)Devicesthatarefloor-orpanel-mounted aresubjected tofiveOBEsandoneSSEineachaxistested.EachBEandSSEconsistsofrandominputmotionthatenveloptheRRSforthatdevice.Ief)Devicesthatarepipe-mounted aresubjected tosine-beat testsoverthefrequency rangeof1to100Hz.EachIsine-beat testisperformed atapeakacceleration of6g*ortothepeakacceleration forthespecificmountinglocation.
g)Thecr'.eriaformalunctionorfailureincludeasmanyofthefollowing characteristics asareapplicable tothesafetyrelatedfunctionofthedeviceduringandaftertesting:1)Lossofoutputsignal;e.g.,openorshortcircuit2)Outputvariations greaterthan+10percentoffullrange3),Spurious orunwantedoutput;e.g.,relaycontactbounce3.10b-3 I'V0 SSES-FSAR 4)Majorcalibration shift;e.g.,greaterthanp10percentofrange5)Structural failure;e.g.,brokenorloosenedparts.3.10be2SEISMICCATEGORY' EQUIPMENT QUALIFICATION Detailedinformation aboutseismicqualification ofNon-NSSSSuppliedSeismicCategoryIInstrumentation ismaintained inacentralfilewithinPP&L."Asynopsisofthisinformation wasbySQRTformspreviously submitted totheNRC.Vgp~gq'"p"g~~L'kgb5$RTf00~Qlv5llA'0~~~~e~f4~<so"~Pvapcu~d.!3.10'b.3MethodsandProcedures ofAnalysisorTestingof,SuortsofInstrumentation Instrumentation equipment wasqualified bytestusingthesupportdesignedforthatparticular equipment asoneofthetest!elements.
r3.10b.40eratinLicenseReview!Resultsoftestsandanalyseswereprovidedinindividual SQRTForms.3.10b-4 0E0 SSES-CESAR functions ofelec+rical equipment orcomponents, whicharenecessary forthefunctional requirements o.theequipment, shallnotheimpairedwhentheequipment issubjected totheOBp.orSSEincon)unction withapplicable electrical, mechanical, and"h"rmalloads.SSBisdefinedasanearthquake thatproducesthemaximumvibrato'rv groundmotion"forwhichcertainstructures, systems,andcomponents aredesignedtoremainfunctional.
Thesestructures, systems,and,components arenecessary toensurethefol]owinq:a)Integrity ofreactorcoolantpressureboundaryCapability toshutdownthereactorandmain+aini'.insafeshutdovncondition
/Capab'l:ty topreventormitiqatetheconsequences ofacciden+s thatcouldresul+inpo+ential offsiteexposures
+o.theradioac+ive materialreleasecl totheonvironment.
Theloadcombirations includegravityloadsandope"a+ing loads.Allovable stres..o.s inthestructural portionsmaybeincreased to150percen+ofallowable workingstresslimits.Theresultinq deflections, m'saliqnment orbindinqofparts,oreffectsonclertrical performance fmicrophonics, contartbounce,etc)donotorevent.heoperation oftheequipment duringorafterthe."'.oismicdisturbance.
3,10c,1.5 Op~"atina BasisEarthauake (OBE)Conditions heloadrombinatinns includegravityloadsandopera+ion loads.All~..'~bio stre-~sinthest;uctural steelportionsmaybeinr.easedto125percentoftheallovable vorkingstresslimits,assetforthintheappropriate designstandards, thatis,AISCManualofSteelCons+ruction, ANSIando~herapplicable industrial codes.Thecustomary increaseinnormalallowabl.e workingtressduetoearthquake isusedifacccrdinq tothe~npropriate code,i+5slessthan25percent.Theresul+ing deflections, misaliqnment orbindingof.parts,oreffectsonelectrical performance (microphonics, contactbounce,e+c);doesnotpreve'ntcontinuous normaloperation oftheequipment duringandafter+heseismicdisturbance.
T'omr>c"i'")a~'l-'4,
~~'4evaas'/i~+~<<~%dr)c'~gAP~4~4c'Aeo$oReudOd~Rev.~,~i310c-2/ac, o
SSES-FSAH7A10c.16Prevontior ofOverturnina andSlidina,9Stationary electrical equipment isdesiqned+oprevent~verturnina orslidinabytheuseofanchorbolts,welding,orothe"suitablemechanical anchnraqerlevices.3.10r..2WETHovsA~lPPROCEDURFS FOROUALIPYING ELFCTRICAL EQUIPSEMT3.10c.2.1SeismicAnalysisNethodForthepurposeofanalysis, theequipment hasbeenidealized asamathematical modelconsisting oflumperlmassesconnected bymasslesselasticstructural members.Fordynamir.analysis, thefrequoncies andmorlo.shapeshaveheendetermined forvibration in+heverticalandtwoorthoqonal horizontal rlirections, termedalohalrlirnctions.
Theeffectsofcouplinqbetweenvthrations inallhreealobaldirections havebeenconsidered.
Thespectralacceleration permodehasbeenobtainedfromtheappropriate r~soonsespectrumcurve,whichhasheenprcvidedfortheavpropriate dampinqvalue.Fordetermini.ng thespectralacceleration fromtheresponsespectrumcurves,thevaluechosenisthelargestvaluoonthecurvewhenthefrequency inquestionvarieshy+10percent.Seismicresponseintermsofinertiaforces,shears,momonts,stresses,
'anrldo.flections aredetermined forresponsetoseismicexcitation.
ineachofthegloballir~ctions foreachmnde.(SeeSubsection 3.7b.3.7) pFor.heconsideration ofstressordeflection atanypoint,tho.totalseismicloarlconsistsofthemostsevereseismicloadinononfthohorizontal qlobal.directions combinedbythesumof+h~ahsolutevaluesmethodviththeverticalseismicloarl.(Seesubsection 3.7h.3.61SeismicOualification forElectrical Equipment Oggabil'gl.10c.2.2QLsUJu~.heseismicaualif-'ca+ion ofCateqoyIelectrical equipment, auinmentsupports, andmaterialmeetsasaminimumtherequirements ofIEFE344-1971andprojectspecification G-l0,"GenealProjec+Reauirement forAseismicDesiqnandAnalysisof.lassIFauimment anrlFauipment Supports" andcomplemented hypro'~ctSoecificaticn G-22>>Desi nAssessment andualification Table3.9-31.gQ~+~~ofSeismicCa+eaoryIEquipment 6Equipment SupportsforSeismicRyrlrorlynamic Loads.>>Prefect.Specification G-10issummarizerl incomparison tnIEEE-344-1975 andRegulatory Guide1.100in3.10c-3 SSES-FSAR
,";$ec<ricalecuinmeni isqualified forfunctional oPerahility
)urinqandafteranearthquake ofmagnitude uptoandincludinq
+heSSHaccording toatleastoneOfthefolloving input~xci~ation
+es+s:a)Singlefrequency sinusoidal motionorsinebea~motionscontinuously inputeddurinqthetestatspecified requencies tocover.hefrequency rangeupto33Hz.b)Randomvavefom,multifrequency tests.1,1gc.2,~
SeismicT~stgego",tparalysis andMethodsv~Qd)bu4mL~Q~gpTheanalysisandtestreportsfurnished bythesupplierdemonstrate theab'li+yofelectrical eauipment toperfomitsrequiredfunctiondurinqandafterthetimeitissub)ected totheforcesresultinq fromoneSSEandarequirednumberofOBE.Fourcategories ofreportsareprovidedbythesupplierofelectrical equipment andmaterialapplicable toSeismicCategoryXaualification; a)Flectrical equipment qualified by".estinqme+hod).)Electrical equipment supportandmaterialqualified byanalysisandcalculati.onmethodoUlc)Electrical equipment qualified bysupplier's certification ofSeismicCateqoryIrequirements.
d)Combination ofanalysisandtesting.+~-col~pp3.10c.2.3-1 Electrical Equipment Qualified byTestingcSandCombination ofTestinaandAnalysisNethorlgrl'vooElo.ctrica
.ipmentlitedbelovvastestedby+hesuppliers or..'-,stlaratoresbaseonsimilarity indesiqnandassembly, andal4'+ig>ropresntiQuipmentshovhirTables3.10c-4,~fci0throuqh3~10c-16:SsltjC~)hi)0C.-(yS.foe,-8Tndbctpowcl+A~5a)Indoorsecondary unitsusaronseeIae.c>>1)b)480Vacmotorcontolcerters(seeTable3.10c-2)c)~d)e)Batterymonitorsandfuseboxes(seeTable3.10c-3)DCdistribution panels(seeTa,hie3.10c-4)Batterychargerracksandcabinets(seeTable3.10c-8)i~~Rev.3.10c-4  


sses-psLRTABLEI-BOG=~5&#xb9;ZDLRXQIII~UySXLIILIItXsfIrlPGF.@ZAN,1(:.(e.SQI)IPQENIIQSIiIIQ"In'(gocLIIoNUNITsUPPLceRITRNNn.oescRcpTlnNeduc.BesTNn.Br.0"..pt.ey.Nn.TESTCNGPLCILITIRSQULt.fPICLTIONQOLLIPICLTIONCRITRRIL'el"SIGNRDSI:8856--117-57654Si.ncleendedSecondaryttnitSubstattoaConststinoof:a.TersinalChasber~b750kVLTransforaer.c.L.N.Svitchqear18-21018-22018-2301S-24028-21028-22028-23(i28-240:teactor749749719719749749719719IITe.IIsperialICorporation12222VIIRlaboratoriesNOTncaliforniaNoreoProspectSpecReportIG-10~26340-2fIeee-344-26340-3197526340-4Bp:G.ShipvalPnv(e('+WSf<<W<'~O>Cg(opC.a~(a~77.(.:>~/-.op/~lib'0igeelTrl(u,7=8(t.'VAr<,I~SSo<~CIZ~>sterpdRQ4a(r'8'.-A(pigpg(g)f75gCoa9hrt.W~evvtye(ebs4y/e4ksHnntLvs)leFJlaba-aPaWCV~faC.c-/~)4gZdftE-RH-/'/75'(5CA'ppr>'3g.rS'77(SSAgyeKPR9w<Ief(Ss~'q)actt7h..l)...'~)~NnyetSpecifteatinnG-10iscosplesenndbySpecifteatton0-22.Ynr0-10SpecificationSussary,SReTable19-11.gNqyj:;:JP:-~,</og//5Co+(Pic.A/.JII'-'~a9g~f'--C.~'-laZ~.'3g/i3.rRev.-3~7/84-  
sses-psLRTABLEI-BOG=~5&#xb9;ZDLRXQIII~UySXLIILIItX sfIrlPGF.@ZAN,1(:.(e.
SQI)IPQENI IQSIiIIQ"In'(gocLIIoNUNITsUPPLceRITRNNn.oescRcpTlnN educ.BesTNn.Br.0"..pt.ey.Nn.TESTCNGPLCILITIRSQULt.fPICLTION QOLLIPICLTION CRITRRIL'el"SIGNRDSI:8856--117-57654Si.ncleendedSecondary ttnitSubstattoa Conststino of:a.TersinalChasber~b750kVLTransforaer.
c.L.N.Svitchqear 18-21018-22018-2301S-24028-21028-22028-23(i28-240:teactor749749719719749749719719IITe.IIsperialICorporation 12222VIIRlaboratories NOTncalifornia NoreoProspectSpecReportIG-10~26340-2fIeee-344-26340-3197526340-4Bp:G.ShipvalPnv(e('+WSf
<<W<'~O>Cg(opC.a~(a~77.(.:>
~/-.op/~lib'0igeelTrl(u,7=8(t.'VA r<,I~SSo<~CIZ
~>sterpdRQ4a(r'8'.-A(pigpg(g)f75gCoa9hrt.W~evvtye(ebs4y/e4ksHnntLvs)leFJlaba-aPaWCV~faC.c-/~)4gZdftE-RH-/'/75'(5C A'ppr>'3g.rS'77(
SSAgyeKPR9w<Ief(Ss~'q)actt7h..l)...'~
)~NnyetSpecifteatinnG-10iscosplesen ndbySpecifteatton0-22.Ynr0-10Specification Sussary,SReTable19-11.gNqyj:;:JP:-~,
</og//5Co+(Pic.A/.JII'-'~a9g~f'--C.~'-laZ~.'3g/i3.rRev.-3~7/84-  


(:iSSES-tSLRglSgg1lpgaggO'$0/CONgg0$gggJgJS5901PbEKTEHHTIZSCinNIr<LXioruIT..'I40.DESCRIPTIONtOOIPL..TNJ.9LDG.ELV.ONITSOPPLIERNO~TESTINGtLCILITIESQOLLitICLTIONQOLLIPICLTIONCRITESIL"ElaSIGNEDSy:88%6-t-IISRotorControlCenterOS-136OD-14608-516nB-517)E-52608-52708-53600-546ContreIControlD.Oen.78178167767'167767767767'ICsanCutler-AaaaerCssnCaenCavanCsanC~snCasaNyleLaboratoriesBuntssille,LlabaaaprospectSpecReport142966-10-'IO~6IEEE344-1975Sy:J.toreasnRyleReport145590-145590-2By:Vincentt.KearnsIII10-21618-21718-2'l918-22618-22718-229IS-236I8-23'I18-246IB-24728-21628-2l728-22628-22728-23628-23'128-24628-247O'1-21611-218II-22611-2361'I-246ReactorReactorReactor6837u9670683749'1197l96107196'I06837u96837497)967071'I670683719683719719~NOTE:Specification0-IOgiscospleaentedbySpecification0-22ggo7'6:5PE~.r:rollI'>"o>IP-LEIhC.Nr-"LF~Io2,+,CAEatonReportIDL57-3251By:Vincentt.KearnsIIIRev.-35-;O'I/Sa-'y-21621-2182r-2262y-23621-246og-5&5oO-5&&6337196837'l9O.gr-.u.Ci-;)ohL~'g'-f"22~WI>4'IaM>>+CtENt&aip(~)wyleLeaf'uIIIcr)lgLA\~fRoJEcg5r'6c,C-r~/-'Ll.rt~<0-l'175v<&~toScref0.I$C-f5/(yi'~;la,')howl]I\I l
(:iSSES-tSLR glSgg1lpgaggO'$0/CONgg0$gggJgJS5901PbEKT EHHTIZSCinNIr<LXioruIT..'I40.DESCRIPTION tOOIPL..TNJ.9LDG.ELV.ONITSOPPLIERNO~TESTINGtLCILITIESQOLLitICLTION QOLLIPICLTION CRITESIL"ElaSIGNEDSy:88%6-t-IISRotorControlCenterOS-136OD-14608-516nB-517)E-52608-52708-53600-546ContreIControlD.Oen.78178167767'167767767767'ICsanCutler-Aaaaer CssnCaenCavanCsanC~snCasaNyleLaboratories Buntssille, LlabaaaprospectSpecReport142966-10-'IO~6IEEE344-1975Sy:J.toreasnRyleReport145590-145590-2By:Vincentt.KearnsIII10-21618-21718-2'l918-22618-22718-229IS-236I8-23'I18-246IB-24728-21628-2l728-22628-22728-23628-23'128-24628-247O'1-21611-218II-22611-2361'I-246ReactorReactorReactor6837u9670683749'1197l96107196'I06837u96837497)967071'I670683719683719719~NOTE:Specification 0-IOgiscospleaented bySpecification 0-22ggo7'6:5PE~.r:roll I'>"o>IP-LEIhC.Nr-"LF~Io2,+,CAEatonReportIDL57-3251 By:Vincentt.KearnsIIIRev.-35-;O'I/Sa-'y-21621-2182r-2262y-23621-246og-5&5oO-5&&6337196837'l9O.gr-.u.Ci-;)ohL~
0'<<~0~I:.'-?7A?.A'lL'II<<3BATT<<'?Y-VOVIYOAI4?10PGSP.8'IVe<<J4e'5',?'>iC.>tr:.IervriIr'Ti'?'<DESC~IPTIORr00tp..SV-.II.I.1LD::.SLCV.DAVIT'IOSDPFI.I?:I,SSTIVGFACILITIKS90ALIFIGATIORO'IAI.IFICATIOVG?ITKRIA~81"SIGHECRY:na<<'.scv.Oni<<OTI><<V-<<tSa<<tetVsonltug.~SOV~'<<12SVFuseRot7-1L3ggg2SOVFuseSot7-1600A'I99FuseSot.~2uv,7-1001Ip-67S1067610-68S30-6862007'0-67620-6SS2D-6s6ID-6'll10-692'lpn93'IP64420-69120-6n22D-69'I206)0ID-69S1069620-69S2D-69610-6II1D-6211D-63110-64I20-61120-62I20-6II2C-64110-6'Sl10-66120-65120-66110-67110-6SI70-67120-681l.hI-fT7'-//tIec/I7ttl.'/6V09-40)II?Ov.AS~V/84->RS6-F.-?19ArSatterVVunitOC>gyG~>nttol771ccpQ(/:ggc>g"gII='Il2222I1II2222I12I'II222.=2I'I22II22CQHNC4~)fVWatPuv?rConverstonpro%act*Inc.lvi&Labora<<oriesIIuntsvilla,A14baelntn)factSpecVine>nF.Fes"nsG-lo~6IetP.-Testreport.344-197544S963-IRcvW'tI/g/$c1)y?1JvIllgflagwe~a(p,/c(75)eiC-/up/~~t.E,Ec=.~44-lf/~<<C4flP~5~/c~~')"+0RZ-13~>/-'l'.c~c-W'et'S?(oui/<<I-')?~voTTIspeciticationG-loiscoaplenento.lbvSpecificationG-22.tlhlOVE',5PEC,t-/t7+//5t=ctuf/tLBMtt/7'<<-O8)'f5P&C.R-/oZ5,  
'g'-f"22~WI>4'IaM>>+CtENt&aip
(~)wyleLeaf'uIIIcr)lgLA\~fRoJEcg5r'6c,C-r~/-'Ll.rt~<0-l'175v<&~toScref0.I$C-f5/(yi'~;la,')howl]I\I l
0'<<~0~I:.'-?7A?.A'lL'II<<3BATT<<'?Y-VOVIYOAI4?10PGSP.8'IVe<<J4e'5',?'>iC.>tr:
.IervriIr'Ti'?'<
DESC~IPTIOR r00tp..SV-.
II.I.1LD::.SLCV.DAVIT'IOSDPFI.I?:I,SSTIVGFACILITIKS90ALIFIGATIORO'IAI.IFICATIOV G?ITKRIA~81"SIGHECRY:na<<'.scv.Oni<<OTI><<V-<<tSa<<tetVsonltug.~SOV~'<<12SVFuseRot7-1L3ggg2SOVFuseSot7-1600A'I99FuseSot.~2uv,7-1001Ip-67S1067610-68S30-6862007'0-67620-6SS2D-6s6ID-6'll10-692'lpn93'IP64420-69120-6n22D-69'I206)0ID-69S1069620-69S2D-69610-6II1D-6211D-63110-64I20-61120-62I20-6II2C-64110-6'Sl10-66120-65120-66110-67110-6SI70-67120-681l.hI-fT7'-//tIec/I7ttl.'/6V 09-40)II?Ov.AS~V/84->RS6-F.-?19ArSatterVVunitOC>gyG~>nttol771ccpQ(/:ggc>g"gII='Il2222I1II2222I12I'II222.=2I'I22II22CQHNC4~)fVWatPuv?rConverston pro%act*Inc.lvi&Labora<<oriesIIuntsvilla, A14baelntn)factSpecVine>nF.Fes"nsG-lo~6IetP.-Test report.344-1975 44S963-IRcvW'tI/g/$c1)y?1JvIllgflagwe~a(p,/c(75)eiC-/up/~~t.E,Ec=.~44-lf/~<<C4flP~5~/c~~')"+0RZ-13~>/-'l'.c~c-W'et'S?(oui/<<I-')?~voTTIspeciticationG-loiscoaplenento.l bvSpecification G-22.tlhlOVE',5PEC,t-/t7+//5t=ctuf/tLBMtt/7'<<-O 8)'f5P&C.R-/oZ5,  


SS>'S-rSLH-,gyp'$9c->>nc+"Z(iIi(ugtnupgygtsiQUIRQl5IIi(tvTJI'TInvI,ncLIIn/usITsoppl.teaTESTIRCgullteICLTIohQBLI.ItICLTIovITch,hn.Dcsc>>tpytovcoui,.>chTvo.St.oc.Etcv.vn.PLCII.ITICSCRITERIL"EleSICREDSY:Be56--120DCOis>tibu>>ionPanels125V225LhainSus2>>V100LhainSus125V225LhainSus2>>V100LhainBusl2.5V.('wA.MA(>u6>(=>>(zc>Q/pgg.(.binBu&10-61>>1D-61510-62>>1D-62!>1D-63u1D-63'i1D-6>>>>.10-6>>51O-6721D-6122D-6'I>>2o-6152o-62>>2o-6252o-63>>206)>>20-6u>>20-a>>52o-67220-6A2-on-5)7oO-559Conttnl771'~e~s('-aat>>5b-m1I111111122222222.C(ann/Spud('-DCC>,C>n(rt&f>>T>>EIspecialCorporationuyleLaboratoriesRovco,CalitorntaprefectSpec0-10~6IEEE-3>>>>-1975a>>poet1263>>0-5Sy:CDShkpvayReportL263>>0-326340-6By:G.ShiplrayfngZC(I4il>>irhs(,$aof>'>>>J1%>>>n,'igA..ohioAom~ysr'Ec.C-(c)$(~3ZC('<<'i)4-/'/7~5QC/,C>>rwo'lH~>>Jg/C'K5('p>>~>>tIQ'(gal-(g,>7(-LlCbgIP1I-r)g~+BOTELSpecification0-10lscoapleaentedbySpecicicationC-22.hgO7E',z~/'iY..c,(O4(8>.rQ/-(-<Ld~"(~+SPBC.8-/oZ'7,1<<Rev..35,07/Ba-  
SS>'S-rSLH
,!55'v9AR?JALAP3+JLHQ=5!)B??J!RI3kr55EQIIJP<<ELI?JDCy?JCJL)I?gl)QAJOK')KITSOPPLI0'I'IPgsc'41PT)nvP9II.PK.~'ln.!ILDOPLFv~'ill~TESTIIICPACTLITICSQUALIPICATICKQOILIFICATIO'ICATTFRIA<<Pl"slnsfri41.4<<f-".-1144.".tI.Innlrv'Ia+fP24v7SANvI~Infarfoaff<<129V7?OANID-67nID-Spn20-679)0-AAn10-61010-6701061n10-640?I'-bln)0-6?0)0h10?0-640.nnfrnl771,ICCDAafICo.?IIII222t<<ripsStrurtura1Dynaair.Aes<<archcorpnrafion,ll)1fora,OhioforCoronraferonsu1tinn0<<vo.1opeentCo.Pro]petappcFportIA179-<<I-'I~-10~'EEf-5~eph<<nA.LohrsIo344-)975JohnPolanclVnvSta+inntrV,http'rips2SnV140nAHIO-rI>0ln-Wn20-65020-6SOOO-goal,I22PouriI~II@~Iggyes/IIJQfP()~4)ntrvSi)v<<tfvI14f4)aLa~gP-OMC-I'r.".t-)g~-'EEDw$g-I'f75,CL.t)Iu~>K)itPry~1Q,RL-qyigbnT51po<<cifirl.innll-Initcnsolea<<nt<<r)hvsnecll'ication0-22.NpffVf.C-)upIfrGu)rlPfLIENTBO6y'V<C.f-lr)2.5  
-,gyp'$9c->>nc+"Z(iIi(ugtnu pgygtsiQUIRQl5I Ii(tvTJI'TInv I,ncLIIn/usITsoppl.tea TESTIRCgullteICLTIohQBLI.ItICLTIov ITch,hn.Dcsc>>tpytovcoui,.>chT vo.St.oc.Etcv.vn.PLCII.ITICSCRITERIL"EleSICREDSY:Be56--120DCOis>tibu>>ionPanels125V225LhainSus2>>V100LhainSus125V225LhainSus2>>V100LhainBusl2.5V.('wA.MA(>u6>(=>>(zc>Q/pgg.(.binBu&10-61>>1D-61510-62>>1D-62!>1D-63u1D-63'i1D-6>>>>.10-6>>51O-6721D-6122D-6'I>>2o-6152o-62>>2o-6252o-63>>206)>>20-6u>>20-a>>52o-67220-6A2-on-5)7oO-559Conttnl771'~e~s('-aat>>5b-m1I111111122222222.C(ann/Spud('-DCC>,C>n(rt&f>>T>>EIspecialCorporation uyleLaboratories Rovco,CalitorntaprefectSpec0-10~6IEEE-3>>>>-1975a>>poet1263>>0-5Sy:CDShkpvayReportL263>>0-326340-6By:G.ShiplrayfngZC(I4il>>irhs(,$aof>'>>>J1%>>>n,'igA..ohioAom~ysr'Ec.C-(c)$(~3ZC('<<'i)4-/'/7~
5QC/,C>>rwo'lH~>>Jg/C'K5('p>>~>>tIQ'(gal-(g,>7
(-LlCbgIP1I-r)g~+BOTELSpecification 0-10lscoapleaented bySpecicicat ionC-22.hgO7E',z~/'iY..c,(O4(8>.rQ/-(-<Ld~"(~+
SPBC.8-/oZ'7,1<<Rev..35,07/Ba-  
,!55'v9AR?JALAP3+JLHQ=5!)B??J!RI 3kr55EQIIJP<<ELI?JDCy?JCJL)I?
gl)QAJOK')KITSOPPLI0'I'IPgsc'41PT)nv P9II.PK.~'ln.!ILDOPLFv~'ill~TESTIIICPACTLITICSQUALIPICATICKQOILIFICATIO'ICATTFRIA<<Pl"slnsfri41.4<<f-".-1144
.".tI.Innlrv'Ia+fP24v7SANvI~Infarfoaff<<129V7?OANID-67nID-Spn20-679)0-AAn10-61010-6701061n10-640?I'-bln)0-6?0)0h10?0-640.nnfrnl771,ICCDAafICo.?IIII222t<<ripsStrurtura1Dynaair.Aes<<archcorpnrafion, ll)1fora,OhioforCoronraferonsu1tinn0<<vo.1opeentCo.Pro]petappcFportIA179-<<I-'I
~-10~'EEf-5~eph<<nA.LohrsIo344-)975JohnPolanclVnvSta+inntrV
,http'rips 2SnV140nAHIO-rI>0ln-Wn20-65020-6SOOO-goal,I22PouriI~II@~Iggyes/IIJQfP()~4)ntrvSi)v<<tfvI14f4)aLa~gP-OMC-I'r.".
t-)g~-'EEDw$g-I'f75,CL.t)Iu~>K)itPry~1Q,RL-qyigbnT51po<<cifirl.innll-Initcnsolea<<nt<<r) hvsnecll'ication 0-22.NpffVf.C-)upIfrGu)rlPfLIENTBO6y'V<C.f-lr)2.5  


0'SES-FSAR:TABLE3.10c-7CABLETRAYS"SAFEGUARD"III="ITENNO.DESCR)PTJONEQUIP))2..2~)'O.BLDG.ELEV.hO.TESTINGQUALIFICATIONQUALIFICATIONFACI)ITIESCRITERIA"El"SIGNEDBY:v8856-E-132CableTrays:3"Dx24"W3"Dx18"X3"Dx1""W5"Dx24"W5"Dx18"W5"Dx12"WS9Nl-24-144S9Nl-18-'4459NI-12-14459N1-24-14459N1-18-14459NI-12-144Control670'eactorto770'82HuskyProductInc.HuskyProducts,ProjectSpecInc.7405G-10)2IEEE-IndustrialRd344-1975Florence,Kentucky1-29-76'.TestNo.977-978LoadTest-(Trays)By:T.O'araB.Heinzb.HoldDownTest)41276TestNo.1127-L2H>V2~5/14/761151)211527/21/7611888/10/761196-H,V.d~"bxii".XP~q'>x<s'e..d~'~)v",<~4>>.bxif.'8.4"t)x(1"4d4"bx<401Mgq"9yIL'vv-.tJqbx'248..'q"gy94AL~y.-tz5L-ta4-lCSL-hI4kx-l<iJ.-l'L.VA-i~SL-te>p<~kh-tfSL-la.Gl-2)cL-l5Lq-iiSL-l2,kq-gQ.-l'L41-li(l.-l2.'hl'pterIz.rS4tc.f~ivHi)~skPk14r4lgijg,PP~Cop()2C~Cttagovtlle)PAP2gr,f$)~pc.io)loJC-loi(lc.ElectricTest12/~2222Harper-))orrezB.Schusterd.SeisuicCalculation8/11/76By:B.Schustery)),tQo.V)>,L.lZ-CAHOT.-l02,Rcv.,&7+fHIta  
0'SES-FSAR
:TABLE3.10c-7CABLETRAYS"SAFEGUARD" III="ITENNO.DESCR)PTJON EQUIP))2..2~)'O.
BLDG.ELEV.hO.TESTINGQUALIFICATION QUALIFICATION FACI)ITIESCRITERIA"El"SIGNEDBY:v8856-E-132 CableTrays:3"Dx24"W3"Dx18"X3"Dx1""W5"Dx24"W5"Dx18"W5"Dx12"WS9Nl-24-144 S9Nl-18-'44 59NI-12-14459N1-24-144 59N1-18-144 59NI-12-144 Control670'eactor to770'82HuskyProductInc.HuskyProducts, ProjectSpecInc.7405G-10)2IEEE-Industrial Rd344-1975Florence, Kentucky1-29-76'.
TestNo.977-978LoadTest-(Trays)By:T.O'araB.Heinzb.HoldDownTest)41276TestNo.1127-L2H>V2~5/14/761151)211527/21/7611888/10/761196-H,V.d~"bxii".XP~q'>x<s'e..d~'~)v",<~4>>.bxif.'8.4"t)x(1"4d4"bx<401Mgq"9yIL'vv-.tJqbx'248..'q"gy94AL~y.-tz5L-ta4-lCSL-hI4kx-l<iJ.-l'L
.VA-i~SL-te
>p<~kh-tfSL-la.Gl-2)cL-l5Lq-iiSL-l2,kq-gQ.-l'L41-li(l.-l2.'hl'pterIz.rS4tc.f~ivHi)~skPk14r4lgijg, PP~Cop()2C~Cttagovtlle)
PAP2gr,f$)~pc.io)loJC-loi(lc.ElectricTest12/~2222Harper-))orrez B.Schusterd.SeisuicCalculation 8/11/76By:B.Schustery)),tQo.V)>,L.lZ-CAHOT.-l02, Rcv.,&7+fHIta  


~.:'S-r.)A4Ant.".II:)C-3ATTC.JCllhnct'.4iACKS1'<<CA<<nf<<)~~SaL'"IkP0<<LIrnv~'ipyuirvgv~<<ggEgyg~.,prov.CarPTIOX=..Du.'.)rS".:).Lni.ATJlvlsIT:IUPPI.I?;".')D..LEV~'l<<)~.<<'STINGFarILI~ICSn<<)ALIPICATlnsouhlrrrcATro)<<rPIVESIA"CI"Src'<<'0<<)I)<<'lS"-r-\)n-:)q)4e.Vkcfhatq~ts)2SvInnhDa<<cryr'I<<tmera2Snv100A)0-613)0-67310-61I106LI20-A)120-6<<)?D-63320-643hq6711DASIA106531<<10-66120-651A20-65302D-66no-603.)ntrnl771~II112222:ain111222..~<<anPnai'lvyrrConvarsaonLabnrat<<<<riesPro<<lIctsunnttvllle,Inc.42"=asAlabaaaStreyt,CrystalLake,Illinois66014p.orrctspecT<<~!Rebor~010~6ICE'4546)-'Ii"Veh344-)<<375VincentP.,Voarnn~rvCharoer.24v25a10-673ID-67410-6AI1D-6P.420-67120-67420-4&3?0-6<<)4Cn-64S1'I1I2i2aaancc)-5'/5~vOTE)So<<cirica)inn0-10lscoanleaen<<nlggj')<<C-(D)IIc~~~)>>I,gFgyral/I-))1.3>>)rn)rCdIa<<~~>>S)p~hySn.elficationr<<-?2,IDng,(~Mgqleg,lt')la/3)aI>>arc  
~.:'S-r.)A4Ant.".II:)C-3ATTC.JCllhnct'.4 iACKS1'<<CA<<nf<<)
~~SaL'"IkP0<<LIrnv~'ipyuirvgv~<<gg Egyg~.,prov.CarPTIOX
=..Du.'.)rS".:
).Lni.ATJlvlsIT:IUPPI.
I?;".')D..LEV
~'l<<)~.<<'STINGFarILI~ICSn<<)ALIPICATlns ouhlrrrcATro)<<
rPIVESIA"CI"Src'<<'0<<)I)<<'lS"-r-\)n-:)q)4e.Vkcfhatq~ts)2SvInnhDa<<cryr'I<<tmera2Snv100A)0-613)0-67310-61I106LI20-A)120-6<<)?D-63320-643hq6711DASIA106531<<10-66120-651A20-65302D-66no-603.)ntrnl771~II112222:ain111222..~<<anPnai'lvyrrConvarsaon Labnrat<<<<riesPro<<lIctsunnttvllle,Inc.42"=asAlabaaaStreyt,CrystalLake,Illinois66014p.orrctspecT<<~!Rebor~010~6ICE'4546)-'I i"Veh344-)<<375 VincentP.,Voarnn~rvCharoer.24v25a10-673ID-67410-6AI1D-6P.420-67120-67420-4&3?0-6<<)4Cn-64S1'I1I2i2aaancc)-5'/5~vOTE)So<<cirica)inn0-10lscoanleaen<<nl ggj')<<C-(D)
IIc~~~)>>I,gFgyral/I-))1.3>>)rn)r CdIa<<~~>>S)p~hySn.elficationr<<-?2,IDng,(~Mgqleg,lt')la/3)aI>>arc  


SSES-FSARPARCELShubT8e4tOATloQCASlQCTSTABLE$.10c-l0IVI:llA>>I-vll'in<i.l-l'L's.blllI~Il(Cm-.AI'Ol/yl.DgjI'.Ll~/.V@I'7+oelf57)HCjIAclLIT/L5+VALIjgtgWPu~Lll1/I~g/'gFCi.'lgli~ilf'i.'d.~~II'ibl:.'Lroc5I6-AOCel"8-85/LLL>Cg(nfTatt.WVPyWO(~rc>>~->i'-ggg)@pe,IP7rl-'-/5ID0C5IL-gTp)Qsp6pinggpss05/2-OC5/2-DpgQ)~~c~)gqQc)b<C)7lg-Qpc(c,)c5'~YoA<fLLC/I'0-,P,S~sL.2I2Izf~g=C-,"'l'~C.C/~~/+;PXE:Lc394-/f'/L~.'ZIiso-II~go-~~.~Cps6)noh>o~')ji~oc.c)g)a~alAP<)L~~.gcygnegaLbE+~LTc5hoNbMarcoCO.C,I---/~2>pgoT'C.-'.~rtC.e.~c'-IoqI/5c>H/LE@i/'r/7t.>>l'/5P~~gq~~gppcc-lo~t>gcoupU.-pp<~~Y~pic.E-lozz-~PRMK'[SfK.0-104l~4wy/p&~.sIlEEEK4+lgfbQpoi4it,ycc'Jp.~...~i..C.Acv.GS-;07-/64-  
SSES-FSAR PARCELShubT8e4tOATloQ CASlQCTSTABLE$.10c-l0IVI:llA>>I-vll'in<i.l-l'L's.bl llI~Il(Cm-.AI'Ol/yl.DgjI'.Ll~/.V@I'7+oelf57)HCjIAclLIT/L5
+VALIjgtgWPu~Lll1/I~g/'gFCi.'lgli~ilf'i.'d.~~II'ibl:.'Lroc5I6-AOCel"8-85/LLL>Cg(nfTatt.WVPyWO
(~rc>>~->i'-
ggg)@pe,IP7rl-'-/5ID0C5IL-gTp)Qsp6pinggpss05/2-OC5/2-DpgQ)~~c~)gqQc)b<C)7lg-Qpc(c,)c5'~YoA<fLLC/I'0-,P,S~sL.2I2Izf~g=C-,"'l'~C.C/~~/+;PXE:Lc394-/f'/L~.'ZIiso-II~go-~~.~Cps6)noh>o~')
ji~oc.c)g)a~alAP<)L~~.gcygnegaLbE+~LTc5hoNb MarcoCO.C,I---/~2>pgoT'C.-'.~rtC.e.~c'-IoqI/5c>H/LE@i/'r/7t.>>
l'/5P~~gq~~gppcc-lo~t>gcoupU.-pp<~~
Y~pic.E-lozz-~PRMK'[SfK.0-104l~4wy/p&~.sIlEEEK4+lgfbQpoi4it,ycc'Jp.~...~i..C.Acv.GS-;07-/64-  


.2(lfP<<s(:.$nPggl",'f12'Il<<':<<.1E".Cv'PT)l:I,vp(l.".!".If:I).LJrt~~g()'l'6.S(JI(PLIE((<Loi.FL4Y.<n.TSSTII!r(PACILI!'I0!inpAL)p)c)T)pvQQALIF)c\T)nvI;IIITtlIA<<t)"SIIII'lvp>>'IY'ASA1I<'.i~~<<(tCrhett14-.,12SY)nnApqit>>Vhat"I1c?Snv11:PAJi9vhlp>>.2nv2SA)9(()I10-((7\10('\I10-6(i1206I120-n2320-63120-hn3DD-171In-((S3t10-6S3(A10-66)cp-6S)E20-6s)0'D-6))ilPi(I!1)0-471\0-67v)0-60I)O684'2p67)20-6712pfnl20-6nt(30-biS'1int77)Iiov'>>Iol(vetpionIp."oh.lctsiIr.c..1222vnnIII22:asn1I'I1422sanVv)>>LahutotorL>>sH(!n.ville~Alahen1Ptn)-ctSnakcTestpi<<o::ri-1I'0lvtv-tv5463-Inevgnu-I'37Svincent.f.'ItearnsIIC)I)f-'(Ep.'.P>y/ip~()f54-$C)((IN'u~iCgO))~&MCM~5jfk~wI+g)s,.ll.Q)>>)~AwC~'(~!.!-<(~r!p!cn)1n1-1!i.')sn)rn<<nt>>IhvSoecifirst'vn'(2eAl)g:5I7ci.C,JD)]JCP)llkf)h4~r:er''>f'-"=.<-->>>~Cr(Pi.waq(ft~g5~+Q.R7--Kv4&6l.).g~Q/(tIk'>(rb:=-Rev%5~7I84-  
.2(lfP<<s(:.$nPggl",'f12'Il<<':<<.1E".Cv'PT)l:I,vp(l.".!".If:I
).LJrt~~g()'l
'6.S(JI(PLIE((
<Loi.FL4Y.<n.TSSTII!r(PACILI!'I0!inpAL)p)c)
T)pvQQALIF)c\T) nvI;IIITtlIA<<t)"SIIII'lvp
>>'IY'ASA1I<'.i~~<<(tCrhett14-.,12SY)nnApqit>>Vhat"I1c?Snv11:PAJi9vhlp>>.2nv2SA)9(()I10-((7\10('\I10-6(i1206I120-n2320-63120-hn3DD-171In-((S3t10-6S3(A10-66)cp-6S)E20-6s)0'D-6))ilPi(I!1)0-471\0-67v)0-60I)O684'2p67)20-6712pfnl20-6nt(30-biS'1int77)Iiov'>>Iol(vetpion Ip."oh.lctsi Ir.c..1222vnnIII22:asn1I'I1422sanVv)>>LahutotorL>>sH(!n.ville~Alahen1Ptn)-ctSnakcTestpi<<o::ri-1I'0lvtv-tv5463-Inevgnu-I'37Svincent.f.'ItearnsII C)I)f-'(Ep.'.P>y/ip~()f54-$C)((IN'u~
iCgO))~&MCM~5jfk~wI+g)s,.ll.Q)>>)~AwC~'(~!.!-<(~r!p!cn)1n1-1!i.')sn)rn<<nt>>IhvSoecifirst'vn'(2eAl)g:5I7ci.C,JD)]JCP)llkf)h4~r:er''
>f'-"=.<-->>>~Cr(Pi.waq(ft~g5~+Q.R7--Kv4&6l.).g~Q/(tIk'>(rb:=-Rev%5~7I84-  


I+'0sn~'11II~Vrvf[P='iFlLA~lnv:ll:5CIIn.iJv-:II7V?V.VILOI,RAP)V'Il!IT9)IPi"~I?:1L7:."LrV.".G..FS.IunFACII.I.IR55nALIFICATInl!gI)I.IFICArlnvI>IV'IIA"1.InHF.Ii.)I!)aSirlnl)41'.AVSvitrh"irIA-~n))A)n>.1\-2')1'lA2:14:!A-?n):.A-2nziA-2n)2A-2)4oA-510gnaCIOIIa'I7in7l'))ln7i)7)9py(e.)VIestlng)iouAe'I12??2g~)gIgQQ&~kl8vfiZ!4o.(Inc).Xvl.Labnra+ocv,:Iunszrxllu~Alahana+n4UvliiLahoatocvrl'uQ~)'svilkI))4Iyai~~7:o)ec?5psr.Cilna5IRKL)44-1975Pgm,y>I'E-C'-loyI<>SH83fd-If/~~oooo,~4~)7577-147'58Il5864258664n.5hlv)y8))c)2~~'37-S<lu-SSqI4v~P:4.D~t'lagOA-StoAoA-SSEOA-51040A-sNDh4(A)gin-9bq$S)b0(~)t)Q(.~gba<<-5OVREIEI).lc<<~)2.~~i)E4>iIcic)4jnii,)nI5niiolouiqA,iiV5n&CIlc'1AOII22~hWTi:~'i~c~EIpyII~CuufPLEME>IFEDf~/='IE~-6I>4~~  
I+'0sn~'11II~Vrv f[P='iFlLA~lnv:ll:5CIIn.iJv-:II7V?V.VILOI,RAP)V'Il!IT9)IPi"~I?:1L7:."LrV.".G..FS.IunFACII.I.IR55nALIFICATInl!
gI)I.IFICArlnv I>IV'IIA"1.InHF.Ii.)I!)aSirlnl)41'.AVSvitrh"irIA-~n))A)n>.1\-2')1'lA2:14:!A-?n):.A-2nziA-2n)2A-2)4oA-510gnaCIOIIa'I7in7l'))ln7i)7)9py(e.)VIestlng)iouAe
'I12??2g~)gIgQQ&~kl8vfiZ!4o.(Inc).Xvl.Labnra+ocv,
:Iunszrxllu
~Alahana+n4UvliiLahoatocvrl'uQ~)'svilkI))4Iyai~~7:o)ec?5psr.Cilna5IRKL)44-1975Pgm,y>I'E-C'-loyI<>SH83fd-If/~~oooo,~4~)7577-147'58Il5864258664n.5hlv)y8))c)2~~'37-S<lu-SSq I4v~P:4.D~t'lagOA-StoAoA-SSEOA-51040A-sNDh4(A)gin-9bq$S)b0(~)t)Q(.~gba<<-5OVREIEI).lc<<~)2.~~i)E4>iIcic)4jnii,)nI5niiolouiqA,iiV5n&CIlc'1AOII22~hWTi:~'i~c~EIpyII~CuufPLEME>IFEDf~/='IE~-6I>4~~  


l3L'In-I11CCONT%1LANDLnln?'NTESSa-a4vTa-44aoaIflfP;?IAiC:4lie:rn'JESCYI.I'I'.CilfP1.NT<1.i'lAT/1'4'lvfySO?PLf~"ELoy.vn..ESTTNO?ACILI.IESallllI?ICATIJNQOALI?ICATIO'ICNfor'lTA"El<SI4mgy~oosna-121)o>4sec-I21-721OCConrolaniarg25OVDCLnl'nntor25OVLol'.Cen~ar'25VID-'Snln'54ID2742n-25425-2642D-2'l4ID-6'52lf4112D-f522D-652ID612ID-6221C~6'12'Ifl64?2D-6122D-6222D-4322n-642'Iccnr4alC1"7..'lCteronlC11llC.nflrnina".o..trnl'nntrnlTnn4rnln1trol'ilt11ConcrnlCnncrnlnnt=nl"antrnlCollcrn1=Ontrnlnnt:nl6'I16I1170osl7291717717)117117I771171711771771171"771'IIen"slIElectricCn.I2I21I2I11I2-2ryl)LAborA.Ory,vnvc1,CA"ro?aclSppcO-Ino6T?EE-344-197IproTectSpeca-22".TREE-'1441975oepnra~2614n-p,O.Shiov4ypnpnlt~AN2614O-22434O-32614n-7flytO.ShipveyPCher7~).Ca)sI'i4el.r'Eilfcl-'f5l/OL7-539Dij(0)t7M4rAf)rf)/~EL,p/qe.lc~e-~nlgHC~leg~~l-iv'Ilc.flIafr4><arPg,~Erg5PGC=.~rent~c'.-/oglqI)*-cE54+-I'/75.Sf--/'SS;+'i+if/Igf10..:SOOCifinntianI-I1XA".14OlaonnoslhySOOCificettor.':-22AH>yf-;5)'-4,"=//.l//-')rtPI.EM&)7eo&/'rl-c,Clnz+,
l3L'In-I11CCONT%1LANDLnln?'NTESSa-a4vTa-44aoaIflfP;?IAiC:4lie:rn'JESCYI.I'I'.CilfP1.NT<1.i'lAT/1'4'lvfySO?PLf~"ELoy.vn..ESTTNO?ACILI.IESallllI?ICATIJNQOALI?ICATIO'ICNfor'lTA"El<SI4mgy~oosna-121)o>4sec-I21-721OCConrolaniarg25OVDCLnl'nntor 25OVLol'.Cen~ar'25VID-'Snln'54ID2742n-25425-2642D-2'l4ID-6'52lf4112D-f522D-652ID612ID-6221C~6'12'Ifl64?2D-6122D-6222D-4322n-642'Iccnr4alC1"7..'lCteronlC11llC.nflrnina".o..trnl'nntrnlTnn4rnln1trol'ilt11ConcrnlCnncrnlnnt=nl"antrnlCollcrn1=Ontrnlnnt:nl6'I16I1170osl7291717717)117117I771171711771771171"771'IIen"slIElectricCn.I2I21I2I11I2-2ryl)LAborA.Ory,vnvc1,CA"ro?aclSppcO-Ino6T?EE-344-197IproTectSpeca-22".TREE-'1441975oepnra~2614n-p,O.Shiov4ypnpnlt~AN2614O-22434O-32614n-7flytO.ShipveyPCher7~).Ca)sI'i4el.r'Eilfcl-'f 5l/OL7-539Dij(0)t7M4rAf)rf)/~EL,p/qe.lc~e-~nlgHC~leg~~l-iv'Ilc.
SSES-FSAR.Aagg,Ing-lsaoZoggygcggggsggmgsrycugsNolP3cvTlOSRTlrJCjil'!!$OCaglA,'IDNITSOPPLIER.ITVvn.neSCRIPTIVRFOulps.,aVu.SLOG.KLE'I.SO.TESTINGFACILITIEsOoar.rFIcaTrosOoarIFICATrosCRITERIA"El"SIGMEOSy:8856-8-152Autosatic.cnnstecSvitch0ATS-5I&0ATS-526OATS-536OaTS-5461ATs-219IATS2292ATS2192ATS-229ev>-55'.Riessl-677';un.~677'77~677~neactor670'19~Reactor670'19'3<t'0)CasnRussurelecteic,CasaInc.CssnCssnQyleLaboratory'labasatoeCC80CospanyLtd.22~waaN.@oui.0/'Tele-crtlc.1~4$4LsProspectSpecG-'IO~8IEEE-344-1975F&Sa,7'r'EC.~-(~i"~ZE.is>Ivy-I'I75.Bepott1444341Sy:JasesQ.Focesant'*'sc-rt7Pc.~Ip.~NOTEISoeCiticationC-19iscosoresentehbySpecitlcationG-22-ll)](;=IFC.~.In]1I'rCoIII'Ll=agEilyCP5'f5/$4,$IWQ,I~)Rev.-36~-07/84-  
flIafr4><arPg,~Erg5PGC=.~rent~c'.-/oglqI)*-cE54+-I'/75.Sf--/'SS;+'i+if/Igf10..:SOOCifinntian I-I1XA".14Olaonnosl hySOOCificet tor.':-22AH>yf-;5)'-4,"=//.l//-')rtPI.EM&)7eo
&/'rl-c,Clnz+,
SSES-FSAR
.Aagg,Ing-lsaoZoggygc ggggsggmgsrycugsNolP3cvTlOSRTlrJCjil'!!$OCaglA,'I DNITSOPPLIER.ITVvn.neSCRIPTIVR FOulps.,aVu.SLOG.KLE'I.SO.TESTINGFACILITIEsOoar.rFIcaTrosOoarIFICATrosCRITERIA"El"SIGMEOSy:8856-8-152 Autosatic
.cnnstecSvitch0ATS-5I&0ATS-526OATS-536OaTS-5461ATs-219IATS2292ATS2192ATS-229ev>-55'.Riessl-677';un.~677'77~677~neactor670'19~Reactor670'19'3<
t'0)CasnRussurelecteic, CasaInc.CssnCssnQyleLaboratory'labasa toeCC80CospanyLtd.22~waaN.@oui.0/'Tele-crt lc.1~4$4LsProspectSpecG-'IO~8IEEE-344-1975F&Sa,7'r'EC.
~-(~i"~ZE.is>Ivy-I'I75.Bepott1444341Sy:JasesQ.Focesant'*'sc-rt7Pc.~Ip.~NOTEISoeCiticationC-19iscosoresenteh bySpecitlcationG-22-ll)](;=IFC.~.In]1I'rCoIII'Ll=agEilyCP 5'f5/$4,$IWQ,I~)Rev.-36~-07/84-  


~~tSSFS-ASAP.11.2b.1Coep)iancevithIEEE323-1q71forNon-HSSSClass'IEEggioa~g.l11gh11Pgg-/AS"'ggiPII<QiLgcg~el&34igggggfajMr2gAll,non-HSSSClass1EequipmentlocatedinsidecontainaenthasheepaualifiedtoIFFF323-1971gg-Ng$2Eggs,ganntJggygedogtggdcc~oigggaentW11non-HSSSClass1L?eauipaent.locatedoutsidecontainaent,~rc~ptthatlistedinTahle3.11-5hpspeenqua)ifiedtoIFFEt33-1971.APg//~/~AgggI~~p~gggpg~(~/g()~~~~g~gQ/jl7+55IE4'p~rmsa~crAv~zfh'Irt'p7V+~~5.Egu/PHAVT>Liel7%i>/u/I////.//EuVIAcur7/~7~5PoPAc4urMD&xoaentlistedinTahle3.11-5isqualifiedtoperform's&+<~safetvfunctionintheenvironaentinvhichitislocated.tlovever,thevendorsfortheeauipaentverenotrequiredtocertifycoIIplinncevithIEEF.323.TnlieucfIEEE323certificationhee'auipaentlistedinTable3.11-5Ssqualifi~dhy'cootirationofanalysis,siailarity,andprviousopo.ratinqex'perience..Thequalificationdocuaentsareavailablefor1lPCquditas'statedinsuhsection3.11.3.4.Thisqualificationmethodisjust(fledbecausetheselectedequipmentsectsacoehinationofthefnllovinqconditions:1leannoraaloperate.nqtemperatureislessthan404Ca~~Acciden~~nvironaen+isnotsubstantiallyacreseveretl.enthnncrealenvironaen~.Bythisitisaeant,theequipcrntvi1lcontinuotosatisfactorallvperforaitssafetyfunctionintho.accidentenvironILent~hovcver,itslenqthofaualifiedlifeisreduced.Fquipaontissioilartoequipeentpreviouslyusedino.h~rr,<".imparplan-.;=andother=.ndustrialapplications.4.DesiqnandfabricationisinaccordancevithanapprovohanRauditablenuclearqualityasuranceproqraa.6~Theeauipmertistested(eitherin'heshoporatthesite)priortnplants+ar~-up.Theeauipeent'sused,orfreauentlytested,durinanorI'aloperation.3~11-11 0  
~~tSSFS-ASAP
~~SSFS-FSAP1~3a,]HS.SQQQ)KQmoBtM1oggad"QRffX1HL$9+u2aentThir.paraqraphdiscussesthetostresultsforsafety-relatedinstrumentationandelectrical.equipeentintheVASSSexceptvhichissuppliedvithKSSSpumpsandvalves.ThetestresultsforGRsafe+yrelatedequipaentaremaintainedinaperaanen~filebyCFandcarh~readilyaudited.Znallcases,tho,oquipmantuedin.Class1Eapplicationspassedtheprescribedtests.Table3.11-1shovstheplantenvironwentalareasinvhic.haSSscia.,stFcomponentsarelocated.Tables3.11-2and3.11-3~hovthetemporature,pressureandhumidityenvironmentsandab)e3.11-4shovsha"adiationenvironmentstovhichthecomponen'.Nar'etest<d.11gg,gNQSSVy],vo%gyppedggecgZjcygggujpmeptTheelectrical.equipmentmountedonthesafety/relief,SECandrocirculationqatevalvesistestedtoconditionsvhichareatleastas=evereasthetemperature,pressureandhumiditycenditionsshovninTables3.11-1~3.11-2and3.11-3.Theyarealsntastedtotheradiation.environaentapplicable'totheirplantloca.ionasshovninTable3.11-4.Theequipmentpertnrmeditrequiredsafetyfunctionundertheextremeenvironmentalcor.ditionsspecified.'34,1.1p.i1~4pi~lgaS.Qg~ggg,hnKCCSpumpmotorslistedinTable3.11-3arerestedtothetemneraturo~pressureandhumidityconditionsshcvnin.hetable.Thcvarea]sotestedtotheradiationenvironmentapplicablctcthoirlo--.tionas;-.:ovninTable3.11-4.Theequipmenttestedportcrmreaitsrequ.'redsafetyfunctionunde"theexterne-~r!virnnmon+a1conditionsspecified.Soy-igSgClasa1EXltSXZXrylggyggmgggf:nvironaentalqualificationdocumentationfcrncn-NSSSClass1K~lactricaloquipmen~ispreantlylncatedattheBechtelhomeofficeinSanFranciscoandisavailableforHRCauditggC+~pNpp7k+C~$/cEPz>~g/rgp,'qA'55dClrj7SC7WC78+n-R:'r~57~yevgj5g~z."E~~D~cuw~r&#xc3;7Co~AWncIA7ZDm:,c'&i+>47CS4oQ7~8z7MPAvrN5$CVW(rfjbw~fC/4K'HIC85<<A~vnwMrA.W>87~~y5ygggA<urfSWM~~P<C5r~Wipwsin.P.ev~/ec3~11-12  
.11.2b.1Coep)iancevithIEEE323-1q71forNon-HSSSClass'IEEggioa~g.l11gh11Pgg-/AS"'ggiPII<Qi Lgcg~el&34igg gggfajMr2gAll,non-HSSSClass1Eequipment locatedinsidecontainaent hasheepaualified toIFFF323-1971gg-Ng$2Eggs,gannt Jggygedogtggdcc~oigggaent W11non-HSSSClass1L?eauipaent.
locatedoutsidecontainaent,~rc~ptthatlistedinTahle3.11-5hpspeenqua)ifiedtoIFFEt33-1971.APg//~/~AgggI~~p~gggpg~(~/g()
~~~~g~gQ/jl7+55IE4'p~rmsa~crAv~z fh'Irt'p7V+~~5.Egu/PHAVT>
Liel7%i>/u/I////.//
EuVIAcur7/~7~5PoPAc4urMD
&xoaentlistedinTahle3.11-5isqualified toperform's&+<~safetvfunctionintheenvironaent invhichitislocated.tlovever, thevendorsfortheeauipaent verenotrequiredtocertifycoIIplinnce vithIEEF.323.TnlieucfIEEE323certification hee'auipaent listedinTable3.11-5Ssqualifi~d hy'cootirationofanalysis, siailarity, andprviousopo.ratinq ex'perience..The qualificationdocuaents areavailable for1lPCquditas'stated insuhsection 3.11.3.4.
Thisqualification methodisjust(fled becausetheselectedequipment sectsacoehination ofthefnllovinq conditions:
1leannoraaloperate.nq temperature islessthan404Ca~~Acciden~~nvironaen+
isnotsubstantially acreseveretl.enthnncrealenvironaen~.
Bythisitisaeant,theequipcrntvi1lcontinuotosatisfactorallv perforaitssafetyfunctionintho.accidentenvironILent
~hovcver,itslenqthofaualified lifeisreduced.Fquipaont issioilartoequipeent previously usedino.h~rr,<".impar plan-.;=andother=.ndustrial applications.
4.Desiqnandfabrication isinaccordance vithanapprovohanRauditable nuclearqualityasuranceproqraa.6~Theeauipmert istested(eitherin'heshoporatthesite)priortnplants+ar~-up.Theeauipeent
'sused,orfreauently tested,durinanorI'aloperation.3~11-11 0  
~~SSFS-FSAP1~3a,]HS.SQQQ)KQmoBtM1og gad"QRffX1HL$
9+u2aentThir.paraqraph discusses thetostresultsforsafety-related instrumentation andelectrical.equipeent intheVASSSexceptvhichissuppliedvithKSSSpumpsandvalves.ThetestresultsforGRsafe+yrelatedequipaent aremaintained inaperaanen~
filebyCFandcarh~readilyaudited.Znallcases,tho,oquipmant uedin.Class1Eapplications passedtheprescribed tests.Table3.11-1shovstheplantenvironwental areasinvhic.haSSscia.,stFcomponentsarelocated.Tables3.11-2and3.11-3~hovthetemporature, pressureandhumidityenvironments andab)e3.11-4shovsha"adiation environments tovhichthecomponen'.N ar'etest<d.11gg,gNQSSVy],vo%gyppedggecgZjcyg ggujpmept Theelectrical.
equipment mountedonthesafety/relief, SECandrocirculation qatevalvesistestedtoconditions vhichareatleastas=evereasthetemperature, pressureandhumiditycenditions shovninTables3.11-1~3.11-2and3.11-3.Theyarealsntastedtotheradiation.
environaent applicable
'totheirplantloca.ionasshovninTable3.11-4.Theequipment pertnrmed itrequiredsafetyfunctionundertheextremeenvironmental cor.ditions specified.
'34,1.1p.i1~4pi
~lgaS.Qg~ggg,hnKCCSpumpmotorslistedinTable3.11-3arerestedtothetemneraturo
~pressureandhumidityconditions shcvnin.hetable.Thcvarea]sotestedtotheradiation environment applicablc tcthoirlo--.tion as;-.:ovn inTable3.11-4.Theequipment testedportcrmrea itsrequ.'red safetyfunctionunde"theexterne-~r!virnnmon+a 1conditionsspecified.Soy-igSgClasa1EXltSXZXryl ggyggmggg f:nvironaental qualificationdocumentation fcrncn-NSSSClass1K~lactrical oquipmen~
ispreantlylncatedattheBechtelhomeofficeinSanFrancisco andisavailable forHRCauditggC+~pNpp7k+C~$/cEPz>~g/rg p,'qA'55dClrj7SC7 WC78+n-R:'r~57~yevgj5g~z."E~~D~cuw~r&#xc3;7Co~
AWncIA7ZD m:,c'&i+>47CS4oQ7~8z7MPAvrN5$CVW(rfjbw~fC/4K'HIC85
<<A~vnwMrA.W>87~~y5ygggA<urf SWM~~P<C5r~Wipwsin.P.ev~/ec3~11-12  


SSES-FSAR2.IfEquation10resultsin2.4<S<3,0Sforferriticorausteniticsteels,thecumulativeusagefactor,U,calculatedonthebasisofEquation14ofNB"3653.6,mustbe<0.1.3.IfEquation10resultsinS>3.0Sforferriticorausteniticsteels,thenthestressvalueinEquations12and]3ofNB-3653e6mustnotbe<2.4SReulatorGuide'1.47-BYPASSEDANDINOPERATIONALSTATUSINDICATIONFORNUCLEARPOWERPLANTSAFETYSYSTEMS(Ma1973)Thedesign,asdiscussedinSubsections7.1.2,7.2.2.1.2.1.5g7.3.2a.l.2.1.7,7.3.2a.2.2.1.5,7.4.2.1.2.1.7,7.4.2.2.2.1.7,7.4.2.3and7.6.2.8,complieswiththeprovisionssetforthinthisregulatoryguide.ReulatorGuide1.48-DESIGNLIMITSANDLOADINGCOMBINATIONSFORSEISMICCATEGORYIFLUIDSYSTEMCOMPONENTS(Ma1973)Thedesignloadingcombinationsfornon-NSSSsystemsforppsirjpnsC.~lro+c>1?aregeag~crrbe8rnggple~39-gr~>gp-)<Subsection3.9.3.2.GEpracticeisrepresentativeofindustrypracticeandisingeneralagreementwiththerequirementsofRegulatoryGuide1.48withthefollowingclarifications:TheprobabilityofanOBEofthemagnitudepostulatedfortheSusquehannaSESisconsistentwithitsclassificationasanEmergencyEvent.However,fordesignconservatism,loadsduetotheOBEvibratorymotionhavebeenincludedunderupsetconditions.LoadsduetotheOBEvibratorymotionplusaszcc';.tedtran=-'.nts,suchaaturbinetrip,havebeenrons~ueredintheequipmentdesignunderemergencyconditionsconsistentwiththeprobabilityoftheOBEoccurrence.b.TheuseofincreasedstresslevelsforClass2componentsisconsistentwithindustrypracticeasspecifiedinASMEB6PVCodeSectionIII.ForacomparisonofNSSScompliancewithRegulatoryGuide1.48seeTable3.13'-1.ThiscomparisonreflectsaGEpracticeonBWR4'sand5'sandtherefore,isappli'cabletotheSusquehannaSES(seeSubsections3.9.2and3.9.3).Rev.35,07/843.13-19  
SSES-FSAR 2.IfEquation10resultsin2.4<S<3,0Sforferriticoraustenitic steels,thecumulative usagefactor,U,calculated onthebasisofEquation14ofNB"3653.6, mustbe<0.1.3.IfEquation10resultsinS>3.0Sforferriticoraustenitic steels,thenthestressvalueinEquations 12and]3ofNB-3653e6 mustnotbe<2.4SReulatorGuide'1.47
-BYPASSEDANDINOPERATIONAL STATUSINDICATION FORNUCLEARPOWERPLANTSAFETYSYSTEMS(Ma1973)Thedesign,asdiscussed inSubsections 7.1.2,7.2.2.1.2.1.5g 7.3.2a.l.2.1.7, 7.3.2a.2.2.1.5, 7.4.2.1.2.1.7, 7.4.2.2.2.1.7, 7.4.2.3and7.6.2.8,complieswiththeprovisions setforthinthisregulatory guide.ReulatorGuide1.48-DESIGNLIMITSANDLOADINGCOMBINATIONS FORSEISMICCATEGORYIFLUIDSYSTEMCOMPONENTS (Ma1973)Thedesignloadingcombinations fornon-NSSSsystemsforppsirjpns C.~lro+c>1?
aregeag~crrbe8 rnggple~3 9-gr~>gp-)<
Subsection 3.9.3.2.GEpracticeisrepresentative ofindustrypracticeandisingeneralagreement withtherequirements ofRegulatory Guide1.48withthefollowing clarifications:
Theprobability ofanOBEofthemagnitude postulated fortheSusquehanna SESisconsistent withitsclassification asanEmergency Event.However,fordesignconservatism, loadsduetotheOBEvibratory motionhavebeenincludedunderupsetconditions.
LoadsduetotheOBEvibratory motionplusaszcc';.ted tran=-'.nts,suchaaturbinetrip,havebeenrons~uered intheequipment designunderemergency conditions consistent withtheprobability oftheOBEoccurrence.
b.Theuseofincreased stresslevelsforClass2components isconsistent withindustrypracticeasspecified inASMEB6PVCodeSectionIII.Foracomparison ofNSSScompliance withRegulatory Guide1.48seeTable3.13'-1.Thiscomparison reflectsaGEpracticeonBWR4'sand5'sandtherefore, isappli'cable totheSusquehanna SES(seeSubsections 3.9.2and3.9.3).Rev.35,07/843.13-19  


SSES-FSARReulatorGuide1.60DESIGNRESPONSESPEC'j.RAFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(Revision1,December1973)ThedesignresponsespectrausedintheanalysisofSusquehannaSESaredifferentfromthoseoftheregulatoryguide.AdetaileddiscussionofthedsignresponsespectraispresentedinSubsection3.7b.l.~~~'>p"g~Qg+Bc~~guJalin~m~qogg4,grpq~A0-~ReulatorGuide1.61-DAMPINGVALUESFORSEISMICDESIGNOFNUCLEARPOWERPLANTS,@gs0(October1973)ThedampingvaluesusedintheseismicdesignofSusquehannaSESaredifferentfromtk>eregulatoryguide.Adetaileddiscussiono",I:lir;dampingvaluesispresentedinSubsection3.7b.l.c"IReulatorGuide1.62-MANUALINITIATIONOFPROTECTIVEACTIONS(October1973)Theprovisionsformanualinitiationofprotectiveactionsarecl>>scribedinSubsections7.2.2.1.2.1.7,7.3.2a.l.2.1.9,7.3.2a.2.2.1.7,7.3.2a.3.2.1.3,7.4.2.1.2.1.9and7.4.2.2.2.1.9.ReulatorGuide1.63-ELECTRICPENETRATIONASSEMBLIESINCONTAINMENTSTRUCTURESFORWATERCOOLEDNUCLEARPOWERPLANTS(Re'vision1,Ma1977)Sincetk>econstructionpermitforSusquehannaSESwasissuedinNovember1973,theprovisionsofRevision1tothi"regulatorygu.i<)e(whichsupplementsIEEE317-1976)werenotspecificallyconsi<lerodi>>thedesignofSusquehannaSES.Thedesignofthe~1~.ctricpenetrationassembliesisthereforeincompliancewithRegulatoryGuide1.63datedOctober1973(whichsupplementsIEEE317-1972).Specifically,Sections4.2.3,4.2.4,5.1.6,5.2.2,6.2,6.3.3,<<nd6.4nfIEEE317,-1976havenotbeenincorporated.Thepenet..:=;tioncab1=protectioniimitationcurvesar'eshowntogether~~ththeirrespectiveprotectivedevicecoordinationcurv~.sonFigures3.13-1to3.13-7.Theshnrtcircuitcurvesapplyfortheconditionwhentheelectricalandmechanicalseali.ntegrityismaintained.Theseallimitationcurve..applywhenthemechanicalsealintegrityismaintainedandtheelectricalintegrityissacrificed.Thepenetrationassembliesaretypetested.Therearennprovisionsfor'periodictestingundersimulatedfaultconditionsElectricalpenetrationcircuitsaresummarizedasfollows:cn,c4CSII$lEQKm(,~g3.13-24 SSES-FSARDESIGNRESPONSESPECTRAFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(Revision1,December1973)ThedesignresponsespectrausedintheanalysisofSusquehannaSESaredifferentfromthoseoftheregulatoryguide.Adetaileddi.scussionofthed.ignresponsespectraispresentedinSubsection3.7b.l.Rr~ulaturgGuide1.61-DAMPINGVALUESFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(October1973)~>hedampingvaluesusedintheseismicdesignofSgsq~epyppp)~Sar>>diiferentfromtheregulatoryguide/'"A8CPazlehxcussxon)ofthr<l~mpingvaluesispresentedinSubsection3.7b.1.i'.:Vu)ati~>r'uide1.62-MANUALINITIATIONOFPROTECTIVEACTIONS(October1973)'l'heprnvisionsformanualiniti.ationofprotectiveactionsare<1r.secibudinSubsections7.2.2.1.2.1.7,7.3.2a.1.2.l.9P7.3.2a.2.2.1.7,7;3.2a.3.2.1.3,7.4.2.1.2.1.9and7.4.2.2.2.1.9.INCONTAINMENTSTRUCTURESFORWATERCOOLEDNUCLEARPOWERPLANTS(Revision1,Ma1977)Sincet.hc'onstructionpermitforSusquehannaSESwasissuedinNavember1973,theprovi"ionsofRevision1tothisregulatoryguic!e{whichsupplementsIFEE317-1976)werenotspecifically..onE'dcredinthedesignofSusquehannaSES.ThedesignoftheI16dctric)2enetrationassembliesisthereforeincompliancewithRegulatoryGuide1.63datedOctober1973(whichsupplementsIEEE317-1972).Specifically,Sections4.2.3,4.2.4,5.1.6,5.2.2,6.2,6.3.3,and6.4nfIEEE317-1976havenotbeenincorporated.Thepenetrationcableprotectionlimitationcurvesareshowntogetherwiththeirrespectiveprotectivedevicecoordinationcurve"onFigures3.13-1to3.13-7.Theshortcircuitcurvesapplyfortheconditionwhentheelectricalandmechanicalsealintegrityismaintained.Theseallimitationcurvesapplywhenthetnechanicalsealintegrityismaintainedandtheelectricalintegrityissacrificed.Thepenetration"assembliesaretypetested.Therearenoprovisio>>sforperiodictestingundersimulatedfaultconditions.ElecLricalpenetrationcircuitsaresummarizedasfollows:kev.35,07/843.13-24 0
SSES-FSAR ReulatorGuide1.60DESIGNRESPONSESPEC'j.RA FORSEISMICDESIGNOFNUCLEARPOWERPLANTS(Revision 1,December1973)ThedesignresponsespectrausedintheanalysisofSusquehanna SESaredifferent fromthoseoftheregulatory guide.Adetaileddiscussion ofthedsignresponsespectraispresented inSubsection 3.7b.l.~~~'>p"g~Qg+Bc~~guJalin~m~qogg4,grp q~A0-~ReulatorGuide1.61-DAMPINGVALUESFORSEISMICDESIGNOFNUCLEARPOWERPLANTS,@gs0(October1973)ThedampingvaluesusedintheseismicdesignofSusquehanna SESaredifferent fromtk>eregulatory guide.Adetaileddiscussion o",I:lir;dampingvaluesispresented inSubsection 3.7b.l.c"IReulatorGuide1.62-MANUALINITIATION OFPROTECTIVE ACTIONS(October1973)Theprovisions formanualinitiation ofprotective actionsarecl>>scribed inSubsections 7.2.2.1.2.1.7, 7.3.2a.l.2.1.9, 7.3.2a.2.2.1.7, 7.3.2a.3.2.1.3, 7.4.2.1.2.1.9 and7.4.2.2.2.1.9.
SSES-FSARReulatorGuide1.92/COMBININGMODALRESPONSESANDSPATIALCOMPONENTSINSEISMICRESPONSEANALYSIS(Revision1,Februar1976)SincetheconstructionpermitfortheSusquehannaSESwasissuedinNovember1973,themethodsofcombiningmodalresponsesandspatialcomponentsinseismicresponseanalysis,asdescribedinthisregulatoryguide,werenotspecificallyconsideredinthedesign.Themethodsofdesignandanalysisforstructures,components,andpipingsystemsthathavebeenemployedareReulatorGuide1.93-AVAILABILITYOFELECTRICPOWERSOURCES(December1974)CompliancewiththisguideisdiscussedinSubsection8.1.6.2.~ReulatorGuide1.94QUALITYASSURANCEREQUIREMENTSFORINSTALLATION,INSPECTION/ANDTESTINGOFSTRUCTURALCONCRETEANDSTRUCTURALSTEELDURINGTHECONSTRUCTIONPHASEOFNUCLEARPOWERPLANTS(Revision1,Aril1976)tThequalityassuranceprogramSESisdescribedinthePSAR,ComplianceoftheOperationalguideisdescribedinSectionfortheconstructionofSusquehannaAppendixDandamendments.QualityAssuranceProgramwiththis17.2.ReulatosGuide1.96DESIGNOFMAINSTEAMISOLATIONVALVEIEAKAGECONTROLSYSTEMSFORBOILINGWATERREACTORNUCLEARPOWERPLANTS(Revision1,June1976)ReulatorGuide1.95-PROTECTIONOFNUCLEARPOWFRPLANTCONTROLROOMOPERATORSAGAINSTANACCIDENTAL.CHLORINERELEASE(Februar1975)ThepresentdesignoftheSusquehannaSEScomplieswiththepositionstatementsofthisregulatoryguide.ioidVJoJSubjecttotheclarificationindicatedbelow,theprovisionsofthisregulatoryguidearemetbythecurrentplantdesign.(1)
ReulatorGuide1.63-ELECTRICPENETRATION ASSEMBLIES INCONTAINMENT STRUCTURES FORWATERCOOLEDNUCLEARPOWERPLANTS(Re'vision 1,Ma1977)Sincetk>econstruction permitforSusquehanna SESwasissuedinNovember1973,theprovisions ofRevision1tothi"regulatory gu.i<)e(whichsupplements IEEE317-1976) werenotspecifically consi<lerod i>>thedesignofSusquehanna SES.Thedesignofthe~1~.ctricpenetration assemblies istherefore incompliance withRegulatory Guide1.63datedOctober1973(whichsupplements IEEE317-1972).
Specifically, Sections4.2.3,4.2.4,5.1.6,5.2.2,6.2,6.3.3,<<nd6.4nfIEEE317,-1976 havenotbeenincorporated.
Thepenet..:=;tion cab1=protection iimitation curvesar'eshowntogether~~ththeirrespective protective devicecoordination curv~.sonFigures3.13-1to3.13-7.Theshnrtcircuitcurvesapplyforthecondition whentheelectrical andmechanical seali.ntegrity ismaintained.
Theseallimitation curve..applywhenthemechanical sealintegrity ismaintained andtheelectrical integrity issacrificed.
Thepenetration assemblies aretypetested.Therearennprovisions for'periodic testingundersimulated faultconditions Electrical penetration circuitsaresummarized asfollows:cn,c4CSII$lEQKm(,~g3.13-24 SSES-FSAR DESIGNRESPONSESPECTRAFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(Revision 1,December1973)ThedesignresponsespectrausedintheanalysisofSusquehanna SESaredifferent fromthoseoftheregulatory guide.Adetaileddi.scussion ofthed.ignresponsespectraispresented inSubsection 3.7b.l.Rr~ulaturg Guide1.61-DAMPINGVALUESFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(October1973)~>hedampingvaluesusedintheseismicdesignofSgsq~epyppp
)~Sar>>diiferent fromtheregulatory guide/'"A 8CPazlehxcussxon)ofthr<l~mpingvaluesispresented inSubsection 3.7b.1.i'.:Vu)ati~>r
'uide1.62-MANUALINITIATION OFPROTECTIVE ACTIONS(October1973)'l'heprnvisions formanualiniti.ation ofprotective actionsare<1r.secibudinSubsections 7.2.2.1.2.1.7,7.3.2a.1.2.l.9P7.3.2a.2.2.1.7, 7;3.2a.3.2.1.3, 7.4.2.1.2.1.9 and7.4.2.2.2.1.9.
INCONTAINMENT STRUCTURES FORWATERCOOLEDNUCLEARPOWERPLANTS(Revision 1,Ma1977)Sincet.hc'onstruction permitforSusquehanna SESwasissuedinNavember1973,theprovi"ions ofRevision1tothisregulatory guic!e{whichsupplements IFEE317-1976) werenotspecifically
..onE'dcredinthedesignofSusquehanna SES.ThedesignoftheI16dctric)2enetration assemblies istherefore incompliance withRegulatory Guide1.63datedOctober1973(whichsupplements IEEE317-1972).
Specifically, Sections4.2.3,4.2.4,5.1.6,5.2.2,6.2,6.3.3,and6.4nfIEEE317-1976havenotbeenincorporated.
Thepenetration cableprotection limitation curvesareshowntogetherwiththeirrespective protective devicecoordination curve"onFigures3.13-1to3.13-7.Theshortcircuitcurvesapplyforthecondition whentheelectrical andmechanical sealintegrity ismaintained.
Theseallimitation curvesapplywhenthetnechanical sealintegrity ismaintained andtheelectrical integrity issacrificed.
Thepenetration" assemblies aretypetested.Therearenoprovisio>>s forperiodictestingundersimulated faultconditions.
ElecLrical penetration circuitsaresummarized asfollows:kev.35,07/843.13-24 0
SSES-FSAR ReulatorGuide1.92/COMBINING MODALRESPONSES ANDSPATIALCOMPONENTS INSEISMICRESPONSEANALYSIS(Revision 1,Februar1976)Sincetheconstruction permitfortheSusquehanna SESwasissuedinNovember1973,themethodsofcombining modalresponses andspatialcomponents inseismicresponseanalysis, asdescribed inthisregulatory guide,werenotspecifically considered inthedesign.Themethodsofdesignandanalysisforstructures, components, andpipingsystemsthathavebeenemployedareReulatorGuide1.93-AVAILABILITY OFELECTRICPOWERSOURCES(December 1974)Compliance withthisguideisdiscussed inSubsection 8.1.6.2.~ReulatorGuide1.94QUALITYASSURANCE REQUIREMENTS FORINSTALLATION, INSPECTION/
ANDTESTINGOFSTRUCTURAL CONCRETEANDSTRUCTURAL STEELDURINGTHECONSTRUCTION PHASEOFNUCLEARPOWERPLANTS(Revision 1,Aril1976)tThequalityassurance programSESisdescribed inthePSAR,Compliance oftheOperational guideisdescribed inSectionfortheconstruction ofSusquehanna AppendixDandamendments.
QualityAssurance Programwiththis17.2.ReulatosGuide1.96DESIGNOFMAINSTEAMISOLATION VALVEIEAKAGECONTROLSYSTEMSFORBOILINGWATERREACTORNUCLEARPOWERPLANTS(Revision 1,June1976)ReulatorGuide1.95-PROTECTION OFNUCLEARPOWFRPLANTCONTROLROOMOPERATORS AGAINSTANACCIDENTAL.
CHLORINERELEASE(Februar1975)ThepresentdesignoftheSusquehanna SEScomplieswiththepositionstatements ofthisregulatory guide.ioidVJoJSubjecttotheclarification indicated below,theprovisions ofthisregulatory guidearemetbythecurrentplantdesign.(1)


==Reference:==
==Reference:==
AppendixA,Paragraph6.Thedesignandinspectionofthi,sportionoftheleakagecontrolsystemisinaccordancewiththeprovisionsofSectionXIoftheASMEBoilerandPzessureVesselCode.The100percentvolumetricinspection3.13-37  
 
'P0 SSES-FSARRculatorGuide1.92-COMBININGMODALRESrONSESANDSPATIALCOMPONENTS'NSEISMICRESPONSEANALYSIS(Revision1,Februar1976)Sincetheconstructionpc.rmitfortheSusquehannaSESwasissuedinNovember1973,themethodsofcombiningmodalresponsesandspatialcomponentsinseismicresponseanalysis,asdescribedinthi~reqult~~ujpg~gg~notspecificallyconsideredinthedeign~%Bemht'hocRof3e'deignandanalysisforstructuresgcomponents,andpipingsystemsthathavebeenemployedaredescribedinSections3.7a,3.7band3.9.BeulatorGuide1.93-*AVAILABILITYOFELECTRICPOWERSOURCES(December1974)CompliancewiththisguideisdiscussedinSubsection8.1.6.2.~ReulatorGuide1.94QUALITYASSURANCEREQUIREMENTSFORINSTALLATION,INSPECTIONtANDTESTINGOFSTRUCTURALCONCRETEANDSTRUCTURALSTEELDURINGTHECONSTRUCTIONPHASEOFNUCLEARPOWERPLANTS(Revision1,Aril1976)ThecualityassuranceprogramSESisdescribedinthePSAR,ComplianceoftheOperationalguideisdescribedinSectionforthe'onstructionofSusquehannaAppendixDandamendments.QualityAssuranceProgramwiththis17.2.R.aulatc'r.Guide1.95PROTECTIONOFNUCLEARPOWERPLANT-CONTROLROOMOPERATORSAGAINSTANACCIDENTALCHLORINERELEASE(Februar1975)ThepresentdesignoftheSusquehannaSEScomplieswiththepositionstatementsofthisregulatoryguide.Beulator'uide1.96,DESIGNOFMAINSTEAMISOLATIONVALVELEAKAGECONTROLSYSTEMSFORBOILINGWATERREACTORNUCLEARPOWERPLANTS(Revision1,June1976)Subjecttotheclarificationindicatedbelow,theprovisionsofthisregulatoryguidearemetbythecurrentplantdesign.(I)
AppendixA,Paragraph 6.Thedesignandinspection ofthi,sportionoftheleakagecontrolsystemisinaccordance withtheprovisions ofSectionXIoftheASMEBoilerandPzessureVesselCode.The100percentvolumetric inspection 3.13-37  
'P0 SSES-FSAR RculatorGuide1.92-COMBINING MODALRESrONSES ANDSPATIALCOMPONENTS'N SEISMICRESPONSEANALYSIS(Revision 1,Februar1976)Sincetheconstruction pc.rmitfortheSusquehanna SESwasissuedinNovember1973,themethodsofcombining modalresponses andspatialcomponents inseismicresponseanalysis, asdescribed inthi~requl t~~ujpg~gg~notspecifically considered inthedeign~%Bemht'hocRof3e'deignandanalysisforstructuresg components, andpipingsystemsthathavebeenemployedaredescribed inSections3.7a,3.7band3.9.BeulatorGuide1.93-*AVAILABILITY OFELECTRICPOWERSOURCES(December 1974)Compliance withthisguideisdiscussed inSubsection 8.1.6.2.~ReulatorGuide1.94QUALITYASSURANCE REQUIREMENTS FORINSTALLATION, INSPECTIONt ANDTESTINGOFSTRUCTURAL CONCRETEANDSTRUCTURAL STEELDURINGTHECONSTRUCTION PHASEOFNUCLEARPOWERPLANTS(Revision 1,Aril1976)Thecualityassurance programSESisdescribed inthePSAR,Compliance oftheOperational guideisdescribed inSectionforthe'onstruction ofSusquehanna AppendixDandamendments.
QualityAssurance Programwiththis17.2.R.aulatc'r.Guide1.95PROTECTION OFNUCLEARPOWERPLANT-CONTROLROOMOPERATORS AGAINSTANACCIDENTAL CHLORINERELEASE(Februar1975)ThepresentdesignoftheSusquehanna SEScomplieswiththepositionstatements ofthisregulatory guide.Beulator'uide1.96,DESIGNOFMAINSTEAMISOLATION VALVELEAKAGECONTROLSYSTEMSFORBOILINGWATERREACTORNUCLEARPOWERPLANTS(Revision 1,June1976)Subjecttotheclarification indicated below,theprovisions ofthisregulatory guidearemetbythecurrentplantdesign.(I)


==Reference:==
==Reference:==
AppendixA,Paragraph6.ThedesignandinspectionofthisportionoftheleakagecontrolsystemisinaccordancewiththeprovisionsofSectionXIoftheASMEBoilerandPressureVesselCode.The100percentvolumetricinspectionPev.35,07/843.13-37


SSES-FSARReulatorGuide1.100SEISMICQUALIFICAT.NOFELECTRICEQUIPMENTFORNUCLEARPOWERPLANTS(March1976)Theimplementationparagraphofthisregulatoryguidestatesthattherequirementsof'hepositionstatementswillonlybeappliedtoplantsthatreceivedconstructionpermitsafterNovember16,1976.TheConstructionPermitforSusquehannaSESwasissuedinNovember1973andthereforetheguidelinesofthisregulatoryguidehavenotbeenutilizedinthedesignofthisnuclearpowerstation.PSeismicqualificationofthesafetyrelatedelectricequipment(non-NSSSscopeofsupply)hasbeenconductedin"'accordancewiththeIEEEStandard344-1971.Section3.10describesthecompletequalificationmethodsandproceduresthathavebeenutilized.Thesafety-relatedelectricequipment(NSSSscopeofsupply)meetsIEEE323-1971andIEEE344-1971.ReulatorGuide1.101-EMERGENCYPLANNINGFORNUCLEARPOWERPLANTSWithdrawnSeptember24,1980.ReulatorvGuide1.102-FLOODPROTECTIONFORNUCLEARPOWERPLANTS(Revision1,Setember1976)tAc3~'+.gg~l1ISA~SThepresentdesignoftheSusquehannaSEScomplieswiththeprovisionsofthisregulatoryguide.RegulatorGuide1.103-POSTTENSIONEDPRESTRESSINGSYSTEMSFORCONCRETE.REACTORVESSELSANDCONTAINMENTS(Revision1,October1976)NotApplicable.ReulatorGuide1.104-OVERHEADCRANEHANDLINGSYSTEMSFORNUCLEARPOWERPLANTS(Februar1976}(1)
AppendixA,Paragraph 6.Thedesignandinspection ofthisportionoftheleakagecontrolsystemisinaccordance withtheprovisions ofSectionXIoftheASMEBoilerandPressureVesselCode.The100percentvolumetric inspection Pev.35,07/843.13-37
 
SSES-FSAR ReulatorGuide1.100SEISMICQUALIFICAT
.NOFELECTRICEQUIPMENT FORNUCLEARPOWERPLANTS(March1976)Theimplementation paragraph ofthisregulatory guidestatesthattherequirements of'hepositionstatements willonlybeappliedtoplantsthatreceivedconstruction permitsafterNovember16,1976.TheConstruction PermitforSusquehanna SESwasissuedinNovember1973andtherefore theguidelines ofthisregulatory guidehavenotbeenutilizedinthedesignofthisnuclearpowerstation.PSeismicqualification ofthesafetyrelatedelectricequipment (non-NSSS scopeofsupply)hasbeenconducted in"'accordance withtheIEEEStandard344-1971.
Section3.10describes thecompletequalification methodsandprocedures thathavebeenutilized.
Thesafety-related electricequipment (NSSSscopeofsupply)meetsIEEE323-1971andIEEE344-1971.
ReulatorGuide1.101-EMERGENCY PLANNINGFORNUCLEARPOWERPLANTSWithdrawn September 24,1980.ReulatorvGuide1.102-FLOODPROTECTION FORNUCLEARPOWERPLANTS(Revision 1,Setember1976)tAc3~'+.gg~l1ISA~SThepresentdesignoftheSusquehanna SEScomplieswiththeprovisions ofthisregulatory guide.Regulator Guide1.103-POSTTENSIONED PRESTRESSING SYSTEMSFORCONCRETE.
REACTORVESSELSANDCONTAINMENTS (Revision 1,October1976)NotApplicable.
ReulatorGuide1.104-OVERHEADCRANEHANDLINGSYSTEMSFORNUCLEARPOWERPLANTS(Februar1976}(1)


==Reference:==
==Reference:==
PositionC.l.b(2).Theni;1-ductilitytransitiontemperaturefor.'thestructuralsteelassociatedwiththecraneswasnotdeterminedassuggestedbythisposition.PositionSubjecttotheclarificationsandexceptionsindicatedbelow,thesafetyrelatedoverheadcranehandlingsystemsofthisstationcomplywiththeprovisionsofthisregulatoryguide.IRev.M,3.13-39 40 SSES-FSARReulator'uide1.122DEVELOPMENTOFFLO"~DESIGNRESPONSESPECTRAFORSEISMICDESIGN'FFLOOR-SUPPORTEDEQUIPMENTOR'OMPONENTS(September1976)Themethods.usedfordevelopingthefloordesignresponsespectraforSusquehannaSESareincompliancewiththepositionsofthisregulatoryguideexceptasfollows:1.ThefrequenciesusedforthecalculationoftheresponsespectraaredifferentandaredescribedinSubsection3.7b.2.5.2.Theprocedureforsmoothingthespectra(broadeningofpeaks)isdifferentandisdiscussedinSubsection3.7b.2.9.keulatorGuidel.123QUALITYASSURANCEREQUIREMENTSFORCONTROLOFPROCUREMENTOFITEMSANDSERVICESFORNUCLEARPLANTS(Revision1,Jul1977)TheSusquehannaSESqualityassuranceprogramfortheconstructionphaseisdetailedinPSARAppendixDandamendments.ComplianceoftheOperationalQualityAssuranceProgramwiththisregulatoryguideisdiscussedinSection17.2.~IIReulatorGuide1.124-DESIGNLIM1TS,ANDLOADINGCOMBINATIONSFORCLASS1LINEAR-TYPECOMPONENTSUPPORTS(November1976)SincetheconstructionpermitforSusquehannaSESwasissuedinNovember1973,thisregulatoryguidewasnotspecificallyconsideredinthedesign.ThemethodsusedtodeterminedesignloadingcombinationsforSusquehannaSESaredescribedinSectionl3~9~ReulatorGuide1.125-PHYSICALMODELSFORDESIGNANDOPERATIONOFHYDRAULICSTRUCTURESANDSYSTEMSFORNUCLEARPOWERPLANTS(March1977)NophysicalmodelswereusedduringthedesignofSusquehannaSES.UJ3.13-45


SSHS-FSAR(1)ParagraphC.2-Thedesignbasiseventcondi'onsmeetthe~~~mostseverepostulatedconditionsforSusquehannaSES.FactorsormargingiveninSection6.3.1.531.5ofIEEE323-1974verenotc~g5A~so~ih<LPWITHI-II-TMoi85~+&AEgpg<Tge/>N~M4'47/PLd'~A~fW8PfFW~~~ggfuRu7'aau<SyggygMrna+'.(2)paragraphC.4-Onlyoneagingdatapoint(121C)hasbeenijPjgDIP@he~g"Noj7joijFkPATL~cAs7'aIAsjAjsDATA'<TPwM(/jParaprap&#xc3;C.6-FlametestsweredoneinaccordancewithIEEE'VDAs-74d>'kF~Z'cF/hK'AN4E'P~IPw,<<@SPCnFWTAddo~~v~4PararahC.10-GasburnerpositronxsinaccordancevithgCpp@4~dong/cw'8A'84wr%%dC,CASWSAH~47&#xc3;b~~rF~)Hijr'kjjFrwDjsssc.AM"8"wjjsxcTjjdDA5jdur<<sjijesjrjau~As<<Accoso-~cFw(TVEgpui~M~75e/>>gigu+7bZy''ujdd/./5/,(5)panelinternalwrresar~nayggalrfjedtoRegulatorycurd~/0C.,ii+'iID$D4ssjs-DjjjAcrolzDAjjcdwjrjjTjjdidcoisirs&fkijTDDAEcccEBE-exitSS/+P~EL.N7@4~1I'electriccables,Iieldsplices,andconnectionsIortheRESSscopeofsupplyhavenotbeenevaluatedagainstthisregulatoryguide.3.13-47 PENNSYLVANIAPOWER6LIGHTCOMPANYSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2DIESELGENERATOREFACILITYDESIGNDESCRIPTIONREPORT, CTABLEOFCONTENTSSECTION1.0DesignApproach1.1PurposeofDieselGeneratorE1.2ControlofDieselGeneratorE1.3SubstitutionofDieselGenerator~Pae1-11-11-21-22.0PhysicalDescription3.0Design3.1MechanicalEquipment3.1.1FuelOilStorageandTransferSystem-3.1.2CoolingWaterSystem3.1.3HeatingandVentilation3.1.4PlumbingandDrainage3.1.5Fire.Protection/Detectionk3.1.6DieselGeneratorStartingAirSystem3.1.7LubeOilSystem3.1.8JacketWaterSystem3.l..9FuelOilSystem3.2StructuralDesign3.2.1CivilDesign3.3ElectricalDesign3.3.1MediumVoltageSystem3.3.1.1NewSwitchgear3.3.1.2SwitchingPoints3.3.2480-VoltSystem3.3.3Class1E125-VoltD.C.System3.3.4TransferSwitchingSystem3.3.4.1TransferPanels3.3.4.2LocalEngine-GeneratorControl3.3.4.3DevicesToBeTransferred3.3.4.4Bypassed~adInoperableStatus3.'-.4.5DedicatedDevices3.3.5LightingSystem3.3.6GroundingSystem3.3.7CommunicationSystem3.3.&SecuritySystem3.3.9TestFacility3.3.10MildEnvironment3.4InstrumentationandControlsPanelsPanel3-13-13-13-23-2k3-33-33-43-43-53-53-63-73-73-83-83-93-93-93-103-103-103-103-113-113-123-123-133-133-133-143-144.0Studies5.0Tie-InDescription4-l.5-1 i'
PositionC.l.b(2).Theni;1-ductility transition temperature for.'thestructural steelassociated withthecraneswasnotdetermined assuggested bythisposition.
AppendixA-DravingsAppendixB-Codes,Standards,andRegulationsApplicabletoDieselGeneratorEFaci.lityAppendixC-SeismicAnalysisProceduresandtiodelsforTheDieselGeneratorEBuilding
PositionSubjecttotheclarifications andexceptions indicated below,thesafetyrelatedoverheadcranehandlingsystemsofthisstationcomplywiththeprovisions ofthisregulatory guide.IRev.M,3.13-39 40 SSES-FSAR Reulator'uide1.122DEVELOPMENT OFFLO"~DESIGNRESPONSESPECTRAFORSEISMICDESIGN'FFLOOR-SUPPORTED EQUIPMENT OR'OMPONENTS (September 1976)Themethods.used fordeveloping thefloordesignresponsespectraforSusquehanna SESareincompliance withthepositions ofthisregulatory guideexceptasfollows:1.Thefrequencies usedforthecalculation oftheresponsespectraaredifferent andaredescribed inSubsection 3.7b.2.5.
2.Theprocedure forsmoothing thespectra(broadening ofpeaks)isdifferent andisdiscussed inSubsection 3.7b.2.9.
keulatorGuidel.123QUALITYASSURANCE REQUIREMENTS FORCONTROLOFPROCUREMENT OFITEMSANDSERVICESFORNUCLEARPLANTS(Revision 1,Jul1977)TheSusquehanna SESqualityassurance programfortheconstruction phaseisdetailedinPSARAppendixDandamendments.
Compliance oftheOperational QualityAssurance Programwiththisregulatory guideisdiscussed inSection17.2.~IIReulatorGuide1.124-DESIGNLIM1TS,ANDLOADINGCOMBINATIONS FORCLASS1LINEAR-TYPE COMPONENT SUPPORTS(November 1976)Sincetheconstruction permitforSusquehanna SESwasissuedinNovember1973,thisregulatory guidewasnotspecifically considered inthedesign.Themethodsusedtodetermine designloadingcombinations forSusquehanna SESaredescribed inSectionl3~9~ReulatorGuide1.125-PHYSICALMODELSFORDESIGNANDOPERATION OFHYDRAULIC STRUCTURES ANDSYSTEMSFORNUCLEARPOWERPLANTS(March1977)NophysicalmodelswereusedduringthedesignofSusquehanna SES.UJ3.13-45
 
SSHS-FSAR (1)Paragraph C.2-Thedesignbasiseventcondi'ons meetthe~~~mostseverepostulated conditions forSusquehanna SES.FactorsormargingiveninSection6.3.1.531.5ofIEEE323-1974verenotc~g5A~so~ih<LP WITHI-II-TMoi85~+&AEgpg<Tge/>
N~M4'47/PLd'~A~fW8PfFW~~~ggfuRu7'aau<Syggyg Mrna+'.(2)paragraph C.4-Onlyoneagingdatapoint(121C)hasbeenijPjgDIP@he~g"Noj7joijFkPATL~cAs7'aI AsjAjsDATA'<TPwM(/jParaprap&#xc3; C.6-Flametestsweredoneinaccordance withIEEE'VDAs-74d>'kF~Z'cF/hK'AN 4E'P~IPw,
<<@SPCnFWT Addo~~v~4PararahC.10-Gasburnerpositronxsinaccordance vithgCpp@4~dong/cw'8A'84wr%%dC,CASWSAH~47&#xc3;b~~rF~)Hijr'kjjFrwDjsssc.AM"8"wjjsxcTjjdDA5jdur<<sjijesjrjau~As<<Accoso-~cFw(TVEgpui~M~7 5e/>>gigu+7bZy''ujdd
/./5/,(5)panelinternalwrresar~nayggalrfjedtoRegulatory curd~/0C.,ii+'iID$D4ssjs-DjjjAcrolzDAjjcd wjrjjTjjdidcoisirs&fkijTD DAEcccEBE-exitSS/+P~EL.N7@4~1I'electriccables,Iieldsplices,andconnections IortheRESSscopeofsupplyhavenotbeenevaluated againstthisregulatory guide.3.13-47 PENNSYLVANIA POWER6LIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DIESELGENERATOR EFACILITYDESIGNDESCRIPTION
: REPORT, CTABLEOFCONTENTSSECTION1.0DesignApproach1.1PurposeofDieselGenerator E1.2ControlofDieselGenerator E1.3Substitution ofDieselGenerator
~Pae1-11-11-21-22.0PhysicalDescription 3.0Design3.1Mechanical Equipment 3.1.1FuelOilStorageandTransferSystem-3.1.2CoolingWaterSystem3.1.3HeatingandVentilation 3.1.4PlumbingandDrainage3.1.5Fire.Protection/Detection k3.1.6DieselGenerator StartingAirSystem3.1.7LubeOilSystem3.1.8JacketWaterSystem3.l..9FuelOilSystem3.2Structural Design3.2.1CivilDesign3.3Electrical Design3.3.1MediumVoltageSystem3.3.1.1NewSwitchgear 3.3.1.2Switching Points3.3.2480-VoltSystem3.3.3Class1E125-VoltD.C.System3.3.4TransferSwitching System3.3.4.1TransferPanels3.3.4.2LocalEngine-Generator Control3.3.4.3DevicesToBeTransferred 3.3.4.4Bypassed~adInoperable Status3.'-.4.5Dedicated Devices3.3.5LightingSystem3.3.6Grounding System3.3.7Communication System3.3.&SecuritySystem3.3.9TestFacility3.3.10MildEnvironment 3.4Instrumentation andControlsPanelsPanel3-13-13-13-23-2k3-33-33-43-43-53-53-63-73-73-83-83-93-93-93-103-103-103-103-113-113-123-123-133-133-133-143-144.0Studies5.0Tie-InDescription 4-l.5-1 i'
AppendixA-DravingsAppendixB-Codes,Standards, andRegulations Applicable toDieselGenerator EFaci.lity AppendixC-SeismicAnalysisProcedures andtiodelsforTheDieselGenerator EBuilding
 
==1.0 DESIGNAPPROACHThedieselgenerator==
Efacilityincluding thecomponents contained thezejnisanuclearsafetyrelated,SeismicCategoryI,Class1Efacilitythatwj,llbeusedtoprovideemergency powertoSusquehanna SteamElectricStation(SSES)whenoneofthefourexistingdieselgenerators isoutofservice.Thelocationofthedieselgenerator EfacilityisshownondrawingC-5003"PlotPlan,DieselGenerator EFacilitySiteDevelopment Plan"contained inAppendixAtothisreport.Thelocationofthebuildingwasselectedtosatisfytherequirements listedbelow:oClosetotheexistingdieselgenerator buildings.
oClosetothetie-inpointsforwater,airandelectrical.
oClearance aroundthebuildingforconstruction equipment.
oClearance betweenthebuildingandthesecurityfence,bothinitstemporary andfinalpositions.
oClearance betweenthebuildingandexistingstructures abovegroundandunderground.
oAccessibility totherailroadforoffloadingthedieselgenerator andsettingitonthepedestal.
oClosetotheunderground soundrock.Codes,standards, andregulations applicable tothispro)ectaregenerally thoseineffectonSeptember 22,1983.Alistoftheapplicable codes,standards, andregulations iscontained inAppendixBtothisreport.Dieselgenerator Eusestheexistingindications andcontrolswhenitisintheplaceofanexistingdieselgenerator.
1.1PuroseofDieselGenerator ETheSusquehanna SteamElectricStationTechnical Specifications statethatadieselzenerator sybeinoperable
.or72hours,afterwhichatwounitshutdc..mustcommence.
Thefifthdieselgenerator willbeusedasareplacement andwillhavethecapability ofsupplying theemergency loadingforanyone'fthefourexistingdieselgenerators.
Assuch,themainpurposeofdieselgenerator Eistoallo~maintenance tobeperformed onanyoneofthefourexistingdieselgenerators withoutthenecessity foratwounitoutage.Aftertheexistingdieselgenerator hasbeenreplacedbydieselgenerator E,testingandmaintenance canbeperformed ontheexistingdieselgenerator foraslongasrequired, withinthelimitation ofmechanical maintenance and"noload"testing.1-1


1.0DESIGNAPPROACHThedieselgeneratorEfacilityincludingthecomponentscontainedthezejnisanuclearsafetyrelated,SeismicCategoryI,Class1Efacilitythatwj,llbeusedtoprovideemergencypowertoSusquehannaSteamElectricStation(SSES)whenoneofthefourexistingdieselgeneratorsisoutofservice.ThelocationofthedieselgeneratorEfacilityisshownondrawingC-5003"PlotPlan,DieselGeneratorEFacilitySiteDevelopmentPlan"containedinAppendixAtothisreport.Thelocationofthebuildingwasselectedtosatisfytherequirementslistedbelow:oClosetotheexistingdieselgeneratorbuildings.oClosetothetie-inpointsforwater,airandelectrical.oClearancearoundthebuildingforconstructionequipment.oClearancebetweenthebuildingandthesecurityfence,bothinitstemporaryandfinalpositions.oClearancebetweenthebuildingandexistingstructuresabovegroundandunderground.oAccessibilitytotherailroadforoffloadingthedieselgeneratorandsettingitonthepedestal.oClosetotheundergroundsoundrock.Codes,standards,andregulationsapplicabletothispro)ectaregenerallythoseineffectonSeptember22,1983.Alistoftheapplicablecodes,standards,andregulationsiscontainedinAppendixBtothisreport.DieselgeneratorEusestheexistingindicationsandcontrolswhenitisintheplaceofanexistingdieselgenerator.1.1PuroseofDieselGeneratorETheSusquehannaSteamElectricStationTechnicalSpecificationsstatethatadieselzeneratorsybeinoperable.or72hours,afterwhichatwounitshutdc..mustcommence.Thefifthdieselgeneratorwillbeusedasareplacementandwillhavethecapabilityofsupplyingtheemergencyloadingforanyone'fthefourexistingdieselgenerators.Assuch,themainpurposeofdieselgeneratorEistoallo~maintenancetobeperformedonanyoneofthefourexistingdieselgeneratorswithoutthenecessityforatwounitoutage.AftertheexistingdieselgeneratorhasbeenreplacedbydieselgeneratorE,testingandmaintenancecanbeperformedontheexistingdieselgeneratorforaslongasrequired,withinthelimitationofmechanicalmaintenanceand"noload"testing.1-1  
1.2ControlofDieselGenerator EDieselgenerator Eutilizesthesamemeteringandcontrolsusedforthereplaceddieselgenerator.
Anewcontrolboardisnotrequired.
Theuseofatransferswitching systemminimizes costs,reduceselectrical wiringseparation
: problems, conserves spaceandminimizes changesinthemaincontrolroom.Furthermore, thehumanfactorsvalueofthepresentarrangement areretained.
Sincedieselgenerator Eisessentially,a replacement foranyoneofthefourexistingunits,thepresenceofafifthdisplaycouldcauseunnecessary confusion inafour-channel system.1.3Substitution ofDieselGenerator Thesequencefortransferring controlofanexistingdieseltotheEdieselisdescribed below.Thesequencedescribed isforsubstituting dieselgenerator Efordieselgenerator Ahoweverthesamesequenceappliestotheotherdieselswiththesuffixletterschangingforthedieselbeingsubstituted.
PlaceHS-00057A onOC512Ain"Disable" position.
Thisactionremovesautostartsignalfromdieselgenerator A.Theoperatormustchangethepositionofthisswitchasthefirststepintheswitching sequence.
2~Closetheemergency servicewatervalvesfordieselgenerator AfromOC-553inthecontrolroom.3.PlacethelocatedswitchesonOC512Atothedieselgenerator Eposition.
4.Tripandremovethe4.16KvcircuitbreakerfromOA510AOl.
5.Rackinandclose4.16KvcircuitbreakerremovedfromOA510A01intoOA510A02.
Thiscompletes switching indieselgenerator A.6.Opentheemergency servicewatervalvesfordieselgenerator EfromOC-553intheControlRoom.7~PlacethelistedswitchesonOC512E-Ainthedieselgenerator Aposition.
8.removethe4.16KvcircuitbreakerfromOA51007.9.Rackinandclose4.16KvcircuitbreakerremovedfromOA51007intoOA51001.10.PlaceHS000571E-A onOC512E-Ainthe"ENABLE"position.
Thisswitchpermitsautostart ofdieselgenerator E.Theoperatormustchangethepositionofthisswitchasthelaststepintheelectrical switching sequence.
Thiscompletes theelectrical switching, dieselgenerator Eisnowalignedfordieselgenerator A.ll.Thealarm"DieselNotinAuto"willsoundinthecontrolroomwhendisabling adieselgenerator fortransfertoanotherdieselgenerator.
Thisalarmwillceasewhenthealignment iscomplete.
1-2 12.Thesequenceforplacingdieselgenerator Abackintoservicewouldbethereverseofthestepsdiscussed above.1-3


1.2ControlofDieselGeneratorEDieselgeneratorEutilizesthesamemeteringandcontrolsusedforthereplaceddieselgenerator.Anewcontrolboardisnotrequired.Theuseofatransferswitchingsystemminimizescosts,reduceselectricalwiringseparationproblems,conservesspaceandminimizeschangesinthemaincontrolroom.Furthermore,thehumanfactorsvalueofthepresentarrangementareretained.SincedieselgeneratorEisessentially,areplacementforanyoneofthefourexistingunits,thepresenceofafifthdisplaycouldcauseunnecessaryconfusioninafour-channelsystem.1.3SubstitutionofDieselGeneratorThesequencefortransferringcontrolofanexistingdieseltotheEdieselisdescribedbelow.ThesequencedescribedisforsubstitutingdieselgeneratorEfordieselgeneratorAhoweverthesamesequenceappliestotheotherdieselswiththesuffixletterschangingforthedieselbeingsubstituted.PlaceHS-00057AonOC512Ain"Disable"position.ThisactionremovesautostartsignalfromdieselgeneratorA.Theoperatormustchangethepositionofthisswitchasthefirststepintheswitchingsequence.2~ClosetheemergencyservicewatervalvesfordieselgeneratorAfromOC-553inthecontrolroom.3.PlacethelocatedswitchesonOC512AtothedieselgeneratorEposition.4.Tripandremovethe4.16KvcircuitbreakerfromOA510AOl.5.Rackinandclose4.16KvcircuitbreakerremovedfromOA510A01intoOA510A02.ThiscompletesswitchingindieselgeneratorA.6.OpentheemergencyservicewatervalvesfordieselgeneratorEfromOC-553intheControlRoom.7~PlacethelistedswitchesonOC512E-AinthedieselgeneratorAposition.8.removethe4.16KvcircuitbreakerfromOA51007.9.Rackinandclose4.16KvcircuitbreakerremovedfromOA51007intoOA51001.10.PlaceHS000571E-AonOC512E-Ainthe"ENABLE"position.ThisswitchpermitsautostartofdieselgeneratorE.Theoperatormustchangethepositionofthisswitchasthelaststepintheelectricalswitchingsequence.Thiscompletestheelectricalswitching,dieselgeneratorEisnowalignedfordieselgeneratorA.ll.Thealarm"DieselNotinAuto"willsoundinthecontrolroomwhendisablingadieselgeneratorfortransfertoanotherdieselgenerator.Thisalarmwillceasewhenthealignmentiscomplete.1-2 12.ThesequenceforplacingdieselgeneratorAbackintoservicewouldbethereverseofthestepsdiscussedabove.1-3 2.0PHYSICALDESCRIPTIONGeneralarrangementsofthedieselgeneratorEbuildingdepictinglocationofmajorequipmentareshownondrawingM-5200containedinAppendixAtothisreport.ThebuildingisdesignedtoSeismicCategoryIrequirementsandisprotectedfromtheeffectsoftornadomissiles.Itisareinforcedconcretetwostorystructurewithapenthouseandanadditionallevelbelowgrade,Reinforcedconcretewasselectedforthewallsandroofasbeingthemost.suitablematerialforprotectionagainstmissiles,seismicloadsandbelowgradeconstruction.Thefloorsofreinforcedconcretearemonolithicallyconstructedwithwallsasacommonpractice.Entrytothebuildingisatthegradeelevationbydoorsprotectedfromtheeffectsofmissileswithlabyrinths.Thebasementhousesthe125-Vdcbatteryroom,batterycharger,4160-Vswitchgear,transferpanels,terminationcabinets,buildingauxiliaryservicespanel,non-class1Eautotransferswitch,non-class1EMCC,125-Vdcswitchboard,startingaircompressorsskidsand,sump.Undergroundpipingisbroughtintothebuildingatthislevel.Inadditiontothedieselgeneratoranditsskidmountedaccessories,theflooratgradecontainstheairreceiverskidandthedieselgeneratorcontrolroom,consistingofageneratorandenginecontrolcabinet,Class1Emotorcontrolcenters,synchronizingpaneland,a4160/480Vtransformer.Thesecondstorycontainstheairintakefilter,silencer,intakepiping,exhaustmufflerandpiping,andventilationsupplyandexhaustfans.Thepenthousecontainstheexhaustchamberforthedieselgeneratorexhaustandventilationexhaust.Thecombustionairandventilationairintakeistakenfromoneendofthebuildingviaanopeningwhichisprotectedfromtornadomissiles.Tominimizerecirculationofengineexhaustintothecombustionairandventilationairintake,thecombustionexhaustandventilationexhaustarelocatedinthepenthouseattheoppositeendofthebuilding,andareprotectedfromtheeffectsoftornadomissilesbyaconcrete'verhang.Tornadodampershavebeenprovidedfortheventilationairintakeandexhaustopenings.Boththeintakeandexhaustarelocatedmorethan30feetabovegrade.Aport',ofthenortnwallatgradeelevationisremovabletofacilitateremovalofthedieselorcomponentsontheauxiliaryskidshouldthisbecomenecessaryduringthelifeofthefacility.Thisportionofthewallisdesignedtowithstandtheeffectsoftornadomissilesandseismicevents.A20tonbridgecraneisprovidedtopermithandlingofdieselgeneratorandauxiliaryskidcomponents.Theheaviestsinglepiece(enginecomponent)tobeliftedduringthemaintenanceistheturbo-chargerwhichweighsapproximately5100lbs..Majorequipmentwhoseweightislessthanthecranecapacityincludesthegeneratorrotor,generatorstator,generatorshaft,flywheel,pistonandconnectingrod.2-1 3.0DESIGN3.1MechanicalEuimentThemechanicalequipmentconsideredtobenuclearsafetyrelatedincludesthefueloilstorageandtransfersystem,combustionairintakeandexhaustsystem,startingairsystem(fromthereceiverstotheengine),thecoolingwatersystem,thejacketwatersystem,andthelubeoilsystem.Thepipingofpumps,tanks,andvalvesassociatedwiththeseportionsofthemechanicalsystemsaredesignedasSafetyClass3,SeismicCategoryIcomponentsinaccordancewithRegulatoryGuide1.26.Assuch,theyareprotectedfromtornadomissiles,floods,andothernaturalphenomena.Mechanicalequipmentinbothnon-nuclearsafetyrelatedparts'ofthesystemsdiscussedaboveandsystemswhichareentirelynon-nuclearsafetyrelated,suchaspotablewaterandserviceair,aredesignedtoprecludedamagetonuclearsafety-relatedequipmentduringandafterasafeshutdownearthquakebyseismicallysupportingsuchpipingandcomponents.PipingisseismicallysupportedusingtheequationsofASMESectionIII,NuclearPowerPlantComponents,1971issuewithalladdendaissuedthroughwinter1972.PipingwhichisnotrequiredtobeSafetyClass3isprocuredas831.1,isseismicallysupported,andisinaccordancewithANSIB31.1-1973.Theeffectsofmoderateenergybreaksinpipingsystemsareconsidered.in.thedesignofthedieselgeneratorEbuilding.Thepipinggenerallyhasbeendesignedwithstresslevelslowenoughtoprecludethepostulationofmoderateenergybreaks.Wherethisisnotpossibleessentialequipmentisprotectedfromthewettingeffectsofapipecrackbyphysicalseparationorbarriers.Essentialequipmentisprotectedfromfloodingeffectsbymountingtheequipmentonpedestals,bybarriers,orbyoperatoraction.Alevelalarmisprovidedtoindicatetheexistenceofahighwaterlevelinthebuildingsump.I3.1.1FuelOilStoraeandTransferSstemThefueloilstorageandtransfersystemconsistsofanundergroundstoragetank,atransferpump,andassociatedpiping,valves,andinstrumentation.Thetankwillbefilledfromanewfillstation.'hestoragetankissizedtocontain80,000gallonsoffueloilwhichallowsforapproximatelyth'irty(30)hoursoftestingofthedieselgeneratorandseven(7)daysofcontinuousoperation,allatfullload.Thefueloiltransferpumpiscapableoffillingtheda~"=ankfori:h=nwdieselgene"atorand(non-concurrently)thedaytankonanyuneoftheexistingdiesels.Itcanalsofill,anyoftheexistingdieselfueloilstoragetanks.Thetransferpumpisactuatedautomaticallyfromitsassociateddaytank.FillingofexistingdaytankswiththedieselgeneratorEtransferpumpiscontrolledmanually.ThefueloilstorageandtransfersystemisdesignedasaSafetyClass3,SeismicCategoryIsystem,inaccordancewith,therequirementsofRegulatoryGuides1.26and1.137andANSIStandardN-195.TheflowdiagramforthefueloilstorageandtransfersystemservingdieselgeneratorEisshownondrawingM-120,Sheet2,inAppendixA.InstrumentationandcontroldiagramsareshownondrawingJ-120,sheets3,4,and5,alsoinAppendixA.3-1 3.1.2CoolinWaterSstemTheEmergencyServiceWaterSystem(ESW)isused.tosupplycoolingwatertothefollowingcomponentsofdieselgeneratorE:oLubeOilCooleroJacketWaterCooleroFuelOilCooleroIntercoolersTheexistingemergencyservicewatersystemhasbeenextendedtothedieselgeneratorEbuildingviafour(4)10inchpipes.OneeachforloopAsupplyloopAreturn,loopBsupply,andloopBreturn.Amotoroperatedbutterflyvalveisprovidedoneachoftheselines.WhendieselgeneratorEisusedtoreplaceanotherdiesel,loopAistheprimary'oolingsource,witheitheramanualoranautomatictransfer'toloopBifloopAbecomesunavailable.TheflowdiagramfortheemergencyservicewatersystemservingdieselgeneratorEisshownondrawingM-ill,sheet3,inAppendixA.InstrumentationandcontroldiagramsareshownondrawingJ-ill,sheets10,ll,13,14,14Aand15,alsoAppendixA.3.1.3HeatinandVentilationThedesigntemperatureparametersandheatrefectiontothespacebythedieselgeneratorandotherheatproducingdeviceswereusedtosisetheventilationsystemforthedieselgeneratorEbui'lding.ThedesignparametersaredetailedinTable3.1.Thecapacityoftheventilatingsystemfanswasselectedto'andletheheatrejectiontothespacebydieselgeneratorEandtomaintainthespacetemperaturebelow120'Finsummerwhenthedieselgeneratorisoperating.Two(2)50percentcapacitysupplyfans,two(2)50percentcapacityexhaustfansandone(1)100percentcapacitybatteryroomandbasementexhaustfanwereselectedtoventilatethebuilding.Thefirstsetofinterlockedsupplyandexhaustfansmaintainspacetemperaturebelow104'Fbymeansofdampermodulationandstartingoffansfromt~=spacetherostat.Thesecondsetofinterlockedsupplyandexhaustfansstartwhentheindoortemperaturerisesabove104'F.Thisarrangementofone(1)50percentcapacitysupplyandone(1)50percentcapacityexhaustfanrunningduringthenormalventilationmodeisfurnishedtoconserveenergy;Nofiltrationorcoolingisprovidedintheventilationsystem.Themodulatingdampersystemcontrolstemperatureandisdesignedforfailsafeoperationtopermitfullventilation.ITheexhaustfanforthebatteryroomandbasementismanuallyoperated,runscontinuouslyandwasselectedforexplosion-proofconstruction.Ventilationairforthebatteryroom/chargerareaandbasementistransferredfromthebuildingspaceandleakagethroughdamperswhentheventilationsupplyfanisnotoperating.TheventilatingsystemisdesignedassafetyrelatedandSeismicCategoryI.3-2 Theheatingsystemforallareasconsistsofelectricunitheatersandelectricbaseboardheaters.Theheatersarenotsafetyrelatedandaredesignedtocommercialindustrystandards.Theyarehowever,supportedtoSeismicCategoryIrequirementstoavoidII/Isafetyimpactconcerns.Theheatershavebuilt-inthermostatstoautomaticallymaintainspacetemperatureinaccordancewiththedesignparameterslistedinTable3-1.WhendieselgeneratorEisnotoperating,actuationofthefiredetection.systemwillautomaticallystopallthesupplyandexhaustfansandoverridethetemperaturecontrols.I'heflowdiagramfortheheatingandventilatingsystemservingdieselgeneratorEisshownondrawingM-182,sheet2>inAppendixA.InstrumentationandcontroldiagramsareshownondrawingV-182,sheets7,8,8A,9,9A,10,11,13,13A,14,15,and16,alsoAppendixA.3.1.4PlumbinandDrainaePlumbinganddrainagesystemsforthedieselgeneratorEfacilityaredesignedandsizedtoaccommodatethevarioustypesofdrainageinthebuilding.Roofdrainsarepipedtothestormsewer.Equipmentandfloordrainsfromelevations675'-6"and708'-0"arepipedtoanundergroundwastewaterstoragetanklocatedoutsidethedieselgeneratorbuilding.Equipmentandfloordrainsfromelevation656'-6"(exceptfloordrainfrombatteryroom)and'ffluentfromthewastewaterstoragetankaredischargedbygravitytoanoil/waterseparatorlocatedinsidethebuildinginasump.Thefloordrainofthebatteryroomdischargestoanacidneutralizingsump,wherewasteisneutralizedanddischargedtotheoil/waterseparator.Theeffluentoftheoil/waterseparatordischargesintothebuildingsump.Thebuildingsumpisequippedwithduplexsumppumpsof100GPMcapacityeach.Buildingsumpcontents(wastewater)arepumpedtotheplantoilywastesystem.Theoilseparatedintheoil/waterseparatorispumpedandcollectedina550gallonundergroundwasteoilstoragetanklocatedoutsidethedieselgeneratorEbuilding.Theundergroundwastewaterstoragetankisdesignedt'ocontainfireprotectionwaterfromthe10minutesofoperationofpre-actionsprinklersystem.3.1.5!".reProtect'on/DetectionThedesignofthefireprotectionanddetectionsystemisinaccordancewith10CFR50,AppendixR,SectionIIIG,Jand0;NRCBranchTechnicalPosition9.5.1,NFPANationalFireCodes,andFMstandards.Thefiresuppressionsystem'etsitswaterfromtheplantyardloop.Thesprinklerandfiresta'ndpipesystemsaredesignedforawatersupplyfromone2500gpm/125psifirepumpdeliveringwaterthroughayardmainwiththeshortestrouteassumedtobeunavailable.ThefirestandpipesystemandhosesarelocatedsothatallinteriorsectionsofthebuildingcanbereachedperNFPAClassIIIrequirements.3-3 Thetype,number,andlocationofportablefireextinguishersareinaccordancewithNFPArequirements.Operationofthefiredetectionandprotectionsystemsisinterlockedwiththeventilationsystemsoastoshutdownthosesystems(exceptduringemergencyoperationofthedieselgenerator)whichwillinterferewithfirefighting,control,containment,andsuppressionofthefire.Inadditiontothefireprotectionsystem,anearlywarningfiredetectionsystemisprovidedforthebuilding.Detectorspacingandtypesofdetectorsareconsistentwiththetypeofservicerequired.Thedetectionsystemiscompatibleandinterfaceswiththeexistingplantfireprotectionmultiplexingsystem.Thefireprotectionpanelisfedfromabatteryback-uppackagefurnishedbythesmokeandtemperaturedetectionpanelvendor.TheflowdiagramforthefireprotectionsystemservingdieselgeneratorEisshowondrawingM-122,sheet9,containedinAppendixA.Theinstrumentandlogicdiagramforthesystem,indicatingfiredetectors,isshownonFigureF-1006inAppendixA.3.1.6DieselGeneratorStartinAirSstemAsintheexistingdieselgenerators,dieselgeneratorEhasastartingairsystemwhichsupplieshighpressureairsequentiallytothedieselenginecylinders.Thesystem(bothloops)consistsofaircompressors(2),airreceivers(4),airfilters,airdryers,airprecoolersmoistureseparators,andassociatedpiping,valvesandinstrumentation.TworedundantairstartingsystemsareprovidedfordieselgeneratorEtoincreasestartingreliability.Additionally,across-tieisprovidedtoalloweithercompressortochargeall4airreceivers.Eachairstartloopiscapableofperformingatotaloffive(5)-10secondstartswithoutrechargingtheairreceivers.All=equipmentmountedintheairreceivedskidissafetyclass3,SeismicCategory1inaccordancewithRegulatoryGuide1.26.Allequipmentmountedontheaircompressorskidiscommercialgrade.TheflowdiagramfortheStartingAirSystemservingdieselgeneratorEisshownondrawingM-134sheet2,inAppendixA.3.1.7LubeOilSstemThedieselgeneratorElubeoilsystemisessentiallyidenticaltotheexistingdieselgeneratorssystemandconsistsofanenginedrivenpump,standbyA.C.motordrivenpump,circulatingpump,lubeoilheater,lubeoilheatexchanger'ndassociatedpiping,valvesandinstrumentation.Theprimarypurposeofthelubeoilsystemistolubricatebearingsandothermovingpartsintheengine.Additionally,thissystemisusedtolubricateturbo-chargerbearings,keeptheenginewarminthestandbymodetoenhancer immediatestartup,coolthepistons,andmaintainenginecleanlinessbypreventingrustandcorrosion.Theenginedrivenpumpprovidestherequiredlubeoilpressureduringnormaloperation.AstandbyA.C.motordrivenpumpwillautomaticallystartuponfailureoftheenginedrivenpump.Acirculatingpumpandelectricimmersiontypeheaterareusedtomaintainlubeoilataprescribedtemperatureduringstandbyperiods.Athermostaticcontrolvalveisusedtomaintainlubeoiltemperatureduringtheseperiods.AllequipmentmountedontheauxiliaryskidisdesignedasSafetyClass3,SeismicCategory1inaccordancewithRegulatoryGuides1.26and1.29.Allequipmentsuppliedbytheenginemanufacturerhasbeenseismicallyqualified.TheflowdiagramforthelubeoilsystemservingdieselgeneratorEisshownondrawingM-134sheet2,inAppendixA.3.1.8JacketWaterSstemThedieselgeneratorEjacketwatersystemissimilartotheexistingdiesel'sjacketwatersystemandconsistsofastandpipe,enginedrivenpump,standbyA.C.motordrivenpump,circulationpump,jacketwaterheater,jacketwatercoolerandassociatedpiping,valves,andinstrumentation.Thejacketwatersystemisaclosedloopsystemwhichusestreatedwatertocooltheenginecylinderjackets,turbo-charger,andthegovernoroilcooler.Thissystemcirculateswarmjacketwaterthroughtheheaterportionoftheairintercoolerstoheatthecombustionairduringstartup.Theenginedrivenpumpprovidestherequiredjacketwaterpressureduringnormalengineoperation.AnA.C.motordrivenpumpisprovidedintheeventofenginedrivenpumpfailure.Thispumpwillautomaticallyturn-onuponlossoflubeoilpressure.Acirculatingpumpandelectricimmersiontypeheaterareusedtokeepjacketwaterataround120Fduringstand-byperiodsto0enhanceimmediatestart-up.Athermostaticcontrolvalveisusedtomaintainjacketwatertemperatureduringtheseperiods.Allequipmentmountedontheauxiliaryskidisdesignedassafetyclass3,seismi:ategory1~naccordancewitntherequirementsofU.S.RegulatoryGuide1.26.Inaddition,allequipmentsuppliedbytheenginemanufacturerandmountedontheenginehasbeenseismicallyqualified.TheflowdiagramforthejacketwatersystemservingdieselgeneratorEisshownondrawingM-134,sheet2,inAppendixA.3.1.9FuelOilSstemThedieselgeneratorEfueloilsystemisessentiallyidenticaltotheexistingdieselgeneratorssystemandconsistsofanenginedrivenpump,D.C.motordrivenpump,twenty(20)injectionpumps,fueloildaytank,fueloilheatexchanger,filters,strainersandassociatedpiping>valves,andinstrumentation.3-5 Flowfromthedaytanksuppliesfueltotheenginedrivenpumpwhichinturnsuppliesfuelat35psigtothein)ectionpumps.Areliefvalveisutilizedatthedischargeoftheenginedrivenpumptomaintainpressureat35psig.Thefueloilcoolerisusedtocoolthefueloilwhichisbypassedbythereliefvalvebacktothedaytank.Thefiltersandstrainersareusedtoassurecleanfueltothehighpressureinjectionpumps.AD.C.motordrivenfueloilpumpisprovidedtoreplacetheenginedrivenpumpintheeventofenginedrivenpumpfailure.Thispumpwillautomaticallystartuponlossofpressureatthedischargeoftheenginedrivenpump.AllequipmentmountedontheauxiliaryskidisdesignedasSafetyClass3,SeismicCategory1inaccordancewithRegulatoryGuides1.26and1.29.Allequipmentsuppliedbytheenginemanufacturerandmountedontheenginehasbeenseismicallyqualified.TheflowdiagramforthedieselgeneratorEfueloilsystemisshownondrawingM-134,Sheet2,inAppendixA.3.2StructuralDesinThedieselgeneratorEbuildingisaSeismicCategory1,two-storystructurewithapenthouseandabasementconsistingprimarilyofreinforcedconcretewalls,floorslabs,androof.Thedieselgeneratorped'estalisalsoconstructedofreinforcedconcrete.Agapbetweenthebuildingfloorandthepedestalatgradelevelisprovidedsothatvibrationsfromthedieselgeneratorarenottransmittedtothebuilding.Acurbplatehasbeeninstalledtopreventexcessivewaterandoilfromleakingdowntothebasementfromtheoperatingfloor(el.675'-6")throughthis'ap.Thefoundationsystemwasconstructedbyfirstremovingthevolumeofsoilfromtheexistinggradedowntothesoundrockwiththeplanareaslightlylargerthanthatofthebuilding.Thisvolumewasfilledwithleanconcreteextendingfromthesoundrocktoaconvenientelevation,whichis'hebottomelevationofthebuildingbasementfloormat.ThefoundationsystemfordieselgeneratorsupportEissimilartothatusedfortheexistingdieselgenerators.Itconsistsofareinforcedconcreteblockapproximately34'ongx9'idex21'-6"high,withfourverysmallopenin,"andisfoundedontheleanconcretewhichinturnisbondedtothebedrock.Thistypeoffoundationpedestalhasahighrigidityandconsequentlyitsfrequencyofthelowestfundamentalmodeofvibrationwillbemorethan1.5timesthespeedofdieselengine(600rpm).Thiswillprecludeanysupportrelatedvibrationproblems.TheouterreinforcedconcretewallsandroofofthedieselgeneratorEbuildinghavesufficientthicknesstoresisteffectsoftornadomissiles.Aportionofanouterwallisremovabletofacilitatedieselgeneratorinstallationand/oremergencyremovalandmaintenanceoperation.Thisremovablewallportionisdesignedtoresisttheeffectsoftornadomissilesandseismicloads.Sincethehighgroundwaterlevelfordesignpurposeisatelevation665'-0",awaterproofingmembraneisinstalledontheoutsideofthebasementwallsuptoelevation665'-0"andonthebottomsurfaceofthe3-6 basementfloormat.Waterstopsareprovidedatconstruction)ointsbelowelevation665'-0"..AdescriptionoftheseismicanalysisprocedureandmodelsforthedieselgeneratorEbuildingiscontainedinAppendixCto.thisreport.Thesitewasreviewedandevaluatedforexistingconditionsrelatingtosoilsandrockmaterials,drainagepatterns,pavementsandothergroundcovers,susceptibilitytoerosion,siteaccessibility,andcontrolsforsurveywork;andtoestablishabasisforverifyingtheexactlocationofallabovegradetie-insystemsandallundergroundsafetyandnonsafetyrelatedsystemsthatcouldimpactdesignorconstructionactivities.AlicensedsurveyordeterminedthehorizontalandverticallocationsofkeypointsforthesesystemsandthedatawasassembledonasingleCompositeUtilityPlan,tiedintotheplantgridanddatum.ThisCompositePlanwasusedthroughoutpreliminaryandfinaldesigntomaintaincontrolofthelocationoftie-inworkandallnewundergroundsystems*(allpipingsystems,utilities,andstructuresincludingwaterandsanitarysewerlines,stormdrainagelines,electricductbanks,fuellines,andanyotherlines).Italsoservesasabasisfordefiningthe"as-built"conditions.Basedonareviewof'vailableexistingsubsurfacedata,additionalboringswererecommendedtoestablishadesignbasisforexcavationandbackfilloperations.Theresultsoftheseinvestigationsincludingconstructionstagesheetingandbracingconsiderations,recommendationsforexcavationandbackfilloperationsanddewateringarepresentedinGibbs&Hilldocument3544-SR-001entitled"ReportonSubsurfaceInvestigationsforDieselGeneratorEFacility".ErosionandsedimentationcontrolswereimposedonconstructionactivitiesbasedonguidelinesstipulatedinCommonwealthofPennsylvaniaDepartmentofEnvironmentalResourceRulesandRegulations,Chapter102.Thesitestormdrainagesystemisdesignedtoprovideadequatedrainagethroughoutthelifeofthefacility.ThebuildingsiteisgradedtodrainawayfromthedieselgeneratorEstructure.ThepeakrateofstormwaterrunofffromthesitewasdeterminedusingtheRationalMethodofdesignbasedonpre(''-i.itationva=u=sderivedfro-criteriapresentedinSection6.3.7.1ofTechnicalSpecificationG-1001.Surfacerunoffwillbeconveyedtoaperipheralditchfordischargethroughtheexistingstormdrainagesystem.3.3ElectricalDesinElectricalseparationofcontrolandpowercircuitsintheexistingdieselbuildingisasdescribed'intheSusquehannaSteamElectricStationFinalSafetyAnalysisReport(FSAR)sections3.12.3.4.2,8;1.6.1.hand8.3.1.11.4.FordrawingsandtablesseethereferencedFSARsections.ElectricalseparationofcontrolandpowercircuitsindieselgeneratorEbuildingisasdescribedinIEEE-384,1981and;RegulatoryGuide1.75,Rev.2,1978asinterpreted(FSAR)'ection8.1.6.1.h.FordrawingsseeE81-1,E81-2andE81-3ofAppendixA.3-7.
==2.0 PHYSICALDESCRIPTION==
3.3.1MediumVoltaeSstemDieselgeneratorEisconnecteddirectlytotheswitchgearinthedeiselgeneratorEfacility.TheswitchgearisClass1Eandconsistsofmetal-clad,dead-front,free-standingsteelstructures,completewithbuses,draw-outcircuitbreakers,currentandpotentialtransformers,controlswitches,instruments,andotherequipmentnecessaryforproperoperation.Thecircuitbreakersarerated1200A,250MVA,4.16kV,withcommensuratebusbracing.EachofthefouremptypositionsintheswitchgearisconnectedtoaClass1Eswitchingpointlocatedatanexistingdieselgenerator.Eachswitchingpointconsistsofamanualcircuitbreakerandanemptyposition.AmanualcircuitbreakerisprovidedforinsertionintoonlyoneofthefourpositionsintheswitchgearinthedieselgeneratorEfacility,andamanualcircuitbreakerisprovidedforinsertionateachswitchingpointlocatedatanexistingdieselgenerator.Properalignmentallowsthesparedieseltobeconnectedinplaceofanyoneoftheexistingdiesels.Whennotinuse,themanualcircuitbreakersarestoredinasparecubicleintheswitchgearinthedieselgenerator'Ebuilding.Acircuitbreakerisalsoprovidedforconnectiontothe4.15kVprimaryofthenewindoortransformer.Acubicleisprovidedforauxiliarymeteringand/orinstrumentation,andforconnectiontothetestfacility.Changestothedieselgeneratorcontrolpanellocatedinthemaincontrolroomhavebeenminimized.Asystemforcontroltransferhasbeendeveloped,withconsiderationtocableseparationrequirementsandHumanFactorsEngineering.ThefollowingarelocatedatthenewswitchgearinthedieselgeneratorEbuilding:IncominglinecompartmentVoltmeterVoltmeterswitchEquippedspace(totaloffour)AmmeterAmmed".switchLocalcontrolswitchwiththreeindicatinglights(breakeropen,breakerclosed,breakerintest)TransformerfeederCircuitbreakerAmmeterandammeterswitch50/51shortcircuit/overcurrentprotectiverelays'50GgroundcurrentprotectiverelayLocalcontrolswitchwiththreeindicatinglights(breakeropen,breakerclosed,breakerintest)Keyinterlock,fordisconnectswitchontransformer-toprecludeoperatingswitchunlessbreakerisopen3-8 LockoutrelayoTestFacilitycompartmentoBreakerstoragecompartment3.3.1.2SwitchinPointsThefollowingarelocatedateachofthefournewswitchingpointsintheexistingdieselgeneratorbuildings.oCircuitbreakercompartmentManual,draw-outbreakerLocalcontrolswitchwiththreeindicatinglights(breakeropen,breakerclosed,breakerintest)AmmeterAmmeterswitchoEquippedspaceVoltmeterVoltmeterswitchAmmeterswitchLocalcontrolswitchwiththreeindicatinglights(breakeropen,breakerclosed,breakerintest)3.3.2480-VoltSstemThesecondaryofthenewindoortransformerisconnectabletoaClass1EMotorControlCenter(MCC),tosupplytheEdieselgeneratorauxiliaryloads.ThisClass1EMCCisconnectedtoanewnon-Class1EMCCviatwoshunt<<tripcircuitbreakers,eachactivatedbyanundervoltageorLOCAsignal.Thenon-Class1EMCCisnormallypoweredviaanautomatictransferswitchfromeitheraUnit1orUnit2non-Class1Eloadcenter.BothMCC'sareenclosed,free-standingcabinet-typewithmainandverticalbuses,combinationmotorstarters,feederprotectiondevices,andotherequipmentasrequired.3.3.3Class1E125-VoltDCSstemTheClass1Edcsystemsuppliespowerforoperationofthenew4.16kVswitchgearlineup,ESWvalves,dieselcontrols,fieldflashing,andsimilarrequirements.Itiscomposedofonebattery,onecharger,oneswitchboard,oneMCC,andonedistributionpanelinthedieselgeneratorEbuilding.Thecomponentsaresuitablysizedtomeettherequirementsofthesystemandareshownonthe125VDCone-linedrawingE-ll,SheetllinAppendixA.Thebatterychargeriscapableofsupportingthenecessaryloadswhilerechargingthebatterywithin8hours,aswellasprovidingthebatteryfloatandequalizingcharge.3-9 3.3.4TransferSwitchinSstemAsystemfortransferswitchinghasbeendeveloped,withconsiderationtocableseparationrequirements,HumanFactorsEngineering,andtominimizingchangestothecontrolboardsinthemaincontrolroom.3.3.4.1TransferPanelsThetransferswitchingsysteminvolvesoperationoftransferswitchesonpanelslocatedinthedieselgeneratorEbuildingandintheexistingdieselgeneratorbuildings.Severalgroupingofcontrols,metering,andalarmswillbetransferred.ThetransferswitchesinthespecifictransferpanelsinthedieselgeneratorEbuildingareusedtoselectthepathtothecontrolsofthespecificdieselgeneratortobereplaced.ThetransferswitchattheindividualtransferpanelineachexistingdieselgeneratorbuildingisusedtotransfercontrolsofthespecificdieselgeneratortobereplacedtodieselgeneratorE.Thesetwoswitchesinseriesprovideadoublebreakincontrolcircuitstoprecludeproblemsinthenewbuildingfrombeingpropagatedintoany'oftheexistingdieselgeneratorcontrols.Thissameprincipleappliestothetwopowercircuitbreakersinseries;therearealwaystwobreaksbetweendieselgeneratorEandanexistingnonaligneddieselgenerator.Also,thedieselgeneratorscannotbeparalleled.ThelocationoftheswitchgearandtransferpanelsatElevation710'ntheexistingdieselgeneratorbuildingsprovidessomeprotectionfrommissiles.Ifafireormissilefromanexistingdieselgeneratorweretooccurataswitchingpoint,itwilldisabletheswitchingpointinamannersuchthatrepairwouldberequiredbeforedieselgeneratorEcouldbeusedinplaceoftheparticularexistingdieselgenerator.3.3.4.2LocalEnine-GeneratorControlPanelsThegeneratorcontrolpanelfordieselgeneratorEincludesprotectiverelaying,andislocatedinthedieselgeneratorEbuilding.Thispanelissimilartothepanelsprovidedforeachoftheexistingdieselgenerators.(RefertoTable3-2).Thene'~'nginecont-.-'anelforthedieselgeneratorEengineincludesinstrumentation,andislocatedinthedieselgeneratorEbuilding.Thispanelissimilartothepanelsprovidedforeachoftheexistingdieselgenerators.(RefertoTable3-3).3.3.4.3DevicestobeTransferredThedevicesassociatedwiththereplaceddieselgeneratorareusedfordieselgeneratorE,viathetransferswitchingsystem.(RefertoTable3-3).Thenewdevicestobere-used,asabove,onthemaincontrolboardare:oAlarmsDieselgeneratortrippedHighpriorityalarm3>>10 LowpriorityalarmDieselgeneratorbreakertripDieselgeneratorfailstostartDieselgeneratoratnearfullloadDieselgeneratornotinautomaticmodeRoomfloodedControlsStart-StopSynchronizeFrequencyadjustmentVoltagead)ustmentManualorautomaticvoltageregulatorselectionIsochronousanddroopselectionReadytorun><lighBIS'signals(SeeSection3.3.4.4)MetersVoltageCurrentFrequencyKilowattoutput3.3.4.4BassedandInoerableStatus(BIS)PanelForeachofthesystemslistedbelow,theswitchesandindicationsforeachoftheexistingdieselgeneratorsareused,viaaswitchingtransfersystem,whendieselgeneratorEisusedinplaceofanyoneoftheexistingfourdieselgenerators.DieselGeneratorControlSystemDieselGeneratorOutputSystemDieselGeneratorAuxiliarySystem'SWSystemEachofthesesystemsexistsfortheexistingdieselgenerators.Table3-4listsindicatinglightsinexistingBISpanels.3.3.4.5DedicatedDevicesThefollowingnewdevices,locatedonthemaincontrolboard,arededicatedtothedieselgeneratorEfacility:oAlarms4.16kVSystemforDieselGeneratorEFacility-TroubleDCSystemforDieselGeneratorEFacility-TroubleHVACFailureinDieselGeneratorEFacilityControlSwitchesNotProperlyAlignedDieselGeneratorEBuildingSumpLevelHigh3-11 oIndicatingLightsAseriesoffiveindicatinglightsareprovidedtostatusthereplacementdieselgeneratorEasfollows:DieselGeneratorEnotalignedasareplacementDieselGeneratorEalignedasreplacementforDieselGeneratorADieselGeneratorEalignedasreplacementforDieselGeneratorBDieselGeneratorEalignedasreplacementforDieselGeneratorC"DieselGeneratorEalignedasreplacementforDieselGeneratorD,oLocal>>RemoteSelectorSwitchThisdeviceisadedicatedswitch,similartotheswitchesfortheexistingdieselgenerators.oEmergencyServiceWaterValvesOperationIndividualopen-closedindicatinglightsandcontrolswitchesareprovidedontheexistingmaincontrolboardforeachofthefouremergencyservicewatervalvesassociatedwithdieselgeneratorE.ThesevalvesarepoweredfromexistingDivisionIandDivisionIIMCCs.Lightingfixturesoperateon277-Vac(Securitylightsoperateat400v;explosion-prooflightsoperateat120v).Indoorlightingismetalhalideor'fluorescentdependingontheparticularapplication.Outdoorlightingishighpressuresodium.Inhazardousareassuchasthebatteryroom,incandescentexplosionprooflightingisused.ThelightingsystemispoweredfromdieselgeneratorE'sessentialacpowerdi~tributionwhichisbackedupbyadiesel'aeratorintneeventoflossofoff-sitepower.Additionalfixtures,energizedbythemainplant'snormalacpowerdistributionarealsoprovidedtoaugmenttheessentiallightingtoprovidetheminimumilluminationlevels.ExitlightingisenergizedbydieselgeneratorE'sessentialacpowerdistributionsystem,andisprovidedasrequired,thisincludesself-containedbattery-poweredlightingfixtures.Theoutdoorlightingsystemispoweredfromasourcetraceabletotheexistingsecuritysystememergencypowersupply.LightingsystemsareinaccordancewiththeNationalElectricalCode.3.3.6'roundinSstemAbarecoppergroundloopconsistingof250-MCMbarecoppercableembeddednearthebaseofthefoundation,perimeterisinstalled,andconnectedtothe3-12 applicableequipmentwitha4/0-AWGbarecopperwire.Thisisinterconnected~'otheexistingstationgrid.3.3.7CommunicationsSstemThecommunicationssystemiscompatiblewithandconnectedtotheexistingmainplantcommunicationssystem.Sufficientspeakersandpublicaddresssystemst'ationsforpaging/communicationsareprovided,aswellasPlantMaintenance/TestJacksystemstations.ThesystemisdesignedinaccordancewiththelatestissueoftheNEC.ThePAsystemisdesignedsothatalarmmessagescanbeheardunderallconditionsofoperation.3.3.8SecuritSstemThedieselgeneratorEfacilityisclassifiedasavitalarea,thereforethesecuritysystemisdesignedtosatisfyalltheapplicablerequirementsof10CFR73.Inaddition,theintrusionalarmsystemdesignmeetsthecriteriaoutlinedinRegulatoryGuide5.44.Theexistingsecurityfencewastemporarilyrelocatedpriortoconstructiontoaccommodateconstructionprogresswithoutendangeringvitalareaplantsecurity.Allsecuritydevicesandequipmentaredesignedtobecompatiblewith,andconnectedto,theexistingplantsecuritysystem.ThepurposeofthetestfacilityistoprovideameansforperiodictestingofdieselgeneratorEwhendieselgeneratorEisnotalignedtotheClass1Edistributionsystem.rThedieselgeneratorEtestfacilityconsistsofaninterconnectionbetweenthedieselgeneratorE4.16kVClass1EswitchgearandtheNon-Class1E13.8kVswitchgear(Bus10)locatedintheexistingturbinebuilding.TheconnectiontoBus10isviaasplicetaptotheMakeupWaterIntakeStructure13.8kVfeeder.Thetestfacilityinterconnectionconsistsofthefollowingma)oritems:o'16kVswitchgearcompartmentandassociatedcontrols,meteringandprotectivedevices.o,4.16kVcircuitbreaker(thisisthesamecircuitbreakerwhichisalsoutilizedinthesubstitutionofdieselgeneratorEforanyoneoftheexistingdieselgenerators.o4.16kV/13.2kV,10.5/13.15MVAOA/FA55C,step-uptransformer.o13.8kVoutdoorswitchgearunitwithassociatedcontrolandpro'tectivedevices(usedtodeenergize4.16kV/13.2kVtransformerwhentestfacilityisnotinuse)oSynchronizingpanel(forsynchronizingD.G.E4.16kVoutputto13.8kVBus10;synchronizingisacrossthe4.16kVcircuitbreaker).3-13 3.3.10MildEnvironmentThedieselgeneratorEbuildingenvironmentwillatnotimebesignificantlymoreseverethantheenvironmentthatwouldoccurduringnormalpowerplantoperation,includinganticipatedoperationaloccurrences.Itisthereforeconsideredtobea"mildenvironment".ClasslEequipmentlocatedinamildenvironmentisnotrequiredtobeenvironmentallyqualifiedbytypetest.Adherencetotherequirementsof10CFRPart50,AppendicesAandB,andtheguidanceinRegulatoryGuide1.33,Revision3,ensuresadequateperformanceofthesafety-relatedequipmentlocatedinthemildenvironment.TheClass1Eequipmentlocatedinamildenvironmentissubjecttotheplantseismicrequirements,exceptthatpreconditioning(aging)priortoseismictestingisnotrequired.3.4InstrumentationandControlsThecontrollogicforactivatingdieselgeneratorEisbasedonareviewof'xistingdieselgeneratorcontrols,discussionswiththeoperatingstaff,'ndconsiderationoftheHumanFactorsinvolvedinplacingtheEdieselgeneratorinservice.3-14 Table3>>2PROTECTIVERELAYS~METERSANDCONTROLDEVICESONTHEGENERATORCONTROLPANELFORDIESELGENERATOREThenewgeneratorcontrolpanelislocatedinthedieselgeneratorEbuildingand'includesthefollowing:oProtectiverelays:40/76Fieldfailure64FFieldGroundSensor60Voltagebalance27VUndervoltage50/51Overcurrent,shortcircuit-phasesA,B,C32ReversePower51NFGeneratorNearFullLoad59Overvoltage81Underfrequency59NNeutralovervoltage87GEDifferentialProtection,withlockoutrelay86DTheconnected87GErelayisswitchedviatransfer.panels.oMeters:DCFieldcurrentDCFieldvoltageGeneratoramperes,withammeterswitch7GeneratorkilowattsGeneratorKilovarsGeneratorvoltage,withvoltmeterswitchGeneratorfrequencyGeneratorkilowatthours Table3-1DIESELGENERATOREBUILDINGVENTILATIONSYSTEMDESIGNPARAMETERSSummerWinterOutdoorAmbientConditionsIndoorDesignConditionsoElevation675'-6"and708'-0"withD/G'E'On"pE]evation675s6>iand708tOsiwithD/GtEssiOff0oElevation656'-6"-RemainingAreawithD/G'E'On"oElevation656'-6"-RemainingAreawithD/G'E'Off"Elevation656'-6"-BatteryRoomwithD/G'E'On"or"Off"92'Fd.B/78Fw.b.120'F(Max)104'F(Max)104'F(Max)120'F(Max)104'F(Max)50F70F(Min)70'F(Min)65'F(Min)60'F(Min)60'F(Min)  
Generalarrangements ofthedieselgenerator Ebuildingdepicting locationofmajorequipment areshownondrawingM-5200contained inAppendixAtothisreport.ThebuildingisdesignedtoSeismicCategoryIrequirements andisprotected fromtheeffectsoftornadomissiles.
Itisareinforced concretetwostorystructure withapenthouse andanadditional levelbelowgrade,Reinforced concretewasselectedforthewallsandroofasbeingthemost.suitablematerialforprotection againstmissiles, seismicloadsandbelowgradeconstruction.
Thefloorsofreinforced concretearemonolithically constructed withwallsasacommonpractice.
Entrytothebuildingisatthegradeelevation bydoorsprotected fromtheeffectsofmissileswithlabyrinths.
Thebasementhousesthe125-Vdcbatteryroom,batterycharger,4160-Vswitchgear, transferpanels,termination
: cabinets, buildingauxiliary servicespanel,non-class 1Eautotransferswitch,non-class 1EMCC,125-Vdcswitchboard, startingaircompressors skidsand,sump.Underground pipingisbroughtintothebuildingatthislevel.Inadditiontothedieselgenerator anditsskidmountedaccessories, theflooratgradecontainstheairreceiverskidandthedieselgenerator controlroom,consisting ofagenerator andenginecontrolcabinet,Class1Emotorcontrolcenters,synchronizing paneland,a4160/480Vtransformer.
Thesecondstorycontainstheairintakefilter,silencer, intakepiping,exhaustmufflerandpiping,andventilation supplyandexhaustfans.Thepenthouse containstheexhaustchamberforthedieselgenerator exhaustandventilation exhaust.Thecombustion airandventilation airintakeistakenfromoneendofthebuildingviaanopeningwhichisprotected fromtornadomissiles.
Tominimizerecirculation ofengineexhaustintothecombustion airandventilation airintake,thecombustion exhaustandventilation exhaustarelocatedinthepenthouse attheoppositeendofthebuilding, andareprotected fromtheeffectsoftornadomissilesbyaconcrete'verhang.
Tornadodampershavebeenprovidedfortheventilation airintakeandexhaustopenings.
Boththeintakeandexhaustarelocatedmorethan30feetabovegrade.Aport',ofthenortnwallatgradeelevation isremovable tofacilitate removalofthedieselorcomponents ontheauxiliary skidshouldthisbecomenecessary duringthelifeofthefacility.
Thisportionofthewallisdesignedtowithstand theeffectsoftornadomissilesandseismicevents.A20tonbridgecraneisprovidedtopermithandlingofdieselgenerator andauxiliary skidcomponents.
Theheaviestsinglepiece(enginecomponent) tobeliftedduringthemaintenance istheturbo-charger whichweighsapproximately 5100lbs..Majorequipment whoseweightislessthanthecranecapacityincludesthegenerator rotor,generator stator,generator shaft,flywheel, pistonandconnecting rod.2-1 3.0DESIGN3.1Mechanical EuimentThemechanical equipment considered tobenuclearsafetyrelatedincludesthefueloilstorageandtransfersystem,combustion airintakeandexhaustsystem,startingairsystem(fromthereceivers totheengine),thecoolingwatersystem,thejacketwatersystem,andthelubeoilsystem.Thepipingofpumps,tanks,andvalvesassociated withtheseportionsofthemechanical systemsaredesignedasSafetyClass3,SeismicCategoryIcomponents inaccordance withRegulatory Guide1.26.Assuch,theyareprotected fromtornadomissiles, floods,andothernaturalphenomena.
Mechanical equipment inbothnon-nuclear safetyrelatedparts'ofthesystemsdiscussed aboveandsystemswhichareentirelynon-nuclear safetyrelated,suchaspotablewaterandserviceair,aredesignedtoprecludedamagetonuclearsafety-related equipment duringandafterasafeshutdownearthquake byseismically supporting suchpipingandcomponents.
Pipingisseismically supported usingtheequations ofASMESectionIII,NuclearPowerPlantComponents, 1971issuewithalladdendaissuedthroughwinter1972.PipingwhichisnotrequiredtobeSafetyClass3isprocuredas831.1,isseismically supported, andisinaccordance withANSIB31.1-1973.
Theeffectsofmoderateenergybreaksinpipingsystemsareconsidered.
in.thedesignofthedieselgenerator Ebuilding.
Thepipinggenerally hasbeendesignedwithstresslevelslowenoughtoprecludethepostulation ofmoderateenergybreaks.Wherethisisnotpossibleessential equipment isprotected fromthewettingeffectsofapipecrackbyphysicalseparation orbarriers.
Essential equipment isprotected fromfloodingeffectsbymountingtheequipment onpedestals, bybarriers, orbyoperatoraction.Alevelalarmisprovidedtoindicatetheexistence ofahighwaterlevelinthebuildingsump.I3.1.1FuelOilStoraeandTransferSstemThefueloilstorageandtransfersystemconsistsofanunderground storagetank,atransferpump,andassociated piping,valves,andinstrumentation.
Thetankwillbefilledfromanewfillstation.'he storagetankissizedtocontain80,000gallonsoffueloilwhichallowsforapproximately th'irty(30)hoursoftestingofthedieselgenerator andseven(7)daysofcontinuous operation, allatfullload.Thefueloiltransferpumpiscapableoffillingtheda~"=ankfori:h=nwdieselgene"ator and(non-concurrently) thedaytankonanyuneoftheexistingdiesels.Itcanalsofill,anyoftheexistingdieselfueloilstoragetanks.Thetransferpumpisactuatedautomatically fromitsassociated daytank.Fillingofexistingdaytankswiththedieselgenerator Etransferpumpiscontrolled manually.
ThefueloilstorageandtransfersystemisdesignedasaSafetyClass3,SeismicCategoryIsystem,inaccordance with,therequirements ofRegulatory Guides1.26and1.137andANSIStandardN-195.Theflowdiagramforthefueloilstorageandtransfersystemservingdieselgenerator EisshownondrawingM-120,Sheet2,inAppendixA.Instrumentation andcontroldiagramsareshownondrawingJ-120,sheets3,4,and5,alsoinAppendixA.3-1 3.1.2CoolinWaterSstemTheEmergency ServiceWaterSystem(ESW)isused.tosupplycoolingwatertothefollowing components ofdieselgenerator E:oLubeOilCooleroJacketWaterCooleroFuelOilCooleroIntercoolers Theexistingemergency servicewatersystemhasbeenextendedtothedieselgenerator Ebuildingviafour(4)10inchpipes.OneeachforloopAsupplyloopAreturn,loopBsupply,andloopBreturn.Amotoroperatedbutterfly valveisprovidedoneachoftheselines.Whendieselgenerator Eisusedtoreplaceanotherdiesel,loopAistheprimary'ooling source,witheitheramanualoranautomatic transfer'to loopBifloopAbecomesunavailable.
Theflowdiagramfortheemergency servicewatersystemservingdieselgenerator EisshownondrawingM-ill,sheet3,inAppendixA.Instrumentation andcontroldiagramsareshownondrawingJ-ill,sheets10,ll,13,14,14Aand15,alsoAppendixA.3.1.3HeatinandVentilation Thedesigntemperature parameters andheatrefection tothespacebythedieselgenerator andotherheatproducing deviceswereusedtosisetheventilation systemforthedieselgenerator Ebui'lding.
Thedesignparameters aredetailedinTable3.1.Thecapacityoftheventilating systemfanswasselectedto'andletheheatrejection tothespacebydieselgenerator Eandtomaintainthespacetemperature below120'Finsummerwhenthedieselgenerator isoperating.
Two(2)50percentcapacitysupplyfans,two(2)50percentcapacityexhaustfansandone(1)100percentcapacitybatteryroomandbasementexhaustfanwereselectedtoventilate thebuilding.
Thefirstsetofinterlocked supplyandexhaustfansmaintainspacetemperature below104'Fbymeansofdampermodulation andstartingoffansfromt~=spacetherostat.
Thesecondsetofinterlocked supplyandexhaustfansstartwhentheindoortemperature risesabove104'F.Thisarrangement ofone(1)50percentcapacitysupplyandone(1)50percentcapacityexhaustfanrunningduringthenormalventilation modeisfurnished toconserveenergy;Nofiltration orcoolingisprovidedintheventilation system.Themodulating dampersystemcontrolstemperature andisdesignedforfailsafeoperation topermitfullventilation.
ITheexhaustfanforthebatteryroomandbasementismanuallyoperated, runscontinuously andwasselectedforexplosion-proof construction.
Ventilation airforthebatteryroom/charger areaandbasementistransferred fromthebuildingspaceandleakagethroughdamperswhentheventilation supplyfanisnotoperating.
Theventilating systemisdesignedassafetyrelatedandSeismicCategoryI.3-2 Theheatingsystemforallareasconsistsofelectricunitheatersandelectricbaseboard heaters.Theheatersarenotsafetyrelatedandaredesignedtocommercial industrystandards.
Theyarehowever,supported toSeismicCategoryIrequirements toavoidII/Isafetyimpactconcerns.
Theheatershavebuilt-inthermostats toautomatically maintainspacetemperature inaccordance withthedesignparameters listedinTable3-1.Whendieselgenerator Eisnotoperating, actuation ofthefiredetection.
systemwillautomatically stopallthesupplyandexhaustfansandoverridethetemperature controls.
I'heflowdiagramfortheheatingandventilating systemservingdieselgenerator EisshownondrawingM-182,sheet2>inAppendixA.Instrumentation andcontroldiagramsareshownondrawingV-182,sheets7,8,8A,9,9A,10,11,13,13A,14,15,and16,alsoAppendixA.3.1.4PlumbinandDrainaePlumbinganddrainagesystemsforthedieselgenerator Efacilityaredesignedandsizedtoaccommodate thevarioustypesofdrainageinthebuilding.
Roofdrainsarepipedtothestormsewer.Equipment andfloordrainsfromelevations 675'-6"and708'-0"arepipedtoanunderground wastewaterstoragetanklocatedoutsidethedieselgenerator building.
Equipment andfloordrainsfromelevation 656'-6"(exceptfloordrainfrombatteryroom)and'ffluent fromthewastewaterstoragetankaredischarged bygravitytoanoil/water separator locatedinsidethebuildinginasump.Thefloordrainofthebatteryroomdischarges toanacidneutralizing sump,wherewasteisneutralized anddischarged totheoil/water separator.
Theeffluentoftheoil/water separator discharges intothebuildingsump.Thebuildingsumpisequippedwithduplexsumppumpsof100GPMcapacityeach.Buildingsumpcontents(wastewater)arepumpedtotheplantoilywastesystem.Theoilseparated intheoil/water separator ispumpedandcollected ina550gallonunderground wasteoilstoragetanklocatedoutsidethedieselgenerator Ebuilding.
Theunderground wastewaterstoragetankisdesignedt'ocontainfireprotection waterfromthe10minutesofoperation ofpre-action sprinkler system.3.1.5!".reProtect'on/Detection Thedesignofthefireprotection anddetection systemisinaccordance with10CFR50,AppendixR,SectionIIIG,Jand0;NRCBranchTechnical Position9.5.1,NFPANationalFireCodes,andFMstandards.
Thefiresuppression system'ets itswaterfromtheplantyardloop.Thesprinkler andfiresta'ndpipe systemsaredesignedforawatersupplyfromone2500gpm/125psifirepumpdelivering waterthroughayardmainwiththeshortestrouteassumedtobeunavailable.
Thefirestandpipe systemandhosesarelocatedsothatallinteriorsectionsofthebuildingcanbereachedperNFPAClassIIIrequirements.
3-3 Thetype,number,andlocationofportablefireextinguishers areinaccordance withNFPArequirements.
Operation ofthefiredetection andprotection systemsisinterlocked withtheventilation systemsoastoshutdownthosesystems(exceptduringemergency operation ofthedieselgenerator) whichwillinterfere withfirefighting, control,containment, andsuppression ofthefire.Inadditiontothefireprotection system,anearlywarningfiredetection systemisprovidedforthebuilding.
Detectorspacingandtypesofdetectors areconsistent withthetypeofservicerequired.
Thedetection systemiscompatible andinterfaces withtheexistingplantfireprotection multiplexing system.Thefireprotection panelisfedfromabatteryback-uppackagefurnished bythesmokeandtemperature detection panelvendor.Theflowdiagramforthefireprotection systemservingdieselgenerator EisshowondrawingM-122,sheet9,contained inAppendixA.Theinstrument andlogicdiagramforthesystem,indicating firedetectors, isshownonFigureF-1006inAppendixA.3.1.6DieselGenerator StartinAirSstemAsintheexistingdieselgenerators, dieselgenerator Ehasastartingairsystemwhichsupplieshighpressureairsequentially tothedieselenginecylinders.
Thesystem(bothloops)consistsofaircompressors (2),airreceivers (4),airfilters,airdryers,airprecoolers moistureseparators, andassociated piping,valvesandinstrumentation.
Tworedundant airstartingsystemsareprovidedfordieselgenerator Etoincreasestartingreliability.
Additionally, across-tie isprovidedtoalloweithercompressor tochargeall4airreceivers.
Eachairstartloopiscapableofperforming atotaloffive(5)-10secondstartswithoutrecharging theairreceivers.
All=equipment mountedintheairreceivedskidissafetyclass3,SeismicCategory1inaccordance withRegulatory Guide1.26.Allequipment mountedontheaircompressor skidiscommercial grade.TheflowdiagramfortheStartingAirSystemservingdieselgenerator EisshownondrawingM-134sheet2,inAppendixA.3.1.7LubeOilSstemThedieselgenerator Elubeoilsystemisessentially identical totheexistingdieselgenerators systemandconsistsofanenginedrivenpump,standbyA.C.motordrivenpump,circulating pump,lubeoilheater,lubeoilheatexchanger'nd associated piping,valvesandinstrumentation.
Theprimarypurposeofthelubeoilsystemistolubricate bearingsandothermovingpartsintheengine.Additionally, thissystemisusedtolubricate turbo-charger
: bearings, keeptheenginewarminthestandbymodetoenhancer immediate startup,coolthepistons,andmaintainenginecleanliness bypreventing rustandcorrosion.
Theenginedrivenpumpprovidestherequiredlubeoilpressureduringnormaloperation.
AstandbyA.C.motordrivenpumpwillautomatically startuponfailureoftheenginedrivenpump.Acirculating pumpandelectricimmersion typeheaterareusedtomaintainlubeoilataprescribed temperature duringstandbyperiods.Athermostatic controlvalveisusedtomaintainlubeoiltemperature duringtheseperiods.Allequipment mountedontheauxiliary skidisdesignedasSafetyClass3,SeismicCategory1inaccordance withRegulatory Guides1.26and1.29.Allequipment suppliedbytheenginemanufacturer hasbeenseismically qualified.
Theflowdiagramforthelubeoilsystemservingdieselgenerator EisshownondrawingM-134sheet2,inAppendixA.3.1.8JacketWaterSstemThedieselgenerator Ejacketwatersystemissimilartotheexistingdiesel'sjacketwatersystemandconsistsofastandpipe, enginedrivenpump,standbyA.C.motordrivenpump,circulation pump,jacketwaterheater,jacketwatercoolerandassociated piping,valves,andinstrumentation.
Thejacketwatersystemisaclosedloopsystemwhichusestreatedwatertocooltheenginecylinderjackets,turbo-charger, andthegovernoroilcooler.Thissystemcirculates warmjacketwaterthroughtheheaterportionoftheairintercoolers toheatthecombustion airduringstartup.Theenginedrivenpumpprovidestherequiredjacketwaterpressureduringnormalengineoperation.
AnA.C.motordrivenpumpisprovidedintheeventofenginedrivenpumpfailure.Thispumpwillautomatically turn-onuponlossoflubeoilpressure.
Acirculating pumpandelectricimmersion typeheaterareusedtokeepjacketwaterataround120Fduringstand-byperiodsto0enhanceimmediate start-up.
Athermostatic controlvalveisusedtomaintainjacketwatertemperature duringtheseperiods.Allequipment mountedontheauxiliary skidisdesignedassafetyclass3,seismi:ategory1~naccordance witntherequirements ofU.S.Regulatory Guide1.26.Inaddition, allequipment suppliedbytheenginemanufacturer andmountedontheenginehasbeenseismically qualified.
Theflowdiagramforthejacketwatersystemservingdieselgenerator EisshownondrawingM-134,sheet2,inAppendixA.3.1.9FuelOilSstemThedieselgenerator Efueloilsystemisessentially identical totheexistingdieselgenerators systemandconsistsofanenginedrivenpump,D.C.motordrivenpump,twenty(20)injection pumps,fueloildaytank,fueloilheatexchanger, filters,strainers andassociated piping>valves,andinstrumentation.
3-5 Flowfromthedaytanksuppliesfueltotheenginedrivenpumpwhichinturnsuppliesfuelat35psigtothein)ection pumps.Areliefvalveisutilizedatthedischarge oftheenginedrivenpumptomaintainpressureat35psig.Thefueloilcoolerisusedtocoolthefueloilwhichisbypassedbythereliefvalvebacktothedaytank.Thefiltersandstrainers areusedtoassurecleanfueltothehighpressureinjection pumps.AD.C.motordrivenfueloilpumpisprovidedtoreplacetheenginedrivenpumpintheeventofenginedrivenpumpfailure.Thispumpwillautomatically startuponlossofpressureatthedischarge oftheenginedrivenpump.Allequipment mountedontheauxiliary skidisdesignedasSafetyClass3,SeismicCategory1inaccordance withRegulatory Guides1.26and1.29.Allequipment suppliedbytheenginemanufacturer andmountedontheenginehasbeenseismically qualified.
Theflowdiagramforthedieselgenerator EfueloilsystemisshownondrawingM-134,Sheet2,inAppendixA.3.2Structural DesinThedieselgenerator EbuildingisaSeismicCategory1,two-story structure withapenthouse andabasementconsisting primarily ofreinforced concretewalls,floorslabs,androof.Thedieselgenerator ped'estal isalsoconstructed ofreinforced concrete.
Agapbetweenthebuildingfloorandthepedestalatgradelevelisprovidedsothatvibrations fromthedieselgenerator arenottransmitted tothebuilding.
Acurbplatehasbeeninstalled topreventexcessive waterandoilfromleakingdowntothebasementfromtheoperating floor(el.675'-6")throughthis'ap.Thefoundation systemwasconstructed byfirstremovingthevolumeofsoilfromtheexistinggradedowntothesoundrockwiththeplanareaslightlylargerthanthatofthebuilding.
Thisvolumewasfilledwithleanconcreteextending fromthesoundrocktoaconvenient elevation, whichis'hebottomelevation ofthebuildingbasementfloormat.Thefoundation systemfordieselgenerator supportEissimilartothatusedfortheexistingdieselgenerators.
Itconsistsofareinforced concreteblockapproximately 34'ongx9'idex21'-6"high,withfourverysmallopenin,"andisfoundedontheleanconcretewhichinturnisbondedtothebedrock.Thistypeoffoundation pedestalhasahighrigidityandconsequently itsfrequency ofthelowestfundamental modeofvibration willbemorethan1.5timesthespeedofdieselengine(600rpm).Thiswillprecludeanysupportrelatedvibration problems.
Theouterreinforced concretewallsandroofofthedieselgenerator Ebuildinghavesufficient thickness toresisteffectsoftornadomissiles.
Aportionofanouterwallisremovable tofacilitate dieselgenerator installation and/oremergency removalandmaintenance operation.
Thisremovable wallportionisdesignedtoresisttheeffectsoftornadomissilesandseismicloads.Sincethehighgroundwaterlevelfordesignpurposeisatelevation 665'-0",awaterproofing membraneisinstalled ontheoutsideofthebasementwallsuptoelevation 665'-0"andonthebottomsurfaceofthe3-6 basementfloormat.Waterstops areprovidedatconstruction
)ointsbelowelevation 665'-0"..
Adescription oftheseismicanalysisprocedure andmodelsforthedieselgenerator Ebuildingiscontained inAppendixCto.thisreport.Thesitewasreviewedandevaluated forexistingconditions relatingtosoilsandrockmaterials, drainagepatterns, pavements andothergroundcovers,susceptibility toerosion,siteaccessibility, andcontrolsforsurveywork;andtoestablish abasisforverifying theexactlocationofallabovegradetie-insystemsandallunderground safetyandnonsafetyrelatedsystemsthatcouldimpactdesignorconstruction activities.
Alicensedsurveyordetermined thehorizontal andverticallocations ofkeypointsforthesesystemsandthedatawasassembled onasingleComposite UtilityPlan,tiedintotheplantgridanddatum.ThisComposite Planwasusedthroughout preliminary andfinaldesigntomaintaincontrolofthelocationoftie-inworkandallnewunderground systems*(allpipingsystems,utilities, andstructures including waterandsanitarysewerlines,stormdrainagelines,electricductbanks,fuellines,andanyotherlines).Italsoservesasabasisfordefiningthe"as-built" conditions.
Basedonareviewof'vailable existingsubsurface data,additional boringswererecommended toestablish adesignbasisforexcavation andbackfilloperations.
Theresultsoftheseinvestigations including construction stagesheetingandbracingconsiderations, recommendations forexcavation andbackfilloperations anddewatering arepresented inGibbs&Hilldocument3544-SR-001 entitled"ReportonSubsurface Investigations forDieselGenerator EFacility".
Erosionandsedimentation controlswereimposedonconstruction activities basedonguidelines stipulated inCommonwealth ofPennsylvania Department ofEnvironmental ResourceRulesandRegulations, Chapter102.Thesitestormdrainagesystemisdesignedtoprovideadequatedrainagethroughout thelifeofthefacility.
Thebuildingsiteisgradedtodrainawayfromthedieselgenerator Estructure.
Thepeakrateofstormwater runofffromthesitewasdetermined usingtheRationalMethodofdesignbasedonpre(''-i.itation va=u=sderivedfro-criteriapresented inSection6.3.7.1ofTechnical Specification G-1001.Surfacerunoffwillbeconveyedtoaperipheral ditchfordischarge throughtheexistingstormdrainagesystem.3.3Electrical DesinElectrical separation ofcontrolandpowercircuitsintheexistingdieselbuildingisasdescribed
'intheSusquehanna SteamElectricStationFinalSafetyAnalysisReport(FSAR)sections3.12.3.4.2,8;1.6.1.hand8.3.1.11.4.Fordrawingsandtablesseethereferenced FSARsections.
Electrical separation ofcontrolandpowercircuitsindieselgenerator Ebuildingisasdescribed inIEEE-384, 1981and;Regulatory Guide1.75,Rev.2,1978asinterpreted (FSAR)'ection 8.1.6.1.h.
FordrawingsseeE81-1,E81-2andE81-3ofAppendixA.3-7.
3.3.1MediumVoltaeSstemDieselgenerator Eisconnected directlytotheswitchgear inthedeiselgenerator Efacility.
Theswitchgear isClass1Eandconsistsofmetal-clad, dead-front, free-standing steelstructures, completewithbuses,draw-outcircuitbreakers, currentandpotential transformers, controlswitches, instruments, andotherequipment necessary forproperoperation.
Thecircuitbreakersarerated1200A,250MVA,4.16kV,withcommensurate busbracing.Eachofthefouremptypositions intheswitchgear isconnected toaClass1Eswitching pointlocatedatanexistingdieselgenerator.
Eachswitching pointconsistsofamanualcircuitbreakerandanemptyposition.
Amanualcircuitbreakerisprovidedforinsertion intoonlyoneofthefourpositions intheswitchgear inthedieselgenerator Efacility, andamanualcircuitbreakerisprovidedforinsertion ateachswitching pointlocatedatanexistingdieselgenerator.
Properalignment allowsthesparedieseltobeconnected inplaceofanyoneoftheexistingdiesels.Whennotinuse,themanualcircuitbreakersarestoredinasparecubicleintheswitchgear inthedieselgenerator
'Ebuilding.
Acircuitbreakerisalsoprovidedforconnection tothe4.15kVprimaryofthenewindoortransformer.
Acubicleisprovidedforauxiliary meteringand/orinstrumentation, andforconnection tothetestfacility.
Changestothedieselgenerator controlpanellocatedinthemaincontrolroomhavebeenminimized.
Asystemforcontroltransferhasbeendeveloped, withconsideration tocableseparation requirements andHumanFactorsEngineering.
Thefollowing arelocatedatthenewswitchgear inthedieselgenerator Ebuilding:
Incominglinecompartment Voltmeter Voltmeter switchEquippedspace(totaloffour)AmmeterAmmed".switchLocalcontrolswitchwiththreeindicating lights(breakeropen,breakerclosed,breakerintest)Transformer feederCircuitbreakerAmmeterandammeterswitch50/51shortcircuit/overcurrent protective relays'50Ggroundcurrentprotective relayLocalcontrolswitchwiththreeindicating lights(breakeropen,breakerclosed,breakerintest)Keyinterlock, fordisconnect switchontransformer
-toprecludeoperating switchunlessbreakerisopen3-8 LockoutrelayoTestFacilitycompartment oBreakerstoragecompartment 3.3.1.2SwitchinPointsThefollowing arelocatedateachofthefournewswitching pointsintheexistingdieselgenerator buildings.
oCircuitbreakercompartment Manual,draw-outbreakerLocalcontrolswitchwiththreeindicating lights(breakeropen,breakerclosed,breakerintest)AmmeterAmmeterswitchoEquippedspaceVoltmeter Voltmeter switchAmmeterswitchLocalcontrolswitchwiththreeindicating lights(breakeropen,breakerclosed,breakerintest)3.3.2480-VoltSstemThesecondary ofthenewindoortransformer isconnectable toaClass1EMotorControlCenter(MCC),tosupplytheEdieselgenerator auxiliary loads.ThisClass1EMCCisconnected toanewnon-Class 1EMCCviatwoshunt<<trip circuitbreakers, eachactivated byanundervoltage orLOCAsignal.Thenon-Class 1EMCCisnormallypoweredviaanautomatic transferswitchfromeitheraUnit1orUnit2non-Class 1Eloadcenter.BothMCC'sareenclosed, free-standing cabinet-type withmainandverticalbuses,combination motorstarters, feederprotection devices,andotherequipment asrequired.
3.3.3Class1E125-VoltDCSstemTheClass1Edcsystemsuppliespowerforoperation ofthenew4.16kVswitchgear lineup,ESWvalves,dieselcontrols, fieldflashing, andsimilarrequirements.
Itiscomposedofonebattery,onecharger,oneswitchboard, oneMCC,andonedistribution panelinthedieselgenerator Ebuilding.
Thecomponents aresuitablysizedtomeettherequirements ofthesystemandareshownonthe125VDCone-linedrawingE-ll,SheetllinAppendixA.Thebatterychargeriscapableofsupporting thenecessary loadswhilerecharging thebatterywithin8hours,aswellasproviding thebatteryfloatandequalizing charge.3-9 3.3.4TransferSwitchinSstemAsystemfortransferswitching hasbeendeveloped, withconsideration tocableseparation requirements, HumanFactorsEngineering, andtominimizing changestothecontrolboardsinthemaincontrolroom.3.3.4.1TransferPanelsThetransferswitching systeminvolvesoperation oftransferswitchesonpanelslocatedinthedieselgenerator Ebuildingandintheexistingdieselgenerator buildings.
Severalgroupingofcontrols,
: metering, andalarmswillbetransferred.
Thetransferswitchesinthespecifictransferpanelsinthedieselgenerator Ebuildingareusedtoselectthepathtothecontrolsofthespecificdieselgenerator tobereplaced.
Thetransferswitchattheindividual transferpanelineachexistingdieselgenerator buildingisusedtotransfercontrolsofthespecificdieselgenerator tobereplacedtodieselgenerator E.Thesetwoswitchesinseriesprovideadoublebreakincontrolcircuitstoprecludeproblemsinthenewbuildingfrombeingpropagated intoany'oftheexistingdieselgenerator controls.
Thissameprinciple appliestothetwopowercircuitbreakersinseries;therearealwaystwobreaksbetweendieselgenerator Eandanexistingnonaligned dieselgenerator.
Also,thedieselgenerators cannotbeparalleled.
Thelocationoftheswitchgear andtransferpanelsatElevation 710'ntheexistingdieselgenerator buildings providessomeprotection frommissiles.
Ifafireormissilefromanexistingdieselgenerator weretooccurataswitching point,itwilldisabletheswitching pointinamannersuchthatrepairwouldberequiredbeforedieselgenerator Ecouldbeusedinplaceoftheparticular existingdieselgenerator.
3.3.4.2LocalEnine-Generator ControlPanelsThegenerator controlpanelfordieselgenerator Eincludesprotective
: relaying, andislocatedinthedieselgenerator Ebuilding.
Thispanelissimilartothepanelsprovidedforeachoftheexistingdieselgenerators.
(RefertoTable3-2).Thene'~'nginecont-.-'anel forthedieselgenerator Eengineincludesinstrumentation, andislocatedinthedieselgenerator Ebuilding.
Thispanelissimilartothepanelsprovidedforeachoftheexistingdieselgenerators.
(RefertoTable3-3).3.3.4.3DevicestobeTransferred Thedevicesassociated withthereplaceddieselgenerator areusedfordieselgenerator E,viathetransferswitching system.(RefertoTable3-3).Thenewdevicestobere-used,asabove,onthemaincontrolboardare:oAlarmsDieselgenerator trippedHighpriorityalarm3>>10 LowpriorityalarmDieselgenerator breakertripDieselgenerator failstostartDieselgenerator atnearfullloadDieselgenerator notinautomatic modeRoomfloodedControlsStart-Stop Synchronize Frequency adjustment Voltagead)ustment Manualorautomatic voltageregulator selection Isochronous anddroopselection Readytorun><lighBIS'signals(SeeSection3.3.4.4)MetersVoltageCurrentFrequency Kilowattoutput3.3.4.4BassedandInoerableStatus(BIS)PanelForeachofthesystemslistedbelow,theswitchesandindications foreachoftheexistingdieselgenerators areused,viaaswitching transfersystem,whendieselgenerator Eisusedinplaceofanyoneoftheexistingfourdieselgenerators.
DieselGenerator ControlSystemDieselGenerator OutputSystemDieselGenerator Auxiliary System'SWSystemEachofthesesystemsexistsfortheexistingdieselgenerators.
Table3-4listsindicating lightsinexistingBISpanels.3.3.4.5Dedicated DevicesThefollowing newdevices,locatedonthemaincontrolboard,arededicated tothedieselgenerator Efacility:
oAlarms4.16kVSystemforDieselGenerator EFacility-Trouble DCSystemforDieselGenerator EFacility-Trouble HVACFailureinDieselGenerator EFacilityControlSwitchesNotProperlyAlignedDieselGenerator EBuildingSumpLevelHigh3-11 oIndicating LightsAseriesoffiveindicating lightsareprovidedtostatusthereplacement dieselgenerator Easfollows:DieselGenerator Enotalignedasareplacement DieselGenerator Ealignedasreplacement forDieselGenerator ADieselGenerator Ealignedasreplacement forDieselGenerator BDieselGenerator Ealignedasreplacement forDieselGenerator C"DieselGenerator Ealignedasreplacement forDieselGenerator D,oLocal>>Remote SelectorSwitchThisdeviceisadedicated switch,similartotheswitchesfortheexistingdieselgenerators.
oEmergency ServiceWaterValvesOperation Individual open-closed indicating lightsandcontrolswitchesareprovidedontheexistingmaincontrolboardforeachofthefouremergency servicewatervalvesassociated withdieselgenerator E.ThesevalvesarepoweredfromexistingDivisionIandDivisionIIMCCs.Lightingfixturesoperateon277-Vac(Security lightsoperateat400v;explosion-proof lightsoperateat120v).Indoorlightingismetalhalideor'fluorescent depending ontheparticular application.
Outdoorlightingishighpressuresodium.Inhazardous areassuchasthebatteryroom,incandescent explosion prooflightingisused.Thelightingsystemispoweredfromdieselgenerator E'sessential acpowerdi~tribution whichisbackedupbyadiesel'aeratorintneeventoflossofoff-sitepower.Additional
: fixtures, energized bythemainplant'snormalacpowerdistribution arealsoprovidedtoaugmenttheessential lightingtoprovidetheminimumillumination levels.Exitlightingisenergized bydieselgenerator E'sessential acpowerdistribution system,andisprovidedasrequired, thisincludesself-contained battery-powered lightingfixtures.
Theoutdoorlightingsystemispoweredfromasourcetraceable totheexistingsecuritysystememergency powersupply.Lightingsystemsareinaccordance withtheNationalElectrical Code.3.3.6'roundin SstemAbarecoppergroundloopconsisting of250-MCMbarecoppercableembeddednearthebaseofthefoundation, perimeter isinstalled, andconnected tothe3-12 applicable equipment witha4/0-AWGbarecopperwire.Thisisinterconnected
~'otheexistingstationgrid.3.3.7Communications SstemThecommunications systemiscompatible withandconnected totheexistingmainplantcommunications system.Sufficient speakersandpublicaddresssystemst'ations forpaging/communications areprovided, aswellasPlantMaintenance/Test Jacksystemstations.
Thesystemisdesignedinaccordance withthelatestissueoftheNEC.ThePAsystemisdesignedsothatalarmmessagescanbeheardunderallconditions ofoperation.
3.3.8SecuritSstemThedieselgenerator Efacilityisclassified asavitalarea,therefore thesecuritysystemisdesignedtosatisfyalltheapplicable requirements of10CFR73.Inaddition, theintrusion alarmsystemdesignmeetsthecriteriaoutlinedinRegulatory Guide5.44.Theexistingsecurityfencewastemporarily relocated priortoconstruction toaccommodate construction progresswithoutendangering vitalareaplantsecurity.
Allsecuritydevicesandequipment aredesignedtobecompatible with,andconnected to,theexistingplantsecuritysystem.Thepurposeofthetestfacilityistoprovideameansforperiodictestingofdieselgenerator Ewhendieselgenerator EisnotalignedtotheClass1Edistribution system.rThedieselgenerator Etestfacilityconsistsofaninterconnection betweenthedieselgenerator E4.16kVClass1Eswitchgear andtheNon-Class 1E13.8kVswitchgear (Bus10)locatedintheexistingturbinebuilding.
Theconnection toBus10isviaasplicetaptotheMakeupWaterIntakeStructure 13.8kVfeeder.Thetestfacilityinterconnection consistsofthefollowing ma)oritems:o'16kVswitchgear compartment andassociated
: controls, meteringandprotective devices.o,4.16kVcircuitbreaker(thisisthesamecircuitbreakerwhichisalsoutilizedinthesubstitution ofdieselgenerator Eforanyoneoftheexistingdieselgenerators.
o4.16kV/13.2kV,10.5/13.15 MVAOA/FA55C,step-uptransformer.
o13.8kVoutdoorswitchgear unitwithassociated controlandpro'tective devices(usedtodeenergize 4.16kV/13.2kVtransformer whentestfacilityisnotinuse)oSynchronizing panel(forsynchronizing D.G.E4.16kVoutputto13.8kVBus10;synchronizing isacrossthe4.16kVcircuitbreaker).
3-13 3.3.10MildEnvironment Thedieselgenerator Ebuildingenvironment willatnotimebesignificantly moreseverethantheenvironment thatwouldoccurduringnormalpowerplantoperation, including anticipated operational occurrences.
Itistherefore considered tobea"mildenvironment".
ClasslEequipment locatedinamildenvironment isnotrequiredtobeenvironmentally qualified bytypetest.Adherence totherequirements of10CFRPart50,Appendices AandB,andtheguidanceinRegulatory Guide1.33,Revision3,ensuresadequateperformance ofthesafety-related equipment locatedinthemildenvironment.
TheClass1Eequipment locatedinamildenvironment issubjecttotheplantseismicrequirements, exceptthatpreconditioning (aging)priortoseismictestingisnotrequired.
3.4Instrumentation andControlsThecontrollogicforactivating dieselgenerator Eisbasedonareviewof'xisting dieselgenerator
: controls, discussions withtheoperating staff,'nd consideration oftheHumanFactorsinvolvedinplacingtheEdieselgenerator inservice.3-14 Table3>>2PROTECTIVE RELAYS~METERSANDCONTROLDEVICESONTHEGENERATOR CONTROLPANELFORDIESELGENERATOR EThenewgenerator controlpanelislocatedinthedieselgenerator Ebuildingand'includes thefollowing:
oProtective relays:40/76Fieldfailure64FFieldGroundSensor60Voltagebalance27VUndervoltage 50/51Overcurrent, shortcircuit-phasesA,B,C32ReversePower51NFGenerator NearFullLoad59Overvoltage 81Underfrequency 59NNeutralovervoltage 87GEDifferential Protection, withlockoutrelay86DTheconnected 87GErelayisswitchedviatransfer.panels.oMeters:DCFieldcurrentDCFieldvoltageGenerator amperes,withammeterswitch7Generator kilowatts Generator KilovarsGenerator voltage,withvoltmeter switchGenerator frequency Generator kilowatthours Table3-1DIESELGENERATOR EBUILDINGVENTILATION SYSTEMDESIGNPARAMETERS SummerWinterOutdoorAmbientConditions IndoorDesignConditions oElevation 675'-6"and708'-0"withD/G'E'On"pE]evation675s6>iand708tOsiwithD/GtEssiOff0oElevation 656'-6"-Remaining AreawithD/G'E'On"oElevation 656'-6"-Remaining AreawithD/G'E'Off"Elevation 656'-6"-BatteryRoomwithD/G'E'On"or"Off"92'Fd.B/78 Fw.b.120'F(Max)104'F(Max)104'F(Max)120'F(Max)104'F(Max)50F70F(Min)70'F(Min)65'F(Min)60'F(Min)60'F(Min)  


Table3-2(Cont'd)oControlDevices:DCControlpowerFieldFlashpowerProtectiveRelaying-resetVolts/Vers-Whitelight-Whitelight-Pushbutton-SelectorswitchRaise
Table3-2(Cont'd)oControlDevices:DCControlpowerFieldFlashpowerProtective Relaying-reset Volts/Vers
-Whitelight-Whitelight-Pushbutton
-SelectorswitchRaise-lowerFieldFlash-ManualGenerator BreakerPushbutton
>>LockoutRelay52GBTReset-trip lightsVoltageRegulator
-SelectorswitchManual-Auto Generator Field-LockoutRelay86ESDReset-trip lightsExcitation ShutdownBridgeTransferSwitchTestBlockMetering-Current
-Pushbutton
-Switch-TestblockTransformers TestBlockMetering-Potential Transformers
-TestblockTransformers Table3-3DEVICES,ALARMSANDSHUTDOWNSIGNALSONTHEENGINECONTROLPANELFORDIESELGENERATOR EThenewdieselenginecontrolpanelislocatedinthedieselgenerator Ebuildingandincludesthefollowing:
oDevices:JacketWaterPress/After CoolerPressEnginehours-DualIndicator
-MeterTurbo-charger oilfilterdifferential pressureFueloilsupply/discharge pressurePowerCylinderExhaustTemperature Temperature Enginelubeoilpress/turbo lubeoilpressTurbo-charger Air6Crankcase pressures
-Indicator
-DualIndicator
-Indicator
-Indicator
-DualIndicator
-Indicator Powercylinderexhaustandturbotemp.-MeterRTDtemperature Manifoldpressure-Meter-Indicator Turbo<<discharge pressAirManifoldLeftBank/Right Bank-DualGaugePress.StartingAirPressureReceiver1/Receiver2-DualIndicator EngineSpeedGovernorMode-SelectorSwitchIsochronous-Parallel SpeedControl-SelectorSwitchRaise-Off-Lower Mastertripcircuit-TripMastertripcircuit-Reset-Greenlight-AmberlightTurboexhaustoutlet,turboairin/breakcase Turbochargerspeed-Dualgaugepressure-Meter Table3-3(Cont'd)FueloildaytanklevelFueloilstoragetanklevelSequenceindication
-stepControlModeselectorEngineControl-Meter-Meter-Redlight-SelectorswitchRemote-off-local Local/remote Whitelights-Pushbutton Start-StopSequenceIndication
-Crank-WhitelightSequenceIndication
-RunningidleSequenceIndication
-RunningloadedUnitinEmergency modeMastertripcircuit-Whitelight-Whitelight-Whitelight-Lockoutrelay(86)Trip-ResetAnnunciator DCpoweroncircuit/IlDCpoweroncircuitf/2DGavailable forEmergency Emergency stop-SelectorswitchTest<<Off-Reset Pushbutton Acknowledge
-Whitelight-Whitelight-Whitelight-Pushbutton Stop-Reset AirCompressor I/1AirCompressor
//2-SelectorSwitchHand-Off-Auto withG/R/Alights-SelectorSwitchHand-Off-Auto withG/R/AlightsStandby)acketwaterpump-SelectorSwitchHand-Off-Auto withG/R/AlightsJacketwatercirculating pumpSelectorSwitch Table3-3(Cont'd)JacketwaterheaterHand-Off-Auto withG/R/Alights-


NUREG-0800(FormerlyNUREG-75/087)sosstopU.S.NUCLEARREGULATORYCOMMISSION-::"::iSTANDARDREVIEW.PLAN+--4o'"OFFICEOFNUCLEARREACTORREGULATION3.7.2SEISMICSYSTEMANALYSISREVIEWRESPONSIBILITIESPrimary-StructuralEngineeringBranch(SEB)Secondary-NoneI:AREASOFREVIEWThefollowingareasrelatedtotheseismicsystemanalysisdescribedintheapplicant'ssafetyanalysisreport(SAR)arereviewed.1.SeismicAnalsisMethodsForallCategoryIstructures,systems,andcomponents,theapplicableseisaKcanalysismethods(responsespectra,timehistory,equivalentstaticload)arereviewed.Themannerinwhichthedynamicsystemanalysismethodisperformed,includingthemodelingoffoundationtorsion,rockingandtranslation,isreviewed.Themethodchosenforselectionofsignificantmodesandanadequatenumberofmassesordegreesoffreedomisreviewed.Themannerinwhichconsiderationisgivenintheseismicdynamicanalysistomaximumrelativedisplacementsbetweensupportsisreviewed.Inaddition,othersignificanteffectsthatareaccountedforinthedynamicseismicanalysissuchashydro-dynamiceffectsandnonlinearresponsearereviewed.IftestsorempiricalmethodsareusedinlieuofanalysisforanyCategoryIstructure,thetestingprocedure,loadlevels,andacceptancebasisarealsoreviewed.2.NaturalFreuenciesandResonseslFortheoperatinglicensereview,significantnaturalfrequenciesandresponsesformajorCategoryIstructuresarereviewed.Inaddition,theresponsespectraatmajorCategoryIequipmentelevationsandpointsofsupportareIreviewed.USNRCSTANDARDREVIEWPLANRev.1-Jul1981StandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.ThesedocumentssremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryandthegeneralpublicofregulatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathavescorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically,asappropriate,toaccommodatecommentssndtoreflectnewinforma-tionsndexperience.CommentsandsuggestionsforImprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCommission,OfficeofNuclearReactorRegulation,Washington,O.C.20555.
NUREG-0800 (Formerly NUREG-75/087) sosstopU.S.NUCLEARREGULATORY COMMISSION
Cvs~sac~LI 13.AnalsisProcedureforDaminTheanalysisproceduretoaccountforthedampingindifferentelementsofthemodelofacoupledsystemisreviewed.14.DeterminationofCateorIStructureOverturninMomentsThedescriptionofthemethodandprocedureusedtodeterminedesignoverturningmomentsforCategoryIstructuresisreviewed.15.SEBcoordinatesotherbranches'valuationsthatinterfacewithstructuralengineeringaspectsofthereviewasfollows:ReviewofgeologicalandseismologicalinformationtoestablishthefreefieldgroundmotionisperformedbytheGeosciencesBranchasdescribedinSRPSection2.5.HydrologicandGeotechnicalEngineeringBranchreviewsthegeotechnicalparametersandmethodsemployedintheanalysisoffreefieldsoilmedia,andsoilpropertiesasdescribedinSRPSection2.5.Struc-turalEngineeringBranchacceptstheresultsofthereviewsperformedbythesebranchesincludingthemaximumseismicgroundaccelerationsfortheOperatingBasisEarthquake(OBE)andtheSafeShutdownEarthquake(SSE),site-dependentfreefieldgroundmotionrecords,soilproperties,etc.,asanintegralpartoftheseismicanalysisreviewofCategoryIstructures.Forthoseareasofreviewidentifiedaboveasbeingreviewedaspartoftheprimaryreviewresponsibilityofotherbranches,theacceptancecriterianecessaryforthereviewandtheirmethodsofapplicationarecontainedinthereferencedSRPsectionofthecorrespondingprimarybranch,II.ACCEPTANCECRITERIATheacceptancecriteriafortheareasofreviewdescribedinsubsectionIofthisSRPsectionaregivenbelow.Otherapproacheswhichcanbejustifiedtobeequivalenttoor.moreconservativethanthestatedacceptancecriteriamaybeused.SEBacceptsthedesignofstructures,systems,andcomponentsthatareimportanttosafetyandmustwithstandtheeffectsofearthquakesiftherelevant'requirementsofGeneralDesignCriterion(GDC)2(Ref.1)andAppendixAto10CFRPart100(Ref2)concerningnaturalphenomenaarecompliedwith.TherelevantrequirementsofGDC2andAppendixAto10CFRPart100are:A.GeneralDesignCriterion2asitrelatestotheearthquakesusedinthedesignshouldbethemostsevereonesthathavebeenhistoricallyreported,forthesiteandsurroundingareawithsufficientmarginforthelimitedaccuracy,quantity,andperiodoftimeinwhichhistoricaldatahasbeenaccumulated.B.AppendixAto10CFRPart100asitrelatestotherequirementthattwoearthquakelevels,thesafeshutdownearthquake(SSE)andtheoperatingbasisearthquake(OBE),beconsideredinthedesignofsafety-relatedstructures,components,andsystems.AppendixAto10CFRPart100furtherstatesthatthedesignusedtoensurethattherequiredsafetyfunctionsaremaintainedduringandafterthevibratorygroundmotionassociatedwiththesafeshutdownearthquakeshallinvolvetheuseofeithera3.7.2"4Rev.1-July1981 1.TheDG"E"buildingandpedestalwereanalyzedbytheresponsespectrummethodtoobtainthestructuralresponses(accelerationsandrelativedisplacements).SeeRef.2,PageC-7.TheDG"E"buildingandpe'destalwereanalyzedbythetimehistorymethodtodevelopfloorresponsespectra.SeeRef.2,PageC-7&C-8.2.3.TheDG"E"buildingandpedestalarefoundedonsoundbedrock.Asaresult,thesoil-structureinteractioneffectisinsignificant.TheDG"E"building'shorizontaldynamicmodelreflectstheeccentricityeffectoftheasymmetricalbuildingconfiguration.Thus,itiscapableofproducingtorsionalresponseduetoahorizontalearthquake.(SeeRef.2,PageC-5andRef.1,Page3.7b-ll.)4.FortheDG"E"buildingandpedestaldynamicmodels,thenumberofdegreesoffreedomexceedtwicethenumberofmodeswithfrequencieslessthan33Hz.5.FortheDG"E"buildinganditspedestalallmodeswereconsidered.(SeeRef.1,Page3.7b-5.)6.7.AmodalresponsespectrumanalysiswasperformedusingtheDG"E"buildingandpedestalmodelstodeterminetherelativedisplacements.(SeeRef.2,PageC-7.)PipinginsidetheD.G."E"buildingisanalyzedindependentlyusingthefloorresponsespectra.(SeeRef.2,PageC-8.)NoexternallyappliedstructuralrestraintsareconsideredfortheDG"E"buildinganalysis.Hydrodynamicloads(SRV&LOCA)neednotbeconsideredduetothephysicallocationoftheDG"E"building.Stresslevelsarekeptbelowallowablelevels,thus,nonlinearresponses,arenotconsidered.
-::"::iSTANDARDREVIEW.PLAN+--4o'"OFFICEOFNUCLEARREACTORREGULATION 3.7.2SEISMICSYSTEMANALYSISREVIEWRESPONSIBILITIES Primary-Structural Engineering Branch(SEB)Secondary
suitabledynamicanalysisorasuitablequalificationtesttodemonstratethatstructures,systems,andcomponentscanwithstandtheseismicandotherconcurrentloads,exceptwhereitcanbedemonstratedthattheuseofanequivalentstaticloadmethodprovidesadequateconservatism..SpecificcriterianecessarytomeettherelevantrequirementsofGDC2andAppendixAtoPart100areasfollows:1.SeismicAnalsisMethodsTheseismicanalysisofallCategoryIstructures,systems,andcomponentsshouldutilizeei,therasuitabledynamicanalysismethodoranequivalentstaticloadmethod,ifjustified.a.0namicAnalsisMethodAdynamicanalysis(e.g.,responsespectrummethod,timehistorymethod,etc.)shouldbeusedwhentheuseoftheequivalentstaticloadmethodcannotbejustified.,Tobeacceptablesuchanalysesshouldconsiderthefollowingitems:(1)Useofeitherthetimehistorymethodortheresponsespectrummethod.(2)Useofappropriatemethodsofanalysistoaccount,foreffects'fsoil-structureinteraction.~~%(3)Considerationofthetorsional,rocking,andtranslationalresponsesofthestructuresandtheirfoundations.(4)Useofanadequatenumberofmassesordegreesoffreedomindynamicmodelingtodeterminetheresponse'fallCategoryIandapplicablenon-CategoryIstructuresandplantequipment.Thenumberisconsideredadequatewhenadditionaldegreesoffreedomdonotresultinmorethana10Kincreaseinresponses.Alternately,thenumberofdegreesoffreedommaybetakenequaltotwicethenumberofmodeswithfrequencieslessthan33cps.(5)Investigationofasufficientnumberofmodestoassurepartici-pationofallsignificantmodes.Thecriterionforsufficiencyisthattheinclusionofadditionalmodesdoesnotresultinmorethana10Kincreaseinresponses.(6)ConsiderationofmaximumrelativedisplacementsamongsupportsofCategoryIstructures,systems,andcomponents.(7)Inclusionofsignificanteffectssuchaspipinginteractions,externallyappliedstructuralrestraints,hydrodynamic(bothmassandstiffnesseffects)loads,andnonlinearresponses.b.EuivalentStaticLoadMethodAnequivalentstaticloadmethodisacceptableif:3.7.2-5Rev.1-July1981 Theequivalentstaticloadmethodasdescribedhereisusedforthedesignof~somesafetyrelatedsystemsandequipmentfoundwithintheDG"E"facility.FortheDG"E"buildingandpedestal,modalfrequenciesandparticipationfactorsarepresentedinRef.1,Table3.7b-8.Modeshapeshavebeencalculatedandarepresentedinthecomputeroutput.Floorresponsespectrahavebeencalculatedandavailableuponrequest.Allsubsystems'equipment,piping,HVACducts,cabletrays,etc.)havebeendecoupledfromtheDG"E"buildingmodelsbasedonthesmallratioofindividualsubsystemmasstobuildingmass.However,thedieselgeneratorhasnotbeendecoupledfromthedieselgeneratorpedestal.Anapproximatemodelofthedieselgeneratorisincludedinthepedestalmodel.  
-NoneI:AREASOFREVIEWThefollowing areasrelatedtotheseismicsystemanalysisdescribed intheapplicant's safetyanalysisreport(SAR)arereviewed.
(1)Justificationisprovidedthatthesystemcanberealisticallyrepresentedbyasimplemodelandthemethodproducesconserva-tiveresultsintermsofresponses.Typicalexamplesorpublishedresultsforsimilarstructuresmaybesubmittedinsupportoftheuseofthesimplifiedmethod.(2)Thedesignandassociatedsimplifiedanalysisaccountfortherelativemotionbetweenallpointsofsupport,(3)Toobtainanequivalentstaticloadofastructure,equipment,orcomponentwhichcanberepresentedbyasimplemodel,afactorof1.5isappliedtothepeakaccelerationoftheappli-cablefloorresponsespectrum.Afactoroflessthan1.5maybeusedifadequatejustificationisprovided.2.NaturalFreuenciesandResonseLoadsTobeacceptablefortheoperatinglicensereview,thefollowinginformationshouldbeprovided.Asummaryofnaturalfrequencies,modeshapes,modalandtotalresponses,forarepresentativenumberofmajorCategoryIstructures,includingthecontainmentbuilding,orasummaryofthetotal.responsesifthemethodofdirectinteractionisused.b.Atimehistoryofacceleration(orotherparametersofmotion)orresponsespectrumatthemajorplantequipmentelevationsandpointsofsupport.Procedures0sedforAnalticalModelinAnuclearpowerplantfacilityconsistsofverycomplexstructuralsystems.Tobeacceptable,thestiffness,mass,anddampingcharacteristicsofthestructuralsystemsshouldbeadequatelyincorporatedintotheanalyticalmodels.Specifically,thefollowingitemsshouldbeconsideredinanalyticalmodeling:a.OesinationofSstemsYersusSubsstemsMajorCategoryIstructuresthatareconsideredinconjunctionwithfoundationanditssupportingmediaaredefinedas"seismicsystems."OtherCategoryIstructures,systems,andcomponentsthatarenotdesignatedas"seismicsystems"shouldbeconsideredas"seismicsubsystems."b.OecoulinCriteriaforSubsstemsItcanbeshown,in'general,thatfrequenciesofsystemsandsub-systemshavenegligibleeffectontheerrorduetodecoupling.Itcanbeshownthatthemassratio,R,andthefrequencyratio,Rf,governtheresultswhereRandRfPredefinedas:Totalmassofthesuortedsubsstemmotalmassofthesupport>ngsystemFundamentalfreuencofthesuortedsubsstemfom>nantfrequencyotesupportmot>on3.7.2-6Rev.1-July1981 c)AdescriptionofthemethodologyusedtocomputethelumpedmassesfortheDG"E"buildinganditspedestalispresentedinRef.2,PagesC-4throughC-6.d)Twolumpedmassstickmodels(1-horizontaland1vertical)fortheDG"E"buildingand1modelforthepedestalweredeveloped.AdescriptionofthesemodelsalongwiththewaytheywereusedisprovidedinRef.2,PageC-3.4)TheDG"E"buildingandpedestalar'efoundedonsoundbedrock.Asaresult,thesoil-structureinteractioneffectisinsignificant.
1.SeismicAnalsisMethodsForallCategoryIstructures, systems,andcomponents, theapplicable seisaKcanalysismethods(response spectra,timehistory,equivalent staticload)arereviewed.
Thefollowingcriteriaareacceptable:A'I(1)IfR<0.01,decouplingcanbedoneforanyRf.(2)'If0.01<R<O.l,decouplingcanbedoneif0.8>Rf>i25-m-C.(3)IfR>0.1,anapproximatemodelofthesubsystemshouldbeincludedintheprimarysystemmodel.Ifthesubsystemiscomparativelyrigidinrelationtothesupportingsystem,andalsoisrigidlyconnectedtothesupportingsystem,itissufficienttoincludeonlythemassofthesubsystematthesupportpointintheprimarysystemmodel,Ontheotherhand,incaseofasubsystemsupportedbyveryflexibleconnections,e.g.,pipesupportedbyhangers,thesubsystemneednotbeincludedintheprimarymodel.Inmostcasestheequipmentandcomponents,'whichcomeunderthedefinitionofsubsystems,areanalyzed(ortested)'sadecouple'dsystemfromtheprimarystructureandtheseismicinputfortheformerisobtainedbytheanalysisofthelatter.Oneimportantexceptiontothisprocedureisthereactorcoolantsystem,whichisconsideredasubsystembutisusuallyanalyzedusingacoupledmodelofthereactorcoolantsystemandprimarystructure.LumedMassConsiderationsTheacceptancecriteriagivenundersubsectionII.l.a(4)ofthisSRPsectionareapplicable.d.ModelinforThreeComonentInutMotionIngeneral,three-dimensionalmodelsshouldbeusedforseismicanalyses.However,simplermodelscanbeusedifjustificationcanbeprovidedthatthecouplingeffectsofthosedegreesoffreedomthatareomittedfromthethree-dimensionalmodelsarenotsignificant.4.Soil-StructureInteractionAnanalyticalmodelofasoil-structureinteractionsystemisacceptableifboththestructuremodelandthesupportingsoilmodela'eproperlycoupledandthedesignmotionisproperlyaddressed.ThecoupledmodelissubjectedtothedesigngroundmotionasspecifiedinSRPSection3.7.1ortotheregeneratedexcitationsystemdescribe'dinSectionII.4(iii)below.Asuitabledynamicanalysisusingthetimehistorymethodisperformedfortheentiresoil-structuresystemandthedynamicresponsesatvariouslocationsofthesystemarecalculated.Allassumptionstosimplifytheanalysisshouldbejustifiedandtheresultingerrorsbestudied.Anydy'namicdecouplingorcondensationprocedureshouldbesubstantiatedbytheoreticalverificationandmathematicalproofs.Atpresentmostcommonlyusedmethodsarethehalf-spaceandthefiniteboundariesmodelingmethodsandthereisnoindicationastowhichoneismorereliable,especiallywhentoomanyassumptionsareinvolved.There-fore,modelingmethodsforimplementingthesoil-structureinteractionanalysisshouldincludeboththehalf-spaceandfiniteboundariesapproaches.CategoryIstructures,systems,andcomponentsshouldbedesignedtoaccommodateresponsesobtainedbyoneofthefollowing:3.7.2-7Rev.1-July1981 ii)TheDG."E"Huildingandpedestaldynamicmodelsassumeafixedbasesincetheyrepresentstructureswhicharesupportedonrock.AdditionalboringstakenintheareaoftheDG"E"facilityindicatethatthebedrockisofthesametypeasthatfoundundertheexistingSeismicCategoryIstructureslocatednearby.PrevioustestingdeterminedtheReactorArea'sbedrockcompressionwavevelocitytobeapproximately15,000fpsandtheshearwavevelocitytobeapproximately7,000fps.(RefertoFSARTable2.5-7.)ThismethodologywasusedinthedevelopmentoffloorresponsespectrafortheOG"E"facility.SeeRef.2,PageC-8.
Themannerinwhichthedynamicsystemanalysismethodisperformed, including themodelingoffoundation torsion,rockingandtranslation, isreviewed.
a.Envelopeofresultsofthetwomethods,b.Resultsofonemethodwithconservativedesign.considerationsofeffectsfromuseoftheothermethod,c.Combinationofa.andb.withprovisionofadequateconservatismindesign.Theacceptancecriteriafortheconstituentpartsoftheentiresoil-structureinteractionsystemareasfollows:i.ModelingofStructureTheacceptancecriteriagivenundersubsectionII.3ofthisSRPsectionareapplicable.ii.ModelingofSupportingSoilTheeffect'ofembedmentofstructureandthelayeringeffectofsoilshouldbeaccountedfor.Forthehalf-spacemodelingofthesoilmedia,thelumpedparameter(soilspring)methodandthecompliancefunctionmethodsareacceptable.Forthemethodofmodelingsoilmediawithfiniteboundaries,allboundariesshouldbeproperly.simulatedandtheuseof'typesofboun'dariesshouldbejustifiedand.reviewedonacase-by-casebasis.Finiteelementandfinitediffer-encemethodsareacceptablemethodsfordiscretizationofacontinuum.Thepropertiesusedi.nthesoil-structureinteractionanalysisshouldbethosecorrespondingtothelowstrainswhichareconsistentwiththerealisticsoilstraindevelopedduringthedesignearthquake.Useofhighstrainparametersneedstobeadequatelyjustifiedonacase-by-casebasis.Forstructuressupportedonrock,afixedbaseassumptionisacceptable.iii.GenerationofExcitationSystemAppendixAto10CFRPart100statesthatthevibratorygroundmotionproducedbythesafeshutdownearthquakeshallbedefinedbyresponsespectracorrespondingtothemaximumvibratoryaccelerationattheelevationsofthefoundationsofthenuclearpowerplantstructure.Aregeneratedexcitationsystemisacceptableif,whenappliedtothesoilmodel,itproducesatthestructuralfoundationlevelinthefreefieldaresponsemotionwhoseresponsespectraenvelopthedesignresponsespectraofearthquakemotion.5.DevelomentofFloorResonseSectraTobeacceptable,thefloorresponsespectrashouldbedevelopedtakingintoconsiderationthethreecomponentsoftheearthquakemotion.Theindividualfloorresponsespectralvaluesforeachfrequencyareobtainedforoneverticalandtwomutuallyperpendicularhorizontalearthquakemotionsandarecombinedaccordingtothe"squarerootofthesumofthesquares"methodtopredictthetotalfl'oorresponsespectrumforthatparticularfrequency(Ref.3).3.7.2-8Rev.1-July1981 Atimehistoryapproachwasusedinthedevelopmentoffloorresponsespectra,SeeRef.2,PageC-8.FortheDG"E"facilitytheresponsesduetothreesimultaneousorthogonalcomponentsofanearthquakearecombinedbythesquarerootofthesumofthesquaresmethodperReg.Guide1.92,Rev.1.(SeeRef.1,Page3.7b-8.)FortheOG"E"facility,thetotalresponseisobtainedbycombiningtheabsolutevaluesofallcloselyspacedmodalresponseswiththesquarerootsumofthesquares'ftheremainingmodalresponses.Twoconsecutivemodesaredefinedas.closelyspacedwhentheirfrequenciesdifferfromeachotherby10percentorless'.Reg.Guide1.92isfollowedforthecombinationofmodalresponses.(SeeRef.1,Page3.7b-8.)
Themethodchosenforselection ofsignificant modesandanadequatenumberofmassesordegreesoffreedomisreviewed.
Ingeneral,developmentofthefloorresponsespectraisacceptableifatimehistoryapproachisused.Ifamodalresponsespectramethodofanalysisisusedtodevelopthefloorresponsespectra,thejustificationforitsconservatismandequivalencytothatofatimehistorymethodmustbedemonstratedbyrepresentativeexamples.6.ThreeComonentsofEarthuakeMotionOependinguponwhatbasicmethodsareusedintheseismicanalysis,i.e.,responsespectraortimehistorymethod,thefollowingtwoapproachesareconsideredacceptableforthecombinationofthree-dimensionalearthquakeeffects.(Ref.4)a.ResonseSectraMethodWhentheresponsespectramethodisadoptedforseismicanalysis,themaximumstructuralresponsesduetoeachofthethreecomponentsofearthquakemotionshouldbecombinedbytakingthesquarerootofthesumofthesquaresofthemaximumcodirectionalresponsescausedbyeachofthethreecomponentsofearthquakemotionataparticularpointofthestructureorofthemathematicalmodel.b.TimeHistorAnalsisMethod'7.Whenthetimehistoryanalysismethodisemployedforseismicanaly-sis,twotypesofanalysisaregenerallyperformeddependingonthecomplexityoftheproblem.(1)Toobtainmaximumresponsesduetoeachofthethreecomponentsoftheearthquakemotion:inthiscasethemethodforcombiningthethree-dimensionaleffectsisidenticaltothatdescribedinitem6.aexceptthatthemaximumresponsesarecalculatedusingthetimehistorymethodinsteadofthespectrummethod.(2)Toobtaintimehistoryresponsesfromeachofthethreecomponentsoftheearthquakemotionandcombinethemateach'timestepalge-braically:themaximumresponseinthiscasecanbeobtainedfromthecombinedtimesolution.Whenthismethodisused,tobeaccept-able,theearthquakemotionsspecifiedint'ethreedifferentdirec-tionsshouldbestatisticallyindependent,CombinationofModalResonsesWhentheresponsespectrummethodofanalysisisusedtodeterminethedynamicresponseofdampedlinearsystems,themostprobableresponseisobtainedasthesquarerootofthesumofthesquaresoftheresponsesfromindividualmodes.Thus,themostprobablesystemresponse,R,isgivenbyNR(ZR2)1/2whereRistheresponseforthekmodeandNisthenumberofsignificantthmodescLnsideredinthemodalresponsecombination.Whenmodeswithcloselyspacedmodalfrequenciesexist,themethodsdelineatedinRef.4areacceptable.Twomodeshavingfrequencieswithin10Kofeachotherareconsideredasmodeswithcloselyspacedfrequencies.3.7.2-9Rev.1-July1981 Thecollapseofanynon-categoryIstructurewillnotstriketheDG"E"building.Responsespectralpeaksweresmoothedandbroadenedby15%oneachside.(SeeRef.2,PageC-8.)ConstantverticalstaticfactorswerenotusedintheseismicdesignoftheOG"E"building.ConstantverticalstaticfactorswereusedintheseismicdesignofseismicCat'egoryIsubsystemswhereshowntobeappropriate.Themethodusedtoaccountfortorsional,effectsispresentedinRef.1,Page~3.7b-11.
Themannerinwhichconsideration isgivenintheseismicdynamicanalysistomaximumrelativedisplacements betweensupportsisreviewed.
e,9.Otherapproacheswhichgiveanequivalentdegreeof'onservatismtotheabovemethods,andwhichareadequatelyjustifiedarealsoacceptable.InteractionofNon-CateorIStructureswithCateor'StructuresTobeacceptable,theinterfacesbetweenCategoryIandnon-CategoryI.structuresandplantequipmentmustbedesignedforthedynamicloadsanddisplacementsproducedbyboththeCategoryIandnon-CategoryIstructuresandplantequipment.Inaddition,astatementindicatingthefactthatallnon-CategoryIstructuresmeetanyoneofthefollowingrequirementsshouldbeprovided.Ia.Thecollapseofanynon-CategoryIstructurewi11notcausethenon-CategoryIstructuretostrikeaseismicCategoryIstructureorcomponent.b.Thecollapseofanynon-CategoryIstructurewillnotimpairtheintegrityofseismicCategoryIstructuresorcomponents.c.Thenon-CategoryIstructureswi11beanalyzedanddesignedtopreventtheirfailureunderSSEconditionsinamannersuchthatthemarginofsafetyofthesestructuresisequivalenttothatofCategoryIstructures.EffectsofParameterVariationsonFloorResonseSectra10.Considerationshouldbegivenintheanalysistotheeffectsonfloorresponsespectra(e.g.,peakwidthandperiodcoordinates}ofexpectedvariationsofstructuralproperties,dampings,soilproperties,andsoil-structureinteractions.Anyreasonablemethodfordeterminingtheamountofpeakwideningassociatedwiththestructuralfrequencycanbeused,butinnocaseshouldtheamountofpeakwideningbelessthan+lOX.Ifnospecialstudyisperformedforthispurpose,thepeakwidthshouldbeincreasedbyaminimumofk15Ktobeacceptable.(Ref.3)'UseofEuivalentStaticFactorsTheuseofequivalentstaticloadfactorsasverticalresponseloadsfortheseismicdesignofallCategoryIstructures,systems,andcomponentsinlieuoftheuseofaverticalseismicsystemdynamicanalysisisacceptableonlyifitcanbejustifiedthatthestructureisrigidintheverticaldirection.Thecriterionforrigidityisthatthelowestfrequencyintheverticaldirectionismorethan33cps.MethodsUsedtoAccountforTorsionalEffectsAnacceptablemethodoftreatingthetorsionaleffectsintheseismicanalysisofCategoryIstructuresisto.carryoutadynamicanalysiswhichincorporatesthetorsionaldegreesoffreedom.Anacceptablealternative,.ifproperlyjustified,istheuseof'staticfactorstoaccountfortorsionalaccelerationsintheseismicdesignofCategoryIstructuresinlieuoftheuseofacombinedvertical,horizontalandtorsionalsystemdynamicanalysis.Toaccountforaccidentaltorsion,anadditional'eismicityof+5Xofthemaximumbuildingdimensionatthelevelunderconside~ationshallbeassumed.3.7.2-10Rev,1-July1981 12.FortheDG"E"building,comparisonoftheresponsespectraofthetimehistoryandthedesignresponsespectraareshowninFigures3.7b-109through3.7b-'18ofRef.1.ThestructuralaccelerationsoftheDG"E"buildingobtainedfromthemodalresponsespectrumanalysiscomparedcloselywiththoseobtainedfromthetimehistoryanalysis.13..FortheDG"E"facility,the'damping'valuesaretakenfromReg.Guide1.61.Forastructuralsystemconsistingofvariouscomponentshavingdifferentmaterials,compositemodaldampingiscomputedusingequation(4)presentedherein.(SeeRef.1,Page3.7b-l2.)
Inaddition, othersignificant effectsthatareaccounted forinthedynamicseismicanalysissuchashydro-dynamiceffectsandnonlinear responsearereviewed.
12.ComarisonofResonsesTheresponsesobtainedfrombothmodalanalysisresponsespectrumandtimehistorymethodsatselectedpointsintypicalCategoryIstructuresshouldbecomparedtodemonstrateapproximateequivalencybetweenthetwomethods.13.AnalsisProcedureforDaminEitherthecompositemodaldampingapproachorthemodalsynthesistechniquecanbeusedtoaccountforelement-associateddamping.Forthecompositemodaldampingapproach,twotechniquesofdetermininganequivalentmodaldampingmatrixorcompositedampingmatrixarecommonlyused.Theyarebasedontheuseofthemassorstiffnessasaweightingfunctioningeneratingthecompositemodaldamping.Theformulationsleadto:&#xc3;j=ke3[M3f+k4KTjK(3)(4)where[K]=assembledstiffnessmatrix,p.=equivalentmodaldampingratioofthejmode,[K],[M]=themodifiedstiffnessormassmatrixconstructedfromelementmatricesformedbytheproductofthedampingratiofortheelementanditsstiffnessormassmatrix,andf/)=jnormalizedmodalvector.thFormodelsthattakethesoil-structureinteractionintoaccountbythe~lumpedsoiIspringapproach,themethoddefinedbyequation(4)isaccept-able.Forfixedbasemodels,eitherequation(3)or(4)maybeused.Othertechniquesbasedonmodalsynthesishavebeendevelopedandareparticularlyusefulwhenmoredetaileddataonthedampingcharacteristicsofstructuralsubsystemsareavailable.Themodalsynthesisanalysisprocedureconsistsof(1)extractionofsufficientmodesfromthestructuremodel,(2)extractionofsufficientmodesfromthefiniteelementsoilmodel,and(3)performanceofacoupledanalysisusingthe,modalsynthesistechnique,whichusesthedataobtainedinsteps(1)and(2)withappro-priatedamp'ingratiosforstructureandsoiIsubsystems.Thismethodisbaseduponsatisfactionofdisplacementcompatibilityandforceequilibriumatthesysteminterfacesandutilizessubsystemeigenvectorsasinternalgeneralizedcoordinates.Thismethodresultsinanonproportionaldampingmatrixforthecompositestructureandequationsofmotionhavetobesolvedbydirectintegrationorbyuncouplingthembyuseofcomplexeigenvectors.3.7.2"11Rev.1-July1981 ThemethodusedtodetermineoverturningmomentsispresentedinRef.1,page3.7b-12.
Iftestsorempirical methodsareusedinlieuofanalysisforanyCategoryIstructure, thetestingprocedure, loadlevels,andacceptance basisarealsoreviewed.
14.Othertechniqueswhicharea1soconsideredacceptableforestimatingequivalentmodaldampingofasoil-structureinteractionmodelarereviewedonacase-by-casebasis.DeterminationofCateorIStructureOverturninMomentsTobeacceptable,thedeterminationof.thedesignmomentforoverturningshouldincorporatethefollowingitems:a.Threecomponentsofinputmotion.b.Conservativeconsiderationofverticalandlateralseismicforces.REVIEWPROCEDURESForeachareaofreview,thefollowingprocedureisimplemented.Thereviewerwillselectandemphasizematerialfromtheproceduresgivenbelow,as'aybeappropriateforaparticularcase.Thescopeanddepthofreviewproceduresmustbesuchthattheacceptancecriteriadescribedabovearemet.SeismicAnalsisMethods2.ForallCategoryIstructures,systems,andcomponents,theapplicablemethodsofseismicanalysis(responsespectra,timehistory,equivalentstatic1oad)arereviewedtoascertainthatthetechniquesemployedareinaccordancewi,ththeacceptancecriteriaasgiveninsubsectionII.1ofthisSRPsection.IfempiricalmethodsortestsareusedinlieuofanalysisforanyCategoryIstructure,theseareevaluatedtodeterminewhetherornottheassumptionsareconservative,andwhetherthetestprocedureadequatelymodelstheseismicresponse.NaturalFreuenciesandResonseLoads3.Fortheoperatinglicensereview,thesummaryofnaturalfrequenciesandresponseloadsisreviewedforcompliancewiththeacceptancecriteriainsubsectionII.2ofthisSRPsection.ProceduresUsedforAnalticalModelinTheproceduresusedformodelingforseismicsystemanalysesarereviewedtodeterminewhetherthethree-dimensionalcharacteristicsofstructuresareproperlymodeledinaccordancewiththeacceptancecriteriaofsubsec-tionII.3ofthisSRPsection,andallsignificantdegreesoffreedomhavebeenincorporatedinthemodels.Thecriteriafordecouplingofastructure,equipment,orcomponentandanalyzingitseparatelyasasubsystemarereviewedforconformancewiththeacceptancecriteriagiveninsubsectionII.3ofthisSRPsection.Soil-Struct'ureInteractionThemethodsofsoil-structureinteractionanalysisusedareexaminedtodeterminethatthetechniquesemployedareinaccordancewiththeaccept-ancecriteriaasgiveninsubsectionII.4ofthisSRPsection.Typicalmathematicalmodelsforsoil-structureinteractionanalysisarereviewed3.7.2-12Rev.1-July1981 S,
2.NaturalFreuenciesandResonseslFortheoperating licensereview,significant naturalfrequencies andresponses formajorCategoryIstructures arereviewed.
NUREG-0800(FormerlyNUREG-76I087)steerWp,oiACVl0Cyr~rQ>>o%+e~~aSTANDARDREVIEW'PLANOFFICEOFNUCLEARREACTORREGULATIONSECTION3.7.3SEISMICSUBSYSTEMANALYSISREVIEWRESPONSIBILITIESPrimary-Struct'uralEngineeringBranch(SEB)Secondary-NoneI.AREASOFREVIEWThefollowingareasrelatedtotheseismicsubsystemanalysisarereviewed:1.SeismicAnalsisMethodsThe..informationreviewedissimilartothatdescribedinsubsectionI.1ofStandardReviewPlan(SRP)Section3.7.2,butasappliedtoseismicCategoryIsubsystems.2.DeterminationofNumberofEarthuakeCclesCriteriaorproceduresusedtoestablishthenumberofearthquakecyclesduringoneseismiceventandthemaximumnumberofcyclesforwhichapplicableCate-goryIsubsystemsandcomponentsaredesignedarereviewed.3.ProceduresUsedforAnalticalModelinThecriteriaandproceduresusedformodelingtheseismic'subsystemarereviewed.4.BasisforSelectionofFreuenciesAsapplicable,criteriaorproceduresusedtoseparatefundamentalfrequenciesofcomponentsandequipmentfromtheforcingfrequenciesofthesupportstruc-turearereviewed.5.AnalsisProcedureforDaminTheinformationreviewedissimilartothatdescribedinsubsectionI.13ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.Rev.1-Jul1981USNRCSTANDAROREViEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.ThesedocumentsaremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryandthegeneralpublicofregulatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathave.acorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically.asappropriate.toaccommodatecommentsandtoreflectnewinforms.tionandexperience.CommentsandsuggestionsforimprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCommission,OfficeofNuclearReactorRegulation,Washington.D.C.20666.
Inaddition, theresponsespectraatmajorCategoryIequipment elevations andpointsofsupportareIreviewed.
0 6.ThreeComonentsofEarthuakeMotion7.Theinformationreviewedissimilartothatdescribedin'subsectionofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.CombinationofModelResonses8.TheinformationreviewedissimilartothatdescribedinsubsectionI.7ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.InteractionofOtherSstemsWithCateorISstems9.Theseismicanalysisprocedurestoaccountfortheseismicmotionofnon-CategoryIsystemsintheseismicdesignofCategoryIsystemsarereviewed.Multi1-SuortedEuimentandComonentswithDistinctInuts10.Thecriteriaandproceduresforseismicanalysisofequip'mentandcompo-nentssupportedatdifferentelevationswithinabuildingandbetweenbuildingswithdistinctinputsarereviewed.UseofEuivalentStaticFactorsTheinformationreviewedissimilartothatdescribedinsubsectionI.10of'SRPSection3.7.2,butasappliedtoCategoryIsubsystems.TorsionalEffectsofEccentricMasses12.Thecriteriaandproceduresthatareusedtoconsiderthetorsionaleffectsofeccentricmassesinseismicsubsystemanalysesarereviewed.CateorIBuriedPiinConduitsandTunnels13.ForCategoryIburiedpiping,conduits,tunnels,andauxiliarysystems,theseismiccriteriaandmethodswhichconsiderthecompliancecharacteristicsofsoilmedia,dynamicpressures,settlementduetoearthquake,anddiffer-entialmovementsatsupportpoints,penetrations,andentrypointsintostructuresprovidedwithanchorsarereviewed.MethodsforSeismicAnalsisofCateorIDamsTheanalyticalmethodsandproceduresthatwillbeusedforseismicanalysisofCategoryIdamsarereviewed.Theassumptionsmade,,theboundaryconditionsused,thehydrodynamiceffectsconsidered,andtheproceduresbywhichstrain-dependentmaterialspropertiesareincorpo-ratedintheanalysisarereviewed.ACCEPTANCECRITERIATheacceptancecriteriafortheareasofreviewdescribedinsubsectionIofthisSRPsectionar'egivenbelow.Othercriteriawhichcanbejustifiedtobeequival'enttoormoreconservativethanthestatedacceptancecriteriamaybeused.SEBacceptsthedesignofsubsystemsthatareimportanttosafetyandmustwithstandtheeffectsofearthquakesiftherelevantrequirementsof~GeneralDesignCriterion(GDC)2(Ref.1)andAppendixAto10CFRPart1003.7.3-2Rev.1-July1981 a)Equipmenthasbeenqualifiedbyanalysisand/ortesting.Bothdynamicanalysismethodandequivalentstaticloadmethodhavebeenused.(SeeRef.1,Section3.10.)SupportsforHVACductsandelectricalracewayhaveusedtheequivalentstaticloadmethod.Forpiping,thisacceptancecriteriaismetbyfollowingRef.3.7b-14(Ref.1)whichcomplieswiththeSRP.b)OneSSEand5OBE'sareconsideredinthedesignofCategory1subsystems.Thesynthetictimehistoryhasadurationof25seconds.Forpiping,thisrequirementissatisfiedasdescribedonPage3.7b-19ofRef.1.c)ThecouplingcriteriagiveninSRP3.7.2,SectionII.3,aswellastheotherguidelinesarefollowedinanalyticalmodeling.(SeealsotheresponsetoSRP3.7.2,SectionII.3.)TheDG"E"facility'spipingismodeledbasedonRef.3.7b-14(Ref.1)whichcomplieswiththeSRP.Mainlineandbranchrunswereanalyzedtogether.Nodecouplingcriteriahadtobeconsidered.ThenumberofmassessatisfythecriteriaofnumberofDDOFequaltotwotimesthenumberofmodeswithfrequencylessthan33Hz.Athreedimensionalmodelwasused.d)e)Componentsandequipmentaredesigned/qualifiedfortheloadsdevelopedfromtheapplicationoftheappropriateDG"E"facility'sfloorresponsespectra.DampingvaluesutilizedfortheDG"E"facilityarethosepresentedinReg.Guide1.61(SeeRef.1,Page3.7b-3).Mostconduitandboxsupportsutilizedampingvaluesassociatedwiththeexistingplantcriteria.Thiswasdone,totakeadvantageofthenumeroustypicalconduit/boxsupportsthatareavailablefortheexistingcriteria.  
USNRCSTANDARDREVIEWPLANRev.1-Jul1981StandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments sremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryandthegeneralpublicofregulatory procedures andpolicies.
(Ref.2)concerningmaterialphenomenaarecompliedwith.TherelevantrequirementsofGDC2andAppendixAto10CFRPart100are:1.GeneralDesignCriterion2,asitrelatestotheearthquakesusedinthedesignshouldbethemostsevereonesreportedtohaveaffectedthesiteandsurroundingareawithsufficientmarginforthelimitedaccuracy,quantity,andperiodoftimeinwhichhistoricaldatahavebeenaccumulated.2.AppendixAto10CFRPart100asitrelatestotherequirementthattwoearthquakelevels,thesafeshutdownearthquake(SSE)andtheoperatingbasisearthquake(OBE),beconsideredinthedesignofsafety-relatedstructures,components,andsystems.AppendixAto10CFRPart100furtherstatesthatthedesignusedtoensurethattherequiredsafetyfunctionsaremaintainedduringandafterthevibratorygroundmotionassociatedwiththesafeshutdownearthquakeshallinvolvetheuseofeitherasuitabledynamicanalysisorasuitablequalificationtesttodemonstratethatstructures,systems,andcomponentscanwithstandtheseismicandotherconcurrentloads,exceptwhereitcanbedemonstratedthattheuseofanequivalentstaticloadmethodprovidesadequateconservatism.SpecificcriterianecessarytomeettherelevantrequirementsofGDC2andAppendixAtoPart100areasfollows:b.SeismicAnalsisMethodsTheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.1,areapplicable.DeterminationofNumberofEarthuakeCclesC.Duringtheplantlifeatleastonesafeshutdownearthquake(SSE)andfiveoperatingbasisearthquakes(OBE)shouldbeassumed.Thenumberofcyclesperearthquakeshouldbeobtainedfromthesynthetictimehistory(withaminimumdurationof10seconds)usedfor.thesystemanalysis,oraminimumof10maximumstresscyclesperearth-quakemaybeassumed.ProceduresUsedforAnalticalModelind.,e.TheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.3,areapplicable.BasisforSelectionofFreuenciesToavoidresonance,thefundamentalfrequenciesofcomponentsandequipmentshouldpreferablybeselectedtobelessthan1/2ormorethantwicethedominantfrequenciesofthesupportstructure;Useofequipmentfrequencieswithinthisrangeisacceptableiftheequipmentis.adequatelydesignedfortheapplicableloads.Anal.sisProcedureforDaminTheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.13,areapplicable.3.7.3-3Rev.1-Duly1981 ForseismicCategoryIsubsystemslocatedwithintheDG"E"facilitytheresponseduetothreeorthogonalcomponentsofanearthquakearecombinedby.thesquarerootofthesumofthesquaresmethodperReg.Guide1.92,Rev.1(SeeRef.I,Page3.7b-8)*.g)ForseismicCategoryIsubsystemslocatedwithintheDG"E"facilityandanalyzedbytheresponsespectrummethod,thetotalresponsewasobtainedbyusingthecriteriapresentedinReg.Guide1.92forthecombinationofmodalresponses.(SeeRef.1,Page3.7b-8.}h)Non-CategoryIsubsystemshaveeitherbeenlocated,physicallyisolated,,ordesignedsuchthattheywillnotinterferewiththefunctionofCategoryIsubsystemsduringaseismicevent.TheattachedNon-CategoryIpipingwasanalyzedasaCategoryIpipeinordernottocausefailureofCategoryIsystems.(SeeRef.3.7b-l4ofRef.1.)i}Anupperboundenvelopeofexcitationsatmulti-supportpointsofequipmentisusedinthe'seismicanalysisofequipment.Thepipingsupportedatdifferentelevationswasanalyzedusinganupperboundenvelopeoftheindividualresponsespectra.Inaddition,therelativedisplacementofthesupportpointsduetoequipmentmovementwasconsideredinthemostconservativeway;theabsolutesumoftheabsolutemaximumrelativedisplacements(SeeRef.3.7b-14ofRef.1).*ForthemajorityoftheClass1Econduitroutings,theexistingplantcriteriawasappliedtotakeadvantageofthenumeroustypicalconduit/boxsupportsthat.areavailablefortheexistingcriteria.Thesesupportshavebeendesignedbycombiningthemoresevereresponsefromoneofthehorizontalearthquakeswiththeresponsefromtheverticalearthquakebytheabsolutesummethod.TocompensateforthisvariationfromthemethodologypresentedinReg,Guide1.92,thepermissibleattachmentloadsforthesesupportsarereducedby25K.AnevaluationdeterminedthattypicalexistingsupportsmeettheReg.Guide1.92requirements(i.e.combinationoftheresponsesfromthethreeorthogonalearthquakesbythesquarerootsumofthesquaresmethod)ifthepermissibleattachmentloadsarereducedby25%.
Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemisnotrequired.
ThreeComonentsofEarthuakeMotionTheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.6,areapplicable.CombinationofModalResonsesTheacceptancecriteriaprovidedinSRPSection3.7.2,subsectionII.7,areapplicable.InteractionofOtherSstemsWithCateorISstemsTobeacceptable,eachnon-CategoryIsystemshouldbedesignedtobeisolatedfromanyCategoryIsystembyeitheraconstraintorbarrier,orshouldberemotelylocatedwithregardtotheseismicCategoryIsystem.IfitisnotfeasibleorpracticaltoisolatetheCategoryIsystem,adjacentnon-CategoryIsystemsshouldbeanalyzedaccordingtothesameseismiccriteriaasapplicabletotheCategoryIsystem.Fornon-CategoryIsystemsattachedtoCate-goryIsystems,thedynamiceffectsofthenon-CategoryIsystemsshouldbesimulatedinthemodelingoftheCategoryIsystem.Theattachednon-CategoryIsystems,upto'thefirstanchorbeyondtheinterface,shouldalsobedesignedinsuchamannerthatduringanearthquakeofSSEintensityitwillnotcauseafailureoftheCate=goryIsystem.Multi1-SuortedEuimentandComonentsWithDistinctInutsEquipmentandcomponentsinsomecasesaresupportedatseveralpointsbyeitherasinglestructureortwoseparatestructures.Themotionsoftheprimarystructureorstructuresateachofthesupportpointsmaybequitedifferent.Aconservativeandacceptableapproachforequipmentitemssupportedattwoormorelocationsistouseanupperboundenvelopeofalltheindividualresponsespectrafortheselocationstocalculatemaximuminertialresponsesofmultiply-supporteditems.Inaddi-tion,therelativedisplacementsatthesupportpointsshouldbeconsidered.Conventionalstaticanalysisproceduresareacceptableforthispurpose.Themaximumrelativesupportdisplacementscanbeobtainedfromthestruct'uralresponsecalculationsor,asaconser-vativeapproximation,byusingthefloorresponsespectra.ForthelatteroptionthemaximumdisplacementofeachsupportispredictedbySd'Sg/e,whereSisthespectralaccelerationin"g's"atthehighfrequencyendofthespectrumcurve(which,inturn,isequaltothemaximumflooracceleration),gisthegravityconstant,andeisthefundamentalfrequencyoftheprimarysupportstructureinradianspersecond.Thesupportdisplacementscanthenbeimposedonthesupportediteminthemostunfavorablecombination.Theresponsesduetotheinertiaeffectandrelativedisplacementsshouldbecombinedbytheabsolutesummethod.Inthecaseofmultiplesupportslocatedinasinglestructure,analternateacceptablemethodusingthefloorresponsespectrainvolvesdeterminationofdynamicresponsesduetotheworstsinglefloorres-ponsespectrumselectedfromasetoffloorresponsespectraobtained3.7.3-4Rev.1-July1981 j)ConstantverticalstaticfactorswereusedintheseismicdesignofSeismicCategoryIsubsystemswhereshowntobeappropriate.ConstantverticalstaticfactorsarenotusedintheseismicanalysisofCategory1piping.k)ModelingofseismicCategoryIsubsystems'ctualmassandlocationsareconsidered,thereby,accountingforanyeccentricity.tThelocationofmasspointsinthepipingmodelreflectsthetorsionaleffectsofeccentricmassessuchasvalvesandvalveoperators(SeePage3.7b-22andRef.3-7b-14ofRef.1).1)TheDG"E"buriedCategoryIpipeswereanalyzedinaccordancewithRef.3.7b-13ofRef.1.DuringaSSEevent,thedifferentialdisplacementbetweentheDG"E"buildingandthesurroundingsoilwhichsupportsthepipeswasincludedinthecomputationofpipingstress.m)NoCategoryIdamshavebeenaddedasaresultoftheDG"E"facility.
ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathavescorresponding reviewplan.Published standardreviewplanswillberevisedperiodically, asappropriate, toaccommodate commentssndtoreflectnewinforma-tionsndexperience.
j~atvariousfloorsandappliedidenticallytoallthefloors,providedthereisnosignificantshiftinfrequenciesofthespectrapeaks.Inaddition,thesupportdisplacementsshouldbeimposedonthesupportediteminthemostunfavorablecombinationusingstaticanalysisprocedures.Inlieuoftheresponsespectrumapproach,timehistoriesofsupportmotionsmaybeusedasexcitationstothesubsystems.Becauseoftheincreasedanalyticaleffortcomparedtotheresponsespectrumtechniques,usuallyonlyamajorequipmentsystemwouldwarrantatimehistoryapproach.Thetimehistoryapproachdoes,however,providemorerealisticresultsinsomecasesascomparedtotheres-ponsespectrumenvelopemethodformultiply"supportedsystems.UseofEuivalentStaticFactorsTheacceptancecriteriaprovidedinSRPSection3.7.2,subsec-tionII.10,areapplicable.k.TorsionalEffectsofEccentricMassesForseismicCategoryIsubsystems,whenthetorsionaleffectofaneccentricmassisjudgedtobesignificant,theeccentricmassand'.itseccentricityshouldbeincludedinthemathematicalmodel.Thecriteriaforjudgingthe'significancewillbereviewedonacase-b~casebasis.1.CateorIBuriedPiinConduitsandTunnelsm.ForCategoryIburiedpiping,conduits,tunnels,andauxiliarysystems,thefollowingitemsshouldbeconsideredintheanalysis:(1}Theinertialeffectsduetoanearthquakeuponburiedsystemsandtunnelsshouldbeadequatelyaccountedforintheanalysis.Incaseofburiedsystemssufficientlyflexiblerelativetothesurroundingorunderlyingsoil,itisacceptabletoassumethatthesystemswillfollowessentiallythedisplacementsand.deformationsthatthesoilwouldhaveifthesystemswereabsent.Procedureswhichtakeintoaccountthephenomenaofwavetravelandwavereflectionincompactingsoildisplacementsfromthegrounddisplacementsareacceptable.(2)Theeffectsofstaticresistanceofthesurroundingsoilonpipingdeformationsordisplacements,differentialmovementsofpipinganchors,bentgeometryandcurvaturechanges,etc.,'shouldbeadequatelyconsidered.Proceduresutilizingtheprinciplesofthetheoryofstructuresonelasticfoundationsareacceptable.(3).Mhenapplicable,theeffectsduetolocalsoilsettlements,soil'.arching,etc.,shouldalsobeconsideredintheanalysis.MethodsforSeismicAnalsisofCateorIOamsFortheanalysisofallCategoryIdamsanappropriateapproachwhichtakesintoconsiderationthe.dynamicnatureofforces(due3.7.3-.5Rev.l-July1981 e
Commentsandsuggestions forImprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Commission, OfficeofNuclearReactorRegulation, Washington, O.C.20555.
tobothhorizontalandverticalearthquakeloadings),thebehaviorofthedammaterialunderearthquakeloadings,soilstructureinter-actioneffects,andnonlinearstress-strainrelationsforthesoi1,shouldbeused.Analysisofearth-filleddams.shouldincludeanevaluationofdeformations.Forrock-filleddams,theanalyticalprocedureusedwillbereviewedonacase-by-casebasis.III.REVIEWPROCEDURESForeachareaofreview,thefollowingreviewprocedureisfollowed.Thereviewerwillselectandemphasizematerialfromtheproceduresgivenbelow,asmaybeappropriateforaparticularcase.ThereviewproceduresaresuchastosatisfytherequirementsofacceptancecriteriastatedinsubsectionII.1.SeismicAnalsisMethodsTheseismicanalysismethodsarereviewedtodeterminethattheseareinaccordancewiththeacceptancecriteriaofSRPSection3.7.2,subsectionII.l.2.DeterminationofNumberofEarthuakeCclesCriteriaorproceduresusedtoestablishthenumberofearthquakecyclesarereviewedtodeterminethattheyareinaccordancewiththeacceptancecriteriaasgiveninsubsectionII.2ofthisSRPsection.Justificationfor-aeviatingfromtheacceptancecriteriaisrequestedfromtheapplicant,-asnecessary.3.ProceduresUsedforAnalticalModelinThecriteriaandproceduresusedformodelingfortheseismicsubsystemanalysisarereviewedtodeterminethattheseareinaccordancewiththeacceptancecriteriaof.SRPSection3.7.2,subsectionII.3.4.SasisforSelectionofFreuenciesAsapplicable,criteriaorproceduresusedtoseparatefundamentalfre-quenciesofcomponentsandequipmentfromtheforcingfrequenciesofthesupportstructurearereviewedtodeterminecompliancewiththeaccept-ancecriteriaofsubsectionII.4ofthisSRPsection.5.AnalsisProcedureforDaminTheanalysisproceduretoaccountfordampingindifferentelementsofthemodelofacoupledsystemisreviewedtodeterminethatitisinaccordancewiththeacceptancecriteriaofSRPSection3.7.2,subsectionII.13.6.ThreeComonentsofEarthuakeMotionTheproceduresbywhichthethreecomponentsofearthquakemotionarecon-sideredindeterminingtheseismicresponseofsubsystemsarereviewedtodeterminecompliancewiththeacceptancecriteriaofSRPSection3.7.2,subsectionII.6.3.7.3-6Rev.1-July1981 0
Cvs~sac~LI 13.AnalsisProcedure forDaminTheanalysisprocedure toaccountforthedampingindifferent elementsofthemodelofacoupledsystemisreviewed.
NUREG-0800(FormerlyNUREG-76/087)~Ctgsstcur1p0lOCy+J+0+%1<<+STANDARDREVIEWPLANOFFICEOFNUCLEARREACTORREGULATIONSECTION3.8.4OTHERSEISMICCATEGORYISTRUCTURESREVIEWRESPONSIBILITIESPrimary-StructuralEngineeringBranch(SEB)Secondary-NoneI.AREASOFREVIEWThefollowingareasrelatingtoallseismicCategoryIstructuresandothersafety-relatedstructuresthatmaynotbeclassifiedasseismicCategoryI,otherthanthecontainmentanditsinteriorstructures,arereviewed:DescritionoftheStructuresThedescriptiveinformationincludingplansandsectionsofeachstructure,isreviewedtoestablishthatsufficientinformationisprovidedtodefinetheprimarystructuralaspectsandelementsrelieduponforthestructuretoperformthesafety-relatedfunction.Alsoreviewedistherelationshipbetweenadjacentstructuresincludingtheseparationprovidedotstructuralties,ifany.Amongthemajorplantstructuresthatarereviewed,togetherwiththedescriptiveinformationreviewedforeach,arethefollowing:ContainmentEnclosureBuildingThecontainmentenclosurebuilding,whichmaysurroundallorpartoftheprimaryconcreteorsteelcontainmentstructure,isprimarilyintendedtoreduceleakageduringandafteraloss-of-coolant(LOCA)fromwithinthecontainment.Concreteenclosurebuildingsalsoprotecttheprimarycontainment,whichmaybeofsteelorconcrete,fromoutsidehazards.Theenclosurebuildingisusuallyeitheraconcretestructureorastructuralsteelandmetalsidingbuilding.Whereitisaconcretestructure,itusuallyhasthegeometryofthecontainmentand,asapplicable,thedescriptiveinformationreviewedisRev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplanta.ThesedocumentsaremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryendthegeneralpublicofregulatoryproceduresandpolicies.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththamisnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveecorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically,asappropriate,toaccommodatecommentsandtoreflectnewinforms.tionandexperience.CommentsandsuggestionsforimprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCommission,OfficeofNuclearReactorRegulation,Washington,O.C.20666.
14.Determination ofCateorIStructure Overturnin MomentsThedescription ofthemethodandprocedure usedtodetermine designoverturning momentsforCategoryIstructures isreviewed.
7.8.Specialconstructiontechniques,ifproposed,arereviewedonacase-by-casebasistodeterminetheireffectsonthestructuralintegrityofthecompletedstructure.Inaddition,theinformationcontainedinitemsa,b,andcofsubsectionI.6ofStandardReviewPlanSection3.8.3isalsoreviewed.TestinandInserviceSurveillanceProramsIfapplicable,anypost-constructiontestingandinservicesurveillanceprogramsarereviewedonacase-by-casebasis.MasonrWallsAreasofreviewpertainingtomasonrywallsshouldinclude,asaminimum,thoseitemsidentifiedinAppendixAtothisSRPsection.SEBcoordinatesotherbranchesevaluationsthatinterfacewithstructuralengineeringaspectsofthereviewasfollows:determinationofstructureswhicharesubjecttoqualityassuranceprogramsinaccordancewiththerequirementsofAppendixBto10CFRPart50isperformedbytheMechanicalEngineeringBranch(MEB)aspartofitsprimaryreviewresponsibilityforSRPSections3.2.1and3.2.2.'EBwillperformitsreviewofsafety-relatedstructuresonthatbasis.De'terminationofpressureloadsfromhighenergylineslocatedinsafetyrelatedstructuresotherthancon-tainmentisperformedbytheAuxiliarySystemsBranch(ASB)asdescribedaspartofitsprimaryreviewresponsibilityforSRPSection3.6.1.SEB-acceptstheloadsthusgeneratedasapprovedbytheASBtobeincludedintheloadcombinationequationsofthisSRPsection.DeterminationofloadsgeneratedduetopressureunderaccidentconditionsisperformedbytheContainmentSystemsBranch(CSB)aspartofitsprimaryreviewrespon"sibilityforSRPSection6.2.1.SEBacceptstheloadsthusgenerated,asapprovedbytheCSBtobeincludedintheloadcombinationsinthisSRPsection.ThereviewforqualityassuranceiscoordinatedandperformedbythegualityAssuranceBranchaspartofitsprimaryreviewresponsibilityforSRPSection17.0.Forthoseareasofreviewidentifiedaboveasbeingreviewedaspartoftheprimaryreviewresponsibilityofotherbranches,theacceptancecriterianecessaryfortherev'iewandtheirmethodsofapplicationarecontainedinthereferencedSRP.sectionofthecorrespondingprimarybranch.ACCEPTANCECRITERIASEBacceptancecriteriaforthedesignofstructuresotherthancontainmentarebasedonmeetingtherelevantrequirementsofthefollowingregulations:A.B.10CFRPart50,f50.55aandGeneralDesignCriterion1astheyrelatetosafetyrelatedstructuresbeingdesigned,fabricated,erected,andtestedtoquality:standardscommensuratewiththeimportanceofthesafetyfunctiontobeperformed.GeneralDesignCriterion2asitrelatestothedesignofthesafety-relatedstructuresbeingcapabletowithstandthemostseverenaturalphenomenasuchaswind,tornadoes,floods,andearthquakesandtheappropriatecombinationofallloads.3.8.4"5Rev.1-July1981  
15.SEBcoordinates otherbranches'valuations thatinterface withstructural engineering aspectsofthereviewasfollows:Reviewofgeological andseismological information toestablish thefreefieldgroundmotionisperformed bytheGeosciences Branchasdescribed inSRPSection2.5.Hydrologic andGeotechnical Engineering Branchreviewsthegeotechnical parameters andmethodsemployedintheanalysisoffreefieldsoilmedia,andsoilpropertiesasdescribed inSRPSection2.5.Struc-turalEngineering Branchacceptstheresultsofthereviewsperformed bythesebranchesincluding themaximumseismicgroundaccelerations fortheOperating BasisEarthquake (OBE)andtheSafeShutdownEarthquake (SSE),site-dependent freefieldgroundmotionrecords,soilproperties, etc.,asanintegralpartoftheseismicanalysisreviewofCategoryIstructures.
/AdescriptionoftheOG"E"facilityisprovidedinRef.1.ACI349-1980andAISC-1978werefollowedinthedesignoftheOG"E"facility.TheAISC33Kincreaseinallowablestressesforseismicorwindloadingisnotused.(SeeRef.3,Page10.)Reg.Guides1.10,1.15and1.55werewithdrawn(seeUSHRCdistributionlist,Division1,July8,1981).
Forthoseareasofreviewidentified aboveasbeingreviewedaspartoftheprimaryreviewresponsibility ofotherbranches, theacceptance criterianecessary forthereviewandtheirmethodsofapplication arecontained inthereferenced SRPsectionofthecorresponding primarybranch,II.ACCEPTANCE CRITERIATheacceptance criteriafortheareasofreviewdescribed insubsection IofthisSRPsectionaregivenbelow.Otherapproaches whichcanbejustified tobeequivalent toor.moreconservative thanthestatedacceptance criteriamaybeused.SEBacceptsthedesignofstructures, systems,andcomponents thatareimportant tosafetyandmustwithstand theeffectsofearthquakes iftherelevant'requirements ofGeneralDesignCriterion (GDC)2(Ref.1)andAppendixAto10CFRPart100(Ref2)concerning naturalphenomena arecompliedwith.Therelevantrequirements ofGDC2andAppendixAto10CFRPart100are:A.GeneralDesignCriterion 2asitrelatestotheearthquakes usedinthedesignshouldbethemostsevereonesthathavebeenhistorically reported,forthesiteandsurrounding areawithsufficient marginforthelimitedaccuracy,
C.GeneralDesignCriterion4asitrelatestosafety-relatedstructurebeingcapableofwithstandingthedynamiceffectsofequipmentfailuresincludingmissilesandblowdownloadsassociatedwiththelossofcoolantaccidents.D.GeneralDesignCriterion5asitrelatestosharingofstructuresimportanttosafetyunlessitcanbeshownthatsuchsharingwillnotsignificantlyimpairtheirvaliditytoperformtheirsafetyfunctions.E.AppendixBto10CFRPart50asitrelatestothequalityassurancecriteriafornuclearpowerplants.TheRegulatoryGuidesandindustrystandardsidentifiedinitem2ofthissubsectionprovidesinformation,recommendationsandguidanceandingeneraldescribesabasisacceptabletothestaffthatmaybeusedtoimplementtherequirementsof10CFRPart50,950.55aandGDC1,2,4,5andAppendix8to10CFRPart50.Also,specificacceptancecriterianecessarytomeettherelevantrequirementsoftheseregulationsfortheareasofreview,describedinsubsectionIofthisSRPsectionareasfollows:1.DescritionoftheStructuresThedescriptiveinformationintheSARisconsideredacceptableifitmeetstheminimumrequirementssetforthinSection3.8.4.1oftheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants"(Ref.4).Deficientareasofdescriptiveinformationareidentifiedbythereviewerandarequestforadditionalinformationisinitiatedattheapplicationacceptancereview.Neworuniquedesignfeaturesthatarenotspecifi-'callycoveredinthe"StandardFormat..."mayrequireamoredetailedreview.Thereviewerdeterminestheadditionalinformationthatmayberequiredtoaccomplishameaningfulreviewofthestructuralaspectsofsuchneworuniquefeatures.2.AlicableCodesStandardsandSecificationsThedesign,materials,fabrication,erection,inspection,testing,andsurveillance,ifany,ofCategoryIstructuresarecoveredbycodes,standards,andguidesthatareeitherapplicableintheirentiretyorinportionsthereof.Alistofsuchdocumentsisasfollows:TitleACI349"CodeRequirementsforNuclearSafety-RelatedConcreteStructures"AISCReulatorG'uides"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings"1.10Mechanical(Caldweld)SplicesinReinforcingBarsofCategoryIConcreteStructures3.8.4-6Rev.1-July1981 Reg.Guide1.69isnotapplicabletotheD.G."E"facility.ThesametruckexplosionfragmentasthatconsideredinthedesignoftheexistingCategoryIstructures,wasconsideredinthedesignoftheDG"E"building(RefertoPP&L'sresponsetoSRP3.5.1.5).ThedesignoftheDG"E"buildingcomplieswithReg.Guide1.94.Reg.Guide1.115isnotapplicabletotheDG"E"facility.ThedesignoftheDG"E"buildingcomplieswiththeapplicableprovisionsofReg.GuideI.I42.Reg.Guide1.143isnotapplicabletotheDG"E"facility.
: quantity, andperiodoftimeinwhichhistorical datahasbeenaccumulated.
1.15l.55l.69TestingofReinforcingBars.forCategoryIConcreteStructuresConcretePlacementinCategoryIStructuresConcreteRadiationShieldsforNuclearPowerPlants1.911.94l.115EvaluationsofExplosionsPostulatedtoOccuronTransportationRoutesNearNuclearPowerPlantsequalityAssuranceRequirementsforInsta1lation,Inspection,andTestingofStructuralConcreteProtectionAgainstLowTrajectoryTurbineHissiles1.142l.143Safety-RelatedConceteStructuresforNuclearPowerPlants(OtherThanReactorVesselsandContainments}DesignGuidanceforRadioactiveWasteManagementSystems,Structures,.andComponentsInstalledinLWRPlants3.LoadsandLoadCombinationsThespecifiedloadsandloadcombinationsareacceptableiffoundtobeinaccordancewiththefollowing:a~LoadsDefinitionsandNomenclatureAllthemajor1oadstobeencounteredortobepostultd1'below.Alaeare>steabl1theloadslssted,howeverarenotnecessarilyap1'-etoallthestructuesandtheirelements.Loadsandtheapplicableapp1cdeendontloadcombinationsforwhicheachstructurehastobd''llphecond>talonstowhichthatparticularstructuremaybsubjected.remayeNormalloads,whicharethoseloadstobeencounteredduringnormalplantoperationandshutdown,include:Deadloadsortheirrelatedinternalmomentsandforces,inludinganypermanentequipmentloads.Liveloadsortheirrelatedinternalmomentsandforces,includinganymovableequipmentloadsandotherloadswhichvarywithintensityandoccurrence,suchassoilpressure.ToTherma1effectsand1oadsduringnorma1operatingorshutdownconditions,basedonthemostcriticaltransientorsteadystatecondition.3.8.47Rev.1-July1981 Nohigh-energypipingexistsintheDG"E"facility.
B.AppendixAto10CFRPart100asitrelatestotherequirement thattwoearthquake levels,thesafeshutdownearthquake (SSE)andtheoperating basisearthquake (OBE),beconsidered inthedesignofsafety-related structures, components, andsystems.AppendixAto10CFRPart100furtherstatesthatthedesignusedtoensurethattherequiredsafetyfunctions aremaintained duringandafterthevibratory groundmotionassociated withthesafeshutdownearthquake shallinvolvetheuseofeithera3.7.2"4Rev.1-July1981 1.TheDG"E"buildingandpedestalwereanalyzedbytheresponsespectrummethodtoobtainthestructural responses (accelerations andrelativedisplacements).
Pipereactionsduringnormaloperatingorshutdownconditions,basedonthemostcriticaltransientorsteady..statecondition.Severeenvironmentalloadsinclude:E-Loadsgeneratedbytheoperatingbasisearthquake.W-Loadsgeneratedbythedesignwindspecifiedfortheplant.Extremeenvironmentalloadsinclude:ElLoadsgeneratedbythesafeshutdownearthquake.Wt-Loadsgeneratedbythedesigntornadospecifiedfortheplant.Tornadoloadsincludeloadsduetothetornadowindpressure,thetornado-createddifferentialpressure,andtotornado-generatedmissiles.Abnormalloads,whicharethoseloadsgeneratedbyapostulatedhigh-energypipebreakaccident,include:P-Pressureequivalentstaticloadwithinoracrossacompartmentgeneratedbythepostulatedbreak,andincludinganappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.RYrY~JThermalloadsunderthermalconditionsgeneratedbythepostulatedbreakandincludingT.0PipereactionsunderthermalconditionsgeneratedbythepostulatedbreakandincludingR.0Equivalentstaticloadonthestructuregeneratedbythereactiononthebrokenhigh-energypipeduringthepostu-latedbreak,andincludinganappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.Jetimpingementequivalentstaticloadonastructure'eneratedbythepostulatedbreak,andincludinganappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.Y-Missileimpactequivalentstaticloadonastructuregeneratedbyorduringthepostulatedbreak,asfrompipewhipping,andincludinganappropriatedynamicloadfactortoaccountforthedynamicnatureoftheload.IndetermininganappropriateequivalentstaticloadforYYandrsjlV,elasto-plasticbehaviormaybeassumedwithappropriateduct-ilityratios,providedexcessivedeflectionswillnotresultinlossoffunctionofanysafety-relatedsystem.3.8.4-8.Rev.1-July1981 TheworkingstressdesignmethodwasnotusedinthedesignoftheDG"E"faci1ity.TheultimatestrengthdesignmethodandtheseloadcombinationswereusedinthedesignoftheDG"E"facility.(SeeRef.3,Page10.)
SeeRef.2,PageC-7.TheDG"E"buildingandpe'destal wereanalyzedbythetimehistorymethodtodevelopfloorresponsespectra.SeeRef.2,PageC-7&C-8.2.3.TheDG"E"buildingandpedestalarefoundedonsoundbedrock.Asaresult,thesoil-structure interaction effectisinsignificant.
b.LoadCombinationsforConcreteStructuresForconcretestructures,theloadcombinationsareacceptableiffoundinaccordancewiththefollowing:(i)Forserviceloadconditions,eithertheworkingstressdesign(WSD)methodasoutlinedinACI318Codeorthestrengthdesignmethodmaybeused.(a)IftheWSDmethodisused,thefollowingloadcombinationsshouldbeconsidered:(1)0+L(2)0+L+E(3)0+L+WIfthermalstressesduetoTandRarepresent,thefollowingcombinationsshouldbealamoconsidered:(4)D+L+T+R,00(5)0+L+T+R+E00(6)0+L+T+R+W00BothcasesofLhavingitsfullvalueorbeingcompletelyabsentshouldbechecked.(b)Ifthestrengthdesignmethodisused,thefollowingloadcombinationsshouldbeconsidered:(1)1.40+1.7L(2)1.4D+1.7L+1.9E(3)1.40+1.7L+1.7WIfthermalstressesduetoTandRarepresentthe00tfollowingcombinationsshouldalsobeconsidered:(4)(0.75)(1.4D+1.7L+1.7T+1.7R)00(5)(0.75)(1.40+1.7L+(6)(0.75)(1.40+1.7L+Inaddition,thefollowing(7)1.20+1.9E(8}1.20+1.7W1.9E+1.7T+1.7R}001.7W+1.7T+1.7R)00combinationsshouldbeconsidered:/(ii)Forfactoredloadconditionswhichrepresentextremeenvironmental,abnormal,abnormal/severeenvironmental,and3.8.4"9Rev.1-July1981 Factoredloadcombinations(a)8(b)wereconsidered.Sincenohighenergypipingexists,factoredloadcombinations(c),(d)5(e)werenotconsidered.Inadditionthefollowingloadcombinationwasconsidered.D+L+MmswhereMms=SiteProximityHissileLoads(SeeRef.3,Page10.)Forloadswhicharevariable,thefullrangeofvariationwasconsideredinordertodeterminethemostcriticalcombinationofloading.TheelasticworkingstressdesignmethodandtheseloadcombinationswereusedinthedesignofsteelfortheDG"E"facility.(SeeRef.3,Page11.)
TheDG"E"building's horizontal dynamicmodelreflectstheeccentricity effectoftheasymmetrical buildingconfiguration.
abnormal/extremeenvironmentalconditions,thestrengthdes;gnmethodshouldbeusedandthefollowingloadcombinationsshouldbeconsidered:(a)0+L+T+R+E'0(b)0+L+T+R+Wt00(c}0+L+T+R+15Paa'(d)0+L+T+R+1.25P+1.0(Y+Y.+y)+1.25E<(e)0+L+T+R+1.0P+1.0(Y+Y.+Y)+10f'a'rjmIncombinations(c),(d),and(e),themaximumvaluesofP,T,R,Y.,Y,andY,includinganappropriatedynamicloadfactor,shouldbeusedunlessatime-historyanalysisisper-formedtojustifyotherwise.Combinations(b)and(d)and(e)andthecorrespondingstructuralacceptancecriteriaofsub-sectionII.5ofthisSRPsectionshouldbesatisfiedfirstwithoutthetornadomissileloadin(b)andwithoutYY.r1andYin(d)and(e}.Whenconsideringtheseconcentratedloads,localsectionstrengthcapacitiesmaybeexceededprovidedtherewillbenolossoffunctionofanysafety-relatedsystem.Whereanyloadreducestheeffectsofotherloads,thecorrespondingcoefficientforthatloadshouldbetakenas0.9ifitcanbedemonstratedthattheloadisalwayspresentoroccurssimultaneouslywithotherloads.Otherwisethecoefficientforthatloadshouldbetakenaszero.Wherethestructuraleffectsofdifferentialsettlement,creep,.orshrinkagemaybesignificant,theyshouldbeincludedwiththedeadload,0,asapplicable.LoadCombinationsforSteelStructuresForsteelinteriorstructu'res,theloadcombinationsareacceptableiffoundinaccordancewiththefollowing:(i)Forserviceloadconditions,eithertheelasticworkingstressdesignmethodsofPart1oftheAISCspecifications,ortheplasticdesignmethodsofPart2oftheAISCspecifications,maybeused.(a)Iftheelasticworkingstressdesignmethodsareused,thefollowingloadcombinationsshouldbeconsidered:,(1)0+L(2)0+L+E(3)0+L+W3.8.4-10Rev.1-July1981 ThermalloadsarenotpresentintheOG"E"facility.TheplasticdesignmethodwasnotusedinthedesignoftheOG"E"facility.Factoredloadcombinations(1)5(2)wereconsidered.Sincenohighenergypipingexists,factoredloadcombinations(3),(4)8(5)werenotconsidered.Inadditionthefollowingloadcombinationwasconsidered:0+L+lhos(SeeRef.3,Page11.)
Thus,itiscapableofproducing torsional responseduetoahorizontal earthquake.
IfthermalstressesduetoTandRarepresent,thefollowingcombinationsshouldbealloconsidered:(4)0+L+T+R00(5)0+L+T+R+E00(6)D+L+T+R+W00(b)Ifplasticdesignmethodsareused,thefollowingloadcombinationsshouldbeconsidered:(1)1;70+1.7L(2)1.70+1.7L+1.7E(3)1.7D+1.7L+1.7WIfthermalstressesduetoTandRarepresent,thefollowingcombinationsshouldalso3econsidered:(4)1.3(D+L+T+R)00(5)13(0+L+E+T+R)00(6)1.3(D+L+W+T+R)00(ii}Forfactoredloadconditionsthefollowingloadcombinationsshouldbeconsidered:(a)Ifelasticworkingstressdesignmethodsareused:(1)0+L+T+R+E'0(2)0+L+T+R+W.oot=(3)0+L+T+R+Paaa(4)0+L+T+'R+P+l.0(Y+Y.+Y)+Eaaa'j,m(5)0+L+T+R+P+1.0(Y+Y.+Y)+E'aa'jm(b)Ifplasticdesignmethodsareused:(1)0+L+T,+R0'(2)0+L+T+R00(3)D+L+T+Raa(4}D+L+T+Raa(5)D+L+T+Raa+E'W+1.5Pa+1.25P+-1.0(Y+Y.+Y)+1.25Earjm+1.0P+1.0(Y+Y+Y)+E''jm3.8.4"llRev.1-July1981 Indeterminingthemostcriticalloadingconditiontobeusedindesign,theabsenceofaloadorloadswasconsideredasappropriate.TheDG"E"facility'sdesignandanalysisprocedurescomplywithACI-349.b.C.TheDG"E"facility'sdesignandanalysisprocedurescomplywithAISCSpec.,exceptthe33%increaseinallowablestressesforseismicorwindloadingisnotfollowed.Thecomputerprograms(NSC/NASTRANandRESPECT)usedfortheDG"E"buildingseismicanalysesmeettherequirementsofsubsectionII.4.eofSRPSection3.8.1.d.AdesigndescriptionreportalongwithvariousdrawingsfortheDG"E"facilityhavebeensubmittedtotheNRC.Additionalinformationisavailableuponrequest.NotapplicabletotheDG"E"facility.
(SeeRef.2,PageC-5andRef.1,Page3.7b-ll.)
Intheabovefactored1oadcombinations,thermalloadscanbeneglectedwhenitcanbeshownthattheyaresecondaryandself-limitinginnatureandwherethematerialisductile.Incombinations(3),(4),and(5),themaximumvaluesofP,a',R,Y.,Y,andY,inc1udinganappropriatedynamicloada''''actor,shouldbeusedunlessatime-historyanalysisisper-formedtojustifyotherwise.Combinations(2),(4)and(5)andthecorrespondingstructuralacceptancecriteriaofsubsec-tionII.5ofthisSRPsectionshouldfirstbesatisfiedwithoutthetornadomissileloadin(2)andwithoutY,Y.,andYin(4)r''and(5).Whenconsideringtheseconcentratedloads,localsectionstrengthmaybeexceededprovidedtherewi11benolossoffunctionofanysafety-relatedsystem.Mhereanyloadreducestheeffectsofotherloads,thecorrespondingcoefficientforthatloadshouldbetakenas0.9,ifitcanbedemonstratedthattheloadisalwayspresentoroccurssimultaneouslywithotherloads.Otherwise,thecoefficientforthatloadshouldbetakenaszero.Mherethestructuraleffectofdifferentialsettlementmaybesignificantitshouldbeincludedwiththedeadload,0.4.DesinandAnalsisProcedureslThedesignandanalysisproceduresutilizedforCategoryIstructuresincludingassumptionsonboundaryconditionsandexpectedbehaviorunderloads,areacceptableiffoundinaccordancewiththefollowing;a.Forconcretestructures,theproceduresareinaccordancewithACI-349,"CodeRequirementsforNuclearSafetyRelatedStructures"(Ref.1).b.Forsteelstructures,theproceduresareinaccordancewiththeAISC"Specification..."(Ref.3).c.ComputerprogramsareacceptableifthevalidationprovidedisfoundinaccordancewithproceduresdelineatedinsubsectionII.4.eofSRPSection3.8.1.5.d.DesignreportisconsideredacceptableifitcontainstheinformationspecifiedinAppendixCtothisSRPsection.e.StructuralauditisconductedinaccordancewiththeprovisionsofAppendixBtothisSRPsection.f.DesignofspentfuelpoolandrodsisconsideredacceptablewhentherequirementsofAppendixDtothisSRPsectionaremet.StructuralAccetanceCriteriaForeachoftheloadingcombinationsdelineatedinsubsectionII.3ofthisSRPsection,thefollowingdefinestheallowablelimitswhichconstitutethestructuralacceptancecriteria:3.8.4-12Rev.1-July1981 Thelimitsprovidedhereinwereusedintheloadcombinationsforconcretestructures.(SeeRef.3,Page10.)Thelimitsprovidedhereinwereusedintheloadcombinationsforsteelstructures.(SeeRef.3,Page11.)
4.FortheDG"E"buildingandpedestaldynamicmodels,thenumberofdegreesoffreedomexceedtwicethenumberofmodeswithfrequencies lessthan33Hz.5.FortheDG"E"buildinganditspedestalallmodeswereconsidered.
InCombinationsforConcrete'aragraphs3.b.(i)(a)(l),(2),and(3)Paragraphs3.b.(i)(a)(4),(5),and(6)Paragraphs3.b.(i)(b)(l),(2),and(3)Paragraphs3.b.(i)(b)(4),(5),and(6)Paragraphs3.b.(i)(6),(7),and(8).Paragraphs3.b.(ii)(a),(b),(c),(d),b.InCombinationsforSteeland~~(e)Llllllts(s)1.3SU(2)UUULimitParagraphsParagraphsParagraphsParagraphsParagraphsParagraphsParagraphsNotes3.c.(i)(a)(1),(2),and(3)....3.c.(i)(a)(4),(5),and(6).3.c.(i)(b)(1),(2),and(3).3.c.(i}(b}(4),(5},and(6)....3.c.(ii)(a)(1),(2),(3),and(4)2.(c)(ii)(a)(4),and(5)(}....3.c.(ii)(b)(l),(2),(3),(4),and(5)S1.5Sy(3)Y1.6S1.7SY(1)S-Forconcretestructures,SistherequiredsectionstrengthbasedontheworkingstressdesignmethodandtheallowablestressesdefinedinACI318Code.Forstructuralsteel,Sistherequiredsectionstrength'asedonelasticdesignmethodsandtheallowablestressesdefinedinPart1oftheAISC"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings"(Ref.3)Theone-thirdincreaseinallowablestressesforconcreteandsteelduetoseismicorwindloadingsisnotpermitted.(2)U-Forconcretestructures,UisthesectionstrengthrequiredtoresistdesignloadsbasedonthestrengthdesignmethodsdescribedinACI349Code(Ref.1).(3)Y(4)Forstructuralsteel,YisthesectionstrengthrequiredtoresistdesignloadsandbasedonplasticdesignmethodsdescribedinPart2oftheAISC"SpecificationfortheDesign,Fabrication,andErectionofStructuralSteelforBuildings"(Ref.3).Forthesetwocombinations,incomputingtherequiredsectionstrength,S,theplasticsectionmodulusofsteelshapes,exceptforthosewhichdonotmeettheAISCcriteriaforcompactsections,maybeused.3.8.4"13Rev.1-July1981 6.NospecialconstructiontechniqueswereusedfortheDG"6"facility,~Weldingofrebarwasnotpermitted.Theapplicablecodesreferredtoherearecompliedwith.7.Nospecialtestingorin-servicesurveillancerequirementsfortheDG"E"structurewererequired.8.NomasonrywallsareusedintheDG"E"facility.
(SeeRef.1,Page3.7b-5.)6.7.Amodalresponsespectrumanalysiswasperformed usingtheDG"E"buildingandpedestalmodelstodetermine therelativedisplacements.
6.7.e.MaterialsualitControlandSecialConstructionTechniuesForCategoryIstructuresoutsidethecontainment,theacceptancecriteriaformaterials,qualitycontrol,andanyspecialconstructiontechniquesareinaccordanc'ewiththecodesandstandardsindicatedinsubsectionI.6ofSRPSection3.8.3,asapplicable.TestinandInserviceSurveillanceReuirementsAtpresenttherearenospecialtestingorinservicesurveillancerequire-mentsforCategoryIstructuresoutsidethecontainment.However,wheresomerequirementsbecomenecessaryforspecialstructures,suchrequirementsarereviewedonacase-by-casebasis.MasonrHallsAcceptancecriteriaformasonrywallsarecontainedinAppendixAtothisSRPsection.REVIEMPROCEDURESThereviewerselectsandemphasizesmaterialfromthereviewproceduresdescribedbelow,asmaybeappropriateforaparticularcase.DescritionoftheStructures2.After,thetypeofstructureanditsfunctionalcharacteristicsareidenti"fied,informationonsimilar,andpreviouslylicensedplantsisobtainedforreference.Suchinformation,whichisavailableinsafetyanalysisreportsandamendmentsofpreviouslicenseapplications,enablesidenti-ficationofdifferencesforthecaseunderreview.Thesedifferencesrequireadditionalscrutinyandevaluation.Newanduniquefeaturesthathavenotbeenusedinthepastareofparticularinterestandarethusexaminedingreaterdetail.TheinformationfurnishedintheSARisreviewedforcompletenessinaccordancewiththe"StandardFormat..."(Ref.4).Adecisionisthenmadewithregardtothesufficiencyofthedescriptiveinformationprovided.Anyadditionalrequiredinformationnotprovidedisrequestedfromtheapplicantatanearlystageofthereviewprocess.AlicableCodesStandardsandSecifications3.Thelistofcodes,standards,guides,andspecificationsiscomparedwiththelistinsubsectionII.2ofthisSRPsection.Thereviewerassureshimselfthattheappropriatecodeorguideisutilizedandthattheapplicableeditionandstatedeffectiveaddendaareacceptable.LoadsandLoadinCombinationsThereviewerverifiesthattheloadsandloadcombinationsareasconserva-tiveasthosespecifiedinsubsectionII.3ofthisSRPsection.Anydeviationsfromtheacceptancecriteriaforloadsand'loadcombinationsthathavenotbeenadequatelyjustifiedareidentifiedasunacceptableandtransmittedtotheapplicant.3.8.4-14Rev.1<<July1981  
(SeeRef.2,PageC-7.)PipinginsidetheD.G."E"buildingisanalyzedindependently usingthefloorresponsespectra.(SeeRef.2,PageC-8.)Noexternally appliedstructural restraints areconsidered fortheDG"E"buildinganalysis.
.0 NUREG4800[FormerlyNUREG-76/OB7)<is"<<urWpe0e>~io)n004***4STANDARDREVIEWPLAN3.8.5FOUNDATIONSREVIEWRESPONSIBILITIESPrimary-StructuralEngineeringBranch(SEB)Secondary-NoneII.AREASOFREVIEWThefollowingareasrelatedtothefoundationsofallseismicCategoryIstructuresarereviewed.1.DescritionoftheFoundationsTheedescriptiveinformation,includingplansandsectionsofeach'oundation,isreviewedtoestablishthatsufficientinformationisprovidedtodefinetheprimarystructuralaspectsande'lementsreliedupontoperformthefoundationfunction.Alsoreviewedistherelationshipbetweenadjacentfoundations,includingthemethodsofseparationprovidedwheresuchseparationisusedtominimizeseismicinteractionbetweenthebuildings.Inparticular,thetypeoffoundationisidentifiedanditsstructuralcharacteristicsareexamined.Amongthevarioustypesoffoundationsreviewedaremat-foundationsandfootings,includingindividualcolumnfootings,combinedfootingssupportingmorethanonecolumn,andwallfootingssupportingbearingwalls.Othertypesoffoundationsthatmayalsobeusedarepilefoundations,drilledcaissons,caissonsforwaterfrontstructures,suchasapumphouse,androckanchorsystems.Thesetypesoffoundationarereviewedonacase-by-casebasis.ThemajorplantCategoryIfoundationsthatarereviewed,togetherwiththedescriptiveinformation,arelistedbelow:Rev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulationstaffresponsibleforthereviewofapplicationstoconstructandoperatenuclearpowerplants.ThesedocumentsaremadeavailabletothepublicaspartoftheCommission'spolicytoinformthenuclearindustryandthegeneralpublicofregulatoryproceduresandpollclee.StandardreviewplansarenotsubstitutesforregulatoryguidesortheCommission'sregulationsandcompliancewiththemlsnotrequired.ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotsllsectionsofthaStandardFormathavescorrespondingreviewplan.Publishedstandardreviewplanswillberevisedperiodically,ssappropriate,toaccommodatecommentsandtoreflectnewinforms.tlonendexperience.CommentsandsuggestionsforimprovementwillbeconsideredandshouldbesenttotheU.S.NuclearRegulatoryCominleelon,OfficeofNuclearReactorRegulation,Washington,O.C.20655.
Hydrodynamic loads(SRV&LOCA)neednotbeconsidered duetothephysicallocationoftheDG"E"building.
AdescriptionoftheDG"E"facility'sfoundationisprovidedinRef.1,Section3.8.5.1.AdditionalinformationisprovidedinRef.2,Page3-6.
Stresslevelsarekeptbelowallowable levels,thus,nonlinear responses, arenotconsidered.
Earthquake(OBE)andtheSafeShutdownEarthquake(SSE),sitedependentfreefieldgroundmotionrecords,soilproperties,etc.,asanintegralpartofthe.seismicanalysisreviewofCategoryIstructures.ThereviewforgualityAssuranceiscoordinatedandperformedbythegualityAssuranceBranchaspartofitsprimaryreviewresponsiblityforSRPSection17.0.Forthoseareasofreviewidentifiedaboveasbeingreviewedaspartoftheprimaryreviewresponsibilityofotherbranches,theacceptancecriterianecessaryforthereviewandtheirmethodsofapplicationarecontainedinthereferencedSRPsectionofthecorrespondingprimarybranch.II.ACCEPTANCECRITERIASEBacceptancecriteriaforthedesignofseismicCategoryIfoundationsarebasedonmeetingtherelevantrequirementsofthefollowingregulations:A.lOCFRPart50,K50.55aandGeneral.DesignCriterion1astheyrelatetosafety-relatedstructuresbeingdesigned,fabricated,erected,andtestedtoqualitystandardscommensuratewiththeimportanceofthesafetyfunctiontobeperformed.8.C.GeneralDesignCriterion2(Ref.3)asitrelatestoappropriateconsiderationsbeinggiventothemostsevereofthenaturalphenomena.thathavebeenhistoricallyreportedforthesiteandsurroundingareawithsufficientmarginforthelimitedaccuracy,quantity,andperiodoftimeinwhichthehistoricaldatahavebeenaccumulated,andtothecombinationsoftheeffectsofnormalandaccidentconditionswiththeeffectsofthenaturalphenomena.GeneralDesignCriterion4(Ref.4)asitrelatestostructures,systems,andcomponentsimportanttosafetybeingappr'opriatelyprotectedagainstdynamiceffects,includingtheeffectsofmissiles,pipewhipping,anddischargingfluids,thatmayresultfromequipmentfailuresandfromeventsandconditionsoutsidethenuclearpowerunit.D.GeneralDesignCriterion5(Ref.5)asitrelatestostructures,systems,andcomponentsimportanttosafetynotbeingsharedamongnuclearpower',units.unlessitcanbeshownthatsuchsharingwillnotsignificantlyimpairtheirabilitytoperformtheirsafetyfunctions.TheRegulatoryGuidesandindustrystandardsidentifiedinitem2ofthissubsectionprovidesinformation,recommendationsandguidanceandingeneraldescribesabasisacceptabletothestaffthatmaybeusedtoimplementtherequirement-of10CFRPart50,K50.55a,andGDC1,2,4,and5.Also,specificacceptance'riterianecessarytomeettheserelevantrequirementsoftheseregulationsfortheareasofreview,describedinsubsectionIofthisSRPSectionareasfollows:1.DescritionoftheFoundationThedescriptiveinformationintheSARisconsideredacceptableifitmeetstheminimumrequirementssetforthinSection3.8.5.1ofRegulatoryGuide1.70,"StandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants."3.8.5-5Rev.1-July1981 Alistofthecodesstandardsandregulationsconsideredinthedesignofthe~DGEfacility'sfoundationisprovidedinRef.2.TheloadsandloadcombinationsusedinthedesignoftheDG"E"foundationcomplywiththoselistedinSubsectionII.Thelistedloadcombinationswereusedtocheckagainstslidingandoverturningduetoearthquakes,windsandtornadosand,againstfloatationduetofloods.(SeeRef.3,Page11.)ea0ThedesignoftheDG"E"facility'sfoundationdoesnotconsidersoil-structureinteractionsinceitisfoundedonsoundbedrock.b.CeHydrodynamicloadsneednot.beconsideredsincetheDG"E"facilityislocatedfarenoughawayfromthecontainmentstructures.DynamicsoilpressurehasbeenconsideredinthedesignoftheDG"E"faci1ity.ThedesignandanalysisproceduresfortheDG"E"facility'sfoundationcomplywithACI-349.TheAISCspecificationisnotapplicableforthedesignandanalysisproceduresusedinthedesignoftheDG"E"facility'sfoundationsinceitisconstructedoutofreinforcedconcrete.
suitabledynamicanalysisorasuitablequalification testtodemonstrate thatstructures, systems,andcomponents canwithstand theseismicandotherconcurrent loads,exceptwhereitcanbedemonstrated thattheuseofanequivalent staticloadmethodprovidesadequateconservatism.
Oeficientareasofdescriptiveinformationareidentifiedbythereviewerandarequestforadditionalinformationisinitiated.Neworuniquedesigrfeaturesthat'arenotspecificallycoveredinthe'"StandardFormat...",requireamoredetailedreview.Thereviewerdeterminestheadditionalinformationrequiredfora,meaningfulreviewofsuchneworuniquedesignfeatures.2.AlicableCodesStandardsandSecificationsThedesign,materials,fabrication,erection,inspection,testing,andsurveillance,ifany,ofseismicCategoryIfoundationsarecoveredbycodes,standards,andguidesthatareeitherapplicableintheirentiretyorinportionsthereof.Alistofsuchdocumentsiscontainedinsubsec-tionI.2oftheSRPSection3.8.3.InadditionthedocumentslistedinsubsectionII.2ofSRPSection3.8.1areacceptableforthecontainmentfoundation.3.LoadsandLoadCombinationsThespecifiedloadsandloadcombinationsusedinthedesignofseismicCategoryIfoundationsareacceptableiffoundtobeinaccordancewiththosecombinationsreferencedinsubsectionII.3ofSRPSection3.8.1forthecontainmentfoundation,andwiththosecombinationslistedinsubsectionII.3ofSRPSection3.8.4forallotherseismicCategoryIfoundations.Inadditiontotheloadcombinationsreferencedabove,thecombinationsusedtocheckagainstslidingandoverturningduetoearthquakes,winds,andtornados,andagainstfloatationduetofloods.arefoundacceptableifinaccordancewiththefollowing:a0b.C.d.e.0+H+E0+H+M0+H+E'+H+M0+F'here0,E,M,E',MareasdefinedinSRPSection3.8.4,Histhelateralearthpressure,andf'sthebouyantforceofthedesignbasisflood.Justificationshouldbeprovidedforincludingliveloadsorportionsthereofinthesecombinations.4.OesinandAnalsisProceduresThedesignandanalysisproceduresusedforseismicCategoryIfoundationsareacceptableiffoundinaccordancewiththefollowina:a~b.C.Thedesignshouldconsiderthesoil-structureinteraction,hydrodynamiceffect,anddynamicsoilpressure.ForseismicCategoryIconcretefoundationsotherthanthecontainmentfoundations,theproceduresareinaccordancewiththeACI-349Code,asaugmentedbyRegulatoryGuidel.142.ForCategoryIsteelfoundations,theproceduresareinaccordancewiththeAISC"Specifications...".3.8.5"6Rev.1-July1981 d.NotapplicabletotheDG"E"facility.e.AdesigndescriptionreportalongwithvariousdrawingsfortheDG"E"facilityhavebeensubmittedtotheNRC.Additionalinformationisavailableuponrequest.5.TheallowablelimitslistedinSubsectionII.5ofSRPSection3.8.4wereusedinthedesignoftheDG"E"foundation.Thelistedfactorsofsafetyagainstoverturning,slidingandfloatationareusedinthedesignoftheDG"E"facility.(SeeRef.3,Page11.)6.ThecriteriapertainingtocontainmentfoundationsisnotapplicablefortheDG"E"facility.NospecialconstructiontechniqueswereusedfortheDG"E"facility'sfoundation.Weldingofrebarwasnotpermitted.Theapplicablecodesreferredtoherearecompliedwith.7.Nospecialtestingorin-servicesurveillancerequirementsfortheDG"E"foundationwererequired.jv/e059c:mg d.Forthecontainmentfoundation,thedesignandanalysisproceduresreferencedinsubsectionII.4ofSRPSection3.8.1areacceptable.,e.ThedesignreportisfoundacceptableifitsatisfiestheguidelinescontainedinAppendixCtoSRPSection3.8.4.f.ThestructuralauditisconductedasdescribedinAppendixBtoSRPSection3.8.4.Fordeterminingtheoverturningmomentduetoanearthquake,thethreecomponentsoftheearthquakeshouldbecombinedinaccordancewithmethodsdescribedinSRPSection3.7:2.Computerprogramsareacceptableifthevalidationprovidedisfoundinaccordancewithproceduresdeline-atedinsubsectionII.4.eofSRPSection3.8.1.5.StructuralAccetanceCriteriaForeachoftheloadingcombinationsreferencedinsubsectionII.3ofthisSRPSection,theallowablelimitswhichconstitutetheacceptancecriteriaarereferencedinsubsectionII.5ofSRPSection3.8.1forthecontainmentfoundation,andarelistedinsubsectionII.5ofSRPSection3.8.4forallotherfoundations.Inaddition,forthefiveadditionalloadcombina-tionsdelineatedinsubsectionII.3ofthisSRPsection,thefactorsof~safetyagainstoverturning,slidingandfloatationareacceptableiffouefinaccordancewiththefollowing:MinimumFactorsofSafetForCombinationa~b.C.d.e.Overturnin1.51.51.11.1~Slid>nFloatation1.51.51.11.16.MaterialsualitControlandSecialConstructionTechniuesForthecontainmentfoundation,theacceptancecriteriaformaterials,qualitycontrol,andanyspecialconstructiontechniquesarereferencedinsubsectionII.6ofSRPSection3,8.1.Forallother.seismicCategoryIfoundations,theacceptancecriteriaaresimilartothosereferencedinsubsectionII.6ofSRPSection3.8.4.7.Testin'andInserviceSurveillanceReuirementsAtpresenttherearenospecialtestingorin-servicesurveillancerequire-'entsforseismicCategoryIfoundationsotherthanthoserequiredforthecontainmentfoundation,whicharecoveredinsubsectionII.7ofSRPSection3.8.1.However,shouldsomerequirementsbecomenecessaryforspecialfoundations,theywillbereviewedonacase-by-casebasis.III.REVIEWPROCEOURESThereviewerselectsandemphasizesmaterialfromthereviewproceduresdescribedbelow,asmaybeappropriateforaparticularcase.3.8.5"7Rev.1-July1981 TheStandbyacPoverSupplySystemconsistsoffourdiesol-qeneratorsets.Thediesel-generatorsaresizedaothatthreedieselscansupplyallthenecessaryPorerrequirexentsforoneunitinthedesiqnbasisaccidentconditionrPlusthenecessarYrequiredloadstoeffectthesafeshutdovnofthesecondunit-Thedieselqenerato.saresPecifiedtostartupandattainratdroltaq4andfrequencyrithin10seconds.Fourindependent4kVenqineeredsafetyfeaturesvitchqearassexbliesareprovidedforeachreactor'nit-Eachdiesel-generatorfeedsanindependent4kybusforeachreactorunit.Eachdiesel-qeneratorstartsautomaticallyuponlofPoverordetectionofanuc7earaccid~ntengineeredsafetyfeaturesystemloadsareapPliedintimesequence.Eachgenerator.operatesindependent7yandParallelinqduringalossofoff-sitepoverorLOCAsign3~2~2~9~32DdQ22"CXXQMXXTachreactorunitisproridedvithfourindependent125Vandtvnindependent250Vdcsystems.Eachdcsystemissuppliedfromaseparatebatt'erybankandbatterycharger.The125VdcsystemsareprovidedtosuPPlystationdccontrolpoveranddcpover'tofourdieselqeneratorsandtheirassociatedsvitchgears.The2507Vdcsystemsareprovidedtosupplypoverrequiredforthelaoadssuchasdcmoto'rdriven.Puxps.andvalves.4JM44rfdggjg/f'arger12'SesuezymQrgczoviueo~ezFrigPZdN4eaRfoc.The125/250-VdcSystemisdesiqnedtosupplyp'overadequateto.satisfytheengineeredsafetyfeatureloadreguirexentioft'eunitviththePostulatedlossofoff-sitepoverandanyconcurrentsingle'failureinthedcsystex.2~2~4~19gq~i,C~qgBeniZemmxl2~rrimate~'~~qtemhResidualHeatRemovalServiceRater.Systemisprovidedtoremovetheheatre)ectedbytheResidualHeatRemovalSystemduringshutdovnoperationandaccidentconditions.1)~)~419gmyggegcyQy~rfggQygygSystemTheEmerqencyServiceRaterSystemsuppliesvatertocoo1thestandbydiesel-ueneratorsandtheFCCSandEngineeredSafetyFeaturesequipmentrooms,andotheressentialheat1cads.
.Specificcriterianecessary tomeettherelevantrequirements ofGDC2andAppendixAtoPart100areasfollows:1.SeismicAnalsisMethodsTheseismicanalysisofallCategoryIstructures, systems,andcomponents shouldutilizeei,therasuitabledynamicanalysismethodoranequivalent staticloadmethod,ifjustified.
sk'ECyC.,%yJf Pow~rfroxthegenerators~sscepneaupsroac~avioc.'$Mg.vofUnitHo.1andfrox20kyto500kVonUnitHo.2bytheunitxainfransgorxersandsuppliedby.overheadlinestothe230kVand500kVswitchyards,resPectivelY.>.ggygZZeaizigZmerRiuirihuffunXxMmnTheelectricpowerdistributionsystexincludesClassIEandnon-ClassIEacanddcPowersYstexs.TheclassIF,powersystexsuppliesa11safetyrelatedeguiPxent'andsoxenon-classIEgoadswhilethenon-ClassIEsystexsuppliesthebalanceofplanteauipxent.ThoClassIEacsystexforeachunitconsistsoffourindependentLoadgrounsTwoindependentoff-sitepowersystexsprovidethenorxalelectrJ.cPowertothesegroups.Eachloadgroupincludes0.16kvswitchgear,080Vloadcenters,xotorcontrolcentersand120vcontrolandinstruxentpowerpanel.'hevitalacinsfzuxentationandcontrolpowersupplysystexsincludebatterysystexsstaticinvertersVoltageslistedarenoxinalvalues,andallelectricalecruigxentessentialtosafetyisdesignedtoacceptarangeof+10percentinvoltage.pourindependentdieselgeneratorsaresharedbetweenthetwounits.EachdieselgeneratorisprovidedasistandbysourceofexorgnncyPowerforoneofthefourClassIEacloadgroupsiweachuni+.issuxingthetotallossofoff-sitepowerandfailureofonedieselgenerator,therexainingdieselgeneratorshavesufficientcaPacitytooperateallthe-'equipxentnecessarytoPreventunduerisktopublichealthandsafetyintheeventofadesignbasisaccidentononeunitandaforcedshutdownofthesecondunit.pg~zHJ'Cc74k'EM-$EEgl7jgcN'Fb)Thenon-ClassIEacsystexincludes13~8kVswitchgear,0.16kVswitchqear,080Vloadcentersandxotorcontrolcenters.pourindependentClassIE125Vdcbatteriesand.twoindependentClassIE250VdcbatteriesandassociatedbatterychargersProvidedirectcurrentpowerfortheClassIEdcloadsofeachunit.Powerfornon-ClassIEdcloadsissuppliedfr'oxtheClassIE125and250Vbatteriesthroughanadditionalcircuitbreake"'forredundantfaultProtection.gypreal~~'g'k'NMlAfJdcJfD)hesesvstexsarediscussedinChapter8.1~2-26  
a.0namicAnalsisMethodAdynamicanalysis(e.g.,responsespectrummethod,timehistorymethod,etc.)shouldbeusedwhentheuseoftheequivalent staticloadmethodcannotbejustified.,
Tobeacceptable suchanalysesshouldconsiderthefollowing items:(1)Useofeitherthetimehistorymethodortheresponsespectrummethod.(2)Useofappropriate methodsofanalysistoaccount,foreffects'fsoil-structure interaction.
~~%(3)Consideration ofthetorsional, rocking,andtranslational responses ofthestructures andtheirfoundations.
(4)Useofanadequatenumberofmassesordegreesoffreedomindynamicmodelingtodetermine theresponse'f allCategoryIandapplicable non-Category Istructures andplantequipment.
Thenumberisconsidered adequatewhenadditional degreesoffreedomdonotresultinmorethana10Kincreaseinresponses.
Alternately, thenumberofdegreesoffreedommaybetakenequaltotwicethenumberofmodeswithfrequencies lessthan33cps.(5)Investigation ofasufficient numberofmodestoassurepartici-pationofallsignificant modes.Thecriterion forsufficiency isthattheinclusion ofadditional modesdoesnotresultinmorethana10Kincreaseinresponses.
(6)Consideration ofmaximumrelativedisplacements amongsupportsofCategoryIstructures, systems,andcomponents.
(7)Inclusion ofsignificant effectssuchaspipinginteractions, externally appliedstructural restraints, hydrodynamic (bothmassandstiffness effects)loads,andnonlinear responses.
b.EuivalentStaticLoadMethodAnequivalent staticloadmethodisacceptable if:3.7.2-5Rev.1-July1981 Theequivalent staticloadmethodasdescribed hereisusedforthedesignof~somesafetyrelatedsystemsandequipment foundwithintheDG"E"facility.
FortheDG"E"buildingandpedestal, modalfrequencies andparticipation factorsarepresented inRef.1,Table3.7b-8.Modeshapeshavebeencalculated andarepresented inthecomputeroutput.Floorresponsespectrahavebeencalculated andavailable uponrequest.Allsubsystems'equipment, piping,HVACducts,cabletrays,etc.)havebeendecoupled fromtheDG"E"buildingmodelsbasedonthesmallratioofindividual subsystem masstobuildingmass.However,thedieselgenerator hasnotbeendecoupled fromthedieselgenerator pedestal.
Anapproximate modelofthedieselgenerator isincludedinthepedestalmodel.  
(1)Justification isprovidedthatthesystemcanberealistically represented byasimplemodelandthemethodproducesconserva-tiveresultsintermsofresponses.
Typicalexamplesorpublished resultsforsimilarstructures maybesubmitted insupportoftheuseofthesimplified method.(2)Thedesignandassociated simplified analysisaccountfortherelativemotionbetweenallpointsofsupport,(3)Toobtainanequivalent staticloadofastructure, equipment, orcomponent whichcanberepresented byasimplemodel,afactorof1.5isappliedtothepeakacceleration oftheappli-cablefloorresponsespectrum.
Afactoroflessthan1.5maybeusedifadequatejustification isprovided.
2.NaturalFreuenciesandResonseLoadsTobeacceptable fortheoperating licensereview,thefollowing information shouldbeprovided.
Asummaryofnaturalfrequencies, modeshapes,modalandtotalresponses, forarepresentative numberofmajorCategoryIstructures, including thecontainment
: building, orasummaryofthetotal.responses ifthemethodofdirectinteraction isused.b.Atimehistoryofacceleration (orotherparameters ofmotion)orresponsespectrumatthemajorplantequipment elevations andpointsofsupport.Procedures 0sedforAnalticalModelinAnuclearpowerplantfacilityconsistsofverycomplexstructural systems.Tobeacceptable, thestiffness, mass,anddampingcharacteristics ofthestructural systemsshouldbeadequately incorporated intotheanalytical models.Specifically, thefollowing itemsshouldbeconsidered inanalytical modeling:
a.OesinationofSstemsYersusSubsstemsMajorCategoryIstructures thatareconsidered inconjunction withfoundation anditssupporting mediaaredefinedas"seismicsystems."
OtherCategoryIstructures, systems,andcomponents thatarenotdesignated as"seismicsystems"shouldbeconsidered as"seismicsubsystems.
"b.OecoulinCriteriaforSubsstemsItcanbeshown,in'general, thatfrequencies ofsystemsandsub-systemshavenegligible effectontheerrorduetodecoupling.
Itcanbeshownthatthemassratio,R,andthefrequency ratio,Rf,governtheresultswhereRandRfPredefinedas:Totalmassofthesuortedsubsstemmotalmassofthesupport>ng systemFundamental freuencofthesuortedsubsstemfom>nantfrequency otesupportmot>on3.7.2-6Rev.1-July1981 c)Adescription ofthemethodology usedtocomputethelumpedmassesfortheDG"E"buildinganditspedestalispresented inRef.2,PagesC-4throughC-6.d)Twolumpedmassstickmodels(1-horizontal and1vertical) fortheDG"E"buildingand1modelforthepedestalweredeveloped.
Adescription ofthesemodelsalongwiththewaytheywereusedisprovidedinRef.2,PageC-3.4)TheDG"E"buildingandpedestalar'efoundedonsoundbedrock.Asaresult,thesoil-structure interaction effectisinsignificant.
Thefollowing criteriaareacceptable:
A'I(1)IfR<0.01,decoupling canbedoneforanyRf.(2)'If0.01<R<O.l,decoupling canbedoneif0.8>Rf>i25-m-C.(3)IfR>0.1,anapproximate modelofthesubsystem shouldbeincludedintheprimarysystemmodel.Ifthesubsystem iscomparatively rigidinrelationtothesupporting system,andalsoisrigidlyconnected tothesupporting system,itissufficient toincludeonlythemassofthesubsystem atthesupportpointintheprimarysystemmodel,Ontheotherhand,incaseofasubsystem supported byveryflexibleconnections, e.g.,pipesupported byhangers,thesubsystem neednotbeincludedintheprimarymodel.Inmostcasestheequipment andcomponents,
'whichcomeunderthedefinition ofsubsystems, areanalyzed(ortested)'s adecouple'd systemfromtheprimarystructure andtheseismicinputfortheformerisobtainedbytheanalysisofthelatter.Oneimportant exception tothisprocedure isthereactorcoolantsystem,whichisconsidered asubsystem butisusuallyanalyzedusingacoupledmodelofthereactorcoolantsystemandprimarystructure.
LumedMassConsiderations Theacceptance criteriagivenundersubsection II.l.a(4)ofthisSRPsectionareapplicable.
d.ModelinforThreeComonentInutMotionIngeneral,three-dimensional modelsshouldbeusedforseismicanalyses.
However,simplermodelscanbeusedifjustification canbeprovidedthatthecouplingeffectsofthosedegreesoffreedomthatareomittedfromthethree-dimensional modelsarenotsignificant.
4.Soil-Structure Interaction Ananalytical modelofasoil-structure interaction systemisacceptable ifboththestructure modelandthesupporting soilmodela'eproperlycoupledandthedesignmotionisproperlyaddressed.
Thecoupledmodelissubjected tothedesigngroundmotionasspecified inSRPSection3.7.1ortotheregenerated excitation systemdescribe'd inSectionII.4(iii)below.Asuitabledynamicanalysisusingthetimehistorymethodisperformed fortheentiresoil-structure systemandthedynamicresponses atvariouslocations ofthesystemarecalculated.
Allassumptions tosimplifytheanalysisshouldbejustified andtheresulting errorsbestudied.Anydy'namicdecoupling orcondensation procedure shouldbesubstantiated bytheoretical verification andmathematical proofs.Atpresentmostcommonlyusedmethodsarethehalf-space andthefiniteboundaries modelingmethodsandthereisnoindication astowhichoneismorereliable, especially whentoomanyassumptions areinvolved.
There-fore,modelingmethodsforimplementing thesoil-structure interaction analysisshouldincludeboththehalf-space andfiniteboundaries approaches.
CategoryIstructures, systems,andcomponents shouldbedesignedtoaccommodate responses obtainedbyoneofthefollowing:
3.7.2-7Rev.1-July1981 ii)TheDG."E"Huildingandpedestaldynamicmodelsassumeafixedbasesincetheyrepresent structures whicharesupported onrock.Additional boringstakenintheareaoftheDG"E"facilityindicatethatthebedrockisofthesametypeasthatfoundundertheexistingSeismicCategoryIstructures locatednearby.Previoustestingdetermined theReactorArea'sbedrockcompression wavevelocitytobeapproximately 15,000fpsandtheshearwavevelocitytobeapproximately 7,000fps.(RefertoFSARTable2.5-7.)Thismethodology wasusedinthedevelopment offloorresponsespectrafortheOG"E"facility.
SeeRef.2,PageC-8.
a.Envelopeofresultsofthetwomethods,b.Resultsofonemethodwithconservative design.considerations ofeffectsfromuseoftheothermethod,c.Combination ofa.andb.withprovision ofadequateconservatism indesign.Theacceptance criteriafortheconstituent partsoftheentiresoil-structure interaction systemareasfollows:i.ModelingofStructure Theacceptance criteriagivenundersubsection II.3ofthisSRPsectionareapplicable.
ii.ModelingofSupporting SoilTheeffect'ofembedment ofstructure andthelayeringeffectofsoilshouldbeaccounted for.Forthehalf-space modelingofthesoilmedia,thelumpedparameter (soilspring)methodandthecompliance functionmethodsareacceptable.
Forthemethodofmodelingsoilmediawithfiniteboundaries, allboundaries shouldbeproperly.simulated andtheuseof'typesofboun'daries shouldbejustified and.reviewedonacase-by-case basis.Finiteelementandfinitediffer-encemethodsareacceptable methodsfordiscretization ofacontinuum.
Theproperties usedi.nthesoil-structure interaction analysisshouldbethosecorresponding tothelowstrainswhichareconsistent withtherealistic soilstraindeveloped duringthedesignearthquake.
Useofhighstrainparameters needstobeadequately justified onacase-by-case basis.Forstructures supported onrock,afixedbaseassumption isacceptable.
iii.Generation ofExcitation SystemAppendixAto10CFRPart100statesthatthevibratory groundmotionproducedbythesafeshutdownearthquake shallbedefinedbyresponsespectracorresponding tothemaximumvibratory acceleration attheelevations ofthefoundations ofthenuclearpowerplantstructure.
Aregenerated excitation systemisacceptable if,whenappliedtothesoilmodel,itproducesatthestructural foundation levelinthefreefieldaresponsemotionwhoseresponsespectraenvelopthedesignresponsespectraofearthquake motion.5.DevelomentofFloorResonseSectraTobeacceptable, thefloorresponsespectrashouldbedeveloped takingintoconsideration thethreecomponents oftheearthquake motion.Theindividual floorresponsespectralvaluesforeachfrequency areobtainedforoneverticalandtwomutuallyperpendicular horizontal earthquake motionsandarecombinedaccording tothe"squarerootofthesumofthesquares"methodtopredictthetotalfl'oorresponsespectrumforthatparticular frequency (Ref.3).3.7.2-8Rev.1-July1981 Atimehistoryapproachwasusedinthedevelopment offloorresponsespectra,SeeRef.2,PageC-8.FortheDG"E"facilitytheresponses duetothreesimultaneous orthogonal components ofanearthquake arecombinedbythesquarerootofthesumofthesquaresmethodperReg.Guide1.92,Rev.1.(SeeRef.1,Page3.7b-8.)FortheOG"E"facility, thetotalresponseisobtainedbycombining theabsolutevaluesofallcloselyspacedmodalresponses withthesquarerootsumofthesquares'f theremaining modalresponses.
Twoconsecutive modesaredefinedas.closelyspacedwhentheirfrequencies differfromeachotherby10percentorless'.Reg.Guide1.92isfollowedforthecombination ofmodalresponses.
(SeeRef.1,Page3.7b-8.)
Ingeneral,development ofthefloorresponsespectraisacceptable ifatimehistoryapproachisused.Ifamodalresponsespectramethodofanalysisisusedtodevelopthefloorresponsespectra,thejustification foritsconservatism andequivalency tothatofatimehistorymethodmustbedemonstrated byrepresentative examples.
6.ThreeComonentsofEarthuakeMotionOepending uponwhatbasicmethodsareusedintheseismicanalysis, i.e.,responsespectraortimehistorymethod,thefollowing twoapproaches areconsidered acceptable forthecombination ofthree-dimensional earthquake effects.(Ref.4)a.ResonseSectraMethodWhentheresponsespectramethodisadoptedforseismicanalysis, themaximumstructural responses duetoeachofthethreecomponents ofearthquake motionshouldbecombinedbytakingthesquarerootofthesumofthesquaresofthemaximumcodirectional responses causedbyeachofthethreecomponents ofearthquake motionataparticular pointofthestructureorofthemathematical model.b.TimeHistorAnalsisMethod'7.Whenthetimehistoryanalysismethodisemployedforseismicanaly-sis,twotypesofanalysisaregenerally performed depending onthecomplexity oftheproblem.(1)Toobtainmaximumresponses duetoeachofthethreecomponents oftheearthquake motion:inthiscasethemethodforcombining thethree-dimensional effectsisidentical tothatdescribed initem6.aexceptthatthemaximumresponses arecalculated usingthetimehistorymethodinsteadofthespectrummethod.(2)Toobtaintimehistoryresponses fromeachofthethreecomponents oftheearthquake motionandcombinethemateach'timestepalge-braically:
themaximumresponseinthiscasecanbeobtainedfromthecombinedtimesolution.
Whenthismethodisused,tobeaccept-able,theearthquake motionsspecified int'ethreedifferent direc-tionsshouldbestatistically independent, Combination ofModalResonsesWhentheresponsespectrummethodofanalysisisusedtodetermine thedynamicresponseofdampedlinearsystems,themostprobableresponseisobtainedasthesquarerootofthesumofthesquaresoftheresponses fromindividual modes.Thus,themostprobablesystemresponse, R,isgivenbyNR(ZR2)1/2whereRistheresponseforthekmodeandNisthenumberofsignificant thmodescLnsidered inthemodalresponsecombination.
Whenmodeswithcloselyspacedmodalfrequencies exist,themethodsdelineated inRef.4areacceptable.
Twomodeshavingfrequencies within10Kofeachotherareconsidered asmodeswithcloselyspacedfrequencies.
3.7.2-9Rev.1-July1981 Thecollapseofanynon-category Istructure willnotstriketheDG"E"building.
Responsespectralpeaksweresmoothedandbroadened by15%oneachside.(SeeRef.2,PageC-8.)ConstantverticalstaticfactorswerenotusedintheseismicdesignoftheOG"E"building.
ConstantverticalstaticfactorswereusedintheseismicdesignofseismicCat'egory Isubsystems whereshowntobeappropriate.
Themethodusedtoaccountfortorsional, effectsispresented inRef.1,Page~3.7b-11.
e,9.Otherapproaches whichgiveanequivalent degreeof'onservatism totheabovemethods,andwhichareadequately justified arealsoacceptable.
Interaction ofNon-CateorIStructures withCateor'Structures Tobeacceptable, theinterfaces betweenCategoryIandnon-Category I.structures andplantequipment mustbedesignedforthedynamicloadsanddisplacements producedbyboththeCategoryIandnon-Category Istructures andplantequipment.
Inaddition, astatement indicating thefactthatallnon-Category Istructures meetanyoneofthefollowing requirements shouldbeprovided.
Ia.Thecollapseofanynon-Category Istructure wi11notcausethenon-Category Istructure tostrikeaseismicCategoryIstructure orcomponent.
b.Thecollapseofanynon-Category Istructure willnotimpairtheintegrity ofseismicCategoryIstructures orcomponents.
c.Thenon-Category Istructures wi11beanalyzedanddesignedtopreventtheirfailureunderSSEconditions inamannersuchthatthemarginofsafetyofthesestructures isequivalent tothatofCategoryIstructures.
EffectsofParameter Variations onFloorResonseSectra10.Consideration shouldbegivenintheanalysistotheeffectsonfloorresponsespectra(e.g.,peakwidthandperiodcoordinates}
ofexpectedvariations ofstructural properties,
: dampings, soilproperties, andsoil-structure interactions.
Anyreasonable methodfordetermining theamountofpeakwideningassociated withthestructural frequency canbeused,butinnocaseshouldtheamountofpeakwideningbelessthan+lOX.Ifnospecialstudyisperformed forthispurpose,thepeakwidthshouldbeincreased byaminimumofk15Ktobeacceptable.
(Ref.3)'UseofEuivalentStaticFactorsTheuseofequivalent staticloadfactorsasverticalresponseloadsfortheseismicdesignofallCategoryIstructures, systems,andcomponents inlieuoftheuseofaverticalseismicsystemdynamicanalysisisacceptable onlyifitcanbejustified thatthestructure isrigidintheverticaldirection.
Thecriterion forrigidityisthatthelowestfrequency intheverticaldirection ismorethan33cps.MethodsUsedtoAccountforTorsional EffectsAnacceptable methodoftreatingthetorsional effectsintheseismicanalysisofCategoryIstructures isto.carryoutadynamicanalysiswhichincorporates thetorsional degreesoffreedom.Anacceptable alternative,.if properlyjustified, istheuseof'static factorstoaccountfortorsional accelerations intheseismicdesignofCategoryIstructures inlieuoftheuseofacombinedvertical, horizontal andtorsional systemdynamicanalysis.
Toaccountforaccidental torsion,anadditional'eismicity of+5Xofthemaximumbuildingdimension atthelevelunderconside~ation shallbeassumed.3.7.2-10Rev,1-July1981 12.FortheDG"E"building, comparison oftheresponsespectraofthetimehistoryandthedesignresponsespectraareshowninFigures3.7b-109through3.7b-'18ofRef.1.Thestructural accelerations oftheDG"E"buildingobtainedfromthemodalresponsespectrumanalysiscomparedcloselywiththoseobtainedfromthetimehistoryanalysis.
13..FortheDG"E"facility, the'damping'values aretakenfromReg.Guide1.61.Forastructural systemconsisting ofvariouscomponents havingdifferent materials, composite modaldampingiscomputedusingequation(4)presented herein.(SeeRef.1,Page3.7b-l2.)
12.ComarisonofResonsesTheresponses obtainedfrombothmodalanalysisresponsespectrumandtimehistorymethodsatselectedpointsintypicalCategoryIstructures shouldbecomparedtodemonstrate approximate equivalency betweenthetwomethods.13.AnalsisProcedure forDaminEitherthecomposite modaldampingapproachorthemodalsynthesis technique canbeusedtoaccountforelement-associated damping.Forthecomposite modaldampingapproach, twotechniques ofdetermining anequivalent modaldampingmatrixorcomposite dampingmatrixarecommonlyused.Theyarebasedontheuseofthemassorstiffness asaweighting functioningenerating thecomposite modaldamping.Theformulations leadto:&#xc3;j=ke3[M3f+k4KTjK(3)(4)where[K]=assembled stiffness matrix,p.=equivalent modaldampingratioofthejmode,[K],[M]=themodifiedstiffness ormassmatrixconstructed fromelementmatricesformedbytheproductofthedampingratiofortheelementanditsstiffness ormassmatrix,andf/)=jnormalized modalvector.thFormodelsthattakethesoil-structure interaction intoaccountbythe~lumpedsoiIspringapproach, themethoddefinedbyequation(4)isaccept-able.Forfixedbasemodels,eitherequation(3)or(4)maybeused.Othertechniques basedonmodalsynthesis havebeendeveloped andareparticularly usefulwhenmoredetaileddataonthedampingcharacteristics ofstructural subsystems areavailable.
Themodalsynthesis analysisprocedure consistsof(1)extraction ofsufficient modesfromthestructure model,(2)extraction ofsufficient modesfromthefiniteelementsoilmodel,and(3)performance ofacoupledanalysisusingthe,modalsynthesis technique, whichusesthedataobtainedinsteps(1)and(2)withappro-priatedamp'ingratiosforstructure andsoiIsubsystems.
Thismethodisbaseduponsatisfaction ofdisplacement compatibility andforceequilibriumatthesysteminterfaces andutilizessubsystem eigenvectors asinternalgeneralized coordinates.
Thismethodresultsinanonproportional dampingmatrixforthecomposite structure andequations ofmotionhavetobesolvedbydirectintegration orbyuncoupling thembyuseofcomplexeigenvectors.
3.7.2"11Rev.1-July1981 Themethodusedtodetermine overturning momentsispresented inRef.1,page3.7b-12.
14.Othertechniques whicharea1soconsidered acceptable forestimating equivalent modaldampingofasoil-structure interaction modelarereviewedonacase-by-case basis.Determination ofCateorIStructure Overturnin MomentsTobeacceptable, thedetermination of.thedesignmomentforoverturning shouldincorporate thefollowing items:a.Threecomponents ofinputmotion.b.Conservative consideration ofverticalandlateralseismicforces.REVIEWPROCEDURES Foreachareaofreview,thefollowing procedure isimplemented.
Thereviewerwillselectandemphasize materialfromtheprocedures givenbelow,as'aybeappropriate foraparticular case.Thescopeanddepthofreviewprocedures mustbesuchthattheacceptance criteriadescribed abovearemet.SeismicAnalsisMethods2.ForallCategoryIstructures, systems,andcomponents, theapplicable methodsofseismicanalysis(response spectra,timehistory,equivalent static1oad)arereviewedtoascertain thatthetechniques employedareinaccordance wi,ththeacceptance criteriaasgiveninsubsection II.1ofthisSRPsection.Ifempirical methodsortestsareusedinlieuofanalysisforanyCategoryIstructure, theseareevaluated todetermine whetherornottheassumptions areconservative, andwhetherthetestprocedure adequately modelstheseismicresponse.
NaturalFreuenciesandResonseLoads3.Fortheoperating licensereview,thesummaryofnaturalfrequencies andresponseloadsisreviewedforcompliance withtheacceptance criteriainsubsection II.2ofthisSRPsection.Procedures UsedforAnalticalModelinTheprocedures usedformodelingforseismicsystemanalysesarereviewedtodetermine whetherthethree-dimensional characteristics ofstructures areproperlymodeledinaccordance withtheacceptance criteriaofsubsec-tionII.3ofthisSRPsection,andallsignificant degreesoffreedomhavebeenincorporated inthemodels.Thecriteriafordecoupling ofastructure, equipment, orcomponent andanalyzing itseparately asasubsystem arereviewedforconformance withtheacceptance criteriagiveninsubsection II.3ofthisSRPsection.Soil-Struct'ure Interaction Themethodsofsoil-structure interaction analysisusedareexaminedtodetermine thatthetechniques employedareinaccordance withtheaccept-ancecriteriaasgiveninsubsection II.4ofthisSRPsection.Typicalmathematical modelsforsoil-structure interaction analysisarereviewed3.7.2-12Rev.1-July1981 S,
NUREG-0800 (Formerly NUREG-76I087) steerWp,oiACVl0Cyr~rQ>>o%+e~~aSTANDARDREVIEW'PLAN OFFICEOFNUCLEARREACTORREGULATION SECTION3.7.3SEISMICSUBSYSTEM ANALYSISREVIEWRESPONSIBILITIES Primary-Struct'ural Engineering Branch(SEB)Secondary
-NoneI.AREASOFREVIEWThefollowing areasrelatedtotheseismicsubsystem analysisarereviewed:
1.SeismicAnalsisMethodsThe..information reviewedissimilartothatdescribed insubsection I.1ofStandardReviewPlan(SRP)Section3.7.2,butasappliedtoseismicCategoryIsubsystems.
2.Determination ofNumberofEarthuakeCclesCriteriaorprocedures usedtoestablish thenumberofearthquake cyclesduringoneseismiceventandthemaximumnumberofcyclesforwhichapplicable Cate-goryIsubsystems andcomponents aredesignedarereviewed.
3.Procedures UsedforAnalticalModelinThecriteriaandprocedures usedformodelingtheseismic'subsystem arereviewed.
4.BasisforSelection ofFreuenciesAsapplicable, criteriaorprocedures usedtoseparatefundamental frequencies ofcomponents andequipment fromtheforcingfrequencies ofthesupportstruc-turearereviewed.
5.AnalsisProcedure forDaminTheinformation reviewedissimilartothatdescribed insubsection I.13ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.
Rev.1-Jul1981USNRCSTANDAROREViEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments aremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryandthegeneralpublicofregulatory procedures andpolicies.
Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemisnotrequired.
ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathave.acorresponding reviewplan.Published standardreviewplanswillberevisedperiodically.
asappropriate.
toaccommodate commentsandtoreflectnewinforms.tionandexperience.
Commentsandsuggestions forimprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Commission, OfficeofNuclearReactorRegulation, Washington.
D.C.20666.
0 6.ThreeComonentsofEarthuakeMotion7.Theinformation reviewedissimilartothatdescribed in'subsection ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.
Combination ofModelResonses8.Theinformation reviewedissimilartothatdescribed insubsection I.7ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.
Interaction ofOtherSstemsWithCateorISstems9.Theseismicanalysisprocedures toaccountfortheseismicmotionofnon-CategoryIsystemsintheseismicdesignofCategoryIsystemsarereviewed.
Multi1-SuortedEuimentandComonentswithDistinctInuts10.Thecriteriaandprocedures forseismicanalysisofequip'ment andcompo-nentssupported atdifferent elevations withinabuildingandbetweenbuildings withdistinctinputsarereviewed.
UseofEuivalentStaticFactorsTheinformation reviewedissimilartothatdescribed insubsection I.10of'SRPSection3.7.2,butasappliedtoCategoryIsubsystems.
Torsional EffectsofEccentric Masses12.Thecriteriaandprocedures thatareusedtoconsiderthetorsional effectsofeccentric massesinseismicsubsystem analysesarereviewed.
CateorIBuriedPiinConduitsandTunnels13.ForCategoryIburiedpiping,conduits, tunnels,andauxiliary systems,theseismiccriteriaandmethodswhichconsiderthecompliance characteristics ofsoilmedia,dynamicpressures, settlement duetoearthquake, anddiffer-entialmovements atsupportpoints,penetrations, andentrypointsintostructures providedwithanchorsarereviewed.
MethodsforSeismicAnalsisofCateorIDamsTheanalytical methodsandprocedures thatwillbeusedforseismicanalysisofCategoryIdamsarereviewed.
Theassumptions made,,the boundaryconditions used,thehydrodynamic effectsconsidered, andtheprocedures bywhichstrain-dependent materials properties areincorpo-ratedintheanalysisarereviewed.
ACCEPTANCE CRITERIATheacceptance criteriafortheareasofreviewdescribed insubsection IofthisSRPsectionar'egivenbelow.Othercriteriawhichcanbejustified tobeequival'ent toormoreconservative thanthestatedacceptance criteriamaybeused.SEBacceptsthedesignofsubsystems thatareimportant tosafetyandmustwithstand theeffectsofearthquakes iftherelevantrequirements of~GeneralDesignCriterion (GDC)2(Ref.1)andAppendixAto10CFRPart1003.7.3-2Rev.1-July1981 a)Equipment hasbeenqualified byanalysisand/ortesting.Bothdynamicanalysismethodandequivalent staticloadmethodhavebeenused.(SeeRef.1,Section3.10.)SupportsforHVACductsandelectrical racewayhaveusedtheequivalent staticloadmethod.Forpiping,thisacceptance criteriaismetbyfollowing Ref.3.7b-14(Ref.1)whichcomplieswiththeSRP.b)OneSSEand5OBE'sareconsidered inthedesignofCategory1subsystems.
Thesynthetic timehistoryhasadurationof25seconds.Forpiping,thisrequirement issatisfied asdescribed onPage3.7b-19ofRef.1.c)ThecouplingcriteriagiveninSRP3.7.2,SectionII.3,aswellastheotherguidelines arefollowedinanalytical modeling.
(SeealsotheresponsetoSRP3.7.2,SectionII.3.)TheDG"E"facility's pipingismodeledbasedonRef.3.7b-14(Ref.1)whichcomplieswiththeSRP.Mainlineandbranchrunswereanalyzedtogether.
Nodecoupling criteriahadtobeconsidered.
ThenumberofmassessatisfythecriteriaofnumberofDDOFequaltotwotimesthenumberofmodeswithfrequency lessthan33Hz.Athreedimensional modelwasused.d)e)Components andequipment aredesigned/qualified fortheloadsdeveloped fromtheapplication oftheappropriate DG"E"facility's floorresponsespectra.DampingvaluesutilizedfortheDG"E"facilityarethosepresented inReg.Guide1.61(SeeRef.1,Page3.7b-3).Mostconduitandboxsupportsutilizedampingvaluesassociated withtheexistingplantcriteria.
Thiswasdone,totakeadvantage ofthenumeroustypicalconduit/box supportsthatareavailable fortheexistingcriteria.  
(Ref.2)concerning materialphenomena arecompliedwith.Therelevantrequirements ofGDC2andAppendixAto10CFRPart100are:1.GeneralDesignCriterion 2,asitrelatestotheearthquakes usedinthedesignshouldbethemostsevereonesreportedtohaveaffectedthesiteandsurrounding areawithsufficient marginforthelimitedaccuracy,
: quantity, andperiodoftimeinwhichhistorical datahavebeenaccumulated.
2.AppendixAto10CFRPart100asitrelatestotherequirement thattwoearthquake levels,thesafeshutdownearthquake (SSE)andtheoperating basisearthquake (OBE),beconsidered inthedesignofsafety-related structures, components, andsystems.AppendixAto10CFRPart100furtherstatesthatthedesignusedtoensurethattherequiredsafetyfunctions aremaintained duringandafterthevibratory groundmotionassociated withthesafeshutdownearthquake shallinvolvetheuseofeitherasuitabledynamicanalysisorasuitablequalification testtodemonstrate thatstructures, systems,andcomponents canwithstand theseismicandotherconcurrent loads,exceptwhereitcanbedemonstrated thattheuseofanequivalent staticloadmethodprovidesadequateconservatism.
Specificcriterianecessary tomeettherelevantrequirements ofGDC2andAppendixAtoPart100areasfollows:b.SeismicAnalsisMethodsTheacceptance criteriaprovidedinSRPSection3.7.2,subsection II.1,areapplicable.
Determination ofNumberofEarthuakeCclesC.Duringtheplantlifeatleastonesafeshutdownearthquake (SSE)andfiveoperating basisearthquakes (OBE)shouldbeassumed.Thenumberofcyclesperearthquake shouldbeobtainedfromthesynthetic timehistory(withaminimumdurationof10seconds)usedfor.thesystemanalysis, oraminimumof10maximumstresscyclesperearth-quakemaybeassumed.Procedures UsedforAnalticalModelind.,e.Theacceptance criteriaprovidedinSRPSection3.7.2,subsection II.3,areapplicable.
BasisforSelection ofFreuenciesToavoidresonance, thefundamental frequencies ofcomponents andequipment shouldpreferably beselectedtobelessthan1/2ormorethantwicethedominantfrequencies ofthesupportstructure; Useofequipment frequencies withinthisrangeisacceptable iftheequipment is.adequately designedfortheapplicable loads.Anal.sisProcedure forDaminTheacceptance criteriaprovidedinSRPSection3.7.2,subsection II.13,areapplicable.
3.7.3-3Rev.1-Duly1981 ForseismicCategoryIsubsystems locatedwithintheDG"E"facilitytheresponseduetothreeorthogonal components ofanearthquake arecombinedby.thesquarerootofthesumofthesquaresmethodperReg.Guide1.92,Rev.1(SeeRef.I,Page3.7b-8)*.
g)ForseismicCategoryIsubsystems locatedwithintheDG"E"facilityandanalyzedbytheresponsespectrummethod,thetotalresponsewasobtainedbyusingthecriteriapresented inReg.Guide1.92forthecombination ofmodalresponses.
(SeeRef.1,Page3.7b-8.}h)Non-Category Isubsystems haveeitherbeenlocated,physically
: isolated,
,ordesignedsuchthattheywillnotinterfere withthefunctionofCategoryIsubsystems duringaseismicevent.TheattachedNon-Category IpipingwasanalyzedasaCategoryIpipeinordernottocausefailureofCategoryIsystems.(SeeRef.3.7b-l4ofRef.1.)i}Anupperboundenvelopeofexcitations atmulti-support pointsofequipment isusedinthe'seismic analysisofequipment.
Thepipingsupported atdifferent elevations wasanalyzedusinganupperboundenvelopeoftheindividual responsespectra.Inaddition, therelativedisplacement ofthesupportpointsduetoequipment movementwasconsidered inthemostconservative way;theabsolutesumoftheabsolutemaximumrelativedisplacements (SeeRef.3.7b-14ofRef.1).*ForthemajorityoftheClass1Econduitroutings, theexistingplantcriteriawasappliedtotakeadvantage ofthenumeroustypicalconduit/box supportsthat.areavailable fortheexistingcriteria.
Thesesupportshavebeendesignedbycombining themoresevereresponsefromoneofthehorizontal earthquakes withtheresponsefromtheverticalearthquake bytheabsolutesummethod.Tocompensate forthisvariation fromthemethodology presented inReg,Guide1.92,thepermissible attachment loadsforthesesupportsarereducedby25K.Anevaluation determined thattypicalexistingsupportsmeettheReg.Guide1.92requirements (i.e.combination oftheresponses fromthethreeorthogonal earthquakes bythesquarerootsumofthesquaresmethod)ifthepermissible attachment loadsarereducedby25%.
ThreeComonentsofEarthuakeMotionTheacceptance criteriaprovidedinSRPSection3.7.2,subsection II.6,areapplicable.
Combination ofModalResonsesTheacceptance criteriaprovidedinSRPSection3.7.2,subsection II.7,areapplicable.
Interaction ofOtherSstemsWithCateorISstemsTobeacceptable, eachnon-Category IsystemshouldbedesignedtobeisolatedfromanyCategoryIsystembyeitheraconstraint orbarrier,orshouldberemotelylocatedwithregardtotheseismicCategoryIsystem.Ifitisnotfeasibleorpractical toisolatetheCategoryIsystem,adjacentnon-Category Isystemsshouldbeanalyzedaccording tothesameseismiccriteriaasapplicable totheCategoryIsystem.Fornon-Category IsystemsattachedtoCate-goryIsystems,thedynamiceffectsofthenon-Category Isystemsshouldbesimulated inthemodelingoftheCategoryIsystem.Theattachednon-Category Isystems,upto'thefirstanchorbeyondtheinterface, shouldalsobedesignedinsuchamannerthatduringanearthquake ofSSEintensity itwillnotcauseafailureoftheCate=goryIsystem.Multi1-SuortedEuimentandComonentsWithDistinctInutsEquipment andcomponents insomecasesaresupported atseveralpointsbyeitherasinglestructure ortwoseparatestructures.
Themotionsoftheprimarystructure orstructures ateachofthesupportpointsmaybequitedifferent.
Aconservative andacceptable approachforequipment itemssupported attwoormorelocations istouseanupperboundenvelopeofalltheindividual responsespectrafortheselocations tocalculate maximuminertialresponses ofmultiply-supported items.Inaddi-tion,therelativedisplacements atthesupportpointsshouldbeconsidered.
Conventional staticanalysisprocedures areacceptable forthispurpose.Themaximumrelativesupportdisplacements canbeobtainedfromthestruct'ural responsecalculations or,asaconser-vativeapproximation, byusingthefloorresponsespectra.Forthelatteroptionthemaximumdisplacement ofeachsupportispredicted bySd'Sg/e,whereSisthespectralacceleration in"g's"atthehighfrequency endofthespectrumcurve(which,inturn,isequaltothemaximumflooracceleration),
gisthegravityconstant, andeisthefundamental frequency oftheprimarysupportstructure inradianspersecond.Thesupportdisplacements canthenbeimposedonthesupported iteminthemostunfavorable combination.
Theresponses duetotheinertiaeffectandrelativedisplacements shouldbecombinedbytheabsolutesummethod.Inthecaseofmultiplesupportslocatedinasinglestructure, analternate acceptable methodusingthefloorresponsespectrainvolvesdetermination ofdynamicresponses duetotheworstsinglefloorres-ponsespectrumselectedfromasetoffloorresponsespectraobtained3.7.3-4Rev.1-July1981 j)ConstantverticalstaticfactorswereusedintheseismicdesignofSeismicCategoryIsubsystems whereshowntobeappropriate.
ConstantverticalstaticfactorsarenotusedintheseismicanalysisofCategory1piping.k)ModelingofseismicCategoryIsubsystems'ctual massandlocations areconsidered, thereby,accounting foranyeccentricity.
tThelocationofmasspointsinthepipingmodelreflectsthetorsional effectsofeccentric massessuchasvalvesandvalveoperators (SeePage3.7b-22andRef.3-7b-14ofRef.1).1)TheDG"E"buriedCategoryIpipeswereanalyzedinaccordance withRef.3.7b-13ofRef.1.DuringaSSEevent,thedifferential displacement betweentheDG"E"buildingandthesurrounding soilwhichsupportsthepipeswasincludedinthecomputation ofpipingstress.m)NoCategoryIdamshavebeenaddedasaresultoftheDG"E"facility.
j~atvariousfloorsandappliedidentically toallthefloors,providedthereisnosignificant shiftinfrequencies ofthespectrapeaks.Inaddition, thesupportdisplacements shouldbeimposedonthesupported iteminthemostunfavorable combination usingstaticanalysisprocedures.
Inlieuoftheresponsespectrumapproach, timehistories ofsupportmotionsmaybeusedasexcitations tothesubsystems.
Becauseoftheincreased analytical effortcomparedtotheresponsespectrumtechniques, usuallyonlyamajorequipment systemwouldwarrantatimehistoryapproach.
Thetimehistoryapproachdoes,however,providemorerealistic resultsinsomecasesascomparedtotheres-ponsespectrumenvelopemethodformultiply"supported systems.UseofEuivalentStaticFactorsTheacceptance criteriaprovidedinSRPSection3.7.2,subsec-tionII.10,areapplicable.
k.Torsional EffectsofEccentric MassesForseismicCategoryIsubsystems, whenthetorsional effectofaneccentric massisjudgedtobesignificant, theeccentric massand'.itseccentricity shouldbeincludedinthemathematical model.Thecriteriaforjudgingthe'significance willbereviewedonacase-b~casebasis.1.CateorIBuriedPiinConduitsandTunnelsm.ForCategoryIburiedpiping,conduits, tunnels,andauxiliary systems,thefollowing itemsshouldbeconsidered intheanalysis:
(1}Theinertialeffectsduetoanearthquake uponburiedsystemsandtunnelsshouldbeadequately accounted forintheanalysis.
Incaseofburiedsystemssufficiently flexiblerelativetothesurrounding orunderlying soil,itisacceptable toassumethatthesystemswillfollowessentially thedisplacements and.deformations thatthesoilwouldhaveifthesystemswereabsent.Procedures whichtakeintoaccountthephenomena ofwavetravelandwavereflection incompacting soildisplacements fromthegrounddisplacements areacceptable.
(2)Theeffectsofstaticresistance ofthesurrounding soilonpipingdeformations ordisplacements, differential movements ofpipinganchors,bentgeometryandcurvature changes,etc.,'shouldbeadequately considered.
Procedures utilizing theprinciples ofthetheoryofstructures onelasticfoundations areacceptable.
(3).Mhenapplicable, theeffectsduetolocalsoilsettlements, soil'.arching,etc.,shouldalsobeconsidered intheanalysis.
MethodsforSeismicAnalsisofCateorIOamsFortheanalysisofallCategoryIdamsanappropriate approachwhichtakesintoconsideration the.dynamicnatureofforces(due3.7.3-.5Rev.l-July1981 e
tobothhorizontal andverticalearthquake loadings),
thebehaviorofthedammaterialunderearthquake
: loadings, soilstructure inter-actioneffects,andnonlinear stress-strain relations forthesoi1,shouldbeused.Analysisofearth-filled dams.shouldincludeanevaluation ofdeformations.
Forrock-filled dams,theanalytical procedure usedwillbereviewedonacase-by-case basis.III.REVIEWPROCEDURES Foreachareaofreview,thefollowing reviewprocedure isfollowed.
Thereviewerwillselectandemphasize materialfromtheprocedures givenbelow,asmaybeappropriate foraparticular case.Thereviewprocedures aresuchastosatisfytherequirements ofacceptance criteriastatedinsubsection II.1.SeismicAnalsisMethodsTheseismicanalysismethodsarereviewedtodetermine thattheseareinaccordance withtheacceptance criteriaofSRPSection3.7.2,subsection II.l.2.Determination ofNumberofEarthuakeCclesCriteriaorprocedures usedtoestablish thenumberofearthquake cyclesarereviewedtodetermine thattheyareinaccordance withtheacceptance criteriaasgiveninsubsection II.2ofthisSRPsection.Justification for-aeviating fromtheacceptance criteriaisrequested fromtheapplicant,-
asnecessary.
3.Procedures UsedforAnalticalModelinThecriteriaandprocedures usedformodelingfortheseismicsubsystem analysisarereviewedtodetermine thattheseareinaccordance withtheacceptance criteriaof.SRPSection3.7.2,subsection II.3.4.SasisforSelection ofFreuenciesAsapplicable, criteriaorprocedures usedtoseparatefundamental fre-quenciesofcomponents andequipment fromtheforcingfrequencies ofthesupportstructure arereviewedtodetermine compliance withtheaccept-ancecriteriaofsubsection II.4ofthisSRPsection.5.AnalsisProcedure forDaminTheanalysisprocedure toaccountfordampingindifferent elementsofthemodelofacoupledsystemisreviewedtodetermine thatitisinaccordance withtheacceptance criteriaofSRPSection3.7.2,subsection II.13.6.ThreeComonentsofEarthuakeMotionTheprocedures bywhichthethreecomponents ofearthquake motionarecon-sideredindetermining theseismicresponseofsubsystems arereviewedtodetermine compliance withtheacceptance criteriaofSRPSection3.7.2,subsectionII.6.3.7.3-6Rev.1-July1981 0
NUREG-0800 (Formerly NUREG-76/087)
~Ctgsstcur1p0lOCy+J+0+%1<<+STANDARDREVIEWPLANOFFICEOFNUCLEARREACTORREGULATION SECTION3.8.4OTHERSEISMICCATEGORYISTRUCTURES REVIEWRESPONSIBILITIES Primary-Structural Engineering Branch(SEB)Secondary
-NoneI.AREASOFREVIEWThefollowing areasrelatingtoallseismicCategoryIstructures andothersafety-related structures thatmaynotbeclassified asseismicCategoryI,otherthanthecontainment anditsinteriorstructures, arereviewed:
DescritionoftheStructures Thedescriptive information including plansandsectionsofeachstructure, isreviewedtoestablish thatsufficient information isprovidedtodefinetheprimarystructural aspectsandelementsrelieduponforthestructure toperformthesafety-related function.
Alsoreviewedistherelationship betweenadjacentstructures including theseparation providedotstructural ties,ifany.Amongthemajorplantstructures thatarereviewed, togetherwiththedescriptive information reviewedforeach,arethefollowing:
Containment Enclosure BuildingThecontainment enclosure
: building, whichmaysurroundallorpartoftheprimaryconcreteorsteelcontainment structure, isprimarily intendedtoreduceleakageduringandafteraloss-of-coolant (LOCA)fromwithinthecontainment.
Concreteenclosure buildings alsoprotecttheprimarycontainment, whichmaybeofsteelorconcrete, fromoutsidehazards.Theenclosure buildingisusuallyeitheraconcretestructure orastructural steelandmetalsidingbuilding.
Whereitisaconcretestructure, itusuallyhasthegeometryofthecontainment and,asapplicable, thedescriptive information reviewedisRev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplanta.Thesedocuments aremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryendthegeneralpublicofregulatory procedures andpolicies.
Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthamisnotrequired.
ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveecorresponding reviewplan.Published standardreviewplanswillberevisedperiodically, asappropriate, toaccommodate commentsandtoreflectnewinforms.tionandexperience.
Commentsandsuggestions forimprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Commission, OfficeofNuclearReactorRegulation, Washington, O.C.20666.
7.8.Specialconstruction techniques, ifproposed, arereviewedonacase-by-case basistodetermine theireffectsonthestructural integrity ofthecompleted structure.
Inaddition, theinformation contained initemsa,b,andcofsubsection I.6ofStandardReviewPlanSection3.8.3isalsoreviewed.
TestinandInservice Surveillance ProramsIfapplicable, anypost-construction testingandinservice surveillance programsarereviewedonacase-by-case basis.MasonrWallsAreasofreviewpertaining tomasonrywallsshouldinclude,asaminimum,thoseitemsidentified inAppendixAtothisSRPsection.SEBcoordinates otherbranchesevaluations thatinterface withstructural engineering aspectsofthereviewasfollows:determination ofstructures whicharesubjecttoqualityassurance programsinaccordance withtherequirements ofAppendixBto10CFRPart50isperformed bytheMechanical Engineering Branch(MEB)aspartofitsprimaryreviewresponsibility forSRPSections3.2.1and3.2.2.'EBwillperformitsreviewofsafety-relatedstructures onthatbasis.De'termination ofpressureloadsfromhighenergylineslocatedinsafetyrelatedstructures otherthancon-tainmentisperformed bytheAuxiliary SystemsBranch(ASB)asdescribed aspartofitsprimaryreviewresponsibility forSRPSection3.6.1.SEB-acceptstheloadsthusgenerated asapprovedbytheASBtobeincludedintheloadcombination equations ofthisSRPsection.Determination ofloadsgenerated duetopressureunderaccidentconditions isperformed bytheContainment SystemsBranch(CSB)aspartofitsprimaryreviewrespon"sibilityforSRPSection6.2.1.SEBacceptstheloadsthusgenerated, asapprovedbytheCSBtobeincludedintheloadcombinations inthisSRPsection.Thereviewforqualityassurance iscoordinated andperformed bythegualityAssurance Branchaspartofitsprimaryreviewresponsibility forSRPSection17.0.Forthoseareasofreviewidentified aboveasbeingreviewedaspartoftheprimaryreviewresponsibility ofotherbranches, theacceptance criterianecessary fortherev'iewandtheirmethodsofapplication arecontained inthereferenced SRP.sectionofthecorresponding primarybranch.ACCEPTANCE CRITERIASEBacceptance criteriaforthedesignofstructures otherthancontainment arebasedonmeetingtherelevantrequirements ofthefollowing regulations:
A.B.10CFRPart50,f50.55aandGeneralDesignCriterion 1astheyrelatetosafetyrelatedstructures beingdesigned, fabricated, erected,andtestedtoquality:standards commensurate withtheimportance ofthesafetyfunctiontobeperformed.
GeneralDesignCriterion 2asitrelatestothedesignofthesafety-related structures beingcapabletowithstand themostseverenaturalphenomena suchaswind,tornadoes, floods,andearthquakes andtheappropriate combination ofallloads.3.8.4"5Rev.1-July1981  
/Adescription oftheOG"E"facilityisprovidedinRef.1.ACI349-1980 andAISC-1978 werefollowedinthedesignoftheOG"E"facility.
TheAISC33Kincreaseinallowable stressesforseismicorwindloadingisnotused.(SeeRef.3,Page10.)Reg.Guides1.10,1.15and1.55werewithdrawn (seeUSHRCdistribution list,Division1,July8,1981).
C.GeneralDesignCriterion 4asitrelatestosafety-related structure beingcapableofwithstanding thedynamiceffectsofequipment failuresincluding missilesandblowdownloadsassociated withthelossofcoolantaccidents.
D.GeneralDesignCriterion 5asitrelatestosharingofstructures important tosafetyunlessitcanbeshownthatsuchsharingwillnotsignificantly impairtheirvaliditytoperformtheirsafetyfunctions.
E.AppendixBto10CFRPart50asitrelatestothequalityassurance criteriafornuclearpowerplants.TheRegulatory Guidesandindustrystandards identified initem2ofthissubsection providesinformation, recommendations andguidanceandingeneraldescribes abasisacceptable tothestaffthatmaybeusedtoimplement therequirements of10CFRPart50,950.55aandGDC1,2,4,5andAppendix8to10CFRPart50.Also,specificacceptance criterianecessary tomeettherelevantrequirements oftheseregulations fortheareasofreview,described insubsection IofthisSRPsectionareasfollows:1.DescritionoftheStructures Thedescriptive information intheSARisconsidered acceptable ifitmeetstheminimumrequirements setforthinSection3.8.4.1oftheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants"(Ref.4).Deficient areasofdescriptive information areidentified bythereviewerandarequestforadditional information isinitiated attheapplication acceptance review.Neworuniquedesignfeaturesthatarenotspecifi-'callycoveredinthe"Standard Format..."
mayrequireamoredetailedreview.Thereviewerdetermines theadditional information thatmayberequiredtoaccomplish ameaningful reviewofthestructural aspectsofsuchneworuniquefeatures.
2.AlicableCodesStandards andSecifications Thedesign,materials, fabrication,
: erection, inspection, testing,andsurveillance, ifany,ofCategoryIstructures arecoveredbycodes,standards, andguidesthatareeitherapplicable intheirentiretyorinportionsthereof.Alistofsuchdocuments isasfollows:TitleACI349"CodeRequirements forNuclearSafety-Related ConcreteStructures" AISCReulatorG'uides"Specification fortheDesign,Fabrication, andErectionofStructural SteelforBuildings" 1.10Mechanical (Caldweld)
SplicesinReinforcing BarsofCategoryIConcreteStructures 3.8.4-6Rev.1-July1981 Reg.Guide1.69isnotapplicable totheD.G."E"facility.
Thesametruckexplosion fragmentasthatconsidered inthedesignoftheexistingCategoryIstructures, wasconsidered inthedesignoftheDG"E"building(RefertoPP&L'sresponsetoSRP3.5.1.5).ThedesignoftheDG"E"buildingcomplieswithReg.Guide1.94.Reg.Guide1.115isnotapplicable totheDG"E"facility.
ThedesignoftheDG"E"buildingcomplieswiththeapplicable provisions ofReg.GuideI.I42.Reg.Guide1.143isnotapplicable totheDG"E"facility.
1.15l.55l.69TestingofReinforcing Bars.forCategoryIConcreteStructures ConcretePlacement inCategoryIStructures ConcreteRadiation ShieldsforNuclearPowerPlants1.911.94l.115Evaluations ofExplosions Postulated toOccuronTransportation RoutesNearNuclearPowerPlantsequalityAssurance Requirements forInsta1lation, Inspection, andTestingofStructural ConcreteProtection AgainstLowTrajectory TurbineHissiles1.142l.143Safety-Related ConceteStructures forNuclearPowerPlants(OtherThanReactorVesselsandContainments}
DesignGuidanceforRadioactive WasteManagement Systems,Structures,.
andComponents Installed inLWRPlants3.LoadsandLoadCombinations Thespecified loadsandloadcombinations areacceptable iffoundtobeinaccordance withthefollowing:
a~LoadsDefinitions andNomenclature Allthemajor1oadstobeencountered ortobepostultd1'below.Alaeare>steabl1theloadslssted,howeverarenotnecessarily ap1'-etoallthestructues andtheirelements.
Loadsandtheapplicable app1cdeendontloadcombinations forwhicheachstructure hastobd''llphecond>talons towhichthatparticular structure maybsubjected.
remayeNormalloads,whicharethoseloadstobeencountered duringnormalplantoperation andshutdown, include:Deadloadsortheirrelatedinternalmomentsandforces,inludinganypermanent equipment loads.Liveloadsortheirrelatedinternalmomentsandforces,including anymovableequipment loadsandotherloadswhichvarywithintensity andoccurrence, suchassoilpressure.
ToTherma1effectsand1oadsduringnorma1operatingorshutdownconditions, basedonthemostcriticaltransient orsteadystatecondition.
3.8.47Rev.1-July1981 Nohigh-energy pipingexistsintheDG"E"facility.
Pipereactions duringnormaloperating orshutdownconditions, basedonthemostcriticaltransient orsteady..statecondition.
Severeenvironmental loadsinclude:E-Loadsgenerated bytheoperating basisearthquake.
W-Loadsgenerated bythedesignwindspecified fortheplant.Extremeenvironmental loadsinclude:ElLoadsgenerated bythesafeshutdownearthquake.
Wt-Loadsgenerated bythedesigntornadospecified fortheplant.Tornadoloadsincludeloadsduetothetornadowindpressure, thetornado-created differential
: pressure, andtotornado-generated missiles.
Abnormalloads,whicharethoseloadsgenerated byapostulated high-energy pipebreakaccident, include:P-Pressureequivalent staticloadwithinoracrossacompartment generated bythepostulated break,andincluding anappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.RYrY~JThermalloadsunderthermalconditions generated bythepostulated breakandincluding T.0Pipereactions underthermalconditions generated bythepostulated breakandincluding R.0Equivalent staticloadonthestructure generated bythereactiononthebrokenhigh-energy pipeduringthepostu-latedbreak,andincluding anappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.Jetimpingement equivalent staticloadonastructure
'enerated bythepostulated break,andincluding anappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.Y-Missileimpactequivalent staticloadonastructure generated byorduringthepostulated break,asfrompipewhipping, andincluding anappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.Indetermining anappropriate equivalent staticloadforYYandrsjlV,elasto-plastic behaviormaybeassumedwithappropriate duct-ilityratios,providedexcessive deflections willnotresultinlossoffunctionofanysafety-related system.3.8.4-8.Rev.1-July1981 TheworkingstressdesignmethodwasnotusedinthedesignoftheDG"E"faci1ity.Theultimatestrengthdesignmethodandtheseloadcombinations wereusedinthedesignoftheDG"E"facility.
(SeeRef.3,Page10.)
b.LoadCombinations forConcreteStructures Forconcretestructures, theloadcombinations areacceptable iffoundinaccordance withthefollowing:
(i)Forserviceloadconditions, eithertheworkingstressdesign(WSD)methodasoutlinedinACI318Codeorthestrengthdesignmethodmaybeused.(a)IftheWSDmethodisused,thefollowing loadcombinations shouldbeconsidered:
(1)0+L(2)0+L+E(3)0+L+WIfthermalstressesduetoTandRarepresent,thefollowing combinations shouldbealamoconsidered:
(4)D+L+T+R,00(5)0+L+T+R+E00(6)0+L+T+R+W00BothcasesofLhavingitsfullvalueorbeingcompletely absentshouldbechecked.(b)Ifthestrengthdesignmethodisused,thefollowing loadcombinations shouldbeconsidered:
(1)1.40+1.7L(2)1.4D+1.7L+1.9E(3)1.40+1.7L+1.7WIfthermalstressesduetoTandRarepresentthe00tfollowing combinations shouldalsobeconsidered:
(4)(0.75)(1.4D+1.7L+1.7T+1.7R)00(5)(0.75)(1.40+1.7L+(6)(0.75)(1.40+1.7L+Inaddition, thefollowing (7)1.20+1.9E(8}1.20+1.7W1.9E+1.7T+1.7R}001.7W+1.7T+1.7R)00combinations shouldbeconsidered:
/(ii)Forfactoredloadconditions whichrepresent extremeenvironmental,
: abnormal, abnormal/severe environmental, and3.8.4"9Rev.1-July1981 Factoredloadcombinations (a)8(b)wereconsidered.
Sincenohighenergypipingexists,factoredloadcombinations (c),(d)5(e)werenotconsidered.
Inadditionthefollowing loadcombination wasconsidered.
D+L+MmswhereMms=SiteProximity HissileLoads(SeeRef.3,Page10.)Forloadswhicharevariable, thefullrangeofvariation wasconsidered inordertodetermine themostcriticalcombination ofloading.Theelasticworkingstressdesignmethodandtheseloadcombinations wereusedinthedesignofsteelfortheDG"E"facility.
(SeeRef.3,Page11.)
abnormal/extreme environmental conditions, thestrengthdes;gnmethodshouldbeusedandthefollowing loadcombinations shouldbeconsidered:
(a)0+L+T+R+E'0(b)0+L+T+R+Wt00(c}0+L+T+R+15Paa'(d)0+L+T+R+1.25P+1.0(Y+Y.+y)+1.25E<(e)0+L+T+R+1.0P+1.0(Y+Y.+Y)+10f'a'rjmIncombinations (c),(d),and(e),themaximumvaluesofP,T,R,Y.,Y,andY,including anappropriate dynamicloadfactor,shouldbeusedunlessatime-history analysisisper-formedtojustifyotherwise.
Combinations (b)and(d)and(e)andthecorresponding structural acceptance criteriaofsub-sectionII.5ofthisSRPsectionshouldbesatisfied firstwithoutthetornadomissileloadin(b)andwithoutYY.r1andYin(d)and(e}.Whenconsidering theseconcentrated loads,localsectionstrengthcapacities maybeexceededprovidedtherewillbenolossoffunctionofanysafety-related system.Whereanyloadreducestheeffectsofotherloads,thecorresponding coefficient forthatloadshouldbetakenas0.9ifitcanbedemonstrated thattheloadisalwayspresentoroccurssimultaneously withotherloads.Otherwise thecoefficient forthatloadshouldbetakenaszero.Wherethestructural effectsofdifferential settlement, creep,.or shrinkage maybesignificant, theyshouldbeincludedwiththedeadload,0,asapplicable.
LoadCombinations forSteelStructures Forsteelinteriorstructu'res, theloadcombinations areacceptable iffoundinaccordance withthefollowing:
(i)Forserviceloadconditions, eithertheelasticworkingstressdesignmethodsofPart1oftheAISCspecifications, ortheplasticdesignmethodsofPart2oftheAISCspecifications, maybeused.(a)Iftheelasticworkingstressdesignmethodsareused,thefollowing loadcombinations shouldbeconsidered:
,(1)0+L(2)0+L+E(3)0+L+W3.8.4-10Rev.1-July1981 ThermalloadsarenotpresentintheOG"E"facility.
TheplasticdesignmethodwasnotusedinthedesignoftheOG"E"facility.
Factoredloadcombinations (1)5(2)wereconsidered.
Sincenohighenergypipingexists,factoredloadcombinations (3),(4)8(5)werenotconsidered.
Inadditionthefollowing loadcombination wasconsidered:
0+L+lhos(SeeRef.3,Page11.)
IfthermalstressesduetoTandRarepresent,thefollowing combinations shouldbealloconsidered:
(4)0+L+T+R00(5)0+L+T+R+E00(6)D+L+T+R+W00(b)Ifplasticdesignmethodsareused,thefollowing loadcombinations shouldbeconsidered:
(1)1;70+1.7L(2)1.70+1.7L+1.7E(3)1.7D+1.7L+1.7WIfthermalstressesduetoTandRarepresent,thefollowing combinations shouldalso3econsidered:
(4)1.3(D+L+T+R)00(5)13(0+L+E+T+R)00(6)1.3(D+L+W+T+R)00(ii}Forfactoredloadconditions thefollowing loadcombinations shouldbeconsidered:
(a)Ifelasticworkingstressdesignmethodsareused:(1)0+L+T+R+E'0(2)0+L+T+R+W.oot=(3)0+L+T+R+Paaa(4)0+L+T+'R+P+l.0(Y+Y.+Y)+Eaaa'j,m(5)0+L+T+R+P+1.0(Y+Y.+Y)+E'aa'jm(b)Ifplasticdesignmethodsareused:(1)0+L+T,+R0'(2)0+L+T+R00(3)D+L+T+Raa(4}D+L+T+Raa(5)D+L+T+Raa+E'W+1.5Pa+1.25P+-1.0(Y+Y.+Y)+1.25Earjm+1.0P+1.0(Y+Y+Y)+E''jm3.8.4"llRev.1-July1981 Indetermining themostcriticalloadingcondition tobeusedindesign,theabsenceofaloadorloadswasconsidered asappropriate.
TheDG"E"facility's designandanalysisprocedures complywithACI-349.b.C.TheDG"E"facility's designandanalysisprocedures complywithAISCSpec.,exceptthe33%increaseinallowable stressesforseismicorwindloadingisnotfollowed.
Thecomputerprograms(NSC/NASTRAN andRESPECT)usedfortheDG"E"buildingseismicanalysesmeettherequirements ofsubsection II.4.eofSRPSection3.8.1.d.Adesigndescription reportalongwithvariousdrawingsfortheDG"E"facilityhavebeensubmitted totheNRC.Additional information isavailable uponrequest.Notapplicable totheDG"E"facility.
Intheabovefactored1oadcombinations, thermalloadscanbeneglected whenitcanbeshownthattheyaresecondary andself-limiting innatureandwherethematerialisductile.Incombinations (3),(4),and(5),themaximumvaluesofP,a',R,Y.,Y,andY,inc1uding anappropriate dynamicloada''''actor, shouldbeusedunlessatime-history analysisisper-formedtojustifyotherwise.
Combinations (2),(4)and(5)andthecorresponding structural acceptance criteriaofsubsec-tionII.5ofthisSRPsectionshouldfirstbesatisfied withoutthetornadomissileloadin(2)andwithoutY,Y.,andYin(4)r''and(5).Whenconsidering theseconcentrated loads,localsectionstrengthmaybeexceededprovidedtherewi11benolossoffunctionofanysafety-related system.Mhereanyloadreducestheeffectsofotherloads,thecorresponding coefficient forthatloadshouldbetakenas0.9,ifitcanbedemonstrated thattheloadisalwayspresentoroccurssimultaneously withotherloads.Otherwise, thecoefficient forthatloadshouldbetakenaszero.Mherethestructural effectofdifferential settlement maybesignificant itshouldbeincludedwiththedeadload,0.4.DesinandAnalsisProcedures lThedesignandanalysisprocedures utilizedforCategoryIstructures including assumptions onboundaryconditions andexpectedbehaviorunderloads,areacceptable iffoundinaccordance withthefollowing; a.Forconcretestructures, theprocedures areinaccordance withACI-349,"CodeRequirements forNuclearSafetyRelatedStructures" (Ref.1).b.Forsteelstructures, theprocedures areinaccordance withtheAISC"Specification..."
(Ref.3).c.Computerprogramsareacceptable ifthevalidation providedisfoundinaccordance withprocedures delineated insubsection II.4.eofSRPSection3.8.1.5.d.Designreportisconsidered acceptable ifitcontainstheinformation specified inAppendixCtothisSRPsection.e.Structural auditisconducted inaccordance withtheprovisions ofAppendixBtothisSRPsection.f.Designofspentfuelpoolandrodsisconsidered acceptable whentherequirements ofAppendixDtothisSRPsectionaremet.Structural AccetanceCriteriaForeachoftheloadingcombinations delineated insubsection II.3ofthisSRPsection,thefollowing definestheallowable limitswhichconstitute thestructural acceptance criteria:
3.8.4-12Rev.1-July1981 Thelimitsprovidedhereinwereusedintheloadcombinations forconcretestructures.
(SeeRef.3,Page10.)Thelimitsprovidedhereinwereusedintheloadcombinations forsteelstructures.
(SeeRef.3,Page11.)
InCombinations forConcrete'aragraphs 3.b.(i)(a)(l),
(2),and(3)Paragraphs 3.b.(i)(a)(4),
(5),and(6)Paragraphs 3.b.(i)(b)(l),
(2),and(3)Paragraphs 3.b.(i)(b)(4),
(5),and(6)Paragraphs 3.b.(i)(6),
(7),and(8).Paragraphs 3.b.(ii)(a),
(b),(c),(d),b.InCombinations forSteeland~~(e)Llllllts(s)1.3SU(2)UUULimitParagraphs Paragraphs Paragraphs Paragraphs Paragraphs Paragraphs Paragraphs Notes3.c.(i)(a)(1),
(2),and(3)....3.c.(i)(a)(4),
(5),and(6).3.c.(i)(b)(1),
(2),and(3).3.c.(i}(b}(4),
(5},and(6)....3.c.(ii)(a)(1),
(2),(3),and(4)2.(c)(ii)(a)(4),
and(5)(}....3.c.(ii)(b)(l),
(2),(3),(4),and(5)S1.5Sy(3)Y1.6S1.7SY(1)S-Forconcretestructures, Sistherequiredsectionstrengthbasedontheworkingstressdesignmethodandtheallowable stressesdefinedinACI318Code.Forstructural steel,Sistherequiredsectionstrength'asedonelasticdesignmethodsandtheallowable stressesdefinedinPart1oftheAISC"Specification fortheDesign,Fabrication, andErectionofStructural SteelforBuildings" (Ref.3)Theone-third increaseinallowable stressesforconcreteandsteelduetoseismicorwindloadingsisnotpermitted.
(2)U-Forconcretestructures, Uisthesectionstrengthrequiredtoresistdesignloadsbasedonthestrengthdesignmethodsdescribed inACI349Code(Ref.1).(3)Y(4)Forstructural steel,Yisthesectionstrengthrequiredtoresistdesignloadsandbasedonplasticdesignmethodsdescribed inPart2oftheAISC"Specification fortheDesign,Fabrication, andErectionofStructural SteelforBuildings" (Ref.3).Forthesetwocombinations, incomputing therequiredsectionstrength, S,theplasticsectionmodulusofsteelshapes,exceptforthosewhichdonotmeettheAISCcriteriaforcompactsections, maybeused.3.8.4"13Rev.1-July1981 6.Nospecialconstruction techniques wereusedfortheDG"6"facility,
~Weldingofrebarwasnotpermitted.
Theapplicable codesreferredtoherearecompliedwith.7.Nospecialtestingorin-service surveillance requirements fortheDG"E"structure wererequired.
8.NomasonrywallsareusedintheDG"E"facility.
6.7.e.Materials ualitControlandSecialConstructionTechniuesForCategoryIstructures outsidethecontainment, theacceptance criteriaformaterials, qualitycontrol,andanyspecialconstruction techniques areinaccordanc'e withthecodesandstandards indicated insubsection I.6ofSRPSection3.8.3,asapplicable.
TestinandInservice Surveillance Reuirements Atpresenttherearenospecialtestingorinservice surveillance require-mentsforCategoryIstructures outsidethecontainment.
However,wheresomerequirements becomenecessary forspecialstructures, suchrequirements arereviewedonacase-by-case basis.MasonrHallsAcceptance criteriaformasonrywallsarecontained inAppendixAtothisSRPsection.REVIEMPROCEDURES Thereviewerselectsandemphasizes materialfromthereviewprocedures described below,asmaybeappropriate foraparticular case.DescritionoftheStructures 2.After,thetypeofstructure anditsfunctional characteristics areidenti"fied,information onsimilar,andpreviously licensedplantsisobtainedforreference.
Suchinformation, whichisavailable insafetyanalysisreportsandamendments ofpreviouslicenseapplications, enablesidenti-ficationofdifferences forthecaseunderreview.Thesedifferences requireadditional scrutinyandevaluation.
Newanduniquefeaturesthathavenotbeenusedinthepastareofparticular interestandarethusexaminedingreaterdetail.Theinformation furnished intheSARisreviewedforcompleteness inaccordance withthe"Standard Format..."
(Ref.4).Adecisionisthenmadewithregardtothesufficiency ofthedescriptive information provided.
Anyadditional requiredinformation notprovidedisrequested fromtheapplicant atanearlystageofthereviewprocess.AlicableCodesStandards andSecifications 3.Thelistofcodes,standards, guides,andspecifications iscomparedwiththelistinsubsection II.2ofthisSRPsection.Thereviewerassureshimselfthattheappropriate codeorguideisutilizedandthattheapplicable editionandstatedeffective addendaareacceptable.
LoadsandLoadinCombinations Thereviewerverifiesthattheloadsandloadcombinations areasconserva-tiveasthosespecified insubsection II.3ofthisSRPsection.Anydeviations fromtheacceptance criteriaforloadsand'loadcombinations thathavenotbeenadequately justified areidentified asunacceptable andtransmitted totheapplicant.
3.8.4-14Rev.1<<July1981  
.0 NUREG4800[Formerly NUREG-76/OB7)
<is"<<urWpe0e>~io)n004***4STANDARDREVIEWPLAN3.8.5FOUNDATIONS REVIEWRESPONSIBILITIES Primary-Structural Engineering Branch(SEB)Secondary
-NoneII.AREASOFREVIEWThefollowing areasrelatedtothefoundations ofallseismicCategoryIstructures arereviewed.
1.DescritionoftheFoundations Theedescriptive information, including plansandsectionsofeach'oundation, isreviewedtoestablish thatsufficient information isprovidedtodefinetheprimarystructural aspectsande'lements reliedupontoperformthefoundation function.
Alsoreviewedistherelationship betweenadjacentfoundations, including themethodsofseparation providedwheresuchseparation isusedtominimizeseismicinteraction betweenthebuildings.
Inparticular, thetypeoffoundation isidentified anditsstructural characteristics areexamined.
Amongthevarioustypesoffoundations reviewedaremat-foundations andfootings, including individual columnfootings, combinedfootingssupporting morethanonecolumn,andwallfootingssupporting bearingwalls.Othertypesoffoundations thatmayalsobeusedarepilefoundations, drilledcaissons, caissonsforwaterfrontstructures, suchasapumphouse, androckanchorsystems.Thesetypesoffoundation arereviewedonacase-by-case basis.ThemajorplantCategoryIfoundations thatarereviewed, togetherwiththedescriptive information, arelistedbelow:Rev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments aremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryandthegeneralpublicofregulatory procedures andpollclee.
Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemlsnotrequired.
ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotsllsectionsofthaStandardFormathavescorresponding reviewplan.Published standardreviewplanswillberevisedperiodically, ssappropriate, toaccommodate commentsandtoreflectnewinforms.tlonendexperience.
Commentsandsuggestions forimprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Cominleelon, OfficeofNuclearReactorRegulation, Washington, O.C.20655.
Adescription oftheDG"E"facility's foundation isprovidedinRef.1,Section3.8.5.1.Additional information isprovidedinRef.2,Page3-6.
Earthquake (OBE)andtheSafeShutdownEarthquake (SSE),sitedependent freefieldgroundmotionrecords,soilproperties, etc.,asanintegralpartofthe.seismicanalysisreviewofCategoryIstructures.
ThereviewforgualityAssurance iscoordinated andperformed bythegualityAssurance Branchaspartofitsprimaryreviewresponsiblity forSRPSection17.0.Forthoseareasofreviewidentified aboveasbeingreviewedaspartoftheprimaryreviewresponsibility ofotherbranches, theacceptance criterianecessary forthereviewandtheirmethodsofapplication arecontained inthereferenced SRPsectionofthecorresponding primarybranch.II.ACCEPTANCE CRITERIASEBacceptance criteriaforthedesignofseismicCategoryIfoundations arebasedonmeetingtherelevantrequirements ofthefollowing regulations:
A.lOCFRPart50,K50.55aandGeneral.DesignCriterion 1astheyrelatetosafety-related structures beingdesigned, fabricated, erected,andtestedtoqualitystandards commensurate withtheimportance ofthesafetyfunctiontobeperformed.
8.C.GeneralDesignCriterion 2(Ref.3)asitrelatestoappropriate considerations beinggiventothemostsevereofthenaturalphenomena
.thathavebeenhistorically reportedforthesiteandsurrounding areawithsufficient marginforthelimitedaccuracy,
: quantity, andperiod oftimeinwhichthehistorical datahavebeenaccumulated, andtothecombinations oftheeffectsofnormalandaccidentconditions withtheeffectsofthenaturalphenomena.
GeneralDesignCriterion 4(Ref.4)asitrelatestostructures, systems,andcomponents important tosafetybeingappr'opriately protected againstdynamiceffects,including theeffectsofmissiles, pipewhipping, anddischarging fluids,thatmayresultfromequipment failuresandfromeventsandconditions outsidethenuclearpowerunit.D.GeneralDesignCriterion 5(Ref.5)asitrelatestostructures, systems,andcomponents important tosafetynotbeingsharedamongnuclearpower',units.unlessitcanbeshownthatsuchsharingwillnotsignificantly impairtheirabilitytoperformtheirsafetyfunctions.
TheRegulatory Guidesandindustrystandards identified initem2ofthissubsection providesinformation, recommendations andguidanceandingeneraldescribes abasisacceptable tothestaffthatmaybeusedtoimplement therequirement-of10CFRPart50,K50.55a,andGDC1,2,4,and5.Also,specificacceptance'riteria necessary tomeettheserelevantrequirements oftheseregulations fortheareasofreview,described insubsection IofthisSRPSectionareasfollows:1.DescritionoftheFoundation Thedescriptive information intheSARisconsidered acceptable ifitmeetstheminimumrequirements setforthinSection3.8.5.1ofRegulatory Guide1.70,"Standard FormatandContentofSafetyAnalysisReportsforNuclearPowerPlants."3.8.5-5Rev.1-July1981 Alistofthecodesstandards andregulations considered inthedesignofthe~DGEfacility's foundation isprovidedinRef.2.Theloadsandloadcombinations usedinthedesignoftheDG"E"foundation complywiththoselistedinSubsection II.Thelistedloadcombinations wereusedtocheckagainstslidingandoverturning duetoearthquakes, windsandtornadosand,againstfloatation duetofloods.(SeeRef.3,Page11.)ea0ThedesignoftheDG"E"facility's foundation doesnotconsidersoil-structure interaction sinceitisfoundedonsoundbedrock.b.CeHydrodynamic loadsneednot.beconsidered sincetheDG"E"facilityislocatedfarenoughawayfromthecontainment structures.
Dynamicsoilpressurehasbeenconsidered inthedesignoftheDG"E"faci1ity.Thedesignandanalysisprocedures fortheDG"E"facility's foundation complywithACI-349.TheAISCspecification isnotapplicable forthedesignandanalysisprocedures usedinthedesignoftheDG"E"facility's foundation sinceitisconstructed outofreinforced concrete.
Oeficient areasofdescriptive information areidentified bythereviewerandarequestforadditional information isinitiated.
Neworuniquedesigrfeaturesthat'arenotspecifically coveredinthe'"Standard Format...",
requireamoredetailedreview.Thereviewerdetermines theadditional information requiredfora,meaningful reviewofsuchneworuniquedesignfeatures.
2.AlicableCodesStandards andSecifications Thedesign,materials, fabrication,
: erection, inspection, testing,andsurveillance, ifany,ofseismicCategoryIfoundations arecoveredbycodes,standards, andguidesthatareeitherapplicable intheirentiretyorinportionsthereof.Alistofsuchdocuments iscontained insubsec-tionI.2oftheSRPSection3.8.3.Inadditionthedocuments listedinsubsection II.2ofSRPSection3.8.1areacceptable forthecontainment foundation.
3.LoadsandLoadCombinations Thespecified loadsandloadcombinations usedinthedesignofseismicCategoryIfoundations areacceptable iffoundtobeinaccordance withthosecombinations referenced insubsection II.3ofSRPSection3.8.1forthecontainment foundation, andwiththosecombinations listedinsubsection II.3ofSRPSection3.8.4forallotherseismicCategoryIfoundations.
Inadditiontotheloadcombinations referenced above,thecombinations usedtocheckagainstslidingandoverturning duetoearthquakes, winds,andtornados, andagainstfloatation duetofloods.arefoundacceptable ifinaccordance withthefollowing:
a0b.C.d.e.0+H+E0+H+M0+H+E'+H+M0+F'here0,E,M,E',MareasdefinedinSRPSection3.8.4,Histhelateralearthpressure, andf'sthebouyantforceofthedesignbasisflood.Justification shouldbeprovidedforincluding liveloadsorportionsthereofinthesecombinations.
4.OesinandAnalsisProcedures Thedesignandanalysisprocedures usedforseismicCategoryIfoundations areacceptable iffoundinaccordance withthefollowina:
a~b.C.Thedesignshouldconsiderthesoil-structure interaction,hydrodynamic effect,anddynamicsoilpressure.
ForseismicCategoryIconcretefoundations otherthanthecontainment foundations, theprocedures areinaccordance withtheACI-349Code,asaugmented byRegulatory Guidel.142.ForCategoryIsteelfoundations, theprocedures areinaccordance withtheAISC"Specifications...".
3.8.5"6Rev.1-July1981 d.Notapplicable totheDG"E"facility.
e.Adesigndescription reportalongwithvariousdrawingsfortheDG"E"facilityhavebeensubmitted totheNRC.Additional information isavailable uponrequest.5.Theallowable limitslistedinSubsection II.5ofSRPSection3.8.4wereusedinthedesignoftheDG"E"foundation.
Thelistedfactorsofsafetyagainstoverturning, slidingandfloatation areusedinthedesignoftheDG"E"facility.
(SeeRef.3,Page11.)6.Thecriteriapertaining tocontainment foundations isnotapplicable fortheDG"E"facility.
Nospecialconstruction techniques wereusedfortheDG"E"facility's foundation.
Weldingofrebarwasnotpermitted.
Theapplicable codesreferredtoherearecompliedwith.7.Nospecialtestingorin-service surveillance requirements fortheDG"E"foundation wererequired.
jv/e059c:mg d.Forthecontainment foundation, thedesignandanalysisprocedures referenced insubsection II.4ofSRPSection3.8.1areacceptable.,
e.Thedesignreportisfoundacceptable ifitsatisfies theguidelines contained inAppendixCtoSRPSection3.8.4.f.Thestructural auditisconducted asdescribed inAppendixBtoSRPSection3.8.4.Fordetermining theoverturning momentduetoanearthquake, thethreecomponents oftheearthquake shouldbecombinedinaccordance withmethodsdescribed inSRPSection3.7:2.Computerprogramsareacceptable ifthevalidation providedisfoundinaccordance withprocedures deline-atedinsubsection II.4.eofSRPSection3.8.1.5.Structural AccetanceCriteriaForeachoftheloadingcombinations referenced insubsection II.3ofthisSRPSection,theallowable limitswhichconstitute theacceptance criteriaarereferenced insubsection II.5ofSRPSection3.8.1forthecontainment foundation, andarelistedinsubsection II.5ofSRPSection3.8.4forallotherfoundations.
Inaddition, forthefiveadditional loadcombina-tionsdelineated insubsection II.3ofthisSRPsection,thefactorsof~safetyagainstoverturning, slidingandfloatation areacceptable iffouefinaccordance withthefollowing:
MinimumFactorsofSafetForCombination a~b.C.d.e.Overturnin1.51.51.11.1~Slid>nFloatation 1.51.51.11.16.Materials ualitControlandSecialConstruction TechniuesForthecontainment foundation, theacceptance criteriaformaterials, qualitycontrol,andanyspecialconstruction techniques arereferenced insubsection II.6ofSRPSection3,8.1.Forallother.seismicCategoryIfoundations, theacceptance criteriaaresimilartothosereferenced insubsection II.6ofSRPSection3.8.4.7.Testin'andInservice Surveillance Reuirements Atpresenttherearenospecialtestingorin-service surveillance require-'ents forseismicCategoryIfoundations otherthanthoserequiredforthecontainment foundation, whicharecoveredinsubsection II.7ofSRPSection3.8.1.However,shouldsomerequirements becomenecessary forspecialfoundations, theywillbereviewedonacase-by-case basis.III.REVIEWPROCEOURES Thereviewerselectsandemphasizes materialfromthereviewprocedures described below,asmaybeappropriate foraparticular case.3.8.5"7Rev.1-July1981 TheStandbyacPoverSupplySystemconsistsoffourdiesol-qenerator sets.Thediesel-generators aresizedaothatthreedieselscansupplyallthenecessary Porerrequirexents foroneunitinthedesiqnbasisaccidentconditionr PlusthenecessarY requiredloadstoeffectthesafeshutdovnofthesecondunit-Thedieselqenerato.s aresPecified tostartupandattainratdroltaq4andfrequency rithin10seconds.Fourindependent 4kVenqineered safetyfeaturesvitchqear assexblies areprovidedforeachreactor'nit-Eachdiesel-generator feedsanindependent 4kybusforeachreactorunit.Eachdiesel-qenerator startsautomatically uponlofPoverordetection ofanuc7earaccid~ntengineered safetyfeaturesystemloadsareapPliedintimesequence.
Eachgenerator
.operates independent7y andParallelinq duringalossofoff-sitepoverorLOCAsign3~2~2~9~32 DdQ22"CXXQMXXTachreactorunitisproridedvithfourindependent 125Vandtvnindependent 250Vdcsystems.Eachdcsystemissuppliedfromaseparatebatt'erybankandbatterycharger.The125VdcsystemsareprovidedtosuPPlystationdccontrolpoveranddcpover'tofourdieselqenerators andtheirassociated svitchgears.
The2507Vdcsystemsareprovidedtosupplypoverrequiredforthelaoadssuchasdcmoto'rdriven.Puxps.andvalves.4JM44rfdggjg/f'arger12'SesuezymQrgczoviueo~ezFrigPZdN4eaRfoc.The125/250-V dcSystemisdesiqnedtosupplyp'overadequateto.satisfytheengineered safetyfeatureloadreguirexenti oft'eunitviththePostulated lossofoff-sitepoverandanyconcurrent single'failureinthedcsystex.2~2~4~19gq~i,C~qg BeniZemmxl2~rrimate~'~~qtem hResidualHeatRemovalServiceRater.Systemisprovidedtoremovetheheatre)ectedbytheResidualHeatRemovalSystemduringshutdovnoperation andaccidentconditions.
1)~)~419gmyggegcy Qy~rfggQygygSystemTheEmerqency ServiceRaterSystemsuppliesvatertocoo1thestandbydiesel-uenerators andtheFCCSandEngineered SafetyFeaturesequipment rooms,andotheressential heat1cads.
sk'ECyC.,%yJf Pow~rfroxthegenerators
~sscepneaupsroac~avioc.'$Mg.vofUnitHo.1andfrox20kyto500kVonUnitHo.2bytheunitxainfransgorxers andsuppliedby.overheadlinestothe230kVand500kVswitchyards, resPectivelY.
>.ggygZZeaizigZmerRiuirihuffun XxMmnTheelectricpowerdistribution systexincludesClassIEandnon-ClassIEacanddcPowersYstexs.TheclassIF,powersystexsuppliesa11safetyrelatedeguiPxent'and soxenon-class IEgoadswhilethenon-Class IEsystexsuppliesthebalanceofplanteauipxent.ThoClassIEacsystexforeachunitconsistsoffourindependent LoadgrounsTwoindependent off-sitepowersystexsprovidethenorxalelectrJ.c Powertothesegroups.Eachloadgroupincludes0.16kvswitchgear, 080Vloadcenters,xotorcontrolcentersand120vcontrolandinstruxent powerpanel.'hevitalacinsfzuxentation andcontrolpowersupplysystexsincludebatterysystexsstaticinverters Voltageslistedarenoxinalvalues,andallelectrical ecruigxent essential tosafetyisdesignedtoacceptarangeof+10percentinvoltage.pourindependent dieselgenerators aresharedbetweenthetwounits.Eachdieselgenerator isprovidedasistandbysourceofexorgnncy PowerforoneofthefourClassIEacloadgroupsiweachuni+.issuxingthetotallossofoff-sitepowerandfailureofonedieselgenerator, therexaining dieselgenerators havesufficient caPacitytooperateallthe-'equipxent necessary toPreventunduerisktopublichealthandsafetyintheeventofadesignbasisaccidentononeunitandaforcedshutdownofthesecondunit.pg~zHJ'Cc74k'EM-$EEgl7jgcN'Fb)
Thenon-Class IEacsystexincludes13~8kVswitchgear, 0.16kVswitchqear, 080Vloadcentersandxotorcontrolcenters.pourindependent ClassIE125Vdcbatteries and.twoindependent ClassIE250Vdcbatteries andassociated batterychargersProvidedirectcurrentpowerfortheClassIEdcloadsofeachunit.Powerfornon-Class IEdcloadsissuppliedfr'oxtheClassIE125and250Vbatteries throughanadditional circuitbreake"'forredundant faultProtection.
gypreal~~'g'k'NMlAfJdcJfD)hesesvstexsarediscussed inChapter8.1~2-26  
~4Eyg-z~)~/+/dSV'~~
~4Eyg-z~)~/+/dSV'~~
4 DIESELGENERATOR0BLDG-00jt~~hrruCAkr/(Qa1toc~lgL0Rev.35.07'4SUSOUEHANNASTEAMEI.ECTRICSTATIONUNITS1AND2FINAI.SAFETYANAI.YSISREPORTSITEFACE:STIESP~IFIGURE2.1-2 1'I  
4 DIESELGENERATOR 0BLDG-00jt~~hrruCAkr/(Qa1toc~lgL0Rev.35.07'4SUSOUEHANNA STEAMEI.ECTRIC STATIONUNITS1AND2FINAI.SAFETYANAI.YSIS REPORTSITEFACE:STIES P~IFIGURE2.1-2 1'I  
\i,S.i1~~~11I-/~1IiDIESEL/I'GENERAtOR'~~~,.-'f1-:i.LBLDG.'ri,<A~.iII1:-.iiI1'Ii:-'I'!II!rr~-~)~,......~I'~iiI,Il\1.~1r.'I,ii>1rt-'rhI)T's":)r~rprr"fIrfi*i,r/F.g~LI~III~Iir>~'~4iT~.-'-WWj'/r~ilai,IqII.II<<ji~/rIE~4~~-i'=.~i..'itwP)~,~fa~iI3507/84SUSQUENANNASTEAMELECTRICSTAUNITS1ANO2FINALSAFETYANALYSISREPOR1SITELOCATIOIIIVITHR-S?-CTOSJ?ROUiVDiaICTOPOCRAPH1F!rttRE  
\i,S.i1~~~11I-/~1IiDIESEL/I'GENERAtOR'
~~~,.-'f1-:i.LBLDG.'ri,<A~.iII1:-.iiI1'Ii:-'I'!II!rr~-~)~,......
~I'~iiI,Il\1.~1r.'I,ii>1rt-'rhI)T's":)r~rprr"fIrfi*i,r/F.g~LI~III~Iir>~'~4iT~.-'-WWj'/r~ilai,IqII.II<<ji~/rIE~4~~-i'=.~i..'itwP)~,~fa~iI3507/84SUSQUENANNA STEAMELECTRICSTAUNITS1ANO2FINALSAFETY ANALYSISREPOR1SITELOCATIOII IVITHR-S?-CTOSJ?ROUiVDiaIC TOPOCRAPH1 F!rttRE  


IIsIUlg,g-DIESELGERR"A-D'LDG[/jG'=:.::::0aerrEACTOBBLDG.~seDIESELGENERATOREBLDG.O~tOtJSTRTUQEP>sl(5Rev.35,07/84SUSCUENANNA~ELECTIUCSTATION.UNITS1AND2FINAI.SAFETYANALYSISIIEFOATL~CaweSHOWINGSAFETYRELATFACILITIESONPLANTSITEFIGURE2~4-2~vMht~Ji OISCHAAGKTOOILAETKNTICNtONOANOSUSSEOUKNTLYTOAIVEAVIAANATUAALWATEACOURSEUNITICOOLINGTOWERRAOWASTESUILOINGSKAVICK8AOMINISTRATIONSUILOINGtAAKINGIILOTJrOIESELGNKRATSIQUILOINDIESELGENERATOREBLDG.NOATH~~~~~II~*CIO8CHLOALNE8UILOINCCICULATIWATER~MFHOUTUASINESUILOINGAEACTORSUILOINQRAILAOAOSCALE50050I00FEETUNIT2COOUNGTOWEAI~I~~AAILAOAOLKCKNOSS.STCAMSEWEA0ROOFOAAINIKXTEAIOAIQCATCH8ASINQMANHOI.ESUMtOAAINRev.35,07/84SUSCUEIIANNASTEAldELECTIIICSTATIONUNITS1ANO2FINALSAFETYANALYSISREFORTPLANTCOMPLETESRO'HZNGSTORMDRAZNPZPELAYOUTFIGURE SSES-FSARthonorthandwestbranchesoftheSusquehannaRiver.Post-Oleanadvancesdidnotreachthesitevicinity(Ref.2.5-5and2.'5-6).Peltier<Ref~2.5-5)mappeddiscontinuouskameterracesalongtheSusquehannaRiverinthesitevicinity.Thehighestsuchterraceformedbyicemarginalstreamsoccursatabout650feetabovesealevelatthe.site."Ref.ertoSubsections2.5.1.2.2and2.5.1.2.3.3for.furtherdiscussionofPleistoceneerosionanddepositionatthesite.,SincetheretreatoftheRisconsinanicesheetsfromtheregion,broadregionalupliftappearstohaveoccurred,probablyatleastinpartasaresultofcrustalreboundsubsequenttotheremovaloficeload.Erosionhascontinuedandsoilprofileshaveformed.5f~g5Eggj,peep',ggGeologyg~luytgonSitesubsurfaceexplorationisdescribedanddiscussedinSubsection2.5.4.3.Laboratorytestsoffoundationmaterials,andinsituqeophysicaltestsof.thefoundationmaterialsare.discussedinSubsections2.5.4.2and2.5.5.GeologicmappingofthefinalfoundationsisdescribedinSubsections2.5.1.2.2~2.5.1.2.3and2.5.4.1.3.It'asconcludedfromthesestudiesandevaluationsthatthesitegeologicandfoundationconditionsareentirelvsuitablefortheconstructionandoperationofthenlant.i.2.5.1.).51Ggo~ogicConditionsUnderCateo1StructurAllSeismicCateqory1plantfacilities,exceptthespraypondandtheEnqineeredSafequardServiceRater(ESSW)pumphouseandpipelinearefounded,onbedrock.TheESSMpipelinetrenchisexcavaednartlyinsoilandpartlyinrock.Thelocationof'.hesefacilitiesisshownonFiqure2.5-24.Yhefoundationrockisahard,induratedsiltstone,amemberoftheDevonianNahantanqoFormation.Inthefoundationsareaitisquitemassiveandlitholoqicallyhomogeneous,withbeddinPROFT<c(PeTE.gaenerallynotwelldefined,andlackinqthebeddingplanefissilityusuallyassociatedwithlesswellinduratedshalysilts+onesandsiltyshales.Xnplacestherockexhibitsaslatycleavaqe,furtherevidenceofitsinduratednature.AllCategory1rockfoundationswereexcavatedtounweatheredbedrock.GeologicmapsandsectionsoftheCateqory1excavationsinrockareshowninF>>qures2.5-1and.-19.Noredetaileddiscussionof+hefoundationqeooqiconditionsiscontainedinSubsectionsgQv'5'4povlc(4$Y4Pcc'k,PAApp~lip+~c(~gg4:Qs'0gQA.gypg+8Pev.35,07/84bugs;np~~~(uy'""j"""(SICf5~~c~z.5;Lil) ceer*'f 2.5.1.2.2and2.5.1.2.3.FngineerinqpropertiesofthefoundationrockaredescribedinSubsection2.5.4.over50,000yearsago.Ingeneral,thedepositsarepermeabletopofthesequence.Naturalslopesadjacentor.closetotheprincipalplantstructuresarerelativelyflat.Mostoftheseslopesarecomposed.ofsoil;fewrockslopesoccur(Fiqure2.5-17showsareasofrockoutcrops).SSES-PSARa/Thespraypondissituatedoveraglacialorpreglacial,east-westtrendinqbedrockvalleyasoutlinedbycontoursontopofbedrock(Fiqure2.5-17).Thevalleyisfilledwithdensegravellyandsandyqlacialoutwashandtilldepositswhichattainamaximum,thickness'ofabout110feetadjacenttothespraypondaea.TheyweredepositednolaterthantheOleansubstage(earlyWisconsinan)oftheQisconsinanglaciationwhichoccurredandconsistofasequenceofsand,gravel,andbouldersoverlainbvsandandqravel,overlainin'urnbysiltysand.Theentiresequenceishighlyvariableinqrainsizedistributionandsortinq,andcontainsdiscontinuouspocketsofsimilarmaterials.Asarule,qrainsizedecreasesandsortinqincreasestowardtheThesouthwestern+ipofthespraypondi'scutintobedrockwhiletheremainderwasexcavatedinthesepermeableglacialmaterials.Thethicknessoftheclacialdepositsbeneaththebottoaofthespraypondrangesfromzeroattherockcontactto93feetattheeasternendofthepond.Thespraypondislinedtominimizeseepaqelossestotheunderlyingpermeableglacialdeposits.Thefoundationofthepumphousestructurelocated'atthesoutheasterncornernfthepondisunderlainby35to60feetofqlacialmaterial.TheFSSWcirculationpipelinesbetweenthepumphouseand+heplantintersectbedrockatanelevationof668feet,anproximately260feetsoutheastofthepumphouse(refertoFigure2.5-17A).AqeoloqicmapofthespraypondareaisoresentedonFigure2.5-15.FurtherdiscussionofconditionsattheESSQpumphouseandspraypondarecontainedinSubsections2.5.1.2.2,2.5.3and2.5.5.77lR.cPQVkilt/EJ)l"@~A(7V/ale+p(at2<MIEpJ;vQS't(yaaaIel2,5.$,2,5,2JagQsjde-Pgte))gimelIR"$p;jJ~~~,)fQg6gtnv~fovavp'd'eaveyAci:PgkaNorthofthespraypondtheTrimmersRockFormationformsarelativelysteepridqerisinqapproximately380ft.abovethepond.Thesouth-facingslopeofthisridqeisessentiallyarockslopeunderlainbyflaqqy,resistantsandstonethinlymantledwithsoilandrockfraqments.Theclosestapproachofthisslopetothesn'raypondisalongthenorthernperimeterofthepond;the+oeoftheslope,atelevation710-720feet,is250feetormnefrom+heedqeofthepond(atelevation679feet)-Themaximumslopealonqtheridgeisabout2horizontalto12.5-57 0
IIsIUlg,g-DIESELGERR"A-D'LDG[
SSES-FSAR1,000ft.Thisrockcontainsnaunstablemineralsandprovideshiqhlystablefoundationconditi.ons.soilsatthesiteareglacialinarigin~depositeRmostlybyflovinq@lucia)meltwater,xuchunRertorrentialconditions.The~oilisnnncalrareous.Hostof.therockfragmentsconsistofinduratedsandstones.Theoriqinandmineralogyofthesesoils'ssuchthattheypresentnohazardousconditions(refertoSubsection2.5.1.2.5.7).Afewofthesafety-relatedprincipalplantstructuresarefoundeRansoil.ThesestructuresconsistoftheEngineeredSafequardserviceWater(ESSM)pumphouse,thespraypond,andportionsoftheSeismicCategoryIaipelinelinkingthereactorbuildingto<<hespraypandHostotherplantstructuresareounedanroc.eocationofthesestructuresisshovnonFiqure2.5-24:soilandrockfoundationsareidentifiedonFigure2.5-17A<hestaticanddynamicenqineerinqpropertiesofthesitebedrockandoverhurdensoilsveredeterminedbyfieldinvestigationandlaboratorytetinq.Theresultsoflaboratorytestingofthematerialssampledfromtheprospectsitearecoveredintvoreparts(Bof.2.5-97and2.5-98).AdetailedstudyofthesoilpropertiesatthesiteafthesprayponRandESSWpumphousei.sqiveninSubsection2.5.5.75~421ProueXti.aafZmndnfiaaBackTheCateqnryIreactorbuildinqsanddieselgeneratorbuilding,aswellasthenon-cateqoryIturbineandradwastebuildinqs(seePi.qure2.5-24)arefoundedonunweatheredsiltstonebedrack.Thesiltston~,amemberoftheNahantanqoFormationofDevonianage+'shardanRindurated,andinthefoundationsareaislitholoqicallyhoxoqeneousvithbeddinggenerallyno<<veilRefin~d,andlackinqthebeddingplanefissilityusuallyassociatedvithlessveilinduratedshalysiltstanesandsilty.-.ha1~s.Inplaces<<herockexhibitscleavage,furtherevidenceofi<<sindurateRnature..n>hoaro.aof<<heprinci.palplantstructures,bedrockbeddi.nqwhereobserveRaenerallydipsgently(lessthan104)south;locally,suchasnorthofthecirculatinqwaterpuxphouse,bedsRipslightlynorth~AtthenorthendoftheradvastebuildinganRthenarthsideofthevnit1coolinqtower,beddingdipsxorep~y.35,07j842.5-89 SSES-PSAR'.ha~~resliqhtlylover,byafactorofaho>>t15percent~is,>Vva)u>ofabout14,000fnsanr)Vofabout6,200Fps.1'he.,rinsit>resultsareinqoodaqreementviththelaboratoryi)eterminations.Additionalcross-holeand>>p-holeinsituPeismicvelocit.ymeasurementsveremadeinthespraypondarea(Ref.2.S-99).Resultsofthecross-holeexplorationsatthesitraref>>rtherdiscusserlinSubsections2.5.4.2.2and2.5.4.4.PlateloadtestsverecarriedoutonsoundrocknearthecenteroftheUnits1and2reactorb>>ildingexcavationinthevicinityof'orinn105(refertoPiqure25-18).Plates24,13.5,andRin.indiameto.rveresuhjected,tosuccessivelyincreasingtotalloarlinqsof7,22,and60tonspersquarefoot(tsf),rr.so~rtively.Atotaldeflectionof.062in.occurredvhenthe24in.o]atevasloar)erltoamaximumof.7tsf.Anadditionaldeflectionof0.036in.vasrecordedonsubsequentloadinqto'?2tsf,and'anotherA.O'36in.ofdeflee+iononapplicationofthe<0~sfmaximumload,producinqatotalsettlementof0.134in,forthethree-stageloadinqto60tsf.Recoveryoftherockby:.las..icrebounduponreleaseoftheseloadsvassubstantial:68,75,.and80percentrepeatableelasticrecoverycfthetotalReflectionsvererecorderlafterreleaseofthe7,22,and60tsf1carlinqs,resprctivelv.Additionaldeflectionsduetocyclicloarlinqverasmall.Applicationof14cyclesofloadat7,15,and3pt..fresultedinarlditionalsettlementsofonly0.012,0.00'1,and0.002in..respectively,overthecorrespondinqsinqleloadinqs.Theseresultsareconsistentviththehighmodulusvalu~sardseismicvelocitiesofthefoundationrock,andindicatestructurallystrong,competentmaterialforfoundationsin>>nveatheredrock.i.concludor)fromtheengineerinqpropertiesunvoa<hererlherlrockoftheNahantanqoFormationprovides1rl~auat~supportforthema]orplantsbothsaba'icanddynamiccnnditions.Set+lement~>nd>>sta~iclour)inqisinsiqnific..ant.It.cons:.lasticcnmn~..sionoftheunderlyingrocksand~ssentially>>pnnloadapplication.moreover,t>>rderqorolossofstrenqthanr)villexperiencear)hitiona1settlementunrlerearthq>>ak~loadinq.ofthethattherocktructuresunderofstructuresistsofpseudo-occurshebedrockv'lneq1iaihlesummaryofth~propertiesofthefoundationrockiscompiledinabler2.2,.4.2~2proportiosofFoundationSoils:h~r~s>>itsofdetai]edexplorationofthesoilsinthesprayponda~aareqivcninSubsection2.5.5.onlyinformationont.h~proper+i...-nfthep>>mpho>>scfo>>ndationsoilsisqiveninthiss>>h."-er.~ion.~)i<Ig.-e,s~g'p~Q<~kpcC{.~ge.g/~I~P%~"~'H:A':~Rv.)S,07/84  
/jG'=:.::::0 aerrEACTOBBLDG.~seDIESELGENERATOR EBLDG.O~tOtJSTRTUQEP>sl(5Rev.35,07/84SUSCUENANNA
\a>>(q;as>>g~>>gSix>>lcp~>-.E5-F~~R~~~*>>p'henaturalsoilsattheoumphouesitearenormallyconsolidaterlandconsistpredominantlyofsand,aravel,cobbles,andboulders.-hesoilsarepnor]vstratified,startinqassandorsanrly<<ravelatthesurfareandqradinqtomostlycobblesandbouldersnearherlrork.Therlepthofthesoildepositbelowfoundationarablerona~..fromahout35ftatthesouthenrlcfthepumphous~"oato!itFAfta'.th~northend.~Asubsureoss-sect>onhrouahh'umphousesitisshownonFigure2.5-30cross-s~rtionD-D.Thesoilshelovteoa.nearenr~rlominartlvsanrlyaravelswithlargeamountsofcobblesandhr>>lders.Th~propertiesofthesesandyandgravellysoilsarefollovs:(rainSizeDistribution~tSolQC~Grainsizedistributiontestsweremadeonmostofthesnlit:spoonsamplesforclassificationpurposes.'ieveanrlhydrometeranalysesvereperformedaccordingtnASTNProcerlureP-422.Therangeofgrainsizecurvesis"-~ownnnFia>>re2.S-31.Themeanqrainsize(D50)of+heqravellysoils,whicharethepredominantmaterialh~lovthepumnhousevasfounrltobein+he.rangeof4..Stn2S.0mm.Mhcreverhesandisnresentbelovthepumphouse,theDSOsizisintherangeof0.14to1.0mm.QelatiyeDensityF~]ativerlr;nsityrlataverederivedfromstandardnen>>ratinntr.st.resultsusinqthe6ibbsandHoltzprocedure(pef.2.5-100)~Thisprocedureisvalidfornormallyconsolirlatedsands.Va1>>esofrelativodensityohtainerlinthiswayare..>>mmarizcrlonFiaure2.5-32.Adirectcomparisonofro1ativ~l~nsi~yfrom'tl'aluesqiveninFigure2.5-32a-.rlfromundisturherlsamplesand/orinsitedensityrannnthamad~hecausenorelativedensitytestsv~remaR~.Thesoildeposi+sareglacialinnature.Th~depositsarequitevariableinparticlesizeanrl.,or+inaandconta'ndiscontinuoussandpocketsandaravelnorkots.Grainsizeingeneralincreasesvithd-'p'h.A!'hefoundationlevelofthep!!'mphousemaximumsizesofthopartinch!!s.undis+urbedobtainedinthearavellyinf]uenco+herosultsof<hrymay.notrepresentth<heStandarclnenetrationaiVenOnFigure2.S-33.iclesareintherangeof3touhesamplesco>>ldnothesoils.Thegravelalsovillinsitedensitytestssothatinsiter.onditionasavhole.resistancevorsuselevationisThe'N~valuesvillbepev.15,07/R42.5-q2  
~ELECTIUCSTATION.UNITS1AND2FINAI.SAFETYANALYSISIIEFOATL~CaweSHOWINGSAFETYRELATFACILITIES ONPLANTSITEFIGURE2~4-2~vMht~Ji OISCHAAGK TOOILAETKNTICNtONOANOSUSSEOUKNTLY TOAIVEAVIAANATUAALWATEACOURSEUNITICOOLINGTOWERRAOWASTESUILOINGSKAVICK8AOMINISTRATIONSUILOINGtAAKINGIILOTJrOIESELGNKRATSIQUILOINDIESELGENERATOR EBLDG.NOATH~~~~~II~*CIO8CHLOALNE8UILOINCCICULATIWATER~MFHOUTUASINESUILOINGAEACTORSUILOINQRAILAOAOSCALE50050I00FEETUNIT2COOUNGTOWEAI~I~~AAILAOAOLKCKNOSS.STCAMSEWEA0ROOFOAAINIKXTEAIOAI QCATCH8ASINQMANHOI.ESUMtOAAINRev.35,07/84SUSCUEIIANNA STEAldELECTIIIC STATIONUNITS1ANO2FINALSAFETYANALYSISREFORTPLANTCOMPLETESRO'HZNGSTORMDRAZNPZPELAYOUTFIGURE SSES-FSAR thonorthandwestbranchesoftheSusquehanna River.Post-Olean advancesdidnotreachthesitevicinity(Ref.2.5-5and2.'5-6).Peltier<Ref~2.5-5)mappeddiscontinuous kameterracesalongtheSusquehanna Riverinthesitevicinity.
Thehighestsuchterraceformedbyicemarginalstreamsoccursatabout650feetabovesealevelatthe.site."Ref.ertoSubsections 2.5.1.2.2and2.5.1.2.3.3for.furtherdiscussion ofPleistocene erosionanddeposition atthesite.,SincetheretreatoftheRisconsinan icesheetsfromtheregion,broadregionalupliftappearstohaveoccurred, probablyatleastinpartasaresultofcrustalreboundsubsequent totheremovaloficeload.Erosionhascontinued andsoilprofileshaveformed.5f~g5Eggj,peep',gg Geologyg~luytgon Sitesubsurface exploration isdescribed anddiscussed inSubsection 2.5.4.3.Laboratory testsoffoundation materials, andinsituqeophysical testsof.thefoundation materials are.discussed inSubsections 2.5.4.2and2.5.5.Geologicmappingofthefinalfoundations isdescribed inSubsections 2.5.1.2.2
~2.5.1.2.3 and2.5.4.1.3.
It'asconcluded fromthesestudiesandevaluations thatthesitegeologicandfoundation conditions areentirelvsuitablefortheconstruction andoperation ofthenlant.i.2.5.1.).5 1Ggo~ogicConditions UnderCateo1StructurAllSeismicCateqory1plantfacilities, exceptthespraypondandtheEnqineered Safequard ServiceRater(ESSW)pumphouse andpipelinearefounded,onbedrock.TheESSMpipelinetrenchisexcavaednartlyinsoilandpartlyinrock.Thelocationof'.hesefacilitiesisshownonFiqure2.5-24.Yhefoundation rockisahard,indurated siltstone, amemberoftheDevonianNahantanqo Formation.
Inthefoundations areaitisquitemassiveandlitholoqically homogeneous, withbeddinPROFT<c(PeTE.gaenerally notwelldefined,andlackinqthebeddingplanefissility usuallyassociated withlesswellindurated shalysilts+ones andsiltyshales.Xnplacestherockexhibitsaslatycleavaqe, furtherevidenceofitsindurated nature.AllCategory1rockfoundations wereexcavatedtounweathered bedrock.GeologicmapsandsectionsoftheCateqory1excavations inrockareshowninF>>qures2.5-1and.-19.Noredetaileddiscussion of+hefoundation qeooqiconditions iscontained inSubsections gQv'5'4povlc(4$Y4Pcc'k,PAApp~lip+~c(~gg4:Qs'0gQA.gypg+8Pev.35,07/84bugs;np~~~(uy'""j"""(SICf5~~c~z.5;Lil) ceer*'f 2.5.1.2.2 and2.5.1.2.3.
Fngineerinq properties ofthefoundation rockaredescribed inSubsection 2.5.4.over50,000yearsago.Ingeneral,thedepositsarepermeable topofthesequence.
Naturalslopesadjacentor.closetotheprincipal plantstructures arerelatively flat.Mostoftheseslopesarecomposed.ofsoil;fewrockslopesoccur(Fiqure2.5-17showsareasofrockoutcrops).
SSES-PSAR a/Thespraypondissituatedoveraglacialorpreglacial, east-westtrendinqbedrockvalleyasoutlinedbycontoursontopofbedrock(Fiqure2.5-17).Thevalleyisfilledwithdensegravellyandsandyqlacialoutwashandtilldepositswhichattainamaximum,thickness
'ofabout110feetadjacenttothespraypondaea.Theyweredeposited nolaterthantheOleansubstage(earlyWisconsinan) oftheQisconsinan glaciation whichoccurredandconsistofasequenceofsand,gravel,andbouldersoverlainbvsandandqravel,overlainin'urnbysiltysand.Theentiresequenceishighlyvariableinqrainsizedistribution andsortinq,andcontainsdiscontinuous pocketsofsimilarmaterials.
Asarule,qrainsizedecreases andsortinqincreases towardtheThesouthwestern
+ipofthespraypondi'scutintobedrockwhiletheremainder wasexcavated inthesepermeable glacialmaterials.
Thethickness oftheclacialdepositsbeneaththebottoaofthespraypondrangesfromzeroattherockcontactto93feetattheeasternendofthepond.Thespraypondislinedtominimizeseepaqelossestotheunderlying permeable glacialdeposits.
Thefoundation ofthepumphouse structure located'at thesoutheastern cornernfthepondisunderlain by35to60feetofqlacialmaterial.
TheFSSWcirculation pipelines betweenthepumphouse and+heplantintersect bedrockatanelevation of668feet,anproximately 260feetsoutheast ofthepumphouse (refertoFigure2.5-17A).Aqeoloqicmapofthespraypondareaisoresented onFigure2.5-15.Furtherdiscussion ofconditions attheESSQpumphouse andspraypondarecontained inSubsections 2.5.1.2.2, 2.5.3and2.5.5.77lR.cPQVkilt/EJ)l"@~A(
7V/ale+p(at2<MIEpJ;vQS't(yaaaIel2,5.$,2,5,2JagQsjde-Pgte))gimel IR"$p;jJ~~~,)fQg6gtnv~fovavp'd'eaveyAci:PgkaNorthofthespraypondtheTrimmersRockFormation formsarelatively steepridqerisinqapproximately 380ft.abovethepond.Thesouth-facing slopeofthisridqeisessentially arockslopeunderlain byflaqqy,resistant sandstone thinlymantledwithsoilandrockfraqments.
Theclosestapproachofthisslopetothesn'raypondisalongthenorthernperimeter ofthepond;the+oeoftheslope,atelevation 710-720feet,is250feetormnefrom+heedqeofthepond(atelevation 679feet)-Themaximumslopealonqtheridgeisabout2horizontal to12.5-57 0
SSES-FSAR 1,000ft.Thisrockcontainsnaunstablemineralsandprovideshiqhlystablefoundation conditi.ons.
soilsatthesiteareglacialinarigin~depositeR mostlybyflovinq@lucia)meltwater, xuchunRertorrential conditions.
The~oilisnnncalrareous.
Hostof.therockfragments consistofindurated sandstones.
Theoriqinandmineralogy ofthesesoils'ssuchthattheypresentnohazardous conditions (refertoSubsection2.5.1.2.5.7).Afewofthesafety-related principal plantstructures arefoundeRansoil.Thesestructures consistoftheEngineered Safequard serviceWater(ESSM)pumphouse, thespraypond,andportionsoftheSeismicCategoryIaipelinelinkingthereactorbuildingto<<hespraypandHostotherplantstructures areounedanroc.eocationofthesestructures isshovnonFiqure2.5-24:soilandrockfoundations areidentified onFigure2.5-17A<hestaticanddynamicenqineerinq properties ofthesitebedrockandoverhurden soilsveredetermined byfieldinvestigation andlaboratory tetinq.Theresultsoflaboratory testingofthematerials sampledfromtheprospectsitearecoveredintvoreparts(Bof.2.5-97and2.5-98).Adetailedstudyofthesoilproperties atthesiteafthesprayponRandESSWpumphouse i.sqiveninSubsection 2.5.5.75~421ProueXti.a afZmndnfiaa BackTheCateqnryIreactorbuildinqs anddieselgenerator
: building, aswellasthenon-cateqory Iturbineandradwastebuildinqs (seePi.qure2.5-24)arefoundedonunweathered siltstone bedrack.Thesiltston~,
amemberoftheNahantanqo Formation ofDevonianage+'shardanRindurated, andinthefoundations areaislitholoqically hoxoqeneous vithbeddinggenerally no<<veilRefin~d,andlackinqthebeddingplanefissility usuallyassociated vithlessveilindurated shalysiltstanes andsilty.-.ha1~s.Inplaces<<herockexhibitscleavage, furtherevidenceofi<<sindurateR nature..n>hoaro.aof<<heprinci.pal plantstructures, bedrockbeddi.nqwhereobserveRaenerally dipsgently(lessthan104)south;locally,suchasnorthofthecirculatinq waterpuxphouse, bedsRipslightlynorth~AtthenorthendoftheradvastebuildinganRthenarthsideofthevnit1coolinqtower,beddingdipsxorep~y.35,07j842.5-89 SSES-PSAR'.ha~~resliqhtlylover,byafactorofaho>>t15percent~is,>Vva)u>ofabout14,000fnsanr)Vofabout6,200Fps.1'he.,rinsit>resultsareinqoodaqreement viththelaboratory i)etermina tions.Additional cross-hole and>>p-hole insituPeismicvelocit.y measurements veremadeinthespraypondarea(Ref.2.S-99).Resultsofthecross-hole explorations atthesitraref>>rtherdiscusserl inSubsections 2.5.4.2.2and2.5.4.4.PlateloadtestsverecarriedoutonsoundrocknearthecenteroftheUnits1and2reactorb>>ildingexcavation inthevicinityof'orinn105(refertoPiqure25-18).Plates24,13.5,andRin.indiameto.r veresuhjected, tosuccessively increasing totalloarlinqs of7,22,and60tonspersquarefoot(tsf),rr.so~rtively.
Atotaldeflection of.062in.occurredvhenthe24in.o]atevasloar)erltoamaximumof.7tsf.Anadditional deflection of0.036in.vasrecordedonsubsequent loadinqto'?2tsf,and'another A.O'36in.ofdeflee+iononapplication ofthe<0~sfmaximumload,producinq atotalsettlement of0.134in,forthethree-stage loadinqto60tsf.Recoveryoftherockby:.las..ic rebounduponreleaseoftheseloadsvassubstantial:
68,75,.and80percentrepeatable elasticrecoverycfthetotalReflections vererecorderl afterreleaseofthe7,22,and60tsf1carlinqs,resprctivelv.Additional deflections duetocyclicloarlinqverasmall.Application of14cyclesofloadat7,15,and3pt..fresultedinarlditional settlements ofonly0.012,0.00'1,and0.002in..respectively, overthecorrespondinq sinqleloadinqs.
Theseresultsareconsistent viththehighmodulusvalu~sardseismicvelocities ofthefoundation rock,andindicatestructurally strong,competent materialforfoundations in>>nveatheredrock.i.concludor)fromtheengineerinqpropertiesunvoa<hererl herlrockoftheNahantanqo Formation provides1rl~auat~
supportforthema]orplantsbothsaba'icanddynamiccnnditions.Set+lement~>nd>>sta~iclour)inqisinsiqnific..ant.
It.cons:.lasticcnmn~..sionoftheunderlying rocksand~ssential ly>>pnnloadapplication.
: moreover, t>>rderqorolossofstrenqthanr)villexperience ar)hitiona1settlementunrlerearthq>>ak~
loadinq.ofthethattherocktructuresunderofstructures istsofpseudo-occurshebedrockv'lneq1iaihlesummaryofth~properties ofthefoundation rockiscompiledinabler2.2,.4.2~2proportios ofFoundation Soils:h~r~s>>itsofdetai]edexploration ofthesoilsinthesprayponda~aareqivcninSubsection 2.5.5.onlyinformation ont.h~proper+i...-nfthep>>mpho>>sc fo>>ndationsoilsisqiveninthiss>>h."-er.~
ion.~)i<Ig.-e,s~g'p~Q<~k pcC{.~ge.g/~I~P%~"~'H:A':~
Rv.)S,07/84  
\a>>(q;as>>g~>>gSix>>lcp~>-.E5-F~~R~~~*>>p'henaturalsoilsattheoumphouesitearenormallyconsolidaterl andconsistpredominantl yofsand,aravel,cobbles,andboulders.
-hesoilsarepnor]vstratified,startinqassandorsanrly<<ravelatthesurfareandqradinqtomostlycobblesandbouldersnearherlrork.
Therlepthofthesoildepositbelowfoundation arablerona~..fromahout35ftatthesouthenrlcfthepumphous~
"oato!itFAfta'.th~northend.~Asubsureoss-sect>on hrouahh'umphousesitisshownonFigure2.5-30cross-s~rtionD-D.Thesoilshelovteoa.nearenr~rlominar tlvsanrlyaravelswithlargeamountsofcobblesandhr>>lders.
Th~properties ofthesesandyandgravellysoilsarefollovs:(rainSizeDistribution
~tSolQC~Grainsizedistribution testsweremadeonmostofthesnlit:spoonsamplesforclassificationpurposes.'ieve anrlhydrometer analysesvereperformed according tnASTNProcerlure P-422.Therangeofgrainsizecurvesis"-~ownnnFia>>re2.S-31.Themeanqrainsize(D50)of+heqravellysoils,whicharethepredominant materialh~lovthepumnhouse vasfounrltobein+he.rangeof4..Stn2S.0mm.Mhcreverhesandisnresentbelovthepumphouse, theDSOsizisintherangeof0.14to1.0mm.QelatiyeDensityF~]ativerlr;nsity rlataverederivedfromstandardnen>>ratinn tr.st.resultsusinqthe6ibbsandHoltzprocedure (pef.2.5-100)~Thisprocedure isvalidfornormallyconsolirlatedsands.Va1>>esofrelativodensityohtainerl inthiswayare..>>mmarizc rlonFiaure2.5-32.Adirectcomparison ofro1ativ~l~nsi~yfrom'tl'alues qiveninFigure2.5-32a-.rlfromundisturherl samplesand/orinsitedensityrannnthamad~hecausenorelativedensitytestsv~remaR~.Thesoildeposi+sareglacialinnature.Th~depositsarequitevariableinparticlesizeanrl.,or+inaandconta'ndiscontinuous sandpocketsandaravelnorkots.Grainsizeingeneralincreases vithd-'p'h.A!'hefoundationlevelofthep!!'mphouse maximumsizesofthopartinch!!s.undis+urbedobtainedinthearavellyinf]uenco
+herosultsof<hrymay.notrepresent th<heStandarclnenetrationaiVenOnFigure2.S-33.iclesareintherangeof3touhesamplesco>>ldnothesoils.Thegravelalsovillinsitedensitytestssothatinsiter.onditionasavhole.resistance vorsuselevation isThe'N~valuesvillbepev.15,07/R42.5-q2  


SSES-PSARinfluencedhygravel.Secauseofthisthehigherhlovcountsverenotconsideredrepresentativeofsiteconditions.hvalueofW=40vasselectedfordesiqn.,Ofthe()9standard.penetrationtestsmadebneaththefodndltz6nlevelattheESSQPumphouse43.xceeed40blowsperfoot.Ofthe6value"thatwerelessthan40blowsperfootonlyonevalessthan30blovsperfoo?.+>>~.ra~~~~g~g+~$~1~~5QX5X~g;~~g~~pi~+-"~',q~.gJ~4\tJndisturhedsamplingofqravellysoilsvasnotpossible.Therefore,shearstrenqthtestinqvasconductedonlyonthesands.Thesheastrenqthoftheqravellysoilsvast.henconservativelyassumedtoheequaltothatofthesands.Tho.detailsofthetestinqproceduresandselectionofResignstrengthsaregiveninSubsection2.5.5.Theeffectiveanqleofinternalfrictionwasselectedfrom'be+estdatatohe35~(Piqure2.5-34).Thecyclicshearstressratiosatthetvoeffectiveconsolidationpressures1'.0ksfand6.0ksfveredeterminedtobe0.320and0.260,resoectively,for5loadinqcycles(Figure2.5-35,Subsection2.5.'5).Alinearrolationshipwasassumedincomputingcyclicshearstressratiosatothereffee+iveconsolidationDressures~d)ShearRaveVolocitgandSheartloduliCross-hol~shearvavevelocitymeasurementsvereperformedhyteston('eophysicalEngineers,Inc.(ref.2.5-99).CompressionalandshearwavevelocitiesobtainedfromthemeasurementsareqivenonPigure2.5-36.Shearmodu!iverecomputedfromthevaluesofshearvav~volocity:G=-V2gSwho.re:shearmodulus,psfunitveiqht,pcfqravitationalacceleration,ft/sec~ncv.35,07/842.5-93 ll q+~@(~@SSFS-FSARv=shearvav~velocity,fpsAdisc>>ssior.onhowtheshearmodulusisinfluencedbyronfininapre,sure,thes+rainamplitude,andth~"ela+iv~dansi+visaivenin~uhsection2.5.5.2.~helocationofal1fieldexplorationsisshovnnntheplotplan,F'quro2.5-72.n4.Atotalnfapproximately250exploratoryboringswasmadeinsoil~ndrocka-thesiie.Oorinqswereloggedindetail;horin'glogs~recontainedinRef.s.2.5-97,2.5-98and2.5-99andAppendix2.5C.-hesoilswereclassifiedinaccordancewiththeUnified"oilClassificationSvsiem.RockloqsincludeRQD(rockqualitydosiqnation)values.CoringinrockwasperformedusinqNXdo>>".le-tahe'orinaeauipment.Drillinawasconductedinlate1970(100and200seriesborinqs)toestahlishq~reralqeoloqicrelationshipsoverthesiteareaandtodetorminegeneralsoilandrockconditionsatthesite.Amor~inten.iveDoqram(300.seriesborinqs)wasconductedinthe<nrnqof1971todcfinefoundationconditionsintheprincipalolartst"ucturo.sar~a.Four45-degreeangleholesweredrilledin"h~reactoraea.Additionalexploraiiondrillingwasr.ocessary.olocatethesi+efortheSusquehannaRiverintakeandlischaranstructure~(700-B00seriesborinqs),todefinesoilandockcondi+ionsatthe,spraypondandESSQpumphousesite(1100..eriesandsome400seriesborings),andtoinvestigatefoundationconditionsforthecoolingtowers(boringsB1to810)handtherailroadspurandbridgeoverStateHighway11(borings417to455and92atpq40).BeCauSeOftheSafety-rela+edf(a+aaoryT)urcitronofthespraypond>mad=PSSMpumphousethe'xDlorationproaramforthesefacilitieswascomprehensiveard'ncludedsnliispoonandundisturbedsamples,lahoratorytesting,hvdroloaicsurvevs,nermeabilit.ytests,andseismiccross-hole~ndup-holosurveys.Af+ercomple+ionofqeoloqicborinqs,~iaiicwaterlcvelsweremeasuredinsomeoftheboringsdr'iedon~hesite.Pcrforatedplasticpipeswereinstalledinarumblerofthohnrinas'oallowcollectionoffuturewaterleveldata.geesehnrirasare6no>edontheplotplan,Figure2.5-22.Portly-sever.t~stpit~vereexcavatedbybackhoeatselected1ccaiionstoohservesoi.landrockconditions.Twonorth-southtrarchestotallinaover700ftinlenqthwereexcavatedtoobtaininfcrmat'ononphvsicalprop~rties,structure,andvariabilityof>h~near-surfac~materialsatthe.site.LoasofthetestpitsarhtrenthesarecompiledinAppendix2.5C.~ev.35,07/A42.5-94IIAAR):K~)p SSES-FShRgf54)~)~1ggcgygtjonslnRockA]1SnismicCa'.~goryIrockfoundationswerecarriedtoorwellholovunweatheredhedrock.Rockfoundationsfortheturhineandradwastetuildinqs,althoughtheyarenotSeismicCategoryIstruc+uro.,werepreparedaccordingtothesameqeneralornceduresandcri+eriausedinpreparinqtheSeismicCategoryTrockfoundations.Fxcava+.ionofrockproceededhyinitialrippingofanyweatheredsurficialrockmaterialfollovedvherenecessarybylineblastingandpro.splittinqinhnlesdrilledtoprovideslopesof1horizontalto4ver+ical.Fssentiallyverticalslopesinunweatheredrockprovedstablethroughoutthedurationofconstructionandnnspecialprotectivemeasuresvererequired.'eath~redrockwascu~on'slopesof1horizontalto2vertical.~naf~vplaces,vie'~meshvasusedforprotectionofhighervoa~heredrockslopes+hatvereexposedforextendedperiods.hesurfacenftheexcavatedfoundationrockvasscaledtoremove1nosedebrisandJettedvithvaterorairtoremoveloose~raumentsandtopreparethesurfaceforconcrete.Beforeolacemertnfstucturalconcreteorconcretebackfilltodesignelovation,allSeismicCateqoryIfoundationsvereinspectedhyanenqin~erinqgeologisttoverifythesuitabilityoftherockandi.snropersurfacepreparationtoreceiveconcrete.Illfoundationrockhea.inqaSeismicCategoryEstructurewasrvooloqica]lymapoed(seeFigure2.5-183.Foundationsforeachofthecoolinqtowers(nonsAismic-CategoryEs+ruct.ures)consistof40individualpedestalssupportinqthecolumnardex+endedtobedrock.Excavationproceededbycuttinqringtrenchandrrenarinaforeachpedestalasuitablesurfaceinunvca'hiredorpartlyweatheredbedrockbyrippinqorblastin4nares.".ary,followedhvscalinqandsetting..Duringcons.ructionoforircipalplantstructuresfoundedonrock,excavationsextendedbelowthevatertableandsome.~l~waterinqvasroquired.Dueto"thelovpermeabilityoftherock,groundwaterinflovvassmall.Devaterinqwasaccomplish'edhysurfacedrainsandsumos.Th~excavaticnfnr~hespraypond>saskESSQPumphouseasorodominan+1vinsoils.Fxcavationproceededinitiallyhyusinqgnv,15,(}7/R42.5-97~gl~gpa.(w<~4t4h~pg,pQ~~E SS~S-PSALMlarqeear>>hmovingoquipment,thenfinishedbyusingmorerefinedpocedur~s..Oncompletionofexcava<<ion,thesurfacelayerofhena<<uralsoilformationwasrecompactcdasfollows:pnrsoilshavingnotmorethan12percentpassinqtheNn.200..ievasize,80nercentrelativedensityasRcterminedbyASTI02009h)F'rallo<<hersoils,95percentofmaximumdrydensityasdeterminedbyASTI015~7>ps>>Resul>>sar~includedinAppendix2.5C.Thelocationoftestspecimenswithrespecttnthespraypondisshownon)'iqure2.5-~9.AstatisticalanalysisofthetestresultswasmadeandissummarizedonFigure2.5-60.Therequiredcompactionwasm~torexceeded.ADrotectiveconcretema+wasimmediatelyplacedoverthecompactedsoilundetheESSEPumphouseandaminimumof5in.thickreinforcedconcretelinerplacedovertheentirespraypondarea.A11temporarvslopesinsoilwereformedatamaximumslopeof11/2horizontalto1vertical.Thetemporaryslopesinthev'cinityofthe'?SSWpumphous>>vereprotectedwi>>ha3in.layerofconcret~tomaintain<<henatura}soilformationintact.Allpormanen>>slopesinsoilwereformer)ataslopo,of3horizontal.o1vertical...h~~xcava<<ionfor<<ho.SeismicCategory1pioelinesinsoilwascarr.'cdoutsimilarly.Allslopeswerecutat'maximumof11/2.",or'zontalto1vertical.Theminimumclearanceswere1ftben~a<<hhepipeand2ft<<othesiRes.p9JISQY~?.'>.0.5.3packf.illandCompaction<;~neral]v,the,excavated~area,foraminimumdistanceof10ft:-.urrounRina<<hemad'orstructures,washackfilledwithanon-corrosive1eanmixconcreteknownassand-cement-flyashbackfill.minima3amountofbackfillinghastakenplaceusingqranularbackfill,wi<<h<<hoexceptionof<<hespravpondandvicinityaddrcsed1'at~rinthssection.h~Sie'smicCategoryTpipelineswereqenerallybackfilledwith<<)>,~sand-cern<nt-f]yach;othcrwis~qranularmaterialwasused.PurisdS~i.,micCategoryIelectricalductbanksarecomposedofoirfore~.dconcr~>>aencasementsaroundplasticcrmetalducting;>>heconc".ct~~ncas<<m~ntbrinecastdirec+lyaqainstheexcavated2.5-98 J3HSoI4IIPPfILMocLInLPIAopv-I(:egwgpoeycLuceo(g;<<gupcLoo-o-r>~P+Ioccocoq7Viar+kwc(p-oo/c.ALIIJc(erIfooLodMAP'P'tP//f+Q~]ac+oecP,Py~copPr~lQ~4gp-~~a~a7:ou.k~y~~darurooossQRPole('JgoccUNgaoccQapp'IcpwPgaoa..Ttl~/Id'r(Q~'(~j'1'z.s'oc(op~ceclAdIP+2acLcp:II/5eveIce-d/eHspo.ct".Jy~goat~.y.voatsg-ga.ysuM'goop<<(oo7~grocIXui~ederaeon'p"ogh~~~a.v.(o+eooctraf~vao'IL(Jigx2cML(cartc+eoe7PoplAn~g;~TiigQMS/o>~~7'luu)o~~r~/adToLPec.ceA.ct+o5'cecetoo'Ig~plSd(s'calpog'dpcPpc(-cere(gaefpace.kgv-o(dodecg:u~uncocrcLprocL(oPPILuuode.ocg'g/Pev7'Q.
SSES-PSAR influenced hygravel.Secauseofthisthehigherhlovcounts verenotconsidered representative ofsiteconditions.
SSHS-PSARlarqeearthmovinqequipment,thenfinishedbyusinqmorerefinedprocedures.Oncompletionofexcavation,thesurfacelayerofihenaturalsoilformationwasrecompactedasfollovs:a)Porsoilshavinqnotmorethan12percent.passingtheNo.200sievesize,80percentrelativedensityasdeterminedbyAST!lD2049h)Forallothersoils,95percentofmaximumdrydensityasdeterminedbyASTID1557Tes+ResultsareincludedinAppendix2.5C.Thelocationoftestsp~cimenswithrespecttothespraypondisshovnonPiqure2.5-59.AstatisticalanalysisofthetestresultsvasmadeandisummarizedonFigure2.5-60.Therequiredcompactionvasmetorexceeded.Aprotectiveconrretema+vasimmediatelyplacedoverthecompactedsoilundertheESSMPumphouseandaminimumof5in.thickreinforcedconcretelinerplacedovertheentirespraypondarea.Alltemporarvslopesinsoilvereformedatamaximumslopeof.11/2horizontalto1vertical.Thetemporaryslopesinthevicinityofthe~SSWpumphousevereprotectedvi+ha3in.layerof,concretetomaintainthenaturalsoilformationintact.Allpormanen+slopesinsoilvereformedataslopeof3horizontal+o1vertical,Tbeexcavationfor+heSeismicCategory1pipelinesinsoilvascarriedoutsimilarly.Allslopesverecutatamaximumof11/2horizontalto1vertical.Theminimumclearancesvere1ftbeneaththepipeand2fttothesides.2.".>.4.5~)BackfillgndComportion'Generallv,theexcavatedarea,foraminimumdistanceof10ftsurroundingthemaiorstructures,vasbackfilledwithanon-corrosiveleanmixconcreteknovnassand-cement-flyashbackfill.Aminima)amountofbarkfillinqhastakenplaceusinggranularbackfill,viththeexreptionofthespraypondandvicinityaddressedlaterinth'ssection.p<gs+vg-heSeismicCategoryTpipelinesveregenerallybackfilledviththesand-cement-flyash;otherwiseqranularmaterialwasused.BuriedSeismicCategoryIelectricalductbanksarecomposedofreinforcedconcre+eencasementsaroundplasticcrmetalducting;'heconcreteencasementbeingcastdirec+lyaqainst'heexcavatedRev.35,07j842.5-98 3pzu+Qa.~n.v~tQp~~~~ELM~4@i(:II)atra-3Ajc-p;(/Qw+L.s~$-'c.~~Jg(p,l,+,~(~)$al~~p-,~:~l  
hvalueofW=40vasselectedfordesiqn.,Ofthe()9standard.penetration testsmadebneaththefodndltz6n levelattheESSQPumphouse 43.xceeed40blowsperfoot.Ofthe6value"thatwerelessthan40blowsperfootonlyonevalessthan30blovsperfoo?.+>>~.ra~~~~g~g+~$~1~~5QX5X~g;~~g~~pi~+-"~',q~.gJ~4\tJndisturhed samplingofqravellysoilsvasnotpossible.
~>tr'rial,'".>>.",m~rinq."pacificationint~n<<.~)os>>hqraqealsoinsn"r!r)forunsuitahl<<'ateria1suchasvnterfrozen,~manicorr)'r1-"t~rir>>.-maerial.s>>chma<<aria),whenfoundrnmovpg,Thes~nh-r~mrr<<-flva.,hheddinqmaterialvaseithermixedattheta<<c)plantornh>ainrdfromanapprovedoffsitasource.T).psan)-r.~m~n-f1yashvasthenplacerlirliftsnotexceerlinq30:.nChi.-i.)ai>>'htnOrUfee<p~rhnur.FOrpipeSthepourWaS).ro>>qh<<<<othep'n~sprinqlinean0vasalloved<<oset.Fo.ducttink.",>h~)er)dinqwasno'.placeduntiltheductbankconcretP.rrachier)'hcrooui".~4strenqth.Sand-cement-flyashwasthennour"rl<<o<<h<trpoftho.d>>cthankandallovedtoset.Analysisof.herrlevantfieldtestsforbeR6inqmaterialisnc)udo)in<<he~umvaryqiveninTable2.5-61.g,5.U,6(go>>ndva<<~rConrli'+ions."n~c'alroa~ur~sforcontolofqroundvaterlevelsbeneaths:~ismicCa<<~ao".yInlantst.ructuresfounrledonrockarenot-.rq>>'red.How~v~r,controlofqroundva<<erlevelsandseepaqesr~~0~i)a<<<<h~snravoonrl;discussionofdesiqncriteriaforahili<<vof<<hospravpondispresrn'tedinSuhsection2.5.5.d>>."ioticvat=rlevelreadinqsverrobtainedinthevicinityofp".in'nalnlant(powerblock)structuresbetweenDecember~n7Pandhuaus'672.Groundwaterfluctuationsranqedfrom1.5i,".4r))).olds209,311,to6.2findrillhole213.maxim>>mqrounrlvaterlevelmeasuredintheplantstructures;)urinath'spreconstructionperior)ranqerlfromapproximatelyf.a.<<h~v~st~dqeofthesiteofthe<<urhinehuildinq,to,>)~n>>'6'ea!thoeas<<edqeofthesiteofthereactor.">>i).);na".(re.e".<<.o.Fiqure2.5-55).Thesrlevelsvore'ohviouslynfl>>~nc>r)hv.hr<<onoqraphichiqhof7U9ftjustvestof'thenf<<h~pnv.rh)nckstructures.However,subsetquent~xr~vatovandnrar)innintheso.aroasprecludewaterlevelsfrom".isirq.nhish~i>>htinthefutue.P>>ri'.>>cnr.",tr>>crior,,>hrareajustvest.of.hepoverhlock-trueur=..va~arxr)~)toelevation710ftorlrss.Excavationsfnrth~fn>>rrla~innsoftheprincipalplantstructuresex<<ender))airv<<h~va<<or<<ab]eandsomeminorrlevato.rinq*vasrequired.>u~<<nt)-rlr:vnnrm~ahi1ityoftherock,qro>>ndvaterinflowwas=mallan).va..cnnfinedtnseopaqefromfractures.Devaterinqvasaccomnli..hr,))vrumninqfromlovareasandsumps.Mh~reseepsv.'r~no'~r)issu)nqfromfracturesintherock,holesvererlillcAir,n>h~fractur~sandpipscaulkedintheholestocontrolvhilrthemudmatwasplaced.Inthefoundationforthe2.5-102 sSFS-PSARreactorhuildina(elevation619ft)andintheturbinecondensatepumppit(atelevation635ft),hydrostnticoressurecausedliftinaofsmallareasofthe3inchthickconcretemudmatthathadheenplacedovetheimperviousmembrane.Approximately20reliefve]lsdriliedthrouqhthemudmatreleasedthepressureardallowsdthemat:+oset;tiebacktoitsoriqinalposition.Theweiahtofthestructuralconcreteslabsubsequent:lyplacedonhismudmatwasmor>thansufficientto'esistanyupliftnressures.Thehiqhostseepsno+edinthefoundationrockdurinqconstructionwereatelevation642ftir.theradvastebuildinq~xcavationandataboutthesameelevatinninthepipet"enchin.hesouthempart:'of.theUnit2turbinehuildinq.Someseepswerealsonotedinthe.foundationrockforthereactorbuildingseleva+ion619ft.andinsumpsbelowthis.Tothewestoftheurbinehuildinqin.hecirculatinqvaterpumphouseexcavation,vatnrwasnotedtoen+ertheexcavationtoanelevationofanprnximat.~ly660.ft.Hvdrostaticliftinq(describedabove)ofimperv'ousmomhranedidnotoccuratfourdationelevetionsahove640ft.gjf5'av+C.hi}d'ona)informationwithreqardtogroundvatermonitorinqandvato,.tzbl~fluctuat.i.onsintheprincipalplartstructuresareaproyidFs1inSubsect:ion2.4.13andTables2.4-31and2.4-32.+htsorwvpond,w~terlevelirformatior.'akenbetveenJuly29,1974andhuaust4,1975,ardfromJanuary<hrouqhMarch1977,indiCateaminimumVa~erleVelfluCtuatiCnCf4.0ftreCOrdeda+nts~rva'r.wells1111and1113,andamaximumfluctuationof7.0<<tin11~5.AdditionaldiscussionofqrcundvaterfluctuatiorsirhoFnravpondareacanhefoundinSuhsect'on2.5.5.Because<<"oun!wa.e".levelss-.thepordwillbehighert.hanthemaximumn"ojecedfloodel~vation(refertoPiaure2.5-38andSubsectior.7.4.t,resp~r+ively),floodinqconditionsv'llnotsiqnificantly><<fr<-whoaroundvaterlevels.4'.~ca1v~!l..wi~hir.+vomil~softheplan'etov~reinventoriedand+heinformaior.isqivonir.Table2.4-22.':rour<'.wa+.flovsavavfromtheprincipalp!antstructuresareah~nor+h,east,hardsouth.Hovevor,thepredominantfairerionofflowi.-totheeastandsoutheasta'radientsof0.05~nd0.0~,r.snect;ively.Theflovrateinbedrockisimater'.>Oh~'..e.-.;-"thar.1ftperdayaSdiSCuSSedinSubSeCtiOn2.4.1l.Groundva".ercontoursatthesiteareshcwnonFigure>.)-'10.n:~rm'ahilitynfthointactbedrockatthef''/viir.h~av1raa~pormcahilitvofthesnravnonlis7,000ft/year;hovever,~OnrilerablVeXC-~dr]inSameteStS.FOrsi'eislessthan1qlacialmaterialsatthisvaluehasheenacompletedescrip+ion7..6-103 Qzwavf+~~>40~~4'Qs'~pg<ltawaM+8cu'@:gg~X4lt04%(IW/eAJ7VtgCu~~~(~''b:Mvo(<~~er:ep>gvs~;p-Q.73'~~un.f~~+La.mm~~~'h~~~ur~aleWa-~p~~~yo:>>fMrs'"a.~du'~fkypulAa/plpp  
Therefore, shearstrenqthtestinqvasconducted onlyonthesands.Thesheastrenqthoftheqravellysoilsvast.henconservatively assumedtoheequaltothatofthesands.Tho.detailsofthetestinqprocedures andselection ofResignstrengths aregiveninSubsection 2.5.5.Theeffective anqleofinternalfrictionwasselectedfrom'be+estdatatohe35~(Piqure2.5-34).Thecyclicshearstressratiosatthetvoeffectiveconsolidation pressures 1'.0ksfand6.0ksfveredetermined tobe0.320and0.260,resoectively, for5loadinqcycles(Figure2.5-35,Subsection 2.5.'5).Alinearrolationship wasassumedincomputing cyclicshearstressratiosatothereffee+iveconsolidation Dressures
~d)ShearRaveVolocitgandSheartloduliCross-hol~
shearvavevelocitymeasurements vereperformed hyteston('eophysical Engineers, Inc.(ref.2.5-99).Compressional andshearwavevelocities obtainedfromthemeasurements areqivenonPigure2.5-36.Shearmodu!iverecomputedfromthevaluesofshearvav~volocity:G=-V2gSwho.re:shearmodulus,psfunitveiqht,pcfqravitational acceleration, ft/sec~ncv.35,07/842.5-93 ll q+~@(~@SSFS-FSAR v=shearvav~velocity, fpsAdisc>>ssior.onhowtheshearmodulusisinfluenced byronfinina pre,sure, thes+rainamplitude, andth~"ela+iv~dansi+visaivenin~uhsection 2.5.5.2.~helocationofal1fieldexplorations isshovnnntheplotplan,F'quro2.5-72.n4.Atotalnfapproximately 250exploratory boringswasmadeinsoil~ndrocka-thesiie.Oorinqswereloggedindetail;horin'glogs~recontained inRef.s.2.5-97,2.5-98and2.5-99andAppendix2.5C.-hesoilswereclassified inaccordance withtheUnified"oilClassificationSvsiem.RockloqsincludeRQD(rockqualitydosiqnation) values.Coringinrockwasperformed usinqNXdo>>".le-tahe'or inaeauipment.
Drillinawasconducted inlate1970(100and200seriesborinqs)toestahlishq~reralqeoloqicrelationships overthesiteareaandtodetormine generalsoilandrockconditions atthesite.Amor~inten.iveDoqram(300.seriesborinqs)wasconducted inthe<nrnqof1971todcfinefoundation conditions intheprincipal olartst"ucturo.s ar~a.Four45-degree angleholesweredrilledin"h~reactoraea.Additionalexploraiion drillingwasr.ocessary
.olocatethesi+efortheSusquehanna Riverintakeandlischaran structure~
(700-B00seriesborinqs),
todefinesoilandockcondi+ions atthe,spraypondandESSQpumphouse site(1100..eriesandsome400seriesborings),
andtoinvestigate foundation conditions forthecoolingtowers(boringsB1to810)handtherailroadspurandbridgeoverStateHighway11(borings417to455and92atpq40).BeCauSeOftheSafety-rela+ed f(a+aaory T)urcitronofthespraypond>mad=
PSSMpumphouse the'xDloration proaramforthesefacilities wascomprehensive ard'ncludedsnliispoonandundisturbed samples,lahoratory testing,hvdroloaic survevs,nermeabilit.y tests,andseismiccross-hole
~ndup-holosurveys.Af+ercomple+ionofqeoloqicborinqs,~iaiicwaterlcvelsweremeasuredinsomeoftheboringsdr'iedon~hesite.Pcrforatedplasticpipeswereinstalled inarumblerofthohnrinas'oallowcollection offuturewaterleveldata.geesehnrirasare6no>edontheplotplan,Figure2.5-22.Portly-sever.
t~stpit~vereexcavated bybackhoeatselected1ccaiions toohservesoi.landrockconditions.
Twonorth-south trarchestotallinaover700ftinlenqthwereexcavated toobtaininfcrmat'on onphvsicalprop~rties, structure, andvariability of>h~near-surfac~
materials atthe.site.LoasofthetestpitsarhtrenthesarecompiledinAppendix2.5C.~ev.35,07/A42.5-94IIAAR):K~)p SSES-FShR gf54)~)~1ggcgygtjonslnRockA]1SnismicCa'.~gory Irockfoundations werecarriedtoorwellholovunweathered hedrock.Rockfoundations fortheturhineandradwastetuildinqs, althoughtheyarenotSeismicCategoryIstruc+uro.,
werepreparedaccording tothesameqeneralorncedures andcri+eriausedinpreparinq theSeismicCategoryTrockfoundations.
Fxcava+.ion ofrockproceeded hyinitialrippingofanyweathered surficial rockmaterialfollovedvherenecessary bylineblastingandpro.split tinqinhnlesdrilledtoprovideslopesof1horizontal to4ver+ical.
Fssentially verticalslopesinunweathered rockprovedstablethroughout thedurationofconstruction andnnspecialprotective measuresvererequired.
'eath~red rockwascu~on'slopes of1horizontal to2vertical.
~naf~vplaces,vie'~meshvasusedforprotection ofhighervoa~hered rockslopes+hatvereexposedforextendedperiods.hesurfacenftheexcavated foundation rockvasscaledtoremove1nosedebrisandJettedvithvaterorairtoremoveloose~rauments andtopreparethesurfaceforconcrete.
Beforeolacemert nfstucturalconcreteorconcretebackfilltodesignelovation,allSeismicCateqoryIfoundations vereinspected hyanenqin~erinq geologist toverifythesuitability oftherockandi.snropersurfacepreparation toreceiveconcrete.
Illfoundation rockhea.inqaSeismicCategoryEstructure wasrvooloqica]lymapoed(seeFigure2.5-183.Foundations foreachofthecoolinqtowers(nonsAismic-Category Es+ruct.ures) consistof40individual pedestals supportinq thecolumnardex+endedtobedrock.Excavation proceeded bycuttinqringtrenchandrrenarinaforeachpedestalasuitablesurfaceinunvca'hired orpartlyweathered bedrockbyrippinqorblastin4nares.".ary, followedhvscalinqandsetting..
Duringcons.ructionoforircipal plantstructures foundedonrock,excavationsextendedbelowthevatertableandsome.~l~waterinq vasroquired.
Dueto"thelovpermeability oftherock,groundwater inflovvassmall.Devaterinq wasaccomplish'ed hysurfacedrainsandsumos.Th~excavaticnfnr~hespraypond>sask ESSQPumphouse asorodominan+1v insoils.Fxcavation proceeded initially hyusinqgnv,15,(}7/R42.5-97~gl~gpa.(w<~4t4h~pg,pQ~~E SS~S-PSALM larqeear>>hmovingoquipment, thenfinishedbyusingmorerefinedpocedur~s..
Oncompletion ofexcava<<ion, thesurfacelayerofhena<<uralsoilformation wasrecompactcd asfollows:pnrsoilshavingnotmorethan12percentpassinqtheNn.200..ievasize,80nercentrelativedensityasRcterminedbyASTI02009h)F'rallo<<hersoils,95percentofmaximumdrydensityasdetermined byASTI015~7>ps>>Resul>>sar~includedinAppendix2.5C.Thelocationoftestspecimens withrespecttnthespraypondisshownon)'iqure2.5-~9.Astatistical analysisofthetestresultswasmadeandissummarized onFigure2.5-60.Therequiredcompaction wasm~torexceeded.
ADrotectiveconcretema+wasimmediately placedoverthecompacted soilundetheESSEPumphouse andaminimumof5in.thickreinforced concretelinerplacedovertheentirespraypondarea.A11temporarv slopesinsoilwereformedatamaximumslopeof11/2horizontalto1vertical.
Thetemporary slopesinthev'cinityofthe'?SSWpumphous>>
vereprotected wi>>ha3in.layerofconcret~tomaintain<<henatura}soilformation intact.Allpormanen>>
slopesinsoilwereformer)ataslopo,of3horizontal
.o1vertical...h~~xcava<<ion for<<ho.SeismicCategory1pioelines insoilwascarr.'cdoutsimilarly.
Allslopeswerecutat'maximumof11/2.",or'zontalto1vertical.
Theminimumclearances were1ftben~a<<hhepipeand2ft<<othesiRes.p9JISQY~?.'>.0.5.
3packf.illandCompaction
<;~neral]
v,the,excavated
~area,foraminimumdistanceof10ft:-.urrounRina
<<hemad'orstructures, washackfilledwithanon-corrosive 1eanmixconcreteknownassand-cement-flyash backfill.
minima3amountofbackfilling hastakenplaceusingqranularbackfill, wi<<h<<hoexception of<<hespravpondandvicinityaddrcsed1'at~rinthssection.h~Sie'smicCategoryTpipelines wereqenerallybackfilledwith<<)>,~sand-cern<
nt-f]yach;othcrwis~
qranularmaterialwasused.PurisdS~i.,micCategoryIelectrical ductbanks arecomposedofoirfore~.dconcr~>>aencasements aroundplasticcrmetalducting;>>heconc".ct~~ncas<<m~nt brinecastdirec+lyaqainstheexcavated2.5-98 J3HSoI4IIPPfILMocLInLPIAo pv-I(:egwgpoeycLuceo(g;<<gupcLoo-o-r>~P+Ioccocoq7Viar+
kwc(p-oo/c.
ALIIJc(erIfooLodMAP'P'tP//f+Q~]ac+oecP,Py~copPr~lQ~4gp-~~a~a7:ou.
k~y~~darurooossQRPole('JgoccUNgaoccQapp'IcpwPgaoa..Ttl~/Id'r(Q~'(~j'1'z.s'oc(op~ceclAdIP+2acLcp:II/5eveIce-d/eHspo.ct".Jy~goat~.y.voatsg
-ga.ysuM'goop<<(oo7~
grocIXui~
ederaeon'p"ogh~~~a.v.(o+eooctraf~vao'IL(Ji gx2cML(cartc+eoe7P oplAn~g;~TiigQMS/o>~~7'luu)o~
~r~/adToLPec.ceA.ct+o5'cecetoo'Ig~plSd(s'calpog'dpcPpc(-cere(gaefpace.kgv-o(dodecg:u~uncocrcLprocL(oPPILuuode.ocg'g/Pev7'Q.
SSHS-PSARlarqeearthmovinqequipment, thenfinishedbyusinqmorerefinedprocedures.
Oncompletion ofexcavation, thesurfacelayerofihenaturalsoilformation wasrecompacted asfollovs:a)Porsoilshavinqnotmorethan12percent.passingtheNo.200sievesize,80percentrelativedensityasdetermined byAST!lD2049h)Forallothersoils,95percentofmaximumdrydensityasdetermined byASTID1557Tes+ResultsareincludedinAppendix2.5C.Thelocationoftestsp~cimens withrespecttothespraypondisshovnonPiqure2.5-59.Astatistical analysisofthetestresultsvasmadeandisummarized onFigure2.5-60.Therequiredcompaction vasmetorexceeded.
Aprotective conrretema+vasimmediately placedoverthecompacted soilundertheESSMPumphouse andaminimumof5in.thickreinforced concretelinerplacedovertheentirespraypondarea.Alltemporarv slopesinsoilvereformedatamaximumslopeof.11/2horizontal to1vertical.
Thetemporary slopesinthevicinityofthe~SSWpumphouse vereprotected vi+ha3in.layerof,concretetomaintainthenaturalsoilformation intact.Allpormanen+
slopesinsoilvereformedataslopeof3horizontal
+o1vertical, Tbeexcavation for+heSeismicCategory1pipelines insoilvascarriedoutsimilarly.
Allslopesverecutatamaximumof11/2horizontal to1vertical.
Theminimumclearances vere1ftbeneaththepipeand2fttothesides.2.".>.4.5~)BackfillgndComportion'Generall v,theexcavated area,foraminimumdistanceof10ftsurrounding themaiorstructures, vasbackfilled withanon-corrosive leanmixconcreteknovnassand-cement-flyash backfill.
Aminima)amountofbarkfillinqhastakenplaceusinggranularbackfill, viththeexreption ofthespraypondandvicinityaddressed laterinth'ssection.p<gs+vg-heSeismicCategoryTpipelines veregenerally backfilled viththesand-cement-flyash; otherwise qranularmaterialwasused.BuriedSeismicCategoryIelectrical ductbanks arecomposedofreinforced concre+eencasements aroundplasticcrmetalducting;'heconcreteencasement beingcastdirec+lyaqainst'heexcavated Rev.35,07j842.5-98 3pzu+Qa.~n.v~tQp~~~~ELM~4@i(:II)atra-3Ajc-p;(/Q w+L.s~$-'c.~~Jg(p,l,+,~(~)$al~~p-,~:~l  
~>tr'rial,'".>>.",m~rinq."pacification int~n<<.~)os>>hqraqealsoinsn"r!r)forunsuitahl<<'ateria 1suchasvnterfrozen,~manicorr)'r1-"t~rir>>.-
maerial.s>>chma<<aria),
whenfoundrnmovpg,Thes~nh-r~mr r<<-flva.,h heddinqmaterialvaseithermixedattheta<<c)plant ornh>ainrdfromanapprovedoffsitasource.T).psan)-r.~m~n-f1yashvasthenplacerlirliftsnotexceerlinq 30:.nChi.-i.)ai>>'htnOrUfee<p~rhnur.FOrpipeSthepourWaS).ro>>qh<<<<o thep'n~sprinqlinean0vasalloved<<oset.Fo.ducttink.",>h~)er)dinqwasno'.placeduntiltheductbankconcretP.rrachier)'hcrooui".~4 strenqth.Sand-cement-flyash wasthennour"rl<<o<<h<trpoftho.d>>cthankandallovedtoset.Analysisof.herrlevantfieldtestsforbeR6inqmaterialisnc)udo)in<<he~umvaryqiveninTable2.5-61.g,5.U,6(go>>ndva<<~r Conrli'+ions."n~c'alroa~ur~sforcontolofqroundvater levelsbeneaths:~ismicCa<<~ao".y Inlantst.ructures founrledonrockarenot-.rq>>'red.
How~v~r,controlofqroundva<<er levelsandseepaqesr~~0~i)a<<<<h~snravoonrl;discussion ofdesiqncriteriaforahili<<vof<<hospravpondispresrn'tedinSuhsection 2.5.5.d>>."ioticvat=rlevelreadinqsverrobtainedinthevicinityofp".in'nal nlant(powerblock)structures betweenDecember~n7Pandhuaus'672.
Groundwater fluctuations ranqedfrom1.5i,".4r))).olds209,311,to6.2findrillhole213.maxim>>mqrounrlva terlevelmeasuredintheplantstructures
;)urinath'spreconstruction perior)ranqerlfromapproximately f.a.<<h~v~st~dqeofthesiteofthe<<urhinehuildinq, to,>)~n>>'6'e a!thoeas<<edqeofthesiteofthereactor.">>i).);na".
(re.e".<<.o.Fiqure 2.5-55).Thesrlevelsvore'ohviously nfl>>~nc>r)hv.hr<<onoqraphic hiqhof7U9ftjustvestof'thenf<<h~pnv.rh)nckstructures.
However,subsetquent~xr~vatovandnrar)innintheso.aroasprecludewaterlevelsfrom".isirq.nhish~i>>htinthefutue.P>>ri'.>>cnr.",tr>>c rior,,>hrareajustvest.of.hepoverhlock-trueur=..va~arxr)~)toelevation710ftorlrss.Excavations fnrth~fn>>rrla~inns oftheprincipal plantstructures ex<<ender)
)airv<<h~va<<or<<ab]eandsomeminorrlevato.r inq*vasrequired.
>u~<<nt)-rlr:vnnrm~ahi1ityoftherock,qro>>ndvater inflowwas=mallan).va..cnnfinedtnseopaqefromfractures.
Devaterinq vasaccomnli..hr,))vrumninqfromlovareasandsumps.Mh~reseepsv.'r~no'~r)issu)nqfromfracturesintherock,holesvererlillcAir,n>h~fractur~sandpipscaulkedintheholestocontrolvhilrthemudmatwasplaced.Inthefoundation forthe2.5-102 sSFS-PSARreactorhuildina(elevation 619ft)andintheturbinecondensate pumppit(atelevation635ft),hydrostnticoressurecausedliftinaofsmallareasofthe3inchthickconcretemudmatthathadheenplacedovetheimpervious membrane.
Approximately 20reliefve]lsdriliedthrouqhthemudmatreleasedthepressureardallowsdthemat:+oset;tiebacktoitsoriqinalposition.
Theweiahtofthestructural concreteslabsubsequent:ly placedonhismudmatwasmor>thansufficientto'esistanyupliftnressures.Thehiqhostseepsno+edinthefoundationrockdurinqconstruct ionwereatelevation 642ftir.theradvastebuildinq~xcavation andataboutthesameelevatinninthepipet"enchin.hesouthempart:'of.theUnit2turbinehuildinq.
Someseepswerealsonotedinthe.foundation rockforthereactorbuildings eleva+ion 619ft.andinsumpsbelowthis.Tothewestoftheurbinehuildinqin.hecirculatinq vaterpumphouse excavation, vatnrwasnotedtoen+ertheexcavation toanelevation ofanprnximat.~ly 660.ft.Hvdrostatic liftinq(described above)ofimperv'ous momhranedidnotoccuratfourdation elevetions ahove640ft.gjf5'av+C.hi}d'ona)informationwithreqardtogroundvater monitorinqandvato,.tzbl~fluctuat.i.ons intheprincipal plartstructures areaproyidFs1inSubsect:ion 2.4.13andTables2.4-31and2.4-32.+htsorwvpond,w~terlevelirformatior.
'akenbetveenJuly29,1974andhuaust4,1975,ardfromJanuary<hrouqhMarch1977,indiCateaminimumVa~erleVelfluCtuatiCn Cf4.0ftreCOrdeda+nts~rva'r.wells1111and1113,andamaximumfluctuationof7.0<<tin11~5.Additional discussion ofqrcundvater fluctuatiors irhoFnravpondareacanhefoundinSuhsect'on 2.5.5.Because<<"oun!wa.e".levelss-.thepordwillbehighert.hanthemaximumn"ojecedfloodel~vation (refertoPiaure2.5-38andSubsectior.
7.4.t,resp~r+ively),
floodinqconditions v'llnotsiqnificantly
><<fr<-whoaroundvaterlevels.4'.~ca1v~!l..wi~hir.+vomil~softheplan'etov~reinventoried and+heinformaior.isqivonir.Table2.4-22.':rour<'.wa+
.flovsavavfromtheprincipal p!antstructures areah~nor+h,east,hardsouth.Hovevor,thepredominant fairerionofflowi.-totheeastandsoutheast a'radients of0.05~nd0.0~,r.snect;ively.
Theflovrateinbedrockisimater'.>Oh~'..e.-.;-"
thar.1ftperdayaSdiSCuSSed inSubSeCtiOn2.4.1l.Groundva".er contoursatthesiteareshcwnonFigure>.)-'10.n:~rm'ahil itynfthointactbedrockatthef''/viir.h~av1raa~pormcahilitvofthesnravnonlis7,000ft/year;hovever,~Onrilerabl VeXC-~dr]inSameteStS.FOrsi'eislessthan1qlacialmaterials atthisvaluehasheenacompletedescrip+ion7..6-103 Qzwavf+~~>40~~4'Qs'~pg<ltawaM+8cu'@:gg~X4lt04%(IW/eAJ7VtgCu~~~(~''b:Mvo(<~~er:ep
>gvs~;p-Q.73'~~un.f~~+La.mm~~~'h~~~ur~aleWa-~p~~~yo:>>fMrs'"a.~du'~f kypulAa/plpp  
'
'
SSPS-PSAR2,5.4.10Static..".ahi1itv2.5.4.10.1S<aticStahi1ityotSafety-P~1a'<)Sttuct(iresSuppnr+.edongock~hereactorhu'dinqs,controlstructure,andth<diesele'en<rotorhuildinq,allofwhichar<'eismicCateqory-~r>>c+ur~s,ar<foundodonsound,'nweatheredsiltstonebedrock.~heSoismic(.a+eqnryIpipelineslinkinathereactorbuildingswiththespravpondaretrenchedpartlyinsoilandpartlyinbo.drock.>h~strenq+hoftheunweatheredbedrockamplyaccommodatestheload.nf<.heplantprnvidinqhiqhlystablefoundationcnnditions.m<as>>redintheSeismicCateqoryIreactorarea,compressionalv~1ncitinsareintheranqeof14,000to16,000fps;shearwavevelocityranqeshetween6,200and7,600fps.StaticdeFcrmationalmnd>>l'smeasuredonrockcoresvaryhetween3.1nq.4x10~psi(refer~oTahl~2.5-3).measurementsof>>neonfinedcornpressivestrengthofunweathe'redfcun()ationrockfrom<hevicini".vnftheprincipalplantst"octureswerebetween3,650and16,000psi(Table2.5-3).Staticpropertiesof'thefnun.lationnckar~summarizedin>able2.5-5.Loadsinducedbythnnlantstructuresarelessthantheallowablebearinqpressurenf+);ernckandfarbelowtheultimatehearinqcapacity.Thestrue+uralloadswillproducenosiqnificanttotalord'f<r~n+ialsettlementofthefoundations.Safety-r~lat<<dstructuresfoundedonrockweredesiqnedforahvdrosta+itaround'waterloadirqcausedhyamaximumqroundwater,1<~v~1of.665f+.Thisishigherthantheexpectodmaximum,waterlev~l,a<<)iscussedinSuhsection2.4.13.?.'5.4.10."S'.atic~'ahilityofSafetv-R~la~odSt,ucturesSunonr<<donSoil~hema~fon.inqoftheFSSWpumphousois112ft,1onq,64ftwide,and3.ftthick..Thetotaldeadandliveloadsare20,000kipsand2,100kps,resnectively.Thecorresponding>>nitpressuresar2.PAk.".fandA.30ksf,respectively.Thehotoraoft;hemat:~,at,e'ovation6'>7f+..h>ultimat<bearingcapacitvoftho((atcanbeestimatedbythefnl)owinq~q<>ation(Ref.2.5->>5):whi+rP~1/?0<N+D(N"1)fc)2.5-106 SSFS-FSAnultimatehearingcapacjty8=widthofthemat=64Y=unitweiqhtofthesoil=130pcfDf=dapthof,surcharge,conservativelyassumedtobezerohearinqcapacityfactorsYq38,and33,respectively(Fef.2.5-115}correspondinqtog=35~(Subsection2.5.4.2.?)Tho.ul+ima+ahaarinqcanacityofthematfoundationvasfoundtobe158kips/saft.Thefactorofsafetywascomputedtohe51,vhichindicatesrodanqarinoverstrassinqthesupportinqgranularsoil.Therefore,theallowablehearinqpressureandsattlamentofthematfootingwereevaluatedbythemethodoflimi+inqsettlamentssuggestedbyPeck,Hanson,andThornhurn{3~f.2.5-116).Th~allovablehearinqpressureforamaximumso,.+tlamentnottoqxcaad2in.wascomputedbytheformula:vher~:0.22CnCwHallowablehearinqpressures,tsfnumberofblovsparfootinthestandardpenat.ationtestn'Cwcorrectionfactorsfor"N",fortheeffectsofoverburdenpressureandlocationofgroundwatersurfac~co;..ervaiveNvalueof4Avasselectedtorepresentthasoilsl.elow+hama'oundation(El~vation657ft,Fiqure2.5-38).TheStardardPcn<.trationTestshelovthefounda'.ionlevelveremadeanavaraqeoverburdenpressureofabout6,000psf(Figure2.5-39);thecorraspondinqcorrectionfactorCvasobtairedfromFigure19.6ofBaf.2.5-115tobe0.63.Assuminqthatthegroundwatersurfaceisat7ftbelovthematandnosurcharqe,thecorrectionfactorCvascomputedtobe0.55hyequatio194ofFc~f.2.5-115.~hanllnvablebaarinqpressurevascomputedtohe6.0kips/sqfthasadnnthovaluesof,N,C,andCwqivanabove.Atthishoarinqpressure,thesettlementof~thematfoundationshouldheloess',han2in.anRthedifferentialsettlementshouldbelessher1/4.in.Therefore,hvproportion,foradesiqntotalnrossuraof3.1kips/sqft,thecorrespondingmaximumandPav.)5,07/842.5-107 SSFS-FShR~Ij~fnentillsettlementswouldbelessthan1in.and1/2in.,respect''v~lv.Settlementinsandardqraveldepnsitsoccursalmostsimultaneouslyvith~heapplicationoflead.Sincemorehen00nercon>nfthetotalloadisdcadload,'henlessthan0.2in.nfsettlom~ntjsexpectedafterthecompletionofthecng.-.~runtinn.'agert"he&#x17d;tructuralstabilityoftheESSvpumphouseisdiscussedinSuhection3.8.4and3.8.5.~hesustairedloadfromthespraypondislessthantheveiqhtofoverburdenremoved;therefore,thereisanadequatefactorofsafotyaaainstoverstressinqtheunderlyingsoil.Soilrebounddurinaexcavationir.granularsoilsofthetypefoundatthesnrzvpondisinsiqnificant.h~maximumpredictedelevationofthewatertableisbelovthehaseofth~spravpondandESSMpumphouse;therefore,hydrostaticwaterloadinqswerenotconsideredinthedesignoftheses+ru'ctures.AfulldiscussionofthewatertableinthisvicinityisinSubsection,2.5.5..hela'nralnarthpressureactingonsuhterranear.vallsofsmicCa+eqorvIstructuresvascomput.odassumingqranularhackfillhavinathepropertiesstatedinSubsection2.5.4.5.3.~heco~fficiontofearthpressure"at-rest"vasused.:idditinnallv,thewallsveredesiqnedforsurchargeloadinqsanddynamicsoilpressuesasappropriate.ThetypicalpressurediaqramsandcomhinatiorsareshovnonFiqure2.5-39.>'aterlevelsin'hespraypondareaarediscussedinSubsection2.5.5.1.2.Contoursof'heqroundvatertableinthespraypondareaaresho~nonFigure2.5-38..ProfilesofmeasuedandprospectedprnfilesoftheqroundwatertableheneaththsprayoondareshovnnnFigure2.5-40.2,.'>.4.11DesignCriteria2.5.4.11.1PesiqnCriteriaofSafety-RelatedStructuresnnRock-h~plant';=+ructuresfoundedonrockaredesignedforamaximumaccelerationnf0.10qfromanoccurrenceoftheSSF.event.Fromc.onsideationofitsenqireerinqproperties,itisevidentthatth~foundationroc:kvillnotbemeasurablyaffectedhyseismiclozdinas,andnealiqibleadditionalfoundationsettlementvillaI-.company,thesomaximumpotentialdynamicloads.~hemaximumcnn'emplat~dto>alstaticanddynamicloadsof40tsfareonlya2.5-108 S'awc<<~kt.YksQ]rdcd+yes.cdfscyp/;Rst~.~le4c.rig~~~hRsr:nge~~c.4+LN~~+s~+4d(o~14.b~r:hW~:mu.kWatftc.WaV~g+~<<aMVCESS.TYs.@'~gk7~~W~Ms~~~fW~(c~P.>>k>gPC'fddkp~~+CV4:ck.7SSC.QdaPCSCP+9:vC.g4s,.sdrWJ(/,9as~e(CEPS,k./psylzspcc7'cr.7gc.csrrcspskg.'stsRhgprcssdSrRs0,/~/cSg~SSil/krf-)dspwc7.'acyl~/AZJ4q~p~va''+r'.o7IdskGllpdkkgslssscY:llf~ss-cQdt'f4Qw.Qa.7~ArtccQcckdtvtsg>>+4cgsg~771q~c~Pg~~~V~~@-CA/'CdCSCkpMadj~l.-Mc~c.v-aa.~a}x.o)Ys'f~a,gch,-skdkkds@ffcsdiew+'hR7QY2I/lcY+~+~SkddS'PkllLkd5cfffelk~cdrY-asPAlg;Jl)~4o(osQ+y~~srcyoZ3kg~YES(hR/s~~/g~~PSS~q~YPR'-c7'in2g/
SSPS-PSAR2,5.4.10Static..".ahi1itv2.5.4.10.1S<aticStahi1ityotSafety-P~1a'<)Sttuct(iresSuppnr+.edongock~hereactorhu'dinqs, controlstructure, andth<diesele'en<rotorhuildinq, allofwhichar<'eismic Cateqory-~r>>c+ur~s, ar<foundodonsound,'nweathered siltstone bedrock.~heSoismic(.a+eqnry Ipipelineslinkinathereactorbuildings withthespravpondaretrenchedpartlyinsoilandpartlyinbo.drock.>h~strenq+hoftheunweathered bedrockamplyaccommodates theload.nf<.heplantprnvidinq hiqhlystablefoundation cnnditions.
SSES-PSAR2~5115peckp,Bf{anson,R~P~.andThron'burn,T~H~,1974,FoundationFnaineerina,2ndHd.,JohnRiley6Sons,Inc.~>Z~WA~~<+ac~Ary<<~7gY5'E'f.~~i8a7.av9ov.35,07/R42.5-151 tr//(EXPLANATIONf/,///////;~<<ggg>>CoraourontoaotueorocslcoraourintenKIIOrect.Sersn'.Kcctecor7I~iI~.)I~~~>Jl/IDIESELGENERATBLDG.t,gQCM~-MA~J'r/(Q~Strue-.UtesornerroonsesnKcategor7I:SasrnKCarertoryIpipeones.~/Jj+SeisrnKcofciof7?"iEfr/~g~~rrrya=R~lnIIIIIIIIIIIIIIShaarngrtenoresstructures~'founcle4cnhearock,em%J(:-)~Ir'ooeco'ooecoSCALEINFEETTIO~~-r:/j~J.'/Jeseeceel%l)IIIIRev.35.OT94~SUSQUEHANNASTEAMELECTAICSTATIONUNITS1ANO2FINALSAFETYANALYSIS8EFOIITEXTEVTO.ROC'OSOrLFOUNOATTONSFIGURE
m<as>>redintheSeismicCateqoryIreactorarea,compressional v~1ncitinsareintheranqeof14,000to16,000fps;shearwavevelocityranqeshetween6,200and7,600fps.StaticdeFcrmational mnd>>l'smeasuredonrockcoresvaryhetween3.1nq.4x10~psi(refer~oTahl~2.5-3).measurements of>>neonfinedcornpressivestrengthofunweathe'redfcun()ation rockfrom<hevicini".v nftheprincipal plantst"octureswerebetween3,650and16,000psi(Table2.5-3).Staticproperties of'thefnun.lationnckar~summarizedin>able2.5-5.Loadsinducedbythnnlantstructures arelessthantheallowable bearinqpressurenf+);ernckandfarbelowtheultimatehearinqcapacity.
~AS~I>>>>IIIsT)-.=:.stt4sII'F<<~<<=-///ee<<%>>eee<<sUPr)-.:.iI/ee/'elIl..Is4'"XI(1s4[.I-e,e-~l4-:',l4L-l~<<e~ste4e+eeeee~eI~~ee~4~ee~<<s>~e<<9tT'is~~t<<ee>>e>>e~~/v~eee<<rS<<<<w>>e<<w4<<>>>>S<<<<4~>>eweeeeeew>>>>~ee>>Seee0~<<>>ww<<<<>>eew<<eee<<Sv>><<~IL0~St<<eeet<<ee'Sees<<eSw<<et<<~I<<e<<w>>C<<>>tie/4NOTES1.CEOLOCICSECTIONSARESNOMNINFICURES2.19,2.5-21A.2.5-219,2.~0AND2.5-56.2.CEUPNTSICALEIPLORATIONANOORILLROLESUSERFRRCEOFNTSICALMEASURE-MENTSAlECROONINFIRURE2.5-20,S.RURINC1116AND'l12'IRERENOIOllLLEANOARETHEREFORENOISNOINONTNEPLOtFLAN.A.TElLAPIAKIOORINCMO-2ARENOR'INOFPLOTPLPIAREA;INEIRTRUELOCAtlONSAlEINOICAIEORttNEARROISANOOISTANCESSNOINON'INEFLAN.ssgseessteCico~IAa<<e<<H'-SetwN4--j~J~1'.IIL=sIfiesgU'el.-I(~./t'erej'R~Jll(ll(ll,ill.w(IIl,l,tI~eeI'~Mse4>>iI<<~<<re>>5CaateeICItRseV.35,0t34SUSOVEHANNASTEAAIELECTRICSTATIONUNITS'IANO2FINALSAFETYAJIALYSISAEPORTPL%'LANFIGUREZ,0.22 OVILOVCC~lVvtVIIIdTIS(TIg'r'LCICR.ICIsOTC5LTNCCRIOCs4CATCOCCRRESPOsOSTOTIttPstlttt5yLYANSASTATCCCOROSNATC5TCTCIL~~~8~3+COCvtoastyOCSCLNCRATOROVILOItSOQc(SS)+sOyCRPLOTtIsARKIICCr(SS>WCCsCVROSPROPOSCCI45$5LPVC.TSVCCLCOCNO+CONCNOLOLOCATKNCytCISSLyOICCACOOORPso(RcsLotslSJPtcoRCRPVIITIvtattea~OTVROeeCMLOQICIPsCVst5tIPLANT55CVRITTPCstCCPIANTg-./I4O'LINCR.R.:IIIIIIIJs~t~(:~~~~g70tORAPtasCSCALCtovEtt~gy~ANASDRILLEOBORINGLOCATIONPLANOltstsvCHIICgrttg.svvvASSNONNFIGUREI~STLyAISAIICIIGI8LIGIII'OOMI'ANSVCCVOVSPtASTCAVCLCCTACSTJTKNN(WfV(RCCNCT4(S(LC(K(GATORfJCCITT
Thestrue+uralloadswillproducenosiqnificant totalord'f<r~n+ialsettlement ofthefoundations.
Safety-r~lat<<d structures foundedonrockweredesiqnedforahvdrosta+it around'water loadirqcausedhyamaximumqroundwater
,1<~v~1of.665f+.Thisishigherthantheexpectodmaximum,waterlev~l,a<<)iscussedinSuhsection 2.4.13.?.'5.4.10."S'.atic~'ahilityofSafetv-R~la~od St,ucturesSunonr<<donSoil~hema~fon.inqoftheFSSWpumphouso is112ft,1onq,64ftwide,and3.ftthick..Thetotaldeadandliveloadsare20,000kipsand2,100kps,resnectively.
Thecorresponding>>nit pressures ar2.PAk.".fandA.30ksf,respectively.
Thehotoraoft;hemat:~,at,e'ovation 6'>7f+..h>ultimat<bearingcapacitvoftho((atcanbeestimated bythefnl)owinq~q<>ation (Ref.2.5->>5):whi+rP~1/?0<N+D(N"1)fc)2.5-106 SSFS-FSAnultimatehearingcapacjty8=widthofthemat=64Y=unitweiqhtofthesoil=130pcfDf=dapthof,surcharge, conservatively assumedtobezerohearinqcapacityfactorsYq38,and33,respectively (Fef.2.5-115}correspondinq tog=35~(Subsection2.5.4.2.?)Tho.ul+ima+ahaarinqcanacityofthematfoundation vasfoundtobe158kips/saft.Thefactorofsafetywascomputedtohe51,vhichindicates rodanqarinoverstrassinq thesupportinq granularsoil.Therefore, theallowable hearinqpressureandsattlament ofthematfootingwereevaluated bythemethodoflimi+inqsettlaments suggested byPeck,Hanson,andThornhurn
{3~f.2.5-116).Th~allovable hearinqpressureforamaximumso,.+tlament nottoqxcaad2in.wascomputedbytheformula:vher~:0.22CnCwHallowable hearinqpressures, tsfnumberofblovsparfootinthestandardpenat.ationtestn'Cwcorrection factorsfor"N",fortheeffectsofoverburden pressureandlocationofgroundwater surfac~co;..ervaiveNvalueof4Avasselectedtorepresent thasoilsl.elow+hama'oundation (El~vation 657ft,Fiqure2.5-38).TheStardardPcn<.trationTestshelovthefounda'.ion levelveremadeanavaraqeoverburden pressureofabout6,000psf(Figure2.5-39);thecorraspondinq correction factorCvasobtairedfromFigure19.6ofBaf.2.5-115tobe0.63.Assuminqthatthegroundwater surfaceisat7ftbelovthematandnosurcharqe, thecorrection factorCvascomputedtobe0.55hyequatio194ofFc~f.2.5-115.~hanllnvablebaarinqpressurevascomputedtohe6.0kips/sqfthasadnnthovaluesof,N,C,andCwqivanabove.Atthishoarinqpressure, thesettlement of~thematfoundation shouldheloess',han2in.anRthedifferent ialsettlement shouldbelessher1/4.in.Therefore, hvproportion,foradesiqntotalnrossuraof3.1kips/sqft,thecorresponding maximumandPav.)5,07/842.5-107 SSFS-FShR
~Ij~fnentillsettlements wouldbelessthan1in.and1/2in.,respect''v~lv.Settlement insandardqraveldepnsitsoccursalmostsimultaneously vith~heapplication oflead.Sincemorehen00nercon>nfthetotalloadisdcadload,'henlessthan0.2in.nfsettlom~nt jsexpectedafterthecompletion ofthecng.-.~runtinn.'agert"he&#x17d;tructural stability oftheESSvpumphouse isdiscussed inSuhection 3.8.4and3.8.5.~hesustairedloadfromthespraypondislessthantheveiqhtofoverburden removed;therefore, thereisanadequatefactorofsafotyaaainstoverstressinq theunderlying soil.Soilrebounddurinaexcavation ir.granularsoilsofthetypefoundatthesnrzvpondisinsiqnificant.
h~maximumpredicted elevation ofthewatertableisbelovthehaseofth~spravpondandESSMpumphouse; therefore, hydrostatic waterloadinqswerenotconsidered inthedesignoftheses+ru'ctures.
Afulldiscussion ofthewatertableinthisvicinityisinSubsection, 2.5.5..hela'nralnarthpressureactingonsuhterranear.
vallsofsmicCa+eqorvIstructures vascomput.od assumingqranularhackfillhavinathepropertiesstatedinSubsection 2.5.4.5.3.~heco~fficiont ofearthpressure"at-rest" vasused.:idditinnallv, thewallsveredesiqnedforsurcharge loadinqsanddynamicsoilpressuesasappropriate.
Thetypicalpressurediaqramsandcomhinatiors areshovnonFiqure2.5-39.>'aterlevelsin'hespraypondareaarediscussed inSubsection 2.5.5.1.2.
Contoursof'heqroundvater tableinthespraypondareaaresho~nonFigure2.5-38..Profilesofmeasuedandprospected prnfilesoftheqroundwater tableheneaththsprayoondareshovnnnFigure2.5-40.2,.'>.4.11 DesignCriteria2.5.4.11.1 PesiqnCriteriaofSafety-Related Structures nnRock-h~plant';=+ructures foundedonrockaredesignedforamaximumacceleration nf0.10qfromanoccurrence oftheSSF.event.Fromc.onsideationofitsenqireerinq properties, itisevidentthatth~foundationroc:kvillnotbemeasurably affectedhyseismiclozdinas, andnealiqible additional foundation settlement villaI-.compa ny,thesomaximumpotential dynamicloads.~hemaximumcnn'emplat~d to>alstaticanddynamicloadsof40tsfareonlya2.5-108 S'awc<<~kt.YksQ]rdcd+yes.cdfscyp/;Rst~.~le4c.rig~~~hRsr:nge~~c.4+LN~~+s~+4d(o~14.b~r:hW~:mu.kWatftc.WaV~g+~<<aMVCESS.TYs.@'~gk7~~W~Ms~~~fW~(c~P.>>k>gPC'fddkp~~+CV4:ck.7SSC.QdaPCSCP+9:vC.g4s,.sdrWJ(/,9as~e(CEPS,k./psylzspcc7'cr.7gc.csrrcspskg.'st sRhgprcssdSrRs 0,/~/cSg~SSil/krf-)dspwc7.'acyl
~/AZJ4q~p~va''+r'.o7IdskGllpdkkgslssscY:llf~ss-cQdt'f4Qw.Qa.7~ArtccQcckdtvtsg>>+4cgsg~771q~c~Pg~~~V~~@-CA/'CdCSCkpMadj~l.-Mc~c.v-aa.~a}x.o)Ys'f~a,gch,-skdkkd s@ffcsdiew+
'hR7QY2I/lcY+~+~SkddS'PkllLkd5cfffelk~cdrY-asPAlg;Jl)
~4o(osQ+y~~srcyoZ3kg~YES(hR/s~~/g~~PSS~q~YPR'-c7'in2g/
SSES-PSAR 2~5115peckp,Bf{anson,R~P~.andThron'burn, T~H~,1974,Foundation Fnaineerina, 2ndHd.,JohnRiley6Sons,Inc.~>Z~WA~~<+ac~Ary<<~7gY5'E'f.~~i8a7.av9ov.35,07/R42.5-151 tr//(EXPLANATION f/,///////;~<<ggg>>CoraourontoaotueorocslcoraourintenKIIOrect.Sersn'.Kcctecor7I~iI~.)I~~~>Jl/IDIESELGENERATBLDG.t,gQCM~-MA~J'r/(Q~Strue-.Utes ornerroonsesnKcategor7I:SasrnKCarertory Ipipeones.
~/Jj+SeisrnKcofciof7?"iEfr/~g~~rrrya=R~lnIIIIIIIIIIIIIIShaarngrtenoresstructures
~'founcle4cnhearock,em%J(:-)~Ir'ooeco'ooecoSCALEINFEETTIO~~-r:/j~J.'/Jeseeceel%l)IIIIRev.35.OT94~SUSQUEHANNA STEAMELECTAICSTATIONUNITS1ANO2FINALSAFETYANALYSIS8EFOIITEXTEVTO.ROC'OSOrLFOUNOATTONS FIGURE
~AS~I>>>>IIIsT)-.=:.stt4sII'F<<~<<=-///ee<<%>>eee<<sUPr)-.:.iI/ee/'elIl..Is4'"XI(1s4[.I-e,e-~l4-:',l4L-l~<<e~ste4e+eeeee~eI~~ee~4~ee~<<s>~e<<9tT'is~~t<<ee>>e>>e~~/v~eee<<rS<<<<w>>e<<w4<<>>>>S<<<<4~>>eweeeeeew>>>>~ee>>Seee0~<<>>ww<<<<>>eew<<eee<<Sv>><<~IL0~St<<eeet<<ee'Sees<<eSw<<et<<~I<<e<<w>>C<<>>tie/4NOTES1.CEOLOCICSECTIONSARESNOMNINFICURES2.19,2.5-21A.2.5-219,2.~0AND2.5-56.2.CEUPNTSICALEIPLORATIONANOORILLROLESUSERFRRCEOFNTSICAL MEASURE-MENTSAlECROONINFIRURE2.5-20,S.RURINC1116AND'l12'IRERENOIOllLLEANOARETHEREFORE NOISNOINONTNEPLOtFLAN.A.TElLAPIAKIOORINCMO-2ARENOR'INOFPLOTPLPIAREA;INEIRTRUELOCAtlONS AlEINOICAIEO RttNEARROISANOOISTANCES SNOINON'INEFLAN.ssgseessteCi co~IAa<<e<<H'-SetwN4--j~J~1'.IIL=sIfiesgU'el.-I(~./t'erej'R~Jll(ll(ll,ill.w(IIl,l,tI~eeI'~Mse4>>iI<<~<<re>>5CaateeICItRseV.35,0t34SUSOVEHANNA STEAAIELECTRICSTATIONUNITS'IANO2FINALSAFETYAJIALYSIS AEPORTPL%'LANFIGUREZ,0.22 OVILOVCC~lVvtVIIIdTIS(TIg'r'LCICR.ICIsOTC5LTNCCRIOCs4CATCOCCRRESPOsOS TOTIttPstlttt5yLYANSA STATCCCOROSNATC 5TCTCIL~~~8~3+COCvtoastyOCSCLNCRATOROVILOItSO Qc(SS)+sOyCRPLOTtIsARKIICCr(SS>WCCsCVROSPROPOSCCI 45$5LPVC.TSVCC LCOCNO+CONCNOLOLOCATKNCytCISSLyOICCACOOORPso(RcsLotsl SJPtcoRCR PVIITIvtattea~OTVROeeCMLOQICIPsCVst5tIPLANT55CVRITTPCstCCPIANTg-./I4O'LINCR.R.:IIIIIIIJs~t~(:~~~~g70tORAPtasC SCALCtovEtt~gy~ANASDRILLEOBORINGLOCATIONPLANOltstsvCHIICgrttg.svvvASSNONNFIGUREI~STLyAISA IICIIGI8LIGIII'OOMI'AN SVCCVOVSPtA STCAVCLCCTACSTJTKNN(WfV(RCCNCT4(S(LC(K(GATOR fJCCITT


@nil(lllllllllllllllllllf(tIII(IIIIIIIIIIfP".IIIIII(III~IIIIIft((((((aw(l(((((l((((((((((((l((((((((((((((((l(IrYrrcr1I~'r//j,,J)'rJr~I/tITT,"I~47~r!II~I~'llt)()'grESrvrVvrrverrvrlrf~v~k4tf~~vr(~v(GENERATORE)Illc1r(.(i.-'.1III.(s(sI~~r.~(~(~.I>>~rr~'~~Unsg~)1.rrI~,(l~El'~lrr=1If~rr'rrr+~~~rII~~~~~~/~>>~rr4~I'I(arrlrrrrr(r,rrrrr1J~rrRev.35,pal~.ENANNASTEAAtELECTR!CSTATIONUNITS1ANQSRNALSAFETYA1(ALYSISREPORT1FIGVRE2~5  
@nil(lllllllllllllllllll f(tIII(IIIIIIIIIIfP".IIIIII(III~IIIIIft((((((aw(l(((((l((((((((((((l((((((((((((((((l (IrYrrcr1I~'r//j,,J)'rJr~I/tITT,"I~47~r!II~I~'llt)()'grESrvrVvrrverrvrlrf~v~k4tf~~vr(~v(GENERATOR E)Illc1r(.(i.-'.1III.(s(sI~~r.~(~(~.I>>~rr~'~~Unsg~)1.rrI~,(l~El'~lrr=1If~rr'rrr+~~~rII~~~~~~/~>>~rr4~I'I(arrlrrrrr(r,rrrrr1J~rrRev.35,pal~.ENANNASTEAAtELECTR!CSTATIONUNITS1ANQSRNALSAFETYA1(ALYSIS REPORT1FIGVRE2~5  


0I>><<e0~lIglIi00T'F.,/<</w./,///<<r;/'//./''//tJY/000~Ketrt<<<<te<<0>>0~liteI'00.l/J/gE'tIfl/'I'~0~~/07te0JtIIIItlIt)~,l~I'4ILIfi',Qi000<<K<<tee~.a.0<<~<<0L~>>I<<e>><<fa)II>>Kte~e<<tttt0~<<K~I~tDIEEEIGENERATORE'LDG.'yf:g~:~piKKete~0,<<>>teeertetee<<er'<<000<<I000~teeee~e04c~r~t4JC0e~0<<I<<lettre~0<<it~0~+000~oocrtouD>ESC~POEc.OILSTCRAGETAAfKFINISAEO6&AOEEIQP7bIESEE,I<<crVEIRATl7'.:8LD4.-:;,IhIATI/IerALSO/C~gg0~0e~/-(LL...IJOEL'EC'7ICWAI.7;5.C3eCJC00000tttaWlHtKW~00>>eee<<<<0(Kte0etreJettee<<0~t<<eeeteet~teerrteej>><<<<ee<<emJr~'I'ev.35,07/84SUSCUEIIANNASTEAEEELECTRICSTATIONUNITSIANO2FINALSAFFTYANALYSISREPORTLOCATIONAIDLIMITSOFE:(CAVATIONFILLANDBACXFILLFORCLASSISTRUCTURESFICURE2447 1'  
0I>><<e0~lIglIi00T'F.,/<</w./,///<<r;/'//./''//tJY/000~Ketrt<<<<te<<0>>0~liteI'00.l/J/gE'tIfl/'I'~0~~/07te0JtIIIItlIt)~,l~I'4ILIfi',Qi000<<K<<tee~.a.0<<~<<0L~>>I<<e>><<fa)II>>Kte~e<<tttt0~<<K~I~tDIEEEIGENERATOR E'LDG.'yf:g~:~piKKete~0,<<>>teeertetee<<er'<<000<<I000~teeee~e04c~r~t4JC0e~0<<I<<lettre~0<<it~0~+000~oocrtouD>ESC~POEc.OILSTCRAGETAAfKFINISAEO6&AOEEIQP7bIESEE,I<<crVEIRATl7
~I~~Sl~I%$,0~'45,1I4fJ~4Ir~EJ~\~I~4~rIOOIO~P$10CR!EQSOS5%55earaaxrn&%%%%%%%%WHNHRRQQQ%%%%%%SHE&WHHWWQQA%WHHWRRQRSSSOSOOSS%%%%RRSQQWMH&%RHHRBHQQR SANDY6RAYEL~~4WITHCOOOLESANOOOIADER5'*'t7BHAI.LSANOI~bOIlDESbOLUNDYCRAYELWITHCODDLE%AHOaXLOERS,tSlFINETOCOARSEOANDTRACESLT,TRACE~-:-:=-"---:--"jy-;gII@~P;,L~M>>~~~-..~gI&#xc3;'--'g(S.s''.qtII(5~"I'wee~'aaronIOTTOHOFHOLESECTION4-APREiIOVBLVDeLLEOErrOTHERS)BOIHS60Ra6OCRINCHOI5OmIOeSANDANDCRAYELEJUSTINCCRADCECRINCNO.5FILL(FINESAND,TRACEBLT).FREE.TDCOARSESANDANDSRAVELWITHBHNLOOULDLII5.5ANDAHD%RAVELOCCABIONALCOOOLESJOOULOERSFINCTDCOARSESANOWITHSHALLEOILOCRSoDORINOt4X4RU.(CRUSHEDSTCNCOORINCAI4)FivE&H5.I2b(PREVIOUSLYDRILLEDSfOTI6RB)FINEBANDBRAV54NO,GRAVELANDDOULDERSLAl4DCOOBLES5~F~TOCOAR5E5AND.AhCICRAVEL()ARICeRAYSILTSTDNE~sBo&'.s:sDARIIoRAYSILTSTDNEFINETOCO4IIQEBANDTIIACLbaT>~CCCRAIKLDARKQeAVBILTBTONEeIDOTTYOFHOLEeEL.Sea.SI~ISECTIC)N6-OOTTDHOFHOLY0ELS55.0'~tmeevai~gQy~~~~+~0sagpss  
'.:8LD4.-:;,
~~~~IIIII~NmrrraaXaaaaaeaeeermmmeaeaeam%%LWLL&RlXW&WSRLLLL%%%%%%WRRRRRHHHKR%%%%%IN%l%%88~8%XmarraaaaaaaK%KlENZRLEK%ESKREHKER~muaaaraan.NNNSSRE%%%%%RKQTRRL%%%%&%RRW%%4%NNRRBR%5%5%~KSLRLLWW&WW&eaaarXaAAAaaUNRRLHAAXAAitLrrrrreaaal5%REESRR16KlK1KRERERARSLRLLHXXXWWeaaraIWAAaeX,%ILRSIQXAAQR5%LRLLRHRRHXESWWNIWRSN%5NWXIWTRLLW&WWW&SHI%FHR4I5%8%E~RRREWX%%I5IILXLXRR55ILIIQXXXWX!K$585ERHHX%%KSILSIHXAAAXN5588I%X%X%X,l5%%%5505%lNSWWWW 4
IhIATI/IerAL SO/C~gg0~0e~/-(LL...IJOEL'EC'7ICW AI.7;5.C3eCJC00000ttt aWlHtKW~00>>eee<<<<0(Kte0etreJettee<<0~t<<eeeteet~teerrteej>><<<<ee<<emJr~'I'ev.35,07/84SUSCUEIIANNA STEAEEELECTRICSTATIONUNITSIANO2FINALSAFFTYANALYSISREPORTLOCATIONAIDLIMITSOFE:(CAVATION FILLANDBACXFILLFORCLASSISTRUCTURES FICURE2447 1'  
igitCLIENTCONTRACTORGibba6Hill.Inc.IRAQ>'eIIll$,DISEQhfA$.CahST>UCTQRSROJECTNEE.44547BORINGNEE.1SHEET2PF2,YBORINGLOCATION'OREMAN-DRILLERJRTxLldePROJECTNAMEaciitiesINSPECTORT.C.ShiehLOCATIONBerwick,Pa.SURFACEELEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIZEI.D.~~E"HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"TIMEDATEDRILLINGSTARTDRILLS~FINISHXXIlaJOlL0O<<nox3..u.0JEAIV%4SAMPLE(QBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB0-66-I2EA0o<vi>~>9EhSOILDESCRIPTIONANDREMARKS0.4.5REC.33SandyGRAVEL,withCOBBLESandB5tJLDBRS>>234.5'5DarkgraySZLTSTONE.4044.5RECRQD9044.5'ottomofhole644.5'>Aj~WlFf.F5FS>E>Fl.60NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'FT.CODING:U.S.C.S.*IINIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.HOLLOWSTEMAUGERA-AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLETsTHINWALLV=VANESHEAR 14lVllIISkilDWSPR~"I~1S.'III,<Weal'~>~.Bf<P'I)9DE~La."cllII~,lIi~<I~I  
~I~~Sl~I%$,0~'45,1I4fJ~4Ir~EJ~\~I~4~rIOOIO~P$10CR!EQSOS5%55 earaaxrn&%%%%%%%%
~~~~~~Ii~~~I~.-1IIRCl.'NQLQQO&W&WW&558@%58%5$%WR%5%%amaaraeaaaaaaaararmaaaaaQNRRLRRRRWRKSLSLQRRR%%%eesmmreammeesamR%55IQQLSLQSRSRLQQN%%&HW,5%LLS8%%%%%%5%LRQQQRRRRIRESRE55iQKKRK5%9%5'%lSLL58%%%%%%5%8%88%WW&W&%%ERR5%%%%WW8%%%%%RERRRW&&WE%OQQQ&&%&W&8%%%%%&WW&W&iiaarammmmmm.SIQLLQLLRQQQ8%QQRQWW&WWWIIHHN%%5%8%%R%%5RS58C~INSSQRWWW&WWE%8%88%&W&&WSSRHNCSREEEW&&WRRRL88%%%%%%lWOLLQHWW&&&5588LQA%%%%%aeraraeaexaa,5t%CJWW&CR4MHSHKBIRE%~'~~~~  
WHNHRRQQQ
~s~s"~'.I.SiQddl't6M~5rrJfAS CLIENTGibbs8Hill./nc.IFEGIFGIIRS.OISIGFIIRS,COFISTRUCIORSBORINGNo.~SHEET~OF~:CONTRACTOR.'OJECTNo.FOREMAN-DRILLERJ.R-TrudePROJECTNAMEaitiesBORINGLOCATION:INSPECTORT.C.ShiehLOCATIONBerwick,Pa.SURFACEKLEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESITELD.~~3CG--NE-TIMEHAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEDRILLINGSTARTDRILLINGFINISHZIWWOIS30IO<EFIOZyIE.NoSAMPI.EW0SBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-186-I206plIOOPSOILDESCRIPTIONANOREMARKS579832727SS24'.018213039ReddishbrownandgrayfinetocoarseSAND,tracesilt,traceclay.Gradingwithsmallboulders.36.0'036.0-38.C.100%QD.80%DarkgraySZLTSTONE-QD.97.5460'ottomofhole646.0'0lI~60NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C,S.UNIFIEOSOILCLASSIFICATIONSYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLV=VANESHEAR vs~sae0'.-.p..:=".;"I',IJJIN"'-+HSING'lK.?.'~.:sieii2-'."li(7',i~'(IQ'(i~P4H'Jo'"zehXb<l' nPoweraLihtCo.ClIENTCONTRACTORgFOREMAN-DRILLERJ.R.TrudeINSPECTORT.C.ShiehWATERLEVEI.27OsDATE~119/83HOURSCASINGDEPTHGibbs8Hill,Inc.j4MI'ROOKSSGFYCISSCO'VSlESUMTORSROJECTNo.44547PROJECTNAMELOCATIONBerwick,Pa.ac'tiesCASINGSAMPLERCOREBAR.TYPESiZEI.O.HAMMERW,T.300lbs.140lbs.BITHAMMERFALL18"30"BORINGN.~SHEET1OF'BORINGLOCATION:N.341341.000.00SURFACEELEV.669.51'RILLINGDRILLINGSTARTFINISH,TIME~Am~2:00.m.DATEll/7/83'l/9/83zI-xleId4$ClILIO<(noKyuCFECEgO40CLSAMPLETHEC.BOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)0-66-I212-IBQlpoC9PKaWSOILDESCRIPTIONANDREMARKS371030292SS4N24'.0'5.0'7252757151013.PaLL(DarkgrayfinetocoarseSANDwithcrushedstone).(Hitconcretebetween30'nd40')5.0'ellowishbrownsiltyfineSAND.10579.7'51793122.0-15.00C.SandyGRAVELwithcobblesandboulders-.~iirIg2125.0-20.C.221152513710011020.0-2PSC.583013125.0-30.C.~20COOING:U.SCS.=UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.HOLLOWSTEMAUGERAAUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLV=VANESHEARNOTEKUSEDIN.CASINGTOFT.,TNENIN.CASINGTO'T.  
%%%%%%SHE
~A"%14a&gt+llM~4~)N!JSlfU>i"fARl-f."'.<rp"TQg~fIgtrstlI.ith.4t'Ps'I44Vg nnPower&LihtCo.CLIENTCONTRACTORGibbs8Hill,lric.E'EGItsEEEISOES'G'oE+S.COPISTEEUCTOIISROJECTNEE,44547GORINGNo.~SHEET~OF2BORINGLOCATION:FOREMAN-DRILLERJ.R.TrudePRO~ECTNAMEactiesINSPECTORT.C.ShiehWATERLEVELDATEHOURSCASINGDEPTHLOCATIONBerwick,Pa.SURFACEEI.EV.ORII.LING'RILLING'TARTFINISHCASINGSAMPLERCOREBAR.TYPESIZEI.O:~~UJ!-~TIMEHAMMERW.T.300lbs.140lbs.BITHAMMDATEXXI0OISIOeETIOAC3,LSCllOQ0C)0SAMPLEISIIBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)Ia-IB0-66-IRMIIO~OKaIAIC/IOOCOEO)X5S2TSOILDESCRIPTIONANDREMARKS30170160SS3"31.253650/1SandyGRAVELwithCobblesandboulders.179167SS0"3260'/0'0'EC~6241701701761.0-46.REC.6.0-4.5'EC47.5'arkgraySILTSTONE.47.5-5.0'EC.RQD.~10%~86053.0-57.QD~109357.5'ottomofhole857.5'OTES:USEDIN.CASINGTOFT.,THENIN.CASINGTD'T.CODING:U.S.C,S.=UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.-HOLLOWSTEMAUGERAAUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLV=VANESHEAR  
&WHHWWQQA
;PCVj'bHJdP.=iPIHF.C'-"v~iV-'I&vsQl'~'t~IV@f1'Q0,Dp Penn.Power6LightCo.CLIENTCONTRACTORGibbe8Hill,inc.E'S~."GERSOESIGAEISS.COFEST4VBOORSOJECTNo.44547SDRINGNo.~SHEET~OF~BORINGLOCATION:FOREMAN"DRILLERJ.RTrudePROJECTNAMEac''e4492INSPECTORT.C.ShiehWATERLEVEL18.5'4.6'ATE~1117~1121HOURSCASINGDEPTHLOCATIONBerw<<ks>>-SURFACEKLKV.674'9sCASINGSAMPLERCOREBAR.DRILLINGFINISHDRILLINGSTART11/17/83TYPESITEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEI+noKyVESTQgVCD4SAMPLEECBLOWSPER6IN.ONSAMPLER(FORCEONTUBE)BOT.0-6I2-IB6-I2gIg0CSEA,SOILDESCRIPTIONANDREMARKS2024'0'9625870PILL(DarkgrayfinetocoarseSANDandcrushedstone).40465059222SS24'0'037I35417.0'eddishgrayfinetocoarseSAND,gradingwithsmallboulders.1030242.067694061iiiI~I207167275SS2422.01313141925811200306SS2427.01213121727.0'OULDERS.30.0'OOING:U.S.C.S.*UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERVD*UNDISTURBEDSAMPLE'=THINWALLV=VANESHEARNOTES:USEDIN.CASINGTOFT.,THENINCASING.TO'T.I~~
%WHHWRRQR SSSOSOOSS
0OK!JJl&.H8tHi~90~~<<IEI4)P.I1II1CJtIlkHWAPAIWMPW~A CLIENTCONTRACTORGibbs8Hill,inc;C'GQINCCTCSOSSIQ'SIAS,COFGSZAUCTOASROJECTNo.44547GORINGNo.~SHEET2OF2BORINGLOCATION:FOREMAN-DRILLERJ.R.TriodePROJECTNAMEacilitiesINSPECTORT.C.ShiehLOCATIONBerwick,Pa.SURFACEELEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESI2EI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL1B"30"TIMEDATEDRILLINGSTART.DRILLINGFINISHXIWWo4.lO<cnoZ3:CA.CF)OC5vco4NoSAMPLEWo.BOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB0-66-12pllOOOXCA,CO0OCclcri~%coSOlLDESCRIPTIONANDREMARKS301174136ReddishbrownfinetocoarseSAND,tracesilt,tracegravel.3513012716124ll37.2630395637.3'0DarkgraySILTSTONE7.3'47.REC~~9747.3'ottomofholels47.3'060NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C.S.~UNIFIEOSOIL'CLASSIFICATIONSYSTEMH.S.A.HOLLOWSTEMAUGERA=AUGERSSRSPLITSPOONSAMPLERUD4UNDISTURBEDSAMPLET=THINWALLV=VANESHEAR E-c~M!J.ll~~Hc.>H,CB'i&i%"'DGW"<>4lll0'I nnPower6LihtCo.CLIENTCONTRACTORoxsanGibbs8Hill.Inc.IVviFAEERS,DfSIGFEI<$.COFSST<VCTORSROJECTNo.44547GORINGNo.~SHEET2OF2BORINGLOCATION:FOREMAN-DRILLERJ.R.TrudeINSPECTORT.C.ShiehI'ROJECTNAMELOCATIONBerwick,Pa.aciities341360.752402.84SURFACEELEV.671.00'ATERLEVEL17.0'5.9'ATE'~1683AFTER'OURS~C1NGCASINGDEPTHRVCCASINGSAMPLERCOREBAR.TYPESIZEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"TIMEDATEDRILLINGSTARTDRILLINGFINISH11/16/83I2l-o.CEU0I-C2ecnOZgbEYEQO'2WcJcloNoSAMPLEBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)6-I212-IB06EYE0vi+SOILDESCRIPTIONANDREMARKSFILL'(YellowishbrownfineSAND,tracesilt).501SS31703.0'7563136403.0'eddishandgrayishbrownfinetocoarseSANDandGRAVEL,withsmallboulders.10791103SS4ls12.'0272739'991251614SS24ss7.0'6293146201201305SS20'.7'537460/2'001196SS24'.01926313030300'OTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.SCS.~UNIFIEDSOILCI.ASSIFICATIONSYSTEMH.S.A.~HOLLOWSTEMAUGERAAUGERSS=SPI.ITSPOONSAMPLERUD>UNDISTURBEDSAMPLET=THINWALL'=VANESHEAR Cl*Wf(l)J)Pi.~~VIIrIr,r.CI1SJ'44%4 CLIENTGibbs8Hill,Inc.KAY",iEERS(5'QFESSS,COFG5ZRUCiORSCONTRACTOR'OJECTNo.4547GORINGNo.~SHEET2OF2BORINGLOCATION:FOREMAN"ORILI.ERJ.R.TrudePROaECTNAMFactieINSPECTORT-C.ShiehLOCATIONBerwxck,Pa.SURFACEELEV.WATERLEVELOATEHOURSCASINGOEPTHCASINGSAMPLERCOREBARTYPESIZELD.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEDRILLINGSTARTDRILLINGFINISHZXUJWUJO30IoocnoKglLQH50COELSAMPLE'LOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB6-l2BOT.0-6IIPoE5PICWEhOoclvi>~)SOILOESCRIPTIONANOREMARKS1014948ReddishbrownfinetocoarseSANDandGRAVEL,withsmallboulders.351201178SS24'.030293641401379SS24'.02928404716110SS0"45.050045.0'6.0'"-BOULDERS5546.0-56.56.0'ottomofhole656.0'yNOTES:USEDIN.CASINGTOFT~THENIN.CASINGTO'FT,CODING:U.S.C.S.UNIFIEDSOILCL'ASSIFICATIONSYSTEMH.S.A.*HOLLOWSTEMAUGERAAUGERSS>SPI.ITSPOONSAMPLERUO>UNOISTURBEOSAMPLET=THINWALLY=VAHESHEAR 1RiA.fi40 Penn.Power&LightCo.'LIENTGibbe8Hill.Inc.E4uIFTIIRSDISCGFSfCCS,COSCSTCCVCZOCCSBORINGNo.6SHEET1OFZINSPECTORT.C.ShiehLOCATIONBerwick,Pa.CONTRACTOR.ROJECTNcs,44547FOREMAN-DRILLERJ.R.TrudeIROJECTNAMEac'litiesBORINGLOCATION:N41451.00E2442450.00SURFACEELEY.673-31'ATERLEVEL23~5'ATE11~2383HOURS0CASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIZELD.HAMMERW.T.300lbs.140lbs.BITHAMMERFALI18"30"TIMEDRILLINGSTARTDRILLINGFINISH11/22/8311/23/83TIIwccccccc.ICl<coOKycc,COCFgoI)cc.NoSAMPLEQBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB6-l20-6CLCIOKC0csccccfJO~C)cri>~)SOILDESCRIPTIONANDREMARKSt50394102MFILI(DarkgrayfinetocoarseSAND,somecrushedstone)'.1061714046502SS24ss.0'051707.0'rownishgrayfinetocoarseSANDwithgravel,gradingwithcobblesandboulders.11015160809721224T7.0'93847611772117135160417911612113025.0PGREC.30.0'OTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C.E,'UNIFIEOSOILCLASSIFICATIONSYSTEMH.S.A.*HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLY=YANKSHEAR  
%%%%RRSQQWMH&%RHHRBHQQR SANDY6RAYEL~~4WITHCOOOLESANOOOIADER5'*'t7BHAI.LSANOI~bOIlDESbO LUNDYCRAYELWITHCODDLE%AHOaXLOERS,tSlFINETOCOARSEOANDTRACE SLT,TRACE
~~~II~~~marraaaMMMAAeeameermeeaememesmRSQQOSAAAMMMRQSSQLRMRRRRR55$55%%%%%%ERSRRRWW~KRHKHKELQKRBKRlRW@RMSRRRLLMWMWWMQItIIARRAAA.,amaarrAAAAAA'aarrraeraaaSHR%88PII~R%RSR5555~ALLLLMMMMMMAIQIIAAAAAR.A1%88AAAAAAaarLLMMMMMMAISIEAAAAAAARRILAAAAAAaararAAAAAA.AararAAAAAAMEE&HLHK~SQRKIEKKRQLQQIRRAHKRESWQQQR&&MMMM&RRSIA&AAAAARRLIAAAAAAALOLLWRAAAAALRLLMAAAMRAISiRIAAAAAWAIXIIAAAAAA.,maarrwmmmma Penn.PowerGLightCo.CLIENTCONTRACTORsanGibbs8Hill,inc;f4GINEERS.OC5IGFGCRS,CODES'CRIICTORSROJECTNos44547SORIIIGNo.~SHEET1OF2BORINGLOCATION:FOREMAN-DRILIERJ.R.TrudePROJECTNAMEacitic442450.00INSPECTORT.C.ShiehWATERLEVEL286'ATE1~122/83HOURS0CASINGDEPTHLOCATIONBezwick,Pa.CASINGSAMPLERCOREBAR.TYPESIZEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFAII18n30nSURFACEELEV.672.55'RILLINGSTARTDRILLINGFINISHTIMEDATE11/21/83'l/22/83XIIAIIIIII.IO>cnOKQIZIFIOgCJIEICLSAMPLEIAIIBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)l2-IB0-66-I2MII0&ISCOOOCI)CO)SOILDESCRIPTIONANDREMARKS376000212790SS8"SOn1.5'.0'70/0'0PILL(ReddishbrownaDarkgraymediumtocoarseSANDandCINDERStracecrushedstone.Gradingwithboulders.12102SS4n2.0'59.0'ellowishbrownsiltyfineSANDwithsomecrushedstone.Gradingwithsmallbouldersbetween19.5'nd23.0'.2925S247.0'3~~~lo31'0'70SS2n0.2'0/21156923.0'eddishbrownmediumtocoarseSANDwithsomegravel,tracefinesand.10127.021302946COOING:U.SC.S.=UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBEDSAMPLET=THINWALLV=VANESHEAR30NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.
~-:-:=-"---:--"jy-;gII@~P;,
lSCLIENTGibbs8Hill,Inc.IFSGIFGIETES,OjSIGFEE45,COFSST<UCTORSBORINGNo.SHEET~OF~CONTRACTOR'OJECTNo.544547FOREMAN-DRILLERJ-R-TrudePROJECTNAMEa'tisBORINGLOCATION:INSPECTORT.C.ShiehLOCATIONBerwick,Pa.SURFACEEI.EV.IWATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIEE1.0.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18ss30"DATEDRILLINGSTARTDRILLINGFINISHXlutwLLIOegoZalaNo.SAMPLESBOT.SLOWSPER6IN.ONSAMPLER(FORCEONTUBE}12-186-I20-6SOlLDESCRIPTIONAHDREMARKS304039101211301417SS4Ts20'04'62937ReddishbrownmediumtocoarseSANDwithsomegravel,tracefinesand.33.4s40.0'arkgraySZLTSTONE.450.0'50~REC.~9650RQD~8150.0'ottomofhole850.0'loCODING:U.S.C.S.*UNIFIEDSOILCLASSIFICATIONSYSTEMH.S.A=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD"-UNDISTURBEDSAMPLET=THINWALLV"-VANESHEARNOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.  
L~M>>~~~-..~gI&#xc3;'--'g(S.s''.qtII(5~"I' wee~'aaronIOTTOHOFHOLESECTION4-APREiIOVBLV DeLLEOErrOTHERS)BOIHS60Ra6OCRINCHOI5OmIOeSANDANDCRAYELEJUSTINCCRADCECRINCNO.5FILL(FINESAND,TRACEBLT).FREE.TDCOARSESANDANDSRAVELWITHBHNLOOULDLII5.5ANDAHD%RAVELOCCABIONAL COOOLESJOOULOERSFINCTDCOARSESANOWITHSHALLEOILOCRSo DORINOt4X4RU.(CRUSHEDSTCNCOORINCAI4)FivE&H5.I2b(PREVIOUSLY DRILLEDSfOTI6RB)FINEBANDBRAV54NO,GRAVELANDDOULDERSLAl4DCOOBLES5~F~TOCOAR5E5AND.AhCICRAVEL()ARICeRAYSILTSTDNE
~sBo&'.s:sDARIIoRAYSILTSTDNE FINETOCO4IIQEBANDTIIACLbaT>~CCCRAIKLDARKQeAVBILTBTONE eIDOTTYOFHOLEeEL.Sea.SI~ISECTIC)N6-OOTTDHOFHOLY0ELS55.0'~tmeevai~gQy~~~~+~0sagpss  
~~~~IIIII~NmrrraaXaaaa aeaeeermmmeaeaeam
%%LWLL&RlXW&W SRLLLL%%%%%%
WRRRRRHHHKR
%%%%%IN%l%%88~8%X marraaaaaaa K%KlENZRLEK%ESKREHKER~
muaaaraan
.NNNSSRE%%%%%R KQTRRL%%%%&%
RRW%%4%NNRRBR%5%5%~
KSLRLLWW&WW&
eaaarXaAAAaa UNRRLHAAXAA itLrrrrreaaa l5%REESRR 16KlK1KRERERA RSLRLLHXXXWW eaaraIWAAaeX
,%ILRSIQXAAQR 5%LRLLRHRRHX ESWWNIWRSN%5NWX IWTRLLW&WWW&
SHI%FHR4I5%8%E~RRREWX
%%I5IILXLXRR 55ILIIQXXXWX!K$585ERHHX%%
KSILSIHXAAAXN5588I%X%X%X,l5%%%5505%lNSWWWW 4
igitCLIENTCONTRACTOR Gibba6Hill.Inc.IRAQ>'eIIll$
,DISEQhfA$
.CahST>UCTQRS ROJECTNEE.44547BORINGNEE.1SHEET2PF2,YBORINGLOCATION'OREMAN
-DRILLERJRTxLldePROJECTNAMEaciitiesINSPECTOR T.C.ShiehLOCATIONBerwick,Pa.SURFACEELEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIZEI.D.~~E"HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"TIMEDATEDRILLINGSTARTDRILLS~FINISHXXIlaJOlL0O<<nox3..u.0JEAIV%4SAMPLE(QBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB0-66-I2EA0o<vi>~>9EhSOILDESCRIPTION ANDREMARKS0.4.5REC.33SandyGRAVEL,withCOBBLESandB5tJLDBRS>>2 34.5'5DarkgraySZLTSTONE.
4044.5RECRQD9044.5'ottom ofhole644.5'>Aj~WlFf.F5FS>E>Fl.60NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'FT.CODING:U.S.C.S.*
IINIFIEDSOILCLASSIFICATION SYSTEMH.S.A.HOLLOWSTEMAUGERA-AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLETsTHINWALLV=VANESHEAR 14lVllIISkilDWSPR~"I~1S.'III,<Weal'~>~.Bf<P' I)9DE~La."cllII~,lIi~<I~I  
~~~~~~Ii~~~I~.-1IIRCl.'NQLQQO&W&WW&
558@%58%5$
%WR%5%%amaaraeaaaaaa aararmaaaaa QNRRLRRRRWR KSLSLQRRR%%%
eesmmreammeesam R%55IQQLSLQS RSRLQQN%%&HW
,5%LLS8%%%%%%
5%LRQQQRRRRIR ESRE55iQKKRK5%9%5'%lSLL58%%%%%%
5%8%88%WW&W&
%%ERR5%%%%WW 8%%%%%RERRRW&&W E%OQQQ&&%&W&
8%%%%%&WW&W&
iiaarammmmmm
.SIQLLQLLRQQQ 8%QQRQWW&WWW IIHHN%%5%8%%R%%5RS58C~
INSSQRWWW&WW E%8%88%&W&&W SSRHNCSREEEW&&W RRRL88%%%%%%
lWOLLQHWW&&&
5588LQA%%%%%
aeraraeaexaa
,5t%CJWW&CR4MHSHKBIRE%~
'~~~~  
~s~s"~'.I.SiQddl't6 M~5rrJfAS CLIENTGibbs8Hill./nc.IFEGIFGIIRS.
OISIGFIIRS,COFISTRUCIORS BORINGNo.~SHEET~OF~:
CONTRACTOR
.'OJECTNo.FOREMAN-DRILLER J.R-TrudePROJECTNAMEaitiesBORINGLOCATION:
INSPECTOR T.C.ShiehLOCATIONBerwick,Pa.SURFACEKLEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESITELD.~~3CG--NE-TIMEHAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEDRILLINGSTARTDRILLINGFINISHZIWWOIS30IO<EFIOZyIE.NoSAMPI.EW0SBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-186-I206plIOOPSOILDESCRIPTION ANOREMARKS579832727SS24'.018213039ReddishbrownandgrayfinetocoarseSAND,tracesilt,traceclay.Gradingwithsmallboulders.
36.0'036.0-38.C.100%QD.80%DarkgraySZLTSTONE-QD.97.5460'ottomofhole646.0'0lI~60NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C,S.UNIFIEOSOILCLASSIFICATION SYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLV=VANESHEAR vs~sae0'.-.p..:=".;"I',IJJIN"
'-+HSING'lK.?.'~.:sieii2-'."li(7',i~'(IQ'(i~P4H'Jo'"zehXb<
l' nPoweraLihtCo.ClIENTCONTRACTOR gFOREMAN-DRILLER J.R.TrudeINSPECTOR T.C.ShiehWATERLEVEI.27OsDATE~119/83HOURSCASINGDEPTHGibbs8Hill,Inc.j4MI'ROOKSSGFYCISS CO'VSlESUMTORS ROJECTNo.44547PROJECTNAMELOCATIONBerwick,Pa.ac'tiesCASINGSAMPLERCOREBAR.TYPESiZEI.O.HAMMERW,T.300lbs.140lbs.BITHAMMERFALL18"30"BORINGN.~SHEET1OF'BORINGLOCATION:
N.341341.000.00SURFACEELEV.669.51'RILLING DRILLINGSTARTFINISH,TIME~Am~2:00.m.DATEll/7/83'l/9/83zI-xleId4$ClILIO<(noKyuCFECEgO40CLSAMPLETHEC.BOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)0-66-I212-IBQlpoC9PKaWSOILDESCRIPTION ANDREMARKS371030292SS4N24'.0'5.0'7252757151013.PaLL(DarkgrayfinetocoarseSANDwithcrushedstone).(Hitconcretebetween30'nd40')5.0'ellowish brownsiltyfineSAND.10579.7'51793122.0-15.00C.SandyGRAVELwithcobblesandboulders-.~iirIg2125.0-20.C.221152513710011020.0-2PSC.583013125.0-30.C.~20COOING:U.SCS.=UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A.HOLLOWSTEMAUGERAAUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLV=VANESHEARNOTEKUSEDIN.CASINGTOFT.,TNENIN.CASINGTO'T.  
~A"%14a&gt+llM
~4~)N!JSlfU>i"fARl-f."'.<rp"TQg~fIgtrstlI.ith.4t'Ps'I44Vg nnPower&LihtCo.CLIENTCONTRACTOR Gibbs8Hill,lric.E'EGItsEEEIS OES'G'oE+S.
COPISTEEUCTOIIS ROJECTNEE,44547GORINGNo.~SHEET~OF2BORINGLOCATION:
FOREMAN-DRILLER J.R.TrudePRO~ECTNAMEactiesINSPECTOR T.C.ShiehWATERLEVELDATEHOURSCASINGDEPTHLOCATIONBerwick,Pa.SURFACEEI.EV.ORII.LING
'RILLING'TART FINISHCASINGSAMPLERCOREBAR.TYPESIZEI.O:~~UJ!-~TIMEHAMMERW.T.300lbs.140lbs.BITHAMMDATEXXI0OISIOeETIOAC3,LSCllOQ0C)0SAMPLEISIIBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)Ia-IB0-66-IRMIIO~OKaIAIC/IOOCOEO)X5S2TSOILDESCRIPTION ANDREMARKS30170160SS3"31.253650/1SandyGRAVELwithCobblesandboulders.
179167SS0"3260'/0'0'EC~6241701701761.0-46.REC.6.0-4.5'EC47.5'arkgraySILTSTONE.
47.5-5.0'EC.RQD.~10%~86053.0-57.QD~109357.5'ottomofhole857.5'OTES:
USEDIN.CASINGTOFT.,THENIN.CASINGTD'T.CODING:U.S.C,S.=
UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A.-HOLLOWSTEMAUGERAAUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLV=VANESHEAR  
;PCVj'bHJdP.=iPIHF.C'-"v~iV-'I&vsQl'~'t~IV@f1'Q0,Dp Penn.Power6LightCo.CLIENTCONTRACTOR Gibbe8Hill,inc.E'S~."GERS OESIGAEISS.COFEST4VBOORSOJECTNo.44547SDRINGNo.~SHEET~OF~
BORINGLOCATION:
FOREMAN"DRILLERJ.RTrudePROJECTNAMEac''e4492INSPECTOR T.C.ShiehWATERLEVEL18.5'4.6'ATE
~1117~1121HOURSCASINGDEPTHLOCATIONBerw<<ks>>-
SURFACEKLKV.674'9sCASINGSAMPLERCOREBAR.DRILLINGFINISHDRILLINGSTART11/17/83TYPESITEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEI+noKyVESTQgVCD4SAMPLEECBLOWSPER6IN.ONSAMPLER(FORCEONTUBE)BOT.0-6I2-IB6-I2gIg0CSEA,SOILDESCRIPTION ANDREMARKS2024'0'9625870PILL(DarkgrayfinetocoarseSANDandcrushedstone).40465059222SS24'0'037I35417.0'eddishgrayfinetocoarseSAND,gradingwithsmallboulders.
1030242.067694061iiiI~I207167275SS2422.01313141925811200306SS2427.01213121727.0'OULDERS.
30.0'OOING:
U.S.C.S.*
UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERVD*UNDISTURBED SAMPLE'=THINWALLV=VANESHEARNOTES:USEDIN.CASINGTOFT.,THENINCASING.TO'T.I~~
0OK!JJl&.H8tHi~90~~<<IEI4)P.I1II1CJtIlkHWAPAIWMPW
~A CLIENTCONTRACTOR Gibbs8Hill,inc;C'GQINCCTCSOSSIQ'SIAS,COFGSZAUCTOAS ROJECTNo.44547GORINGNo.~SHEET2OF2BORINGLOCATION:
FOREMAN-DRILLERJ.R.TriodePROJECTNAMEacilities INSPECTOR T.C.ShiehLOCATIONBerwick,Pa.SURFACEELEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESI2EI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL1B"30"TIMEDATEDRILLINGSTART.DRILLING FINISHXIWWo4.lO<cnoZ3:CA.CF)OC5vco4NoSAMPLEWo.BOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB0-66-12pllOOOXCA,CO0OCclcri~%coSOlLDESCRIPTION ANDREMARKS301174136ReddishbrownfinetocoarseSAND,tracesilt,tracegravel.3513012716124ll37.2630395637.3'0DarkgraySILTSTONE 7.3'47.REC~~9747.3'ottom ofholels47.3'060NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C.S.~UNIFIEOSOIL'CLASSIFICATION SYSTEMH.S.A.HOLLOWSTEMAUGERA=AUGERSSRSPLITSPOONSAMPLERUD4UNDISTURBED SAMPLET=THINWALLV=VANESHEAR E-c~M!J.ll~~Hc.>H,CB'i&i%"'DGW"<>4lll0'I nnPower6LihtCo.CLIENTCONTRACTOR oxsanGibbs8Hill.Inc.IVviFAEERS, DfSIGFEI<$.COFSST<VCTORS ROJECTNo.44547GORINGNo.~SHEET2OF2BORINGLOCATION:
FOREMAN-DRILLERJ.R.TrudeINSPECTOR T.C.ShiehI'ROJECTNAMELOCATIONBerwick,Pa.aciities341360.752402.84SURFACEELEV.671.00'ATER LEVEL17.0'5.9'ATE'~1683AFTER'OURS
~C1NGCASINGDEPTHRVCCASINGSAMPLERCOREBAR.TYPESIZEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"TIMEDATEDRILLINGSTARTDRILLINGFINISH11/16/83I2l-o.CEU0I-C2ecnOZgbEYEQO'2WcJcloNoSAMPLEBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)6-I212-IB06EYE0vi+SOILDESCRIPTION ANDREMARKSFILL'(Yellowish brownfineSAND,tracesilt).501SS31703.0'7563136403.0'eddish andgrayishbrownfinetocoarseSANDandGRAVEL,withsmallboulders.
10791103SS4ls12.'0272739'991251614SS24ss7.0'6293146201201305SS20'.7'537460/2'001196SS24'.01926313030300'OTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.SCS.~UNIFIEDSOILCI.ASSIFICATION SYSTEMH.S.A.~HOLLOWSTEMAUGERAAUGERSS=SPI.ITSPOONSAMPLERUD>UNDISTURBED SAMPLET=THINWALL'=VANESHEAR Cl*Wf(l)J)Pi.~~VIIrIr,r.CI1SJ'44%4 CLIENTGibbs8Hill,Inc.KAY",iEERS (5'QFESSS,COFG5ZRUCiORS CONTRACTOR
'OJECTNo.4547GORINGNo.~SHEET2OF2BORINGLOCATION:
FOREMAN"ORILI.ERJ.R.TrudePROaECTNAMFactieINSPECTOR T-C.ShiehLOCATIONBerwxck,Pa.SURFACEELEV.WATERLEVELOATEHOURSCASINGOEPTHCASINGSAMPLERCOREBARTYPESIZELD.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEDRILLINGSTARTDRILLINGFINISHZXUJWUJO30IoocnoKglLQH50COELSAMPLE'LOWS PER6IN.ONSAMPLER(FORCEONTUBE)I2-IB6-l2BOT.0-6IIPoE5PICWEhOoclvi>~)SOILOESCRIPTION ANOREMARKS1014948ReddishbrownfinetocoarseSANDandGRAVEL,withsmallboulders.
351201178SS24'.030293641401379SS24'.02928404716110SS0"45.050045.0'6.0'"
-BOULDERS5546.0-56.56.0'ottom ofhole656.0'yNOTES:USEDIN.CASINGTOFT~THENIN.CASINGTO'FT,CODING:U.S.C.S.UNIFIEDSOILCL'ASSIFICATION SYSTEMH.S.A.*HOLLOWSTEMAUGERAAUGERSS>SPI.ITSPOONSAMPLERUO>UNOISTURBEO SAMPLET=THINWALLY=VAHESHEAR 1RiA.fi40 Penn.Power&LightCo.'LIENT Gibbe8Hill.Inc.E4uIFTIIRS DISCGFSfCCS,COSCSTCCVCZOCCS BORINGNo.6SHEET1OFZINSPECTOR T.C.ShiehLOCATIONBerwick,Pa.CONTRACTOR
.ROJECTNcs,44547FOREMAN-DRILLERJ.R.TrudeIROJECTNAMEac'lities BORINGLOCATION:
N41451.00E2442450.00SURFACEELEY.673-31'ATER LEVEL23~5'ATE11~2383HOURS0CASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIZELD.HAMMERW.T.300lbs.140lbs.BITHAMMERFALI18"30"TIMEDRILLINGSTARTDRILLINGFINISH11/22/8311/23/83TIIwccccccc.ICl<coOKycc,COCFgoI)cc.NoSAMPLEQBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB6-l20-6CLCIOKC0csccccfJO~C)cri>~)SOILDESCRIPTION ANDREMARKSt50394102MFILI(DarkgrayfinetocoarseSAND,somecrushedstone)'.1061714046502SS24ss.0'051707.0'rownish grayfinetocoarseSANDwithgravel,gradingwithcobblesandboulders.
11015160809721224T7.0'93847611772117135160417911612113025.0PGREC.30.0'OTES:
USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C.E,'UNIFIEOSOILCLASSIFICATION SYSTEMH.S.A.*HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLY=YANKSHEAR  
~~~II~~~marraaaMMMAA eeameermeeaememesm RSQQOSAAAMMM RQSSQLRMRRRR R55$55%%%%%%ERSRRRWW~
KRHKHKELQKRBKRlRW@RM SRRRLLMWMWWM QItIIARRAAA
.,amaarrAAAAAA
'aarrraeraaa SHR%88PII~R%RSR5555~
ALLLLMMMMMM AIQIIAAAAAR.A1%88AAAAAA aarLLMMMMMM AISIEAAAAAA ARRILAAAAAA aararAAAAAA
.AararAAAAAA MEE&HLHK~SQRKIEKKR QLQQIRRAHKRES WQQQR&&MMMM
&RRSIA&AAAAARRLIAAAAAAALOLLWRAAAA ALRLLMAAAMR AISiRIAAAAAW AIXIIAAAAAA
.,maarrwmmmma Penn.PowerGLightCo.CLIENTCONTRACTOR sanGibbs8Hill,inc;f4GINEERS.OC5IGFGCRS,CODES'CRIICTORS ROJECTNos44547SORIIIGNo.~SHEET1OF2BORINGLOCATION:
FOREMAN-DRILIERJ.R.TrudePROJECTNAMEacitic442450.00INSPECTOR T.C.ShiehWATERLEVEL286'ATE1~122/83HOURS0CASINGDEPTHLOCATIONBezwick,Pa.CASINGSAMPLERCOREBAR.TYPESIZEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFAII18n30nSURFACEELEV.672.55'RILLING STARTDRILLINGFINISHTIMEDATE11/21/83'l/22/83XIIAIIIIII.IO>cnOKQIZIFIOgCJIEICLSAMPLEIAIIBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)l2-IB0-66-I2MII0&ISCOOOCI)CO)SOILDESCRIPTION ANDREMARKS376000212790SS8"SOn1.5'.0'70/0'0PILL(ReddishbrownaDarkgraymediumtocoarseSANDandCINDERStracecrushedstone.Gradingwithboulders.
12102SS4n2.0'59.0'ellowish brownsiltyfineSANDwithsomecrushedstone.Gradingwithsmallbouldersbetween19.5'nd23.0'.2925S247.0'3~~~lo31'0'70SS2n0.2'0/21156923.0'eddish brownmediumtocoarseSANDwithsomegravel,tracefinesand.10127.021302946COOING:U.SC.S.=UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLV=VANESHEAR30NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.
lSCLIENTGibbs8Hill,Inc.IFSGIFGIETES, OjSIGFEE45, COFSST<UCTORS BORINGNo.SHEET~OF~
CONTRACTOR
'OJECTNo.544547FOREMAN-DRILLERJ-R-TrudePROJECTNAMEa'tisBORINGLOCATION:
INSPECTOR T.C.ShiehLOCATIONBerwick,Pa.SURFACEEI.EV.IWATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIEE1.0.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18ss30"DATEDRILLINGSTARTDRILLINGFINISHXlutwLLIOegoZalaNo.SAMPLESBOT.SLOWSPER6IN.ONSAMPLER(FORCEONTUBE}12-186-I20-6SOlLDESCRIPTION AHDREMARKS304039101211301417SS4Ts20'04'62937ReddishbrownmediumtocoarseSANDwithsomegravel,tracefinesand.33.4s40.0'arkgraySZLTSTONE.
450.0'50~REC.~9650RQD~8150.0'ottom ofhole850.0'loCODING:U.S.C.S.*
UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD"-UNDISTURBED SAMPLET=THINWALLV"-VANESHEARNOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.  
'5~pCIl.
'5~pCIl.
SSFS-PSARpoggoI}gycoJ;vj,goNCgCZNIQCQR-~~~-"~~FsgSisdesignedtoa}SupplycoolinqwatertotheRHRpuapsandtheirassociatedrooacoolersduringtheseveralnon-emergencyandesofRHRpuepo'perationsuchasfuelpoolcooljnq,normalshutdovn,andhotstandbyb)Supplycoo)ingvatertothevariousdieselqeneratorheatexchanqors,RHRpuaps,rooacoolersRBCCQandTBCCtrboatexchanqersduringeaerqencyshutdovn.conditionssuchasaLOCh.TheESvspumpsare1ocatedintheESSESpurghouseviththeRHPSNpumpsThPRSvSpuwphouseisdesignedasSeisaicCategoryIand!hepsvsconsistsof+vnredundantloops.(denotedAandB)eachcapableofprovidirq100percentofthecooling,vaterrequiredbyallt.ho,FSFequipaen!ofbothUnits1and2siaultaneously.Thesystemisdesiqnedsothatnosingleactiveorpassivecoaponentfai)urevillperon!i!froaachieringitssafetyrelatedoh)ective.1'hesystesstar+sautoaatica)lyonadieselstartsignal.Foradditionaldiscussion~seeSubsection925dieselQeaer~kazs*~glThefourdieselgeneratorsarehousedinaSeisaicCategoryIstructure.Theyareseparatedfromeachotherbyconcretevallsvhichprovideoissi)eprotection.Lossofonedieselgeneratorvil)notiwpairthecapabilxtytosafelyshutdovnbothunits,since.thiscanbedonevi!hthreedieselgenerators.Pgrpddi+iona)djsyusyion>ye~QbsejtiynJ~3~~14+/>+1~>+~+~j++++J>orlesErkptxonsof'hef)dieselGeneratorPuelOil'Systea,CcrolinqQatarSyst'ea,hirStartinqSystemLubeOil'ystem,andthe.-En!akeandKxhaustSysteasseeSubsections9~54,9.5.5,95;6,9.5.7,and9.5.8respectively..Poraissi)oprotectionseeSubsection35SeparationisdiscussedinSections312and83'I~>"~Q~ggmiaHg}}fs$ng$$2KyxPgx}gl,ThespraypondprovidesthevaterforboththeESlfSsysteaandtheRHRSIsytees.XtistheultimateheatsinkforbothUnits1and2.The.returnlinesfroatheESSESandtheBHRSVarecosbinedandthetotalquantityofvaterfroaboththesesysteesisdischarq~dthrouahspraynetvorks,vhichdissipatetheheathack'85HVjtt3~1-71I f
SSFS-PSAR poggoI}gy coJ;vj,go NCgCZNIQCQR-~~~-"~~
SSES-FShPfol]ovjnqa)o..s-of-coolantaccidenttoassurethatcorecocling,y,maintain~d.Provisionsshal]be'ncludedtominimizetheprobabilityoflosinqelectricpoverfromanyoftheremainingsuppliesasaresultof.,nrcoincidontvith,thelosscfpovex'generatedbythlossofpoverfromthetransmissionnetvork,ozthelossofpoverfromtheonsiteelectricpoversupplies.A)g)CPTvooffsitepovertransmissionsystemsandfouronsitestandbydieselqonerato."sviththeirassociatedbatterysystemsareprovided.Eitherofthetvooffsitetransmissicnpoversyste)Isoranythreeofthefouronsitestandbydieselgeneratorsystemshavesufficientcapability"tooperatesafetyrelatedequipmentforcoolinq.hereactox'oreandmaintaininqprimarycontainmentinteqritvandothervitalfunctionsintheeventofapostulatedaccidentinoneun'vithasafeshutdovnoftheotherunit.~(Agyru~az7"/c'"mme-mCZa~~>')~Thetvoindependentoffsitepoversystemssupplyelectricpovertotheonsitepoverdistributionsystemviathe230kVtransmissionarid.Eachoft'eoffsitepoversourcesissuppliedfromatransmissionlinevhichtexminates'insvitchyards(orSabstations)notcommontotheothertransmissionline.Thetvo'ransmissionlinesareonseparaterights-of-vay.Thesetvotransmissioncircuitsarephysicallyindependentandaredesignedtominiaiz)thepossibilityoftheirsimultaneousfailureunderoperatinqandnostulatedaccidentandenvironmentconditions.Fach~ffsitepoversourcecansupplyallEngineeredSafetyFeature(ESF)busesthrouqhtheassociatedtransformers.PoverisavailabletotheFSFbusesfromtheirpreferredoffsitepoversourcedaringnormaloperationandfromthealternateoffsite.+~p~poversourceifthepreferredpaverisunavailable.Eachdiesel(Ai+)qenexatorsuppliesstandhypovertooneofthefourESPbusesineachunit.LossofbothoffsitepoversourcestoanESFbasresultsinautomaticstartinqandconnectionoftheassociatedyP,'~giC4P)sequentiallyaddedtoavoidqenexatorinstabilities.Therearefourindependentacloadgroupsprovidedtoassureindependenceandredundancyofequipmentfunction.Thesemeetthesafetyr~quirementsassuainqasinqlefailuresinceanythree-ofthefourloadqroupshavesufficientcapacitytosupplythe.minimumloadsrequiredtosafelyshutdovntheunit.Independentnu~inqoftheprefer.edandalternateoffsitepoversourcecircuit..toheFSFbusesareprovidedtomeetthesinglefailuresafetyrequirements.Rev.31-18  
FsgSisdesignedtoa}SupplycoolinqwatertotheRHRpuapsandtheirassociated rooacoolersduringtheseveralnon-emergency andesofRHRpuepo'peration suchasfuelpoolcooljnq,normalshutdovn, andhotstandbyb)Supplycoo)ingvatertothevariousdieselqenerator heatexchanqors, RHRpuaps,rooacoolersRBCCQandTBCCtrboatexchanqers duringeaerqency shutdovn.
\~j'ISE/~7IC.(>f~~~,/-g<:.CA,8,~D).D~CCa~~g~~l  
conditionssuchasaLOCh.TheESvspumpsare1ocatedintheESSESpurghouse viththeRHPSNpumpsThPRSvSpuwphouse isdesignedasSeisaicCategoryIand!hepsvsconsistsof+vnredundant loops.(denotedAandB)eachcapableofprovidirq 100percentofthecooling,vaterrequiredbyallt.ho,FSFequipaen!
ofbothUnits1and2siaultaneously.
Thesystemisdesiqnedsothatnosingleactiveorpassivecoaponent fai)urevillperon!i!froaachiering itssafetyrelatedoh)ective.
1'hesystesstar+sautoaatica)ly onadieselstartsignal.Foradditional discussion
~seeSubsection 925dieselQeaer~kazs
*~glThefourdieselgenerators arehousedinaSeisaicCategoryIstructure.
Theyareseparated fromeachotherbyconcretevallsvhichprovideoissi)eprotection.
Lossofonedieselgeneratorvil)notiwpairthecapabilxty tosafelyshutdovnbothunits,since.thiscanbedonevi!hthreedieselgenerators.
Pgrpddi+iona) djsyusyion>
ye~QbsejtiynJ~3~~14+/>
+1~>+~+~j
++++J>orlesErkptxons of'hef)dieselGenerator PuelOil'Systea, CcrolinqQatarSyst'ea,hirStartinqSystemLubeOil'ystem, andthe.-En!akeandKxhaustSysteasseeSubsections 9~54,9.5.5,95;6,9.5.7,and9.5.8respectively..Poraissi)oprotection seeSubsection 35Separation isdiscussed inSections312and83'I~>"~Q~ggmiaHg}}fs$ng$$2KyxPgx}gl,ThespraypondprovidesthevaterforboththeESlfSsysteaandtheRHRSIsytees.XtistheultimateheatsinkforbothUnits1and2.The.returnlinesfroatheESSESandtheBHRSVarecosbinedandthetotalquantityofvaterfroaboththesesysteesisdischarq~d throuahspraynetvorks, vhichdissipate theheathack'85HVjtt3~1-71I f
SSES-FShPfol]ovjnqa)o..s-of-coolantaccidenttoassurethatcorecocling,y,maintain~d.Provisions shal]be'ncluded tominimizetheprobability oflosinqelectricpoverfromanyoftheremaining suppliesasaresultof.,nrcoincidont vith,thelosscfpovex'generated bythlossofpoverfromthetransmission netvork,ozthelossofpoverfromtheonsiteelectricpoversupplies.A)g)CPTvooffsitepovertransmission systemsandfouronsitestandbydieselqonerato."s viththeirassociated batterysystemsareprovided.
Eitherofthetvooffsitetransmissicn poversyste)Isoranythreeofthefouronsitestandbydieselgenerator systemshavesufficient capability" tooperatesafetyrelatedequipment forcoolinq.hereactox'ore andmaintaininq primarycontainment inteqritv andothervitalfunctions intheeventofapostulated accidentinoneun'vithasafeshutdovnoftheotherunit.~(Agyru~az7"/c'"mme-mCZa~~>')~Thetvoindependent offsitepoversystemssupplyelectricpovertotheonsitepoverdistribution systemviathe230kVtransmission arid.Eachoft'eoffsitepoversourcesissuppliedfromatransmission linevhichtexminates
'insvitchyards (orSabstations) notcommontotheothertransmission line.Thetvo'ransmission linesareonseparaterights-of-vay.
Thesetvotransmission circuitsarephysically independent andaredesignedtominiaiz)thepossibility oftheirsimultaneous failureunderoperatinq andnostulated accidentandenvironment conditions.
Fach~ffsitepoversourcecansupplyallEngineered SafetyFeature(ESF)busesthrouqhtheassociated transformers.
Poverisavailable totheFSFbusesfromtheirpreferred offsitepoversourcedaringnormaloperation andfromthealternate offsite.+~p~pover sourceifthepreferred paverisunavailable.
Eachdiesel(Ai+)qenexator suppliesstandhypovertooneofthefourESPbusesineachunit.LossofbothoffsitepoversourcestoanESFbasresultsinautomatic startinqandconnection oftheassociated yP,'~giC4P)sequentially addedtoavoidqenexator instabili ties.Therearefourindependent acloadgroupsprovidedtoassureindependence andredundancy ofequipment function.
Thesemeetthesafetyr~quirements assuainqasinqlefailuresinceanythree-ofthefourloadqroupshavesufficient capacitytosupplythe.minimumloadsrequiredtosafelyshutdovntheunit.Independent nu~inqoftheprefer.edandalternate offsitepoversourcecircuit..
toheFSFbusesareprovidedtomeetthesinglefailuresafetyrequirements.
Rev.31-18  
\~j'ISE/~7 IC.(>f~~~,/-g<:.CA,8,~D).D~CCa~~g~~l  


Lilt:<!niIh<'atI'I.ulnoi).cifculatiiiIp<tnp+nil~sc1st.lIII10.Ilftlvstcin/nlplnnantvalve-fcondovnn\rca~nfti!iln'ovlnnmapfcssordis-charuntnen<II!icsk1d."ipinntii)valvi~,nthnfsllff~~i'<Ivcrsrnapco'sfe<)t".Id>clotcn<>llnqv!I~icplpinq/CoolInnItckntvat<.fhna'ti!rCni!II!otIacketvat<;chcatcc.put<nAir1nt.itn4rthao::IpiplnqIovrctitnufflees.!ndnvpao!<Itngniot)DirtVlul.<!oildr.nt<tnkUbdllns<.Z<btjlnbdn51j,tIgg)jljnnjid<iutbbye/<'<-~p/.-.pPe/r/ee-PNAntherNONEnntherNlCr.,f,5r5r<.,~5ZZZ3~other831.1.01/ZZZ-3ntlrcrNi,otherb31,1otherNLntherNl)ZZZ-3r$5ncg/~5Cc<Snrr>.~nr..r"NAr</<CDr~~SNA'\ntbcrN0Nv<Ijj!i..C,i5ClNl1NlNANlNl1NYNNNNYNAYNA<NIfANI/~~j7~r<nlr01..".NCINCN1~1~I-rnnt<ilcoonCCnnputorRoonIIVAC.J/Wntnr.".e"cbNA3-=NANNANGIZCKF.-)t!1/323Ncv.~D-~~Refertoth<nun<catNotesat:theendofthistabLR.  
Lilt:<!niIh<'atI'I.ulnoi).cifculatiii Ip<tnp+nil~sc1st.lIII10.Ilftlvstcin/nlplnnantvalve-fcondovnn\rca
~nfti!iln'ovlnnmapfcssordis-charuntnen<II!icsk1d."ipinntii)valvi~,nthnfsllff~~i'<Ivcrsrnapco'sfe<)t".Id>clotcn<>llnqv!I~icplpinq/CoolInnItckntvat<.fhna'ti!rCni!II!otIacketvat<;chcatcc.put<nAir1nt.itn4rthao::IpiplnqIovrctitnufflees.!ndnvpao!<Itngniot)DirtVlul.<!oildr.nt<tnkUbdllns<.Z<
btjlnbdn51j,tIgg)jljnnjid<iutbbye/<'<-~p/.-.pPe/r/ee-PNAntherNONEnntherNlCr.,f,5r5r<.,~5ZZZ3~other831.1.01/ZZZ-3ntlrcrNi,otherb31,1otherNLntherNl)ZZZ-3r$5ncg/~5Cc<Snrr>.~nr..r"NAr</<CDr~~SNA'\ntbcrN0Nv<Ijj!i..C,i5ClNl1NlNANlNl1NYNNNNYNAYNA<NIfANI/~~j7~r<nlr01..".NCINCN1~1~I-rnnt<ilcoonCCnnputorRoonIIVAC.J/Wntnr.".e"cbNA3-=NANNANGIZCKF.-)t!1/323Ncv.~D-~~Refertoth<nun<catNotesat:theendofthistabLR.  


"0~~~~CESAR"bhdi<)a1'u!li!ySourcc.<~1ilufiofinca-rl.l>>oi.-S<afnty111j90fjrv)ll~bflLf)rPrdnc)n11Cosntruc-tdonCo<)osandSkah<)LIJNQua)ltISetsslcLsouranc<!fa1.<<<)EggRs~gfgbbbbl~!il1'<.1!:!rincina)c.lsponi!ntnila~)(I)4.12)~i3)s(4)4.(S)4is<)~l7)4pusnantnrs,funlnilsystesDieseli!cni!r4turn~lrctric1lsndulnsv)th<safetyfunction>>Catle,vlthsaf<tyfunctlonsnicselfui!lstoraqi!tanksI<)c"cllui<.olf~yntesplplnq4nilva1vcs+Healearhanqcmt1seLitvater'n)lut<<!nilyll1'ec'ousinnsLut<!ni1hiia1<rhuhnoi)-.i-.icculatin<>pusp~ni<sulss'lstinq.!ir!systemsgnip)ni!.1<i)va)v<<ufron4ovnntreasoft<!<fn'lovioqrnsnressnr4ln-ch4rutnanni!<eshl4i".i)>inn1<iivalv<~i',nth<!rsAirci~<"ivcrr.rnsnre:Silrn41C)u'1nill1ngV!'1~<rp1pinqrCool)nil1.!Ctnlvat<~1'ua'tw!rCo<!iini!1.!eketvaI<rheater,pusnAirfnt.<i<!E<shan>>tp)p)nqfocc<!it~Ilfflem.1n<lnsp.ln!<l-!ngnint>>)Dirtylul,c.oi)4r'ntantUCL))0<)~.)<0)ll~baLaddit--rnid+)jn<<)p~jSu)EINp/CA'/CsfP//L.wp./<LG~Q5Nln~'G,~v5CG,r5'p/.-p/~G4rc5r,,c,gr..-,5ri,.95CNAnr.pPp/!"4PP"'.P0,45nGr<gSCG,4$nr-r'5.NlriicCDCries/!llp/Isl/igO,G,$5NAP/Pgri~d~5NlP/iCG,65Nl4IREE-32')/314IREE-3875311)<!therntherIII-7/TEELCVIII/OlNONENLOtherlnt)cer.otherothernther)III-3'3)~1,0111-3NLb31~1NLNL111-3otherNON+IEER-279/323IREE-279/323/3b3')---IXE-3--.-Nl1NlNANlill1NrNNNNyNArN)fiNiur<<))f0).-NG)<)CR9~4~1rnn/t<<)ponsCCnsputorRoonIIVAC,.'untorn/g..nov~n7!<utP'CSNElllNG11IREE-344/323~Refertoths<'<n<'ralNosesattheen4nfthistable.
"0~~~~CESAR"bhdi<)a1'u!li!ySourcc.<~1ilufiofinca-rl.l>>oi.-
Y t~ikSSVS-FSARTABI,E3.2-!!Continued)Pae22!'SARSeclolSour">>of~Su~iLcca-tionequalityGroup'assi-ficationSafeteClassPrincI)a1Construc-tionCodesandStandardsSeismicCatecLo~rQuali'tyAssurance-'lleuvres'entCommentsPrice:"a!Ccmporen.-I3'~)I2)'3)~Il)'5)'6)'istu..cnta'tlonAssociatedvtioterrPiteousIles::ireirior~sfi.'.6Spentfuelpcolangcoolsngs:.stemFuelhandlingareaventilationisolatxonsystemControlroompanelsccalinstrumentracksassocatcdvithsafetyreaacedecuipmentInstrumentationAssociatedwithPPR:InRNACSNAALLNnIEEE-274IIEEE279IIEEE-279IIEEE-279IYY'stemsotReuvreorSaetSeismtcinstrumentationbrearadiationmonitorirg.LeakDetectionZnstrumentatior.~~7PPALINAALLNhOtherNhotherNhINhTemperatureelemensDifferentialtemperatureswitchDifferertialflo~indicatorPressureswitchDifferentialpressureindicatorsmitchDifferentialflo~sunimerProcessRadiationNonitorsGEGEGECEGEGECSCSNANhC,R,TNh2C,ANh~2CSNA'C,RHA2IEEE-323IREE-323,IEEE-323IEEE-323IEEE-323IEEE-323IYIYIYIY,YY393939393939Electricalmodules,mainsteamlineandreactbrbuildingventilation'monitorCable.mqlnstcamlineandreactorbuildingventIlaIronmonitorsElectricSstemsGEAPRNhIEEE-323I=IEEE-279/Hh323/38315mP'~KnineeredSafetFeaturesAC~illIIIIIlit4.16kvswitchgear/BIDRev.~+RH-8.3+eP/$/IQO!45HAIEEE-308/I323/344AefertotheCeneralNotesattheendofthistable,  
S<afnty111j90fjrv)ll~bflLf)rPrdnc)n11Cosntruc-tdonCo<)osandSkah<)LIJNQua)ltISetsslcLsouranc<!
fa1.<<<)EggRs~gfgbbbbl
~!il1'<.1!:!rincina) c.lsponi!ntnila~)(I)4.12)~i3)s(4)4.(S)4is<)~l7)4pusnantnrs,funlnilsystesDieseli!cni!r4turn~lrctric1l sndulnsv)th<safetyfunction>>
Catle,vlthsaf<tyfunctlonsnicselfui!lstoraqi!tanksI<)c"cllui<.olf~yntesplplnq4nilva1vcs+Healearhanqcmt1seLitvater'n)lut<<!nilyll1'ec'ousinnsLut<!ni1hiia1<rhuhnoi)-.i-.icculatin<>
pusp~ni<sulss'lstinq.!ir!systemsgnip)ni!.1<i)va)v<<ufron4ovnntreas oft<!<fn'lovioqrnsnressnr 4ln-ch4rutnanni!<eshl4i".i)>inn1<iivalv<~i',nth<!rsAirci~<"ivcrr.rnsnre:Silrn41C)u'1nill1ngV!'1~<rp1pinqrCool)nil1.!Ctnlvat<~1'ua'tw!r Co<!iini!1.!eketvaI<rheater,pusnAirfnt.<i<!E<shan>>tp)p)nqfocc<!it~Ilfflem.1n<lnsp.ln!<l-!ngnint>>)Dirtylul,c.oi)4r'ntantUCL))0<)~.)<0)ll~baLaddit--rnid+)jn<<)
p~jSu)EINp/CA'/CsfP//L.wp./<LG~Q5Nln~'G,~v5CG,r5'p/.-p/~G4rc5r,,c,gr..-,5ri,.95CNAnr.pPp/!"4PP"'.P0,45nGr<gSCG,4$nr-r'5.NlriicCDCries/!llp/Isl/igO,G,$5NAP/Pgri~d~5NlP/iCG,65Nl4IREE-32')/314IREE-3875311)<!therntherIII-7/TEELCVIII/OlNONENLOtherlnt)cer.otherothernther)III-3'3)~1,0111-3NLb31~1NLNL111-3otherNON+IEER-279/
323IREE-279/
323/3b3')---IXE-3--.-
Nl1NlNANlill1NrNNNNyNArN)fiNiur<<))f0).-NG)<)CR9~4~1rnn/t<<)ponsCCnsputorRoonIIVAC,.'untorn/g..nov~n7!<utP'CSNElllNG11IREE-344/
323~Refertoths<'<n<'ral Nosesattheen4nfthistable.
Y t~ikSSVS-FSAR TABI,E3.2-!!Continued)
Pae22!'SARSeclolSour">>of~Su~iLcca-tionequalityGroup'assi-ficationSafeteClassPrincI)a1Construc-tionCodesandStandards SeismicCatecLo~rQuali'tyAssurance
-'lleuvres'ent CommentsPrice:"a!
Ccmporen.-I3'~)I2)'3)~Il)'5)'6)'istu..cnta'tlonAssociated vtioterrPiteousIles::ireir ior~sfi.'.6Spentfuelpcolangcoolsngs:.stemFuelhandlingareaventilation isolatxon systemControlroompanelsccalinstrument racksassocatcdvithsafetyreaacedecuipment Instrumentation Associated withPPR:InRNACSNAALLNnIEEE-274IIEEE279IIEEE-279IIEEE-279IYY'stemsotReuvreorSaetSeismtcinstrumentation brearadiation monitorirg
.LeakDetection Znstrumentatior.
~~7PPALINAALLNhOtherNhotherNhINhTemperature elemensDifferential temperature switchDifferertial flo~indicator PressureswitchDifferential pressureindicator smitchDifferential flo~sunimerProcessRadiation NonitorsGEGEGECEGEGECSCSNANhC,R,TNh2C,ANh~2CSNA'C,RHA2IEEE-323IREE-323, IEEE-323IEEE-323IEEE-323IEEE-323IYIYIYIY,YY393939393939Electrical modules,mainsteamlineandreactbrbuildingventilation'monitor Cable.mqlnstcamlineandreactorbuildingventIlaIronmonitorsElectricSstemsGEAPRNhIEEE-323I=IEEE-279/
Hh323/38315mP'~KnineeredSafetFeaturesAC~illIIIIIlit4.16kvswitchgear
/BIDRev.~+RH-8.3+eP/$/IQO!45HAIEEE-308/
I323/344AefertotheCeneralNotesattheendofthistable,  
'
'
SSES-FSARTABLE3.2-1(Continued)Pae23SourceFSAR-ofSection~no~tLoca-tionQualityGroupClassicsSafetyficationClassPrincipalConstruc-tionCodesandStandardsQualitySeismicAssurance~Cetoor~neotrsnentCoementnPrincipalComponents(34~)12)'3)'4)'5)'6)a(7)'80Vloadcenters480Vmotorcontrolcenters4,g,Kv'-<a~'!)/,w)ssojfv/.'-/z.-"::):EnineeredSafetFeaturesDC~Eauxment125Vand250Vstationbatteriesandrocks,batterychargers8.3125Vs)"itchgearanddistributionpanels~aa~]j)5VMayajf.Cou7gnLCC/P-/A-D/SE74PP~"HA/PS/'njS!SA//jj)PCS/$5NAP/4aICS)l5HA2.222IREE-308/IY323/344IEEE/308/IY323/344IEEE-308/I323/344IEEE-308/-I323/344120VVitalACSstemEuimentStaticinverters120Vdistributionpanels8.3CSNACS,RNAIEEE"308/NA323/344IEEE-308/I323/344ElectricCablesforESFEuimen''.35kVpoR)ercables600VpowercablesControlandinstrumentationcablesNi,scellaneousElectricalP/4H~P)S//ALLNAALLHAALLHA2.IEEE-323/NA383IEEE-323/NA383IEEE-323/Nh383151515PrimarycontainmentbuildingelectricalpenetrationassembliesConduitsupports,safetyrelated~ggTraysupports>safetyrelatedEmergencylightingsystemsEmergencycommunicationssystemsDieselgenerator77''~/5fEPPr)/-'l-L5DPE'~+wArjojJCj!/u~gup'p'ev.~}~/qgPCP)$//ALLP)/m)HALLP))5//ALLP))5//=ALL'PLG)4505<s'efertotheNANhHANhNhHhNh4/AGeperal222Other2?2NotesatIEEE-317/I344/383IREE-344IIEEE-344-IIEEE-344INONENhIEEE"387Imrs/."Jzf/344/X+ECd823/JffXtheendofthisYYYHYtable1515 SSES-FSARTABLE3.2-1(Continued)Pae,26Principal.Components(34')-FSARSectionSourceofLoca-~Su~1tion(1)"(2)*QualityGroupClassi-fication(3)"SafetyClass(4)*PrincipalConstruc-tionCodesandStandards(5)'eismicC~ar.eor(6)'ualityAssurance~nenirementComments(7)'emineralizedWaterHakeuSstem9.2.9TanksPumpsMotorsPipingandvalves~BnildinReactorBuildingPressureresistantdoorsWatertightdoorR.B.EquipmentdoorPrimaryContainmentAccesshatchesjlocks/doorsLinerplatePenetrationassembliesVacuumreliefvalvesDowncomersDowncomerBracingDieselgeneratorbuildingControlstructureRadwasteandoffgasbuildingTurbinebuildingAdministrationbuildingCirculatingwaterpumphouseESSWpumphouseLowLevelRadwasteMoldingFacilityDIE.S6LCj6t46RAToR'E.~l<&44StructuresRoofScuppersandParapetOpeningsSpraypondaEmergencySpillwayCondensatestoragetankSpentfuelpoolSpentfuelpoollinerRefuelingwaterstoragetankPipeWhipRestraintsPPPPPPPPPPPPPP~RHCWCWCWALLRRCCCCCCCGCSRW,T0000Dc'e,',CS,G00RR0R,CDD88888,8888NANANANANANANANANANANADNANADNAOther0herOtherOther22222222OtherOtherOtherOther3Other23Other22Other3VIII-1831.1.0/Nyd.INEMAMG1831.1.0ACI/AISCASTH/AWSAISCASTH/AWSASTH/AWSACI/AISC/IIIIII-HCIII-MCIII-HCIII-2III-2AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISC/UBCAt:yqrcd.ACI/AISCACID100ACI/AISCACI/AISCD100AISCNANANANAIIIIIIIIINANANANAINANAINAIINAIYYYYYYYYYYYNNNNY~NYYNYYNY2427,3029442221Rev.35,07/84*RefertotheGeneralNotesattheendofthistable.  
SSES-FSAR TABLE3.2-1(Continued)
Pae23SourceFSAR-ofSection~no~tLoca-tionQualityGroupClassicsSafetyficationClassPrincipal Construc-tionCodesandStandards QualitySeismicAssurance
~Cetoor~neotrsnentCoementnPrincipal Components (34~)12)'3)'4)'5)
'6)a(7)'80Vloadcenters480Vmotorcontrolcenters4,g,Kv'-<a~'!)/,w)ssojfv/.'-/z.
-"::):EnineeredSafetFeaturesDC~Eauxment125Vand250Vstationbatteries androcks,batterychargers8.3125Vs)"itchgear anddistribution panels~aa~]j)5VMayajf.Cou7gnLCC/P-/A-D/S E74PP~"HA/PS/'njS!
SA//jj)PCS/$5NAP/4aICS)l5HA2.222IREE-308/
IY323/344IEEE/308/
IY323/344IEEE-308/
I323/344IEEE-308/-
I323/344120VVitalACSstemEuimentStaticinverters120Vdistribution panels8.3CSNACS,RNAIEEE"308/NA323/344IEEE-308/
I323/344ElectricCablesforESFEuimen''.35kVpoR)ercables600VpowercablesControlandinstrumentation cablesNi,scellaneous Electrical P/4H~P)S//ALLNAALLHAALLHA2.IEEE-323/
NA383IEEE-323/
NA383IEEE-323/
Nh383151515Primarycontainment buildingelectrical penetration assemblies Conduitsupports, safetyrelated~ggTraysupports>
safetyrelatedEmergency lightingsystemsEmergency communications systemsDieselgenerator 77''~/5fEPPr)/-'l-L5 DPE'~+wArjojJCj!/u~gup'p'ev.~}~/qgPCP)$//ALLP)/m)HALLP))5//ALLP))5//=ALL'PLG)4505<s'efertotheNANhHANhNhHhNh4/AGeperal222Other2?2NotesatIEEE-317/
I344/383IREE-344IIEEE-344-IIEEE-344INONENhIEEE"387Imrs/."Jzf/344/X
+ECd823/JffXtheendofthisYYYHYtable1515 SSES-FSAR TABLE3.2-1(Continued)
Pae,26Principal.
Components (34')-FSARSectionSourceofLoca-~Su~1tion(1)"(2)*QualityGroupClassi-fication(3)"SafetyClass(4)*Principal Construc-tionCodesandStandards (5)'eismicC~ar.eor(6)'ualityAssurance
~nenirementComments(7)'emineralized WaterHakeuSstem9.2.9TanksPumpsMotorsPipingandvalves~BnildinReactorBuildingPressureresistant doorsWatertight doorR.B.Equipment doorPrimaryContainment Accesshatchesjlocks/doors LinerplatePenetration assemblies VacuumreliefvalvesDowncomers Downcomer BracingDieselgenerator buildingControlstructure RadwasteandoffgasbuildingTurbinebuildingAdministration buildingCirculating waterpumphouseESSWpumphouse LowLevelRadwasteMoldingFacilityDIE.S6LCj6t46RAToR
'E.~l<&44Structures RoofScuppersandParapetOpeningsSpraypondaEmergency SpillwayCondensate storagetankSpentfuelpoolSpentfuelpoollinerRefueling waterstoragetankPipeWhipRestraints PPPPPPPPPPPPPP~RHCWCWCWALLRRCCCCCCCGCSRW,T0000Dc'e,',CS,G 00RR0R,CDD88888,8888NANANANANANANANANANANADNANADNAOther0herOtherOther22222222OtherOtherOtherOther3Other23Other22Other3VIII-1831.1.0/Nyd.INEMAMG1831.1.0ACI/AISCASTH/AWSAISCASTH/AWSASTH/AWSACI/AISC/
IIIIII-HCIII-MCIII-HCIII-2III-2AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISC/
UBCAt:yqrcd.
ACI/AISCACID100ACI/AISCACI/AISCD100AISCNANANANAIIIIIIIIINANANANAINANAINAIINAIYYYYYYYYYYYNNNNY~NYYNYYNY2427,3029442221Rev.35,07/84*RefertotheGeneralNotesattheendofthistable.  


SSES-PSARTABLE3.2-1(Continued)Pae27PS:..SectionSourceof.Loca-~Sui~itionQualityGroupClassi-ficationPrincipalConstruc-tionSafetyCodesandSeismicClassStandardC~ateorQual,ityAssurance~aenirementCommentsPrincipalComponents(34">(1)'2)'3)*(4)*(5)*(6)*(7)*rHissileBarriersforsafetyrelatedequipmentBiologicalshieldingwithinPrimarycontainment,reactorBuildingandcontrolbui.ldingSafetyrelatedmasonrywallsC,R,NACS,SH,GC,R,NACSR,G,NACS0herACI/AISCIOtherACI/AISCOtherACI/UBCRev.35,07/84RefertotheGeneralNotesat,theendofthistable.  
SSES-PSAR TABLE3.2-1(Continued)
~~SSES-FSARTABLE3.2-1SSESDESIGNCRITERIASUMMARY(Continued)Pae29GeneralNotesandComments1)GE~GeneralElectricPL~PennsylvaniaPoweraLightp~BechtelasagentsforPennsylvaniaPoweraLightNA~NotApplicableseecommentsgy=yegg(euyncsAws~rsrcP~syc.~~aP~~aagu+gp2)LocationCPartoforwithinprimarycontainmentRReactorBuildingTTurbineBuildingCSControlStructureRadwasteandOffgasBuildingg)gGgQDieselGenerators)BuildingIntakeStructure.AdministrationBuildingCWCirculatingWaterPumphouse.SWEngineeringSafeguardsServiceWater(ESSW)PumphouseCAChlorineandAcidStorageBuilding0Outdoors.Onsite,pied/l.4hdDCA7'3)A,B,C,D-QualitygroupclassificationasdefinedinRegulatoryGuide1.26.TheequipmentshallbeconstructedinaccordancewithcodeslistedinTables3.2-2,3.2-3,and3.2-4.NA-Notapplicabletoqualitygroupclassification4)l,2,3,4,other=safetyclassesdefinedinANSI-N212andSection3.2.3.NA-Notapplicabletosafetyclassification SSES-FSARTABLE3.2-1SSESDESIGNCRITERIASUMMARY(Continued)GeneralNotesandComments1)GE=GeneralElectricPL=PennsylvaniaPower&Light,Pae29P=BechtelasagentsforPennsylvaniaPower&LightQINtH=Gi&SSAHiLL,Mc.Ii>rurrNA=NotApplicable,seecomments2)LocationCPartoforwithinprimarycontainmentRReactorBuildingTTurbineBuildingCSControlStructureRWRadwasteandOffgasBuildingG,DieselGeneratorBuildingDq'aDias~~4~weRAvoR'6,'IntakeStructureAAdministrationBuildingCWCirculatingWaterPumphouseSWEngineeringSafeguardsServiceWater(ESSW)PumphouseCAChlorineandAcidStorageBuilding0Outdoors,Onsite3)A,B,C,D-QualitygroupclassificationasdefinedinRegulatoryGuide1.26.TheequipmentshallbeconstructedinaccordancewithcodeslistedinTables3.2-2,3.2-3,and3.2-4,NA-Notapplicabletoqualitygroupclassification4)1,2,3,4,other=safetyclassesdefinedinANSI-N212andSection3.2.3.NA-NotapplicabletosafetyclassificationRev.35,07/84  
Pae27PS:..SectionSourceof.Loca-~Sui~itionQualityGroupClassi-ficationPrincipal Construc-tionSafetyCodesandSeismicClassStandardC~ateorQual,ityAssurance
'I04 SS>S-FSAP3~3QT"IDAFDTORNADOLOAO~RGS33"VTNDTOADX~1GS89AllexposeRstructuresaredesignedformindloading.3.').11Des'adValor+v~KGfThedesignvindvelocityforallstructuresis80mphat30ftaboveqroardfora100-yearrecurrenceinte"val.TheResignvin9velocity'sbaseRonFigure5ofReference3.3-1.(Refeencesare1'stedinSubsection3.3.3).TheverticalvelocitydistributionisbaseRonTable1(a)ofReference'.3-2.Thevelociydistribat'onistabalatedinTable3~3-1AqustfactorofasgiveninPeference3.3-2,isu.oR.~heprocedu"eusedtotransformthewindvelocityintoaneffectivepressureapoliedtoexposeRsurfacesofstructuresisasRescribedinPeference3.3-2and'ssummarizeRasfollovs:Thedynamicpressueisgivenby:cr=0.002558V~vhere,a=Dynamicpessa"einpsfV=Rindvelocityinmph(desiqnwindvelocityxgustLac'~Thelocalpressureatanypointonthesarfaceofabuildingis.qualto:gxCpwhereCn=pressurecoefficientRev.35~07/803~3 SSZS-FSaR.he.otalpressureonabuildingisequal+o:qxCDwhee,CD-~Shapecoefficient.TheSusquehannaSESstructureshaveslopingroofswithapitchlessthan20degrees.ThefollowinqarevaluesforCpandC(SeeReference3.3-2~p.1151andPiqure7)Cpforwindwardwall~0.8(pressure)Cpforleewardwall~-0.5(suction)Cpforwindwardslope=0'CpforLeewardslope~-0.6(suction)C~1.3(pressure).Dwindloadsonstructuresaretabulatedin'able3.3-1ExposedtanksaredesignedtoresistaminimumwindLoadof30psfontheverticalpro1ection~basedonReference33-3.ForcvlindricaLtariks,windisconsideredactingonsix-tenthsofthevrticalnro1ection.VoincreasesinallovanlevorkingstressesarepermittedforthesestructuresforLoadingconditionsinvolvinqwind.3~/~/TOQNQDOLOAQENGQTable3.3-2liststhesYstemsthatareprotectedagainsttornadoesandtheenclosureswhichprovidethisprotection.ThistableisbasedonNRCRegulatorYGuide1.11'7(Reference3-3-4)33*3~.hPPliQRbkeQeMKRQRather+>XsThefollowingdesignparametersareusedforthedesignoftornado-resistantstructuresandarebasedonReference3.3-5:a)~~icFjordQgg5i)Lg(FoRS7'R,ucyvReso7'HeR,1'HAHbIeseLGEHERR7oR~f8tlirtg)IMg)Tangentialspeed:300mphTranslationalspeed:'0mphRev~35,07/843~32 SSZS-PSARb)PressareDifferentialBetweentheZnsideandOgtsgdeofgBuigggngQFoR>l'RocTOR6SOTHBgTHAW5g<sRAApressuredrop,of3psi.attherateof1psiprsecond.c)oggaQo-QggegatingQgg.ig'~egThesearediscussedinSubsection3.5.1.4.IMsgra7'<>g.Q.g~pQeteggi))gtggg~fZogr2sogStgucfuregThefollovinqproceduresareusedtotransformthetornadoloadinqsintoeffectiveloadsonstructures:a)DgngmgcwoundJ,o~dgggAprocedurethesameastheoneutilizedtotransformthewindvelocityintoaneffectivepressure,asdescribedinSubsection3.3.1.2,isusedvith.hefollowinqexceptions:1)Velocityandvelocitypressureareassumednotto-varyvithheight.2)-Thegastfactoristakenasunity.AsshovninFigure5ofReference3.3-5,andasexplainedtherein,theequivalentaniformtornadowindvelocityonthebuildingduetoatangentialcomponentof300mphandatranslationalcomponent.of60mphis220mph.OnSusquehannaSEStheprssueloadsarecalculatedonthebasisofauniform300mphwindvelocityandareasfollowsspygSygdcpeg,Ego7HER,7ahH')ESEL+ENERAToN'O'QILDINq.IEi8Mindwadp'ressureonwalls:185sfLeewardsuctiononvalls:115psfl66pc/Totaldesignpressure:Suction(uplift)onroof:300psf140psf.gyp@STI90~~/<Theturbinebuildingisdesignedtoresistthetornadoloadinqassaminq2/3ofthemetalsidingandtheroofdeckbeingblownaway.However,alltheframesaredesignedforthefulltornadoloadinq.Themetalsidingand'heroofdeckofalls.ructaresarenotdesignedtoresistfulltornadoloading.<Rev.35,07/8433-3 b)Dgff~geggjal>ges~ug~~odin'ifferentialpressureloadingiscalculatedusingthefollovingpressure-timefunction:Thedifferentialpressureisassumedtovaryfromzeroto3psiattherateof1psi/sec,remainat3psifor2secondsandthenreturntozeroat1psi/sec.r~/BlowoutpanelsareusedasnecessaryonsafetyrelatedlN~<<T+structurestominimizedifferentialpressure.c)~oMQQ-game~~54ggQSsTornado-generatedmissilesareclassifiedasiveninTable&35-4AHpThebarrierdesignproceduresaredescribed'nSubsection3.5.Z'.Load'ngsa),b),andc)arecombinedinthefollowingmannertoobtainthetotaltornadoloading:Cii)(iii)(iv)(v)(vi)Q~~VpV~=ffmWv+0.5RpW~=Qv+QmR~~Rv+0.5Qp+Wmwhere,TotaltornadoloadWw~TornadovindloadRp=Tornadodifferentialpressureload,andMm~Tornadomissileload3.3.23EffectofFailureofStructuresorComponentsNotDe2493eifoX<<RMQo<MCRStructuresnotdesignedfortornadoloads'a"echeckedtoensurethatduringatornadotheyvillnotgeneratemissilesthathavemoresevereeffectsthanthoselistedinTable3.5-4.Rev.35,07/843.3-4 SSES-FSAREThemodesoffailureofthesestructuresareanalyzeRtoverifythattheyvillnotcollapseonsafetyrelatedstructures.33~QRg~B~C~S33-1.3.3-23~33~3.3-4~H.C.S.Thos,>>NevDistributionsofExtremeRindsintheUnitedStates",gouryagoftheS~tuctugalgiyision,ASCE,(July1968}~pp1787~>>RindForcesonStructures",ASCZPaperNo.3269,Transactions,Volume126,PartII(1961),p1124."SteelTanks,Standpipes,Reservoir,andElevatedTanksforRaterStorage>>,AWRAStandard,0100-73."TornadoDesignClassification>>,USNRCRegulatoryGuide,1.117,(June1976).3.3-5.J.A.DunlapandKarlRiedner,"NuclearPoverPlant*TornadoDesignConsiderations",JournalofthePoverDivision,ASCE,(Aarch1971).Rev.35,07/843~3-5 I!IIlH1' d)Dynamicelandloading(forDieselGenerator'E'uilding).'TangentialSpeed:360mphTranslationaLSpeed:70mph~1~~~~~')>'"<ssul.g.,I'"".'v'ni'.,i3',";l,':.*;'n1;hoinsit!cAndoutside0,'.dies+1generator''uilding.Apressuredropof3psiattherateof2psipersecond.INSERT''hedifferentialpressureisassumedtovaryfromzeroto3psiattherateof2psi/sec,remainat3psifor2secondsandthenreturntozeroat2psi/second.(p~p~sssL,gagaRhTog'c'ulL.Dlgg)  
~aenirementCommentsPrincipal Components (34">(1)'2)'3)*(4)*(5)*(6)*(7)*rHissileBarriersforsafetyrelatedequipment Biological shielding withinPrimarycontainment, reactorBuildingandcontrolbui.lding SafetyrelatedmasonrywallsC,R,NACS,SH,GC,R,NACSR,G,NACS0herACI/AISCIOtherACI/AISCOtherACI/UBCRev.35,07/84RefertotheGeneralNotesat,theendofthistable.  
~~SSES-FSAR TABLE3.2-1SSESDESIGNCRITERIASUMMARY(Continued)
Pae29GeneralNotesandComments1)GE~GeneralElectricPL~Pennsylvania PoweraLightp~BechtelasagentsforPennsylvania PoweraLightNA~NotApplicable seecommentsgy=yegg(euyncs Aws~rsrcP~syc.~~a P~~aagu+gp2)LocationCPartoforwithinprimarycontainment RReactorBuildingTTurbineBuildingCSControlStructure RadwasteandOffgasBuildingg)gGgQDieselGenerators)Building IntakeStructure.
Administration BuildingCWCirculating WaterPumphouse
.SWEngineering Safeguards ServiceWater(ESSW)Pumphouse CAChlorineandAcidStorageBuilding0Outdoors.
Onsite,pied/l.4hdDCA7'3)A,B,C,D-Qualitygroupclassification asdefinedinRegulatory Guide1.26.Theequipment shallbeconstructed inaccordance withcodeslistedinTables3.2-2,3.2-3,and3.2-4.NA-Notapplicable toqualitygroupclassification 4)l,2,3,4,other=safetyclassesdefinedinANSI-N212 andSection3.2.3.NA-Notapplicable tosafetyclassification SSES-FSAR TABLE3.2-1SSESDESIGNCRITERIASUMMARY(Continued)
GeneralNotesandComments1)GE=GeneralElectricPL=Pennsylvania Power&Light,Pae29P=BechtelasagentsforPennsylvania Power&LightQINtH=Gi&SSAHiLL,Mc.Ii>rurrNA=NotApplicable, seecomments2)LocationCPartoforwithinprimarycontainment RReactorBuildingTTurbineBuildingCSControlStructure RWRadwasteandOffgasBuildingG,DieselGenerator BuildingDq'aDias~~4~weRAvoR'6,'IntakeStructure AAdministration BuildingCWCirculating WaterPumphouse SWEngineering Safeguards ServiceWater(ESSW)Pumphouse CAChlorineandAcidStorageBuilding0Outdoors, Onsite3)A,B,C,D-Qualitygroupclassification asdefinedinRegulatory Guide1.26.Theequipment shallbeconstructed inaccordance withcodeslistedinTables3.2-2,3.2-3,and3.2-4,NA-Notapplicable toqualitygroupclassification 4)1,2,3,4,other=safetyclassesdefinedinANSI-N212 andSection3.2.3.NA-Notapplicable tosafetyclassification Rev.35,07/84  
'I04 SS>S-FSAP 3~3QT"IDAFDTORNADOLOAO~RGS33"VTNDTOADX~1GS89AllexposeRstructures aredesignedformindloading.3.').11Des'adValor+v~KGfThedesignvindvelocityforallstructures is80mphat30ftaboveqroardfora100-yearrecurrence inte"val.
TheResignvin9velocity'sbaseRonFigure5ofReference 3.3-1.(Refeencesare1'stedinSubsection 3.3.3).Theverticalvelocitydistribution isbaseRonTable1(a)ofReference'.3-2.
Thevelociydistribat'on istabalated inTable3~3-1AqustfactorofasgiveninPeference 3.3-2,isu.oR.~heprocedu"e usedtotransform thewindvelocityintoaneffective pressureapoliedtoexposeRsurfacesofstructures isasRescribed inPeference 3.3-2and'ssummarizeR asfollovs:Thedynamicpressueisgivenby:cr=0.002558V~vhere,a=Dynamicpessa"einpsfV=Rindvelocityinmph(desiqnwindvelocityxgustLac'~Thelocalpressureatanypointonthesarfaceofabuildingis.qualto:gxCpwhereCn=pressurecoefficient Rev.35~07/803~3 SSZS-FSaR.he.otalpressureonabuildingisequal+o:qxCDwhee,CD-~Shapecoefficient.TheSusquehanna SESstructures haveslopingroofswithapitchlessthan20degrees.Thefollowinq arevaluesforCpandC(SeeReference 3.3-2~p.1151andPiqure7)Cpforwindwardwall~0.8(pressure)
Cpforleewardwall~-0.5(suction)
Cpforwindwardslope=0'CpforLeewardslope~-0.6(suction)
C~1.3(pressure)
.Dwindloadsonstructures aretabulated in'able3.3-1ExposedtanksaredesignedtoresistaminimumwindLoadof30psfontheverticalpro1ection
~basedonReference 33-3.ForcvlindricaL tariks,windisconsidered actingonsix-tenths ofthevrticalnro1ection.
Voincreases inallovanle vorkingstressesarepermitted forthesestructures forLoadingconditions involvinq wind.3~/~/TOQNQDOLOAQENGQTable3.3-2liststhesYstemsthatareprotected againsttornadoes andtheenclosures whichprovidethisprotection.
ThistableisbasedonNRCRegulatorY Guide1.11'7(Reference 3-3-4)33*3~.hPPliQRbke QeMKRQRather+>XsThefollowing designparameters areusedforthedesignoftornado-resistant structures andarebasedonReference 3.3-5:a)~~icFjordQgg5i)Lg(FoRS7'R,ucyvReso7'HeR,1'HAHbIeseLGEHERR7oR
~f8tlirtg)IMg)Tangential speed:300mphTranslational speed:'0mphRev~35,07/843~32 SSZS-PSAR b)PressareDifferential BetweentheZnsideandOgtsgdeofgBuigggngQFoR>l'RocTOR6S OTHBgTHAW5g<sRAApressuredrop,of3psi.attherateof1psiprsecond.c)oggaQo-Qggega tingQgg.ig'~eg Thesearediscussed inSubsection 3.5.1.4.IMsgra7'<>g.Q.g~pQeteggi))gtggg~f Zogr2sogStgucfureg Thefollovinq procedures areusedtotransform thetornadoloadinqsintoeffective loadsonstructures:
a)DgngmgcwoundJ,o~dgggAprocedure thesameastheoneutilizedtotransform thewindvelocityintoaneffective
: pressure, asdescribed inSubsection 3.3.1.2,isusedvith.hefollowinqexceptions:
1)Velocityandvelocitypressureareassumednotto-varyvithheight.2)-Thegastfactoristakenasunity.AsshovninFigure5ofReference 3.3-5,andasexplained therein,theequivalent aniformtornadowindvelocityonthebuildingduetoatangential component of300mphandatranslational component.
of60mphis220mph.OnSusquehanna SEStheprssueloadsarecalculated onthebasisofauniform300mphwindvelocityandareasfollowsspygSygdcpeg,Ego7HER,7ahH')ESEL+ENERAToN'O'QILDINq.
IEi8Mindwadp'ressure onwalls:185sfLeewardsuctiononvalls:115psfl66pc/Totaldesignpressure:
Suction(uplift)onroof:300psf140psf.gyp@STI90~~/<Theturbinebuildingisdesignedtoresistthetornadoloadinqassaminq2/3ofthemetalsidingandtheroofdeckbeingblownaway.However,alltheframesaredesignedforthefulltornadoloadinq.Themetalsidingand'heroofdeckofalls.ructares arenotdesignedtoresistfulltornadoloading.<
Rev.35,07/8433-3 b)Dgff~geggjal>ges~ug~~odin'ifferential pressureloadingiscalculated usingthefolloving pressure-time function:
Thedifferential pressureisassumedtovaryfromzeroto3psiattherateof1psi/sec,remainat3psifor2secondsandthenreturntozeroat1psi/sec.r~/Blowoutpanelsareusedasnecessary onsafetyrelatedlN~<<T+structures tominimizedifferential pressure.
c)~oMQQ-game~~54ggQSsTornado-generated missilesareclassified asiveninTable&35-4AHpThe barrierdesignprocedures aredescribed'n Subsection 3.5.Z'.Load'ngsa),b),andc)arecombinedinthefollowing mannertoobtainthetotaltornadoloading:Cii)(iii)(iv)(v)(vi)Q~~VpV~=ffmWv+0.5RpW~=Qv+QmR~~Rv+0.5Qp+Wm where,TotaltornadoloadWw~TornadovindloadRp=Tornadodifferential pressureload,andMm~Tornadomissileload3.3.23EffectofFailureofStructures orComponents NotDe2493eifoX<<RMQo<MCRStructures notdesignedfortornadoloads'a"echeckedtoensurethatduringatornadotheyvillnotgeneratemissilesthathavemoresevereeffectsthanthoselistedinTable3.5-4.Rev.35,07/843.3-4 SSES-FSAREThemodesoffailureofthesestructures areanalyzeRtoverifythattheyvillnotcollapseonsafetyrelatedstructures.
33~QRg~B~C~S33-1.3.3-23~33~3.3-4~H.C.S.Thos,>>NevDistributions ofExtremeRindsintheUnitedStates",gouryagoftheS~tuctugal
: giyision, ASCE,(July1968}~pp1787~>>RindForcesonStructures",
ASCZPaperNo.3269,Transactions, Volume126,PartII(1961),p1124."SteelTanks,Standpipes, Reservoir, andElevatedTanksforRaterStorage>>,
AWRAStandard, 0100-73."TornadoDesignClassification>>,
USNRCRegulatory Guide,1.117,(June1976).3.3-5.J.A.DunlapandKarlRiedner,"NuclearPoverPlant*TornadoDesignConsiderations",Journal ofthePoverDivision, ASCE,(Aarch1971).Rev.35,07/843~3-5 I!IIlH1' d)Dynamicelandloading(forDieselGenerator
'E'uilding)
.'Tangential Speed:360mphTranslationa LSpeed:70mph~1~~~~~')>'"<ssul.
g.,I'"".'v'ni'.,i3',";l,':.*;'n 1;hoinsit!cAndoutside0,'.dies+1generator''uilding.
Apressuredropof3psiattherateof2psipersecond.INSERT''hedifferential pressureisassumedtovaryfromzeroto3psiattherateof2psi/sec,remainat3psifor2secondsandthenreturntozeroat2psi/second.
(p~p~sssL,gagaRhTog
'c'ulL.Dlgg)  
~,
~,
SSES'"FSARTABLE3.3-2TORNADOWINDPROTECTEDSYSTEMSANDTORNADORESISTANTENCLOSURES(Pg.lof2)ProtectedSstemTornadoResistantEnclosureReactorcoolantpressureboundaryReactorBuilding3.ReactorcoreandreactorvesselinternalsISystemsorportionsofsystemsrequiredforReactorBuildinga)Reactorshutdownb)ResidualHeatRemovalReactorBuildingReactorBuildingc)CoolingthespentfuelstoragepoolReactorBuildingd)MakeupwaterforprimarysystemReactorBuildinge)Systemsnecessarytosupportservicewater,coolingwatersource,andcomponentcoolingESSWPumphouseandReactorBuilding4.ReactivitycontrolsystemsReactorBuildingandControlBuilding5.ControlroomControlBuilding6.Monitoiing,actuating,andoperatingsystemsimportanttosafetyReactorBuildingandControlBuilding7.ElectricandmechanicaldevicesandcircuitrybetweentheprocesssensorsandtheinputterminalsoftheactuatorsystemsinvolvedingeneratingsignalsthatinitiateprotectiveactionReactorBuilding,DieselGeneratorBuilding,andESSWPumphouseCgggalEAA7~SIP(LDl~8tRev.35,07/84  
SSES'"FSAR TABLE3.3-2TORNADOWINDPROTECTED SYSTEMSANDTORNADORESISTANT ENCLOSURES (Pg.lof2)Protected SstemTornadoResistant Enclosure ReactorcoolantpressureboundaryReactorBuilding3.Reactorcoreandreactorvesselinternals ISystemsorportionsofsystemsrequiredforReactorBuildinga)Reactorshutdownb)ResidualHeatRemovalReactorBuildingReactorBuildingc)CoolingthespentfuelstoragepoolReactorBuildingd)MakeupwaterforprimarysystemReactorBuildinge)Systemsnecessary tosupportservicewater,coolingwatersource,andcomponent coolingESSWPumphouse andReactorBuilding4.Reactivity controlsystemsReactorBuildingandControlBuilding5.ControlroomControlBuilding6.Monitoiing, actuating, andoperating systemsimportant tosafetyReactorBuildingandControlBuilding7.Electricandmechanical devicesandcircuitry betweentheprocesssensorsandtheinputterminals oftheactuatorsystemsinvolvedingenerating signalsthatinitiateprotective actionReactorBuilding, DieselGenerator
: Building, andESSWPumphouse CgggalEAA7~SIP(LDl~8tRev.35,07/84  
~,
~,
SSES-FSARTABLE3.3-2(Continued)(Pg.2of2)8.ProtectedSstemLong-termemergencycorecoolingsystemClass1EelectricsystemsTornadoResistantEnclosureReactorBuilding,DieselGeneratorBuilding,andESSWPumphousepjgZELg~4f+~7o86uIc.A(44AllSeismicCategoryIstructures.Rev.35,07/84  
SSES-FSAR TABLE3.3-2(Continued)
(Pg.2of2)8.Protected SstemLong-term emergency corecoolingsystemClass1EelectricsystemsTornadoResistant Enclosure ReactorBuilding, DieselGenerator
: Building, andESSWPumphouse pjgZELg~4f+~7o8 6uIc.A(44AllSeismicCategoryIstructures
.Rev.35,07/84  


SSP.S-FSAR3~4MATjQLgVQLggLOODQDESIGNAsdiscus,edinSection2.4,allSeismicCategoryIstructuressncuroagainstfloodinqdue>oprobablemaximumflood(PNF)oftheSusauchannaRiverorprobablemaximumprecipitation(PNP)ontheareasurroundinqtheplant.Therefore,specialfloodprotec+ionmeasuresareunnecessary.TheSeismicCateqoryIstructureshave,how~ver,beendesiqnedforhydrostaticloadsresultingf=omgroundwater,asdiscussedinSection3.8.Thegroundwatertableisatelevation665NSLinthemainplantarea.Aoostulatedbreakinthecoolingtowerbasinscrofthewaterdeliverypinos+othebasincouldresultinabuild-upofwateragainstthewallsofeithero"bothoftheESSMpumphouseandthe+urbinebuilding.Intheeventofsuchwaterbuild-upbreachingtheturbinebuildinqwall,waterthatwouldnotbeinterceptedhythefloordrainsorqrillesandthuswouldflowthrough+heturbinebui'.dingto+hereactorbuildingwouldbepreventedfromendangeringeguipmen+inthelatterbymeansofwatertiqhtdoors.Floodwaterh>>ildinqupagainsttheESSMpumphousewouldalsobepreventedfromenteringthehuildinqbymeansofwatertightdoors.ImpactforcesandwaterpressureduetofloodwaterwillnotendangertheintegrityoftheESSMpumphouse.Allsafe~y-relatedsystemsarelocatedintheReactozBuildingDieselGeneratorBuilding,ControlStructureandtheEngineeredSafequardS~rviceMater(ESSM)Pumphousep~gggg,gggggpfygBASIL&Sufficientphysicalseparationbetweenthesebuildinqsisprovidedtopreven+internalspreadinqofanyfloodsfromonebuildingtoanother.RedundantEngineeredSafetyFeatures,pumpsanddrives,heatexchangersandassociatedpipes,valvesandinstrumentationinthereactorbui'dingsubjecttopotentialflccding,arehousedinseparatewatertiqhtrooms,withtheexcep+ionofHPCIandRCICroomsin(tnit2.SeismicCateqoryIleveldetectorstripalarmsin,the-.inconir.=lroomwhen"'.!:ewaterlevelinanyroomexceedsthesetpoint.Isolationofthefloordrainagelinesfromtheseroomsisprovidedbyoutsid'emanualvalves.Allotherroomsin+hereactorbuildingandcontrolstruc+urecontaininqsafetyrelatedequipmentwhicharesubjecttopotentialfloodinqbyprocessfluidleakageorfireprotectionwaterareprovidedwithatleastoneopenfloordrain.FloodsinexcessoftheapproximatelyROqpmfleerdraincapacityincreaseth~waterlevelintheaffectedareaandarereleasedthroughth~door-to-floorclearanceoftheserocms.3.4-1 SSES-PSARRefertoSubsection9.3.3foradetaileddescriptionofthereactorbuilding.andcontrolstructuredrainaqesystem.Thefourdieselgeneratorsetsarehousedinindividualvatertiqhtcompartmentswithinthedieselgeneratorbuilding.Ploordrainlinehranchesfromeachofthesecompartmentsareequippedwithcheckvalvestopreventbackfloodinqfromthecommonsump.TheESS'Rpumphouseisdividedintotvoredundantcompartments,Ploodinqfrominternalleakaqewould,therefore,onlyaffectoneoft.heredundantpumpsets.Thecontrolandelectricalpanelsaremountednnminimum4inchhighconcretepadsorstructuralsupports.nperatinqflooropeningsallovdrainaqeofanyleakaqetotheESSVpumpsuctionspacebelovortoareservesumpspacethatcouldbeemptiedvit.haportahlepump.TheHPCTandRCXCroomsinUnit2areinterconnectedthroughaventplenumvhichleadstothecommonblowoutpanel.Ploodinqineitherroomcouldpotentiallyspillovertotheotherviatheventpath.Theven.pathis10'-8"abovethefloor.A'oderateenerqypipebreakineachroomhasbeenpostulatedandanalyzedinconsi.toncewithBTPAPCSB3-1.Itisconservativelyestimated,withouttakingcreditforfloordraincapacity,thatitvilltakeapproximately13'oursforthemaximummoderateenergy.pipecrackleakageintheRCZCroomtooverflovintotheHPCIroom,and5hoursfromHPCIroomtoRCICroom.Themaximummoderate,o.nerqypipecrackleakagethatcannotbeisolatedfromoutsidethese.pumproomsvilltakeapproximately23hourstooverflowfromRCICroomtotheHPCIroomand6hourstooverflowfromHPCXroomtoRCZCroom.Thereissufficienttime'toidentifythepipefailureandtakeappropriateactiontomitigatetheconsequenceofpipefailurepriortooverflewoccurredhetveenthesetvointerconnectedrooms./N7//S9SZnFb/SS~/.Cr~rRA7o4EFu//-4//4fCOOL+04/45.4y'L~Cgg-g4gfEg4l/pPZDHIT//CACO@VAL7opR~~supSic/AoobA/gFRohfT~f~o//b/44'~MP.AgeFZoo4toF7pf4/CSEE6EH<Rh7OQE5U/Cp///$WA'/C'ffA8F+~@<+7~oPo7<N7/aLFaceJ/4PSP'/RfPA7sc7/okAt~7~<QI7//+Cook+RAIAIS,Rev.35,07/843.4-2 SSES-FShRcgg@eXggalhiXgLgft,TnV-23218~000movementsx012x10-<~/mi~x~04mi~.Oqx10-6peryear.TnV-106.3,000movementsx1.9x10-<</mimx.04mi~.23x10-8oeryear.ThesumoftheseeventprobabilitiesattheSusquehannaSESsiteisabout9.3x10-6.5~31QisggleggotegtjonQesggngQgggsoghgSystemsthatarereviewed-formissileprotectionarelistedinSubsectionI.12.2.Forinto.mallyqeneratedmissiles,protectionisprovidedthroughbasicstationcomponentarranqementsothat,ifequipmentfailureoccurs,+hemissiledoesnotcausethefailureofaSeismicCateqoryIstructureoranysafetyrelatedsystem.Whereitisimpossibletoprovide.protectionthroughstationlayout,suitablephysicalbarriesareprovidedwhosefunctioniseithertoisolatethemissileortoshieldthecriticalsystemor'omponent.Znaddition,redundantSeismicCategoryIcomponent~aresuitablyprotectedsothatasinglemissilecannot'simultaneo>>slydamageacriticalcomponentanditsbackupsystem.3~5.2~)S'guet>>~esDegiggegdtoMiggstagd/lissyleEffectsSeismicCaoqo.yIstructuresaredesiqnedtowithstandpostulatedexternalorinternalmissileswhichmayimoac+tho.m.Tahle-'-2isaiistofthestructuresdesignedtowithstandexternaltornadogeneratedmissiles,andthesafetyrelatedequipmentwhichtheyprotect.ThemissilesarelistedinTableS3-5-4aNp8.5'-4o,PSIv~~o~the~3)jagg~~~'E.'et4ldQ&Not0hcDtcscA.g~~ftrv'~((.y(gqv~353OARPIE>DESIGNPROCPDURES,.t.L2.hestructuresandbarriersaredesignedinaccordancewiththeproceduresdeta'edinReference3.5-5.Theproceduresinclude:Rev.35,07/843'-33 SSES-FSARa)Predictionoflocaldamaqe(penetration,perforation,andspallinq)intheimpactareaincludingestimationofthedepthofpenetration))Fstimationofbarrierthicknessrequiredtoprevent-perforationc)Predictionoftheoverallstructuralresponseofthibarrierandportionsthereoftomissileimpact.Thouseofaduct'lityratiohiqherthan10butlessthantheallowablesqiveninReference3.5.5willbeqovernedbythefol3cwinqconditions:(1)ReinforcedconcretebarriersTheallowabledisplacementofreinforcedconcre"eflexurememberscanbebasedonanupperlimitforplastichinqerotationr6asfollows:dr&=0.0065-<0.07whered=distancefromcompressionfacetocentroidoftensilesteelreinforcement(inch)c=distancefromcompressionfacetotheneutralaxisat~'ltimatestrenqth(inch)ThisconditionisqiveninsectionC.5ofAppendixCandcommntarytoAppendixCofACI349g>(2)St~elbar"iersTcins>>retheabi1ityofasteelbeamtosustainful).yplasticbehaviorandthustopossesstheassumedd>>ctilityatnlastichinqeformation,itisnecessarythattheelementsofthebeamsectionmeetminimum>hickn=ssrenuirementssufficienttopreventlocalhucklinqfailure.TheconditionstoprecludelocalbucklingasgiveninAI~Cmanualaresatisfied.Rev.35,07/8435-34 SSES-FSAR3~~/~EfgRQPCgg3.5-1.3.5-2.3.5-3.35-4GFNemoReport"HypotheticalTurbineNissileData-38,inchLastStageBucketUnits<<(Narchf6,f973).GENemoReport"HypotheticalTurbineNissiles-GeneralDiscussion>>(Narch13,1973).GENemoReport"HypotheticalTurbineNissilesProbabilityofOccurrence"(Narch14,1973).D.C.Gonyea,"AnAnalysisoftheEnergyofHypotheticalwheelNissilesEscapinqfromTurbineCasinqs",GETechnicalInformationSeriesNo.DP73SL12(February1973).3.5-5.<<DesiqnofStructuresforMissileImpact<<,BC-TOP-9A,Rev.2,BechtelPoverCorporation,SanFrancisco,California(September1974).3~5"6.3~5-735-83.5-93.5-103.5-11U.S.Army,"StructurestoResisttheEffectsofAccidentalExplosions>,Dept.oftheArmy,Navy,andAirForce,(1969).NuclearRegulatoryCommission,<<StandardRevievPlanSection3.5.1.6<<,NUREG-751087,(24Nov.1975).Solomon,K.A.,"HazardsAssociatedvithAircraftandNissiles>>,presentedatAmericanandCanadianNuclearSocietyNeetinq,Toronto,Canada,(June,1976).Solomon,K.A.,"EstimateofprobabilitythatanAircraftvillimpactthePVNGS",NUS-1416,NUSCorp.,(June1975).NationalAirTransportationSafetyBoard,>>AnnualPevievvf:AircraftAccidentData",Published1972andannuallythereafter.Chelapati,C.V.,Kennedy,R~P.,andSall,I.B.~ProbabilisticAssessmentofAircraftHazardforNuclearPoverPlants,Nuc.Eng.Design19,336(1972).3.5-123.5-13Barber,R.B.,SteepgoggCgngggfeSggbImpactTeytggggeggmen+ggSggg],afford),Bechte1Corp.,(October,1973)Vasallo,F.A.,fissileIntactgestjngofgej,ngorced.Concge+epanels,PreparedforBechtelCorp.,CalspanCorp.,(January,1975)-Rev.35,07/843.5-35 SSES-FSAB3~5-143.5-15NationalDefenseBeseatchCoaaittee,gffecgNof~ffactaddggglosion,Suleary.echnicalReportofDivision2,'olume1,Washington,DC,1946Gvaltnet',R.C.~QisggleGegez;agio'adggcgyctionig.LgQhg-Wates;-Cog],edPgvgg~eyggogg,ORNLNSIC-22,OakRidgeHationalLaboratory,OakRidge,Tennessee,fortherr.s.A.z.c.,(septcaber,1968).05.hlOCL8AR.BEAULAToR'tfCoW<<SS>d<~7AHQAkgReviewPt.AH3-5~I~'+~<v~NDNECa,-oSoo(JuaYlDBl)35'-l7V.g.,NuC~eARRocUL,AToay~TMDARD8KV)<NPLAQ3.F.gVffCt-OSOo(tvhMip8i)goHhhISS(odVRev.IBev.35,07/843'-36 TABLE3.5-4aTornado-GeneratedMissileParametersforDieselGenerator'E'uilding.11issiie!>4~s1/'1t(lb}T!tlj>sIs~t11~1A)Woodplank,4in.v12in.x12ft.,travelingend-on108440B)Steelpipe,3in.dia.,Schedule40,10ft.long,travelingend-on72147C}Steelpipe,6in.dia.,Schedule40,15ft.long285170D)Steelpipe,12in.dia.,~HCOua.a4o,E)Steelrodl-a.nchdia.x3ft.long7508'55317F)Automobileflyingthroughtheairatnotmorethan25ft.abovethegroundandhavingcontactareaof20sq..'t.4000195G)Utilitypole13.5in.dia,35ft.long1490211Note:Thovcr".ical:~toestiesi~sl.l'.~1~const."'.eredoa::alto80:~~~!cen"theho-1zontagi~1ocitiesme'o'LOnedabove.  
SSP.S-FSAR 3~4MATjQLgVQLggLOODQDESIGNAsdiscus,ed inSection2.4,allSeismicCategoryIstructures sncuroagainstfloodinqdue>oprobablemaximumflood(PNF)oftheSusauchannaRiverorprobablemaximumprecipitation (PNP)ontheareasurroundinq theplant.Therefore, specialfloodprotec+ion measuresareunnecessary.
TheSeismicCateqoryIstructures have,how~ver,beendesiqnedforhydrostatic loadsresulting f=omgroundwater, asdiscussed inSection3.8.Thegroundwater tableisatelevation 665NSLinthemainplantarea.Aoostulated breakinthecoolingtowerbasinscrofthewaterdeliverypinos+othebasincouldresultinabuild-upofwateragainstthewallsofeithero"bothoftheESSMpumphouse andthe+urbinebuilding.
Intheeventofsuchwaterbuild-upbreaching theturbinebuildinqwall,waterthatwouldnotbeintercepted hythefloordrainsorqrillesandthuswouldflowthrough+heturbinebui'.ding to+hereactorbuildingwouldbeprevented fromendangering eguipmen+
inthelatterbymeansofwatertiqht doors.Floodwaterh>>ildinqupagainsttheESSMpumphouse wouldalsobeprevented fromenteringthehuildinqbymeansofwatertight doors.Impactforcesandwaterpressureduetofloodwaterwillnotendangertheintegrity oftheESSMpumphouse.
Allsafe~y-related systemsarelocatedintheReactozBuildingDieselGenerator
: Building, ControlStructure andtheEngineered Safequard S~rviceMater(ESSM)Pumphouse p~gggg,gggggpfyg BASIL&Sufficient physicalseparation betweenthesebuildinqs isprovidedtopreven+internalspreadinq ofanyfloodsfromonebuildingtoanother.Redundant Engineered SafetyFeatures, pumpsanddrives,heatexchangers andassociated pipes,valvesandinstrumentation inthereactorbui'dingsubjecttopotential
: flccding, arehousedinseparatewatertiqht rooms,withtheexcep+ion ofHPCIandRCICroomsin(tnit2.SeismicCateqoryIleveldetectors tripalarmsin,the-.inconir.=lroomwhen"'.!:ewaterlevelinanyroomexceedsthesetpoint.Isolation ofthefloordrainagelinesfromtheseroomsisprovidedbyoutsid'emanualvalves.Allotherroomsin+hereactorbuildingandcontrolstruc+ure containinq safetyrelatedequipment whicharesubjecttopotential floodinqbyprocessfluidleakageorfireprotection waterareprovidedwithatleastoneopenfloordrain.Floodsinexcessoftheapproximately ROqpmfleerdraincapacityincreaseth~waterlevelintheaffectedareaandarereleasedthroughth~door-to-floor clearance oftheserocms.3.4-1 SSES-PSAR RefertoSubsection 9.3.3foradetaileddescription ofthereactorbuilding.
andcontrolstructure drainaqesystem.Thefourdieselgenerator setsarehousedinindividual vatertiqhtcompartments withinthedieselgenerator building.
Ploordrainlinehranchesfromeachofthesecompartments areequippedwithcheckvalvestopreventbackfloodinq fromthecommonsump.TheESS'Rpumphouse isdividedintotvoredundant compartments, Ploodinqfrominternalleakaqewould,therefore, onlyaffectoneoft.heredundant pumpsets.Thecontrolandelectrical panelsaremountednnminimum4inchhighconcretepadsorstructural supports.
nperatinq flooropeningsallovdrainaqeofanyleakaqetotheESSVpumpsuctionspacebelovortoareservesumpspacethatcouldbeemptiedvit.haportahlepump.TheHPCTandRCXCroomsinUnit2areinterconnected throughaventplenumvhichleadstothecommonblowoutpanel.Ploodinqineitherroomcouldpotentially spillovertotheotherviatheventpath.Theven.pathis10'-8"abovethefloor.A'oderate enerqypipebreakineachroomhasbeenpostulated andanalyzedinconsi.toncewithBTPAPCSB3-1.
Itisconservat ivelyestimated, withouttakingcreditforfloordraincapacity, thatitvilltakeapproximately 13'oursforthemaximummoderateenergy.pipecrackleakageintheRCZCroomtooverflovintotheHPCIroom,and5hoursfromHPCIroomtoRCICroom.Themaximummoderate, o.nerqypipecrackleakagethatcannotbeisolatedfromoutsidethese.pumproomsvilltakeapproximately 23hourstooverflowfromRCICroomtotheHPCIroomand6hourstooverflowfromHPCXroomtoRCZCroom.Thereissufficient time'toidentifythepipefailureandtakeappropriate actiontomitigatetheconsequence ofpipefailurepriortooverflewoccurredhetveenthesetvointerconnected rooms./N7//S9SZnFb/SS~/.Cr~rRA7o4EFu//-4//4fCOOL+04/45.4y'L~Cgg-g4gfEg4l/pPZDHIT//CACO@VAL7opR~~supSic/AoobA/gFRohfT~f~o//b/44'~MP.
AgeFZoo4toF7pf4/CSEE6EH<Rh7OQE5U/Cp///$
WA'/C'ffA8F+~@<+7~oPo7<N7/aL FaceJ/4PSP'/RfPA7sc7/ok At~7~<QI7//+Cook+RAIAIS,Rev.35,07/843.4-2 SSES-FShR cgg@eXggal
: hiXgLgft, TnV-23218~000movements x012x10-<~/mi~x~04mi~.Oqx10-6peryear.TnV-106.3,000movements x1.9x10-<</mimx.04mi~.23x10-8oeryear.Thesumoftheseeventprobabilities attheSusquehanna SESsiteisabout9.3x10-6.5~31Qisggleggotegtjon QesggngQgggsoghg Systemsthatarereviewed-for missileprotection arelistedinSubsection I.12.2.Forinto.mallyqenerated
: missiles, protection isprovidedthroughbasicstationcomponent arranqement sothat,ifequipment failureoccurs,+hemissiledoesnotcausethefailureofaSeismicCateqoryIstructure oranysafetyrelatedsystem.Whereitisimpossible toprovide.protection throughstationlayout,suitablephysicalbarriesareprovidedwhosefunctioniseithertoisolatethemissileortoshieldthecriticalsystemor'omponent.
Znaddition, redundant SeismicCategoryIcomponent
~aresuitablyprotected sothatasinglemissilecannot'simultaneo>>sly damageacriticalcomponent anditsbackupsystem.3~5.2~)S'guet>>~es Degiggegd toMiggstagd
/lissyleEffectsSeismicCaoqo.yIstructures aredesiqnedtowithstand postulated externalorinternalmissileswhichmayimoac+tho.m.Tahle-'-2isaiistofthestructures designedtowithstand externaltornadogenerated
: missiles, andthesafetyrelatedequipment whichtheyprotect.ThemissilesarelistedinTableS3-5-4aNp8.5'-4o,PSIv~~o~the~3)jagg~~~'E.'et4ldQ
&Not0hcDtcscA.g~~ftrv'~((.y(gqv~353OARPIE>DESIGNPROCPDURES
,.t.L2.hestructures andbarriersaredesignedinaccordance withtheprocedures deta'edinReference 3.5-5.Theprocedures include:Rev.35,07/843'-33 SSES-FSARa)Prediction oflocaldamaqe(penetration, perforation, andspallinq) intheimpactareaincluding estimation ofthedepthofpenetration
))Fstimation ofbarrierthickness requiredtoprevent-perforation c)Prediction oftheoverallstructural responseofthibarrierandportionsthereoftomissileimpact.Thouseofaduct'lity ratiohiqherthan10butlessthantheallowables qiveninReference 3.5.5willbeqovernedbythefol3cwinqconditions:
(1)Reinforced concretebarriersTheallowable displacement ofreinforced concre"eflexurememberscanbebasedonanupperlimitforplastichinqerotationr6asfollows:dr&=0.0065-<0.07whered=distancefromcompression facetocentroidoftensilesteelreinforcement (inch)c=distancefromcompression facetotheneutralaxisat~'ltimate strenqth(inch)Thiscondition isqiveninsectionC.5ofAppendixCandcommntarytoAppendixCofACI349g>(2)St~elbar"iersTcins>>retheabi1ityofasteelbeamtosustainful).yplasticbehaviorandthustopossesstheassumedd>>ctility atnlastichinqeformation, itisnecessary thattheelementsofthebeamsectionmeetminimum>hickn=ss renuirements sufficient topreventlocalhucklinqfailure.Theconditions toprecludelocalbucklingasgiveninAI~Cmanualaresatisfied.
Rev.35,07/8435-34 SSES-FSAR 3~~/~EfgRQPCgg 3.5-1.3.5-2.3.5-3.35-4GFNemoReport"Hypothetical TurbineNissileData-38,inchLastStageBucketUnits<<(Narch f6,f973).GENemoReport"Hypothetical TurbineNissiles-GeneralDiscussion>>
(Narch13,1973).GENemoReport"Hypothetical TurbineNissilesProbability ofOccurrence" (Narch14,1973).D.C.Gonyea,"AnAnalysisoftheEnergyofHypothetical wheelNissilesEscapinqfromTurbineCasinqs",
GETechnical Information SeriesNo.DP73SL12(February 1973).3.5-5.<<DesiqnofStructures forMissileImpact<<,BC-TOP-9A, Rev.2,BechtelPoverCorporation, SanFrancisco, California (September 1974).3~5"6.3~5-735-83.5-93.5-103.5-11U.S.Army,"Structures toResisttheEffectsofAccidental Explosions>,
Dept.oftheArmy,Navy,andAirForce,(1969).NuclearRegulatory Commission,
<<Standard RevievPlanSection3.5.1.6<<,
NUREG-751087, (24Nov.1975).Solomon,K.A.,"HazardsAssociated vithAircraftandNissiles>>,
presented atAmericanandCanadianNuclearSocietyNeetinq,Toronto,Canada,(June,1976).Solomon,K.A.,"Estimate ofprobability thatanAircraftvillimpactthePVNGS",NUS-1416, NUSCorp.,(June1975).NationalAirTransportation SafetyBoard,>>AnnualPevievvf:AircraftAccidentData",Published 1972andannuallythereafter.
Chelapati, C.V.,Kennedy,R~P.,andSall,I.B.~ProbabilisticAssessment ofAircraftHazardforNuclearPoverPlants,Nuc.Eng.Design19,336(1972).3.5-123.5-13Barber,R.B.,SteepgoggCgngggfe SggbImpactTeytggggeggme n+ggSggg],afford),
Bechte1Corp.,(October,1973)Vasallo,F.A.,fissileIntactgestjngofgej,ngorced
.Concge+e panels,PreparedforBechtelCorp.,CalspanCorp.,(January, 1975)-Rev.35,07/843.5-35 SSES-FSAB 3~5-143.5-15NationalDefenseBeseatchCoaaittee,gffecgNof~ffactaddggglosion, Suleary.echnical ReportofDivision2,'olume1,Washington, DC,1946Gvaltnet',R.C.~QisggleGegez;agio'ad ggcgyction ig.LgQhg-Wates;-Cog],ed Pgvgg~eyggogg, ORNLNSIC-22,OakRidgeHationalLaboratory, OakRidge,Tennessee, fortherr.s.A.z.c.,(septcaber,1968).05.hlOCL8AR.BEAULAToR'tfCoW<<SS>d<
~7AHQAkgReviewPt.AH3-5~I~'+~<v~NDNECa,-oSoo(JuaYlDBl)35'-l7V.g.,NuC~eARRocUL,AToay~TMDARD8KV)<NPLAQ3.F.gVffCt-OSOo(tvhMip8i)goHhhISS(odVRev.IBev.35,07/843'-36 TABLE3.5-4aTornado-Generated MissileParameters forDieselGenerator
'E'uilding.
11issiie!>4~s1/'1t(lb}T!tlj>sIs~t11~1A)Woodplank,4in.v12in.x12ft.,traveling end-on108440B)Steelpipe,3in.dia.,Schedule40,10ft.long,traveling end-on72147C}Steelpipe,6in.dia.,Schedule40,15ft.long285170D)Steelpipe,12in.dia.,~HCOua.a4o,E)Steelrodl-a.nchdia.x3ft.long7508'55317F)Automobile flyingthroughtheairatnotmorethan25ft.abovethegroundandhavingcontactareaof20sq..'t.4000195G)Utilitypole13.5in.dia,35ft.long1490211Note:Thovcr".ical:~toes tiesi~sl.l'.~1~const."'.ered oa::alto80:~~~!cen"theho-1zontagi~1ocitiesme'o'LOnedabove.  


SSES-PSARP7XENIX3~5=4.TORNADO-GENERATEDEMISSILEPARANETERS/gagGYROSft3gGS0TH6RTHhHDiesELgeweRATog.PQuJgy~~q)Hi~sileMoodplank,4in.r12in.r12ft,travelingend-onSteelpipe,3in.dia.,Schedule40,10ftlong,travelinqend-onAutomobileflyinqthroughtheairatnotsorethan25ftabovetheqroundandhavingcontactareaof20sqft.1083001004000MeiqhtVelocityAlber./mphilSteelrod1-inchdiameterx3feetlongDtilitypole13-1/2inchdiameter,35feetlongactinqnotmorethan30feetabovetheqround1490216144'OTETheverticalvelocitieswillbeconsideredequalto80%ofthehorizontalvelocitiesmentionedabove.Bev.35,07/84 00 IrTff~~~erI~-)t!JJ-))ettr>>fLI>>NLeoel,,I~fI)I~ILNNe'I/12IIN<<LNOO<<f~3toeeN~e>>ftefo4LONoo>>NL<<fe58ee>>eNe>>4>>N<<t~7toeloeI>>NON<<tg8910t.>>~4<<Tl~~~LoL12131415'7<<o~QN<<e>>I>>eee19fteON<<OO<<>>feNfNOOff<<etNOLI4ff<<e>>OI>>eeeONIoet~ebeetllIOgc.~)/II'Ie=>>OeOOht<<<<OOINO>>NN4'l>>leWNe<<\>>f~~Pf54<<>>I<<OIO4~0e>>Ot~lOQtfNWtfl>>feONIfM>>4e>>fIRev.35,07/84SUSCUEHANNASTEANELECTAICSTATIONUNITSIANP2FINALSAFETYANALYSISAE.ORTteeG'KRALARRANCESanA'VDPATROLROADFICUAE3.5-8  
SSES-PSARP7XENIX3~5=4.TORNADO-GENERATED EMISSILEPARANETERS/gagGYROSft3gGS0TH6RTHhHDiesELgeweRATog.PQuJgy~~q)
'ie SSES-FSAR$~7bSEISMICQESZGQ~Thissectiondescri.bestheseismicdesignrequi.rementsandmethodsusedforSusquehannaSESandtheseismicdesignandanalysisofnon-hSSSequipmentSeismicdesiqnofNSSSequipmentisdescribedinSection3.7a.IIXL~e~M-'y,~'7b.1SEIS.'fICINPUTp=~~WefccccXi(cccPcccgpf~~j.pc37h.1.4DesianRosaonse'Spectraoi.)r";,~n>~i~qb-N5i.~ThesitedesignresponsespectraforrockfoundedstructuresAareillustratedonFiqures3.7b-1.and3.7b-2forthehorizontalcomponentsoftheOperatinqBasisEarthquake(OBZ)andSafeShutdownEarthquake(SSE)respectively.eesxgnearthquakeisasumedtobethe.freefield.motionatthebasematofthestructurewithouttheeffectofthestructure.ForallseismicCategoryIstructurefoundedonrockthehorizontalground..*accelerationvaluesare5and10percentofgravityforOBEandSSErespectively(refertoSubsections2.5.2.6and2.5.2.7).However,SeismicCategoryIstructuresfoundedonsoil,andthespraypondhavebeendesiqnedforgroundaccelerationsof8percent(OBE).;and15percent(SSE)ofqravity.Themaximum'qrounddisplacementistakenproportionalto.themaximumground.accelerationand.isset.a't40in~foragroundaccelerationof1.0.qravitv.','~3/i'(4Dga/~le)IThebasediaqra'mofalldesiqnspectraconsistsofthreeparts:'.themaximumqroundaccelerationlineontheleftpart,themaximumqounddisplacementlineontherightpart,andthemiddlepartdependsonthemaximumpseudo-velocity.etcqForvariousdampingvalues,thenumerical'valuesofdesigndisplacementsandaccelerationsforthehorizontalcomponent.desiqnresponsespectraareobtainedbymultiplyingthevaluesofthemaximumqrounddisplacementandaccelerationbythy,correspondi>gfactorsgiveninTable.3.7b-1.~~>4<P"~~'~'+v~~'jMcja~~<y>~P~lMeTheaccelerationlin~softheesignresponsespectraaredrawnparalleltothemaximumqroundaccelerationlinebetweenthefrequencylinesof6.67cps(controlpointBofFigures3.7b-1and3.7b-2)and2cps(controlpointC).Theaccelerationlinesconverqeat.the)unctionofthemaximumqrcundaccelerationlineandthe33cpsfrequencyline(controlpointh).Forfrequencieshigherthan33cps,themaximumqroundaccelerationlinerepresentstbedesiqnresponsespectra.Thedisplacementlines'*:-Rev.35,07/843.7b-1g&f~lP~~cc~~~~C.ccat~c.~c'rpCr~~r' SSES-PSARlaredrawnparalleltothemaximumqrounddisplacementline.maximumpseudo-velocityisassumedtobeconstantLinesweredrawnparalleltotheconstantvelocitylinesconnectingtheaccelerationlines.atcontrolpointt&#x17d;andthedisplacementlines.~~pe~~Q@g,~g~//.CO~g/bM/m/It/2~,~pesiqnresponsespectrava'luesfortheverticalcomponentofo~PCarthquahe,aretakenas2g3ofth.correspondinqvaluesofthehorizontal:,componentof'the'earthquake.~~gg'~'~yg.~+esitedesiqnspectradevratefromthosesugqestedinequlatorvGuide1.60.piqures3.7b-102through3.7b-105provideqo,.>'0/;-'ttcomparisonofthetao,Thedampinqvaluesforthe'RRGspectra.(~ry/'rethosespecifiedhyRegulatoryGuide1.61forreinforcedCP':.concre'ti.structures./rvL.~/Pcv~"~/G~~f'da/db8./~da/.6/~Av.oa3.7Q.1.gDegjggTggeHisgogy~mffScud~/c.~2:>~/~4Acefttke.D6&I=~(i'QzAsynthetictimehistorymotion>isgeneratedbymodifyingtheactualrecordsofthe1952TaftearthquakeaccordingtothetechniquesproposedinReference3.7b-1.Figure3.7b-3showsthe:normalizedsynthetictimehistorymotion.'hedurationofthetimehistoryis20sec.The.timeintervalofthetimehistoryis0.005sec.Fiqures3.7b-0:,and3.7b-5showacomparisonofthetimehistoryresponsespectraandthedesiqnresponsespectrafor2,3,5,and7percentdampinqvalues.Thespectraarecomputedatthefollowinqfrequencyvalues(incps):Ik0;2to1.0(incrementof0.05)a1.0to10.0(incrementof0.1)'10.0+o30.0(incrementof1.0)Figure3.7b-6howsacomparisonofthetimehistoryresponsespectraandthedesignresponsespectrafor2and5'ercentdampinqvaluesforafrequencyrangebetween0.2and1.0cps,'ithintervalsof0.0125cps.Alltheabovefiguresshowthatthetimehistoryresponsespectraenvelopthedesignresponsespectra.y/'/GeW~liQ,W~''PM~a~A'M~P~~cfogw376/oy~3.70/oI+6~TM~~~JfXXI~~~~~,o/P'~~+Amrpp7~/ee~~,Q~9~~pi,i,~.~/o~-pr-~-m~s-.mcp-'~m~~~,v~~~~~pM~c'f~'~Jm~4JgSaS~~g~~)l~
Hi~sileMoodplank,4in.r12in.r12ft,traveling end-onSteelpipe,3in.dia.,Schedule40,10ftlong,travelinq end-onAutomobile flyinqthroughtheairatnotsorethan25ftabovetheqroundandhavingcontactareaof20sqft.1083001004000MeiqhtVelocityAlber./mphilSteelrod1-inchdiameterx3feetlongDtilitypole13-1/2inchdiameter, 35feetlongactinqnotmorethan30feetabovetheqround1490216144'OTETheverticalvelocities willbeconsidered equalto80%ofthehorizontal velocities mentioned above.Bev.35,07/84 00 IrTff~~~erI~-)t!JJ-))ettr>>fLI>>NLeoel,,I~fI)I~ILNNe'I/12IIN<<LNOO<<f~3toeeN~e>>ftefo4LONoo>>NL<<fe58ee>>eNe>>4>>N<<t~7toeloeI>>NON<<tg8910t.>>~4<<Tl~~~LoL12131415'7<<o~QN<<e>>I>>eee 19fteON<<OO<<>>feN fNOOff<<etNOLI4ff<<e>>OI>>eeeONIoet~ebeetllIOgc.~)/II'Ie=>>OeOOht<<<<OOINO>>NN4'l>>leWNe<<\>>f~~Pf54<<>>I<<OIO4~0e>>Ot~lOQtfNWtfl>>feONIfM>>4e>>fIRev.35,07/84SUSCUEHANNA STEANELECTAICSTATIONUNITSIANP2FINALSAFETYANALYSISAE.ORTteeG'KRALARRANCESan A'VDPATROLROADFICUAE3.5-8  
SSZS-PSAP.3~7h.1.3CggtgcalDamogngValues/Non-HSSSlTable3.7b-2summarizesthedampingvaluesusedonSusquehannaSESTheyareexpressedasapercentageofcrit'caldampinqandarebaseRonRference3.7b-2.P~$'6EP~JrMgap'y~~3~767aTheESswpumphouse,pipingtothereactoroui.ldingac@3thesprayponaretheonlYSeismicCategoryIstructuresandsystemsoundednnscil.TheequivalentspringconstantsandthesoilRampirqcoefficintsusedintheanalysisoftheESSQpumphouseareshowninTable3.7b-3.Thesevaluesarebasedonformulae.containWinTable3-2ofReference3.7b-3.Alumpedrepresentationofsoilstructureinteractionwasused.g.g.<l.Soilstructureiriteactionisalsoconsideredin'hegenerationof'theresponsespectraforthecontainment..AsintheESSVpumphouse,a.lumpedrepresentationofthosoilstructureinteractionis'onsidered.Table3.7b-3showstheequivalentsprinqarRdampinqcoefficientsusedintheconta'mentmodel.$~7b~1~4$uggogtinaNediaforSeismicCategoryIStructuresAll.SoismicCategoryIstructures,'.withtheexceptionofZSSMpumphouseandthespraypond,and-itspipesupportsarefoundedcnrock.Forthestructuralanalysisoftherockbasedstructures,soilstructureinteractionisconsideredtobenegligibleduetothehighstiffnessoftherockwhichhasamodulusofelasticityofapproximately3.0x10~psi.However,theresponsespectraofthecontainmertarederivedfromamodelthatconsiderstheflexibilityoftherock.Theproperties,.oftherockandsoilsupportingtheESSMpumphouseareshowr.inTable3.7b-4.Discussionoftheembedmentofstructuresinsoilw'llbelimitedtotheES5Hpumphouse,sincealltheotherstructuresarefoundedonrock.TheESSPpumphousei59fthighandrestsona64ft'x112ftreinforcedconcretomat,foundation.Theembedmentdepth'fthe-foundationi."'qft.Thedepthofsoilbelowthematfoundationvariesfrom35'to60ft.Thesoilispredcminantlysand,gravel.cobbles,andboulders.Near.hesurface,thesoilisprimarilysandandsandyqravel.Withincreasingdepth,thesoilchanqe'stomorecobblesandboulders.Hearbedrock,thesoilismostlycobbles.andboulders.ThesitegeologyisdiscussedindetailinSection2-5~IRev.35,07/843.7b-3yi~z/I~~I'L  
'ie SSES-FSAR
$~7bSEISMICQESZGQ~Thissectiondescri.bes theseismicdesignrequi.rements andmethodsusedforSusquehanna SESandtheseismicdesignandanalysisofnon-hSSSequipment SeismicdesiqnofNSSSequipment isdescribed inSection3.7a.IIXL~e~M-'y,~'7b.1SEIS.'fICINPUTp=~~WefccccXi(cccPcccgpf~~j.pc37h.1.4DesianRosaonse'Spectraoi.)r";,~n>~i~qb-N5i.~ThesitedesignresponsespectraforrockfoundedstructuresAare illustrated onFiqures3.7b-1.and3.7b-2forthehorizontal components oftheOperatinq BasisEarthquake (OBZ)andSafeShutdownEarthquake (SSE)respectively.
eesxgnearthquake isasumedtobethe.freefield.motionatthebasematofthestructure withouttheeffectofthestructure.
ForallseismicCategoryIstructure foundedonrockthehorizontal ground..*acceleration valuesare5and10percentofgravityforOBEandSSErespectively (refertoSubsections 2.5.2.6and2.5.2.7).However,SeismicCategoryIstructures foundedonsoil,andthespraypondhavebeendesiqnedforgroundaccelerations of8percent(OBE).;and15percent(SSE)ofqravity.Themaximum'qrounddisplacement istakenproportional to.themaximumground.acceleration and.isset.a't40in~foragroundacceleration of1.0.qravitv.
','~3/i'(4Dga/~le)IThebasediaqra'mofalldesiqnspectraconsistsofthreeparts:'.themaximumqroundacceleration lineontheleftpart,themaximumqounddisplacement lineontherightpart,andthemiddlepartdependsonthemaximumpseudo-velocity.
etcqForvariousdampingvalues,thenumerical
'valuesofdesigndisplacements andaccelerations forthehorizontal component
.desiqnresponsespectraareobtainedbymultiplying thevaluesofthemaximumqrounddisplacement andacceleration bythy,correspondi
>gfactorsgiveninTable.3.7b-1.~~>4<P"~~'~'+v~~'jMcja~~<y>~P~lMeTheacceleration lin~softheesignresponsespectraaredrawnparalleltothemaximumqroundacceleration linebetweenthefrequency linesof6.67cps(controlpointBofFigures3.7b-1and3.7b-2)and2cps(controlpointC).Theacceleration linesconverqeat.the)unctionofthemaximumqrcundacceleration lineandthe33cpsfrequency line(controlpointh).Forfrequencies higherthan33cps,themaximumqroundacceleration linerepresents tbedesiqnresponsespectra.Thedisplacement lines'*:-Rev.35,07/843.7b-1g&f~lP~~cc~~~~C.ccat~c.~
c'rpCr~~r' SSES-PSARlaredrawnparalleltothemaximumqrounddisplacement line.maximumpseudo-velocity isassumedtobeconstantLinesweredrawnparalleltotheconstantvelocitylinesconnecting theacceleration lines.atcontrolpointt&#x17d;andthedisplacement lines.~~pe~~Q@g,~g~//.CO~g/bM/m/It/2~,~pesiqnresponsespectrava'luesfortheverticalcomponent ofo~PCarthquahe,aretakenas2g3ofth.correspondinq valuesofthehorizontal:,component of'the'earthquake.
~~gg'~'~yg.~+esitedesiqnspectradevratefromthosesugqested inequlatorv Guide1.60.piqures3.7b-102through3.7b-105provideqo,.>'0/;-'ttcomparison ofthetao,Thedampinqvaluesforthe'RRGspectra.(~ry/'rethosespecifiedhyRegulatory Guide1.61forreinforced CP':.concre'ti.
structures.
/rvL.~/Pcv~"~/G~~f'da/db8./~da/.6/~Av.oa3.7Q.1.gDegjggTggeHisgogy~mffScud~/c.~2:>~/~4Acefttke.D6&I=~(i'QzAsynthetic timehistorymotion>isgenerated bymodifying theactualrecordsofthe1952Taftearthquake according tothetechniques proposedinReference 3.7b-1.Figure3.7b-3showsthe:normalized synthetic timehistorymotion.'he durationofthetimehistoryis20sec.The.timeintervalofthetimehistoryis0.005sec.Fiqures3.7b-0:,and 3.7b-5showacomparison ofthetimehistoryresponsespectraandthedesiqnresponsespectrafor2,3,5,and7percentdampinqvalues.Thespectraarecomputedatthefollowinq frequencyvalues(incps):Ik0;2to1.0(increment of0.05)a1.0to10.0(increment of0.1)'10.0+o30.0(increment of1.0)Figure3.7b-6howsacomparison ofthetimehistoryresponsespectraandthedesignresponsespectrafor2and5'ercentdampinqvaluesforafrequency rangebetween0.2and1.0cps,'ithintervals of0.0125cps.Alltheabovefiguresshowthatthetimehistoryresponsespectraenvelopthedesignresponsespectra.y/'/GeW~liQ,W~''PM~a~A'M~P~~cfogw376/oy~3.70/oI+6~TM~~~JfXXI~~~~~,o/P'~~+Amrpp7~/ee~~,Q~9~~pi,i,~.~/o~-pr-~-m~s-.mcp-'~m~~~,v~~~~~pM~c'f~'~Jm~4Jg SaS~~g~~)l~
SSZS-PSAP.
3~7h.1.3CggtgcalDamogngValues/Non-HSSSl Table3.7b-2summarizes thedampingvaluesusedonSusquehanna SESTheyareexpressed asapercentage ofcrit'caldampinqandarebaseRonRference3.7b-2.P~$'6EP~JrMgap'y~~3~767aTheESswpumphouse, pipingtothereactoroui.lding ac@3thesprayponaretheonlYSeismicCategoryIstructures andsystemsoundednnscil.Theequivalent springconstants andthesoilRampirqcoefficintsusedintheanalysisoftheESSQpumphouse areshowninTable3.7b-3.Thesevaluesarebasedonformulae.containW inTable3-2ofReference 3.7b-3.Alumpedrepresentation ofsoilstructure interaction wasused.g.g.<l.Soilstructure iriteactionisalsoconsidered in'hegeneration of'theresponsespectraforthecontainment..
AsintheESSVpumphouse, a.lumpedrepresentation ofthosoilstructure interaction is'onsidered.
Table3.7b-3showstheequivalent sprinqarRdampinqcoefficientsusedintheconta'ment model.$~7b~1~4$uggogtina NediaforSeismicCategoryIStructures All.SoismicCategoryIstructures,
'.withtheexception ofZSSMpumphouse andthespraypond,and-itspipesupportsarefoundedcnrock.Forthestructural analysisoftherockbasedstructures, soilstructure interaction isconsidered tobenegligible duetothehighstiffness oftherockwhichhasamodulusofelasticity ofapproximately 3.0x10~psi.However,theresponsespectraofthecontainmert arederivedfromamodelthatconsiders theflexibility oftherock.Theproperties,.oftherockandsoilsupporting theESSMpumphouse areshowr.inTable3.7b-4.Discussion oftheembedment ofstructures insoilw'llbelimitedtotheES5Hpumphouse, sincealltheotherstructures arefoundedonrock.TheESSPpumphouse i59fthighandrestsona64ft'x112ftreinforced concretomat,foundation.
Theembedment depth'fthe-foundation i."'qft.Thedepthofsoilbelowthematfoundation variesfrom35'to60ft.Thesoilispredcminantly sand,gravel.cobbles,andboulders.
Near.hesurface,thesoilisprimarily sandandsandyqravel.Withincreasing depth,thesoilchanqe'stomorecobblesandboulders.
Hearbedrock,thesoilismostlycobbles.andboulders.
Thesitegeologyisdiscussed indetailinSection2-5~IRev.35,07/843.7b-3yi~z/I~~I'L  


SSES-PSAR3,7b.2S-ISilICSYSTEMANALYSISSection3.2identifiesSeismicCateqoryIstructures,systems,andcomponents.SeismicCategoryIstructuresareconsideredseismicsystemsan1arediscussedhere.SeismicCategoryIsystemsandcomponentsaeconsideredseismicsubsystemsandarediscusodinSubsection3.7b.3.SeismicsystemsareanalyzedforboththeOBEandSSR.Theresponsespectrummethod,asdescribediii'ection4.2.1ofReference3.7b-3,isusedforseismicanalysisofSeismicCategoryIstructures.Separatelateralandverticalanalysesof.structuresareperformed.Theresponsesarethencombinedtopredictthetotalresponseofthestructure.,AtimehistoryanalysisoftheSeismicCategoryIstructuresisdonetogeneratethereponse:spectraatthevarious.masspointsofthe.model.Themathematicalmodelsusedfortheseanalysesarelumpedmass,stickmodels.Thesamemodelswereusedforboththeresponsespectrumandtimehistoryanalyseswiththeexceptionofcontainment..In'thiscase,'hetime.historyanalysisusedtheflexiblebase'modelsshovninFigures3.7b-7and3.7b-8~whereasthestructuralanalysisusedafixedhasemodel.Thefixedhasemodeldiffersfromtheflexiblebaseonlyinthatthesoil"sp'rinqsanddampersareassumedtobeinfinitelyriqid,vhichresultsinafixedbase.TheequivalencyofthetvomodelsdeterminedbycomparinqtheirdynamiccharacteristicsisdiscussedinansvertoNRCQuestion130.20inVolume16ofPSAR.ThemathematicaLmodelsofthereactorandcontrolbuildingareshownonFigures3.7b-9through3.7b-11."Forallmodels,themassesarelocatedatelevationsofmassconcentrations,suchasfloorsandroofs.Hovever,inthecaseofthecontainment.whichisastructureofcontinuousmassdistribution,massesare.lumpedatapproximately15ftintervalsalonqthecont.ainmentshellandreactorpedestal.ThesemethodsofmasdistributionareinaccordancewiththeproceduresofSection3.2ofReference3.7h-3toprovideanadequatenumberof.masses.E~Thereactorandcontrolbuildinqsactasasinglestructureduetothemonolj.thicconstruction.TheentirereactorandcontrolRev.35,07/843.7b-4  
SSES-PSAR 3,7b.2S-ISilICSYSTEMANALYSISSection3.2identifies SeismicCateqoryIstructures, systems,andcomponents.
'IIL5 SSES-FSARbuildingstructureisshownasasingleunitinpiguze3.7b-12.Boththecontrol'uildinqandtheline29wallofthereactorbuildinqareconnectedtotheP-linevali,vhichiscommontoboththereactor'ndcontrolbuildings.Intheeast-westdirection,thecontrolbuildingandtheline29wallareconsideredtorespondasasingleunit.ThehorizontalmathematicalmodelsareshownonPiguzes3.7b-9and3.7h-l0.Thesticksrepresentshearwallslocatedatthebasemateleva.ioninthereactorbuildinqinthedirectionoftheearthquakem'otion.Intheeast-vestmodel(Figure3.7b-.9)thecontrolbuildinqislumpedentirelyontheline29'stick.Theentrecontrolbuildin'qisconsideredtocontributetothestiffnessof'heline29stick.Inthenorth-,southdirection,thecontrolhuildinqhasitsovnstickccnnectedtotheP-linewallbysprings.rJThesprinqsbetween'hesticksrepresenttheflexibility'of.thefloorslabconnectinqeachstick.Sincethesesprinqsact'nthedirectionoftheearthquakemotion,themodelallovsrelativedisplacemortbetveensticks.Fiqure3.7b-11shovstheverticalearthquakemodelofthereactorardcontrolbuildings.Theleftstickrepresentsthesteelcolumns.Therightstickrepresentstheshearvallsofboththereactorandcontrolbuildin'gs.Thefloorsarerepresentedbylumpedmassesandbeamelementsviththeappropriatestiffnesstocapturetheoutofplaneflexuralvibration.Vertical~translatioralcouplinqsprinqsazeprovidedtorepresentthecouplinqstiffnessofthefloorslabbetveenthevaliandcolumnsticks.Massnumbers8,55~and57representthe.fuelpoolqirdermasses.Massnumbers34;35,41,43,44,46,53and.54representthefloorsbetveen.thefuelpoolgirdersandcolumns/walls.Figure3.7h-13showsthecorrelationbetveenthemodelmass'ointsandtheactualstructure.Tomoreaccuratelydeterminethedyramiccharacteristicsofthemathematicalmodelsthemodulusofelasticityforconcreteusedirtheanalysis,isdeterminedbasedontest.resultsofconcretesamplesobtainedfromtheplant.site.Themodulusvalueusedism5~720,000ksf.TheseismicanalysisoftheSeismicCategoryIstructuresconsidersallmodeswhosefrequenciesarelessthan-33cps.However,if-atructurehasonlyoneortwomodesvithanaturalfrequencybelow33cps,thenthethreelowestmodesareused.If'structurehasthreeorlessdeqreesoffreedom,thenallmodes'reconsideredintheanalysis.Dq.e"BM~~~M,.~~A~c~~'reRev.35'7/S43.7b-5Iq~l~~l Ie pz07ADANMcz4a374-!Iffy~'3-7L-ll95)~~~.~7WZ~+Mgm,~..~~~~~~~.~.~~.aIA~IMRD4-II'l~.>ac~'~~g~~.....,..~I'*II[~~g<<~)'k<<A*I~~A~II4~~D@a'P~~~Q~Sl~aI~(~~K.7L-tZO)~~~.)~~~,~3~~~p~IIII+'~~3',gggoV~~
SeismicCategoryIstructures areconsidered seismicsystemsan1arediscussed here.SeismicCategoryIsystemsandcomponents aeconsidered seismicsubsystems andarediscusodinSubsection 3.7b.3.SeismicsystemsareanalyzedforboththeOBEandSSR.Theresponsespectrummethod,asdescribed iii'ection 4.2.1ofReference 3.7b-3,isusedforseismicanalysisofSeismicCategoryIstructures.
SSES-FSARTheSeismicCategoryIstructuresaresupportedbycontinuousbasemats;therefore,relativedisplacementofsupportsconsideration.NonlinearresponsesarenotconsideedsincetheSeismicCategoryIstructuresaredesiqnedtoremainelastic.$~7b~2,$Natura/ggeguggciesag~ResnogseLoadsThenest;>>ra1frequencies...ofthecontainmentandthereactorandcontrol-buildingbelow33cpsareshovninTables3.7b-5and3~7b-6respectively.Thefirstsevenfrequenciesofthereactor'ndcontrolbuildingintheeast-vestdirectionaredePendentuponthelocationofthereactorbuildingcranes.ThesignificantmodeshapesofthecontainmentandthereactorandcontrolbuildingareshownonFigures3.7b-14throuqh3.7b-43.Themodeshapesforcontainmentarefc"thehorizontalandverticaldirections.Thereactorandcontrolbuildingmodeshapesareforeacho'.thethreeprincipaldirections:east-west,noth-south,andvertical.Aswiththefrequenci'es,thefirstsevenmodeshapesofthereactorandcontrolbuildingintheeast-.west'.rectiondependonthelocationofthecranes.Figures3.7b-20throuqh3.7b-26-shovthatitisthesuperstructureofthereactorbuildingthatisexcitedattheselovfreguoncies.Thelocationofthecranesisnotedonthefigures~Fiqures3.7b-44through3.7h-57shovtheresponse(i.e.,displacements,accelerations,shearforces,bendingmoments,andaxialforces)ofthecontainmentforbothOBEandSSE.TheresponseofthereactorandcontrolbuildingisshownonFigures3.7b-58through3.7b-79.ResponsespectraatcriticallocationsareshovnonFigures3.7b-80through3.7b-101.Thecurvesareshovnforeachofthethreeprincipal'directionsatthedampingvaluesusedforeachdesiqnearthquake(seeSubsection3.7h.2.15forfurtherdiscussionofdampinqvalues}.Abriefdescriptionofthelocationofeachseriesofcurvesisprovidedbelovviththecorrespondinqfigurenumbers.Fiqures3.7h-80throuqh'3.7b-83RPVPedestalFigures3.7h-04throuqh3.7h-89Figures3.7h-90throuqh3.7h-95RefuelinqbreaA-DDieselGenerator>Pedestals,Rev.35,07/843.7b-6 Cl SSESPSARPiqures3.7h-96through3.7b-10'lOperatingFloorofESSWpumphouseSeismic.systemsandsubsystemsveedefinedinSubsection3.7b.2.EAllequipment,components,andpipingsystemsazelumpedintothesupportirqstructuremassexceptforthereactorvessel,vhichisanalyzedusinq'acoupledmodelofthecontainmentstructureandthereactorvessel(refertoFigures3.7b-7and3.7h-8).SeeSanction3.2ofreference3.7b-3forthecriteriaoflumpingtheequipment,componentsandpipinqsystemsintothesupporting'tructuremass..AdequacyofthenumberofmassesanddegreesoffreedomisdiscussedinSubection3.7b.2.1.EachSeismicCategoryIstructureisconsideredtobeindependentbecauseofaqapbetveenadjacentstructures.Forexample,thereisa2in.horizontalqapbetveenthereactorandcontrolbuildingandthecontainmenabovethefoundationmat.Toformtheseqapsrodofoammaterial(Ref.3.7b-12)vasused.~Rodofoamvasleftinplaceinthefollovingareas:(1)Jointsvhezetheprovidedactualqapis0-5inchgreaterthanthatoriginallyspecifiedonthecivildzavings.(2)Jointsvheretheinteractionforcesbetveenstructuresduetopresenceofrodofoamcauseinsignificanteffectonshearandmoment.I'llSeismicCateqoryIstructures,excepttheESSNpumphouseandspraypond,arefoundedonrock.Theseismicanalysisofthesestructuresisdoneassuminqafixedbase.AsstatedinSubsection3.7b.2.1,thecontainmentresponsespectrumcurvesaregeneratedfromaflexiblehasemodel.Therockisassumedtobeahomoqeneousmaterialcomprisinqanentireelastichalf-space.ThesoilspringsanddampersusedtorepresenttheeffectofthesoilarediscussedinSubsection3.7b.1.3.Rev.35,07/8437b-7  
Separatelateralandverticalanalysesof.structures areperformed.
Theresponses arethencombinedtopredictthetotalresponseofthestructure.,
AtimehistoryanalysisoftheSeismicCategoryIstructures isdonetogeneratethereponse:spectra atthevarious.masspointsofthe.model.Themathematical modelsusedfortheseanalysesarelumpedmass,stickmodels.Thesamemodelswereusedforboththeresponsespectrumandtimehistoryanalyseswiththeexception ofcontainment..
In'thiscase,'hetime.historyanalysisusedtheflexiblebase'models shovninFigures3.7b-7and3.7b-8~whereasthestructural analysisusedafixedhasemodel.Thefixedhasemodeldiffersfromtheflexiblebaseonlyinthatthesoil"sp'rinqs anddampersareassumedtobeinfinitely riqid,vhichresultsinafixedbase.Theequivalency ofthetvomodelsdetermined bycomparinq theirdynamiccharacteristics isdiscussed inansvertoNRCQuestion130.20inVolume16ofPSAR.ThemathematicaL modelsofthereactorandcontrolbuildingareshownonFigures3.7b-9through3.7b-11."Forallmodels,themassesarelocatedatelevations ofmassconcentrations, suchasfloorsandroofs.Hovever,inthecaseofthecontainment.
whichisastructure ofcontinuous massdistribution, massesare.lumpedatapproximately 15ftintervals alonqthecont.ainment shellandreactorpedestal.
Thesemethodsofmasdistribution areinaccordance withtheprocedures ofSection3.2ofReference 3.7h-3toprovideanadequatenumberof.masses.E~Thereactorandcontrolbuildinqs actasasinglestructure duetothemonolj.thic construction.
TheentirereactorandcontrolRev.35,07/843.7b-4  
'IIL5 SSES-FSAR buildingstructure isshownasasingleunitinpiguze3.7b-12.Boththecontrol'uildinq andtheline29wallofthereactorbuildinqareconnected totheP-linevali,vhichiscommontoboththereactor'nd controlbuildings.
Intheeast-west direction, thecontrolbuildingandtheline29wallareconsidered torespondasasingleunit.Thehorizontal mathematical modelsareshownonPiguzes3.7b-9and3.7h-l0.Thesticksrepresent shearwallslocatedatthebasemateleva.ioninthereactorbuildinqinthedirection oftheearthquake m'otion.Intheeast-vest model(Figure3.7b-.9)thecontrolbuildinqislumpedentirelyontheline29'stick.Theentrecontrolbuildin'q isconsidered tocontribute tothestiffness of'heline29stick.Inthenorth-,southdirection, thecontrolhuildinqhasitsovnstickccnnected totheP-linewallbysprings.rJThesprinqsbetween'he sticksrepresent theflexibility
'of.thefloorslabconnectinq eachstick.Sincethesesprinqsact'nthedirection oftheearthquake motion,themodelallovsrelativedisplacemor tbetveensticks.Fiqure3.7b-11shovstheverticalearthquake modelofthereactorardcontrolbuildings.
Theleftstickrepresents thesteelcolumns.Therightstickrepresents theshearvallsofboththereactorandcontrolbuildin'gs.
Thefloorsarerepresented bylumpedmassesandbeamelementsviththeappropriate stiffness tocapturetheoutofplaneflexuralvibration.
Vertical~translatioral couplinqsprinqsazeprovidedtorepresent thecouplinqstiffness ofthefloorslabbetveenthevaliandcolumnsticks.Massnumbers8,55~and57represent the.fuelpoolqirdermasses.Massnumbers34;35,41,43,44,46,53and.54represent thefloorsbetveen.thefuelpoolgirdersandcolumns/walls.
Figure3.7h-13showsthecorrelation betveenthemodelmass'oints andtheactualstructure.
Tomoreaccurately determine thedyramiccharacteristics ofthemathematical modelsthemodulusofelasticity forconcreteusedirtheanalysis, isdetermined basedontest.resultsofconcretesamplesobtainedfromtheplant.site.Themodulusvalueusedism5~720,000ksf.TheseismicanalysisoftheSeismicCategoryIstructures considers allmodeswhosefrequencies arelessthan-33cps.However,if-atructurehasonlyoneortwomodesvithanaturalfrequency below33cps,thenthethreelowestmodesareused.If'structure hasthreeorlessdeqreesoffreedom,thenallmodes'reconsidered intheanalysis.
Dq.e"BM~~~M,.~~A~c~~'reRev.35'7/S43.7b-5Iq~l~~l Ie pz07ADANMcz4a374-!Iffy~'3-7L-ll95)~~~.~7WZ~+Mgm,~..~~~~~~~.~.~~.aIA~IMRD4-II'l~.>ac~'~~g~~.....,..
~I'*II[~~g<<~)'k<<A*I~~A~II4~~D@a'P~~~Q~Sl~aI~(~~K.7L-tZO)~~~.)~~~,~3~~~p~IIII+'~~3',gggoV~~
SSES-FSAR TheSeismicCategoryIstructures aresupported bycontinuous basemats;therefore, relativedisplacement ofsupportsconsideration.
Nonlinear responses arenotconsideedsincetheSeismicCategoryIstructures aredesiqnedtoremainelastic.$~7b~2,$Natura/ggeguggcies ag~Resnogse LoadsThenest;>>ra1 frequencies...of thecontainment andthereactorandcontrol-building below33cpsareshovninTables3.7b-5and3~7b-6respectively.
Thefirstsevenfrequencies ofthereactor'ndcontrolbuildingintheeast-vest direction aredePendent uponthelocationofthereactorbuildingcranes.Thesignificant modeshapesofthecontainment andthereactorandcontrolbuildingareshownonFigures3.7b-14throuqh3.7b-43.Themodeshapesforcontainment arefc"thehorizontal andverticaldirections.
Thereactorandcontrolbuildingmodeshapesareforeacho'.thethreeprincipal directions:
east-west,noth-south, andvertical.
Aswiththefrequenci'es, thefirstsevenmodeshapesofthereactorandcontrolbuildingintheeast-.west'.rection dependonthelocationofthecranes.Figures3.7b-20throuqh3.7b-26-shov thatitisthesuperstructure ofthereactorbuildingthatisexcitedattheselovfreguoncies.
Thelocationofthecranesisnotedonthefigures~Fiqures3.7b-44through3.7h-57shovtheresponse(i.e.,displacements, accelerations, shearforces,bendingmoments,andaxialforces)ofthecontainment forbothOBEandSSE.TheresponseofthereactorandcontrolbuildingisshownonFigures3.7b-58through3.7b-79.Responsespectraatcriticallocations areshovnonFigures3.7b-80through3.7b-101.
Thecurvesareshovnforeachofthethreeprincipal
'directions atthedampingvaluesusedforeachdesiqnearthquake (seeSubsection 3.7h.2.15 forfurtherdiscussion ofdampinqvalues}.Abriefdescription ofthelocationofeachseriesofcurvesisprovidedbelovviththecorrespondinq figurenumbers.Fiqures3.7h-80throuqh'3.7b-83RPVPedestalFigures3.7h-04throuqh3.7h-89Figures3.7h-90throuqh3.7h-95RefuelinqbreaA-DDieselGenerator>Pedestals,Rev.35,07/843.7b-6 Cl SSESPSARPiqures3.7h-96through3.7b-10'l Operating FloorofESSWpumphouse Seismic.systemsandsubsystems veedefinedinSubsection 3.7b.2.EAllequipment, components, andpipingsystemsazelumpedintothesupportirq structure massexceptforthereactorvessel,vhichisanalyzedusinq'acoupledmodelofthecontainment structure andthereactorvessel(refertoFigures3.7b-7and3.7h-8).SeeSanction3.2ofreference 3.7b-3forthecriteriaoflumpingtheequipment, components andpipinqsystemsintothesupporting
'tructure mass..Adequacyofthenumberofmassesanddegreesoffreedomisdiscussed inSubection3.7b.2.1.EachSeismicCategoryIstructure isconsidered tobeindependent becauseofaqapbetveenadjacentstructures.
Forexample,thereisa2in.horizontal qapbetveenthereactorandcontrolbuildingandthecontainmen abovethefoundation mat.Toformtheseqapsrodofoammaterial(Ref.3.7b-12)vasused.~Rodofoamvasleftinplaceinthefolloving areas:(1)Jointsvhezetheprovidedactualqapis0-5inchgreaterthanthatoriginally specified onthecivildzavings.
(2)Jointsvheretheinteraction forcesbetveenstructures duetopresenceofrodofoamcauseinsignificant effectonshearandmoment.I'llSeismicCateqoryIstructures, excepttheESSNpumphouse andspraypond,arefoundedonrock.Theseismicanalysisofthesestructures isdoneassuminqafixedbase.AsstatedinSubsection 3.7b.2.1, thecontainment responsespectrumcurvesaregenerated fromaflexiblehasemodel.Therockisassumedtobeahomoqeneous materialcomprisinq anentireelastichalf-space.
Thesoilspringsanddampersusedtorepresent theeffectofthesoilarediscussed inSubsection 3.7b.1.3.Rev.35,07/8437b-7  


0na.WM~cu~~~~~)M~P%<B~~~p~~M~~~~7~~~Z.7L-PZ'7k-9'Igr-~~&vl~~to%/,p~.I.,BSS~.~~+jg~2-~3~+.~S.~~~OE~.r~~~'L'/tI*IIIIP>>)
0na.WM~cu~~~~~)M~P%<B~~~p~~M~~~~7~~~Z.7L-PZ'7k-9'Igr-~~&vl~~to%/,p~.I.,BSS~.~~+jg~2-~3~+.~S.~~~OE~.r~~~'L'/tI*IIIIP>>)
SSESFSAR40TheESSMpumphnuseissupportedbynaturalsoilformation;consequently,soilstructureinteractionhasbeenconsideredintheanalysisofth,.pumphouse.Informationregardingsoilcharacteristics,foundationembedment,etc.,iscontainedinSubsection3.7b.1.4.Theoilstructureinteractionanalysisisperformedusinqthelumpedspringapproach.Thesoilisconsideredahomoqeneousmaterial.TheequivalentspringconstantsandthesoildampingcoefficientsarediscussedinSubsection3.7b.1.3.Theseismicanalysisofthespraypondisdiscussedi'nSubsection2.5.5.g.7h.7,,5'evelopmentoffloorresponseSpectraAtimehi..toryanalvsisisusedtodevelopth'efloorresponsespectra.'hemathematicalmodelsusedforthisanalysisarediscuss~cdinSubsections3.7b.2.1,3.7b.2.3,and3.7b.2.0.eThefloorresponsespectraarecalculatedatthe.frequencieslistedinTable5-1ofReference3.7b-3.Structuralfreguencies'upto'33cpsareused."17<'RI-~li'r'p/~,~(eZZI'p$,7ba2,6TheaComuonenhsoEgarthguakeSation~j.I,~yEIa8:Rev~35,07/BQ3.7b-8Independentanalysesare,donefortheverticalandtwohcrizcntalfeast-vest'andnorth-south)directions.Fordesignpurposes,theresponsevalueusedisthemaximum'valueobtainedbyaddingthe'responseduetoverticalearthquakewith'helargervalueoftheresponse'du'.tooneofthehorizontalearthquakesbytheabsoluteSummethcdafathePSeEsca'/ltE,ZE~~r~NoZ~,~~A~etof-~~.3.7127CombinationofNodalHosoonseg~2~natNThemodalresponses,i.e.,shears,moments,deflections,acceleration,andinertiaforces,arecombinedbyeitherthesumoftheabsolutevaluesmethodorbythesquarerootofthesumofthesquaresmethodsMhenthelattermethodisused,theabsolutevaluesofcloselyspacedmodesforeachgroupareaddedfirstandthencombinedwiththeothermodesorgroupsofcloselyspacedmodeshythesquarerootofthesumofthesquaresmethod.Twoconsecutivemodesaredefinedascloselyspacedwhentheir~frequencesdifferfromeachotherby0.5,cpsorless.Ims~
SSESFSAR40TheESSMpumphnuse issupported bynaturalsoilformation; consequently, soilstructure interaction hasbeenconsidered intheanalysisofth,.pumphouse.
Information regarding soilcharacteristics, foundation embedment, etc.,iscontained inSubsection 3.7b.1.4.
Theoilstructure interaction analysisisperformed usinqthelumpedspringapproach.
Thesoilisconsidered ahomoqeneous material.
Theequivalent springconstants andthesoildampingcoefficients arediscussed inSubsection 3.7b.1.3.
Theseismicanalysisofthespraypondisdiscussed i'nSubsection 2.5.5.g.7h.7,,5'evelopment offloorresponseSpectraAtimehi..toryanalvsisisusedtodevelopth'efloorresponsespectra.'hemathematical modelsusedforthisanalysisarediscuss~cd inSubsections 3.7b.2.1, 3.7b.2.3, and3.7b.2.0.
eThefloorresponsespectraarecalculated atthe.frequencies listedinTable5-1ofReference 3.7b-3.Structural freguencies
'upto'33cpsareused."17<'RI-~li'r'p
/~,~(eZZI'p$,7ba2,6TheaComuonenhs oEgarthguake Sation~j.I,~yEIa8:Rev~35,07/BQ3.7b-8Independent analysesare,donefortheverticalandtwohcrizcntal feast-vest
'andnorth-south) directions.
Fordesignpurposes, theresponsevalueusedisthemaximum'value obtainedbyaddingthe'response duetoverticalearthquake with'helargervalueoftheresponse'du'.tooneofthehorizontal earthquakes bytheabsoluteSummethcdafathePSeEsca'/ltE,ZE
~~r~NoZ~,~~A~etof-~~.3.7127Combination ofNodalHosoonseg
~2~natNThemodalresponses, i.e.,shears,moments,deflections, acceleration, andinertiaforces,arecombinedbyeitherthesumoftheabsolutevaluesmethodorbythesquarerootofthesumofthesquaresmethodsMhenthelattermethodisused,theabsolutevaluesofcloselyspacedmodesforeachgroupareaddedfirstandthencombinedwiththeothermodesorgroupsofcloselyspacedmodeshythesquarerootofthesumofthesquaresmethod.Twoconsecutive modesaredefinedascloselyspacedwhentheir~frequences differfromeachotherby0.5,cpsorless.Ims~
c/Q~lk~e="-<<-/,.....-o-~~AI""CIC~'~~~1I7~.'II'~II'I<4*,P  
c/Q~lk~e="-<<-/,.....-o-~~AI""CIC~'~~~1I7~.'II'~II'I<4*,P  


SSES-PSAR37b28InteractionofNon-CategoryIStructureswithSeismicCateaorvIStructurestfon-CategoryIstructuresthatareclosetoSeismicCategorystructures,'iz.,theturbineandradwastebuildings,havebeendesignedtowithstandanSSE.Dynamicanalysesoftheso'.structuresweredonebytheresponsespectrummethod.ITheremainingnon-CategoryIstructuresveredesignedforseismicloadsaccordingtotheUBC(Ref.3.7b-4).Thecollapseofanyoftheseremainingnon-CategoryIstructureswillnotcausethefailure-ofaSeismicCateg'oryIstructure.~~structuralseparationshavebeenprovidedtoensurethatinteractionbetweenCategoryIandnon-CategoryIstructuresdoesnotoccur.Theminimumseparationatanypointismaintainedatoneandahalftimestheabsolutesumofthepredictedmaximumdisplacemertsofthetwostructures.Therodofoammater'alwhichwasusedtoformtheseparationgapswaslefinplaceinsomeareasasmentionedinSection3.7b.2.3.3.7b.2.9FffectsofParameterVariationsonFloorResponseSpectraToaccountforvariationsinthestructuralfrequenciesowinqto'uncertaint'esinthematerialpxopertiosofthestructureandtoapproximat'onsinthomodelinqtechniauesusedintheseismicanalysis,thecomputedfloorresponsespectraaresmoothedandpeaksassociatedwitheachofthestructuralfrequenciesare.broadened.Theparameters,whichareconsideredvariable,arethomasses,themodulusofelasticityofthematerial,andthecross-soctionalpropertiesofthemembers.Xn.addition,.'ariationinthestructural.frequencyisalsotakenintoaccountbecausethebaseofthestructuresmaynotbefullyfixedasassumedintheanalysis.Rev.35,07/843'h-9 SSES-PSAP.getnf=NaturalfrequencyofthebuildingatapeakvalueofthefloorresponsespectrahnfhnfmTotalvariationinnf'Variationin'fduetovariationinthemass5nfeVariationinnfduetovariationinthemodulusofelasticityofthematerialVari.ationinnfduetovariationinthecross-sectionalpropertiesofthemembersfactorof0.05isusedtoaccountforthedecreaseinnfdue'othepossibilitythatthebaseofthest'ructuresmaynotbefullyfixed.Sine'.eitishiqhlyimprobablethatthemaximumvariationsinthe~individualparametersmouldoccursimultaneously,bnfisdeterminedbvthe.squarerootofthesumofthesquar'esoftheindividualvariationsasfollows:V'hemaximumincreaseinnfi.sgivenby:+conf=(~)+(~)+(~)2mes-hnf=(~)+(~)+(~)+(0.05)5+~~~~~'V'gQ-md/5c>~i~I-I'ES,thefollovinqvaluesofi5nfareused:+deaf=012nfLhf=-0.14nf3~7b.2~10UseofConstantVertgcalStaticFactorsConstantverticalstaticfactors'renotusedintheseismicdesignofSeismicCateqoryIstructures.Themethodologyusedfortheverticalseismicanalysisissimilartothehorizontalanalysis.~~pc~ePz~'$~~erma>~~'ix.~MBP~dp~~~~~~0/+~~M..aev.,35,07l843.7b-10(+  
SSES-PSAR 37b28Interaction ofNon-Category IStructures withSeismicCateaorvIStructures tfon-Category Istructures thatareclosetoSeismicCategorystructures,'iz.,
theturbineandradwastebuildings, havebeendesignedtowithstand anSSE.Dynamicanalysesoftheso'.structures weredonebytheresponsespectrummethod.ITheremaining non-Category Istructures veredesignedforseismicloadsaccording totheUBC(Ref.3.7b-4).Thecollapseofanyoftheseremaining non-Category Istructures willnotcausethefailure-of aSeismicCateg'ory Istructure.
~~structural separations havebeenprovidedtoensurethatinteraction betweenCategoryIandnon-Category Istructures doesnotoccur.Theminimumseparation atanypointismaintained atoneandahalftimestheabsolutesumofthepredicted maximumdisplacemerts ofthetwostructures.
Therodofoammater'alwhichwasusedtoformtheseparation gapswaslefinplaceinsomeareasasmentioned inSection3.7b.2.3.
3.7b.2.9FffectsofParameter Variations onFloorResponseSpectraToaccountforvariations inthestructural frequencies owinqto'uncertaint'es inthematerialpxopertios ofthestructure andtoapproximat'ons inthomodelinqtechniaues usedintheseismicanalysis, thecomputedfloorresponsespectraaresmoothedandpeaksassociated witheachofthestructural frequencies are.broadened.
Theparameters, whichareconsidered
: variable, arethomasses,themodulusofelasticity ofthematerial, andthecross-soct ionalproperties ofthemembers.Xn.addition,
.'ariation inthestructural.frequency isalsotakenintoaccountbecausethebaseofthestructures maynotbefullyfixedasassumedintheanalysis.
Rev.35,07/843'h-9 SSES-PSAP.getnf=Naturalfrequency ofthebuildingatapeakvalueofthefloorresponsespectrahnfhnfmTotalvariation innf'Variation in'fduetovariation inthemass5nfeVariation innfduetovariation inthemodulusofelasticity ofthematerialVari.ationinnfduetovariation inthecross-sectional properties ofthemembersfactorof0.05isusedtoaccountforthedecreaseinnfdue'othepossibility thatthebaseofthest'ructures maynotbefullyfixed.Sine'.eitishiqhlyimprobable thatthemaximumvariations inthe~individual parameters mouldoccursimultaneously, bnfisdetermined bvthe.squarerootofthesumofthesquar'esoftheindividual variations asfollows:V'hemaximumincreaseinnfi.sgivenby:+conf=(~)+(~)+(~)2mes-hnf=(~)+(~)+(~)+(0.05)5+~~~~~'V'gQ-md/5c>~i~I-I'ES,thefollovinq valuesofi5nfareused:+deaf=012nfLhf=-0.14nf3~7b.2~10 UseofConstantVertgcalStaticFactorsConstantverticalstaticfactors're notusedintheseismicdesignofSeismicCateqoryIstructures.
Themethodology usedfortheverticalseismicanalysisissimilartothehorizontal analysis.
~~pc~ePz~'$~~erma>~~'ix.~MBP~dp~~~~~~0/+~~M..aev.,35,07l843.7b-10(+  


SSES-PSAR3~7b./~11methodsUsedToAccountforTorsionalEffectsTorsionaleffectsforthedieselqeneratorbuildingandESSQpumphouseareaccountedasfollovs:Astaticanalysisvasdonetoaccountfortorsiononthesetvostructures.FortheESSMpumphousetheeccentricityvasdeterminedbytheditancebetweenthecenterofmassandthecenterofrigidityofthestructure.Theinertiaforcefromtheresponsespectrumanalysisvasappliedatthecenterofmass.TheresultinqtorsionalmomentisequaltotheinertialforcetimesMeeccentricity.The~shearforcesduetcthetorsionalmomentverethendistributedtothewalls.-The.,torsionalshearforcesaredistributedaccordinqto.themethoddescribedinSection3..4ofRefeence3.7b-5.lnthedieselqeneratorbuildinq,torsionisconsideredduetotheeccentricitycausedbythedifferenceinrigiditiesof,theeastandvestshear,valls.'hetorsional.shearforcesareassumedtobetakenentirelybyeastandvestwallsonly.ATorsionaleffectsareneqliqibleforthe.containmentbecauseofthesymmetryofthestructure.Th'ereactor/controlbuildingismodeledforhorizontaldynamicanalysisasmultiplestickscoupledbysprirqsrepresentingthe.shearstiffnessofthefloorslab.Eachstickrepresentsa~.ma]orstructuralshearvali.Themassandstiffnessdistribution.ofthestructuralvallsissuchthattorsionaleffectsareproperlyrepresentedinthedynamicanalysis'.Torsionaleffectfothedieselgeneratorbuilding,ESSMpumphouse,andreactor/controlbuildingarealsodiscussedinresponsetoHBCquestions130.21and130.22.~~Q63.7h.2~12CoragagisonofgeryonsesFigures3.7b-4through3.7b-6shovthattherespcnsespectraofthetimehistoryenvelop/thedesignresponsespectraatallfrequencies.Thetimehistoryhasbeenusedtoqenerateresponsespectra,inthestructuresbuthasnotbeenusedtocalculateforceinthestructures.Responseincontainment;atypicalCategoryIStructure,obtainedfromtheresponsespectrumanalysiscomparecloselyviththoseobtainedfrcmtimehistoryanalysisbasedonstudiescomparingdisplacementsand.accelerationsobtainedbythetvomethods.,pnMph8R'~,~p+~~Ccnp~~~~~,W~37~"I/d.Rev.35,07/043.7b-11  
SSES-PSAR 3~7b./~11 methodsUsedToAccountforTorsional EffectsTorsional effectsforthedieselqenerator buildingandESSQpumphouse areaccounted asfollovs:Astaticanalysisvasdonetoaccountfortorsiononthesetvostructures.
~~I'W II~lp~pi~DRaB~>~,~A~~<<~~~~L~5~~'s.7$~aP~SSFS-FSARa-~~~y~~*3,7b.2~13methodsforSeismicAnalysisofDamsDam..'renotprovidedonSusquehannaSES.3.7b.2.1QDeterminationofSeismicCateqcryIStructureovert.ugnj,ngNomegtsTheoverturninqmomentsforSeismicCategcryIstructuresgisthesumof.themomentsatthebaseofe'achstickofthemathematicalmodel.'oreach@tick,th'emomentatthebaseisdeterminedbycombininqthemodplovezturninqmo'ments.The.momentsarecombinedhythemethodsdescribedinSubsection3.7b2.7.Thecomponentsoftheearthquakemotior.usedarethesameasthosediscussedinSubsection3.7b.2.6.Subsectic..3.8.5discussesthefactorofsafetyagainstoverturninqforseveralloadinqswhichincludeseismicloads.Thestructuresconsistofreinforcedconcreteandwelded/boltedst"ucturalsteel.DampinqvaluesforthesematerialsareshcwninTable3~7b-2.~Hoever,.jntheseismicanalysisofthestructures<,'ampfnqvafu~es4f2and5percentareusedfor(.BEandSSF.respectiv'elyforreinforcedconcrete,aswellawelded/boltedstructuralsteel.-Therefore,.analysisofcompositemodeldampinqisnotnecessary.AllSeismicCato.qoryIstructuresexcepttheESSMpumphouseandspraypondanditspipesupportsarefoundedonrock.Consequently,soildampinqvaluesare.calculatedfortheESSMpumphouseasdescribedinAppendixDofReference3.7b-3.TheinteractiondampinqvaluesforthetimehistoryanalysisofthecontainmentarealsocalculatedbythemethoddescribedinAppendixDofpreference3.7b-3.P.ev.35,07/803.7b-12 SSES-PSARForriqidequipmenthavingafundamentalfrequencygreaterthan33Hz,thedynamicloadconsistsofastaticloadobtainedastheequipmen~~weiqhttimestheaccelerationcorrespondingto33Hz.Forstructurallycomplexequipment:,whichcarnotbe.classif'edasstructurallysimnlorriqid,theequipmentisidealizedbyamathematicalmodelanddynamicanalysiisperformedusinqstandardanalyticalprocedures.Analternativemethodusedforverifvinqstructuralintegrityofmembersphysicallysimilartobeamsandcolumnsisthestaticcoefficientmethod..?nthismethodnodeterminationofnaturalfrequencyismade.Dynamicforcesarecalc~ilateda"productoftheweightandpeakaccelerationofresponsespectramultipliedbyastaticcoefficientof1.5.'sanninevalupsuseda"euiveninTable3.7b-2/en',/$Dynamictestinqisperfomedwhenanalysisisinsufficienttodetermineeitherthestructuralorfunctionaladequacyoftheequinmentorboth.Typicaltestmethodsusedareasfollows:a)Sinqlefrequencysinebeattestb)Sinqlefrequencydwelltestc)t".ultiffrequencytest'IAL1seismicqualificationtestssubjecttheequipmenttoexcitationforatleast30seconds.Q~7Q~QQ,1gCombj,ra+jogofQnalysjsandgyngmgcJestinghCertainequinmentisaualifiedbya.combinationofanalysisanddynamictestinme3,7h~g~1.2pipinqSystemmsRP-TOP-l,Rev.3(Ref.3.7b-6)describesthemethodsusedforseismicanalysisofpipinqsystems.Reference3.7b-6isfollowedonSusquehannaSESwiththefollowinqexceptions:3.7b-14 SSES-FSARPorrigidequipmenthavingafundamentalfrequencygreater33Hzthedynamicloadconsistsofastaticloadobtainedasth>equipment~sweighttimestheaccelerationcorrespondingto33Hz.Forstructurallycomplexequipment,whichcannotbeclassifiedasstructurallysimpleorrigidtheequipmentisidealizedbyamathematicalmodelanddynamicanalysisisperformedusinqstandardanalyticalprocedures.Analternativemethodusedforverifyingstructuralintegrityofmembersphysicallysimilartobeamsandcolumnsisthestaticcoefficientmethod..Inthismethodnodeterminationofnaturalfrequencyismade.Dynamicforcesarecalculatedasproductoftheweightandpeakaccelerationofresponsespectra.multipliedbyastatic'oefficientof1.5.'DampinqvaluesusedaregiveninTable3.7b-2~37h2~12~2QYnnia~afiaaDynamicbeestingispe'rformedwhenanalysisisinsufficienttodetermineeitherthestructuralorfunctionaladequacyoftheequipmentorboth.Typicaltestmethodsusedareasfollovs:a)Singlefrequencysinebeattestb)Singlefrequencydwelltestc)pultifrequenrytestAllseismicqualificationtestssubjecttheequipmenttoexcitationforatleast30seconds.22h21..l2GamhirntionuXk,naXZair.~UnSYaaUmc~eCertainequipmentisqualifiedbyacombinationofanalysisanddynamictestina..3a7b~3ilaZPiRRMSYsXQH~fi8~an+Pdd)~o2;<((ck~('(("~~)RP-TOP'-l,Rev.3(Ref.3.7b-6)hdescribesthemethodsusedforseismicanalysisofpipingsystemsReference3.7b-6isfollovedonSuquehannaSESwithvinqexceptions:'L'I(~g~~~'~Q,IgW~~~E~AyRev.35,07/843'b-10  
FortheESSMpumphouse theeccentricity vasdetermined bytheditancebetweenthecenterofmassandthecenterofrigidityofthestructure.
Theinertiaforcefromtheresponsespectrumanalysisvasappliedatthecenterofmass.Theresultinq torsional momentisequaltotheinertialforcetimesMeeccentricity.
The~shearforcesduetcthetorsional momentverethendistributed tothewalls.-The.,torsional shearforcesaredistributed accordinq to.themethoddescribed inSection3..4ofRefeence3.7b-5.lnthedieselqenerator
: buildinq, torsionisconsidered duetotheeccentricity causedbythedifference inrigidities of,theeastandvestshear,valls.'he torsional
.shearforcesareassumedtobetakenentirelybyeastandvestwallsonly.ATorsional effectsareneqliqible forthe.containment becauseofthesymmetryofthestructure.
Th'ereactor/control buildingismodeledforhorizontal dynamicanalysisasmultiplestickscoupledbysprirqsrepresenting the.shearstiffness ofthefloorslab.Eachstickrepresents a~.ma]orstructural shearvali.Themassandstiffness distribution
.ofthestructural vallsissuchthattorsional effectsareproperlyrepresented inthedynamicanalysis'.
Torsional effectfothedieselgenerator
: building, ESSMpumphouse, andreactor/control buildingarealsodiscussed inresponsetoHBCquestions 130.21and130.22.~~Q63.7h.2~12CoragagisonofgeryonsesFigures3.7b-4through3.7b-6shovthattherespcnsespectraofthetimehistoryenvelop/thedesignresponsespectraatallfrequencies.
Thetimehistoryhasbeenusedtoqenerateresponsespectra,inthestructures buthasnotbeenusedtocalculate forceinthestructures.
Responseincontainment; atypicalCategoryIStructure, obtainedfromtheresponsespectrumanalysiscomparecloselyviththoseobtainedfrcmtimehistoryanalysisbasedonstudiescomparing displacements and.accelerations obtainedbythetvomethods.,pnMph8R'~,~p+~~Ccnp~~~~~,W~37~"I/d.Rev.35,07/043.7b-11  
~~I'W II~lp~pi~DRaB~>~,~A~~<<~~~~L~5~~'s.7$~aP~SSFS-FSARa-~~~y~~*3,7b.2~13methodsforSeismicAnalysisofDamsDam..'renotprovidedonSusquehanna SES.3.7b.2.1QDetermination ofSeismicCateqcryIStructure overt.ugnj,ngNomegtsTheoverturninq momentsforSeismicCategcryIstructuresgis thesumof.themomentsatthebaseofe'achstickofthemathematical model.'oreach@tick,th'emomentatthebaseisdetermined bycombininq themodplovezturninq mo'ments.
The.momentsarecombinedhythemethodsdescribed inSubsection 3.7b2.7.Thecomponents oftheearthquake motior.usedarethesameasthosediscussed inSubsection 3.7b.2.6.Subsectic..
3.8.5discusses thefactorofsafetyagainstoverturninq forseveralloadinqswhichincludeseismicloads.Thestructures consistofreinforced concreteandwelded/bolted st"ucturalsteel.Dampinqvaluesforthesematerials areshcwninTable3~7b-2.~Ho ever,.jntheseismicanalysisofthestructures<,'ampfnq vafu~es4f2and5percentareusedfor(.BEandSSF.respectiv'ely forreinforced
: concrete, aswellawelded/bolted structural steel.-Therefore,.
analysisofcomposite modeldampinqisnotnecessary.AllSeismicCato.qory Istructures excepttheESSMpumphouseandspraypondanditspipesupportsarefoundedonrock.Consequently, soildampinqvaluesare.calculated fortheESSMpumphouse asdescribed inAppendixDofReference 3.7b-3.Theinteraction dampinqvaluesforthetimehistoryanalysisofthecontainment arealsocalculated bythemethoddescribed inAppendixDofpreference 3.7b-3.P.ev.35,07/803.7b-12 SSES-PSAR Forriqidequipment havingafundamental frequency greaterthan33Hz,thedynamicloadconsistsofastaticloadobtainedastheequipmen~
~weiqhttimestheacceleration corresponding to33Hz.Forstructurally complexequipment:,
whichcarnotbe.classif'ed asstructurally simnlorriqid,theequipment isidealized byamathematical modelanddynamicanalysiisperformed usinqstandardanalytical procedures.
Analternative methodusedforverifvinq structural integrity ofmembersphysically similartobeamsandcolumnsisthestaticcoefficient method..?n thismethodnodetermination ofnaturalfrequency ismade.Dynamicforcesarecalc~ilated a"productoftheweightandpeakacceleration ofresponsespectramultiplied byastaticcoefficient of1.5.'sanninevalupsuseda"euiveninTable3.7b-2/en',/$
Dynamictestinqisperfomedwhenanalysisisinsufficient todetermine eitherthestructural orfunctional adequacyoftheequinment orboth.Typicaltestmethodsusedareasfollows:a)Sinqlefrequency sinebeattestb)Sinqlefrequency dwelltestc)t".ultiffrequency test'IAL1seismicqualification testssubjecttheequipment toexcitation foratleast30seconds.Q~7Q~QQ,1gCombj,ra+jog ofQnalysjsandgyngmgcJestinghCertainequinment isaualified bya.combination ofanalysisanddynamictestinme3,7h~g~1.2 pipinqSystemmsRP-TOP-l, Rev.3(Ref.3.7b-6)describes themethodsusedforseismicanalysisofpipinqsystems.Reference 3.7b-6isfollowedonSusquehanna SESwiththefollowinq exceptions:
3.7b-14 SSES-FSAR Porrigidequipment havingafundamental frequency greater33Hzthedynamicloadconsistsofastaticloadobtainedasth>equipment
~sweighttimestheacceleration corresponding to33Hz.Forstructurally complexequipment, whichcannotbeclassified asstructurally simpleorrigidtheequipment isidealized byamathematical modelanddynamicanalysisisperformed usinqstandardanalytical procedures.
Analternative methodusedforverifying structural integrity ofmembersphysically similartobeamsandcolumnsisthestaticcoefficient method..Inthismethodnodetermination ofnaturalfrequency ismade.Dynamicforcesarecalculated asproductoftheweightandpeakacceleration ofresponsespectra.multiplied byastatic'oefficient of1.5.'DampinqvaluesusedaregiveninTable3.7b-2~37h2~12~2QYnnia~afiaaDynamicbeestingispe'rformed whenanalysisisinsufficient todetermine eitherthestructural orfunctional adequacyoftheequipment orboth.Typicaltestmethodsusedareasfollovs:a)Singlefrequency sinebeattestb)Singlefrequency dwelltestc)pultifrequenrytestAllseismicqualification testssubjecttheequipment toexcitation foratleast30seconds.22h21..l2Gamhirntion uXk,naXZair.
~UnSYaaUmc~eCertainequipment isqualified byacombination ofanalysisanddynamictestina..3a7b~3ilaZ PiRRMSYsXQH~fi8~an+Pdd)~o 2;<((ck~('(("~~)RP-TOP'-l, Rev.3(Ref.3.7b-6)hdescribes themethodsusedforseismicanalysisofpipingsystemsReference 3.7b-6isfollovedonSuquehannaSESwithvinqexceptions:
'L'I(~g~~~'~Q,IgW~~~E~AyRev.35,07/843'b-10  


SSES-PSARTnseismicanalysisthemodalresponsesarecombinedbySRSSandlow~rdamoinqvaluesthanspecifiedinReference3.7b-6areused.SeeSubsection3.71.3.7.$.7)..3.1.3ClassIP.CableTraysThecabletraysareseismicallyqualifiedbythecapacityevaluationmothodwhichconsistsofthefollowing:a)~-Calculationofthefundamentalfrequencyofthecabletray'asedonthetraypropertiesobtainedfromstatictestsc)Seismicloadcomputationbaseduponthetrayfrequency,.thepossiblesupportfrequenciesandthedesignspectraCalculationofthetrayallowablecapacityd)EvaluationofthetraycapacitybyinteractionformulaeC"3.7.3.1.4'uort~fS'sm'cCatISc5PartiallycrackedsectionanalysisisbasedonthefollowinqAC1I318(Ref.10AofTable3.8-1)formulagggggglorylHVACDuctsThesupportsofHVACductsareanalyzedbytheresponsespectrummethod.3,7h~3~1,5Cogcgeg~BlockNasongyStructuresQBlockwalgsg.'IThedynamicanalysisofsafetyrelatedconcretemasonryCLa,blockvalls'nClass.Istructures.isperformedbytheresponsepectrummethod.Responsespectrumforthelowerfloorhasbeen.usedforverticalmotionandforwalls,cantileveredfromthefloor.Forhorizontalmotion,theaccelerationofthelo~erfloororaverageofthe'loverandupperfloor,whicheverisqreater,isusedindetermininginertialoads.PrequencycalculationsforblockwallssupportingclassIattachmentsorLJlocatedinareasofclassIequipmentarebasedone'thercrackedIsection,partiallycrackedsection,oruncrackedsectionClproperties;whicheverrepresentstheconditionbaseduponthecalculatedloads.3.7b-15 SSES-CESARt=(i/Nl>T<(l-(t'5)~)e'ra'cracrwhere,=effectivemomentofinertiaofcrackedSectionIcr=momentofinertiaofcrackedSection=bendinqmomentappliedtotheblockwall=Grossectionmomentofinertia(uncracked)gcrackinqbendinqmoment=ytfr=mo<)ulusofruptureformasonry=50psimodulusnfruptureforconcrete=6f'psiYt=distancefromcentroidarisofqrosssectiontothe~extremefiberintension.Forassessinqtheeffectsoffrequencyvariationsonthe,responses,t,hevariableitemssuchasboundaryconditions,mass,modulu'f<<lasticity,crackinqmomentareconsidered.Dampingvaluesusedareir.accordancewithTable3.7b-2.Theresponseofattachmentstoblockwallsisdetermiredasdescribed.inSubsection3.7b.3.1.l.l.ThethreecomponentsofearthquakemotionarecombinedinaccordancewithSubsection3.7b.2.6.3.7b.3.1.6SupportsofSeismicCateqoryIElectricalRaceway~~Xw~M-.<<issectior.defines+heproceduresuedfcrthedes'qnofthe=-'>>oportsofelect.icalracewaysystems;i.e.,cabletray,con<)uit,andwire~ayauttersystems,subjecttotheseismicandotherapplicableloads.Theracewaysupportsystemusuallyconsistsofraceways,horizontalardverticalsupportmembersandlateralandlonqitudinalbracinqmembers.gev.3)~07/R43.7h-16 SSFS-PSARs~wXvtao,~dxcD~QG~.~E'5eadequacyofracewaysystemstowithstandseismicandotherapplicablestaticloadsisdeterminedaccordinqtotheloadingcombinationsandallowableresponsesqirenbelow:EauationCondj,tropLoadCombinationhlgowgblegesponeNotes:NormalD4LNormal/SevereD+L+E(Eauation2appliesonlytoconnectionsforfatiqueconsiderations.)Abnormal/ExtremeD+Ei1..Fornotations,seeTable3.8-2.F-Seenote4SeeNotes264SeeNotes2,3,642.Thefollowinqequationisapplicableforbendinginoverheadconnections:5'BESSEl.owhere:"EQOBESSETotalnumberofload/stresscyclesperearthquake.Allowab3enumberofload/stresscyclesperOBF.event.Allowablenumlerofload/stresscyclesperSSEevent.3.-Thefollowinqcriteriaareusedforcheckinqthemembers.Innocas~shalltheallowablestressexceed0.90Finbendinq,0.85Finaxialtensionorcompression,and0.50Finshear.Wherethedesiqnisqovernedbyrequirementsofstability'localorlateralbucklinq),theactualstressshallnotexceed1.5F.Allowableshearandnormalloadsinconnectionsaredo.~erminedfromthemanufacturers'ataorfromcodeallovablestresseswhicheverisapplicable.Bev.>5,07/H43.7b-17  
SSES-PSAR Tnseismicanalysisthemodalresponses arecombinedbySRSSandlow~rdamoinqvaluesthanspecified inReference 3.7b-6areused.SeeSubsection 3.71.3.7.$.7)..3.1.3ClassIP.CableTraysThecabletraysareseismically qualified bythecapacityevaluation mothodwhichconsistsofthefollowing:
a)~-Calculation ofthefundamental frequency ofthecabletray'ased onthetrayproperties obtainedfromstatictestsc)Seismicloadcomputation baseduponthetrayfrequency,
.thepossiblesupportfrequencies andthedesignspectraCalculation ofthetrayallowable capacityd)Evaluation ofthetraycapacitybyinteraction formulaeC"3.7.3.1.4'uort~fS'sm'cCatISc5Partially crackedsectionanalysisisbasedonthefollowinq AC1I318(Ref.10AofTable3.8-1)formulagggggglorylHVACDuctsThesupportsofHVACductsareanalyzedbytheresponsespectrummethod.3,7h~3~1,5Cogcgeg~BlockNasongyStructures QBlockwalgsg
.'IThedynamicanalysisofsafetyrelatedconcretemasonryCLa,blockvalls
'nClass.Istructures.
isperformed bytheresponsepectrummethod.Responsespectrumforthelowerfloorhasbeen.usedforverticalmotionandforwalls,cantilevered fromthefloor.Forhorizontal motion,theacceleration ofthelo~erfloororaverageofthe'loverandupperfloor,whichever isqreater,isusedindetermining inertialoads.Prequency calculations forblockwalls supporting classIattachments orLJlocatedinareasofclassIequipment arebasedone'thercrackedIsection,partially crackedsection,oruncracked sectionClproperties; whichever represents thecondition baseduponthecalculated loads.3.7b-15 SSES-CESAR t=(i/Nl>T<(l-(t'5)~)e'ra'cracrwhere,=effective momentofinertiaofcrackedSectionIcr=momentofinertiaofcrackedSection=bendinqmomentappliedtotheblockwall
=Grossectionmomentofinertia(uncracked) gcrackinqbendinqmoment=ytfr=mo<)ulusofruptureformasonry=50psimodulusnfruptureforconcrete=6f'psiYt=distancefromcentroidarisofqrosssectiontothe~extremefiberintension.Forassessinq theeffectsoffrequency variations onthe,responses, t,hevariableitemssuchasboundaryconditions, mass,modulu'f<<lasticity, crackinqmomentareconsidered.
Dampingvaluesusedareir.accordance withTable3.7b-2.Theresponseofattachments toblockwalls isdetermired asdescribed
.inSubsection 3.7b.3.1.l.l.
Thethreecomponents ofearthquake motionarecombinedinaccordance withSubsection 3.7b.2.6.
3.7b.3.1.6SupportsofSeismicCateqoryIElectrical Raceway~~Xw~M-.<<issectior.defines+heprocedures uedfcrthedes'qnofthe=-'>>oports ofelect.icalracewaysystems;i.e.,cabletray,con<)uit, andwire~ayauttersystems,subjecttotheseismicandotherapplicable loads.Theracewaysupportsystemusuallyconsistsofraceways, horizontal ardverticalsupportmembersandlateralandlonqitudinal bracinqmembers.gev.3)~07/R43.7h-16 SSFS-PSAR s~wXvtao,~d xcD~QG~.~E'5eadequacyofracewaysystemstowithstand seismicandotherapplicable staticloadsisdetermined accordinq totheloadingcombinations andallowable responses qirenbelow:EauationCondj,trop LoadCombination hlgowgble gesponeNotes:NormalD4LNormal/Severe D+L+E(Eauation 2appliesonlytoconnections forfatiqueconsiderations.)
Abnormal/Extreme D+Ei1..Fornotations, seeTable3.8-2.F-Seenote4SeeNotes264SeeNotes2,3,642.Thefollowinq equationisapplicable forbendinginoverheadconnections:
5'BESSEl.owhere:"EQOBESSETotalnumberofload/stress cyclesperearthquake.
Allowab3e numberofload/stress cyclesperOBF.event.Allowable numlerofload/stress cyclesperSSEevent.3.-Thefollowinq criteriaareusedforcheckinqthemembers.Innocas~shalltheallowable stressexceed0.90Finbendinq,0.85Finaxialtensionorcompression, and0.50Finshear.Wherethedesiqnisqovernedbyrequirements ofstability
'localorlateralbucklinq),
theactualstressshallnotexceed1.5F.Allowable shearandnormalloadsinconnections aredo.~ermined fromthemanufacturers'ata orfromcodeallovablestresseswhichever isapplicable.
Bev.>5,07/H43.7b-17  


SSRS-FSAqheallowablevaluesareincreased50%forload~cnmbi.na~ionequation3.ASSR77b2162AM1YtiQRLXRGhGiK>>QR~~~~I~fVX'~~~~Fith~roftwomethodsofanalysisisused.method1isasimplifi~dmethodofanalysisvhichdeterminesthefundamentalfrequencyofbracedsupportsusingtvodimensionalanalysis.Frequenciesaredeterminedineachofthreeprincipaldirections.Thenloadsaredeterminedbytakinqthespectralaccelerationstimestheweight;andstressesaredeterminedfromstaticanalysis.Allmembersandconnectionsarecheckedusingstresscriteria.method2usedathreedimensionalcomputeranalysisandincludesspringstorepresentjointstiffnesses.Responsespectrumanalysesaredonetodeterminestressesanddeformations.Thenumberofstresscyclesisdeterminedbymultiplyingthetimeofmaximumearthquakemotionhythenaturalfreguencyofthesystem.TheallovablenumberofcyclesistakenfromReference3.7b-8for,thejointrotationscalculated.Onlyoverheadconnectionsarecheckedforfatiquesincethetestresults{ref.3.7b-8,pg.7-19)demonstratethatfailuresoccuronlyinoverheadconnections.Thebasisforthedesiqncriteriaandanalysismethod2isthe"CableTrayandConduitRacevayTestProgram"(references3.7b-7throuqh3.7-10).tl~seaTe7Qg1,6gDqmplngI~Is~~,~~c4O~ePg~~~'~"~t)ampingof7%ofthecriticalisusedforthe'esignofakk-racevaysystems.Thetestprogramdemonstratesthatforcabletraysystemsdampinqis,ingeneral,muchhiqherthan7'%.Ref~rene~3.7h-7recommendsusinq20%butvaluesupto50%arereported.Therecommendeddampinqvalues,developedfromthe~stproaramandbasedonloverboundvalues,aresho~ninFigure).7b-106.Damagingisamplitudedependent,i.e.,itincreasesvithinc'casingamplitudeof'nputmotion.Forconduitsystemsthedampinqincreasesvithincreasinqamplitude,butismuchlowerthanforcabletraysystems.This7'JtisarealisticvalueforinputmotionexceedingO.lqforconduitsystems.Mirevaygutterswerenottested;hovever,themannerinvhichtheyareconstructed-withmorebo]tedconnectionsandmorecablesthanconduit-'providesmoredampinqmechanismsthatarepresentinconduitsystemssothat7%isaconservativelylovdampinqvalue.4laJECA'N>R87a448tll<DAIfADWMPratgVW<~EFPogO8ECoHDly'IqQ8<3>%FOR$4FCo+DITiygIausFD3.7b-18yg4)ISyPP'ORTS./W~4Eoia+D~<7S"P'P4~7$k%h4APrefabISuSCD~OROBZAHbirioaPD/oahQPIA4P'ogStECe/DIJ'/oQ.6/+/+FRTog++g+Efff+77+Epgs]gy(gcoNSERvh7IvE DIESEL'E<Eg,4fo+ESOIL/)r'~Cy.  
SSRS-FSAq heallowable valuesareincreased 50%forload~cnmbi.na~ionequation3.ASSR77b2162AM1YtiQRL XRGhGiK>>QR
~~~~I~fVX'~~~~Fith~roftwomethodsofanalysisisused.method1isasimplifi~d methodofanalysisvhichdetermines thefundamental frequency ofbracedsupportsusingtvodimensional analysis.
Frequencies aredetermined ineachofthreeprincipal directions.
Thenloadsaredetermined bytakinqthespectralaccelerations timestheweight;andstressesaredetermined fromstaticanalysis.
Allmembersandconnections arecheckedusingstresscriteria.
method2usedathreedimensional computeranalysisandincludesspringstorepresent jointstiffnesses.
Responsespectrumanalysesaredonetodetermine stressesanddeformations.
Thenumberofstresscyclesisdetermined bymultiplying thetimeofmaximumearthquake motionhythenaturalfreguency ofthesystem.Theallovable numberofcyclesistakenfromReference 3.7b-8for,thejointrotations calculated.
Onlyoverheadconnections arecheckedforfatiquesincethetestresults{ref.3.7b-8,pg.7-19)demonstrate thatfailuresoccuronlyinoverheadconnections.
Thebasisforthedesiqncriteriaandanalysismethod2isthe"CableTrayandConduitRacevayTestProgram"(references 3.7b-7throuqh3.7-10).tl~seaTe7Qg1,6gDqmplngI~Is~~,~~c4O~ePg~~~'~"~t)ampingof7%ofthecriticalisusedforthe'esign ofakk-racevaysystems.Thetestprogramdemonstrates thatforcabletraysystemsdampinqis,ingeneral,muchhiqherthan7'%.Ref~rene~3.7h-7recommends usinq20%butvaluesupto50%arereported.
Therecommended dampinqvalues,developed fromthe~stproaramandbasedonloverboundvalues,aresho~ninFigure).7b-106.
Damagingisamplitude dependent, i.e.,itincreases vithinc'casingamplitude of'nputmotion.Forconduitsystemsthedampinqincreases vithincreasinq amplitude, butismuchlowerthanforcabletraysystems.This7'Jtisarealistic valueforinputmotionexceeding O.lqforconduitsystems.Mirevaygutterswerenottested;hovever,themannerinvhichtheyareconstructed
-withmorebo]tedconnections andmorecablesthanconduit-'provides moredampinqmechanisms thatarepresentinconduitsystemssothat7%isaconservativelylovdampinqvalue.4laJECA'N>R87a448tll<DAIfADWMPratgVW<~EFPogO8ECoHDly'IqQ8<3>%FOR$4FCo+DITiyg IausFD3.7b-18yg4)ISyPP'ORTS./W~4Eoia+D~<7S"P'P4~7$
k%h4APrefabISuSCD~OROBZAHbirioaPD/oahQPIA4P'ogStECe/DIJ'/oQ.
6/+/+FRTog++g+Efff+77+Epgs]gy(gcoNSERvh7IvE DIESEL'E<Eg,4fo+ESOIL/)r'~Cy.  


IPSEA7pgAE4EC.gdAZgA7oCEGcJ/C.Nr&y,~/pc'ct~cda~p~~l.(4d~~a/CLEtii~a~p>~g./mA.CCc4cs.<caivCac4p4r..~)~~lief>'n+celiac876b~/,g.J7g'~+~~Cop'Cct.pe/g~J/cf)o(<.<4>ikpp,~~,~e*.'mg~.
IPSEA7pgAE4EC.gdAZgA7oCEGcJ/C.Nr&y,
SSES-FSARVbS,g6<gger~Xjnglna<allnzihamh~AMJ1.(s<<~><~'<~~<~@)TheOBEisconsideredintheloadcombinationsonlyfortheoverheadconnectionswhicharecheckedforfatigue.TheOBEstressesarenotcheckedduringdesignfortworeasons:first,racewaysystemsdonot.failinabrittleorcatastrophicmodeasdemonstratedbythetestproqraminwhichsuchfailuresdidnotoccurandtheelectricalsystemswereabletocontinuetofunctioninallcases.Thus,thereisnoneedtolimittheOBEstressestothelowlevelsusuallyusedtoprecludesuch,failures.Second,theOBEstresseswillalwaysbelessthantheSSEstressesasdemonstratedbelow.InallcasestheZPAvaluesarehiqhenoughtouse7$dampinqbasedonFiqure3.78-106sincethey'allexceedO.lq.AcomparisonofresponsespectraforcorrespondinqdampinqvaluesdemonstratesthatforallresponsespectratheOBEaccelerationvaluesarelessthanthecorrespondinqSSEaccelerationvalues.(SeeReferences3.7b-8and3.7b-10)Thus,theOBEaccelerationresponseandstressesarebelowtheSSEaccelerationresponseandstresses.3.74*3~3.De+eZmiQagionofNgmherofgagtQguakecycles.Inaeneral,thedesiqnoftheequipmentisnotfatiquecontrolledbecausetheequipmentiselasticandthenumberofcyclesinanearthauakeislow.Equipmentthatisqualifiedbyanalysisisdesignedtoremainelasticduringtheearthquake.Anyfatiqueeffectsintestedequipmentareaccountedforbyperforminqextendeddurationtestonselectedspecimen.Consequently,thenumberofcyclesofthemarthauakehasheenaccountedfor.Tncdertoron<luctafatiaueevaluationfornuclearClassIpipina,>h<numberofcyclesforaqivenloadsetisobtained.Thisis<!or~hycon~iderina<<enmaximumstresscyclesperearthquakeandfiveOBE'sandoneSSEtooccurwithinthelifeoftheplant.37b.33ProcedureUsedforNodelinaP.,<hemodels'ro.developedtorepresenttheeauipment.Twoor<<hreedime~sinnalmodelsareuseddependinqonthecomplexityoftheeauipm~:rt.Theboundaryconditionsaremodeledtoreflee+Rev.35,07/B43.7b-19  
~/pc'ct~cda~p~~l.(4d~~a/CLEtii~a~p>~g./mA.CCc4cs.<caivCac4p4r..~)~~lief>'n+celiac876b~/,g.J7g'~+~~Cop'Cct.pe/g~J/cf)o(<.<4>ikpp,~~,~e*.'mg~.
SSES-FSARVbS,g6<gger~Xjng lna<allnzihamh~
AMJ1.(s<<~><~'<~~<~@)TheOBEisconsidered intheloadcombinations onlyfortheoverheadconnections whicharecheckedforfatigue.TheOBEstressesarenotcheckedduringdesignfortworeasons:first,racewaysystemsdonot.failinabrittleorcatastrophic modeasdemonstrated bythetestproqraminwhichsuchfailuresdidnotoccurandtheelectrical systemswereabletocontinuetofunctioninallcases.Thus,thereisnoneedtolimittheOBEstressestothelowlevelsusuallyusedtoprecludesuch,failures.
Second,theOBEstresseswillalwaysbelessthantheSSEstressesasdemonstrated below.InallcasestheZPAvaluesarehiqhenoughtouse7$dampinqbasedonFiqure3.78-106sincethey'allexceedO.lq.Acomparison ofresponsespectraforcorrespondinq dampinqvaluesdemonstrates thatforallresponsespectratheOBEacceleration valuesarelessthanthecorrespondinq SSEacceleration values.(SeeReferences 3.7b-8and3.7b-10)Thus,theOBEacceleration responseandstressesarebelowtheSSEacceleration responseandstresses.
3.74*3~3.De+eZmiQagion ofNgmherofgagtQguake cycles.Inaeneral,thedesiqnoftheequipment isnotfatiquecontrolled becausetheequipment iselasticandthenumberofcyclesinanearthauake islow.Equipment thatisqualified byanalysisisdesignedtoremainelasticduringtheearthquake.
Anyfatiqueeffectsintestedequipment areaccounted forbyperforminq extendeddurationtestonselectedspecimen.Consequently, thenumberofcyclesofthemarthauakehasheenaccounted for.Tncdertoron<luctafatiaueevaluation fornuclearClassIpipina,>h<numberofcyclesforaqivenloadsetisobtained.
Thisis<!or~hycon~iderina
<<enmaximumstresscyclesperearthquake andfiveOBE'sandoneSSEtooccurwithinthelifeoftheplant.37b.33Procedure UsedforNodelinaP.,<hemodels'ro.
developed torepresent theeauipment.
Twoor<<hreedime~sinnal modelsareuseddependinq onthecomplexity oftheeauipm~:r t.Theboundaryconditions aremodeledtoreflee+Rev.35,07/B43.7b-19  


SSFS-FSARthein-plantmountinqconditions.Theequipmentisrepresentedbylumpedmassmodels.masslesselasticmembersareusedtoco'nnectthemasses.SuooortsforHVACductsaremodeledastvodimensional,lumpedmass,planeframemodels.Themassesarelumpedatthecenteroftheducts.Thecabl~traysupportanalyticaltechniquesarediscussedinSubsection3.7b.3.1.6.2.Thecabletraypropertiesaredeterminedfromtheloaddeflectiontests(seeReference3.7b-ll).Sections2.0and3.0ofReference3.7b-6discussthetechniquesandoroceduresusedtomodelpipingotherthantheburiedtype.3~7h,3~4BasgsforSelecfgo)lgfggeguenc~esThenaturalfrequenciesofcomponentsarecalculated.Ifthenat.uralfrequencyofthecomponentfallswithinthebroadenedpeakoftheresponsespectrumcurve,thenitisdesignedtoMithstandtleooakacceleration.Theequivalentstaticloadmethodofanalysisisusedwhenthenaturalfrequencyoftheequipmentisnotdetermined.Iftheequipmentcanbeadequatelyrepresentedbyasingledegreeoffreedomsystem,thentheappliedinertiaload-isequaltotheweightoftheequipment-timesthepeakvalueoftheresponsespectrumcurve.Iftheequipmentrequiresmorethanonedegreeoffreedomforanadequaterepresentation,thenafactorofl.5isaooliidtot.hepeakoftheresponsespectrumcurve-Section7.l.2andAno~ndixDof.Reference3.7h-6discusstheuseofeguival~n.staticloadmethodofanalysisasapplicabletooipina.Foreciuioment,cabletrays,andsupportsforcabletraysandHVACducts,thethreesoatialcomoonen+softheearthquakeareconsideredinthesamemannerasforstructures(describedinSubsection3.7h.7.6).Fev.35,07/04').7h-20  
SSFS-FSAR thein-plantmountinqconditions.
Theequipment isrepresented bylumpedmassmodels.masslesselasticmembersareusedtoco'nnectthemasses.SuooortsforHVACductsaremodeledastvodimensional, lumpedmass,planeframemodels.Themassesarelumpedatthecenteroftheducts.Thecabl~traysupportanalytical techniques arediscussed inSubsection 3.7b.3.1.6.2.
Thecabletrayproperties aredetermined fromtheloaddeflection tests(seeReference 3.7b-ll).Sections2.0and3.0ofReference 3.7b-6discussthetechniques andorocedures usedtomodelpipingotherthantheburiedtype.3~7h,3~4BasgsforSelecfgo)l gfggeguenc~es Thenaturalfrequencies ofcomponents arecalculated.
Ifthenat.uralfrequency ofthecomponent fallswithinthebroadened peakoftheresponsespectrumcurve,thenitisdesignedtoMithstand tleooakacceleration.
Theequivalent staticloadmethodofanalysisisusedwhenthenaturalfrequency oftheequipment isnotdetermined.
Iftheequipment canbeadequately represented byasingledegreeoffreedomsystem,thentheappliedinertiaload-isequaltotheweightoftheequipment
-timesthepeakvalueoftheresponsespectrumcurve.Iftheequipment requiresmorethanonedegreeoffreedomforanadequaterepresentation, thenafactorofl.5isaooliidtot.hepeakoftheresponsespectrumcurve-Section7.l.2andAno~ndixDof.Reference 3.7h-6discusstheuseofeguival~n.
staticloadmethodofanalysisasapplicable tooipina.Foreciuioment, cabletrays,andsupportsforcabletraysandHVACducts,thethreesoatialcomoonen+s oftheearthquake areconsidered inthesamemannerasforstructures (described inSubsection 3.7h.7.6).Fev.35,07/04').7h-20  


SSFS-CESARThecriteriausehdforcomhininqtheresultsofhorizontalandverticalseismicresponsesforpipinqsystemsaredescribedinSection51afReference3.7b-6~e~4rnn"e-kaig.'~25~aaahiaaCiaa~fSaCaLXemuaaaa(~~<4~tP~w.~b~G~~F.f~ThemodalresnansesofequipaentharecoibinedbythesquarerootofthesumofthesquaresmethodTheabsolutevaluesoft<<o-closelypacedmodesareaddedfirstbeforecombininq<<iththeothermohasbvthesquarerootafthesumofthesquaresmethod.Twaconsecutivemodesaredefinedascloselyspaced<<hentheirfre~cenciesSiff~efron~echotherby10nercintorless.I;f2iTAeOf~frAe"g"tea,~~>~chNf.gem~~~CriProceduresqiveninRequlataryGuide1.92forcombiningmodalresponses,<<henclosoly-spacedmodesarepresent,arenotcomplied<<ithintheseismicresponsespectraanalysisforppnq>hllmodalresponsesarecombinedbysquarerootof'umofsquares(SRSS)in.theresponsespectramethodofmodalanalysisforseismicloadinq(OBEandSSE).Seismicresponsesoectrausedinthepipinqanalysiscorrespondstoconservativeampinqvaluesof1/2%fprOBEandJ.%forSSE~6arnni'novcducf.mW~"E."ee:ibga.C'Ct'-Vpf'ndta~5~-~<SknMisB+uhC@~Guide/nb/,Theproceduresuedinevaluatinqthepipinqsystemforhydrodynamicloads(SFVandLOCA)byresponsespectramethodisincompliance<<i+hRequlatoryGaMe1~92.Themodalresponsesin+hiscasearecombinedinaccordance<<ithsection5~2ofBP-TOP-1,Pev.3,<<hichhasbeenacceptedbytheIRCstaff,pertheletterdatedSeptember29,1976~framKarlKniel,ChiefLightRaterReactorsBranchNo.2,DivisionofProgectHanaqeaenttoBurtanL.Lex,DechtelPo<<erCorporation.TherriteiausedforpipinqsystemsaredescribedinSections5.1and5.2ofReference3.7b-63~753Bhnakxian3,2Xucehuz~aXurRimmedTheResiqncriteriaandtheanalyticalproceduresapplicabletopipinqsystemsareasdescribedinSectian2.0ofReference3.7b-6.ThemethodsusedtoconsiderdifferentialpipinqsupportmovementsatdifferentsupportpointsareasdescribedinSection4.0ofReference3.7b-6~'ev.35,07/8437b-2f I0 SSESFSAR3.7b.3.9NultiplySupportedEguipmentandComponentsvit49'a.'isn'tXaamForcab!.etraysandductsvhosesupportshavetvodistinctinnu~s,aresponsespectrumcurveisusedthatenvelopesthecurve:attletvolocations.~Section4.0ofReference3.7b-6discusses~hemethod'susedfor,theanalysisofmultiplesupportednipinosvstems.g~1y~g~>n-o;.~g~gggggyggyQxgigy~~g~kggoalConstantv~."ticalstaticfactorsarenotusedintheseisaicdesignofsubsystems.3<71.3~1>:-aa'aiaaaLZffaalauXXaaaufZia3~N~ThetorsionaleffectsofvalvesandothereccentricmassesareconsideredintheseismicanalysisofpipingbythetechniquesdiscussedinSection3.2ofReference3.7b-6.$L7b~)~1?Pqs;j,0~4sg~gC'atggQggT7i~~~g>Z~g~ms~lieZ~ull~g~PuriedSeism'cCateaoryIpininghasbeenanalyzedanddesigredforseismiceffectsinaccordancevithSection6.0ofReference3~7h"lq<<n6RAc'~oce<.7b-I8k~.-ice.~"E."Fc.iilig,~hema1ori+vnfth~anticinatedsettlementduetnstaticloadingoftheE."SMPumpho>>savillhaveoccurredpriortoconnectingthepipingtothhuilding.DuringaSSEevent,thedifferentialsettlementhdtv"rr.th~:pumphouseand~hesurroundingsoilvhichsupports>hevining,villhelessthanoneinch(seeSubsection2.5.0.7forfurtherdiscussionofsettlement).~hismovementvillheaccommodatedbythepipingvithoutexceedingcodeallcvab'les.ress~s.~unnelsontheSusen~hannaSESarenon-SeismicCategoryZ.~Rev.35,07/<<53.7b-22 SSRS-FSilP.3.7b-12Ic<fofoxmIImarufac"ureQb7W.8~GraceCt:o.oreauivalcn~equal.87bIs-H.8XgInsln-n'a~g,~sess'PIen~&n1ynje~sf'~+/Zne/'IVneJnnp/~f.~yg,c)f.at~Q/~stan~~Voce~~Jf>5>>g,s~,<-ppnsysser-pipit,5psr6nepi>>A/usleciw~Qyssn~/M~TS3++sSOR)P~&g~~p~gPlM>ZnsAe'ick.isuform:(~oneIqgI)Bev.35,07/RO3.7b"28  
SSFS-CESAR Thecriteriausehdforcomhininq theresultsofhorizontal andverticalseismicresponses forpipinqsystemsaredescribed inSection51afReference 3.7b-6~e~4rnn"e-kaig.'~25~aaahiaaCiaa
~fSaCaLXemuaaaa(~~<4~tP~w.~b~G~~F.f~Themodalresnanses ofequipaenthare coibinedbythesquarerootofthesumofthesquaresmethodTheabsolutevaluesoft<<o-closelypacedmodesareaddedfirstbeforecombininq
<<iththeothermohasbvthesquarerootafthesumofthesquaresmethod.Twaconsecutive modesaredefinedascloselyspaced<<hentheirfre~cencies Siff~efron~ech otherby10nercintorless.I;f2iTAeOf~frAe"g"tea,~~>~chNf.gem~~~CriProcedures qiveninRequlatary Guide1.92forcombining modalresponses,
<<henclosoly-spaced modesarepresent,arenotcomplied<<ithintheseismicresponsespectraanalysisforppnq>hllmodalresponses arecombinedbysquarerootof'umofsquares(SRSS)in.theresponsespectramethodofmodalanalysisforseismicloadinq(OBEandSSE).Seismicresponsesoectrausedinthepipinqanalysiscorresponds toconservative ampinqvaluesof1/2%fprOBEandJ.%forSSE~6arnni'no vcducf.mW~"E."ee:ibga.C'Ct'-Vpf'nd ta~5~-~<SknMisB+uhC@~Guide/nb/,Theprocedures uedinevaluatinq thepipinqsystemforhydrodynamic loads(SFVandLOCA)byresponsespectramethodisincompliance
<<i+hRequlatory GaMe1~92.Themodalresponses in+hiscasearecombinedinaccordance
<<ithsection5~2ofBP-TOP-1,Pev.3,<<hichhasbeenacceptedbytheIRCstaff,pertheletterdatedSeptember 29,1976~framKarlKniel,ChiefLightRaterReactorsBranchNo.2,DivisionofProgectHanaqeaent toBurtanL.Lex,DechtelPo<<erCorporation.
Therriteiausedforpipinqsystemsaredescribed inSections5.1and5.2ofReference 3.7b-63~753Bhnakxian3,2Xucehuz~a XurRimmedTheResiqncriteriaandtheanalytical procedures applicable topipinqsystemsareasdescribed inSectian2.0ofReference 3.7b-6.Themethodsusedtoconsiderdifferential pipinqsupportmovements atdifferent supportpointsareasdescribed inSection4.0ofReference 3.7b-6~'ev.35,07/8437b-2f I0 SSESFSAR3.7b.3.9NultiplySupported Eguipment andComponents vit49'a.'isn't XaamForcab!.etraysandductsvhosesupportshavetvodistinctinnu~s,aresponsespectrumcurveisusedthatenvelopes thecurve:attletvolocations.
~Section4.0ofReference 3.7b-6discusses
~hemethod'susedfor,theanalysisofmultiplesupported nipinosvstems.g~1y~g~>n-o;.~g~gggggyggyQxgigy~~g~kg goalConstantv~."tical staticfactorsarenotusedintheseisaicdesignofsubsystems.
3<71.3~1>:-aa'aiaaaL ZffaalauXXaaaufZia 3~N~Thetorsional effectsofvalvesandothereccentric massesareconsidered intheseismicanalysisofpipingbythetechniques discussed inSection3.2ofReference 3.7b-6.$L7b~)~1?Pqs;j,0~4sg~gC'atggQgg T7i~~~g>Z~g~ms~lieZ~ull~g~PuriedSeism'cCateaoryIpininghasbeenanalyzedanddesigredforseismiceffectsinaccordance vithSection6.0ofReference 3~7h"lq<<n6RAc'~oce<.7b-I8k~.-ice.~"E."Fc.iilig,
~hema1ori+vnfth~anticinated settlement duetnstaticloadingoftheE."SMPumpho>>sa villhaveoccurredpriortoconnecting thepipingtothhuilding.
DuringaSSEevent,thedifferential settlement hdtv"rr.th~:pumphouse and~hesurrounding soilvhichsupports>hevining,villhelessthanoneinch(seeSubsection 2.5.0.7forfurtherdiscussion ofsettlement
).~hismovementvillheaccommodated bythepipingvithoutexceeding codeallcvab'les.ress~s.
~unnelsontheSusen~hanna SESarenon-Seismic CategoryZ.~Rev.35,07/<<53.7b-22 SSRS-FSilP.3.7b-12Ic<fofoxmIImarufac"ureQb7W.8~GraceCt:o.oreauivalcn~
equal.87bIs-H.8XgInsln-n'a~g,~sess'PIen~&n1ynje~sf'~+/Zne/'IVneJnnp/~f.~yg,c)f.at~Q/~stan~~Voce~~Jf>5>>g,s~,<-ppnsysser-pipit,5psr6nepi>>A/usleciw
~Qyssn~/M~TS3++sSOR)P~&g~~p~gPlM>ZnsAe'ick.isuform:(~oneIqgI)Bev.35,07/RO3.7b"28  


D~pt~gIIALu&sfbEN<<-+sssQAT~iALspLDg&p~<<>7p'(PercentofCriticalDamping)StructureazComponentOperatingBasisEarthquake(OBE)<SafeShutdownEarthquake(SSE)Equipmentandlazge-diameterpipingsystemsa,pipediametezgreatsthan12Small-diametezpipingsystems,diameterequaltoorlessthan12in~~,~'o~~~~~~~SWe1.dedsteelstructures2BoltedsteelstructuresReinforcedconcetestructures'I~InthedynamicanalysisofactivecomponentsasdefinedinU.S.NRCRegulatoryGuide1.48,thesevaluesshouldbeusedfortheSSE.~Includebothmaterialandstructuraldamping.Ifthepipingsystemconsistsofonlyoneortwospanswithlittlestructuraldamping,usevaluesforsmall-diameterpiping.sIfthemaximumcombinedstressesduetostatic,seismic,andotherdynamicloadingaresignificantlylowerthantheyield'stressand1/2yieldstressforSSEandOBE,respectively,inanystructureorcomponent,dampingvalueslowerthanthosespecifiedabov'eshouldbeusedforthatstructureorcomponent,toavoidunderestimatingtheamplituideofvariationsordynamicstresses.
D~pt~gIIALu&sfbEN<<-+sssQAT~iALspLDg&p~<<>7p'(PercentofCriticalDamping)Structure azComponent Operating BasisEarthquake (OBE)<SafeShutdownEarthquake (SSE)Equipment andlazge-diameter pipingsystemsa, pipediametezgreatsthan12Small-diametez pipingsystems,diameterequaltoorlessthan12in~~,~'o~~~~~~~SWe1.dedsteelstructures 2Boltedsteelstructures Reinforced concetestructures
QOQAQPZS9uEA/</8'SMPPM+apR7jo4Pbo-~M+R,Pi~~g~~~o&~PO/Lg/~5'+5M/c.WoP~O~'k.lh4Jdl-....u~Am/MOJO'/"N/t=~gg(H).7./7..P'.7$zr.2go...,3f.3$,..g.x.gg6/.Oz--a./o.<<(5'e2/O.dg-o.zg.8'0D~OSO.2/-/~52.-0.6g5:72....O$4..-o.)o-o./III-oa3do03I-o.~g0~op-o.s(f+,02I0.03d~d3.-/S'36.,.O.I/-.o.yf7eo(a/0-.o.o(f-Z.s3./~Q~~o.0,02oo0&.Ogo.o/.O~07Os03o.iI.,-o.oS'.$2.-o.I'(t~aOOg...o.agO.a/O.D2.~-"7/7-'"...f.75/g.ogm.8s.,aspic30.$'0:....33.Q.;,g6./7....3//.//'..S.ggg.ot/03.2oi/3.'t43~/o-o.Sh/2..704m+/D./0..'.oo+3.,$~'3$'.boo.S'75o.o'FoedSo.oS-n.>Fg~d.Z'2-+,02~a.g4../~o~$'>..Oe37d  
'I~Inthedynamicanalysisofactivecomponents asdefinedinU.S.NRCRegulatory Guide1.48,thesevaluesshouldbeusedfortheSSE.~Includebothmaterialandstructural damping.Ifthepipingsystemconsistsofonlyoneortwospanswithlittlestructural damping,usevaluesforsmall-diameter piping.sIfthemaximumcombinedstressesduetostatic,seismic,andotherdynamicloadingaresignificantly lowerthantheyield'stressand1/2yieldstressforSSEandOBE,respectively, inanystructure orcomponent, dampingvalueslowerthanthosespecified abov'eshouldbeusedforthatstructure orcomponent, toavoidunderestimating theamplituide ofvariations ordynamicstresses.
QOQAQPZS9uEA/</8'S MPPM+apR7jo4Pbo-~M+R,Pi~~g~~~o&~PO/Lg/~5'+5M/c.WoP~O~'k.lh4Jdl-....u~Am/MOJO'/"N/t=~gg(H).7./7..P'.7$zr.2go...,3f.3$,..g.x.gg6/.Oz--a./o.<<(5'e2/O.dg-o.zg.8'0D~OSO.2/-/~52.-0.6g5:72....O$4..-o.)o-o./III-oa3do03I-o.~g0~op-o.s(f+,02I0.03d~d3.-/S'36.,.O.I/-.o.yf7eo(a/0-.o.o(f-Z.s3./~Q~~o.0,02oo0&.Ogo.o/.O~07Os03o.iI.,-o.oS'.$2.-o.I'(t~aOOg...o.agO.a/O.D2.~-"7/7-'"...f.75/g.ogm.8s.,aspic30.$'0:....33.Q.;,g6./7....3//.//
'..S.ggg.ot/03.2oi/3.'t43~/o-o.Sh/2..704m+/D./0..'.oo+3.,$~'3$'.boo.S'75o.o'FoedSo.oS-n.>Fg~d.Z'2-+,02~a.g4../~o~$'>..Oe37d  


055es-/5+87~5&3-jb-Pgm~~c,m~o~oP~PM71wP+Po+~P<~EIp~~c~~r'>'~~"~~~'g.CHp)ggyg27.8'/gyp'Pz.if+o,gg7y.sc+.)ol,o7/2,f,4g%.5/5'O,o7+/g3,o3ZSP.P72..t/Bog.>2.../3$-47r.00~o.30o.l7d0O0.QO.O0ddip-a.7$0...0O-2.450-ov/Oo.M''/dy5I'en~I/~/g/Uop~:,~>~,~~ewe<<p('n/-s)gy~~tio~fpp'venric~~)aC~-~)  
055es-/5+87~5&3-jb-Pgm~~c,m~o~oP~PM71wP+Po+
~P<~EIp~~c~~r'>'~~"~~~
'g.CHp)ggyg27.8'/gyp'Pz.if+o,gg7y.sc+.)ol,o7/2,f,4g%.5/5'O,o7+/g3,o3ZSP.P72..t/Bog.>2.../3$-47r.00~o.30o.l7d0O0.QO.O0ddip-a.7$0...0O-2.450-ov/Oo.M''/dy5I'en~I/~/g/Uop~:,~>~,~~ewe<<p('n/-s) gy~~tio~fpp'venric~~)
aC~-~)  


1C)CQC)C)CZmXIco2,''1lm>~R>mK0m~mnCOmnCO037OzCUZo+0CCCalcuQJOLLJiCCC)IC30.003.256.509.751'3.00TIHE(SECQNDS)16.2519.5022.7526.00 oD(DoD~@aojyahgCZAlXcoZZ~zcnzz+0~BunthImnoDI0ZL3hl~DCt:CC(UQJOLIJICC'3ooIo10.003.256.509;7513.0016.25TIHE(SECGNDS)19.5022.7526.00 C)CIaCOC)e)+Ab(~nCZmXCcoZ'llmZcn~--I<~mCnZ%Oman~wn332mCOOOZ(DC)~(DDOI-CCCCQJOLLjoCLC)AJClC)C)C3.0.2001.000.FREQUENCY(HZ)~\10.003Q.0 C3COC)R'NWg.lh4~hQ+CmXrCOZllZCo>>mZrZmr<OmC"mOCllCllCO03)O?CD~CDCIOI-.Ct:CCWCDQJoCCC)MC)(DC3CD0.2001.000FREQUENCY(HZ)10.00 C)C)CUP)C)e)s~~It'g<gAlCmXrNZmm<~mCOzr.>~mrZr<Um~ssoCAmocn0OZ~AJQOI-CC'CC~(OLLjoCCCOC)C3C)CD0.2001;000FREQUENCY(HZj10.0034.0  
1C)CQC)C)CZmXIco2,''1lm>~R>mK0m~mnCOmnCO037OzCUZo+0CCCalcuQJOLLJiCCC)IC30.003.256.509.751'3.00TIHE(SECQNDS) 16.2519.5022.7526.00 oD(DoD~@aojyahgCZAlXcoZZ~zcnzz+0~BunthImnoDI0ZL3hl~DCt:CC(UQJOLIJICC'3ooIo10.003.256.509;7513.0016.25TIHE(SECGNDS) 19.5022.7526.00 C)CIaCOC)e)+Ab(~nCZmXCcoZ'llmZcn~--I<~mCnZ%Oman~wn332mCOOOZ(DC)~(DDOI-CCCCQJOLLjoCLC)AJClC)C)C3.0.2001.000.FREQUENCY (HZ)~\10.003Q.0 C3COC)R'NWg.lh4~hQ+CmXrCOZllZCo>>mZrZmr<OmC"mOCllCllCO03)O?CD~CDCIOI-.Ct:CCWCDQJoCCC)MC)(DC3CD0.2001.000FREQUENCY (HZ)10.00 C)C)CUP)C)e)s~~It'g<gAlCmXrNZmm<~mCOzr.>~mrZr<Um~ssoCAmocn0OZ~AJQOI-CC'CC~(OLLjoCCCOC)C3C)CD0.2001;000FREQUENCY (HZj10.0034.0  


AJP)C)tnQAlu))+Ac$1~~mQCZmXlthZ'llmH--ICZm~Om~mOCAflloD0Z~CUCIO.CCCCW<hJnCCCOC)C)C)C3C)0.200j..000FREQLIENCYtHZ)10.00C" C)C7AJP)C)vt)+6s$~'OqCZmXCllZr'llmZcoH--IZm<Om"'wACOXI-2mnCll0O'Z~NDOI-QJCDMoC3C)C)C)C3C)C)0.2001.000FREQUENCY(HZ)10~0030.0  
AJP)C)tnQAlu))+Ac$1~~mQCZmXlthZ'llmH--ICZm~Om~mOCAflloD0Z~CUCIO.CCCCW<hJnCCCOC)C)C)C3C)0.200j..000FREQLIENCY tHZ)10.00C" C)C7AJP)C)vt)+6s$~'OqCZmXCllZr'llmZcoH--IZm<Om"'wACOXI-2mnCll0O'Z~NDOI-QJCDMoC3C)C)C)C3C)C)0.2001.000FREQUENCY (HZ)10~0030.0  


oCOO~~~)+A~$~8Om'XrcoZZllmZcn--c<~~mZ~2lZr<Omc"wnCllmncnOOZz~QOCCCCQJOMoCCOMoooo0.200'1.000FREQUENCY(Hz)~~10.003Q.0w)  
oCOO~~~)+A~$~8Om'XrcoZZllmZcn--c<~~mZ~2lZr<Omc"wnCllmncnOOZz~QOCCCCQJOMoCCOMoooo0.200'1.000FREQUENCY (Hz)~~10.003Q.0w)  


CILAC)C)a')~5+h~RClW~~to~C2fflXrCI1Zm~~C/fCmCOffl+0mf~mOCAmCnO0zCDC)~CA+OI-CZCCLLjo~CULUnCL0oC)C)0.200':-1;000FREQUENCY(HZ)10.003Q.0 o~oCUo'Crent~t\to~CztflXrvlz>c2C/lzzIll<O~BenCAmno~QzzCUQol-CCCt:QJCD43oCCIooooo0.200~~1.000=-"'FBEGUENCY(HZ)10.00  
CILAC)C)a')~5+h~RClW~~to~C2fflXrCI1Zm~~C/fCmCOffl+0mf~mOCAmCnO0zCDC)~CA+OI-CZCCLLjo~CULUnCL0oC)C)0.200':-1;000FREQUENCY (HZ)10.003Q.0 o~oCUo'Crent~t\to~CztflXrvlz>c2C/lzzIll<O~BenCAmno~QzzCUQol-CCCt:QJCD43oCCIooooo0.200~~1.000=-"'FBEGUENCY(HZ)10.00  


C)C)P)C)~5+Cgg>cn~my~>~~8~~W~~to~C'ZmXrthZ2ZllmZ~COZ3g+~mmKOgnHwACAmcn033OZzCUI-CCCCQJ(DLLjoCECOC3C)C)tDC)0.2001.000FREQUENCY(HZj'10.00 C)C)0PCUP)C3gh~~q,ul)+A>s$ooCZIllXrEhZZZCA<~rnC/IZ+~mrzr<Oml"rOnCll2CAoOZ~CDQOl-CCQ:QJCOUJaCCoC)C)o.aOO1.000FREQUENCY(Hz)10.00  
C)C)P)C)~5+Cgg>cn~my~>~~8~~W~~to~C'ZmXrthZ2ZllmZ~COZ3g+~mmKOgnHwACAmcn033OZzCUI-CCCCQJ(DLLjoCECOC3C)C)tDC)0.2001.000FREQUENCY (HZj'10.00 C)C)0PCUP)C3gh~~q,ul)+A>s$ooCZIllXrEhZZZCA<~rnC/IZ+~mrzr<Oml"rOnCll2CAoOZ~CDQOl-CCQ:QJCOUJaCCoC)C)o.aOO1.000FREQUENCY (Hz)10.00  


fX7zgo-@~op'-aELcps'.Uu@pc~cwo~~,ii~iSUSQUEHANNASTEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTggesaL~P~poeagwLJi~HoCr&o~ctL.An/DYEE77cAL.5+>>Mi~Haec.s'~R,w'3.7b-IIf 33C7SUSQUEHANNASTEAMELECTRICSTATIONUNITS1ANO2FINALSAFETYANALYSISREPORT~g0\~glMeLQEnl~poRm~+sr'e75elc.HoPeL SSFS-PSALM'1.8.3.6.5.2WeldinqandNondestructiveExamination~gfWe~dqMeldingandnondestructiveexaminationisperformedinaccordancewithAWSD1.1.).Q~3~6~$,'3PgectjogTogepqgcesErectiontolerancesforthedrywallplatformsareinaccordancewithAISCSpecification(Ref.2HofTable3.8-1)38366gugggtXcogggolpualitycontrolrequirementsforconstructionarediscussedinAppendixDandamendmen+stothePSAR.83.7.1PreooerationalTestina~44~!e~pQ~Thedrywel1flooristestedto1.15timesthedesigndownwarddifferentia1prossure.SeeSubsection3.8.1.7.1.1fora'descriptionofthestructuralacceptancetests.VDeflection..andstrainsofthedrywellfloormeasuredduringthettnit1tes+werelessthanthepredictedvalues.Thus,thedesiqnof+hedrywellfloorprovidesanadequatesafetymarginaqainstinternalpressure.Piqure3.8-79showsacomparisonhotweenmeasuredandpredicfeddeflectionsforthedrywellflooratp'"~differen-:.ialpressure.3.8.3~7~1~$g~akByte<eggj,ggPreoperationalleakrate'testinqisdiscussedinSubsection6.2.6.Rev.35,07/843~8-.51 SSPS-.~SAR38372.In-serviceLeakRateTestincIn-serviceleakratetestinqisdiscussedinsubsection6.2.6.Thissectionqives'nformationonallSeismicCategoryItructuresexcepttheprimarycontainmentanditsinternals.Italsodescribessafetyrelatednon-SeismicCategoryIstructures.Thestructuresincludedinthissectionareasfollows:ReactorBuildinaControlBuildinqDieselGeneratorBuildinqEngineeredSafeguardsService'RaterPumphouseSprayPond.y)g.sG.LQgt46kAToR6.SulL5>86pop-SeismicCategoryI~SgfegxRegatedStguctgrosTurbineBuildingPadwasteBuildinqTheqenealarranqementofthesestructures'sshownonFigures3.8-80throuqh3.8-103.Amp89-tO5'Tgpooqg38-lo6.Reac',-"Bui1.-"."..RefertoFigures3.8-80throuqh3.8-89.Thereactorbuildingenclosestheprimarycontainment,andprovidessecondarycontainmentwhentheprimarycontainmentisinservicedurinqpowerop~ration.It-alsoservesas.containmentdurinqreactorrefuelinqandmaintenanceoperations,whentheprimarycontainmentisopen.Ithousestheauxiliarysystemsof'henucleasteamsupplysystem,newfuelstoraqevaults,therefuelingfacility,andequipmentessentia1tothesafeshutdownof~hereactor.Rev.35,07/8Q3.8-52 SSFS-PSARThereactorbuilding,uptoandincludingtheoperatinqfloor,ofreinforcedconcreteonamatfoundation.Thebearingwallsareofreinforcedconcreteandaredesignedasshearvallstoresistlateralloads.Thefloorsareofreinforcedconcretesunportedbyasteelbeamandcolumnfraainqsystemandaredesiqnedasdiaphraqmstoresistlateralload.Theframingrunsinbotheast-vestandnorth-southdirections,viththeexteriorendsofthebeamssupportedbyeitherthebearingvallsorsteelcolumns.Thesteelcolumnsaresupportedbybaseplatesonthematfoundation.Thereinforcedconcretevallsandfloorsaeetstructuralaswell'asradiationshieldingrequirements.Rherestructurallypemissible,concreteblockmasonrywallsareusedatcertainlocationstoprovidebetteraccessforerectionandinstallationofequipmen+.Theblockwallsalsomeettheradiationshieldinqrequirements.Thereactorbuildingsuperstructureabovetheoperatinqfloorissteelstucture..hestructuralsteelframingsupportstheroof,metalsidinq,andoverheadcranes.Theframinqconsistsofaseriesof.riqidframesconnectedbyroofandvalibracingsystems.~heroof.consistsofbuilt-uproofingonmetaldeck.Therefuelinqfacilityislocatedabovethecontainmentstruc+ure.Itcons'tsof'spentfuelpool,fuelshippingcaskstoraqepool,s+eamdryerandseparatorstoragepool,reactorcavity,skimmersurqetankvault,andloadcenterroom.Thefacilityissupportedbytworeinforcedconcretegirdersrunningnorth-south,spanningoverthecontainment.Thegirdersaresupportedattheendsbyconcretevallsandatintermediatepointsbysteelboxcolumns.Aqapisprovidedbetweenthebottomofthegirdersandthetopofthecontainmenttoensurethatloadsfrom+herefuelinqfacilityarenottransferredtothecontainment.Thewallsandslabsofthespentfuelpool,thefuelshippinqcaskstoragepool~thereactcrcavity,andthesteamdryerandseparatorstoragepoolarelinedontheinsidevi+hastainlesssteellinerplate.Thefacilitymeetstheradia+ionshieldinqrequirements.Thereactorbuildinqisseparatedfromtheprimarycontainmentbyqap,oxcopta+thefoundationlevel,vhereacoldjointis.pro~idedbetveenthetvoaa's.Aqapisalsoprovidedattheint.faceofthereactorbuildinqviththedieselgeneratorand+urbinebuildinqs.contqo],Buif'ggRefertoPiqures3.8-80throuqh3.8-88.Thecontrolbuilhinqhousesthecontrolroom,thecablespreadingrooms,computerandrelayronm~thebatteryroom,HGVequipmentroom,off-qastreatmentroom,andthevisitors'alleryforthecontrolroom.Fev.35,07/843.8-53~>>I~>,~i~~c~1~\~\g~~,s'>>qtnbvAtL>>4>>
fX7zgo-@~op'-aELcps'.Uu@pc~cwo~~,ii~iSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTggesaL~P~poeagwLJi~HoCr&o~ctL.
Thecontrolbuildingisstructurallyinteqratedwiththereactorbuildinq.Itisareinforcedconcretestructureonamatfoundation.Thebearingwallsareofreinforcedconcreteandaredesiqnedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforcedconcretesupportedbysteelbeams,andaredesiqnedasdiaphragmstor~sistlateralloads.Thebeamsspanintheeast-westAirctionandaresupportedbythebearingwallsattheends.Theeinfo'reedconcretewallsandfloorsmeetstructuralasveilasradiationshieldingrequirements.Wherestructurallypermissible,concreteblockmasonryvallsareusedatcertainlocationstoprovidebetteraccessforerectionandinstallationofequipment.Theblockwallsalsomeettheadiationshieldinqrequirements.~.Thecontrolbuildinqisseparatedfromtheturbinebuildingbyaqap,exceptatthefoundationlevel,vhereacold)ointisorovidedbetveenthetvomats.Qge59$GeoggagogBuilgjggPefertoPiqures.3.8-92and3.8-93.Thedieselgeneratorbui1dinqhousesthedieselgeneratorso.ssentia1forsafeshutdownoftheplant,.Thedieselgeneratorsareseparatedfromeachoherbyconcretevalls.Aconcreteoverhanqontheeastsideofthebuildingservesasanairintakeplenum.Aconcreteplenumfordieselexhaustislocatedontheroof.I.isareinforcedconcretestructureonamatfoundation.Thehearingvallsareofreinforcedconcreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforcedconcretesupportedbysteelbeams,andaredesignedasdiaph"aqmstoresistlateralloads.Thesou..hsideofthebuildinqin>erfacesviththereactorbuilding;there,areinforcedconcretevaliisprovidedfromfoundationuptothedesianhiqhvatert'ablelevelandthenasteelframeisprovideduptotheroof.Wherestructurallypermissible,concreteblockmasonryvallsareusedatcertain'ocationstoprovidebetterace~";forerec-.ionandinsta~lationofequipment.Thedieselgeneratorsaresupportedbyreinforcedconcretepedesta1s.Thenedestalsareseparatedfromtheoperatinqfloorbvaqaptoallowfortheirindependentviht'ation.3'-54 SSES-FShRgggj,peepedSafeggygdgSerg~>l(y~eggSQVJgumppguseRefertoFigure3.8-94.TheESSQPumphousecontainstheemergencyservicevater(ESM)andresidualheatremoval(RHR)pumpsandtheweiranddischargeconduit.forthespraypond.Itisatvo-storyreinforcedconcretestructureonamatfoundation.Thebearingwallsareofreinforcedconcreteandaredesjqnedasshearvallstoresistlateralloads.Theoperatingfloorandroofareofreinforcedconcretesupportedbysteelbeamsandaredesignedasdiaphragmstoresistlateralloads.hmezzaninefloorcomposedofqratinqoversteelbeamsisprovidedtnsupporttheheatinqandventilatingequipment.SPXaZpQpdRefertoF'qures3.8-q5throuqh3.8-98.Thespraypondisareservoir,freeforminshape,vhichholdsapproxima+ely2Rmilliongalofwa~erduringnormaloperation.Thavatersurfaceareaisapproximatelyeiqh+acresandhasadepthofapproximately10ft6in.Itisdesignedsothatnormaloperatinqvaterisretainedinexcavationalone,ie,notbyconstructedembankments.Embankmentsareprovidedtoensureaminimumfreeboardnf3ftandtodirectfloodwateravayfromsafetyrelato.dfacilitiesinacontrolledmanner.heESSWpumphouseislocatedatthesoutheastcornerofthespraypond.AreinforcedconcretelinercoverstheentirespraypondandisintegratedwiththeoutervallsnftheESSMOumphouse.The'waterlevel.inthepondiscontrolledbyavei"housedintheFSSM.pumphouse.Purinqnormaloperation,excessvater'sdischarqedintotlesusquehannariverviaacorduitfromtheESsMpumphouse.Anemerqencyspillvayisprovidedattheeastendofthepond.he'lyarticioateduseofthisspillvayvillbeeitherduringamalfunctionof'.hedischargeconduitleadinqoutoftheESSMpumphouseordurinqcertainpostulatedfloodconditions.ThisisdiscussedinSuhsec~ion2.4.8.'rhe'SSWandPHPpipesenterthesouthsideofthepondandtraversetothespraybankareasburiedin18in.ofcorcrete,providedasmissileprotection.Concretecolumnssupporttheriserpipesinthespraybankareas.Rev.35,07/8438-55 SSES-PShHTurbjggBgj,gdgjqRefertoPiqures3.9-80through3.8-84,3.8-88'.8-90,and38-q~.Theturbinebuildingisdividedintotwounitswithanexpansionjointset>aratinathetwounits.Ithousestwoin-lineturbineqenerato"unitsandauxiliaryequipmentincludingcondensersgcondensatepumps,moistureseparators,airejectors,feedwaterheaters,reactorfeedpumps,motor-generatorsetsforreactorrecirculatingpumps,recombiners,interconnectingpipingandvalves,andswitchqears.Two220-tonoverheadcranesareprovidedabcvetheoperatingfloorforserviceofboth-tubinegeneratorunits.Twoeinforcedconcretetunnels,oneforeachunit,areprovidedfortheoff-qaspioelineatthefoundationlevelbe~weentherecomhinersandtheradwastebuilding.Reinforcedconcretetunnelsarealsoprovidedforthemainsteamlines.belowtheoperatingfloorfromthereactorbuildingtothecondenserareasoftheturbinegenerators.Theturbinebuildinqrestsonareinforcedconcretematfoundation.Th~superstructureisframedwithstructuralsteelhardreinforcedconcrete.Riqidsteelframessupportthetwo220-.oncranes.Th~yalsoresistalltransverse(east-west)lateralloads.Stoelhracinqsresistlongitudinal(north-south).lateralloadsabovetheoperatinqfloor.Belowthislevel,reinforcedconcreteshearwallstransferalllateralloadstothefoundations.Aseismicseparationgas,alsoservingasanexpansion)oint,isorovidednearthecenterofthebuildinqbetweenthetwounits.~eismicseparationqapsarealsoprovidedattheinterfaceofturtincbuildingwiththereactor,control,andradwastebuildinqs.Thefloorsoftheturbinebuildingareofreinforcedconcreteonstructuralsteelbeams.Theyaredesignedasdiaphragmsforlate~1loadtransfertothe".hearwalls.Theroofisbuilt-uproof;,.qonmetaldeckinq.Pxteriorwallsareprecastreinforcedconcetepanelsexceptfortheupper30ft,whicharemetalsiding.Interiorwallsrequiredforradiationshieldingorfireprotectionareconstructedofreinforcedconcreteblock.Thesewallsarenotusedaselementsoftheloadresistantsystem~Theturbineqeno.ratorunitsaresuppor.edonfreestandingreinforcedconcretepedestals.Themat-foundationsforthenedes+alsarefoundedonrockatthesamelevelasthebasematRev35'7/843.8-56 SSLS-PSARfortheturbinebuildinq.Separationpointsareprovidedbetweenthepedestalsandtheturbinebuildingfloorsandwallstopreventtransferofvibrationtothebuilding.'heoperating-floorofthebuildingissupportedonvibrationdampingpadsatthe%opedgeofthepedestal.gOQw5sgQpuj,lgXQQRefer.toPiqures3.8-99through3.8-103.Theradwastebuild'nqhousessystemsforreceiving,processing,endtemporarilystorinqtheradioactivewasteproductsqenerateddurinqtheoperationoftheplant.Xtisareinforcedconcretestructureonamatfoundation.Thebearingwa.llsareofreinforcedconcreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforcedconcretesupportedbyabeamandcolumnframingsystemandarede.iqnedasdiaphraqmstoresistlateralloads.Thecolumns.aresupportedbybaseplatesonthematfoundation.Thereinforcedconcretewallsandfloormeetstructuralaswellasradiationshieldinqrequirements.Mherestructurallynermissible,concreteblockmasonrywallsareusedatcertainlocationstoprovidebetteraccessforerectionandinstallationofequipment.Theblockwallsalsomeettheradiationshieldingrequirements.Theradwastebuildingisseparatedfromtheturbinebuildingbyazap.IN5KLTThecodes,standards'ndspeci'ficationsusedinthedesign,fabrication,andconstructionofthestructureslistedinSuhsection3.8.4aresho~ninTable3.8-1an4includereferencenumbers10A,18,1H,2H,3H,1J,2K,3K,and1L.l2A8,'..3Loads.;"dLoadComb.nationsn.hefollowinqloadsandloadcombinationsareconsideredinthedesiqnofSeismicCategoryIstructures(otherthanthe.ontainment).Rev.35'7/843.8-57 SSFS-FSARO7384,31Descriotionof.Loads~24,Forageneraldescriptionofloads,seeSubsection3.8.1.3.2.Table3.8-8describestheloadrombinationsapplicabletothereartorhuildinq.TableS3.8-9'ontainptheloadcombinationsapplicabletoSeismicCategoryIstructuresotherthanthereactorbuilding.Table3.8-10describestheloadrombinationsusedinthedesiqnoftheturbineandtheradvastebuildings..hestructuresdescribedinSubsection3.8.4.1aredesignedtomaintainelasticbehaviorundervariousloadsandtheircombinations.Theloadsandtheloadcombinationsarefullydesrribedin'Subsection3.8.4.3.Allreinforcedconcretecomnen+ofthestructurearedesignedbythestrengthmethodqp.'cI~yperACI318(Reft.10AofTable3.8-1.Allstructuralsteecomponentsaredesiqney.eworkingstressmethodperAISCspecification(ReflHofTable3.8-1).cay>>ADet'erminationof.windandtornadoloadsisdescribedinSection3.3Seismicdeianofs+ructuresisdescribedinSection3.7.Thebuildinqsareanalyzeddvramically.Desiqnofstructureformissileprotectioni"coveredinSubsection3.5.3.ComputerprogramsSTRESSandICFSSTRIJDL-II(Ref1and2respectivelyofSubsection3.R.4.8)areusedtoanalyzestrn:..~ural"..":-"'raminq.Therefuelinq'acili'yofthereactorbuildinqisdesiqnedbasedonfiniteelementanalysisbyuseofcomputerprogramNRI/STARDYNE3(Ref3ofSubsection3.8.4.8).47hesoraypondisbasicallyaconcrete-linedsoilstrurture.ItsdesiqnisdiscussedinSubsection2.5.5.ConcretemasonryblockvallsinallSeismicCateqory,T.structureshavebeenanalyzeddynamicallyasdescribedinSection3.7b.3.1.5.Theyaredesiqnedforout-of-planeandin-planeiner+iaforcesgeneratedbythemassoftheblockwallandRev.35,0718438-58~-
An/DYEE77cAL.5+>>Mi~Haec.s'~R,w'3.7b-IIf 33C7SUSQUEHANNA STEAMELECTRICSTATIONUNITS1ANO2FINALSAFETYANALYSISREPORT~g0\~glMeLQEnl~poRm~+sr'e75elc.HoPeL SSFS-PSALM
j+58g.7CQa"'IESELGENERATOR''UILDINGReferto-Figures3.8-l05and3.8-l06rhedieselgenera'o!.i'.bu1ldinchousesthediesel<i,"no,-at<ir,wnicnwillbeusedasareplacement'oranyoneofthe.ou;uxi:;tin>>;dz.eselgenerators.Themainpurposeofthedieselgenerator'E'stoallowmaintenancetobeperformedonanyoneofthefourexistingdieselgeneratorswithoutthenecessityforaunitoutage.Thedieselgenerator'E'uildingisatwo-storystructurewithabasementconsistingprimarilyofreinforcedconcrete.Agapisorovidedbetweenthepedestalandthefloorslabatgradelevelsothatnovibrationsfromthedieselgeneratoraretransmittedtothebuilding.Theouterreinforcedconcretewallsandroofofthedieselgenerator'E'uildingaredesignedtoresisteffectsoftornadomissiles.Aportiono'ftheouterwallisremovabletofacilitatedieselgeneratorinstallationand/or"emergencyremovalandmaintenanceoperation.Thisremovablewallportionisalsodesignedtoresisttheeffectsoftornadomissiles.
'1.8.3.6.5.2WeldinqandNondestructive Examination~gfWe~dqMeldingandnondestructive examination isperformed inaccordance withAWSD1.1.).Q~3~6~$
0 SSES-PSARattachmentloads,combinedwithotherloadsasdescrihedinTables3.8-8and38-9.MailsintheturbineandradvastebuildingshavebeendesignedforseismicloadsperUBC(Ref.1LofTable3.8-1).gg4QS+guctugg1~pepggceggjtegj,aRe2,gfogcedCo))QXQiehupA4%309ThereinforcedconcretestructuralcomponentsaredesignedbythestrengthmethodperACI318~(ReQ.10AofTable3.8-1forloadsandloadcombinationsdescribedinSusection3.8.4.3.StJ:Zc.uralSter,lAuPl'LAThes+ructuralsteelcomponentsaredesignedbythevorkingstressmethodperAISCspecification(Ref1HofTable3.8-1)forloads.andloadcombinationsdescribedinSection3.8.4'.Theallowablestes.esfordifferentloadcombinationsareindicatedtherein.Allmasonryblockvallsarereinforcedwallsanddonotactasshearvalls.MasonryblockvallsaredesignedbytheworkingstressmethodperUBC(Ref.1LofTable3.8-1).TheallovableloadsperUBCTables24-Bor24-H(specialinspection)aremodifiedasdescribedinTables3.8-8,3.8-9and3~8-12,exceptasnotedbelow.Fordoublevythcwallsdesignedascompositesectionsandhavingconcreteorgroutinfillthicknessof8inchesormore,theallowableshearortensionbetveenmasonryblock'andinfillis1.1f~i.e.43p.s.i.However,theactualdesignstressdoesno+exceed15p.s.i.Forotherdoublevythewalls,allowable."-hear/tensionstressisassumedtobezeroattheinterface.3.8.~.6Haterials,Qual'ityControl,andSpecialCogsfgugtiogTecggj,guss38461ConcreteandPeinforcinaSteelc----~9TheconcreteandreinforcingsteelmaterialsarediscussedinAppendix3.RP.ConcretedesigncompressivestrengthsaregiveninTable3.8-11.MaterialsforconcreteblockmasonrywallsarediscussedinAppendix3.RC.Rev.35,07/843.8-59 SSHS-PSAR'Thevariousstructuralsteelcomponentsconformtothefollowinqspecifications:ItemReams,qirder,andplatesPoxcolumnsincludinqbaseplato.sandcapplatesStructuraltubinqHiqhstrenathboltsStudsSpeciQ,gyt2,onASTNA36andASTIA588AST<A588ASTIA500andASTHA501AST".lA325andASTIA490ASSD1~1d>8~4~6~ZaZHuldinaaalu2aadsizuctivaeatinqMeldinqandnondestructivetestinqisperformedinaccordancewitheitherAMSD1.1(Ref.10ofTable3.8-1)orSectionEXoftheASIDECede(Ref.1JofTable3.8-1).Rev.35,07/843.8"60 SSES-FSARg8467,gfabZgglfgonMdgKQ~$29ThefabricationanderectionofstructuralsteelconformstotheAISCspecification(Ref.1H,28and3HofTable3.8-1).13~8~4~6~g~4pug],gyContgolgualitvcontrolofstructuralsteelfortheconstructionphaseisdiscussedinAppendixDofthePSABandamendmentstothePSAR.4$g'gycgglConsgpgctgongecgpiguegTechniquesinvolvedintheconstructionofSeismicCategoryIstructuresarestandardconstructionprocedures.g,8~4~7TestingyndI))-gepyiceInypectionpegui~emgnfsTestingandin-serviceinspectionarenotrequiredforSeismicCategoryIstructures(otherthan+hecontainment).3.8.4.8ComputerProgramsUsedintheDesiqnandAnalysisofOtherSggsmgcCgtggo~~Stgug~gQsSTRESS,DepartmentofCivilEngineering,massachusettsInstituteofTechnology2)ICESSTRUDL-II,DepartmentofCivilEngineering,massachusettsInstituteofTechnology3)NRI/STABDYNE(Version3),ControlDataCorporation.Forrthercomouterprograms.efertoSubsection2.5.5andSection3'3~85FOUNDATIONSThissubsectiondescribesfoundationsforallSeismicCategoryIstructuresexceptthospraypond.ThespraypondisbasicallyasoilstructureenditsdesignisdiscussedinSubsection2.5.5.Descriptionsoffoundationsforsafetyrelatednon-SeismicRev.35,07g8438-61 SSES-PSARQucateqoryIstructures,suchastheturbinebuildingandtheradvastebuilding,arealsoincludeRinthissection.3~/~5~/pyscgfptionofthegogndgtigggTypicalRetailsofthefoundationsforvariousstructuresareshovnonFiqure'.8-104.Reinforcedconcretematfoundationshavebeenprovidedforallstructures.ThematsrestonsoundrockexcepttheESSWpumphousematissupportedbynaturalsoil.Allbearingvallsofthestructuresarerigidlyconnectedtothefoundationmat.Wheresteelcolumnsareprovided,theyareattachedtothematbybaseplatesandanchorbolts.Thebearingwallsandthesteelcolumns,carryalltheverticalloads.fromthestructuretothemat.Horizontalshearsduetowind,tornado,andseismicloadsaretransferredtotheshearvallsbytheroofandfloordiaphragms.Theshearvallstransferthehorizontalshearstothefoundationmatandfromtheretothefoundationmediumthroughfriction.Also,asshownonFigure3.8-104,the.idesofthebasematsofallthestructuresexcepttheESSWpumphousearekeyed+o<<hefoundationrockallaroundbypouredconcrete,vhichhelpsintransferrinqthehorizontalshearstothefoundationrock.TheedqesoftheESSWpumchousebasematarepoureddirectlyaqainsttheexcavatedslopesofthenaturalsoilformation.Amudmat(unreinforcedconcretelayer)isprovidedbetweenthebaseofthefoundationmatandthefoundationmedium.ExceptfortheESSWpumphouse,avaterpoofingmembraneisprovidedinthemudmatardontheoutsidefaceofperipheralsubterraneanwallsperforatedpipesareprovidedaroundtheperipheryoftheb'uildinqstocollectgroundvaterseepageanddrainittothesumps.WaterproofingmembraneurdertheESSWpumphousefoundationmatisnotconsiderednecessaryasthepredictedgroundwater,tableatthepumphousesiteiswellbelovthefoui".tionmat-refertoSubsection2.5.5).Peripheralsubterraneanvallsaredesignedtoresistlateralpressuresduetobackfill,qroundvater,andsurchargeloads,inadditiontodeadloads,liveloads,andseismicloads.Cd@<<gj,ggapg:ThecontainmentfoundationisdescribedinSubsection3.8.1.gyagtogBuild/I)gandCogtgolQuilting:Thefoundationmatsofthereactorandcontrolhuildinqsarepouredmonolithically.Rev.35,07r843~8-62 SSES-PSARThereactorbuildingfoundationmatisapproximately4ft9in~thick-.andisreinforcedtypicallywithf11barsat12in.centers.attopandbottominboththenorth-southandeast-vestdirections.Thematsurroundsthecontainmentmat,withacoldjointseparatingthetvo.Thecontrolbuildingfoundationmatisabout2ft6in.thickandisreinforcedtypicallywith48barsat12in.centersattopandbottominthenorth-southdirectionandf11barsat12in.centersattopand$8barsat12in.centersatbottomintheeast-westdirection.Acoldjointisprovidedbetveenthecontrolandtheturbinebuildingmats.Oping~],GogegagogBujlaqnq:Thefoundationmatofthe.dieselaeneratorbuilding'isapproximately2ft6in.thickandisreinforcedtypicallywith49barsat12in.centersattopandbottominboth+henorth-southandeast-vestdirections.hcoldjointisprovidedbetveenthedieselgeneratorpedestalmatandthedieselgeneratorbuildingFSSQgum@house:ThefoundationmatoftheFSSMpumphouseisabout3ftthickandisreinforcedtypicallyvith09barsat12in.centersat+opandbottominboththenorth-sout'handeast-vestdirections.guqbineBuilding:Theturbinebuildingmatisapproximately2ft6in.thickandisreinforcedtypicallyvith06barsat12in.cent'ersattopandbottominboththenorth-southandeast-westdirections.Acoldjointisprovidedbetveentheturbinepedestalmatandtheturbinebuildingmat.gagvasggBujgging:Theradvastebuildingmatisabout3ftthickandi..reinforcedtypicallyvith49barsat12in.centersattopandbottominboth-thenor+,h-southandeast-westdirections.II4$6Ri''hecodes,standards,andspecificationsusedinthedesign,fabri.".ation,andconstructionoffoundationsofstructuresarelist..inTable3.8-1.TheloadsandloadcombinationsusedinthedesignofthecontainmentfoundationaredescribedinSubsection3.8.1.3.TheloadsandloadcombinationsusedinthedesignoffoundationsofotherSeismicCategoryIstructuresarediscussedinSubsection3.8.4.3.Inaddition,thefollowingloadcombinationsareBev.35,07/843~8-63 SSES-FShRconsideredtodeterminethefactorsofsafetyagainstslidingandoverturningduetowinds,tornadoes,andseismicloads,andaqainstflotationduetogroundwaterpressure:a)D+H+Wb)c)D+H+W'RDe~+eS,D+,H+'Ed)D+H+8')D+Pwhere:D,W,W',S,andE'reasdescribedinSubsections3.8.1.3and3.8.4.3andHandPareasfollows:H=LateralcarthpressureF=Buoyantforceduetoqroundwaterpressure.g~g~g~4PepingpdggalgsgsPgocedugesThefoundationsareqenerallydesignedtomaintainelasticbehaviorunderdifferentloads-andtheircombinations.TheloadsandtheloadcombinationsaredescribedinSubsection3.8.5.3.ThedesignandanalysisofthereinforcedconcretematfoundationshavebeencarriedoutinaccordancewithACE318A<oAcZ549(Refs.10A~fTahie3.8-1).-AwDI>AThehearingwallsandthesteelcolumnscarryallthevertical,loadsfromthestructuretothefoundationmat.The-lateralloadsaretransferredtotheshearwallsbytheroofandfloordiaphragms,whichthentransmitthemtothefoundationmat.Doterminationofoverturningmomentdue,toseismicloadsisdisc'issedinSubsection37."..14.%bFxceptforESSWpumphouse,settlementofthefoundationsofSeismicCategoryIstructuresisconsiderednegligibleasthefoundationsaresupportedhysoundrock.ThesettlemenoftheHSSWpumphousematisconsideredinthedesignandisdiscussedinSubsection2.5.4.As~xplainedinSubsection3.8.5.1andshowninFigure3.8-104,thesidesofthefoundationmats(exceptfortheKSSWpumphouse)arekeyedtotherockbypouredconcrete,whichresistsslidingofthemats.StabilityaqainstslidinqfortheESSWpumphouseisRev.35,07/8438-64 XNSERT'D'XESELGENERATOR''UXLDXNGMATThefoundationofthedieselgenerator'E'uildinisa3'-10"thickandzsreinforcedtyllhcentersattopandbottominboththenorth-ypicaywith59barsadirections.oenort-southandeast-west  
,'3PgectjogTogepqgces Erectiontolerances forthedrywallplatforms areinaccordance withAISCSpecification (Ref.2HofTable3.8-1)38366gugggtXcogggolpualitycontrolrequirements forconstruction arediscussed inAppendixDandamendmen+s tothePSAR.83.7.1Preooerational Testina~44~!e~pQ~Thedrywel1flooristestedto1.15timesthedesigndownwarddifferentia1 prossure.
SeeSubsection 3.8.1.7.1.1fora'description ofthestructural acceptance tests.VDeflection..
andstrainsofthedrywellfloormeasuredduringthettnit1tes+werelessthanthepredicted values.Thus,thedesiqnof+hedrywellfloorprovidesanadequatesafetymarginaqainstinternalpressure.
Piqure3.8-79showsacomparison hotweenmeasuredandpredicfed deflections forthedrywellflooratp'"~differen-:.ial pressure.
3.8.3~7~1~$
g~akByte<eggj,ggPreoperational leakrate'testinqisdiscussed inSubsection 6.2.6.Rev.35,07/843~8-.51 SSPS-.~SAR38372.In-service LeakRateTestincIn-service leakratetestinqisdiscussed insubsection 6.2.6.Thissectionqives'nformation onallSeismicCategoryItructures excepttheprimarycontainment anditsinternals.
Italsodescribes safetyrelatednon-Seismic CategoryIstructures.
Thestructures includedinthissectionareasfollows:ReactorBuildinaControlBuildinqDieselGenerator BuildinqEngineered Safeguards Service'RaterPumphouse SprayPond.y)g.sG.LQgt46kAToR6.SulL5>86pop-Seismic CategoryI~SgfegxRegatedStguctgros TurbineBuildingPadwasteBuildinqTheqenealarranqement ofthesestructures
'sshownonFigures3.8-80throuqh3.8-103.Amp89-tO5'Tgpooqg 38-lo6.Reac',-"Bui1.-"."..RefertoFigures3.8-80throuqh3.8-89.Thereactorbuildingenclosestheprimarycontainment, andprovidessecondary containment whentheprimarycontainment isinservicedurinqpowerop~ration.
It-alsoservesas.containment durinqreactorrefuelinq andmaintenance operations, whentheprimarycontainment isopen.Ithousestheauxiliary systemsof'henucleasteamsupplysystem,newfuelstoraqevaults,therefueling
: facility, andequipment essentia1tothesafeshutdownof~hereactor.Rev.35,07/8Q3.8-52 SSFS-PSAR Thereactorbuilding, uptoandincluding theoperatinq floor,ofreinforced concreteonamatfoundation.
Thebearingwallsareofreinforced concreteandaredesignedasshearvallstoresistlateralloads.Thefloorsareofreinforced concretesunported byasteelbeamandcolumnfraainqsystemandaredesiqnedasdiaphraqms toresistlateralload.Theframingrunsinbotheast-vest andnorth-south directions, viththeexteriorendsofthebeamssupported byeitherthebearingvallsorsteelcolumns.Thesteelcolumnsaresupported bybaseplatesonthematfoundation.
Thereinforced concretevallsandfloorsaeetstructural aswell'asradiation shielding requirements.
Rherestructurally pemissible, concreteblockmasonrywallsareusedatcertainlocations toprovidebetteraccessforerectionandinstallation ofequipmen+.
Theblockwallsalsomeettheradiation shieldinq requirements.
Thereactorbuildingsuperstructure abovetheoperatinq floorissteelstucture..hestructural steelframingsupportstheroof,metalsidinq,andoverheadcranes.Theframinqconsistsofaseriesof.riqidframesconnected byroofandvalibracingsystems.~heroof.consistsofbuilt-uproofingonmetaldeck.Therefuelinq facilityislocatedabovethecontainment struc+ure.
Itcons'tsof'spentfuelpool,fuelshippingcaskstoraqepool,s+eamdryerandseparator storagepool,reactorcavity,skimmersurqetankvault,andloadcenterroom.Thefacilityissupported bytworeinforced concretegirdersrunningnorth-south, spanningoverthecontainment.
Thegirdersaresupported attheendsbyconcretevallsandatintermediate pointsbysteelboxcolumns.Aqapisprovidedbetweenthebottomofthegirdersandthetopofthecontainment toensurethatloadsfrom+herefuelinq facilityarenottransferred tothecontainment.
Thewallsandslabsofthespentfuelpool,thefuelshippinqcaskstoragepool~thereactcrcavity,andthesteamdryerandseparator storagepoolarelinedontheinsidevi+hastainless steellinerplate.Thefacilitymeetstheradia+ion shieldinq requirements.
Thereactorbuildinqisseparated fromtheprimarycontainment byqap,oxcopta+thefoundation level,vhereacoldjointis.pro~idedbetveenthetvoaa's.Aqapisalsoprovidedattheint.faceofthereactorbuildinqviththedieselgenerator and+urbinebuildinqs.
contqo],Buif'ggRefertoPiqures3.8-80throuqh3.8-88.Thecontrolbuilhinqhousesthecontrolroom,thecablespreading rooms,computerandrelayronm~thebatteryroom,HGVequipment room,off-qastreatment room,andthevisitors'allery forthecontrolroom.Fev.35,07/843.8-53~>>I~>,~i~~c~1~\~\g~~,s'>>qtnbvAtL>>4>>
Thecontrolbuildingisstructurally inteqrated withthereactorbuildinq.
Itisareinforced concretestructure onamatfoundation.
Thebearingwallsareofreinforced concreteandaredesiqnedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforced concretesupported bysteelbeams,andaredesiqnedasdiaphragms tor~sistlateralloads.Thebeamsspanintheeast-west Airctionandaresupported bythebearingwallsattheends.Theeinfo'reed concretewallsandfloorsmeetstructural asveilasradiation shielding requirements.
Wherestructurally permissible, concreteblockmasonryvallsareusedatcertainlocations toprovidebetteraccessforerectionandinstallation ofequipment.
Theblockwallsalsomeettheadiationshieldinq requirements.
~.Thecontrolbuildinqisseparated fromtheturbinebuildingbyaqap,exceptatthefoundation level,vhereacold)ointisorovidedbetveenthetvomats.Qge59$Geoggagog BuilgjggPefertoPiqures.3.8-92and3.8-93.Thedieselgenerator bui1dinqhousesthedieselgenerators o.ssentia1 forsafeshutdownoftheplant,.Thedieselgenerators areseparated fromeachoherbyconcretevalls.Aconcreteoverhanqontheeastsideofthebuildingservesasanairintakeplenum.Aconcreteplenumfordieselexhaustislocatedontheroof.I.isareinforced concretestructure onamatfoundation.
Thehearingvallsareofreinforced concreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforced concretesupported bysteelbeams,andaredesignedasdiaph"aqms toresistlateralloads.Thesou..hsideofthebuildinqin>erfaces viththereactorbuilding; there,areinforced concretevaliisprovidedfromfoundation uptothedesianhiqhvatert'ablelevelandthenasteelframeisprovideduptotheroof.Wherestructurally permissible, concreteblockmasonryvallsareusedatcertain'ocations toprovidebetterace~";forerec-.ion andinsta~lation ofequipment.
Thedieselgenerators aresupported byreinforced concretepedesta1s.
Thenedestals areseparated fromtheoperatinq floorbvaqaptoallowfortheirindependent viht'ation.
3'-54 SSES-FShRgggj,peeped Safeggygdg Serg~>l(y~eggSQVJ gumppguse RefertoFigure3.8-94.TheESSQPumphouse containstheemergency servicevater(ESM)andresidualheatremoval(RHR)pumpsandtheweiranddischarge conduit.forthespraypond.Itisatvo-story reinforced concretestructure onamatfoundation.
Thebearingwallsareofreinforced concreteandaredesjqnedasshearvallstoresistlateralloads.Theoperating floorandroofareofreinforced concretesupported bysteelbeamsandaredesignedasdiaphragms toresistlateralloads.hmezzanine floorcomposedofqratinqoversteelbeamsisprovidedtnsupporttheheatinqandventilating equipment.
SPXaZpQpdRefertoF'qures3.8-q5throuqh3.8-98.Thespraypondisareservoir, freeforminshape,vhichholdsapproxima+ely 2Rmilliongalofwa~erduringnormaloperation.
Thavatersurfaceareaisapproximately eiqh+acresandhasadepthofapproximately 10ft6in.Itisdesignedsothatnormaloperatinq vaterisretainedinexcavation alone,ie,notbyconstructed embankments.
Embankments areprovidedtoensureaminimumfreeboard nf3ftandtodirectfloodwateravayfromsafetyrelato.dfacilities inacontrolled manner.heESSWpumphouse islocatedatthesoutheast cornerofthespraypond.Areinforced concretelinercoverstheentirespraypondandisintegrated withtheoutervallsnftheESSMOumphouse.
The'waterlevel.inthepondiscontrolled byavei"housedintheFSSM.pumphouse.
Purinqnormaloperation,excessvater'sdischarqed intotlesusquehanna riverviaacorduitfromtheESsMpumphouse.
Anemerqency spillvayisprovidedattheeastendofthepond.he'lyarticioated useofthisspillvayvillbeeitherduringamalfunction of'.hedischarge conduitleadinqoutoftheESSMpumphouse ordurinqcertainpostulated floodconditions.
Thisisdiscussed inSuhsec~ion 2.4.8.'rhe'SSWandPHPpipesenterthesouthsideofthepondandtraversetothespraybankareasburiedin18in.ofcorcrete, providedasmissileprotection.
Concretecolumnssupporttheriserpipesinthespraybankareas.Rev.35,07/8438-55 SSES-PShH TurbjggBgj,gdgjq RefertoPiqures3.9-80through3.8-84,3.8-88'.8-90,and38-q~.Theturbinebuildingisdividedintotwounitswithanexpansion jointset>aratina thetwounits.Ithousestwoin-lineturbineqenerato" unitsandauxiliary equipment including condensersg condensate pumps,moistureseparators, airejectors,feedwater heaters,reactorfeedpumps,motor-generator setsforreactorrecirculating pumps,recombiners, interconnecting pipingandvalves,andswitchqears.
Two220-tonoverheadcranesareprovidedabcvetheoperating floorforserviceofboth-tubinegenerator units.Twoeinforced concretetunnels,oneforeachunit,areprovidedfortheoff-qaspioelineatthefoundation levelbe~weentherecomhiners andtheradwastebuilding.
Reinforced concretetunnelsarealsoprovidedforthemainsteamlines.belowtheoperating floorfromthereactorbuildingtothecondenser areasoftheturbinegenerators.
Theturbinebuildinqrestsonareinforced concretematfoundation.
Th~superstructure isframedwithstructural steelhardreinforced concrete.
Riqidsteelframessupportthetwo220-.oncranes.Th~yalsoresistalltransverse (east-west) lateralloads.Stoelhracinqsresistlongitudinal (north-south)
.lateralloadsabovetheoperatinq floor.Belowthislevel,reinforced concreteshearwallstransferalllateralloadstothefoundations.
Aseismicseparation gas,alsoservingasanexpansion
)oint,isorovidednearthecenterofthebuildinqbetweenthetwounits.~eismicseparation qapsarealsoprovidedattheinterface ofturtincbuildingwiththereactor,control,andradwastebuildinqs.
Thefloorsoftheturbinebuildingareofreinforced concreteonstructural steelbeams.Theyaredesignedasdiaphragms forlate~1loadtransfertothe".hearwalls.Theroofisbuilt-uproof;,.qonmetaldeckinq.Pxteriorwallsareprecastreinforced concetepanelsexceptfortheupper30ft,whicharemetalsiding.Interiorwallsrequiredforradiation shielding orfireprotection areconstructed ofreinforced concreteblock.Thesewallsarenotusedaselementsoftheloadresistant system~Theturbineqeno.rator unitsaresuppor.ed onfreestanding reinforced concretepedestals.
Themat-foundations forthenedes+als arefoundedonrockatthesamelevelasthebasematRev35'7/843.8-56 SSLS-PSARfortheturbinebuildinq.
Separation pointsareprovidedbetweenthepedestals andtheturbinebuildingfloorsandwallstopreventtransferofvibration tothebuilding.
'heoperating
-floorofthebuildingissupported onvibration dampingpadsatthe%opedgeofthepedestal.
gOQw5sgQpuj,lgXQQRefer.toPiqures3.8-99through3.8-103.Theradwastebuild'nqhousessystemsforreceiving, processing, endtemporarily storinqtheradioactive wasteproductsqenerated durinqtheoperation oftheplant.Xtisareinforced concretestructure onamatfoundation.
Thebearingwa.llsareofreinforced concreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforced concretesupported byabeamandcolumnframingsystemandarede.iqnedasdiaphraqms toresistlateralloads.Thecolumns.aresupported bybaseplatesonthematfoundation.
Thereinforced concretewallsandfloormeetstructural aswellasradiation shieldinq requirements.
Mherestructurally nermissible, concreteblockmasonrywallsareusedatcertainlocations toprovidebetteraccessforerectionandinstallation ofequipment.
Theblockwallsalsomeettheradiation shielding requirements.
Theradwastebuildingisseparated fromtheturbinebuildingbyazap.IN5KLTThecodes,standards'nd speci'fications usedinthedesign,fabrication, andconstruction ofthestructures listedinSuhsection 3.8.4aresho~ninTable3.8-1an4includereference numbers10A,18,1H,2H,3H,1J,2K,3K,and1L.l2A8,'..3Loads.;"dLoadComb.nationsn.hefollowinq loadsandloadcombinations areconsidered inthedesiqnofSeismicCategoryIstructures (otherthanthe.ontainment)
.Rev.35'7/843.8-57 SSFS-FSAR O7384,31Descriotion of.Loads~24,Forageneraldescription ofloads,seeSubsection 3.8.1.3.2.Table3.8-8describes theloadrombinations applicable tothereartorhuildinq.
TableS3.8-9'ontainptheloadcombinations applicable toSeismicCategoryIstructures otherthanthereactorbuilding.
Table3.8-10describes theloadrombinations usedinthedesiqnoftheturbineandtheradvastebuildings.
.hestructures described inSubsection 3.8.4.1aredesignedtomaintainelasticbehaviorundervariousloadsandtheircombinations.
Theloadsandtheloadcombinations arefullydesrribed in'Subsection 3.8.4.3.Allreinforced concretecomnen+ofthestructure aredesignedbythestrengthmethodqp.'cI~yperACI318(Reft.10A ofTable3.8-1.Allstructural steecomponents aredesiqney.eworkingstressmethodperAISCspecification(ReflHofTable3.8-1).cay>>ADet'ermination of.windandtornadoloadsisdescribed inSection3.3Seismicdeianofs+ructures isdescribed inSection3.7.Thebuildinqs areanalyzeddvramically.
Desiqnofstructure formissileprotection i"coveredinSubsection 3.5.3.ComputerprogramsSTRESSandICFSSTRIJDL-II (Ref1and2respectively ofSubsection 3.R.4.8)areusedtoanalyzestrn:..~ural
"..":-"'raminq.
Therefuelinq'acili'y ofthereactorbuildinqisdesiqnedbasedonfiniteelementanalysisbyuseofcomputerprogramNRI/STARDYNE 3(Ref3ofSubsection 3.8.4.8).47hesoraypondisbasically aconcrete-lined soilstrurture.
Itsdesiqnisdiscussed inSubsection 2.5.5.Concretemasonryblockvalls inallSeismicCateqory,T.
structures havebeenanalyzeddynamically asdescribed inSection3.7b.3.1.5.
Theyaredesiqnedforout-of-plane andin-planeiner+iaforcesgenerated bythemassoftheblockwall andRev.35,0718438-58~-
j+58g.7CQa"'IESELGENERATOR
''UILDING Referto-Figures3.8-l05and3.8-l06rhedieselgenera'o!.
i'.bu1ldinchousesthediesel<i,"no,-at<ir, wnicnwillbeusedasareplacement'or anyoneofthe.ou;uxi:;tin>>;
dz.eselgenerators.
Themainpurposeofthedieselgenerator
'E'stoallowmaintenance tobeperformed onanyoneofthefourexistingdieselgenerators withoutthenecessity foraunitoutage.Thedieselgenerator
'E'uilding isatwo-story structure withabasementconsisting primarily ofreinforced concrete.
Agapisorovidedbetweenthepedestalandthefloorslabatgradelevelsothatnovibrations fromthedieselgenerator aretransmitted tothebuilding.
Theouterreinforced concretewallsandroofofthedieselgenerator
'E'uilding aredesignedtoresisteffectsoftornadomissiles.
Aportiono'ftheouterwallisremovable tofacilitate dieselgenerator installation and/or"emergency removalandmaintenance operation.
Thisremovable wallportionisalsodesignedtoresisttheeffectsoftornadomissiles.
0 SSES-PSAR attachment loads,combinedwithotherloadsasdescrihed inTables3.8-8and38-9.Mailsintheturbineandradvastebuildings havebeendesignedforseismicloadsperUBC(Ref.1LofTable3.8-1).gg4QS+guctugg1
~pepggceggjtegj,a Re2,gfogced Co))QXQie hupA4%309Thereinforced concretestructural components aredesignedbythestrengthmethodperACI318~(ReQ.10A ofTable3.8-1forloadsandloadcombinations described inSusection3.8.4.3.StJ:Zc.uralSter,lAuPl'LAThes+ructural steelcomponents aredesignedbythevorkingstressmethodperAISCspecification (Ref1HofTable3.8-1)forloads.and loadcombinations described inSection3.8.4'.Theallowable stes.esfordifferent loadcombinations areindicated therein.Allmasonryblockvalls arereinforced wallsanddonotactasshearvalls.Masonryblockvalls aredesignedbytheworkingstressmethodperUBC(Ref.1LofTable3.8-1).Theallovable loadsperUBCTables24-Bor24-H(specialinspection) aremodifiedasdescribed inTables3.8-8,3.8-9and3~8-12,exceptasnotedbelow.Fordoublevythcwallsdesignedascomposite sectionsandhavingconcreteorgroutinfillthickness of8inchesormore,theallowable shearortensionbetveenmasonryblock'andinfillis1.1f~i.e.43p.s.i.However,theactualdesignstressdoesno+exceed15p.s.i.Forotherdoublevythewalls,allowable
."-hear/tension stressisassumedtobezeroattheinterface.
3.8.~.6Haterials, Qual'ityControl,andSpecialCogsfgugtiog Tecggj,gus s38461ConcreteandPeinforcina Steelc----~9Theconcreteandreinforcing steelmaterials arediscussed inAppendix3.RP.Concretedesigncompressive strengths aregiveninTable3.8-11.Materials forconcreteblockmasonrywallsarediscussed inAppendix3.RC.Rev.35,07/843.8-59 SSHS-PSAR
'Thevariousstructural steelcomponents conformtothefollowinq specificat ions:ItemReams,qirder,andplatesPoxcolumnsincludinq baseplato.sandcapplatesStructural tubinqHiqhstrenathboltsStudsSpeciQ,gyt2,onASTNA36andASTIA588AST<A588ASTIA500andASTHA501AST".lA325andASTIA490ASSD1~1d>8~4~6~ZaZ Huldinaaalu2aadsizuctiva eatinqMeldinqandnondestructive testinqisperformed inaccordance witheitherAMSD1.1(Ref.10ofTable3.8-1)orSectionEXoftheASIDECede(Ref.1JofTable3.8-1).Rev.35,07/843.8"60 SSES-FSAR g8467,gfabZgglfgon MdgKQ~$29Thefabrication anderectionofstructural steelconformstotheAISCspecification (Ref.1H,28and3HofTable3.8-1).13~8~4~6~g~4 pug],gyContgolgualitvcontrolofstructural steelfortheconstruction phaseisdiscussed inAppendixDofthePSABandamendments tothePSAR.4$g'gycgglConsgpgctgon gecgpigueg Techniques involvedintheconstruction ofSeismicCategoryIstructures arestandardconstruction procedures.
g,8~4~7TestingyndI))-gepyice Inypection pegui~emgnfs Testingandin-service inspection arenotrequiredforSeismicCategoryIstructures (otherthan+hecontainment)
.3.8.4.8ComputerProgramsUsedintheDesiqnandAnalysisofOtherSggsmgcCgtggo~~Stgug~gQs STRESS,Department ofCivilEngineering, massachusetts Institute ofTechnology 2)ICESSTRUDL-II, Department ofCivilEngineering, massachusetts Institute ofTechnology 3)NRI/STABDYNE (Version3),ControlDataCorporation.
Forrthercomouterprograms.efertoSubsection 2.5.5andSection3'3~85FOUNDATIONS Thissubsection describes foundations forallSeismicCategoryIstructures exceptthospraypond.Thespraypondisbasically asoilstructure enditsdesignisdiscussed inSubsection 2.5.5.Descriptions offoundations forsafetyrelatednon-Seismic Rev.35,07g8438-61 SSES-PSARQucateqoryIstructures, suchastheturbinebuildingandtheradvastebuilding, arealsoincludeRinthissection.3~/~5~/pyscgfption ofthegogndgtiggg TypicalRetailsofthefoundations forvariousstructures areshovnonFiqure'.8-104.
Reinforced concretematfoundations havebeenprovidedforallstructures.
ThematsrestonsoundrockexcepttheESSWpumphouse matissupported bynaturalsoil.Allbearingvallsofthestructures arerigidlyconnected tothefoundation mat.Wheresteelcolumnsareprovided, theyareattachedtothematbybaseplatesandanchorbolts.Thebearingwallsandthesteelcolumns,carryalltheverticalloads.fromthestructure tothemat.Horizontal shearsduetowind,tornado,andseismicloadsaretransferred totheshearvallsbytheroofandfloordiaphragms.
Theshearvallstransferthehorizontal shearstothefoundation matandfromtheretothefoundation mediumthroughfriction.
Also,asshownonFigure3.8-104,the.idesofthebasematsofallthestructures excepttheESSWpumphouse arekeyed+o<<hefoundation rockallaroundbypouredconcrete, vhichhelpsintransferrinq thehorizontal shearstothefoundation rock.TheedqesoftheESSWpumchousebasematarepoureddirectlyaqainsttheexcavated slopesofthenaturalsoilformation.
Amudmat(unreinforced concretelayer)isprovidedbetweenthebaseofthefoundation matandthefoundation medium.ExceptfortheESSWpumphouse, avaterpoofingmembraneisprovidedinthemudmatardontheoutsidefaceofperipheral subterranean wallsperforated pipesareprovidedaroundtheperiphery oftheb'uildinqs tocollectgroundvater seepageanddrainittothesumps.Waterproofing membraneurdertheESSWpumphouse foundation matisnotconsidered necessary asthepredicted groundwater, tableatthepumphouse siteiswellbelovthefoui".tion mat-refertoSubsection 2.5.5).Peripheral subterranean vallsaredesignedtoresistlateralpressures duetobackfill, qroundvater, andsurcharge loads,inadditiontodeadloads,liveloads,andseismicloads.Cd@<<gj,ggapg:
Thecontainment foundation isdescribed inSubsection 3.8.1.gyagtogBuild/I)g andCogtgolQuilting:
Thefoundation matsofthereactorandcontrolhuildinqs arepouredmonolithically.
Rev.35,07r843~8-62 SSES-PSAR Thereactorbuildingfoundation matisapproximately 4ft9in~thick-.and isreinforced typically withf11barsat12in.centers.attopandbottominboththenorth-south andeast-vest directions.
Thematsurrounds thecontainment mat,withacoldjointseparating thetvo.Thecontrolbuildingfoundation matisabout2ft6in.thickandisreinforced typically with48barsat12in.centersattopandbottominthenorth-south direction andf11barsat12in.centersattopand$8barsat12in.centersatbottomintheeast-west direction.
Acoldjointisprovidedbetveenthecontrolandtheturbinebuildingmats.Oping~],Gogegagog Bujlaqnq:
Thefoundation matofthe.dieselaenerator building'isapproximately 2ft6in.thickandisreinforced typically with49barsat12in.centersattopandbottominboth+henorth-south andeast-vest directions.
hcoldjointisprovidedbetveenthedieselgenerator pedestalmatandthedieselgenerator buildingFSSQgum@house:
Thefoundation matoftheFSSMpumphouse isabout3ftthickandisreinforced typically vith09barsat12in.centersat+opandbottominboththenorth-sout'h andeast-vest directions.
guqbineBuilding:
Theturbinebuildingmatisapproximately 2ft6in.thickandisreinforced typically vith06barsat12in.cent'ersattopandbottominboththenorth-south andeast-west directions.
Acoldjointisprovidedbetveentheturbinepedestalmatandtheturbinebuildingmat.gagvasggBujgging:
Theradvastebuildingmatisabout3ftthickandi..reinforced typically vith49barsat12in.centersattopandbottominboth-thenor+,h-south andeast-west directions.
II4$6Ri''hecodes,standards, andspecifications usedinthedesign,fabri.".ation, andconstruction offoundations ofstructures arelist..inTable3.8-1.Theloadsandloadcombinationsusedinthedesignofthecontainment foundation aredescribed inSubsection 3.8.1.3.Theloadsandloadcombinations usedinthedesignoffoundations ofotherSeismicCategoryIstructures arediscussed inSubsection 3.8.4.3.Inaddition, thefollowing loadcombinations areBev.35,07/843~8-63 SSES-FShR considered todetermine thefactorsofsafetyagainstslidingandoverturning duetowinds,tornadoes, andseismicloads,andaqainstflotation duetogroundwater pressure:
a)D+H+Wb)c)D+H+W'RDe~+eS,D+,H+'Ed)D+H+8')D+Pwhere:D,W,W',S,andE'reasdescribed inSubsections 3.8.1.3and3.8.4.3andHandPareasfollows:H=LateralcarthpressureF=Buoyantforceduetoqroundwater pressure.
g~g~g~4Pepingpd ggalgsgsPgoceduges Thefoundations areqenerally designedtomaintainelasticbehaviorunderdifferent loads-andtheircombinations.
Theloadsandtheloadcombinations aredescribed inSubsection 3.8.5.3.Thedesignandanalysisofthereinforced concretematfoundations havebeencarriedoutinaccordance withACE318A<oAcZ549(Refs.10A~fTahie3.8-1).-AwDI>AThehearingwallsandthesteelcolumnscarryallthevertical,loadsfromthestructure tothefoundation mat.The-lateralloadsaretransferred totheshearwallsbytheroofandfloordiaphragms, whichthentransmitthemtothefoundation mat.Dotermination ofoverturning momentdue,toseismicloadsisdisc'issed inSubsection 37."..14.%bFxceptforESSWpumphouse, settlement ofthefoundations ofSeismicCategoryIstructures isconsidered negligible asthefoundations aresupported hysoundrock.Thesettlemen oftheHSSWpumphouse matisconsidered inthedesignandisdiscussed inSubsection 2.5.4.As~xplained inSubsection 3.8.5.1andshowninFigure3.8-104,thesidesofthefoundation mats(exceptfortheKSSWpumphouse) arekeyedtotherockbypouredconcrete, whichresistsslidingofthemats.Stability aqainstslidinqfortheESSWpumphouse isRev.35,07/8438-64 XNSERT'D'XESELGENERATOR
''UXLDXNGMATThefoundation ofthedieselgenerator
'E'uildin isa3'-10"thickandzsreinforced tyllhcentersattopandbottominboththenorth-ypicaywith59barsadirections.
oenort-southandeast-west  


SSFS-FSARmaintainedbythefrictionontheundersideofthebasematandpassiveresistanceofthesoilagainsttheedgeofthemat.DetaileddescriptionofthefoundationrockandsoiliscontainedinSubsections2.5.4and2.5.5.Pordesignpurposes,thea'llowablebearingpressuresofrockandsoilare40and2.5tons/sq-ftrespectively.ThecalculatedbearingpressuresforloadsandloadcombinationsdescribedinSubsection3.8.5.3donotexceedtheseallowablevalues.'JThedesignandanalysisofthecontainmentfoundationmatarediscussedindetailinSubsection3.8.1.4.3~8~5~)Stggcgugy1QccgpfggeeQ$teggaThefoundationsofallSeismicCategoryIstructuresaredesignedtomeetthesamestructural'cceptancecriteriaasthestructuresthemselves.ThesecriteriaarediscussedinSubsections.3.8'.5and3.84.5.Inaddition,fortheadditionalloadcombinationsdelineatedinSubsection38.5.3,theminimumallorablefactorsofsafetvagainstoverturning,sliding,andflotationareasfollows:I.ggdComggngtj,anOyertuggiggSlidingFloatationa)b)c)d)e)D+H+I1.5D~H~W~~aD+H+W~s1.1D+H+81~5D+H+P.i11D+P1~51~11.51~1Thecalculatedfactorsofsafetyexceedtheaboveminimumfactorofsafetv.4ev.35,07/843~8-65 SSES-PSAR3~8~5~6Haterials,'ualityControl,andSpecialconstructionTaahnlm~aThefoundationsofSeismicCategoryIstructuresareconstructedofreinforcedconcrete.Theconcreteandreinforcingsteelmateria.lsarediscussedinAppendix3.8B.ConcretedesigncompressivestrenqthsareqiveninTable3.8-11.Techniquesinvolvedintheconstructionofthesefoundationsarestandardconstructionprocedur'es.ThecontainmentfoundationisloadtestedduringthestructuralacceptancetestasdescribedinSubsection3.81.7Anin-servicesurveillanceprogramtoaonitorthesettlementoftheESSIpumphousefoundationhasbeeninstituted.DetaileddiscussionoftheproqramiscontainedinSubsection2.5.I.Testinqandin-serviceinspectionisnotnecessaryforfoundationsofallotherSeismicCategoryIstructures.pev,35,07g803.8-66 SSES~LRXhl(52+9=1LISTOPAPPLICABLECODESSTANDARDSRECORRENDATIONS~LNDSPECIFICATIONSPage1of6ReferenceNuahecDesiqnationTitleEditloniQg'6,ELDER.(A)hnariaaacaaararazaifirafBLCI2111ACI21qACI301Lcy304BecoaaendedPracticeforSelectingProportionsforNocaalaadHeavyveiqhtCoacreteRecoaaendedPracticefocEvaluationofCoapressionTestResultsofPieldCoacreteSpecificationsforStructuralConcreteforBuildingsRecoaaendedPcacti.ceforBeasurinqiBiringgTransporting,andPlacingConcrete197019651972197319()977)98l(9787A10A12L13lACI305LCI306ACI307ACI308ACT309ACI318ACI3q7LCI399ACISP2RecoaaendedPracticeforHotNeatherConcretingRecoaaende4PracticeforColdQeatherConcretingSpecification.fortheDesignan4ConstructionofReinforcedConcreteChi.aneysRecoaaundedPracticeforcuringconcreteRecoaaendedPracticeforConsolidationofConcreteBuildinqCodeRequireaentsforReinforcedConcreteBecoaaendedPracticefo'rConcretePocavorkCciteciafocReinforcedConcreteNuclearPaverContainaentStructures(includedinACIannualofStandar4Practice,Pact2,1973)RanualofConcreteInspectioa19721966(1972)1969197'11972197119681975(917)$78l98((077(978)$8l(8)hn~ricdnMeldingRaaintx18LNSDl1StcuctucalNeldinqCode1972(Generallyallvock)19a~1975,1980,1981(SoaevockafterJune1975)28ANSD121RecoaaendedPracticeforNe14ingBeinforcingSteelan4connectionsinReinforcedconcreteconstruction1961Ciprinciplp//ditionsusedarelisted;laterppditionsmaybeapplied,forspecificcases>clhSp16SECcz<ekAToR~8uicAl4$.Rev.35,07/84 ReferenceNuaberDesianationSSES-PSakkKALI@1B-1iConlin004).Title-EditioniP~ae2of6bQCBLDG,.(C)q5HRQl.Bif.BBBRlRCBfYCQRBiM1MICBG110Bschaaical{Cadveld)SplicesiaRei.nforciagBarsofCategoryIConcreteStructuresRevision\Jaa19732C3C4CSC6C7CSCRG1~15BGI~IBRGI19BGI54RGI~SSBG1~57BG1kSBTestingofReinforciagBarsfocCategoryICoacrsteStructuresStcucturalAc"sptaacaTestforCoacretsPciaaryReactorContainaentsIloadsstructiveExaaiaatioaofPriaaryCoataiaasatLinerRsl4sQualityAssucaaceReguireaentsforProtectiveCoatingsAppliedtoRater-Coole4PovsrPlantsCoaccstsPlaceaeatiaCategorylStructuresDesignLiaitsandLoadingCoabinationsforBetalPriaacyReactorCoatainasatSysteaCoaponeatsrQualificationofRuclsarPovsfPlantZaspectionrExaainationrandTestingPsrsonaelRevision1Dec1972Revision1Dec.1972Revision1Aug.1972June1973June1973June1973Aug.1973CoacreteRadiatioaShieldsforNuclear-PoverPlantsBGI~69RG1~94QualityAssuranceBsquireaeatsforIastallationrInspection,andTestingofStructuralCoacretean4StcuctucalSteelDuciagtheConstructionPhaseofNuclearPoverPlaats10CC~<fIASf/LPE~lklkkrirkk-.kkiktxoikkkkiikkkkkckkkkiklkDsc1973Apr1975AP/t.I976,102030ASTIAS)9ASTBA615ASTBC29ASTBC31SeaalesaCacbonaadAlloySteelNechaaicalTubiagDsforsedaa4PlainBilletsteelBarsforconcreteReinforcsaentUnitVsightofAggregatellakiaqandCuciagCoaccsteTestSpeciasnsinthePisid19711974,19751972r1974r1975'I9711969I983C~g.kI5ABATOR~principl)/Xjditionsusedarelisted>laterjj(ditionsmaybeappliedforspecificcases>SOC))ASDI<eO)l.yIQQ.Rev.35,07/B4 SSES-FSLRspill,gia-1gcookkRH94l.Page3of6ReferenceNuabarDesignationTitleEditionoDO'Cl3t.OC,.7Danqn10o11D12D13D14n15O16DLSTNC33LSTNC39LSTNC40LSTNC87ASTNC88LSTNC94ASTNC109ASTNC117ASTNC123LSTNC127ASTNC128,ASTNC131ConcrataiqqragatasCoapraasivaStrengthofCylindricalConcreteSpeciaansOrganictapuritiesinSandsforConcreteEffectofOrganicZapuritiesinFineAggregateonStrengthofNortarSoundnessofAqgraqatesbyUseofSodiuaSulfateorNaqnasiuaSulfateReady-NixadConcretecoaprassivastronqthofHydrauliccaaeatNortarsNaterialsFinerthanRo.200SieveinNineralAqqraqatesbyMashingLiqhtvaiqhtPiecesinAggregatespecificGravityan4AbsorptionofCoarseLgqragataSpecificGravityandlbsorptionofPineLgqregateIResistancetonebraskanofSaallSizeCoarseAggregatebyUsaoftheLos.AngelesNachine1971r197419721966'97319691971'9731973~19741973,1975196919691968,19731968,19731969tgeli979>)7619SBi98ol98olg&3<)8Il919l)SI17D18020n22D23DASTNC136ASTNC138LSTNC142LSTNC143lSTNC150LSTNC215ASTNC231SieveorScreenAnalysisofFiaean4CoarseAggregatesUnitMakqht~yieldsan4lircontentofConcreteClayLuapsan4FriableParticlesinlgqraqatasSluapofPortlan4CaaantConcretePortlandCaaaatFundaaantalTransverse,Lonqitudinalian4Torsional-FraquanciasofConcreteSpeciaansLirContentofFreshlyNixadConcretebythePressureNathod19711973'974'97519711971,19741973~1974r1976+1978'9601973~1974~1975(ps3itsl>9781978l980>yP4A-+>ylgS6i,l48l4SC,ATOL6*PrincipldZjfditionsusedarelisted;laterNditionsmaybeappliedforspecificcasespli'OitSl46Rav.35,07/84 ReferenceNuabecDesignationSSES-PSLHThQl,a)5=}}coafiaaailPage4of6EditionvDg'SLDQ.24D25n26027028D29n3nn31D32n3'10ASTHC235'ASTHC260ASTHC289LSTHC295ASTHC311ASTHC330LSTHC469LSTHC494ASTHC566ASTHC618ASTHC637ScratchHardnsssofCoarseLqqregateParticlesAirEntrainingLdaixturesfocConcretePotentialReactivityofLqqregatesPetrographicExaainationofLqgregatesforConcreteSaaplingandTestingPlyLshforUseasaaLdaixtureinPoctlandCeaentConcreteLiqhtveiqhtAggregatesforStructuralConcreteStatl.cHodulusofElasti.cityandPoisson'sRatioofConcreteinCoapcessioncheaicalAdaixturesforConcretetotalHoistureContentofLggcegatebyDcyinqPly.LshandRavorCalcinedHaturalPoxxolansforUseinPortlan4CesentConcreteLqqreqatesforRa4iationShiel4ingConcrete19681973'9741971196519681969m197519651971196719731973198II)7glg82.f978(E)hREKicaahaaaQiakiaaofuatalliahMRY404XXaaramlaliaa~UakaliLASH'TOT26AASHTOT150AASHTOT161[plLt5hfaYcnL'BaofEaaiaaal'aQualityofHatertobeUsedinConcreteParcentaqeofParticlesofLessThan1.95SpecificOravityinCoarseAggregateResistanceofConcreteSpeciaenstoRapidPreexinqan4thavinginRater1970194919701P2PCRDC36CRnc39TostforTharaalDiffusivityofConcreteTestfocCoefficientofLinearThecaalExpansionofConcrete197319553PCRDC1194FCRJ)G572+PrinciplgypditionsusedarelistedgTestfocPlatan4ElongatedParticlesinCoarse1953Lqqreqate5pgclFlCA/If'ORPolVVI<VLclLOkl>aHgTLRSgoP1970iaterpdditionsmaybe,appliedforspa.cificcasesy50CHhSDl6$EL.Ca<~<4~oR~L>i<4PCgRov.35,07/84  
SSFS-FSAR maintained bythefrictionontheunderside ofthebasematandpassiveresistance ofthesoilagainsttheedgeofthemat.Detaileddescription ofthefoundation rockandsoiliscontained inSubsections 2.5.4and2.5.5.Pordesignpurposes, thea'llowable bearingpressures ofrockandsoilare40and2.5tons/sq-ftrespectively.
Thecalculated bearingpressures forloadsandloadcombinations described inSubsection 3.8.5.3donotexceedtheseallowable values.'JThedesignandanalysisofthecontainment foundation matarediscussed indetailinSubsection 3.8.1.4.3~8~5~)Stggcgugy1QccgpfggeeQ$teggaThefoundations ofallSeismicCategoryIstructures aredesignedtomeetthesamestructural'cceptance criteriaasthestructures themselves.
Thesecriteriaarediscussed inSubsections
.3.8'.5and3.84.5.Inaddition, fortheadditional loadcombinations delineated inSubsection 38.5.3,theminimumallorable factorsofsafetvagainstoverturning, sliding,andflotation areasfollows:I.ggdComggngtj,an Oyertuggigg SlidingFloatation a)b)c)d)e)D+H+I1.5D~H~W~~aD+H+W~s1.1D+H+81~5D+H+P.i11D+P1~51~11.51~1Thecalculated factorsofsafetyexceedtheaboveminimumfactorofsafetv.4ev.35,07/843~8-65 SSES-PSAR 3~8~5~6Haterials,'uality Control,andSpecialconstruction Taahnlm~a Thefoundations ofSeismicCategoryIstructures areconstructed ofreinforced concrete.
Theconcreteandreinforcing steelmateria.ls arediscussed inAppendix3.8B.Concretedesigncompressive strenqths areqiveninTable3.8-11.Techniques involvedintheconstruction ofthesefoundations arestandardconstruction procedur'es.
Thecontainment foundation isloadtestedduringthestructural acceptance testasdescribed inSubsection 3.81.7Anin-servicesurveillance programtoaonitorthesettlement oftheESSIpumphouse foundation hasbeeninstituted.
Detaileddiscussion oftheproqramiscontained inSubsection 2.5.I.Testinqandin-service inspection isnotnecessary forfoundations ofallotherSeismicCategoryIstructures.
pev,35,07g803.8-66 SSES~LRXhl(52+9=1LISTOPAPPLICABLE CODESSTANDARDS RECORRENDATIONS
~LNDSPECIFICATIONS Page1of6Reference NuahecDesiqnation TitleEditloniQg'6,ELDER.(A)hnariaaacaaararazaifirafB LCI2111ACI21qACI301Lcy304Becoaaended PracticeforSelecting Proportions forNocaalaadHeavyveiqht CoacreteRecoaaended PracticefocEvaluation ofCoapression TestResultsofPieldCoacreteSpecifications forStructural ConcreteforBuildings Recoaaended Pcacti.ce forBeasurinqiBiringgTransporting, andPlacingConcrete197019651972197319()977)98l(9787A10A12L13lACI305LCI306ACI307ACI308ACT309ACI318ACI3q7LCI399ACISP2Recoaaended PracticeforHotNeatherConcreting Recoaaende4 PracticeforColdQeatherConcreting Specification.fortheDesignan4Construction ofReinforced ConcreteChi.aneys Recoaaunded PracticeforcuringconcreteRecoaaended PracticeforConsolidation ofConcreteBuildinqCodeRequireaents forReinforced ConcreteBecoaaended Practicefo'rConcretePocavorkCciteciafocReinforced ConcreteNuclearPaverContainaent Structures (included inACIannualofStandar4Practice, Pact2,1973)RanualofConcreteInspectioa 19721966(1972)1969197'11972197119681975(917)$78l98((077(978)$8l(8)hn~ricdnMeldingRaaintx18LNSDl1Stcuctucal NeldinqCode1972(Generally allvock)19a~1975,1980,1981(SoaevockafterJune1975)28ANSD121Recoaaended PracticeforNe14ingBeinforcing Steelan4connections inReinforced concreteconstruction 1961Ciprinciplp
//ditions usedarelisted;laterppditions maybeapplied,forspecificcases>clhSp16SECcz<ekAToR
~8uicAl4$.Rev.35,07/84 Reference NuaberDesianation SSES-PSakk KALI@1B-1iConlin004).
Title-EditioniP~ae2of6bQCBLDG,.(C)q5HRQl.Bif.
BBBRlRCBfY CQRBiM1MICBG110Bschaaical
{Cadveld)
SplicesiaRei.nforciag BarsofCategoryIConcreteStructures Revision\Jaa19732C3C4CSC6C7CSCRG1~15BGI~IBRGI19BGI54RGI~SSBG1~57BG1kSBTestingofReinforciag BarsfocCategoryICoacrsteStructures Stcuctural Ac"sptaacaTestforCoacretsPciaaryReactorContainaents Iloadsstructive Exaaiaatioa ofPriaaryCoataiaasat LinerRsl4sQualityAssucaace Reguireaents forProtective CoatingsAppliedtoRater-Coole4 PovsrPlantsCoaccstsPlaceaeat iaCategorylStructures DesignLiaitsandLoadingCoabinations forBetalPriaacyReactorCoatainasat SysteaCoaponeats rQualification ofRuclsarPovsfPlantZaspectionr Exaainationr andTestingPsrsonael Revision1Dec1972Revision1Dec.1972Revision1Aug.1972June1973June1973June1973Aug.1973CoacreteRadiatioa ShieldsforNuclear-Pover PlantsBGI~69RG1~94QualityAssurance Bsquireaeats forIastallationr Inspection, andTestingofStructural Coacretean4Stcuctucal SteelDuciagtheConstruction PhaseofNuclearPoverPlaats10CC~<fIASf/LPE~lklkkrirkk-.kkiktxoikkkkiikkkkkckkkkiklk Dsc1973Apr1975AP/t.I976,102030ASTIAS)9ASTBA615ASTBC29ASTBC31SeaalesaCacbonaadAlloySteelNechaaical TubiagDsforsedaa4PlainBilletsteelBarsforconcreteReinforcsaent UnitVsightofAggregate llakiaqandCuciagCoaccsteTestSpeciasns inthePisid19711974,19751972r1974r1975'I9711969I983C~g.kI5ABATOR~principl)/
Xjditions usedarelisted>laterjj(ditions maybeappliedforspecificcases>SOC))
ASDI<eO)l.yIQQ.Rev.35,07/B4 SSES-FSLR spill,gia-1gcookkRH94l.
Page3of6Reference NuabarDesignation TitleEditionoDO'Cl3t.OC,.7Danqn10o11D12D13D14n15O16DLSTNC33LSTNC39LSTNC40LSTNC87ASTNC88LSTNC94ASTNC109ASTNC117ASTNC123LSTNC127ASTNC128,ASTNC131Concrataiqqragatas Coapraasiva StrengthofCylindrical ConcreteSpeciaans Organictapurities inSandsforConcreteEffectofOrganicZapurities inFineAggregate onStrengthofNortarSoundness ofAqgraqates byUseofSodiuaSulfateorNaqnasiua SulfateReady-Nixad Concretecoaprassiva stronqthofHydraulic caaeatNortarsNaterials FinerthanRo.200SieveinNineralAqqraqates byMashingLiqhtvaiqht PiecesinAggregate specificGravityan4Absorption ofCoarseLgqragata SpecificGravityandlbsorption ofPineLgqregate IResistance tonebraskan ofSaallSizeCoarseAggregate byUsaoftheLos.AngelesNachine1971r197419721966'97319691971'9731973~19741973,1975196919691968,19731968,19731969tgeli979>)7619SBi98ol98olg&3<)8Il919l)SI17D18020n22D23DASTNC136ASTNC138LSTNC142LSTNC143lSTNC150LSTNC215ASTNC231SieveorScreenAnalysisofFiaean4CoarseAggregates UnitMakqht~yieldsan4lircontentofConcreteClayLuapsan4FriableParticles inlgqraqatas SluapofPortlan4CaaantConcretePortlandCaaaatFundaaantal Transverse, Lonqitudinali an4Torsional-Fraquancias ofConcreteSpeciaans LirContentofFreshlyNixadConcretebythePressureNathod19711973'974'975 19711971,19741973~1974r1976+1978'9601973~1974~1975(ps3itsl>9781978l980>yP4A-+>ylgS6i,l48l4SC,ATOL 6*Principld Zjfditions usedarelisted;laterNditionsmaybeappliedforspecificcasespli'OitSl46Rav.35,07/84 Reference NuabecDesignation SSES-PSLH ThQl,a)5=}}coafiaaail Page4of6EditionvDg'SLDQ.24D25n26027028D29n3nn31D32n3'10ASTHC235'ASTHC260ASTHC289LSTHC295ASTHC311ASTHC330LSTHC469LSTHC494ASTHC566ASTHC618ASTHC637ScratchHardnsssofCoarseLqqregate Particles AirEntraining Ldaixtures focConcretePotential Reactivity ofLqqregates Petrographic Exaaination ofLqgregates forConcreteSaaplingandTestingPlyLshforUseasaaLdaixture inPoctlandCeaentConcreteLiqhtveiqht Aggregates forStructural ConcreteStatl.cHodulusofElasti.city andPoisson's RatioofConcreteinCoapcession cheaicalAdaixtures forConcretetotalHoistureContentofLggcegate byDcyinqPly.LshandRavorCalcinedHaturalPoxxolans forUseinPortlan4CesentConcreteLqqreqates forRa4iation Shiel4ing Concrete19681973'9741971196519681969m197519651971196719731973198II)7glg82.f978(E)hREKicaahaaaQiakiaa ofuatalliahMRY404XXaaramlaliaa~Uakali LASH'TOT26AASHTOT150AASHTOT161[plLt5hfaYcnL'Baof Eaaiaaal'a QualityofHatertobeUsedinConcreteParcentaqe ofParticles ofLessThan1.95SpecificOravityinCoarseAggregate Resistance ofConcreteSpeciaens toRapidPreexinqan4thavinginRater1970194919701P2PCRDC36CRnc39TostforTharaalDiffusivity ofConcreteTestfocCoefficient ofLinearThecaalExpansion ofConcrete197319553PCRDC1194FCRJ)G572+Principlg ypditions usedarelistedgTestfocPlatan4Elongated Particles inCoarse1953Lqqreqate5pgclFlCA/If'ORPolVVI<VLclLOkl>a HgTLRSgoP 1970iaterpdditions maybe,appliedforspa.cific casesy50C HhSDl6$EL.Ca<~<4~oR~L>i<4PCgRov.35,07/84  


0ReferenceHuaberDesiqaationSSES-PSAhThh))lys=llcanlinna4).Tit.leEdition+Page5of6QG,'a)L<yq.(G)haaxjnaannziannlQlaadax{laIaaajhnln10LHSIHu'5~2~5SupplesentacyQLRequireaentsforInstallationtInspectionandTestingofStructuralConcreteandStructuralSteelDucingtheConstcuctionPhaseofHucleacPoverPlants.1972)$7'dSfa.TFAHSIH1016ConcreteRadiationShields(H)daarjnaaInnljlnjaaf5lnnlQanajrncljon19721HLISCSpecificationfortheDesign,Pabricstion,andErectionofstructuralSteelforBuildingsandSupplesentHos.1~2and3196907s2HAISCCodeofStaadardPracticeforSteelBuildingsandBridges1970(Soaevorkbefore))0761972(Generallyallvock)1976(SoaeworkaftecSept1976)3H4HAISCAISCSpecificationforStructuralJointsUsingASTIA325orl490BoltsSpecificationforthedesign~fabricationanderectionofStructuralSteel.forbuildiags1966,1972and197&1978(SoaevorkafterJuly1977))f75(J)dan@jean50njntXafnachanjgajhagjaaacaASHEASHEBoilerandPcessureVesselCode,SectionsII,III,V,VIII'ndIX1971vithAddendathcoughSusaer1972{K)gacb)ejpnHRICDIaolaljnn~dnagKangjanaiCnjjfnKnja~,goajcaj))apogean1K2K3KBC-TOP-1DC-TOP-4-lDC-TOP-9AContainaentBuildinglinerPlateDesignReportSeisaicAnalysesofStructuresandEquipaenttorHuclearPoverPlantsOesiqnorStructuresforHissileIspactRevision1Dec1972Revision3Hov1974Revision2Sept1974(L)IntngndjjnnaiCnnfefaacaoft)ajjgjngOffjcjajsA8<eg&nhloP-c~Principlpfgpfditionsusedarelisted>later+ditionsmaybeappliedforspecificcases>~VC.HA>SuLDIIJQ.Rev.35,07/84  
0Reference HuaberDesiqaation SSES-PSAhThh))lys=llcanlinna4).
.ReferenceIlnaherDesiqnationSSES-PSLa.~ggl,g3S-1ICoatinue41.TitleBditionePage6of6UniforaQuildinqCode1973,1976Principljjfj(ditionsusedarelistedslaterpgditionsmaybeappliedforspecificcasesSVCn4><4al6RAToREWIt>~<0.Rev.35,07/84 12CINSERTQQktgOoooSTaADhRPRGVJGQpCAQFOL1'l<a~~~>>~oF~+Fa~~AiALgstsQgp>pygFoRHvccbhRPoplck1.28QualityAssuranceProgramRequirements2/79(DesignandConstruction)1'fC1.60Rev.1DesignResponseSpectraforSeismicDesignof12/73NuclearPowerPlantsACl.61Rev.0DampingValuesforSeismicDesignofNuclear10/73PowerPlants15C1.76Rev.0DesignBasisTornadoforNuclearPower':;Plants4/74lgC1.92Rev.1AC1.117Rev.CombiningModalResponsesandSpatialComponentsinSeismicResponseAnalysisTornadoDesignClassification2/764/781PC1.132Rev.1SiteInvestigationsforFoundationsofNuclear3/79PowerPlants)ACl.142Rev.1Safety-RelatedConcreteStructuresforNuclearPowerPlants(otherthanReactorVesselsandContainments)10/81 IH5ERQpZcFGR~WC~ao.9a'ipHATipseANSIN45.2TITLEQualityAssuranceRequirementsforFacilities,Rite%ProgramNuclearSb>T>Oul977ANSIN45.2.2Packaging,Shipping,Receiving,StorageandHandlingofItemsforNuclearPowerPlants,i)78N45.2.5SupplementaryQualityAssRequirementsforlation,InspectioTestingofSalConcreteandtructuraelDuringtheConstructionPhaseearPowerPlants,1974ANSIN45.2.6QualificationsofInspection,ExaminationandTestingPersonnelfortheConstructionPhaseofNuclearPowerPlants,i)78,IIANSIN45.2.9RequirementsforCollection,Storage,andMaintenanceofQualityAssuranceRecordsforNuclearPowerPlants,ANSIN45.2.10QualityAssuranceTermsandDefinitions,sqANSIN45.2.11QualityAssuranceRequirementsfortheDesignofNuclearPowerPlants,ANSIN45.2.12RequirementsforAuditingofQualityAssuranceProgramsforNuclearPowerPlants,l)7IIANSIN45.2.13QualityAssuranceRequirementsforControlofProcurement=ofItemsandServicesforNuclearPowerPlants,I<76lipANSIN45.2.23QualificationsofQualityAssuranceProgramAuditPersonnelforNuclearPowerPlants,l)78E9'i71045ARE05t'.'II SSES-FSARTABLE3-a-8(P~1<>~4)Q6LOADCOHBENATZONSAPPLICABLE703:-ACOHBUELDINr,W~s,=<<Ta,P~o'KIHIT/Missla.6Iop>NotationsIfs=Fs=Fy=Ho=Ha=DsD's.v'indloadTornadowindloadCalculatedstressinstructurals"e1AllovablestressforstructuralsteelYieldstrengthofstructu"alseelForceonstructuredueto..hermalexpansionofpipesunderope"atingconditions"-orceonstructureduetothermaliexpansionofpipesunderacciden+,,condi.ionsForceonblockvallduetostorydriftunderoperatingBasisEarthquakeLoadingForceonblockwallduetostorydriftunderSafeShutdownEarthquakeLoadingAllowablestressforreinorcedcon"retemasonryperUBC,Table24-H(specialinspec..ion)forglobalwallanalysis;orallovablestressorunreinforcedconcretemaonryperUBCTable24-3(specialinspection)fo=localvalianalysisasaresultoa.+achments.Allovablevorkingstressintens'onfo"reinforcingsteel(asspecifiedinUBC).Yieldstrengthofreinforcing-teel.Forallothernotations,seeTable3.8-2.A>einorcedConcreteNormaloperatingloads:U=1.4=.--:1.7L+1.0T+25H00Normaloperaingloadsvi.hSevereenvironmentalloads:U=0~75[14D+1~7L+1~7(1~1)E]+1~OTO+1~25HHU=075(14D+17L+17H)+1OTO+'25HoWhereoverturningforcescausenettens'onintheabsenceofliveload,thefollovingloadcombinationsareconsidered:U=0~9D+13{11)E+1~OTo~1~25U='090+139+1OTO+125HoRev.35,07/84  
Tit.leEdition+Page5of6QG,'a)L<yq.(G)haaxjnaannziannlQlaadax{la Iaaajhnln 10LHSIHu'5~2~5Supplesentacy QLRequireaents forInstallationt Inspection andTestingofStructural ConcreteandStructural SteelDucingtheConstcuction PhaseofHucleacPoverPlants.1972)$7'dSfa.TFAHSIH1016ConcreteRadiation Shields(H)daarjnaaInnljlnja af5lnnlQanajrncljon 19721HLISCSpecification fortheDesign,Pabricstion, andErectionofstructural SteelforBuildings andSupplesent Hos.1~2and3196907s2HAISCCodeofStaadardPracticeforSteelBuildings andBridges1970(Soaevorkbefore))0761972(Generally allvock)1976(SoaeworkaftecSept1976)3H4HAISCAISCSpecification forStructural JointsUsingASTIA325orl490BoltsSpecification forthedesign~fabrication anderectionofStructural Steel.forbuildiags 1966,1972 and197&1978(SoaevorkafterJuly1977))f75(J)dan@jean50njntXafnachanjgaj hagjaaaca ASHEASHEBoilerandPcessureVesselCode,SectionsII,III,V,VIII'ndIX1971vithAddendathcoughSusaer1972{K)gacb)ejpnHRICDIaolaljnn~
dnagKangjanai CnjjfnKnja~,goajcaj
))apogean 1K2K3KBC-TOP-1DC-TOP-4-l DC-TOP-9A Containaent BuildinglinerPlateDesignReportSeisaicAnalysesofStructures andEquipaent torHuclearPoverPlantsOesiqnorStructures forHissileIspactRevision1Dec1972Revision3Hov1974Revision2Sept1974(L)IntngndjjnnaiCnnfefaaca oft)ajjgjng OffjcjajsA8<eg&nhloP-c~Principlpfgpfditions usedarelisted>later+ditions maybeappliedforspecificcases>~VC.HA>SuLDIIJQ.Rev.35,07/84  
.Reference IlnaherDesiqnation SSES-PSLa.
~ggl,g3S-1ICoatinue41.
TitleBditionePage6of6UniforaQuildinqCode1973,1976Principljjfj(ditions usedarelistedslaterpgditions maybeappliedforspecificcasesSVCn4><4al6RAToREWIt>~<0.Rev.35,07/84 12CINSERTQQktgOoooSTaADhRPRGVJGQpCAQFOL1'l<a~~~>>~oF~+Fa~~AiALgstsQgp>pygFoRHvccbhRPoplck1.28QualityAssurance ProgramRequirements 2/79(DesignandConstruction) 1'fC1.60Rev.1DesignResponseSpectraforSeismicDesignof12/73NuclearPowerPlantsACl.61Rev.0DampingValuesforSeismicDesignofNuclear10/73PowerPlants15C1.76Rev.0DesignBasisTornadoforNuclearPower':;Plants 4/74lgC1.92Rev.1AC1.117Rev.Combining ModalResponses andSpatialComponents inSeismicResponseAnalysisTornadoDesignClassification 2/764/781PC1.132Rev.1SiteInvestigations forFoundations ofNuclear3/79PowerPlants)ACl.142Rev.1Safety-Related ConcreteStructures forNuclearPowerPlants(otherthanReactorVesselsandContainments) 10/81 IH5ERQpZcFGR~WC~ao.
9a'ipHATipseANSIN45.2TITLEQualityAssurance RequirementsforFacilities, Rite%ProgramNuclearSb>T>Oul977ANSIN45.2.2Packaging,
: Shipping, Receiving, StorageandHandlingofItemsforNuclearPowerPlants,i)78N45.2.5Supplementary QualityAssRequirements forlation,Inspectio TestingofSalConcreteandtructuraelDuringtheConstruction PhaseearPowerPlants,1974ANSIN45.2.6Qualifications ofInspection, Examination andTestingPersonnel fortheConstruction PhaseofNuclearPowerPlants,i)78,IIANSIN45.2.9Requirements forCollection, Storage,andMaintenance ofQualityAssurance RecordsforNuclearPowerPlants,ANSIN45.2.10QualityAssurance TermsandDefinitions, sqANSIN45.2.11QualityAssurance Requirements fortheDesignofNuclearPowerPlants,ANSIN45.2.12Requirements forAuditingofQualityAssurance ProgramsforNuclearPowerPlants,l)7IIANSIN45.2.13QualityAssurance Requirements forControlofProcurement=
ofItemsandServicesforNuclearPowerPlants,I<76lipANSIN45.2.23Qualifications ofQualityAssurance ProgramAuditPersonnel forNuclearPowerPlants,l)78E9'i71045ARE05t'.'II SSES-FSAR TABLE3-a-8(P~1<>~4)Q6LOADCOHBENATZONS APPLICABLE 703:-ACOHBUELDINr, W~s,=<<Ta,P~o'KIHIT/Missla.6Iop>Notations Ifs=Fs=Fy=Ho=Ha=DsD's.v'indloadTornadowindloadCalculated stressinstructural s"e1Allovable stressforstructural steelYieldstrengthofstructu"al seelForceonstructure dueto..hermalexpansion ofpipesunderope"ating conditions
"-orceonstructure duetothermaliexpansion ofpipesunderacciden+,,condi.ions Forceonblockvall duetostorydriftunderoperating BasisEarthquake LoadingForceonblockwall duetostorydriftunderSafeShutdownEarthquake LoadingAllowable stressforreinorcedcon"retemasonryperUBC,Table24-H(specialinspec..ion) forglobalwallanalysis; orallovable stressorunreinforced concretemaonryperUBCTable24-3(specialinspection) fo=localvalianalysisasaresultoa.+achments.
Allovable vorkingstressintens'onfo"reinforcing steel(asspecified inUBC).Yieldstrengthofreinforcing
-teel.Forallothernotations, seeTable3.8-2.A>einorcedConcreteNormaloperating loads:U=1.4=.--:1.7L+1.0T
+25H00Normaloperaingloadsvi.hSevereenvironmental loads:U=0~75[14D+1~7L+1~7(1~1)E]+1~OTO+1~25HHU=075(14D+17L+17H)+1OTO+'25HoWhereoverturning forcescausenettens'onintheabsenceofliveload,thefolloving loadcombinations areconsidered:
U=0~9D+13{11)E+1~OTo~1~25U='090+139+1OTO+125HoRev.35,07/84  


SSES-.".SARTABLe3.8-8~Continue+)(p82ofn)Pors"ucuralshearwallscarryingse'smi"orces,thefollowingloadcombinationisalsoconsidered:U=1.0D+1.0I+1SE+1OTo+1.25HoNormaloperatingloadswithExtremeenvironmentalloads:7=1OD+1.0L+1.0T+1.0W'1.0HNormaloperatingloadswithAbnormalloads:U=1.05D+105L+10(To+T)+1.0P+l.5P+1.0HoaNormaloperatingloadswithSevereenv'ronmentalandAhnormalloads:rU=1OSD+105L+1~0(TO+T)+1~OR+125.+125E+10HoWhereoverturningforcescause,nettension'ntheabsenceoliveload,thefollowingload,combinationisconsidered:U=0e95D+125E+10(To+T)+1~OR+10HoNormaloperatingloadswithExtremeenvironmentalandAbnormalloads:U=1.0D+1OL+1e0(To+T)+1.0-'+1~OP+1OR+1.0U=1OD+1OL+1OTo+1Sc,'+1-OR+1.25HaRev.35.07/84 SSZS-FSARTABLE3.8-8~Continue"..)(Pg3of4)B.StructuralSteelConditionLoadCombingionAllowableStressIncreaseNormaloperatingloads:NormaloperatingloadswithSevereenvironmentalloads:NormaloperatingloadswithExtremeenvironmenta1loads:NormaloperatingloadswithExtremeenvironmental'andAbnormalLoads:D.+L+T+00D+L+To+5+HoD+L+T+N+H00D+L+T+-.l~.+H00D+L+R+T+"''+P+HD+L+R+(T+T)+P+~'Hl.25Fs>.33FASeenotebelo~Seeno.ebelo~Seenotebelo~Note:;heallowablestressinstructuralsteeldoesnotexceed,O.gFyinbending,0.35Fyinaxialtensionorco~pression,and0.5Fyinshear.<<hereZsisgovenedbyrequirementsofstability(localorlateralbuckling},fsdoesnotexceed1.5Fs.Rev.35,07/84 SSES-...SAP.TILB~E3.~8-8ContgnuEB)(u8uuf8)QzqC.Conc"ete<ason~rStructures~31ockralieLSafety"elatedblockwallsincategory.".stucturesothe"than"hereactorbuildingaredesignedforthefollowingloadcombinationsandallowablestressincrease.Theload"ombinationsapplytoout-o-planeloadingassellasin-planeloading.AcceptancecriteriaisinaccordancevithSubsection3.8.4.5.ConditionLoadCombinationAllovab1eStresIncreaseNormalNormal/SevereNormal/ExtremeAbnormalAbnormal/Severe.Abnorma1/ExtremeD+L+T+HoaD+L+T+H+E+D00sD+L+T+H+o0D+L+(T+T}+q+0oa.aD+L+(T+T)+3!+H+1~25E+Doa"'a"sD+L+(T+T)+2+2+E'+D'a-"asNoincreaseNoincreaseSeeTable3.8'SeeTable3,8SeeTable3.8SeeTable3.8Rev.
SSES-.".S ARTABLe3.8-8~Continue+)
SSES-FSARTABLE389(pgIpf3)LOACCOMBINATIONSAPPLICABLETOSEISMICCATEGORYISTRUCTURESOTHERTHANCONTAINMENT~M4REACTORBUILDINGSLABSCl"QEAGRATOR.~6Sett.DtdNotations:SeeTables3.8-2and38-8A.ReinfocedConceteNormaloperatinqloads:U=14'D+17L+1~OTp+1.25HpNormaloperatingloadswithSevereenvironmentalloads:YU=075(1>>4D+17L+17(1~1E))+1OTo+125"oU075(14D+17L+17W)+10Tp+125HpWhereoverturninqforcescausenettensionintheabsenceofliveload,thefollowingloadcombinationsareconsidered:\UO~9D+13(,11E)+1~Of()+125HUO~9D+13W+1~OTp+125HForstructuralelementscarryingmainlyseismicforces:U1~0D+1~OL+18E+1OTp+125H'ormaloperatinqloadswithExtremeenvironmentalloads:U=1'DC+1OL+1OW'+1~OTp+1.0HpNormaloperatingloadwithSevereenvironmentalandAbnormalloads:U='.-05Dt1.05L+1~<5E+1~0(Tp+Ta)>1.0R+1.0HWhereoverturningforcescausenettensionintheabsenceofliveloa<i,thefo1lowinqloadcombinationisconsidered:0=0>>95D+l>>25E+1~0(Tp+Ta)+1>>OR+1>>0HaNormaloperatingloadswithExtremeenvironmentaland'bnormalloads:U10D10L1E10To10R12HoU100+10L+1"DE+10(To+T)+10R+10HRev.35,07/84  
(p82ofn)Pors"ucuralshearwallscarryingse'smi"orces,thefollowing loadcombination isalsoconsidered:
U=1.0D+1.0I+1 SE+1OTo+1.25HoNormaloperating loadswithExtremeenvironmental loads:7=1OD+1.0L+1.0T
+1.0W'1.0HNormaloperating loadswithAbnormalloads:U=1.05D+105L+10(To+T)+1.0P+l.5P+1.0HoaNormaloperating loadswithSevereenv'ronmental andAhnormalloads:rU=1OSD+105L+1~0(TO+T)+1~OR+125.+125E+10HoWhereoverturning forcescause,net tension'ntheabsenceoliveload,thefollowing load,combination isconsidered:
U=0e95D+125E+10(To+T)+1~OR+10HoNormaloperating loadswithExtremeenvironmental andAbnormalloads:U=1.0D+1OL+1e0(To+T)+1.0-'+1~OP+1OR+1.0U=1OD+1OL+1OTo+1Sc,'+1-OR
+1.25HaRev.35.07/84 SSZS-FSARTABLE3.8-8~Continue"..)
(Pg3of4)B.Structural SteelCondition LoadCombingionAllowable StressIncreaseNormaloperating loads:Normaloperating loadswithSevereenvironmental loads:Normaloperating loadswithExtremeenvironmenta1loads:Normaloperating loadswithExtremeenvironmental
'andAbnormalLoads:D.+L+T+00D+L+To+5+HoD+L+T+N+H00D+L+T+-.l~.+H00D+L+R+T+"''+P+HD+L+R+(T+T)
+P+~'Hl.25Fs>.33FASeenotebelo~Seeno.ebelo~Seenotebelo~Note:;heallowable stressinstructural steeldoesnotexceed,O.gFyinbending,0.35Fyinaxialtensionorco~pression, and0.5Fyinshear.<<hereZsisgovenedbyrequirements ofstability (localorlateralbuckling},
fsdoesnotexceed1.5Fs.Rev.35,07/84 SSES-...SAP.TILB~E3.~8-8 ContgnuEB)
(u8uuf8)QzqC.Conc"ete<ason~rStructures~31ockra lieLSafety"elatedblockwalls incategory.".stucturesothe"than"hereactorbuildingaredesignedforthefollowing loadcombinations andallowable stressincrease.
Theload"ombinations applytoout-o-planeloadingassellasin-planeloading.Acceptance criteriaisinaccordance vithSubsection 3.8.4.5.Condition LoadCombination Allovab1e StresIncreaseNormalNormal/Severe Normal/Extreme AbnormalAbnormal/Severe
.Abnorma1/ExtremeD+L+T+HoaD+L+T+H+E+D00sD+L+T+H+o0D+L+(T+T}+q+0 oa.aD+L+(T+T)+3!+H+1~25E+Doa"'a"sD+L+(T+T)+2+2+E'+D'a-"asNoincreaseNoincreaseSeeTable3.8'SeeTable3,8SeeTable3.8SeeTable3.8Rev.
SSES-FSAR TABLE389(pgIpf3)LOACCOMBINATIONS APPLICABLE TOSEISMICCATEGORYISTRUCTURES OTHERTHANCONTAINMENT~M4 REACTORBUILDINGSLABSCl"QEAGRATOR.~6Sett.DtdNotations:
SeeTables3.8-2and38-8A.ReinfocedConceteNormaloperatinq loads:U=14'D+17L+1~OTp+1.25HpNormaloperating loadswithSevereenvironmental loads:YU=075(1>>4D+1 7L+17(1~1E))+1OTo+125"oU075(14D+17L+17W)+10Tp+1 25HpWhereoverturninq forcescausenettensionintheabsenceofliveload,thefollowing loadcombinations areconsidered:
\UO~9D+13(,11E)+1
~Of()+125HUO~9D+13W+1~OTp+125HForstructural elementscarryingmainlyseismicforces:U1~0D+1~OL+18E+1OTp+125H'ormaloperatinq loadswithExtremeenvironmental loads:U=1'DC+1OL+1OW'+1~OTp+1.0HpNormaloperating loadwithSevereenvironmental andAbnormalloads:U='.-05Dt1.05L+1~<5E+1~0(Tp+Ta)>1.0R+1.0HWhereoverturning forcescausenettensionintheabsenceofliveloa<i,thefo1lowinqloadcombination isconsidered:
0=0>>95D+l>>25E+1~0(Tp+Ta)+1>>OR+1>>0HaNormaloperating loadswithExtremeenvironmental and'bnormal loads:U10D10L1E10To10R12HoU100+10L+1"DE+10(To+T)+10R+
10HRev.35,07/84  


SSES-PSARTABLE3.8-9QContinuedg<pg~B,StgucturalSteelConditionrNormaloperatingloads:NormaloperatingloadswithSevereenvironmentalloads:NormaloperatingloadswithExtremeenvironmentalloads:NormaloperatingloadswithExtremeenvironmentalandAbnormalloads:LoadCombinationD+L+To+D+L+To+E+QD+L+To+M+HoD+LiTp+N'+HgD+L+R4To+F'+NoD+L+R+To+Ta48'+HaAllowableStressPs1.25Fs33PsSeenotebelowSeenote'elowSeenotebelowNote.Theallowablestressinstructuralsteeldoesnotexceed0.9Fyinbending,0.85Fyinaxialtensionorcompresion,and0.5Pyinshear.%herePsisgovernedbyrequirementsof.stability(localorlateralbuckling)~fsdoesnotexceed1.5Ps.Rev.35,07/84 SSES-FSARTABLE3.8-9Continued(pg.3of3)C.ConcreteMasonrStructuresBlockwallsSafetyrelatedblockwallsinthereactorbuildingaredesignedforthefollowingloadcombinationsandallowablestressincrease.Theloadcombinationsapplytoout-of-planeloadingaswellasin-planeloading.AcceptancecriteriaisinaccordancewithSubsection3.S.4.5.ConditionNormalNormal/SevereNormal/ExtremeAbnormalAbnormal/SevereLoadCombinationD+L+T+HooD+L+T+H+E+DoosD+L+T+H+W'00D+L+(T+T)+R+1.25P+8aD++(To+a)++1o25P+Ha+1~25E+DsAllowableStressIncreaseNoincreaseNoincrease.SeeTable3.8-12SeeTable3.8-12SeeTable3.8-12Abnormal/ExtremeD+L+(To+Ta)+R+P+Ha+D's+E'eeTable3.8-12Rev.35,07/&4  
SSES-PSAR TABLE3.8-9QContinuedg
<pg~B,StgucturalSteelConditionrNormaloperating loads:Normaloperating loadswithSevereenvironmental loads:Normaloperating loadswithExtremeenvironmental loads:Normaloperating loadswithExtremeenvironmental andAbnormalloads:LoadCombination D+L+To+D+L+To+E+QD+L+To+M+Ho D+LiTp+N'+Hg D+L+R4To+F
'+NoD+L+R+To+Ta4 8'+HaAllowable StressPs1.25Fs33PsSeenotebelowSeenote'elow SeenotebelowNote.Theallowable stressinstructural steeldoesnotexceed0.9Fyinbending,0.85Fyinaxialtensionorcompresion,and0.5Pyinshear.%herePsisgovernedbyrequirements of.stability (localorlateralbuckling)
~fsdoesnotexceed1.5Ps.Rev.35,07/84 SSES-FSAR TABLE3.8-9Continued (pg.3of3)C.ConcreteMasonrStructures Blockwalls Safetyrelatedblockwalls inthereactorbuildingaredesignedforthefollowing loadcombinations andallowable stressincrease.
Theloadcombinations applytoout-of-plane loadingaswellasin-planeloading.Acceptance criteriaisinaccordance withSubsection 3.S.4.5.Condition NormalNormal/Severe Normal/Extreme AbnormalAbnormal/Severe LoadCombination D+L+T+HooD+L+T+H+E+DoosD+L+T+H+W'00D+L+(T+T)+R+1.25P+8aD++(To+a)++1o25P+Ha+1~25E+DsAllowable StressIncreaseNoincreaseNoincrease.SeeTable3.8-12SeeTable3.8-12SeeTable3.8-12Abnormal/Extreme D+L+(To+Ta)+R+P+Ha+D's+E'eeTable3.8-12Rev.35,07/&4  


TAUIE3.8-9aLoadCombinationsforDieselGenerator'E'uilding(Seetables3.8-2and3.8-8fordefinitionsofloadsandothernotations)TheDieselGenerator'E'uildingisdesignedforthefollowingloadcombinations:A.ReinforcedConcreteServiceLoadCombinations:a.U=1.4D+1.7Lb.U=1.4D+1.7L+1.9Ec.U=1.4D+1.7L+1.7Wd.U='.2D+1.9Ee.U=1;2D+1.7WWheresoilorhydrostaticpressuresarepresentandhavebeenincludedinLandD,z.nadditiontoalltheprecedingcombinations,therequirementsofSections9.2.4and9.2.5ofACl318.77havebeensatisfied.FactoredLoadCombinations:a.U=1.0D+1.0L+l.OE'.U=1.0D+1.0L+1.0Wc.U=1OD+1.0L+1.0WmsRegardingprecedingloadswhicharevariabl~,thefullrangeofvariationhavebeenconsideredinorderto'eterminethemostcriticalcombinationofloading.
TAUIE3.8-9aLoadCombinations forDieselGenerator
PAgf2.OE23HB.StructuralSteelThefollowingcombinationsofloadingshavebeenconsideredinthedesignofstructuralsteelseismicCategoryIstruc-tures.Sistherequiredsectionstrengthbasedontheelas-ticdesignmethodsandtheallowablestressesdefinedinPartIofAmericanInstituteofSteelConstruction(AISC)Specifi-cationfortheDesign,FabricationandErectionofStructuralSteelforBuildings,November,1978,exceptthatthe33-percentincreaseinallowablestressesforseismicorwindloadingshasnotbeenpermitted.Indeterminingthemostcriticalloadingconditiontobeusedindesign,theabsenceofaloadorloadshasbeenconsideredasappropriate.ServiceLoadCombinationsa.S=D+Lb.S=D+L+Ec.S='+L+WFFactoredLoadCombinationsa.1.6S=D+L+E'.1.6S=D+L+Wtc.'.6S=D+L+Wms SSES-FSARTABLE3,8-11CONCRETEDES1GNCONPRESSXVESTRENGTHS8tgnctu~e>urbinegeneratorpedestalAllotherSeismicCategoryIandsafety-related,non-SeismicCateqoryIstructuresandtheirassociatedfoundationmatsincludinq:a)Containment(includinqitsinternalstructures)b)ReactorBuildingr)ControlBuildingd)DieselGeneratorBuildinge)ESSVPumphouseE)SprayPondq)TurbineBuildingh)RadwasteBuildingA.)g($,56446~KNATO~ConcreteDesignCompressiveStrength,f'c(osis30004000Rev.35,07/84 SSES-FSARQscAPPENDZX388CONCRETE,CONCRETEMATERIALS'UALITYNaterials,workmanship,andqualitycontrolarebasedonthecode,standards,recommendationsandspecificationslistedinTable3.8-1.Thesedocumentsaremodifiedasrequiredtosuittheparticular'conditionsassociatedwithnuclearpowerplantdesignandconstructionwhilemaintaininqstructuraladequacy.Extentofapplicationandprincipalexceptionsare-indicatedherein,andasfollows:ACX221=72a).ProvisionsofACI301-72,Chapter12~CuringandProtection,shallbemodifiedasfollows:')gagggggph1g.2~1shallberevisedtoreadasfollows:~"Forconcretesurfacesnotincontactwithforms,oneofthefollowingproceduresshallbeappliedimmediatelyaftercompletionofplacementandfinishinqexceptthatthecuringprocessmaybeinterruptedasnecessarynottoexceed8hoursprovidinqrequirementsforweatherprotectionaremaintained.Suchcuringprocessmaynotbeinterruptedmorethantwicewithaminimumof8hourselaosinqbetweeninterruptions.Ifthecurinqi"interruptedforupto8hours,thecurinatimeshallbeextendedtoprovideatotalof7dayscurinq.ii)gyggggggQ1g,2~/shallberevisedtoreadasfollows:<Curinginac"ordancewithSection12.2-.1and12.2.2shall',becontainedforatleast7daysinthecaseofallconcreteexcepthigh-early-.'trenqthconcreteforwhichtheperiodshall,beatleast3days.Alternatively.,iftestsaremadeofcylinderskeptadjacenttothe'tructureandcuredbythesamemethods,moistureretentionmeasuresmaybeter'minafedpriorto7dayswhentestresultsindicatethattheaveragecompressivestrength,hasreached70percentofthespecifiedstrength,f'c.Requiredperiodofinitialcuringneednotbeqreaterthanthelesserofthetwoperiods.IfoneofthecuringproceduresofSection12.2.1.1through12.2.1.0isusedinitially,itmaybereplacedbyoneoftheotherRev.35'7y803~88-1  
'E'uilding (Seetables3.8-2and3.8-8fordefinitions ofloadsandothernotations)TheDieselGenerator
'E'uilding isdesignedforthefollowing loadcombinations:
A.Reinforced ConcreteServiceLoadCombinations:
a.U=1.4D+1.7Lb.U=1.4D+1.7L+1.9Ec.U=1.4D+1.7L+1.7Wd.U='.2D+1.9Ee.U=1;2D+1.7WWheresoilorhydrostatic pressures arepresentandhavebeenincludedinLandD,z.nadditiontoallthepreceding combinations, therequirements ofSections9.2.4and9.2.5ofACl318.77havebeensatisfied.
FactoredLoadCombinations:
a.U=1.0D+1.0L+l.OE'.U=1.0D+1.0L+1.0Wc.U=1OD+1.0L+1.0WmsRegarding preceding loadswhicharevariabl~,
thefullrangeofvariation havebeenconsidered inorderto'etermine themostcriticalcombination ofloading.
PAgf2.OE23HB.Structural SteelThefollowing combinations ofloadingshavebeenconsidered inthedesignofstructural steelseismicCategoryIstruc-tures.Sistherequiredsectionstrengthbasedontheelas-ticdesignmethodsandtheallowable stressesdefinedinPartIofAmericanInstitute ofSteelConstruction (AISC)Specifi-cationfortheDesign,Fabrication andErectionofStructural SteelforBuildings,
: November, 1978,exceptthatthe33-percentincreaseinallowable stressesforseismicorwindloadingshasnotbeenpermitted.
Indetermining themostcriticalloadingcondition tobeusedindesign,theabsenceofaloadorloadshasbeenconsidered asappropriate.
ServiceLoadCombinations a.S=D+Lb.S=D+L+E c.S='+L+WFFactoredLoadCombinations a.1.6S=D+L+E'.1.6S=D+L+Wtc.'.6S=D+L+Wms SSES-FSARTABLE3,8-11CONCRETEDES1GNCONPRESSXVE STRENGTHS 8tgnctu~e>urbinegenerator pedestalAllotherSeismicCategoryIandsafety-related, non-Seismic CateqoryIstructures andtheirassociated foundation matsincludinq:
a)Containment(includinqitsinternalstructures) b)ReactorBuildingr)ControlBuildingd)DieselGenerator Buildinge)ESSVPumphouse E)SprayPondq)TurbineBuildingh)RadwasteBuildingA.)g($,56446~KNATO~ConcreteDesignCompressive
: Strength, f'c(osis30004000Rev.35,07/84 SSES-FSAR QscAPPENDZX388CONCRETE, CONCRETEMATERIALS'UALITY Naterials, workmanship, andqualitycontrolarebasedonthecode,standards, recommendations andspecifications listedinTable3.8-1.Thesedocuments aremodifiedasrequiredtosuittheparticular
'conditions associated withnuclearpowerplantdesignandconstruction whilemaintaininq structural adequacy.
Extentofapplication andprincipal exceptions are-indicated herein,andasfollows:ACX221=72a).Provisions ofACI301-72,Chapter12~CuringandProtection, shallbemodifiedasfollows:')gagggggph 1g.2~1shallberevisedtoreadasfollows:~"Forconcretesurfacesnotincontactwithforms,oneofthefollowing procedures shallbeappliedimmediately aftercompletion ofplacement andfinishinq exceptthatthecuringprocessmaybeinterrupted asnecessary nottoexceed8hoursprovidinq requirements forweatherprotection aremaintained.
Suchcuringprocessmaynotbeinterrupted morethantwicewithaminimumof8hourselaosinqbetweeninterruptions.
Ifthecurinqi"interrupted forupto8hours,thecurinatimeshallbeextendedtoprovideatotalof7dayscurinq.ii)gyggggggQ 1g,2~/shallberevisedtoreadasfollows:<Curinginac"ordance withSection12.2-.1and12.2.2shall',be contained foratleast7daysinthecaseofallconcreteexcepthigh-early-
.'trenqth concreteforwhichtheperiodshall,beatleast3days.Alternatively.,
iftestsaremadeofcylinders keptadjacenttothe'tructure andcuredbythesamemethods,moistureretention measuresmaybeter'minafed priorto7dayswhentestresultsindicatethattheaveragecompressive
: strength, hasreached70percentofthespecified
: strength, f'c.Requiredperiodofinitialcuringneednotbeqreaterthanthelesserofthetwoperiods.Ifoneofthecuringprocedures ofSection12.2.1.1through12.2.1.0isusedinitially, itmaybereplacedbyoneoftheotherRev.35'7y803~88-1  


SSES-PSARQpinterpretationofthesedetaildrawingsinerectingthereinforcinqsteel.WhilethisisalsotrueofBechtelfieldoperation~wedohavetheadditionalhelpandquidanceofthefieldenqineersbothduringthe"installationphaseandfinallyattheinspectionphasenriortofinalsiqn-offonthereportcard.Thefieldenqineershavetheaddedbenefitofbeinqabletoplanandwitnesstheactualinstallationandcan,therefore,.betterforeseeanydi.fficultiesinmeetinqtheintendeddesiqnrequirements.TheirassessmentofthesituationisfurtherassistedbyrequlartelephonecommunicationwiththedesiqnenqineerswhoalsoperiodicallyvisittheJobsite.Theaboveprocedureofdelegationofthedesiqnengineeringoffice'sresponsibilitytothefieldpersonnelandperi.odicmonitorinqhytheenqineerinqofficeensurescorrectnessandconformanceoftheshopdrawingstothedesigndrawingsand-thereforemeetsthe-intentofRequlatoryGuide1.55(gsELg~hlENAbR8c(ILb/AAfAyeR]Al.s~WO((l4H~NSHh'e8~oA(.(v'yCoarwoLQ4E'%7oRS4u(Cbldg4'Mgccoggg~cc>I7qg~'gCDES~s7x~dhass,SpE'cl+icnrrW~us4WcRaw(((.4rozyCozogs,4uc)AQUI.boc.uHE<7$LlsTFP<<f~&.'e38-/.Ro.v.35,07r8((38B-17 sjPII.I+INI~.-IyD+~liV~i~~-CGA:=~I~-~0T840WU~T(ueRCIVWRCECOI4CCA'fCRg040l/V~il=~~I-QQ'=M'-=~Ilgy+I=WWI~ICWL.,I=OLIWUWIlOI~')'=IWII!~I:AC7OHCONTRQIVII-SI=IBI=%I-RAIOfhDl~szc<i~~eresRmalnw~II=~luwel!MI=Hullc)IIRG-~)rR.aACKF>t>-III~Jza''2/)~Mr''IIU~-V='3I~-.0OO4gXi=Fil~.c~P.~tv=.~~=ZI=:i.RGOVCc.J.0'oc.J.~04Mn'LL~~U~ri~W(vhlRPwFopCBDCoNC.LAYER)I=OUIIC)WIle'VC)~I'll~ST~ialm,~i-IDLYI=Rev.35,07/84SUSOUEHANNASTEAIIELECUNITS1ANO2FINALSAFETYANAL'IQUIIEXO-104}}
SSES-PSAR Qpinterpretation ofthesedetaildrawingsinerectingthereinforcinq steel.WhilethisisalsotrueofBechtelfieldoperation
~wedohavetheadditional helpandquidanceofthefieldenqineers bothduringthe"installation phaseandfinallyattheinspection phasenriortofinalsiqn-offonthereportcard.Thefieldenqineers havetheaddedbenefitofbeinqabletoplanandwitnesstheactualinstallation andcan,therefore,.better foreseeanydi.fficulties inmeetinqtheintendeddesiqnrequirements.
Theirassessment ofthesituation isfurtherassistedbyrequlartelephone communication withthedesiqnenqineers whoalsoperiodically visittheJobsite.Theaboveprocedure ofdelegation ofthedesiqnengineering office'sresponsibility tothefieldpersonnel andperi.odic monitorinq hytheenqineerinq officeensurescorrectness andconformance oftheshopdrawingstothedesigndrawingsand-therefore meetsthe-intent ofRequlatory Guide1.55(gsELg~hlENAbR8c(ILb/AAfAyeR]Al.s~WO((l4H~NSHh'e8
~oA(.(v'yCoarwoLQ4E'%7oRS4u(Cbldg4'Mgccoggg~cc
>I7qg~'gCDES~s7x~dhass, SpE'cl+icn rrW~us4WcRaw(((.4rozy Cozogs,4uc)
AQUI.boc.uHE<7$
LlsTFP<<f~&.'e38-/.Ro.v.35,07r8((38B-17 sjPII.I+INI~.-IyD+~liV~i~~-CGA:=~I~-~0T840WU~T(ueRC IVWRCECOI4CCA'fCRg040l/V~il=~~I-QQ'=M'-=~Ilgy+I=WWI~ICWL.,I=OLIWUW IlOI~')'=IWII!~I:AC7OHCONTRQIVII-SI=IBI=%I-RAIOfhDl~szc<i~~eresRmalnw~II=~luwel!MI=Hullc)IIRG-~)rR.aACKF>t>-III~Jza''2/)~Mr''IIU~-V='3I~-.0OO4gXi=Fil~.c~P.~tv=.~~=ZI=:i.RGOVCc.J.0'oc.J.~04Mn'LL~~U~ri~W(vhlRPwFopCBD CoNC.LAYER)I=OUIIC)WIle'VC)~I'll~ST~ialm,~i-IDLY I=Rev.35,07/84SUSOUEHANNA STEAIIELECUNITS1ANO2FINALSAFETYANAL'IQUIIEXO-104}}

Revision as of 02:14, 29 June 2018

Forwards Supplemental Info Re Application for Amends 80 & 33 to Licenses NPF-14 & NPF-22,respectively,per 860428 Telcon Request.Srp Sections Re Design of Fifth Diesel Generator Facility Addressed
ML18040B149
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 05/19/1986
From: KEISER H W
PENNSYLVANIA POWER & LIGHT CO.
To: ADENSAM E
Office of Nuclear Reactor Regulation
References
RTR-NUREG-0800, RTR-NUREG-800 PLA-2645, NUDOCS 8605280293
Download: ML18040B149 (490)


Text

REGULATORY INFORMATION DISTRIBUTION SYSTEM(RIDS>Qaddv'ISTRIBUTION CODE:A001DCOPIESRECEIVED:

LTRENCLSIZE:TITLE:ORSubmittal:

QenevalDistribution ACCESSION NBR:8605280293 DOC.DATE:86/05/f9NOTARIZED:

NODOCKET0FACIL:50-387Susquehanna SteamElectricStationsUnitfiPennsglva 0500038750-388Susquehanna SteamElectricStationsUnit2.Pennsglva

'05000388 AUTH.NAMEAUTHORAFFl'LIAT IONKEISER>H.W.Pennsylvania Power5LightCo.RECIP.NAMERECIPIENT AFFlLIATION

  • DENSAMiE.BWRPvobjectDivectovate3$CG

SUBJECT:

Forwardssupplemental infoveapplication fovAmends805:33toLicensesNPF14CtNPF22irespectivei g>pev860428telconrequest.SRPSectionsvedesignoffifthdieselgenev'ator facilitessedNOTES:fcg NMSS/FCAF/PM.

LPDR2cg'sTv'anscv'ipts.

icyNl"ISS/FCAF/PM.

LPDR2cgsTranscripts.

0500038705000388RECIPIENTIDCODE/NAME BWRADTSBWREICSBBWRPD3PD01BWRPSB09INTERNAL:

ACRSELD/HDS4NRR/ORASRQNiCOPIESLTTRENCL125ioOf1TSCB04RECIPIENT IDCODE/NAME BWREBBWRFOBCAMPAQNONE BWRRSB*DM/LFMBNRR/LECOPIESLTTRENCLj1foffoEXTERNAl24XLPDRNSICNOTES:03051fOEQSQBRUSKE>S22oNRCPDR021Ogimn'es~/5JTOTALNUl']BEROFCOPIESREQUIRED'TTR 34ENCLP5 Pennsylvania Power8LightCompanyTwoNorthNinthStreet~Allentown, PA18101~215i770-5151HaroldW.KeiserVicePresident-Nuclear Operations 215/770-7502 NY191986DirectorofNuclearReactorRegulation Attention:

Ms.E.Adensam,ProjectDirectorBWRProjectDirectorate No.3DivisionofBWRLicensing U.S.NuclearRegulatory Commission Washington, D.C.20555SUSQUEHANNA STEAMELECTRICSTATIONREQUESTFORADDITIONAL INFORMATION FORPROPOSEDAMENDMENT NO.80TONPF-14ANDPROPOSEDAMENDMENT NO.33TONPF-22PLA-2645FILESR41-2/A17-2 DocketNos.50-387and50-388

DearMs.Adensam:

TheattacheddocumentisbeingprovidedinresponsetoarequestmadeduringanApril28,1986teleconbetweenyourstaffandPP&L.Theteleconwasheldtodiscussourproposedtechnical specification changeswhichreflectinstallation ofafifthdieselgenerator intotheSusquehanna design.Specifically yourStaffrequested weaddresshowthecivil/structural/seismic designofthefifthdieselgenerator facilityandsupporting components conformstotheacceptance criteriaofappropriate StandardReviewPlan(SRP)sections.

Thespecificsectionsaddressed are3.3.1,3.3.2,3.5.1.4,3.5.1.5,3.7.1,3.7.2,3.7.3,3.8.4and3.8.5.Wehaveformatted theattachedasfollows:oThefirstpageofeachoftheabovelistedSRPsectionshasbeencopiedfollowedbythepagescontaining theacceptance criteria.

oOurresponses toeachcriteriaistypedonbackofthepagepreceding thepagecontaining theacceptance criteria.

DieselGenerator Facility."

860M80293 860519PDRADOCK05000387PPDRgo>Py+oSomeresponses containnumberedreferences

-whicharealsoprovidedintheencloseddocument.

Reference number1isadraftcopyoftheproposedchangestothoseFSARsectionsoncivil/structural/seismic design.Reference number2isaDesignDescription Reportforthefifthdieselgenerator andReference number3isaspecification entitled"DesignCriteriaforCivil/Structural WorkforNewEmergency NY191986Page2SSESPLA-2645FilesR41-2/A17-2 Ns.E.AdensamIfyouhavefurtherquestions, pleasecontactD.J.Walters.Verytrulyyours,.W.KeisericePresident-Nuclear Operations cc:M.J.Campagnone USNRCR.H.JacobsUSNRC AZ~~CICSCLOILollL~TAT)ORVIAULTORSCLSOL't'VSLa.sIORAARTAIIILVAIVCVAULTtoaalaAOD oatt.ORSSSRCSISTAIIT OookAlaRCCtlVSRSKIDROOPCL.ASS'CXHAUSTSACeactt~ICCICOCIRS,~dlORV/CC)OV 74AII5SORIIICa~alITORIIADODirtPRSSS.RSSISTAea OooILSjaaeeaerarerraet0~~,et~ImItIOWRAOR.IRIeaovAOLCwALLIaeaccs~I~F)RSoaot'tcTIO54

)I*eat>>AUXSIROt544547SOPCSAZVCLLaeaatsCLCISTORVAOOOlttMSSLRCSISTAHT DOORSROOtIelrPLANEL.675-6AB~~OICSCL4CIICtUCLOILVro)IAACt4tISATTCRYSORSROOIIICSVOCcast.~AeataCO~PRCSBLOC.Avtotsr'te4coearaao>>

OAIISLOSAT7CRVCIIARASROILYWal'ltSTOSASOTIAA 00~SAIIaallSaaa~rIeeat~ILIIOI)SS>>lI5IBpETCXITS

~III)CTfel4XgCSCI~I4PADKL.CSYC70RAIeeAdSoveapftveaPSA.IceILVswatcHOcAR 154Sal.re\54aell,Seaaaantar4LvstOILTOAlaSS CkPUUPJACRCTWATSRTRAIaottk toaaP1PLANEL.656-64/v/mtfu7PCnW/ne/DSSC7AAVSNnvoA/PA4le/5Sff)U/fule/7FelnsbfFnac77//<f/Ia)I/utah

>7/ouFICINCJS'IE9>9g[ISIOOISSII>>=Jf~WetCw~redv vI~'I~~AlaiIeatantFII'Tt4~L'~!TOCIIAOOOlttPRCSSURERSSISTAII?

OORROAlapsk~tLOIIUIII DCTn<<C'/IaaVAI/Ae)fg//Vn/IIOtSbtct7'/n)c7/at)AtoaF:.s/nreSaAg74IC)SO5/4/fg/l7///fNIOF4CXUAUSTCUAeaot4Ig..TodeeAooSett.~RSSL,IISSISTAIIT DOORIIAea\reaavtfcraea~ItToteaAOoOAeaPOIl~R~PLANEL.74I-6PLANEL.726-0CASKMENTISATTKRYltOOMKXUAUSTFANCXaUIUSTOIICRCSRlAIRIeaTAILSSILteaCSappaOllatoaeasatantaoDALoeeoIYrgCSIIAvsrTAll~3PLANEI.7p8'~~~NASTEASIELECTAICSTATIONUNITS1AN02FINALSAFETYANALISISREFOST

/EaDIESELGENERATOR BUILDINGFKANSATEIESE'~eTS+t~7OS"OATIE)72CC),F)auRESS-IOS 1~I%

~VC.4~OSCL0%a%A.~tal>>rl~T~OIILAOLNt>>L%4~ISIIAS4TILTataa<<laosvl1%111~TPIIMT0041411OCC~Ir04~>>4g4I~I\f4BararTL40F4Slwalt4%1ClaOS<<V/IOOVCTOCl<<AOLT441Ne~IW>>atl0CEoAA'LI~%11$MSiSTA>>TOrO11'1%%>>MA~%%440Ptr~IIL\I~aft\f0%%1~L<<4%,Il-I.C~CCOssLrrTSFIN0ParrlcTIP>>FA~ITaa<<AOO~TAa%ILLOCSI41%>>f OaaaaTOO400>>~4Pa>>PLANEL.675'-6 OA..OeTACSILOC>>'I~%1%Plat%ilIItPLANEL726-0A(PeOASCIACNT CPLANEL.74I6gr>>rAIOATTIOTISSAOI\%VOCStat,r>>ILFIATLAOATTCNVOOO>>SIN%1STFA>>AI~r<<TAIC~~II%It%a>>3CI<<AAILT~1114%~~<<<<SLSILAALrf\TI>>cr<<taaaaMILTOC>>ADOCAIN~Tcssuac.00>>afa<<T00%4G~GTILIL~ILTIIIIaltar>>f>>A~AAMIIOpt<<r~ILII0110%1I~IIi~%at%QC1<<%%%T~%4%40~V~I'I~40CL.OST1trC>>I41114%VSplrC<<SCAN TOO<<AOOttITsrrrSTrM~%>>PIO4%4>>II>>II%A<<STtA<<IACACI>>AIINllWat%OP<<MI.5~~IPLANEL.6566Hop>IrfrSAICdrFN4SSrt>>VI>>PCA<<IAv4SIS7>>AIS<<rvrISI<<I<<TIACII'cctrro lvJarrrcrvortttrc.rfcvcr@d+pAvosoAto4~SFVfrtttrf OSFANS4'rFAIIISIOFACTrfrssovtrfvrfrf I<<racttrTIOVSSI~IIIIavFIIIFIVFIASOSISddTA4AIOJdPLANEL.7OB'-08<os-zooa9~-<(CICOUDEANNA CTCAJCCLCCTNKSTATIONCNNTSIANOCFINALSAFETYANALTCI~NCFONTGIESELGEJCECCATOCI CCJILCSICIG CLANSATELOSC'WICTS<<I7obO*NO7CQIO.FNN11C11Cad h.~rhIICr*TorotoAIIADSTt47s'AIYCCxlcAVDTCNAICDCRAIR~rMS~NCNLROODSLADCL.14fGRATIICCOL.SLTts0TORNADOOIIO.RCCSL Rts'ISTSNT OOOClrAMCSNAUSTCNAICDCRD vw4~~NDIADoorscADclTwt/0/0ELNAUST<<NA/40CRSLSDTto'.0TORNADOOIOO.Dttst.kt'DISTANT ODORLSOOCCIMTAIC~ROOD.1IP'VoFI.CL.TOO.OCXNAUSTrAH)raIR/csAIRIMTAI40eASCMCMTtCATTCRYROONCSI4AUSI'AM FLEL.TOOIOAIRIMTAKSrllTSRDURRSCCIVCRI-'IOOFCLEXHAUSTSILCMCC4CMtRATDRCONT/COLCADIMCTCMCNMSCONTXOLCAIlNCI'OtOl~CllCL474I,IlSSVTANKo/4NII.SKID>>t<<oovlustcxlouor4COTOMCRAM\CXNAVSTSCLCIICCCL ROOCCL.CC}R'~

SRAOCCl4750NLCCIIC)INICICVOl7~%040,4o44DCRINTICTORNADOCertrtttsRCSISTANT DOORSDL0,47r.c.I CLI/P5/ItIVA/I4VPlotsA4//7$4<<7IOI/SSrrwPATPtt/IAt/Al

/'/<<III<<rs 8.g-/,zIfcsc/Iro/re

~>p'rfC/AI/AINfr~TogrE/II/II/A/fg/'IItotH+ICC/tfSLAST4/NTNCRAocas7c'4~COILNCATCDCNANSCC~

I~STNSIC<<CATCICNSSSCD

'AlpKVSWITCNCCAR OICSCL45KCRAIORTtkulOP4ltKV/4/}OVI'RAMSIOCCMSR 0OlSCOMMCC7swITCN~OCC(IC)rl.cL.c7}lc44TL.CL.CSC CSlolsuttvtTCNCON'ItolOAKSLICSVOCswsoI77VCS<<44SrNANSEI>>TCRYROOMSECTION3-3suroLYsuoolftltsosTTCoOOOANAOCTClTtssOlsllulltANOOANNPSRDORSLARClTtp'8TORNADO04/O.OCCSthRtSISTAMT LADY0INTN~4FAIOSXHAUSTCNASIDSRS Of44NOILROOrSlstlCL7'o"nk'LCLTZCvoSuorlv~CCNNMsurNLYtAMgTOWOrOAAAOCT7~F4IINLNOOOSCADtl'74'lTOSNsdoosllrtcACCtSSOwlllll44 CSKAVST~CL40/A*IR~MTAKDTORNADO44ttOOLSS,RCSIS'TANT DOORtL.SL.TOEc o'I~~)j0CoToocCRAMDRCNOVASL0wklLOANCLSCRADRCLCTSIOMCVTILAL4/COUN0IM4SOUI~.ORAIICARCscoc}'O'KC,.o KIO4}'DSSO

~~hlhICS.)000000I~I~To~0HH0ORI4NIOa(FYOISII5NASTAIRIMTAKSl.7/4'mAIDCSKIDAsst/COLT TorOtORANSRAILSLCSV44luOOllOAVTANICUISSCNLlllsvCSCNANosfutLCa,NtsxSCNANCSRrL.CL.CT~

  • IO'Vsv/ITCNCcA/LFL.CL:<<SCIL,

[~I4'700OOCtlCop/44'CMOVADC, WAllOICSCLCCNLRATCNL OLcL,DTS'4 CRADSCl4~7$~d0IlYSISTSRS5AlRATORrORAIMA4C'VIC0ILLAI~~~e~1tSECTIONAIRCONOR,~ICIO2ZAIRRSCRIVCRSKIDTDRMAOOOltg.RRCSSRCSISTAMT'a RoottlCOCCILARYRIMTH COOOOCoutll~L.STS'~7d DICSCLCCCM.CIIIutlousfoKAccTANKI'CNOOCOIllit.SECTIONNNNNDCIRCCOMCOICllllt!rpboy>f0>~>SUSOUKNANNA STKASCELKCTRICSTATIONUNITSIANOKFINALSAFETYANALYSISREPORTEDIESELQENEAATOQBLIILDINQ NECTIOHSFIGURESSOIO6 I

II%,g~'j]'WiHCfpv-"si%~i~5.kRl%0LL4lmmkFPii'-"'+~~'I Il~~gf~RflI$%:lhf)~~g~sg~5'='=~X~%

=-~)ll~m,-~~~~W~c 0tasm~~vwJg/flval!EMMYl@eiiiS~Illlllllpk.,=elpga~~RR1'LSqI~VDo SSES-FSARThBLg3,9-16LISTOFCOMPUTERPROGRAMSUSEDINBOPNEC!IANIChLSYSTEMSANDCOMPONFNTS

.-COMPUTERPROGRAMvn.NAMEDOCUMENTTRACEAPILITYSYSTEMIISEDME101,'IK)32'1~912"E913LinearElasticAnalysisofPipinqPipingSystemAnalvisThprmalStressProgramsNuclearClass1PipingS~resshnalvsis'IRI/STARDYH~3BochtelBechtolBechtelBechtelCDCormechanics

Research, TncLos,AngelesUnivac1110Itoneyvell 6000Univac1110Ilnivac1110Univac1110CDCeormCE79RANSYSSvan.=onAralysisUnivac]ll0Systems,Tnc.Elizabeth, PA15037~E351PIPERIJPCDCorQuadrexCDC175Con.Camphell, rh~a/gAbIPEP1Il59/QI-Hvr5,4;//le,&r.Cambrianc<,h'n.s-.,Rev.35,07/84 e

SSES-FSAR 3.10b.1.2.1 Functional Criterion Everyinstrumentation deviceshallbecapableofperforming itssafetyrelatedfunctionduringplantoperating conditions ofstartup,constantpoweroperation, andnormaloremergency shutdownwithoutimpairment ofitssafetyrelatedfunctionwhileundergoing seismicandhydrodynamic excitation.

Thesafetyrelatedfunctionofinstrumentation devicescanbeeitherpassiveoractive.Whereonetypeofdeviceis,usedinbothtypesofapplications, thedeviceisqualified fortheworst-case application.

~~,FromtheplantOBE,SSE,SRV,andLOCAconditions afamilyofacceleration requiredresponsespectra(RRS)wereeneratedfor[eachbuildingelevation fornorth-south, east-wes~erticaldirections.

Thespectraforeachelevation wherenstrumentation islocatedwereexaminedtoestablish theworst-case responsespectra.Pipe-mounted devicesarequalified for6gverticaland6glateralalongtheweakestaxissimultaneously applied.Hangersandsnubbersareadded,ifrequired, tolimitpipingresponse.

Thisvalueischeckedagainstthepipinganalysistoinsurethatthepipingreponsedoesnotexceedthequalification level.Where,equipment wasnotcapableofmeetingthisstandardvalue,theactual"g"valueggor thatequipment

~~forqualification.

~Wereepe~Q'eJQreaselpurchase.

orderFordevicesmountedinpanels,theRRSusedwasderivedfromthepanelanalysis.

3.10b.1.2.3 Instrumentation SuortsInstrumentation devices,assemblies, andcontrolpanelsshallbeseismically qualified usingthesupportsthatwillbeusedduringin-plantinstallation.

Theseitemsofequipment arerequiredtomaintaintheirfunctional capability whileundergoing earthquake excitation attheequipment supports.

3.10b-2 SSES-FSAR I~~~~a~~~s3.10b.1.3 DeviceQualification TestCriteriaDevicesthatwerequalified bytestweretestedinaccordance withIEEEStandard344-1975.

Ingeneral,testrequirements andacceptance criteriaaresummarized asfollows:sa)Devicesundertestaremounted,inamannerthatsimulates intendeduse.b)Devicesaretestedwhileintheirnormaloperating condition (e.g.,energized) todetermine thatvibratory conditions donotproduceamalfunction orfailure.SeismicCategoryIdevicesshallnot-fnalfunction duringorafterasafeshutdownearthquake.

c)d)Devicesaretestedinallthreeaxes.Simultaneous excitation inallthreeaxesispreferred; however,testsmayberunoneaxisatatimeand,thenberepeatedfortheothertwoaxesasanacceptable alternative.

~gJ.Nhereappropriate afrequency sweep(aryingthefrequency ofexcitation withtime)isonductedatalow"g"value,e.g.,0.2gasnotedinIEE44.Thistestwas=performed toidentifyresonantfrequencies intherangeofinterest.

e)Devicesthatarefloor-orpanel-mounted aresubjected tofiveOBEsandoneSSEineachaxistested.EachBEandSSEconsistsofrandominputmotionthatenveloptheRRSforthatdevice.Ief)Devicesthatarepipe-mounted aresubjected tosine-beat testsoverthefrequency rangeof1to100Hz.EachIsine-beat testisperformed atapeakacceleration of6g*ortothepeakacceleration forthespecificmountinglocation.

g)Thecr'.eriaformalunctionorfailureincludeasmanyofthefollowing characteristics asareapplicable tothesafetyrelatedfunctionofthedeviceduringandaftertesting:1)Lossofoutputsignal;e.g.,openorshortcircuit2)Outputvariations greaterthan+10percentoffullrange3),Spurious orunwantedoutput;e.g.,relaycontactbounce3.10b-3 I'V0 SSES-FSAR 4)Majorcalibration shift;e.g.,greaterthanp10percentofrange5)Structural failure;e.g.,brokenorloosenedparts.3.10be2SEISMICCATEGORY' EQUIPMENT QUALIFICATION Detailedinformation aboutseismicqualification ofNon-NSSSSuppliedSeismicCategoryIInstrumentation ismaintained inacentralfilewithinPP&L."Asynopsisofthisinformation wasbySQRTformspreviously submitted totheNRC.Vgp~gq'"p"g~~L'kgb5$RTf00~Qlv5llA'0~~~~e~f4~<so"~Pvapcu~d.!3.10'b.3MethodsandProcedures ofAnalysisorTestingof,SuortsofInstrumentation Instrumentation equipment wasqualified bytestusingthesupportdesignedforthatparticular equipment asoneofthetest!elements.

r3.10b.40eratinLicenseReview!Resultsoftestsandanalyseswereprovidedinindividual SQRTForms.3.10b-4 0E0 SSES-CESAR functions ofelec+rical equipment orcomponents, whicharenecessary forthefunctional requirements o.theequipment, shallnotheimpairedwhentheequipment issubjected totheOBp.orSSEincon)unction withapplicable electrical, mechanical, and"h"rmalloads.SSBisdefinedasanearthquake thatproducesthemaximumvibrato'rv groundmotion"forwhichcertainstructures, systems,andcomponents aredesignedtoremainfunctional.

Thesestructures, systems,and,components arenecessary toensurethefol]owinq:a)Integrity ofreactorcoolantpressureboundaryCapability toshutdownthereactorandmain+aini'.insafeshutdovncondition

/Capab'l:ty topreventormitiqatetheconsequences ofacciden+s thatcouldresul+inpo+ential offsiteexposures

+o.theradioac+ive materialreleasecl totheonvironment.

Theloadcombirations includegravityloadsandope"a+ing loads.Allovable stres..o.s inthestructural portionsmaybeincreased to150percen+ofallowable workingstresslimits.Theresultinq deflections, m'saliqnment orbindinqofparts,oreffectsonclertrical performance fmicrophonics, contartbounce,etc)donotorevent.heoperation oftheequipment duringorafterthe."'.oismicdisturbance.

3,10c,1.5 Op~"atina BasisEarthauake (OBE)Conditions heloadrombinatinns includegravityloadsandopera+ion loads.All~..'~bio stre-~sinthest;uctural steelportionsmaybeinr.easedto125percentoftheallovable vorkingstresslimits,assetforthintheappropriate designstandards, thatis,AISCManualofSteelCons+ruction, ANSIando~herapplicable industrial codes.Thecustomary increaseinnormalallowabl.e workingtressduetoearthquake isusedifacccrdinq tothe~npropriate code,i+5slessthan25percent.Theresul+ing deflections, misaliqnment orbindingof.parts,oreffectsonelectrical performance (microphonics, contactbounce,e+c);doesnotpreve'ntcontinuous normaloperation oftheequipment duringandafter+heseismicdisturbance.

T'omr>c"i'")a~'l-'4,

~~'4evaas'/i~+~<<~%dr)c'~gAP~4~4c'Aeo$oReudOd~Rev.~,~i310c-2/ac, o

SSES-FSAH7A10c.16Prevontior ofOverturnina andSlidina,9Stationary electrical equipment isdesiqned+oprevent~verturnina orslidinabytheuseofanchorbolts,welding,orothe"suitablemechanical anchnraqerlevices.3.10r..2WETHovsA~lPPROCEDURFS FOROUALIPYING ELFCTRICAL EQUIPSEMT3.10c.2.1SeismicAnalysisNethodForthepurposeofanalysis, theequipment hasbeenidealized asamathematical modelconsisting oflumperlmassesconnected bymasslesselasticstructural members.Fordynamir.analysis, thefrequoncies andmorlo.shapeshaveheendetermined forvibration in+heverticalandtwoorthoqonal horizontal rlirections, termedalohalrlirnctions.

Theeffectsofcouplinqbetweenvthrations inallhreealobaldirections havebeenconsidered.

Thespectralacceleration permodehasbeenobtainedfromtheappropriate r~soonsespectrumcurve,whichhasheenprcvidedfortheavpropriate dampinqvalue.Fordetermini.ng thespectralacceleration fromtheresponsespectrumcurves,thevaluechosenisthelargestvaluoonthecurvewhenthefrequency inquestionvarieshy+10percent.Seismicresponseintermsofinertiaforces,shears,momonts,stresses,

'anrldo.flections aredetermined forresponsetoseismicexcitation.

ineachofthegloballir~ctions foreachmnde.(SeeSubsection 3.7b.3.7) pFor.heconsideration ofstressordeflection atanypoint,tho.totalseismicloarlconsistsofthemostsevereseismicloadinononfthohorizontal qlobal.directions combinedbythesumof+h~ahsolutevaluesmethodviththeverticalseismicloarl.(Seesubsection 3.7h.3.61SeismicOualification forElectrical Equipment Oggabil'gl.10c.2.2QLsUJu~.heseismicaualif-'ca+ion ofCateqoyIelectrical equipment, auinmentsupports, andmaterialmeetsasaminimumtherequirements ofIEFE344-1971andprojectspecification G-l0,"GenealProjec+Reauirement forAseismicDesiqnandAnalysisof.lassIFauimment anrlFauipment Supports" andcomplemented hypro'~ctSoecificaticn G-22>>Desi nAssessment andualification Table3.9-31.gQ~+~~ofSeismicCa+eaoryIEquipment 6Equipment SupportsforSeismicRyrlrorlynamic Loads.>>Prefect.Specification G-10issummarizerl incomparison tnIEEE-344-1975 andRegulatory Guide1.100in3.10c-3 SSES-FSAR

,";$ec<ricalecuinmeni isqualified forfunctional oPerahility

)urinqandafteranearthquake ofmagnitude uptoandincludinq

+heSSHaccording toatleastoneOfthefolloving input~xci~ation

+es+s:a)Singlefrequency sinusoidal motionorsinebea~motionscontinuously inputeddurinqthetestatspecified requencies tocover.hefrequency rangeupto33Hz.b)Randomvavefom,multifrequency tests.1,1gc.2,~

SeismicT~stgego",tparalysis andMethodsv~Qd)bu4mL~Q~gpTheanalysisandtestreportsfurnished bythesupplierdemonstrate theab'li+yofelectrical eauipment toperfomitsrequiredfunctiondurinqandafterthetimeitissub)ected totheforcesresultinq fromoneSSEandarequirednumberofOBE.Fourcategories ofreportsareprovidedbythesupplierofelectrical equipment andmaterialapplicable toSeismicCategoryXaualification; a)Flectrical equipment qualified by".estinqme+hod).)Electrical equipment supportandmaterialqualified byanalysisandcalculati.onmethodoUlc)Electrical equipment qualified bysupplier's certification ofSeismicCateqoryIrequirements.

d)Combination ofanalysisandtesting.+~-col~pp3.10c.2.3-1 Electrical Equipment Qualified byTestingcSandCombination ofTestinaandAnalysisNethorlgrl'vooElo.ctrica

.ipmentlitedbelovvastestedby+hesuppliers or..'-,stlaratoresbaseonsimilarity indesiqnandassembly, andal4'+ig>ropresntiQuipmentshovhirTables3.10c-4,~fci0throuqh3~10c-16:SsltjC~)hi)0C.-(yS.foe,-8Tndbctpowcl+A~5a)Indoorsecondary unitsusaronseeIae.c>>1)b)480Vacmotorcontolcerters(seeTable3.10c-2)c)~d)e)Batterymonitorsandfuseboxes(seeTable3.10c-3)DCdistribution panels(seeTa,hie3.10c-4)Batterychargerracksandcabinets(seeTable3.10c-8)i~~Rev.3.10c-4

sses-psLRTABLEI-BOG=~5¹ZDLRXQIII~UySXLIILIItX sfIrlPGF.@ZAN,1(:.(e.

SQI)IPQENI IQSIiIIQ"In'(gocLIIoNUNITsUPPLceRITRNNn.oescRcpTlnN educ.BesTNn.Br.0"..pt.ey.Nn.TESTCNGPLCILITIRSQULt.fPICLTION QOLLIPICLTION CRITRRIL'el"SIGNRDSI:8856--117-57654Si.ncleendedSecondary ttnitSubstattoa Conststino of:a.TersinalChasber~b750kVLTransforaer.

c.L.N.Svitchqear 18-21018-22018-2301S-24028-21028-22028-23(i28-240:teactor749749719719749749719719IITe.IIsperialICorporation 12222VIIRlaboratories NOTncalifornia NoreoProspectSpecReportIG-10~26340-2fIeee-344-26340-3197526340-4Bp:G.ShipvalPnv(e('+WSf

<<W<'~O>Cg(opC.a~(a~77.(.:>

~/-.op/~lib'0igeelTrl(u,7=8(t.'VA r<,I~SSo<~CIZ

~>sterpdRQ4a(r'8'.-A(pigpg(g)f75gCoa9hrt.W~evvtye(ebs4y/e4ksHnntLvs)leFJlaba-aPaWCV~faC.c-/~)4gZdftE-RH-/'/75'(5C A'ppr>'3g.rS'77(

SSAgyeKPR9w<Ief(Ss~'q)actt7h..l)...'~

)~NnyetSpecifteatinnG-10iscosplesen ndbySpecifteatton0-22.Ynr0-10Specification Sussary,SReTable19-11.gNqyj:;:JP:-~,

</og//5Co+(Pic.A/.JII'-'~a9g~f'--C.~'-laZ~.'3g/i3.rRev.-3~7/84-

(:iSSES-tSLR glSgg1lpgaggO'$0/CONgg0$gggJgJS5901PbEKT EHHTIZSCinNIr<LXioruIT..'I40.DESCRIPTION tOOIPL..TNJ.9LDG.ELV.ONITSOPPLIERNO~TESTINGtLCILITIESQOLLitICLTION QOLLIPICLTION CRITESIL"ElaSIGNEDSy:88%6-t-IISRotorControlCenterOS-136OD-14608-516nB-517)E-52608-52708-53600-546ContreIControlD.Oen.78178167767'167767767767'ICsanCutler-Aaaaer CssnCaenCavanCsanC~snCasaNyleLaboratories Buntssille, LlabaaaprospectSpecReport142966-10-'IO~6IEEE344-1975Sy:J.toreasnRyleReport145590-145590-2By:Vincentt.KearnsIII10-21618-21718-2'l918-22618-22718-229IS-236I8-23'I18-246IB-24728-21628-2l728-22628-22728-23628-23'128-24628-247O'1-21611-218II-22611-2361'I-246ReactorReactorReactor6837u9670683749'1197l96107196'I06837u96837497)967071'I670683719683719719~NOTE:Specification 0-IOgiscospleaented bySpecification 0-22ggo7'6:5PE~.r:roll I'>"o>IP-LEIhC.Nr-"LF~Io2,+,CAEatonReportIDL57-3251 By:Vincentt.KearnsIIIRev.-35-;O'I/Sa-'y-21621-2182r-2262y-23621-246og-5&5oO-5&&6337196837'l9O.gr-.u.Ci-;)ohL~

'g'-f"22~WI>4'IaM>>+CtENt&aip

(~)wyleLeaf'uIIIcr)lgLA\~fRoJEcg5r'6c,C-r~/-'Ll.rt~<0-l'175v<&~toScref0.I$C-f5/(yi'~;la,')howl]I\I l

0'<<~0~I:.'-?7A?.A'lL'II<<3BATT<<'?Y-VOVIYOAI4?10PGSP.8'IVe<<J4e'5',?'>iC.>tr:

.IervriIr'Ti'?'<

DESC~IPTIOR r00tp..SV-.

II.I.1LD::.SLCV.DAVIT'IOSDPFI.I?:I,SSTIVGFACILITIKS90ALIFIGATIORO'IAI.IFICATIOV G?ITKRIA~81"SIGHECRY:na<<'.scv.Oni<<OTI><<V-<<tSa<<tetVsonltug.~SOV~'<<12SVFuseRot7-1L3ggg2SOVFuseSot7-1600A'I99FuseSot.~2uv,7-1001Ip-67S1067610-68S30-6862007'0-67620-6SS2D-6s6ID-6'll10-692'lpn93'IP64420-69120-6n22D-69'I206)0ID-69S1069620-69S2D-69610-6II1D-6211D-63110-64I20-61120-62I20-6II2C-64110-6'Sl10-66120-65120-66110-67110-6SI70-67120-681l.hI-fT7'-//tIec/I7ttl.'/6V 09-40)II?Ov.AS~V/84->RS6-F.-?19ArSatterVVunitOC>gyG~>nttol771ccpQ(/:ggc>g"gII='Il2222I1II2222I12I'II222.=2I'I22II22CQHNC4~)fVWatPuv?rConverston pro%act*Inc.lvi&Labora<<oriesIIuntsvilla, A14baelntn)factSpecVine>nF.Fes"nsG-lo~6IetP.-Test report.344-1975 44S963-IRcvW'tI/g/$c1)y?1JvIllgflagwe~a(p,/c(75)eiC-/up/~~t.E,Ec=.~44-lf/~<<C4flP~5~/c~~')"+0RZ-13~>/-'l'.c~c-W'et'S?(oui/<<I-')?~voTTIspeciticationG-loiscoaplenento.l bvSpecification G-22.tlhlOVE',5PEC,t-/t7+//5t=ctuf/tLBMtt/7'<<-O 8)'f5P&C.R-/oZ5,

SS>'S-rSLH

-,gyp'$9c->>nc+"Z(iIi(ugtnu pgygtsiQUIRQl5I Ii(tvTJI'TInv I,ncLIIn/usITsoppl.tea TESTIRCgullteICLTIohQBLI.ItICLTIov ITch,hn.Dcsc>>tpytovcoui,.>chT vo.St.oc.Etcv.vn.PLCII.ITICSCRITERIL"EleSICREDSY:Be56--120DCOis>tibu>>ionPanels125V225LhainSus2>>V100LhainSus125V225LhainSus2>>V100LhainBusl2.5V.('wA.MA(>u6>(=>>(zc>Q/pgg.(.binBu&10-61>>1D-61510-62>>1D-62!>1D-63u1D-63'i1D-6>>>>.10-6>>51O-6721D-6122D-6'I>>2o-6152o-62>>2o-6252o-63>>206)>>20-6u>>20-a>>52o-67220-6A2-on-5)7oO-559Conttnl771'~e~s('-aat>>5b-m1I111111122222222.C(ann/Spud('-DCC>,C>n(rt&f>>T>>EIspecialCorporation uyleLaboratories Rovco,CalitorntaprefectSpec0-10~6IEEE-3>>>>-1975a>>poet1263>>0-5Sy:CDShkpvayReportL263>>0-326340-6By:G.ShiplrayfngZC(I4il>>irhs(,$aof>'>>>J1%>>>n,'igA..ohioAom~ysr'Ec.C-(c)$(~3ZC('<<'i)4-/'/7~

5QC/,C>>rwo'lH~>>Jg/C'K5('p>>~>>tIQ'(gal-(g,>7

(-LlCbgIP1I-r)g~+BOTELSpecification 0-10lscoapleaented bySpecicicat ionC-22.hgO7E',z~/'iY..c,(O4(8>.rQ/-(-<Ld~"(~+

SPBC.8-/oZ'7,1<<Rev..35,07/Ba-

,!55'v9AR?JALAP3+JLHQ=5!)B??J!RI 3kr55EQIIJP<<ELI?JDCy?JCJL)I?

gl)QAJOK')KITSOPPLI0'I'IPgsc'41PT)nv P9II.PK.~'ln.!ILDOPLFv~'ill~TESTIIICPACTLITICSQUALIPICATICKQOILIFICATIO'ICATTFRIA<<Pl"slnsfri41.4<<f-".-1144

.".tI.Innlrv'Ia+fP24v7SANvI~Infarfoaff<<129V7?OANID-67nID-Spn20-679)0-AAn10-61010-6701061n10-640?I'-bln)0-6?0)0h10?0-640.nnfrnl771,ICCDAafICo.?IIII222t<<ripsStrurtura1Dynaair.Aes<<archcorpnrafion, ll)1fora,OhioforCoronraferonsu1tinn0<<vo.1opeentCo.Pro]petappcFportIA179-<<I-'I

~-10~'EEf-5~eph<<nA.LohrsIo344-)975JohnPolanclVnvSta+inntrV

,http'rips 2SnV140nAHIO-rI>0ln-Wn20-65020-6SOOO-goal,I22PouriI~II@~Iggyes/IIJQfP()~4)ntrvSi)v<<tfvI14f4)aLa~gP-OMC-I'r.".

t-)g~-'EEDw$g-I'f75,CL.t)Iu~>K)itPry~1Q,RL-qyigbnT51po<<cifirl.innll-Initcnsolea<<nt<<r) hvsnecll'ication 0-22.NpffVf.C-)upIfrGu)rlPfLIENTBO6y'V<C.f-lr)2.5

0'SES-FSAR

TABLE3.10c-7CABLETRAYS"SAFEGUARD" III="ITENNO.DESCR)PTJON EQUIP))2..2~)'O.

BLDG.ELEV.hO.TESTINGQUALIFICATION QUALIFICATION FACI)ITIESCRITERIA"El"SIGNEDBY:v8856-E-132 CableTrays:3"Dx24"W3"Dx18"X3"Dx1""W5"Dx24"W5"Dx18"W5"Dx12"WS9Nl-24-144 S9Nl-18-'44 59NI-12-14459N1-24-144 59N1-18-144 59NI-12-144 Control670'eactor to770'82HuskyProductInc.HuskyProducts, ProjectSpecInc.7405G-10)2IEEE-Industrial Rd344-1975Florence, Kentucky1-29-76'.

TestNo.977-978LoadTest-(Trays)By:T.O'araB.Heinzb.HoldDownTest)41276TestNo.1127-L2H>V2~5/14/761151)211527/21/7611888/10/761196-H,V.d~"bxii".XP~q'>x<s'e..d~'~)v",<~4>>.bxif.'8.4"t)x(1"4d4"bx<401Mgq"9yIL'vv-.tJqbx'248..'q"gy94AL~y.-tz5L-ta4-lCSL-hI4kx-l<iJ.-l'L

.VA-i~SL-te

>p<~kh-tfSL-la.Gl-2)cL-l5Lq-iiSL-l2,kq-gQ.-l'L41-li(l.-l2.'hl'pterIz.rS4tc.f~ivHi)~skPk14r4lgijg, PP~Cop()2C~Cttagovtlle)

PAP2gr,f$)~pc.io)loJC-loi(lc.ElectricTest12/~2222Harper-))orrez B.Schusterd.SeisuicCalculation 8/11/76By:B.Schustery)),tQo.V)>,L.lZ-CAHOT.-l02, Rcv.,&7+fHIta

~.:'S-r.)A4Ant.".II:)C-3ATTC.JCllhnct'.4 iACKS1'<<CA<<nf<<)

~~SaL'"IkP0<<LIrnv~'ipyuirvgv~<<gg Egyg~.,prov.CarPTIOX

=..Du.'.)rS".:

).Lni.ATJlvlsIT:IUPPI.

I?;".')D..LEV

~'l<<)~.<<'STINGFarILI~ICSn<<)ALIPICATlns ouhlrrrcATro)<<

rPIVESIA"CI"Src'<<'0<<)I)<<'lS"-r-\)n-:)q)4e.Vkcfhatq~ts)2SvInnhDa<<cryr'I<<tmera2Snv100A)0-613)0-67310-61I106LI20-A)120-6<<)?D-63320-643hq6711DASIA106531<<10-66120-651A20-65302D-66no-603.)ntrnl771~II112222:ain111222..~<<anPnai'lvyrrConvarsaon Labnrat<<<<riesPro<<lIctsunnttvllle,Inc.42"=asAlabaaaStreyt,CrystalLake,Illinois66014p.orrctspecT<<~!Rebor~010~6ICE'4546)-'I i"Veh344-)<<375 VincentP.,Voarnn~rvCharoer.24v25a10-673ID-67410-6AI1D-6P.420-67120-67420-4&3?0-6<<)4Cn-64S1'I1I2i2aaancc)-5'/5~vOTE)So<<cirica)inn0-10lscoanleaen<<nl ggj')<<C-(D)

IIc~~~)>>I,gFgyral/I-))1.3>>)rn)r CdIa<<~~>>S)p~hySn.elficationr<<-?2,IDng,(~Mgqleg,lt')la/3)aI>>arc

SSES-FSAR PARCELShubT8e4tOATloQ CASlQCTSTABLE$.10c-l0IVI:llA>>I-vll'in<i.l-l'L's.bl llI~Il(Cm-.AI'Ol/yl.DgjI'.Ll~/.V@I'7+oelf57)HCjIAclLIT/L5

+VALIjgtgWPu~Lll1/I~g/'gFCi.'lgli~ilf'i.'d.~~II'ibl:.'Lroc5I6-AOCel"8-85/LLL>Cg(nfTatt.WVPyWO

(~rc>>~->i'-

ggg)@pe,IP7rl-'-/5ID0C5IL-gTp)Qsp6pinggpss05/2-OC5/2-DpgQ)~~c~)gqQc)b<C)7lg-Qpc(c,)c5'~YoA<fLLC/I'0-,P,S~sL.2I2Izf~g=C-,"'l'~C.C/~~/+;PXE:Lc394-/f'/L~.'ZIiso-II~go-~~.~Cps6)noh>o~')

ji~oc.c)g)a~alAP<)L~~.gcygnegaLbE+~LTc5hoNb MarcoCO.C,I---/~2>pgoT'C.-'.~rtC.e.~c'-IoqI/5c>H/LE@i/'r/7t.>>

l'/5P~~gq~~gppcc-lo~t>gcoupU.-pp<~~

Y~pic.E-lozz-~PRMK'[SfK.0-104l~4wy/p&~.sIlEEEK4+lgfbQpoi4it,ycc'Jp.~...~i..C.Acv.GS-;07-/64-

.2(lfP<<s(:.$nPggl",'f12'Il<<':<<.1E".Cv'PT)l:I,vp(l.".!".If:I

).LJrt~~g()'l

'6.S(JI(PLIE((

<Loi.FL4Y.<n.TSSTII!r(PACILI!'I0!inpAL)p)c)

T)pvQQALIF)c\T) nvI;IIITtlIA<<t)"SIIII'lvp

>>'IY'ASA1I<'.i~~<<(tCrhett14-.,12SY)nnApqit>>Vhat"I1c?Snv11:PAJi9vhlp>>.2nv2SA)9(()I10-((7\10('\I10-6(i1206I120-n2320-63120-hn3DD-171In-((S3t10-6S3(A10-66)cp-6S)E20-6s)0'D-6))ilPi(I!1)0-471\0-67v)0-60I)O684'2p67)20-6712pfnl20-6nt(30-biS'1int77)Iiov'>>Iol(vetpion Ip."oh.lctsi Ir.c..1222vnnIII22:asn1I'I1422sanVv)>>LahutotorL>>sH(!n.ville~Alahen1Ptn)-ctSnakcTestpi<<o::ri-1I'0lvtv-tv5463-Inevgnu-I'37Svincent.f.'ItearnsII C)I)f-'(Ep.'.P>y/ip~()f54-$C)((IN'u~

iCgO))~&MCM~5jfk~wI+g)s,.ll.Q)>>)~AwC~'(~!.!-<(~r!p!cn)1n1-1!i.')sn)rn<<nt>>IhvSoecifirst'vn'(2eAl)g:5I7ci.C,JD)]JCP)llkf)h4~r:er

>f'-"=.<-->>>~Cr(Pi.waq(ft~g5~+Q.R7--Kv4&6l.).g~Q/(tIk'>(rb:=-Rev%5~7I84-

I+'0sn~'11II~Vrv f[P='iFlLA~lnv:ll:5CIIn.iJv-:II7V?V.VILOI,RAP)V'Il!IT9)IPi"~I?:1L7:."LrV.".G..FS.IunFACII.I.IR55nALIFICATInl!

gI)I.IFICArlnv I>IV'IIA"1.InHF.Ii.)I!)aSirlnl)41'.AVSvitrh"irIA-~n))A)n>.1\-2')1'lA2:14:!A-?n):.A-2nziA-2n)2A-2)4oA-510gnaCIOIIa'I7in7l'))ln7i)7)9py(e.)VIestlng)iouAe

'I12??2g~)gIgQQ&~kl8vfiZ!4o.(Inc).Xvl.Labnra+ocv,

Iunszrxllu

~Alahana+n4UvliiLahoatocvrl'uQ~)'svilkI))4Iyai~~7:o)ec?5psr.Cilna5IRKL)44-1975Pgm,y>I'E-C'-loyI<>SH83fd-If/~~oooo,~4~)7577-147'58Il5864258664n.5hlv)y8))c)2~~'37-S<lu-SSq I4v~P:4.D~t'lagOA-StoAoA-SSEOA-51040A-sNDh4(A)gin-9bq$S)b0(~)t)Q(.~gba<<-5OVREIEI).lc<<~)2.~~i)E4>iIcic)4jnii,)nI5niiolouiqA,iiV5n&CIlc'1AOII22~hWTi:~'i~c~EIpyII~CuufPLEME>IFEDf~/='IE~-6I>4~~

l3L'In-I11CCONT%1LANDLnln?'NTESSa-a4vTa-44aoaIflfP;?IAiC:4lie:rn'JESCYI.I'I'.CilfP1.NT<1.i'lAT/1'4'lvfySO?PLf~"ELoy.vn..ESTTNO?ACILI.IESallllI?ICATIJNQOALI?ICATIO'ICNfor'lTA"El<SI4mgy~oosna-121)o>4sec-I21-721OCConrolaniarg25OVDCLnl'nntor 25OVLol'.Cen~ar'25VID-'Snln'54ID2742n-25425-2642D-2'l4ID-6'52lf4112D-f522D-652ID612ID-6221C~6'12'Ifl64?2D-6122D-6222D-4322n-642'Iccnr4alC1"7..'lCteronlC11llC.nflrnina".o..trnl'nntrnlTnn4rnln1trol'ilt11ConcrnlCnncrnlnnt=nl"antrnlCollcrn1=Ontrnlnnt:nl6'I16I1170osl7291717717)117117I771171711771771171"771'IIen"slIElectricCn.I2I21I2I11I2-2ryl)LAborA.Ory,vnvc1,CA"ro?aclSppcO-Ino6T?EE-344-197IproTectSpeca-22".TREE-'1441975oepnra~2614n-p,O.Shiov4ypnpnlt~AN2614O-22434O-32614n-7flytO.ShipveyPCher7~).Ca)sI'i4el.r'Eilfcl-'f 5l/OL7-539Dij(0)t7M4rAf)rf)/~EL,p/qe.lc~e-~nlgHC~leg~~l-iv'Ilc.

flIafr4><arPg,~Erg5PGC=.~rent~c'.-/oglqI)*-cE54+-I'/75.Sf--/'SS;+'i+if/Igf10..:SOOCifinntian I-I1XA".14Olaonnosl hySOOCificet tor.':-22AH>yf-;5)'-4,"=//.l//-')rtPI.EM&)7eo

&/'rl-c,Clnz+,

SSES-FSAR

.Aagg,Ing-lsaoZoggygc ggggsggmgsrycugsNolP3cvTlOSRTlrJCjil'!!$OCaglA,'I DNITSOPPLIER.ITVvn.neSCRIPTIVR FOulps.,aVu.SLOG.KLE'I.SO.TESTINGFACILITIEsOoar.rFIcaTrosOoarIFICATrosCRITERIA"El"SIGMEOSy:8856-8-152 Autosatic

.cnnstecSvitch0ATS-5I&0ATS-526OATS-536OaTS-5461ATs-219IATS2292ATS2192ATS-229ev>-55'.Riessl-677';un.~677'77~677~neactor670'19~Reactor670'19'3<

t'0)CasnRussurelecteic, CasaInc.CssnCssnQyleLaboratory'labasa toeCC80CospanyLtd.22~waaN.@oui.0/'Tele-crt lc.1~4$4LsProspectSpecG-'IO~8IEEE-344-1975F&Sa,7'r'EC.

~-(~i"~ZE.is>Ivy-I'I75.Bepott1444341Sy:JasesQ.Focesant'*'sc-rt7Pc.~Ip.~NOTEISoeCiticationC-19iscosoresenteh bySpecitlcationG-22-ll)](;=IFC.~.In]1I'rCoIII'Ll=agEilyCP 5'f5/$4,$IWQ,I~)Rev.-36~-07/84-

~~tSSFS-ASAP

.11.2b.1Coep)iancevithIEEE323-1q71forNon-HSSSClass'IEEggioa~g.l11gh11Pgg-/AS"'ggiPII<Qi Lgcg~el&34igg gggfajMr2gAll,non-HSSSClass1Eequipment locatedinsidecontainaent hasheepaualified toIFFF323-1971gg-Ng$2Eggs,gannt Jggygedogtggdcc~oigggaent W11non-HSSSClass1L?eauipaent.

locatedoutsidecontainaent,~rc~ptthatlistedinTahle3.11-5hpspeenqua)ifiedtoIFFEt33-1971.APg//~/~AgggI~~p~gggpg~(~/g()

~~~~g~gQ/jl7+55IE4'p~rmsa~crAv~z fh'Irt'p7V+~~5.Egu/PHAVT>

Liel7%i>/u/I////.//

EuVIAcur7/~7~5PoPAc4urMD

&xoaentlistedinTahle3.11-5isqualified toperform's&+<~safetvfunctionintheenvironaent invhichitislocated.tlovever, thevendorsfortheeauipaent verenotrequiredtocertifycoIIplinnce vithIEEF.323.TnlieucfIEEE323certification hee'auipaent listedinTable3.11-5Ssqualifi~d hy'cootirationofanalysis, siailarity, andprviousopo.ratinq ex'perience..The qualificationdocuaents areavailable for1lPCquditas'stated insuhsection 3.11.3.4.

Thisqualification methodisjust(fled becausetheselectedequipment sectsacoehination ofthefnllovinq conditions:

1leannoraaloperate.nq temperature islessthan404Ca~~Acciden~~nvironaen+

isnotsubstantially acreseveretl.enthnncrealenvironaen~.

Bythisitisaeant,theequipcrntvi1lcontinuotosatisfactorallv perforaitssafetyfunctionintho.accidentenvironILent

~hovcver,itslenqthofaualified lifeisreduced.Fquipaont issioilartoequipeent previously usedino.h~rr,<".impar plan-.;=andother=.ndustrial applications.

4.Desiqnandfabrication isinaccordance vithanapprovohanRauditable nuclearqualityasuranceproqraa.6~Theeauipmert istested(eitherin'heshoporatthesite)priortnplants+ar~-up.Theeauipeent

'sused,orfreauently tested,durinanorI'aloperation.3~11-11 0

~~SSFS-FSAP1~3a,]HS.SQQQ)KQmoBtM1og gad"QRffX1HL$

9+u2aentThir.paraqraph discusses thetostresultsforsafety-related instrumentation andelectrical.equipeent intheVASSSexceptvhichissuppliedvithKSSSpumpsandvalves.ThetestresultsforGRsafe+yrelatedequipaent aremaintained inaperaanen~

filebyCFandcarh~readilyaudited.Znallcases,tho,oquipmant uedin.Class1Eapplications passedtheprescribed tests.Table3.11-1shovstheplantenvironwental areasinvhic.haSSscia.,stFcomponentsarelocated.Tables3.11-2and3.11-3~hovthetemporature, pressureandhumidityenvironments andab)e3.11-4shovsha"adiation environments tovhichthecomponen'.N ar'etest<d.11gg,gNQSSVy],vo%gyppedggecgZjcyg ggujpmept Theelectrical.

equipment mountedonthesafety/relief, SECandrocirculation qatevalvesistestedtoconditions vhichareatleastas=evereasthetemperature, pressureandhumiditycenditions shovninTables3.11-1~3.11-2and3.11-3.Theyarealsntastedtotheradiation.

environaent applicable

'totheirplantloca.ionasshovninTable3.11-4.Theequipment pertnrmed itrequiredsafetyfunctionundertheextremeenvironmental cor.ditions specified.

'34,1.1p.i1~4pi

~lgaS.Qg~ggg,hnKCCSpumpmotorslistedinTable3.11-3arerestedtothetemneraturo

~pressureandhumidityconditions shcvnin.hetable.Thcvarea]sotestedtotheradiation environment applicablc tcthoirlo--.tion as;-.:ovn inTable3.11-4.Theequipment testedportcrmrea itsrequ.'red safetyfunctionunde"theexterne-~r!virnnmon+a 1conditionsspecified.Soy-igSgClasa1EXltSXZXryl ggyggmggg f:nvironaental qualificationdocumentation fcrncn-NSSSClass1K~lactrical oquipmen~

ispreantlylncatedattheBechtelhomeofficeinSanFrancisco andisavailable forHRCauditggC+~pNpp7k+C~$/cEPz>~g/rg p,'qA'55dClrj7SC7 WC78+n-R:'r~57~yevgj5g~z."E~~D~cuw~rÃ7Co~

AWncIA7ZD m:,c'&i+>47CS4oQ7~8z7MPAvrN5$CVW(rfjbw~fC/4K'HIC85

<<A~vnwMrA.W>87~~y5ygggA<urf SWM~~P<C5r~Wipwsin.P.ev~/ec3~11-12

SSES-FSAR 2.IfEquation10resultsin2.4<S<3,0Sforferriticoraustenitic steels,thecumulative usagefactor,U,calculated onthebasisofEquation14ofNB"3653.6, mustbe<0.1.3.IfEquation10resultsinS>3.0Sforferriticoraustenitic steels,thenthestressvalueinEquations 12and]3ofNB-3653e6 mustnotbe<2.4SReulatorGuide'1.47

-BYPASSEDANDINOPERATIONAL STATUSINDICATION FORNUCLEARPOWERPLANTSAFETYSYSTEMS(Ma1973)Thedesign,asdiscussed inSubsections 7.1.2,7.2.2.1.2.1.5g 7.3.2a.l.2.1.7, 7.3.2a.2.2.1.5, 7.4.2.1.2.1.7, 7.4.2.2.2.1.7, 7.4.2.3and7.6.2.8,complieswiththeprovisions setforthinthisregulatory guide.ReulatorGuide1.48-DESIGNLIMITSANDLOADINGCOMBINATIONS FORSEISMICCATEGORYIFLUIDSYSTEMCOMPONENTS (Ma1973)Thedesignloadingcombinations fornon-NSSSsystemsforppsirjpns C.~lro+c>1?

aregeag~crrbe8 rnggple~3 9-gr~>gp-)<

Subsection 3.9.3.2.GEpracticeisrepresentative ofindustrypracticeandisingeneralagreement withtherequirements ofRegulatory Guide1.48withthefollowing clarifications:

Theprobability ofanOBEofthemagnitude postulated fortheSusquehanna SESisconsistent withitsclassification asanEmergency Event.However,fordesignconservatism, loadsduetotheOBEvibratory motionhavebeenincludedunderupsetconditions.

LoadsduetotheOBEvibratory motionplusaszcc';.ted tran=-'.nts,suchaaturbinetrip,havebeenrons~uered intheequipment designunderemergency conditions consistent withtheprobability oftheOBEoccurrence.

b.Theuseofincreased stresslevelsforClass2components isconsistent withindustrypracticeasspecified inASMEB6PVCodeSectionIII.Foracomparison ofNSSScompliance withRegulatory Guide1.48seeTable3.13'-1.Thiscomparison reflectsaGEpracticeonBWR4'sand5'sandtherefore, isappli'cable totheSusquehanna SES(seeSubsections 3.9.2and3.9.3).Rev.35,07/843.13-19

SSES-FSAR ReulatorGuide1.60DESIGNRESPONSESPEC'j.RA FORSEISMICDESIGNOFNUCLEARPOWERPLANTS(Revision 1,December1973)ThedesignresponsespectrausedintheanalysisofSusquehanna SESaredifferent fromthoseoftheregulatory guide.Adetaileddiscussion ofthedsignresponsespectraispresented inSubsection 3.7b.l.~~~'>p"g~Qg+Bc~~guJalin~m~qogg4,grp q~A0-~ReulatorGuide1.61-DAMPINGVALUESFORSEISMICDESIGNOFNUCLEARPOWERPLANTS,@gs0(October1973)ThedampingvaluesusedintheseismicdesignofSusquehanna SESaredifferent fromtk>eregulatory guide.Adetaileddiscussion o",I:lir;dampingvaluesispresented inSubsection 3.7b.l.c"IReulatorGuide1.62-MANUALINITIATION OFPROTECTIVE ACTIONS(October1973)Theprovisions formanualinitiation ofprotective actionsarecl>>scribed inSubsections 7.2.2.1.2.1.7, 7.3.2a.l.2.1.9, 7.3.2a.2.2.1.7, 7.3.2a.3.2.1.3, 7.4.2.1.2.1.9 and7.4.2.2.2.1.9.

ReulatorGuide1.63-ELECTRICPENETRATION ASSEMBLIES INCONTAINMENT STRUCTURES FORWATERCOOLEDNUCLEARPOWERPLANTS(Re'vision 1,Ma1977)Sincetk>econstruction permitforSusquehanna SESwasissuedinNovember1973,theprovisions ofRevision1tothi"regulatory gu.i<)e(whichsupplements IEEE317-1976) werenotspecifically consi<lerod i>>thedesignofSusquehanna SES.Thedesignofthe~1~.ctricpenetration assemblies istherefore incompliance withRegulatory Guide1.63datedOctober1973(whichsupplements IEEE317-1972).

Specifically, Sections4.2.3,4.2.4,5.1.6,5.2.2,6.2,6.3.3,<<nd6.4nfIEEE317,-1976 havenotbeenincorporated.

Thepenet..:=;tion cab1=protection iimitation curvesar'eshowntogether~~ththeirrespective protective devicecoordination curv~.sonFigures3.13-1to3.13-7.Theshnrtcircuitcurvesapplyforthecondition whentheelectrical andmechanical seali.ntegrity ismaintained.

Theseallimitation curve..applywhenthemechanical sealintegrity ismaintained andtheelectrical integrity issacrificed.

Thepenetration assemblies aretypetested.Therearennprovisions for'periodic testingundersimulated faultconditions Electrical penetration circuitsaresummarized asfollows:cn,c4CSII$lEQKm(,~g3.13-24 SSES-FSAR DESIGNRESPONSESPECTRAFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(Revision 1,December1973)ThedesignresponsespectrausedintheanalysisofSusquehanna SESaredifferent fromthoseoftheregulatory guide.Adetaileddi.scussion ofthed.ignresponsespectraispresented inSubsection 3.7b.l.Rr~ulaturg Guide1.61-DAMPINGVALUESFORSEISMICDESIGNOFNUCLEARPOWERPLANTS(October1973)~>hedampingvaluesusedintheseismicdesignofSgsq~epyppp

)~Sar>>diiferent fromtheregulatory guide/'"A 8CPazlehxcussxon)ofthr<l~mpingvaluesispresented inSubsection 3.7b.1.i'.:Vu)ati~>r

'uide1.62-MANUALINITIATION OFPROTECTIVE ACTIONS(October1973)'l'heprnvisions formanualiniti.ation ofprotective actionsare<1r.secibudinSubsections 7.2.2.1.2.1.7,7.3.2a.1.2.l.9P7.3.2a.2.2.1.7, 7;3.2a.3.2.1.3, 7.4.2.1.2.1.9 and7.4.2.2.2.1.9.

INCONTAINMENT STRUCTURES FORWATERCOOLEDNUCLEARPOWERPLANTS(Revision 1,Ma1977)Sincet.hc'onstruction permitforSusquehanna SESwasissuedinNavember1973,theprovi"ions ofRevision1tothisregulatory guic!e{whichsupplements IFEE317-1976) werenotspecifically

..onE'dcredinthedesignofSusquehanna SES.ThedesignoftheI16dctric)2enetration assemblies istherefore incompliance withRegulatory Guide1.63datedOctober1973(whichsupplements IEEE317-1972).

Specifically, Sections4.2.3,4.2.4,5.1.6,5.2.2,6.2,6.3.3,and6.4nfIEEE317-1976havenotbeenincorporated.

Thepenetration cableprotection limitation curvesareshowntogetherwiththeirrespective protective devicecoordination curve"onFigures3.13-1to3.13-7.Theshortcircuitcurvesapplyforthecondition whentheelectrical andmechanical sealintegrity ismaintained.

Theseallimitation curvesapplywhenthetnechanical sealintegrity ismaintained andtheelectrical integrity issacrificed.

Thepenetration" assemblies aretypetested.Therearenoprovisio>>s forperiodictestingundersimulated faultconditions.

ElecLrical penetration circuitsaresummarized asfollows:kev.35,07/843.13-24 0

SSES-FSAR ReulatorGuide1.92/COMBINING MODALRESPONSES ANDSPATIALCOMPONENTS INSEISMICRESPONSEANALYSIS(Revision 1,Februar1976)Sincetheconstruction permitfortheSusquehanna SESwasissuedinNovember1973,themethodsofcombining modalresponses andspatialcomponents inseismicresponseanalysis, asdescribed inthisregulatory guide,werenotspecifically considered inthedesign.Themethodsofdesignandanalysisforstructures, components, andpipingsystemsthathavebeenemployedareReulatorGuide1.93-AVAILABILITY OFELECTRICPOWERSOURCES(December 1974)Compliance withthisguideisdiscussed inSubsection 8.1.6.2.~ReulatorGuide1.94QUALITYASSURANCE REQUIREMENTS FORINSTALLATION, INSPECTION/

ANDTESTINGOFSTRUCTURAL CONCRETEANDSTRUCTURAL STEELDURINGTHECONSTRUCTION PHASEOFNUCLEARPOWERPLANTS(Revision 1,Aril1976)tThequalityassurance programSESisdescribed inthePSAR,Compliance oftheOperational guideisdescribed inSectionfortheconstruction ofSusquehanna AppendixDandamendments.

QualityAssurance Programwiththis17.2.ReulatosGuide1.96DESIGNOFMAINSTEAMISOLATION VALVEIEAKAGECONTROLSYSTEMSFORBOILINGWATERREACTORNUCLEARPOWERPLANTS(Revision 1,June1976)ReulatorGuide1.95-PROTECTION OFNUCLEARPOWFRPLANTCONTROLROOMOPERATORS AGAINSTANACCIDENTAL.

CHLORINERELEASE(Februar1975)ThepresentdesignoftheSusquehanna SEScomplieswiththepositionstatements ofthisregulatory guide.ioidVJoJSubjecttotheclarification indicated below,theprovisions ofthisregulatory guidearemetbythecurrentplantdesign.(1)

Reference:

AppendixA,Paragraph 6.Thedesignandinspection ofthi,sportionoftheleakagecontrolsystemisinaccordance withtheprovisions ofSectionXIoftheASMEBoilerandPzessureVesselCode.The100percentvolumetric inspection 3.13-37

'P0 SSES-FSAR RculatorGuide1.92-COMBINING MODALRESrONSES ANDSPATIALCOMPONENTS'N SEISMICRESPONSEANALYSIS(Revision 1,Februar1976)Sincetheconstruction pc.rmitfortheSusquehanna SESwasissuedinNovember1973,themethodsofcombining modalresponses andspatialcomponents inseismicresponseanalysis, asdescribed inthi~requl t~~ujpg~gg~notspecifically considered inthedeign~%Bemht'hocRof3e'deignandanalysisforstructuresg components, andpipingsystemsthathavebeenemployedaredescribed inSections3.7a,3.7band3.9.BeulatorGuide1.93-*AVAILABILITY OFELECTRICPOWERSOURCES(December 1974)Compliance withthisguideisdiscussed inSubsection 8.1.6.2.~ReulatorGuide1.94QUALITYASSURANCE REQUIREMENTS FORINSTALLATION, INSPECTIONt ANDTESTINGOFSTRUCTURAL CONCRETEANDSTRUCTURAL STEELDURINGTHECONSTRUCTION PHASEOFNUCLEARPOWERPLANTS(Revision 1,Aril1976)Thecualityassurance programSESisdescribed inthePSAR,Compliance oftheOperational guideisdescribed inSectionforthe'onstruction ofSusquehanna AppendixDandamendments.

QualityAssurance Programwiththis17.2.R.aulatc'r.Guide1.95PROTECTION OFNUCLEARPOWERPLANT-CONTROLROOMOPERATORS AGAINSTANACCIDENTAL CHLORINERELEASE(Februar1975)ThepresentdesignoftheSusquehanna SEScomplieswiththepositionstatements ofthisregulatory guide.Beulator'uide1.96,DESIGNOFMAINSTEAMISOLATION VALVELEAKAGECONTROLSYSTEMSFORBOILINGWATERREACTORNUCLEARPOWERPLANTS(Revision 1,June1976)Subjecttotheclarification indicated below,theprovisions ofthisregulatory guidearemetbythecurrentplantdesign.(I)

Reference:

AppendixA,Paragraph 6.Thedesignandinspection ofthisportionoftheleakagecontrolsystemisinaccordance withtheprovisions ofSectionXIoftheASMEBoilerandPressureVesselCode.The100percentvolumetric inspection Pev.35,07/843.13-37

SSES-FSAR ReulatorGuide1.100SEISMICQUALIFICAT

.NOFELECTRICEQUIPMENT FORNUCLEARPOWERPLANTS(March1976)Theimplementation paragraph ofthisregulatory guidestatesthattherequirements of'hepositionstatements willonlybeappliedtoplantsthatreceivedconstruction permitsafterNovember16,1976.TheConstruction PermitforSusquehanna SESwasissuedinNovember1973andtherefore theguidelines ofthisregulatory guidehavenotbeenutilizedinthedesignofthisnuclearpowerstation.PSeismicqualification ofthesafetyrelatedelectricequipment (non-NSSS scopeofsupply)hasbeenconducted in"'accordance withtheIEEEStandard344-1971.

Section3.10describes thecompletequalification methodsandprocedures thathavebeenutilized.

Thesafety-related electricequipment (NSSSscopeofsupply)meetsIEEE323-1971andIEEE344-1971.

ReulatorGuide1.101-EMERGENCY PLANNINGFORNUCLEARPOWERPLANTSWithdrawn September 24,1980.ReulatorvGuide1.102-FLOODPROTECTION FORNUCLEARPOWERPLANTS(Revision 1,Setember1976)tAc3~'+.gg~l1ISA~SThepresentdesignoftheSusquehanna SEScomplieswiththeprovisions ofthisregulatory guide.Regulator Guide1.103-POSTTENSIONED PRESTRESSING SYSTEMSFORCONCRETE.

REACTORVESSELSANDCONTAINMENTS (Revision 1,October1976)NotApplicable.

ReulatorGuide1.104-OVERHEADCRANEHANDLINGSYSTEMSFORNUCLEARPOWERPLANTS(Februar1976}(1)

Reference:

PositionC.l.b(2).Theni;1-ductility transition temperature for.'thestructural steelassociated withthecraneswasnotdetermined assuggested bythisposition.

PositionSubjecttotheclarifications andexceptions indicated below,thesafetyrelatedoverheadcranehandlingsystemsofthisstationcomplywiththeprovisions ofthisregulatory guide.IRev.M,3.13-39 40 SSES-FSAR Reulator'uide1.122DEVELOPMENT OFFLO"~DESIGNRESPONSESPECTRAFORSEISMICDESIGN'FFLOOR-SUPPORTED EQUIPMENT OR'OMPONENTS (September 1976)Themethods.used fordeveloping thefloordesignresponsespectraforSusquehanna SESareincompliance withthepositions ofthisregulatory guideexceptasfollows:1.Thefrequencies usedforthecalculation oftheresponsespectraaredifferent andaredescribed inSubsection 3.7b.2.5.

2.Theprocedure forsmoothing thespectra(broadening ofpeaks)isdifferent andisdiscussed inSubsection 3.7b.2.9.

keulatorGuidel.123QUALITYASSURANCE REQUIREMENTS FORCONTROLOFPROCUREMENT OFITEMSANDSERVICESFORNUCLEARPLANTS(Revision 1,Jul1977)TheSusquehanna SESqualityassurance programfortheconstruction phaseisdetailedinPSARAppendixDandamendments.

Compliance oftheOperational QualityAssurance Programwiththisregulatory guideisdiscussed inSection17.2.~IIReulatorGuide1.124-DESIGNLIM1TS,ANDLOADINGCOMBINATIONS FORCLASS1LINEAR-TYPE COMPONENT SUPPORTS(November 1976)Sincetheconstruction permitforSusquehanna SESwasissuedinNovember1973,thisregulatory guidewasnotspecifically considered inthedesign.Themethodsusedtodetermine designloadingcombinations forSusquehanna SESaredescribed inSectionl3~9~ReulatorGuide1.125-PHYSICALMODELSFORDESIGNANDOPERATION OFHYDRAULIC STRUCTURES ANDSYSTEMSFORNUCLEARPOWERPLANTS(March1977)NophysicalmodelswereusedduringthedesignofSusquehanna SES.UJ3.13-45

SSHS-FSAR (1)Paragraph C.2-Thedesignbasiseventcondi'ons meetthe~~~mostseverepostulated conditions forSusquehanna SES.FactorsormargingiveninSection6.3.1.531.5ofIEEE323-1974verenotc~g5A~so~ih<LP WITHI-II-TMoi85~+&AEgpg<Tge/>

N~M4'47/PLd'~A~fW8PfFW~~~ggfuRu7'aau<Syggyg Mrna+'.(2)paragraph C.4-Onlyoneagingdatapoint(121C)hasbeenijPjgDIP@he~g"Noj7joijFkPATL~cAs7'aI AsjAjsDATA'<TPwM(/jParaprapà C.6-Flametestsweredoneinaccordance withIEEE'VDAs-74d>'kF~Z'cF/hK'AN 4E'P~IPw,

<<@SPCnFWT Addo~~v~4PararahC.10-Gasburnerpositronxsinaccordance vithgCpp@4~dong/cw'8A'84wr%%dC,CASWSAH~47Ãb~~rF~)Hijr'kjjFrwDjsssc.AM"8"wjjsxcTjjdDA5jdur<<sjijesjrjau~As<<Accoso-~cFw(TVEgpui~M~7 5e/>>gigu+7bZyujdd

/./5/,(5)panelinternalwrresar~nayggalrfjedtoRegulatory curd~/0C.,ii+'iID$D4ssjs-DjjjAcrolzDAjjcd wjrjjTjjdidcoisirs&fkijTD DAEcccEBE-exitSS/+P~EL.N7@4~1I'electriccables,Iieldsplices,andconnections IortheRESSscopeofsupplyhavenotbeenevaluated againstthisregulatory guide.3.13-47 PENNSYLVANIA POWER6LIGHTCOMPANYSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2DIESELGENERATOR EFACILITYDESIGNDESCRIPTION

REPORT, CTABLEOFCONTENTSSECTION1.0DesignApproach1.1PurposeofDieselGenerator E1.2ControlofDieselGenerator E1.3Substitution ofDieselGenerator

~Pae1-11-11-21-22.0PhysicalDescription 3.0Design3.1Mechanical Equipment 3.1.1FuelOilStorageandTransferSystem-3.1.2CoolingWaterSystem3.1.3HeatingandVentilation 3.1.4PlumbingandDrainage3.1.5Fire.Protection/Detection k3.1.6DieselGenerator StartingAirSystem3.1.7LubeOilSystem3.1.8JacketWaterSystem3.l..9FuelOilSystem3.2Structural Design3.2.1CivilDesign3.3Electrical Design3.3.1MediumVoltageSystem3.3.1.1NewSwitchgear 3.3.1.2Switching Points3.3.2480-VoltSystem3.3.3Class1E125-VoltD.C.System3.3.4TransferSwitching System3.3.4.1TransferPanels3.3.4.2LocalEngine-Generator Control3.3.4.3DevicesToBeTransferred 3.3.4.4Bypassed~adInoperable Status3.'-.4.5Dedicated Devices3.3.5LightingSystem3.3.6Grounding System3.3.7Communication System3.3.&SecuritySystem3.3.9TestFacility3.3.10MildEnvironment 3.4Instrumentation andControlsPanelsPanel3-13-13-13-23-2k3-33-33-43-43-53-53-63-73-73-83-83-93-93-93-103-103-103-103-113-113-123-123-133-133-133-143-144.0Studies5.0Tie-InDescription 4-l.5-1 i'

AppendixA-DravingsAppendixB-Codes,Standards, andRegulations Applicable toDieselGenerator EFaci.lity AppendixC-SeismicAnalysisProcedures andtiodelsforTheDieselGenerator EBuilding

1.0 DESIGNAPPROACHThedieselgenerator

Efacilityincluding thecomponents contained thezejnisanuclearsafetyrelated,SeismicCategoryI,Class1Efacilitythatwj,llbeusedtoprovideemergency powertoSusquehanna SteamElectricStation(SSES)whenoneofthefourexistingdieselgenerators isoutofservice.Thelocationofthedieselgenerator EfacilityisshownondrawingC-5003"PlotPlan,DieselGenerator EFacilitySiteDevelopment Plan"contained inAppendixAtothisreport.Thelocationofthebuildingwasselectedtosatisfytherequirements listedbelow:oClosetotheexistingdieselgenerator buildings.

oClosetothetie-inpointsforwater,airandelectrical.

oClearance aroundthebuildingforconstruction equipment.

oClearance betweenthebuildingandthesecurityfence,bothinitstemporary andfinalpositions.

oClearance betweenthebuildingandexistingstructures abovegroundandunderground.

oAccessibility totherailroadforoffloadingthedieselgenerator andsettingitonthepedestal.

oClosetotheunderground soundrock.Codes,standards, andregulations applicable tothispro)ectaregenerally thoseineffectonSeptember 22,1983.Alistoftheapplicable codes,standards, andregulations iscontained inAppendixBtothisreport.Dieselgenerator Eusestheexistingindications andcontrolswhenitisintheplaceofanexistingdieselgenerator.

1.1PuroseofDieselGenerator ETheSusquehanna SteamElectricStationTechnical Specifications statethatadieselzenerator sybeinoperable

.or72hours,afterwhichatwounitshutdc..mustcommence.

Thefifthdieselgenerator willbeusedasareplacement andwillhavethecapability ofsupplying theemergency loadingforanyone'fthefourexistingdieselgenerators.

Assuch,themainpurposeofdieselgenerator Eistoallo~maintenance tobeperformed onanyoneofthefourexistingdieselgenerators withoutthenecessity foratwounitoutage.Aftertheexistingdieselgenerator hasbeenreplacedbydieselgenerator E,testingandmaintenance canbeperformed ontheexistingdieselgenerator foraslongasrequired, withinthelimitation ofmechanical maintenance and"noload"testing.1-1

1.2ControlofDieselGenerator EDieselgenerator Eutilizesthesamemeteringandcontrolsusedforthereplaceddieselgenerator.

Anewcontrolboardisnotrequired.

Theuseofatransferswitching systemminimizes costs,reduceselectrical wiringseparation

problems, conserves spaceandminimizes changesinthemaincontrolroom.Furthermore, thehumanfactorsvalueofthepresentarrangement areretained.

Sincedieselgenerator Eisessentially,a replacement foranyoneofthefourexistingunits,thepresenceofafifthdisplaycouldcauseunnecessary confusion inafour-channel system.1.3Substitution ofDieselGenerator Thesequencefortransferring controlofanexistingdieseltotheEdieselisdescribed below.Thesequencedescribed isforsubstituting dieselgenerator Efordieselgenerator Ahoweverthesamesequenceappliestotheotherdieselswiththesuffixletterschangingforthedieselbeingsubstituted.

PlaceHS-00057A onOC512Ain"Disable" position.

Thisactionremovesautostartsignalfromdieselgenerator A.Theoperatormustchangethepositionofthisswitchasthefirststepintheswitching sequence.

2~Closetheemergency servicewatervalvesfordieselgenerator AfromOC-553inthecontrolroom.3.PlacethelocatedswitchesonOC512Atothedieselgenerator Eposition.

4.Tripandremovethe4.16KvcircuitbreakerfromOA510AOl.

5.Rackinandclose4.16KvcircuitbreakerremovedfromOA510A01intoOA510A02.

Thiscompletes switching indieselgenerator A.6.Opentheemergency servicewatervalvesfordieselgenerator EfromOC-553intheControlRoom.7~PlacethelistedswitchesonOC512E-Ainthedieselgenerator Aposition.

8.removethe4.16KvcircuitbreakerfromOA51007.9.Rackinandclose4.16KvcircuitbreakerremovedfromOA51007intoOA51001.10.PlaceHS000571E-A onOC512E-Ainthe"ENABLE"position.

Thisswitchpermitsautostart ofdieselgenerator E.Theoperatormustchangethepositionofthisswitchasthelaststepintheelectrical switching sequence.

Thiscompletes theelectrical switching, dieselgenerator Eisnowalignedfordieselgenerator A.ll.Thealarm"DieselNotinAuto"willsoundinthecontrolroomwhendisabling adieselgenerator fortransfertoanotherdieselgenerator.

Thisalarmwillceasewhenthealignment iscomplete.

1-2 12.Thesequenceforplacingdieselgenerator Abackintoservicewouldbethereverseofthestepsdiscussed above.1-3

2.0 PHYSICALDESCRIPTION

Generalarrangements ofthedieselgenerator Ebuildingdepicting locationofmajorequipment areshownondrawingM-5200contained inAppendixAtothisreport.ThebuildingisdesignedtoSeismicCategoryIrequirements andisprotected fromtheeffectsoftornadomissiles.

Itisareinforced concretetwostorystructure withapenthouse andanadditional levelbelowgrade,Reinforced concretewasselectedforthewallsandroofasbeingthemost.suitablematerialforprotection againstmissiles, seismicloadsandbelowgradeconstruction.

Thefloorsofreinforced concretearemonolithically constructed withwallsasacommonpractice.

Entrytothebuildingisatthegradeelevation bydoorsprotected fromtheeffectsofmissileswithlabyrinths.

Thebasementhousesthe125-Vdcbatteryroom,batterycharger,4160-Vswitchgear, transferpanels,termination

cabinets, buildingauxiliary servicespanel,non-class 1Eautotransferswitch,non-class 1EMCC,125-Vdcswitchboard, startingaircompressors skidsand,sump.Underground pipingisbroughtintothebuildingatthislevel.Inadditiontothedieselgenerator anditsskidmountedaccessories, theflooratgradecontainstheairreceiverskidandthedieselgenerator controlroom,consisting ofagenerator andenginecontrolcabinet,Class1Emotorcontrolcenters,synchronizing paneland,a4160/480Vtransformer.

Thesecondstorycontainstheairintakefilter,silencer, intakepiping,exhaustmufflerandpiping,andventilation supplyandexhaustfans.Thepenthouse containstheexhaustchamberforthedieselgenerator exhaustandventilation exhaust.Thecombustion airandventilation airintakeistakenfromoneendofthebuildingviaanopeningwhichisprotected fromtornadomissiles.

Tominimizerecirculation ofengineexhaustintothecombustion airandventilation airintake,thecombustion exhaustandventilation exhaustarelocatedinthepenthouse attheoppositeendofthebuilding, andareprotected fromtheeffectsoftornadomissilesbyaconcrete'verhang.

Tornadodampershavebeenprovidedfortheventilation airintakeandexhaustopenings.

Boththeintakeandexhaustarelocatedmorethan30feetabovegrade.Aport',ofthenortnwallatgradeelevation isremovable tofacilitate removalofthedieselorcomponents ontheauxiliary skidshouldthisbecomenecessary duringthelifeofthefacility.

Thisportionofthewallisdesignedtowithstand theeffectsoftornadomissilesandseismicevents.A20tonbridgecraneisprovidedtopermithandlingofdieselgenerator andauxiliary skidcomponents.

Theheaviestsinglepiece(enginecomponent) tobeliftedduringthemaintenance istheturbo-charger whichweighsapproximately 5100lbs..Majorequipment whoseweightislessthanthecranecapacityincludesthegenerator rotor,generator stator,generator shaft,flywheel, pistonandconnecting rod.2-1 3.0DESIGN3.1Mechanical EuimentThemechanical equipment considered tobenuclearsafetyrelatedincludesthefueloilstorageandtransfersystem,combustion airintakeandexhaustsystem,startingairsystem(fromthereceivers totheengine),thecoolingwatersystem,thejacketwatersystem,andthelubeoilsystem.Thepipingofpumps,tanks,andvalvesassociated withtheseportionsofthemechanical systemsaredesignedasSafetyClass3,SeismicCategoryIcomponents inaccordance withRegulatory Guide1.26.Assuch,theyareprotected fromtornadomissiles, floods,andothernaturalphenomena.

Mechanical equipment inbothnon-nuclear safetyrelatedparts'ofthesystemsdiscussed aboveandsystemswhichareentirelynon-nuclear safetyrelated,suchaspotablewaterandserviceair,aredesignedtoprecludedamagetonuclearsafety-related equipment duringandafterasafeshutdownearthquake byseismically supporting suchpipingandcomponents.

Pipingisseismically supported usingtheequations ofASMESectionIII,NuclearPowerPlantComponents, 1971issuewithalladdendaissuedthroughwinter1972.PipingwhichisnotrequiredtobeSafetyClass3isprocuredas831.1,isseismically supported, andisinaccordance withANSIB31.1-1973.

Theeffectsofmoderateenergybreaksinpipingsystemsareconsidered.

in.thedesignofthedieselgenerator Ebuilding.

Thepipinggenerally hasbeendesignedwithstresslevelslowenoughtoprecludethepostulation ofmoderateenergybreaks.Wherethisisnotpossibleessential equipment isprotected fromthewettingeffectsofapipecrackbyphysicalseparation orbarriers.

Essential equipment isprotected fromfloodingeffectsbymountingtheequipment onpedestals, bybarriers, orbyoperatoraction.Alevelalarmisprovidedtoindicatetheexistence ofahighwaterlevelinthebuildingsump.I3.1.1FuelOilStoraeandTransferSstemThefueloilstorageandtransfersystemconsistsofanunderground storagetank,atransferpump,andassociated piping,valves,andinstrumentation.

Thetankwillbefilledfromanewfillstation.'he storagetankissizedtocontain80,000gallonsoffueloilwhichallowsforapproximately th'irty(30)hoursoftestingofthedieselgenerator andseven(7)daysofcontinuous operation, allatfullload.Thefueloiltransferpumpiscapableoffillingtheda~"=ankfori:h=nwdieselgene"ator and(non-concurrently) thedaytankonanyuneoftheexistingdiesels.Itcanalsofill,anyoftheexistingdieselfueloilstoragetanks.Thetransferpumpisactuatedautomatically fromitsassociated daytank.Fillingofexistingdaytankswiththedieselgenerator Etransferpumpiscontrolled manually.

ThefueloilstorageandtransfersystemisdesignedasaSafetyClass3,SeismicCategoryIsystem,inaccordance with,therequirements ofRegulatory Guides1.26and1.137andANSIStandardN-195.Theflowdiagramforthefueloilstorageandtransfersystemservingdieselgenerator EisshownondrawingM-120,Sheet2,inAppendixA.Instrumentation andcontroldiagramsareshownondrawingJ-120,sheets3,4,and5,alsoinAppendixA.3-1 3.1.2CoolinWaterSstemTheEmergency ServiceWaterSystem(ESW)isused.tosupplycoolingwatertothefollowing components ofdieselgenerator E:oLubeOilCooleroJacketWaterCooleroFuelOilCooleroIntercoolers Theexistingemergency servicewatersystemhasbeenextendedtothedieselgenerator Ebuildingviafour(4)10inchpipes.OneeachforloopAsupplyloopAreturn,loopBsupply,andloopBreturn.Amotoroperatedbutterfly valveisprovidedoneachoftheselines.Whendieselgenerator Eisusedtoreplaceanotherdiesel,loopAistheprimary'ooling source,witheitheramanualoranautomatic transfer'to loopBifloopAbecomesunavailable.

Theflowdiagramfortheemergency servicewatersystemservingdieselgenerator EisshownondrawingM-ill,sheet3,inAppendixA.Instrumentation andcontroldiagramsareshownondrawingJ-ill,sheets10,ll,13,14,14Aand15,alsoAppendixA.3.1.3HeatinandVentilation Thedesigntemperature parameters andheatrefection tothespacebythedieselgenerator andotherheatproducing deviceswereusedtosisetheventilation systemforthedieselgenerator Ebui'lding.

Thedesignparameters aredetailedinTable3.1.Thecapacityoftheventilating systemfanswasselectedto'andletheheatrejection tothespacebydieselgenerator Eandtomaintainthespacetemperature below120'Finsummerwhenthedieselgenerator isoperating.

Two(2)50percentcapacitysupplyfans,two(2)50percentcapacityexhaustfansandone(1)100percentcapacitybatteryroomandbasementexhaustfanwereselectedtoventilate thebuilding.

Thefirstsetofinterlocked supplyandexhaustfansmaintainspacetemperature below104'Fbymeansofdampermodulation andstartingoffansfromt~=spacetherostat.

Thesecondsetofinterlocked supplyandexhaustfansstartwhentheindoortemperature risesabove104'F.Thisarrangement ofone(1)50percentcapacitysupplyandone(1)50percentcapacityexhaustfanrunningduringthenormalventilation modeisfurnished toconserveenergy;Nofiltration orcoolingisprovidedintheventilation system.Themodulating dampersystemcontrolstemperature andisdesignedforfailsafeoperation topermitfullventilation.

ITheexhaustfanforthebatteryroomandbasementismanuallyoperated, runscontinuously andwasselectedforexplosion-proof construction.

Ventilation airforthebatteryroom/charger areaandbasementistransferred fromthebuildingspaceandleakagethroughdamperswhentheventilation supplyfanisnotoperating.

Theventilating systemisdesignedassafetyrelatedandSeismicCategoryI.3-2 Theheatingsystemforallareasconsistsofelectricunitheatersandelectricbaseboard heaters.Theheatersarenotsafetyrelatedandaredesignedtocommercial industrystandards.

Theyarehowever,supported toSeismicCategoryIrequirements toavoidII/Isafetyimpactconcerns.

Theheatershavebuilt-inthermostats toautomatically maintainspacetemperature inaccordance withthedesignparameters listedinTable3-1.Whendieselgenerator Eisnotoperating, actuation ofthefiredetection.

systemwillautomatically stopallthesupplyandexhaustfansandoverridethetemperature controls.

I'heflowdiagramfortheheatingandventilating systemservingdieselgenerator EisshownondrawingM-182,sheet2>inAppendixA.Instrumentation andcontroldiagramsareshownondrawingV-182,sheets7,8,8A,9,9A,10,11,13,13A,14,15,and16,alsoAppendixA.3.1.4PlumbinandDrainaePlumbinganddrainagesystemsforthedieselgenerator Efacilityaredesignedandsizedtoaccommodate thevarioustypesofdrainageinthebuilding.

Roofdrainsarepipedtothestormsewer.Equipment andfloordrainsfromelevations 675'-6"and708'-0"arepipedtoanunderground wastewaterstoragetanklocatedoutsidethedieselgenerator building.

Equipment andfloordrainsfromelevation 656'-6"(exceptfloordrainfrombatteryroom)and'ffluent fromthewastewaterstoragetankaredischarged bygravitytoanoil/water separator locatedinsidethebuildinginasump.Thefloordrainofthebatteryroomdischarges toanacidneutralizing sump,wherewasteisneutralized anddischarged totheoil/water separator.

Theeffluentoftheoil/water separator discharges intothebuildingsump.Thebuildingsumpisequippedwithduplexsumppumpsof100GPMcapacityeach.Buildingsumpcontents(wastewater)arepumpedtotheplantoilywastesystem.Theoilseparated intheoil/water separator ispumpedandcollected ina550gallonunderground wasteoilstoragetanklocatedoutsidethedieselgenerator Ebuilding.

Theunderground wastewaterstoragetankisdesignedt'ocontainfireprotection waterfromthe10minutesofoperation ofpre-action sprinkler system.3.1.5!".reProtect'on/Detection Thedesignofthefireprotection anddetection systemisinaccordance with10CFR50,AppendixR,SectionIIIG,Jand0;NRCBranchTechnical Position9.5.1,NFPANationalFireCodes,andFMstandards.

Thefiresuppression system'ets itswaterfromtheplantyardloop.Thesprinkler andfiresta'ndpipe systemsaredesignedforawatersupplyfromone2500gpm/125psifirepumpdelivering waterthroughayardmainwiththeshortestrouteassumedtobeunavailable.

Thefirestandpipe systemandhosesarelocatedsothatallinteriorsectionsofthebuildingcanbereachedperNFPAClassIIIrequirements.

3-3 Thetype,number,andlocationofportablefireextinguishers areinaccordance withNFPArequirements.

Operation ofthefiredetection andprotection systemsisinterlocked withtheventilation systemsoastoshutdownthosesystems(exceptduringemergency operation ofthedieselgenerator) whichwillinterfere withfirefighting, control,containment, andsuppression ofthefire.Inadditiontothefireprotection system,anearlywarningfiredetection systemisprovidedforthebuilding.

Detectorspacingandtypesofdetectors areconsistent withthetypeofservicerequired.

Thedetection systemiscompatible andinterfaces withtheexistingplantfireprotection multiplexing system.Thefireprotection panelisfedfromabatteryback-uppackagefurnished bythesmokeandtemperature detection panelvendor.Theflowdiagramforthefireprotection systemservingdieselgenerator EisshowondrawingM-122,sheet9,contained inAppendixA.Theinstrument andlogicdiagramforthesystem,indicating firedetectors, isshownonFigureF-1006inAppendixA.3.1.6DieselGenerator StartinAirSstemAsintheexistingdieselgenerators, dieselgenerator Ehasastartingairsystemwhichsupplieshighpressureairsequentially tothedieselenginecylinders.

Thesystem(bothloops)consistsofaircompressors (2),airreceivers (4),airfilters,airdryers,airprecoolers moistureseparators, andassociated piping,valvesandinstrumentation.

Tworedundant airstartingsystemsareprovidedfordieselgenerator Etoincreasestartingreliability.

Additionally, across-tie isprovidedtoalloweithercompressor tochargeall4airreceivers.

Eachairstartloopiscapableofperforming atotaloffive(5)-10secondstartswithoutrecharging theairreceivers.

All=equipment mountedintheairreceivedskidissafetyclass3,SeismicCategory1inaccordance withRegulatory Guide1.26.Allequipment mountedontheaircompressor skidiscommercial grade.TheflowdiagramfortheStartingAirSystemservingdieselgenerator EisshownondrawingM-134sheet2,inAppendixA.3.1.7LubeOilSstemThedieselgenerator Elubeoilsystemisessentially identical totheexistingdieselgenerators systemandconsistsofanenginedrivenpump,standbyA.C.motordrivenpump,circulating pump,lubeoilheater,lubeoilheatexchanger'nd associated piping,valvesandinstrumentation.

Theprimarypurposeofthelubeoilsystemistolubricate bearingsandothermovingpartsintheengine.Additionally, thissystemisusedtolubricate turbo-charger

bearings, keeptheenginewarminthestandbymodetoenhancer immediate startup,coolthepistons,andmaintainenginecleanliness bypreventing rustandcorrosion.

Theenginedrivenpumpprovidestherequiredlubeoilpressureduringnormaloperation.

AstandbyA.C.motordrivenpumpwillautomatically startuponfailureoftheenginedrivenpump.Acirculating pumpandelectricimmersion typeheaterareusedtomaintainlubeoilataprescribed temperature duringstandbyperiods.Athermostatic controlvalveisusedtomaintainlubeoiltemperature duringtheseperiods.Allequipment mountedontheauxiliary skidisdesignedasSafetyClass3,SeismicCategory1inaccordance withRegulatory Guides1.26and1.29.Allequipment suppliedbytheenginemanufacturer hasbeenseismically qualified.

Theflowdiagramforthelubeoilsystemservingdieselgenerator EisshownondrawingM-134sheet2,inAppendixA.3.1.8JacketWaterSstemThedieselgenerator Ejacketwatersystemissimilartotheexistingdiesel'sjacketwatersystemandconsistsofastandpipe, enginedrivenpump,standbyA.C.motordrivenpump,circulation pump,jacketwaterheater,jacketwatercoolerandassociated piping,valves,andinstrumentation.

Thejacketwatersystemisaclosedloopsystemwhichusestreatedwatertocooltheenginecylinderjackets,turbo-charger, andthegovernoroilcooler.Thissystemcirculates warmjacketwaterthroughtheheaterportionoftheairintercoolers toheatthecombustion airduringstartup.Theenginedrivenpumpprovidestherequiredjacketwaterpressureduringnormalengineoperation.

AnA.C.motordrivenpumpisprovidedintheeventofenginedrivenpumpfailure.Thispumpwillautomatically turn-onuponlossoflubeoilpressure.

Acirculating pumpandelectricimmersion typeheaterareusedtokeepjacketwaterataround120Fduringstand-byperiodsto0enhanceimmediate start-up.

Athermostatic controlvalveisusedtomaintainjacketwatertemperature duringtheseperiods.Allequipment mountedontheauxiliary skidisdesignedassafetyclass3,seismi:ategory1~naccordance witntherequirements ofU.S.Regulatory Guide1.26.Inaddition, allequipment suppliedbytheenginemanufacturer andmountedontheenginehasbeenseismically qualified.

Theflowdiagramforthejacketwatersystemservingdieselgenerator EisshownondrawingM-134,sheet2,inAppendixA.3.1.9FuelOilSstemThedieselgenerator Efueloilsystemisessentially identical totheexistingdieselgenerators systemandconsistsofanenginedrivenpump,D.C.motordrivenpump,twenty(20)injection pumps,fueloildaytank,fueloilheatexchanger, filters,strainers andassociated piping>valves,andinstrumentation.

3-5 Flowfromthedaytanksuppliesfueltotheenginedrivenpumpwhichinturnsuppliesfuelat35psigtothein)ection pumps.Areliefvalveisutilizedatthedischarge oftheenginedrivenpumptomaintainpressureat35psig.Thefueloilcoolerisusedtocoolthefueloilwhichisbypassedbythereliefvalvebacktothedaytank.Thefiltersandstrainers areusedtoassurecleanfueltothehighpressureinjection pumps.AD.C.motordrivenfueloilpumpisprovidedtoreplacetheenginedrivenpumpintheeventofenginedrivenpumpfailure.Thispumpwillautomatically startuponlossofpressureatthedischarge oftheenginedrivenpump.Allequipment mountedontheauxiliary skidisdesignedasSafetyClass3,SeismicCategory1inaccordance withRegulatory Guides1.26and1.29.Allequipment suppliedbytheenginemanufacturer andmountedontheenginehasbeenseismically qualified.

Theflowdiagramforthedieselgenerator EfueloilsystemisshownondrawingM-134,Sheet2,inAppendixA.3.2Structural DesinThedieselgenerator EbuildingisaSeismicCategory1,two-story structure withapenthouse andabasementconsisting primarily ofreinforced concretewalls,floorslabs,androof.Thedieselgenerator ped'estal isalsoconstructed ofreinforced concrete.

Agapbetweenthebuildingfloorandthepedestalatgradelevelisprovidedsothatvibrations fromthedieselgenerator arenottransmitted tothebuilding.

Acurbplatehasbeeninstalled topreventexcessive waterandoilfromleakingdowntothebasementfromtheoperating floor(el.675'-6")throughthis'ap.Thefoundation systemwasconstructed byfirstremovingthevolumeofsoilfromtheexistinggradedowntothesoundrockwiththeplanareaslightlylargerthanthatofthebuilding.

Thisvolumewasfilledwithleanconcreteextending fromthesoundrocktoaconvenient elevation, whichis'hebottomelevation ofthebuildingbasementfloormat.Thefoundation systemfordieselgenerator supportEissimilartothatusedfortheexistingdieselgenerators.

Itconsistsofareinforced concreteblockapproximately 34'ongx9'idex21'-6"high,withfourverysmallopenin,"andisfoundedontheleanconcretewhichinturnisbondedtothebedrock.Thistypeoffoundation pedestalhasahighrigidityandconsequently itsfrequency ofthelowestfundamental modeofvibration willbemorethan1.5timesthespeedofdieselengine(600rpm).Thiswillprecludeanysupportrelatedvibration problems.

Theouterreinforced concretewallsandroofofthedieselgenerator Ebuildinghavesufficient thickness toresisteffectsoftornadomissiles.

Aportionofanouterwallisremovable tofacilitate dieselgenerator installation and/oremergency removalandmaintenance operation.

Thisremovable wallportionisdesignedtoresisttheeffectsoftornadomissilesandseismicloads.Sincethehighgroundwaterlevelfordesignpurposeisatelevation 665'-0",awaterproofing membraneisinstalled ontheoutsideofthebasementwallsuptoelevation 665'-0"andonthebottomsurfaceofthe3-6 basementfloormat.Waterstops areprovidedatconstruction

)ointsbelowelevation 665'-0"..

Adescription oftheseismicanalysisprocedure andmodelsforthedieselgenerator Ebuildingiscontained inAppendixCto.thisreport.Thesitewasreviewedandevaluated forexistingconditions relatingtosoilsandrockmaterials, drainagepatterns, pavements andothergroundcovers,susceptibility toerosion,siteaccessibility, andcontrolsforsurveywork;andtoestablish abasisforverifying theexactlocationofallabovegradetie-insystemsandallunderground safetyandnonsafetyrelatedsystemsthatcouldimpactdesignorconstruction activities.

Alicensedsurveyordetermined thehorizontal andverticallocations ofkeypointsforthesesystemsandthedatawasassembled onasingleComposite UtilityPlan,tiedintotheplantgridanddatum.ThisComposite Planwasusedthroughout preliminary andfinaldesigntomaintaincontrolofthelocationoftie-inworkandallnewunderground systems*(allpipingsystems,utilities, andstructures including waterandsanitarysewerlines,stormdrainagelines,electricductbanks,fuellines,andanyotherlines).Italsoservesasabasisfordefiningthe"as-built" conditions.

Basedonareviewof'vailable existingsubsurface data,additional boringswererecommended toestablish adesignbasisforexcavation andbackfilloperations.

Theresultsoftheseinvestigations including construction stagesheetingandbracingconsiderations, recommendations forexcavation andbackfilloperations anddewatering arepresented inGibbs&Hilldocument3544-SR-001 entitled"ReportonSubsurface Investigations forDieselGenerator EFacility".

Erosionandsedimentation controlswereimposedonconstruction activities basedonguidelines stipulated inCommonwealth ofPennsylvania Department ofEnvironmental ResourceRulesandRegulations, Chapter102.Thesitestormdrainagesystemisdesignedtoprovideadequatedrainagethroughout thelifeofthefacility.

Thebuildingsiteisgradedtodrainawayfromthedieselgenerator Estructure.

Thepeakrateofstormwater runofffromthesitewasdetermined usingtheRationalMethodofdesignbasedonpre(-i.itation va=u=sderivedfro-criteriapresented inSection6.3.7.1ofTechnical Specification G-1001.Surfacerunoffwillbeconveyedtoaperipheral ditchfordischarge throughtheexistingstormdrainagesystem.3.3Electrical DesinElectrical separation ofcontrolandpowercircuitsintheexistingdieselbuildingisasdescribed

'intheSusquehanna SteamElectricStationFinalSafetyAnalysisReport(FSAR)sections3.12.3.4.2,8;1.6.1.hand8.3.1.11.4.Fordrawingsandtablesseethereferenced FSARsections.

Electrical separation ofcontrolandpowercircuitsindieselgenerator Ebuildingisasdescribed inIEEE-384, 1981and;Regulatory Guide1.75,Rev.2,1978asinterpreted (FSAR)'ection 8.1.6.1.h.

FordrawingsseeE81-1,E81-2andE81-3ofAppendixA.3-7.

3.3.1MediumVoltaeSstemDieselgenerator Eisconnected directlytotheswitchgear inthedeiselgenerator Efacility.

Theswitchgear isClass1Eandconsistsofmetal-clad, dead-front, free-standing steelstructures, completewithbuses,draw-outcircuitbreakers, currentandpotential transformers, controlswitches, instruments, andotherequipment necessary forproperoperation.

Thecircuitbreakersarerated1200A,250MVA,4.16kV,withcommensurate busbracing.Eachofthefouremptypositions intheswitchgear isconnected toaClass1Eswitching pointlocatedatanexistingdieselgenerator.

Eachswitching pointconsistsofamanualcircuitbreakerandanemptyposition.

Amanualcircuitbreakerisprovidedforinsertion intoonlyoneofthefourpositions intheswitchgear inthedieselgenerator Efacility, andamanualcircuitbreakerisprovidedforinsertion ateachswitching pointlocatedatanexistingdieselgenerator.

Properalignment allowsthesparedieseltobeconnected inplaceofanyoneoftheexistingdiesels.Whennotinuse,themanualcircuitbreakersarestoredinasparecubicleintheswitchgear inthedieselgenerator

'Ebuilding.

Acircuitbreakerisalsoprovidedforconnection tothe4.15kVprimaryofthenewindoortransformer.

Acubicleisprovidedforauxiliary meteringand/orinstrumentation, andforconnection tothetestfacility.

Changestothedieselgenerator controlpanellocatedinthemaincontrolroomhavebeenminimized.

Asystemforcontroltransferhasbeendeveloped, withconsideration tocableseparation requirements andHumanFactorsEngineering.

Thefollowing arelocatedatthenewswitchgear inthedieselgenerator Ebuilding:

Incominglinecompartment Voltmeter Voltmeter switchEquippedspace(totaloffour)AmmeterAmmed".switchLocalcontrolswitchwiththreeindicating lights(breakeropen,breakerclosed,breakerintest)Transformer feederCircuitbreakerAmmeterandammeterswitch50/51shortcircuit/overcurrent protective relays'50Ggroundcurrentprotective relayLocalcontrolswitchwiththreeindicating lights(breakeropen,breakerclosed,breakerintest)Keyinterlock, fordisconnect switchontransformer

-toprecludeoperating switchunlessbreakerisopen3-8 LockoutrelayoTestFacilitycompartment oBreakerstoragecompartment 3.3.1.2SwitchinPointsThefollowing arelocatedateachofthefournewswitching pointsintheexistingdieselgenerator buildings.

oCircuitbreakercompartment Manual,draw-outbreakerLocalcontrolswitchwiththreeindicating lights(breakeropen,breakerclosed,breakerintest)AmmeterAmmeterswitchoEquippedspaceVoltmeter Voltmeter switchAmmeterswitchLocalcontrolswitchwiththreeindicating lights(breakeropen,breakerclosed,breakerintest)3.3.2480-VoltSstemThesecondary ofthenewindoortransformer isconnectable toaClass1EMotorControlCenter(MCC),tosupplytheEdieselgenerator auxiliary loads.ThisClass1EMCCisconnected toanewnon-Class 1EMCCviatwoshunt<<trip circuitbreakers, eachactivated byanundervoltage orLOCAsignal.Thenon-Class 1EMCCisnormallypoweredviaanautomatic transferswitchfromeitheraUnit1orUnit2non-Class 1Eloadcenter.BothMCC'sareenclosed, free-standing cabinet-type withmainandverticalbuses,combination motorstarters, feederprotection devices,andotherequipment asrequired.

3.3.3Class1E125-VoltDCSstemTheClass1Edcsystemsuppliespowerforoperation ofthenew4.16kVswitchgear lineup,ESWvalves,dieselcontrols, fieldflashing, andsimilarrequirements.

Itiscomposedofonebattery,onecharger,oneswitchboard, oneMCC,andonedistribution panelinthedieselgenerator Ebuilding.

Thecomponents aresuitablysizedtomeettherequirements ofthesystemandareshownonthe125VDCone-linedrawingE-ll,SheetllinAppendixA.Thebatterychargeriscapableofsupporting thenecessary loadswhilerecharging thebatterywithin8hours,aswellasproviding thebatteryfloatandequalizing charge.3-9 3.3.4TransferSwitchinSstemAsystemfortransferswitching hasbeendeveloped, withconsideration tocableseparation requirements, HumanFactorsEngineering, andtominimizing changestothecontrolboardsinthemaincontrolroom.3.3.4.1TransferPanelsThetransferswitching systeminvolvesoperation oftransferswitchesonpanelslocatedinthedieselgenerator Ebuildingandintheexistingdieselgenerator buildings.

Severalgroupingofcontrols,

metering, andalarmswillbetransferred.

Thetransferswitchesinthespecifictransferpanelsinthedieselgenerator Ebuildingareusedtoselectthepathtothecontrolsofthespecificdieselgenerator tobereplaced.

Thetransferswitchattheindividual transferpanelineachexistingdieselgenerator buildingisusedtotransfercontrolsofthespecificdieselgenerator tobereplacedtodieselgenerator E.Thesetwoswitchesinseriesprovideadoublebreakincontrolcircuitstoprecludeproblemsinthenewbuildingfrombeingpropagated intoany'oftheexistingdieselgenerator controls.

Thissameprinciple appliestothetwopowercircuitbreakersinseries;therearealwaystwobreaksbetweendieselgenerator Eandanexistingnonaligned dieselgenerator.

Also,thedieselgenerators cannotbeparalleled.

Thelocationoftheswitchgear andtransferpanelsatElevation 710'ntheexistingdieselgenerator buildings providessomeprotection frommissiles.

Ifafireormissilefromanexistingdieselgenerator weretooccurataswitching point,itwilldisabletheswitching pointinamannersuchthatrepairwouldberequiredbeforedieselgenerator Ecouldbeusedinplaceoftheparticular existingdieselgenerator.

3.3.4.2LocalEnine-Generator ControlPanelsThegenerator controlpanelfordieselgenerator Eincludesprotective

relaying, andislocatedinthedieselgenerator Ebuilding.

Thispanelissimilartothepanelsprovidedforeachoftheexistingdieselgenerators.

(RefertoTable3-2).Thene'~'nginecont-.-'anel forthedieselgenerator Eengineincludesinstrumentation, andislocatedinthedieselgenerator Ebuilding.

Thispanelissimilartothepanelsprovidedforeachoftheexistingdieselgenerators.

(RefertoTable3-3).3.3.4.3DevicestobeTransferred Thedevicesassociated withthereplaceddieselgenerator areusedfordieselgenerator E,viathetransferswitching system.(RefertoTable3-3).Thenewdevicestobere-used,asabove,onthemaincontrolboardare:oAlarmsDieselgenerator trippedHighpriorityalarm3>>10 LowpriorityalarmDieselgenerator breakertripDieselgenerator failstostartDieselgenerator atnearfullloadDieselgenerator notinautomatic modeRoomfloodedControlsStart-Stop Synchronize Frequency adjustment Voltagead)ustment Manualorautomatic voltageregulator selection Isochronous anddroopselection Readytorun><lighBIS'signals(SeeSection3.3.4.4)MetersVoltageCurrentFrequency Kilowattoutput3.3.4.4BassedandInoerableStatus(BIS)PanelForeachofthesystemslistedbelow,theswitchesandindications foreachoftheexistingdieselgenerators areused,viaaswitching transfersystem,whendieselgenerator Eisusedinplaceofanyoneoftheexistingfourdieselgenerators.

DieselGenerator ControlSystemDieselGenerator OutputSystemDieselGenerator Auxiliary System'SWSystemEachofthesesystemsexistsfortheexistingdieselgenerators.

Table3-4listsindicating lightsinexistingBISpanels.3.3.4.5Dedicated DevicesThefollowing newdevices,locatedonthemaincontrolboard,arededicated tothedieselgenerator Efacility:

oAlarms4.16kVSystemforDieselGenerator EFacility-Trouble DCSystemforDieselGenerator EFacility-Trouble HVACFailureinDieselGenerator EFacilityControlSwitchesNotProperlyAlignedDieselGenerator EBuildingSumpLevelHigh3-11 oIndicating LightsAseriesoffiveindicating lightsareprovidedtostatusthereplacement dieselgenerator Easfollows:DieselGenerator Enotalignedasareplacement DieselGenerator Ealignedasreplacement forDieselGenerator ADieselGenerator Ealignedasreplacement forDieselGenerator BDieselGenerator Ealignedasreplacement forDieselGenerator C"DieselGenerator Ealignedasreplacement forDieselGenerator D,oLocal>>Remote SelectorSwitchThisdeviceisadedicated switch,similartotheswitchesfortheexistingdieselgenerators.

oEmergency ServiceWaterValvesOperation Individual open-closed indicating lightsandcontrolswitchesareprovidedontheexistingmaincontrolboardforeachofthefouremergency servicewatervalvesassociated withdieselgenerator E.ThesevalvesarepoweredfromexistingDivisionIandDivisionIIMCCs.Lightingfixturesoperateon277-Vac(Security lightsoperateat400v;explosion-proof lightsoperateat120v).Indoorlightingismetalhalideor'fluorescent depending ontheparticular application.

Outdoorlightingishighpressuresodium.Inhazardous areassuchasthebatteryroom,incandescent explosion prooflightingisused.Thelightingsystemispoweredfromdieselgenerator E'sessential acpowerdi~tribution whichisbackedupbyadiesel'aeratorintneeventoflossofoff-sitepower.Additional

fixtures, energized bythemainplant'snormalacpowerdistribution arealsoprovidedtoaugmenttheessential lightingtoprovidetheminimumillumination levels.Exitlightingisenergized bydieselgenerator E'sessential acpowerdistribution system,andisprovidedasrequired, thisincludesself-contained battery-powered lightingfixtures.

Theoutdoorlightingsystemispoweredfromasourcetraceable totheexistingsecuritysystememergency powersupply.Lightingsystemsareinaccordance withtheNationalElectrical Code.3.3.6'roundin SstemAbarecoppergroundloopconsisting of250-MCMbarecoppercableembeddednearthebaseofthefoundation, perimeter isinstalled, andconnected tothe3-12 applicable equipment witha4/0-AWGbarecopperwire.Thisisinterconnected

~'otheexistingstationgrid.3.3.7Communications SstemThecommunications systemiscompatible withandconnected totheexistingmainplantcommunications system.Sufficient speakersandpublicaddresssystemst'ations forpaging/communications areprovided, aswellasPlantMaintenance/Test Jacksystemstations.

Thesystemisdesignedinaccordance withthelatestissueoftheNEC.ThePAsystemisdesignedsothatalarmmessagescanbeheardunderallconditions ofoperation.

3.3.8SecuritSstemThedieselgenerator Efacilityisclassified asavitalarea,therefore thesecuritysystemisdesignedtosatisfyalltheapplicable requirements of10CFR73.Inaddition, theintrusion alarmsystemdesignmeetsthecriteriaoutlinedinRegulatory Guide5.44.Theexistingsecurityfencewastemporarily relocated priortoconstruction toaccommodate construction progresswithoutendangering vitalareaplantsecurity.

Allsecuritydevicesandequipment aredesignedtobecompatible with,andconnected to,theexistingplantsecuritysystem.Thepurposeofthetestfacilityistoprovideameansforperiodictestingofdieselgenerator Ewhendieselgenerator EisnotalignedtotheClass1Edistribution system.rThedieselgenerator Etestfacilityconsistsofaninterconnection betweenthedieselgenerator E4.16kVClass1Eswitchgear andtheNon-Class 1E13.8kVswitchgear (Bus10)locatedintheexistingturbinebuilding.

Theconnection toBus10isviaasplicetaptotheMakeupWaterIntakeStructure 13.8kVfeeder.Thetestfacilityinterconnection consistsofthefollowing ma)oritems:o'16kVswitchgear compartment andassociated

controls, meteringandprotective devices.o,4.16kVcircuitbreaker(thisisthesamecircuitbreakerwhichisalsoutilizedinthesubstitution ofdieselgenerator Eforanyoneoftheexistingdieselgenerators.

o4.16kV/13.2kV,10.5/13.15 MVAOA/FA55C,step-uptransformer.

o13.8kVoutdoorswitchgear unitwithassociated controlandpro'tective devices(usedtodeenergize 4.16kV/13.2kVtransformer whentestfacilityisnotinuse)oSynchronizing panel(forsynchronizing D.G.E4.16kVoutputto13.8kVBus10;synchronizing isacrossthe4.16kVcircuitbreaker).

3-13 3.3.10MildEnvironment Thedieselgenerator Ebuildingenvironment willatnotimebesignificantly moreseverethantheenvironment thatwouldoccurduringnormalpowerplantoperation, including anticipated operational occurrences.

Itistherefore considered tobea"mildenvironment".

ClasslEequipment locatedinamildenvironment isnotrequiredtobeenvironmentally qualified bytypetest.Adherence totherequirements of10CFRPart50,Appendices AandB,andtheguidanceinRegulatory Guide1.33,Revision3,ensuresadequateperformance ofthesafety-related equipment locatedinthemildenvironment.

TheClass1Eequipment locatedinamildenvironment issubjecttotheplantseismicrequirements, exceptthatpreconditioning (aging)priortoseismictestingisnotrequired.

3.4Instrumentation andControlsThecontrollogicforactivating dieselgenerator Eisbasedonareviewof'xisting dieselgenerator

controls, discussions withtheoperating staff,'nd consideration oftheHumanFactorsinvolvedinplacingtheEdieselgenerator inservice.3-14 Table3>>2PROTECTIVE RELAYS~METERSANDCONTROLDEVICESONTHEGENERATOR CONTROLPANELFORDIESELGENERATOR EThenewgenerator controlpanelislocatedinthedieselgenerator Ebuildingand'includes thefollowing:

oProtective relays:40/76Fieldfailure64FFieldGroundSensor60Voltagebalance27VUndervoltage 50/51Overcurrent, shortcircuit-phasesA,B,C32ReversePower51NFGenerator NearFullLoad59Overvoltage 81Underfrequency 59NNeutralovervoltage 87GEDifferential Protection, withlockoutrelay86DTheconnected 87GErelayisswitchedviatransfer.panels.oMeters:DCFieldcurrentDCFieldvoltageGenerator amperes,withammeterswitch7Generator kilowatts Generator KilovarsGenerator voltage,withvoltmeter switchGenerator frequency Generator kilowatthours Table3-1DIESELGENERATOR EBUILDINGVENTILATION SYSTEMDESIGNPARAMETERS SummerWinterOutdoorAmbientConditions IndoorDesignConditions oElevation 675'-6"and708'-0"withD/G'E'On"pE]evation675s6>iand708tOsiwithD/GtEssiOff0oElevation 656'-6"-Remaining AreawithD/G'E'On"oElevation 656'-6"-Remaining AreawithD/G'E'Off"Elevation 656'-6"-BatteryRoomwithD/G'E'On"or"Off"92'Fd.B/78 Fw.b.120'F(Max)104'F(Max)104'F(Max)120'F(Max)104'F(Max)50F70F(Min)70'F(Min)65'F(Min)60'F(Min)60'F(Min)

Table3-2(Cont'd)oControlDevices:DCControlpowerFieldFlashpowerProtective Relaying-reset Volts/Vers

-Whitelight-Whitelight-Pushbutton

-SelectorswitchRaise-lowerFieldFlash-ManualGenerator BreakerPushbutton

>>LockoutRelay52GBTReset-trip lightsVoltageRegulator

-SelectorswitchManual-Auto Generator Field-LockoutRelay86ESDReset-trip lightsExcitation ShutdownBridgeTransferSwitchTestBlockMetering-Current

-Pushbutton

-Switch-TestblockTransformers TestBlockMetering-Potential Transformers

-TestblockTransformers Table3-3DEVICES,ALARMSANDSHUTDOWNSIGNALSONTHEENGINECONTROLPANELFORDIESELGENERATOR EThenewdieselenginecontrolpanelislocatedinthedieselgenerator Ebuildingandincludesthefollowing:

oDevices:JacketWaterPress/After CoolerPressEnginehours-DualIndicator

-MeterTurbo-charger oilfilterdifferential pressureFueloilsupply/discharge pressurePowerCylinderExhaustTemperature Temperature Enginelubeoilpress/turbo lubeoilpressTurbo-charger Air6Crankcase pressures

-Indicator

-DualIndicator

-Indicator

-Indicator

-DualIndicator

-Indicator Powercylinderexhaustandturbotemp.-MeterRTDtemperature Manifoldpressure-Meter-Indicator Turbo<<discharge pressAirManifoldLeftBank/Right Bank-DualGaugePress.StartingAirPressureReceiver1/Receiver2-DualIndicator EngineSpeedGovernorMode-SelectorSwitchIsochronous-Parallel SpeedControl-SelectorSwitchRaise-Off-Lower Mastertripcircuit-TripMastertripcircuit-Reset-Greenlight-AmberlightTurboexhaustoutlet,turboairin/breakcase Turbochargerspeed-Dualgaugepressure-Meter Table3-3(Cont'd)FueloildaytanklevelFueloilstoragetanklevelSequenceindication

-stepControlModeselectorEngineControl-Meter-Meter-Redlight-SelectorswitchRemote-off-local Local/remote Whitelights-Pushbutton Start-StopSequenceIndication

-Crank-WhitelightSequenceIndication

-RunningidleSequenceIndication

-RunningloadedUnitinEmergency modeMastertripcircuit-Whitelight-Whitelight-Whitelight-Lockoutrelay(86)Trip-ResetAnnunciator DCpoweroncircuit/IlDCpoweroncircuitf/2DGavailable forEmergency Emergency stop-SelectorswitchTest<<Off-Reset Pushbutton Acknowledge

-Whitelight-Whitelight-Whitelight-Pushbutton Stop-Reset AirCompressor I/1AirCompressor

//2-SelectorSwitchHand-Off-Auto withG/R/Alights-SelectorSwitchHand-Off-Auto withG/R/AlightsStandby)acketwaterpump-SelectorSwitchHand-Off-Auto withG/R/AlightsJacketwatercirculating pumpSelectorSwitch Table3-3(Cont'd)JacketwaterheaterHand-Off-Auto withG/R/Alights-SelectorSwitchHand-Off-Auto withG/R/AlightsStandbylubeoilpumpLubeoilcirculating pump.-SelectorSwitchHand-Off-Auto withG/R/Alights-SelectorSwitchHand-Off-Auto withG/R/AlightsLubeoilheate'r-SelectorSwitchHand-Off-Auto withG/R/AlightsFueloiltransferpump-SelectorSwitchHand-Off-Auto withG/R/AlightsStandbyFueloilpump-SelectorSwitchHand-Off-Auto withG/R/AlightsoLocalAlarmsandShutdownSignals:EnginelubeoilpressurelowTurbolubeoilpressurelow'ain&Conn.RodBrg.hightemp.En,"~=Vibration Turbothrustbrg.failureJacketwatertemp.highEngineoverspeed Turbooverspeed Generator Brg.hightemp.Generator ReversepowerGenerator LossofFieldGenerator Overexcitation Table3-3(Cont'd)Generator Differential Generator Underfrequency Generator Overvoltage Emergency ServiceWaterEmergency shutdownIncomplete sequenceoLocalAlarmsEnginelubeoilpressurelowTurbolubeoilpressurelowEnginelubeoilpressurehighEnginecrankcase pressurehighEnginecrankcase levellowFnginelubeoiltempoffnormalJacketwatertemp.offnormalJacketwaterpressurelowJacketwaterstandpipe levellowJacketwaterstandpipe levelhighLubeoilfilterdiff.presshighFueIoilpressurelowFuel.oilpressurehighFueloilfilterdiff.press.highFueloilstrainerdiff.press.highAux.FuelStandbyJacketwaterpumponEoildaytanklevellow-FueloildaytanklevelhighFueloilstoragetanklevellow Table3-3(Cont'd)LubeOilcirculating Prelubepumpmalfunction Lubeoilheatermalfunction Jacketwaterheatermalfunction Jacketwatercirculating pumpmalfunction DGBypassesorinoperable Generator fieldgroundGenerator voltageunbalance Generator neutralovervoltage Generator overcurrent NearfullloadVoltagereg.transfertostandbyMCCnotproperforautooperation Controlswitchesnotproperforremoteautooperation Startingairpressureloworsystemmalfunction Failuretostart Table3-4INDICATING LIGHTSONEXISTINGBISPANELSAseparatepanelisprovidedforUnit1andUnit2foreachofthefourexistingdieselgenerators.

Thefollowing isprovidedoneachpanel.oDiesel-Generator ControlSystemOut-of-Service.

Selectorswitch,(normal-bypass) withgreenindicating light.One(1)greenindicating lightforeachofthefollowing:

Diesel-generator, d-ccontrolpowerloss.Diesel-generator, field-flash andexcitation powerloss.4-kVbus,transformer, circuitbreakerdisabled.

Diesel-generator, controlswitchinlocal.Diesel>>generator, buildingcoolingfandisabled.

One(1)greenindicating lightascommonforalloftheabovesignals.oDiesel-Generator OutputSystemOut-of-Service.

Selectorswitch(normal-bypass) withgreenindicating light.Diesel-generator, circuitbreakerrackedout.Diesel-generator, controlpowerloss.4-kVbus,transformer circuitbreakerdisabled.

oDiesel-Generator Auxiliary SystemOut-of-Service.

SelectorSwitch(normal-bypass),

withgreenindicating light.One.,I)greenindicating lightforeachofthefollowing:

Diesel-generator auxiliary supply/control powerloss.Diesel-generator auxiliaries notinautomatic.

PumpOP-disabled.

One(1)greenindicating lightascommonforalloftheabovesignals.

Table3-4(Cont'd)oESWSystemOut-of-Service SelectorSwitch(normal-bypass),

withgreenindicating light.One(1)greenindicating lightforthefollowing:

ESWvalvescontrolpowerloss Table3-5SIGNALSTOBETRANSFERRED FOREACHOFTHEFOUREXISTINGDIESELGENERATORS

~SinalAutoStart(BackUpCircuit)ShownonExistDGDwNo.G5-553-109 Sh.2ShownonDGEDw.No.G5-553-243 Sh.2CircuitBreakerControl(52T1)ReadyToCloseGenerator Breaker(Unit2)G5-553-109 Sh.1G5-553-109 Sh.10G5-553-243 G5-553-143 S}1.1Sh.12Generator BreakerTripSignal(Unit2)SEVRAuto/Manual SwitchFieldCurrentToComputerUnitNo.1FieldCurrentToComputerUnitNo.2Voltmeter Frequency MeterTotalizer WattMeterVARMeterDieselGenerator DC,Control PowerLoss(BISUnit1)DieselGenerator FieldFlashandEx.rPowerL~'(BISUn>t1)DieselGenerator ControlSwitchinLocal(BISUnit1)G5-553-109 Sh.103-E12-03-B Sh.1b3-E12-03-B Sh.3a3-E12-03-B Sh.3a3-E12-03-B Sh.3a3-E12-03-B Sh.3a3-E12-03-B Sh.3b3-E12-03-B Sh.3b3-E12-03-B Sh.3bG-5-553-109 Sh.103-E12-03-B Sh.2aG5-553-109 Sh.10G5-553-243 Sh.12G5-553-366 Sh.4G5-253-366 Sh.1G5-553-366 Sh.1G5-253>>366 Sh.5G5-253-366 Sh.5Nottransferred G5-253-366 Sh.5G5-253-366 Sh.5G5-553-243 Sh.12G5-253-366 Sh.5G5-553-243 Sh.12DieselGenerator AuxSupply/ControlPower Loss(BISUnit1)ESWReturnWaterTemperature E-259J-411Sh.9Sh.4E-259J-411Sh.23Sh,4ADieselGenerator AuxNotinAuto(BISUnit1)E-259Sh.9G5-553-243 Sh.13 Table3-5(Cont'd)OilPumpDisabled(BISUnit1)E<<257E-257Sh.2DieselGenerator DCControlPowerLoss(BISUnit2)DieselGenerator FieldFlashandExciterPowerLoss(BISUnit2)DieselGenerator ControlSwitchInLocal(BISUnit2)G5-553-109 Sh.103-E-12-03-B Sh.2aG5-558>>109 Sh.10G5-553-243 Sh.12G5-253-366 Sh.5G5-553-243 Sh.12DieselGenerator Aux.Supply/E-259ControlPowerLose(BISUnit2)Sh9E-259Sh.23DieselGenerator Aux.NotInAuto(BISUnit2)E-259Sh.9G5-553-243 Sh.13OilPumpDisabled(BISUnit2)E-257E-257Sh.2AutoStartEmergency ServiceWaterPumpSynchronizing AmmeterG5-553-109 Sh.103-E12-030B Sh.3a3-E12-03-B Sh.3bG5-553-243 Sh.12G5-253-366 Sh.2G5-253-366 Sh.1DieselGenerator TrippedAlarmG5>>553-109 Sh.10G5-553-243 Sh.12HighPriorityAlarmLowPriorityAlarmDieselC~nerator fa4l.stostarti,.'omplete Sequence)

AlarmG5-553-109 Sh.10G5-553-109 Sh.10G5-"3-109Sh.10G5-553-243 Sh.12G5-553-243 Sh.12G5-553-243 Sh.12DieselGenerator NearFullLoadAlarm3-E12-03-B Sh.2aG5-253-366 Sh.5DieselGenerator NotInAutoModeAlarmE-259Sh.9G5-553-243 Sh.13(Multiple Contactsof74R3)AutoStart(PrimaryCircuit)Generator BreakerOpen/Closed ManualStartG5-553-109 Sh.1G5-553-109 Sh.1G5-553-109 Sh.1G5-553-243 G5-553-243 Sh.2Sh.3G5-553<<243 Sh.1 Table3-5(Cont'd)ManualStopGovernorLowerRaiseReadytoCloseGenerator Breaker-Unit1G5-553-109 Sh.9G5-553-109 Sh.6G5-553-109 Sh.10G5-553-243 Sh.3G5-553-243 Sh.8G5-553-243 Sh.12ReadytoCloseGenerator Breaker-Unit2Isochronous/Droop Overcurrent withVoltageRestraint Block51VUnit1G5-553-109 Sh.10E-259Sh.93-E12-03-B Sh.2aG5-553-243 Sh.12G5-553-243 Sh.1G5-253-366 Sh.5Overcurrent withVoltageRestraint Block51VUnit23-E12-03-B Sh.2aG5-553-366 Sh.5DieselGenerator Differential 3-E12-03-B Sh.G5-253-366 Sh.1Overcurrent VoltageRestraint 51VE-23Sh.6E-23Sh.10ESWValveHV-01112A,B,C,D ControlSwitch(closecircuit)ESWValveHV-01112A,B,C,D ControlSwitch(opencircuit)ESWValveHV-01112A,B,C,D OverRoomBypassESWValveHV-01112A,B,C,D Indicating LightsESWValveHV-01122A,B,C,D Control~~itch{Clotho.Circuit)ESWValveHV-01122A,B,C,D ControlSwitch(OpenCircuit)ESWValveHV-01122A,B,C,D OverloadBypassESWValveHV-01122A,B,C,D Indicating LightsESWValveHV-01110A,B,C,D ControlSwitch(closecircuit)ESWValveHV-01110A,B,C,D ControlSwitch(OpenCircuit)E-146-E-146E-146E-146E-146E-146E-146E-146E-146E-146Sh.9Sh.9Sh.9Sh,9S.9Sh.9Sh.9Sh.9Sh.10Sh.10E-146E-146E-146E-146E-146E-'146W-146E-146E-146E-146Sh.17Sh.17Sh.17Sh.18Sh.18Sh.18Sh.18Sh.18Sh.19Sh.19 Table3-5(Cont'd)ESWValveHV-01110A,B,C,D OverloadBypassESWValveHV-01110A,B,C,D Indicating LightsESWValveHV-01120A,B,C,D ControlSwitch(CloseCircuit)E-146E-146E-146Sh.10Sh.10Sh.10E-146E-146,E-146Sh.19S11.19Sh.20ESWValveHV-01120A,B,C,D E-146ControlSwitch(OpenCircuit)Sh.10E-146Sh.20ESWValveHV-01120A,B,C,D OverloadBypassESWValveHV-01120A,B,C,D Indicating LightsESWValveHV-01110A,B,C,D AutoLoopTransferESWValveHV-01120A,B,C,D AutoLoopTransferESWValvesloop"A"BISIndication E-146E-146E-146E-146E-146Sh.10Sh.10S}1.10Sh.10Sh.33E-146E-146E-146E>>146E-146Sh.20Sh.20Sh.1.9Sh.20Sh.33AESWValvesloop"B"BypassIndication ESWValvesHV-01110A,B,C,D AutoLoopTransferHUACVentSupplyFanControlSwitch(Start)E-146E-146E-193Sh.33Sh.11Sh.1E-146E-146E-193Sh.33BSh.1Sh.6HVACVelacSupplyFanControlSwitch(Auto)HVACVentSupplyFanIndicating LightsE-193E-193Sh.1Sh.1E-193E-193Sh.6Sh.6 4.0STUDIESAgasbottlemissileanalysis(Gibbs&HillCalculation No.MC-HI-001) wasperformed todetermine themaximumvelocitywhichcouldbeachievedbyagasbottleduetothepostulated failureofthegasreliefvalve.Theanalysisassumedasuddenopeningofone(1)inchdiameteroccurred, inthebottletherebymaximizing the'gasexitmassflowrateandcausingthegasbottletobecomeamissile.Calculation resultsforthegascylinders ofthetypeandsizeusedatSusquehanna SteamElectricStationshowedthatthemostsevereimpactisduetothe143poundoxygenbottlewithamaximumvelocityof262fpswhilethe70poundzerogasbottlereachedthehighestvelocity(342fps).Thesecalculated maximumvelocities aresignificantly lessthanthe900fpsdiscussed inSusquehanna Susquehanna ElectricStationFinalSafetyAnalysisReport(FSAR}Section3.5.1.5andconsequently themissilecharacteristics asdescribed intheFSAR(i.e.missileweightandvelocity) canbemodifiedtoconformtothecalculated worstcaseconditions.

Structural analysesevaluating theeffectsoftheseidentified worstcasemissileswereincorporated intothefinaldesigncalculations forthedieselgenerator Ebuilding.

5.0TIE-INDESCRIPTION Thetie-inofthedieselgenerator Efacilitywiththeoperating plantisplannedinsuchawayastominimizetheeffectonplantopera-tions.Insofarasitispossible, thetie-insystemsaredesignedsothatmostofthepipingandcablingcanbeinstalled withoutactuallyconnecting totheexistingplantservices.

Theexactlocationofallabove-ground tie-insystemsaswellasunder-groundsafety-related andcriticalnonsafety-related systemthatmayimpactdesignorconstruction activities wasestablished.

Althougheveryeffortisbeingmadetominimizeexposureofsafetyandcriticalnon-safety relatedsystemstopotential damagefromconstruction acti-vities,specificprotective measuresweretakenincluding thefollowing:

oExcavation wasstagedtominimizeexposureofcriticalareas.oHandexcavation methodswereemployedwhenexcavations werewithinthreetofourfeetofcriticalutilities orfacilities.

oMaximumeffective coverwasmaintained byusingsteelplateoranequivalent composite ofearthandsteelplate(orsteelcasingpipe).oTemporary supportsand/orconcreteencasement wereutilizedwhererequired.

Thedetailedtie-indescription considers butisnotlimitedto,thefollowing:

oRelocation ofexistingsystemsoRelocation ofexistingsystemsencountered inareaswheretie-insarerequired.

'Tie<<inconnections alsocanbeperformed duringtheoutages'rom theexistingplantsystemsuptoanisolation devicesuchasacircuitbreakerorvalve;thebalanceofthesystemwouldbeinstai'ad laterin'theconstruction.

Thiswouldallowcontinued construction withoutdisturbing plantoperation.

Theseisolation deviceswillserveasthe"plug-in" interface betweentheadditional dieselandtheexistingsystems.Thefollowing isalistofsystemswhichrequiretie-inconnections:

oStormdrainagesystemsoPowersupplysystemsoControlroompanelinterface system5-1 VoComputersystemoEmergency ServicewatersystemoFueloilsystemoSumpEffluentdisposalsystemoPotablewatersystemoDemineralized watersystemoStationairsystemo'ireprotection anddetection systemoPlantsecuritysystem5-2 APPENDIXADRAWINGS ThisAppendixcontainsthefollowing DrawinNumberdrawings:

TitleC>>5003DieselGenerator EFacilitySiteDevelopment PlanM-5200,Sheet1DieselGenerator EBuildingGeneralArrangement PlansM-5200,Sheet2DieselGenerator EBuildingGeneralArrangement SectionsM-120,Sheet2FlowDiagramDieselOilStorageandTransferDieselGenerator EBuildingJ-120,Sheets3,4,5ICDDieselGenerator EBuildingDieselOilandStorageSystemM-ill,Sheet3FlowDiagramEmergency ServiceVaterSystemDieselGenerator EBuildingJ-ill,Sheets10,ll,13,14,14A,15ICDDieselGenerator EBuildingEmergency ServiceMaterSystemM-182,Sheet2DieselGenerator EBuildingAirFlovDiagramV-182,Sheets7,8,8A,9,9A,10,11,13,13A,14,15,16ICDDieselGenerator EBuildingAirFlowSystemM-122,Sheet9FlovDiagramFireProtection DieselGenerator EBuildingFig.F-1006Emergency DieselEGenerator Instrument andLogicFlovDiagramFireProtection SystemM-134,Sheet2E5,Sheet5FlovDiagramDieselAuxiliaries DieselGenerator EBuildingSingleLineMeter&Relay4.16kVdieselgenerator E

DrawinNumberE9,Sheet77TitleOneLineDiagram480VMCC-OB565DieselGenerator EUnits1&2E9,She'et78OneLineDiagram480VMCC-OB566DieselGenerator EUnits1&2Ell,Sheet11125VdcOneLineDiagramDieselGenerator EUnits1&2E23,Sheet104.16kVThreeLineDiagramDieselGenerator EE23,Sheet12,Schematic DiagramSwitchContactDevelopment TransferPanelsOC512E-A,E-B,E-C&E-DE23,Sheet6ASchematic Meter&RelayDiagram4.16kVDieselGenerator A,B;C&DTransferControl-DieselGenerator EUnits1&2E23,Sheet7Schematic Meter&RelayDiagram4.16kVDieselGenerators A,B,C&DTransferControl-DieselGenerator'E Units1&2E23,Sheet8Schematic Meter&RelayDiagram4.16kVDieselGenerator A,B,C&,DTransferControl-DieselGenerator EUnits1&2E23,Sheet8ASchematic Meter&RelayDiagram4.16kVDieselGenerator A,B,C&DTransferControl-DieselGenerator EUnits1&2E26,Sheet13Schematic Meter&RelayDiagram125DCDieselGenerator EE102,Sheet38E105,Sheet13E105,Sheet1813.8kVBreakerConnection Diagram.4.16kVBreakerSchematic DiagramSchematic Diagram4.16kVBusOA510DieselGenerator CircuitBreaker51006ControlCommonE23,Sheet9Schematic Meter&RelayDiagram4.16kVDieselGenerator A,B,C&DTransferControl-DieselGenerator EUnits1&2A-4 DrawinNumberE23,SheetllTitleSchematic Meter&RelayDiagram4.16kVDieselGenerator A,B,C&DTransferControl-DieselGenerator EUnits1&2E103,Sheet25Schematic Diagram4.16kVBusesAuxiliary RelayTransferControlDieselGenerator EUnits1&2E105,Sheet27Schematic Diagram4.16.kVBusDieselGenerator CircuitBreakersTransferControlDieselGenerator EUnit1E105,Sheet28Schematic Diagram4.16kVBusDieselGenerator CircuitBreakersTransferControlDieselGenerator EUnit1E105,Sheet29Schematic Diagram4.16kVBus"1A,1B,1C,1D"&"2A,2B,2C,2D"DieselGenerator CircuitBreaker-TripInterlock WithDieselGenerator "A,B,C,D,&E"TransferUnits1&2E105,Sheet30Schematic Diagram4.16kVBus"1A,1B,1C,1D"&2A,2B,2C,2DDieselGenerator CircuitBreaker-TripInterlock WithDieselGenerator A,B,C,.D,&ETransferUnits1&2E146,Sheet9ASchematic DiagramESWDieselCoolerValvesLoopAHV-01112A,B,C,D&ETransferCommonE146,Sheet9BSchematic DiagramESWDieselCoolerValvesLoopAHV-01112A,B,C,D&ETransferCommonE146,S,"oet9CSchematic DiagramESWDieselValvesLoopAHV-01112A,B,C,D&TransferCommonCoolerE146,Sheet9DSchematic DiagramESWDieselCoolerValvesLoopAHV-01122A,B,C,D&ETransferCommonE146,Sheet9ESchematic DiagramESWDieselCoolerValvesLoopAHV-01122A,B,C,D,&ETransferCommonA-5 DrawinNumberE146,Sheet9FTitleSchematic DiagramESWDieselCoolerValvesLoopAHV-01122A,B,C,D&ETransferCommonE146,Sheet10ASchematic DiagramESWDieselCoolerValvesLoopBHV-01110A,B,C,D&ETransferCommonE146,Sheet10BSchematic DiagramESWDieselCoolerValvesLoopBHV-01110A,B,C,D&ETransferCommonE146,Sheet10CSchematic DiagramESWDieselCoolerValvesLoopBHV-01110A,B,C,D&ETransferCommonE146,Sheet10DSchematic DiagramESWDieselCoolerValvesLoopBHV-01120A,B,C,D&ETransferCommonE146,Sheet10EE146,Sheet10FSchematic DiagramESWDieselCoolerValvesLoopBHV-01120A,B,C,D&ETransferCommonI'chematic DiagramESWDieselCoolerValvesLoopBHV-01120A,B,C,D&ETransferCommonE146,SheetllASchematic DiagramESWDieselCoolerValvesAutoLoopTransferHV-01110A, B,C,D&ECommonE146,Sheet21Schematic DiagramESWDieselCoolerValvesAutoLoopTransferHV-01110A, B,C,D&ECommonE184,Sheet15Schematic DiagramDieselGeneratorAuto Start(Primary)

TransferControlDieselGenerator ECommonE184,Sheet16Schematic DiagramDieselGenerator AutoStart(Back-up).

TransferControlDieselGenerator ECommonE185,Sheet12ASchematic DiagramBypassIndication System(BOP)TransferControlDieselGenerator EUnit1E185,Sheet12BSchematic DiagramBypassIndication System(BOP)TransferControlDieselGenerator EUnit1A>>6 DrawinNumberTitleE185,Sheet12CSchematic DiagramBypassIndication System'(BOP)TransferControlDieselGenerator EUnit1E185,-Sheet26ASchematic DiagramBypassIndication System(BOP)TransferControlDieselGenerator EUnit2E185,Sheet26BSchematic DiagramBypassIndication System(BOP)TransferControlDieselGenerator EUnit2E185,Sheet26CSchematic DiagramBypassIndication System(BOP)TransferControlDieselGenerator EUnit2E185,Sheet33ASchematic DiagramESWLoopABypassIndication System(BOP)CommonE185,Sheet33BSchematic DiagramESWLoopABypassIndication System(BOP)CommonE193,Sheet1ASchematic Diagram-HVACDieselGenerator Building.

VentSystemVentSupplyFansTransferScheme-CommonE193,Sheet1BSchematic Diagram-HVACDieselGenerator BuildingVentSystemVentSupplyFansTransferScheme-CommonE259,Sheet1ASchematic DiagramDieselGenerator Excitation TransferControlDieselGenerator ECommonE259,Sheet,9ASchematic DiagramDieselGenerator EngineTransferControlDieselGenerator ECommonE259,Sheet9BSchematic DiagramDieselGenerator EngineTransferControlDieselGenerator ECommonE259,>.aeet9CSchematic DiagramDieselGenerator EngineTransferControl<<DieselGenerator ECommonE259,Sheet29Schematic DiagramDieselGenerator "A"-DieselGenerator ETransferAlignment Indication CommonE259,Sheet30Schematic DiagramDieselGenerator "B"-DieselGenerator ETransferAlignment Indication CommonA-7 Dravin,NumberE259,Sheet31TitleSchematic DiagramDieselGenerator "C"-DieselGenerator ETransferAlignment Indication CommonE259,Sheet32Schematic DiagramDieselGenerator "D"-DieselGenerator ETransferAlignment Indication CommonE331,Sheet'13Schematic Diagram-Annunciator PlantOperating BenchBoardOC653TransferControl-DieselGenerator ECommonE331,Sheet14Schematic Diagram<<Annunciator PlantOperating BenchBoardOC653TransferControl-DieselGenerator ECommonE331,Sheet14Schematic Diagram-Annunciator PlantOperating BenchBoardOC653TransferControl-DieselGenerator ECommonE332,Sheet4ASchematic Diagram-Annunciator HVACControlBoardOC681TransferScheme-CommonE105,Sheet31,40E146,Sheet174.16kVBreakerConnection DiagramESWMotorOperatedValveNo.1Schematic andConnection DiagramE146,Sheet18ESWMotorOperatedValveNo.2Schematic andConnection DiagramE146,Sheet19ESWMotorOperatedValveNo.3Schematic andConnection DiagramE146,Sheet20ESWMotorOperatedValveNo.4Schematic andConnection DiagramE259,:"-~at13DieselGenerator StandbyJacketWaterPumpSchematic andConnection DiagramE259,Sheet14DieselGenerator, JacketWaterCircuitPumpSchematic andConnection DiagramE259,Sheet15DieselGenerator Jacket.WaterHeaterSchematic andConnection DiagramE259,Sheet16DieselGenerator StandbyLubeOilCircuitPumpSchematic andConnection DiagramA-8 DrawinNumberTitleE259,Sheet18DieselGenerator LubeOilHeaterSchematic andConnection DiagramE257,Sheet2DieselGenerator FuelOilTransferPumpSchematic andConnection DiagramE259,Sheet19DieselGenerator Auxiliaries-AirCompressor No.1Schematic

&Connection DiagramE259,Sheet20DieselGenerator Auxiliaries-AirCompressor No.2andConnection DiagramE259,Sheet21DieselGenerator StandbyFuelOilPump(DC)Schematic andConnection DiagramE259,Sheet22DieselGenerator Generator Auxiliary Miscellaneous SystemsConnection DiagramE259,Sheet17DieselGenerator Preventative LubePumpSchematic andConnection DiagramE193,Sheet6H&VSupplyFanSchematic andConnection DiagramE193,Sheet7H&VSupplyFanSchematic andConnection DiagramE193,Sheet9DampersSchematic andConnection DiagramE193,Sheet8H&VExhaustFan,Schematic andConnection DiagramE193,Sheet10H&VExhaustFanSchematic andConnection DiagramE193,Sheet5H&VBatteryRoomExhaust,Schematic andConnection DiagramE259,Sheet23Miscellaneous Equipment andDevicesSchematic andConnection DiagramE259,Sheet27Miscellaneous Equipment andDevicesSchematic andConnection DiagramE259,'heet 28Miscellaneous Equipment andDevicesSchematic andConnection DiagramA-9 DrawinNumberTitleE326,Sheet22Annunciator, AlarmsPNLOC577ESchematic DiagramE301,Sheet105E81,Sheet1ComputerInputsSchematic andConnection DiagramDieselGenerator EBuildingTrayandConduitPlan.E81,Sheet2DieselGenerator EBuildingTrayandConduitPlan.E81,Sheet3DieselGenerator EBuildingTrayandConduitPlan.E-105,Sheet19Schematic Diagram4.16kVBusOA510PDieselGenerator CircuitBreaker510A02Control-Common E-105,Sheet20Schematic Diagram.4.16kVBus'A510A DieselGenerator CircuitBreaker510AOlControl-Common E-105,Sheet21Schematic Diagram9.16kVBusOA510BDieselGenerator CircuitBreaker510B02Control-CommonE-105,Sheet22Schematic Diagram4.16kVBusOA510BDieselGenerator CircuitBreaker510B01Control-CommonE-105,Sheet23Schematic Diagram4.16kVBusOA510CDieselGenerator CircuitBreaker510C02Control-CommonE-105,Sheet24Schematic Diagram4.16kVBusOA510CDieselGenerator CircuitBreaker.510C01Control-CommonE-105,Sheet25Schematic Diagram4.16kVBusOA510DDieselGenerator CircuitBreaker510D02Control-CommonE-105,Sh26Schematic Diagram4.16kVBusOA510DDieselGenerator CircuitBreaker510D01Control-CommonE-105,Sheet37Connection Diagram4.16kVBusOA510ADieselGenerator CircuitBreaker510A02Control-Common TitleE-105,Sheet38Connection Diagram4.17kVBusOA510ADieselGenerator CircuitBreaker510A01Control-Common E-105,Sheet39Connection Diagram4.16kVBusOA510BDieselGenerator CircuitBreaker510B02Control-Common E-105,Sheet40Connection Diagram4.16kVBusOA510BDieselGenerator CircuitBreaker510B01E-105,Sheet41Connection Diagram4.16kVBusOA510CDieselGenerator CircuitBreaker510C02Control-Common E-105,Sheet42Connection Diagram4.16kVBusOA510CDieselGenerator CircuitBreaker510COlControlCommonE-105,Sheet.43Connection Diagram4.16kVBusOA510DDieselGenerator Circuit510D02Control<<CommonE-105,Sheet44Connection Diagram4.16kVBusOP510DDieselGenerator CircuitBreaker510D01Control-CommonE-259,Sheet29ASchematic DiagramDieselGenerator "A"-DieselGenerator ETransferAlignment Indication

-CommonE-259,Sheet30ASchematic DiagramDieselGnerator"B"-DieselGenerator ETransferAlignment Indication

-CommonE-259,Sheet31ASchematic DiagramDieselGenerator "C"-DieselGenerator ETransferAlignment Indication-Common E-259...eet32ASchematic DiagramDieselGenerator "D"-DieselGenerator ETransferAlignment Indication-Common E-331,Sheet14SchmeticDiagramAnnunicator PlantOperating BenchBoardOC653TransferControl-DieselGenerator E-"A"Common.,E-331,Sheet14ASchematic DiagramAnnunciator PlantOpera-tingBenchBoardOC653TransferControl-DieselGenerator E-"A"Common DrawinNumberTitleE-331,Sheet14BSchematic DiagramAnnunciator PlantOperating BenchBoardOC653TransferControl-DieselGenerator E-"C"CommonE>>331,Sheet14C.Schematic DiagramAnnun.PlantOperating BenchBoardOC653TransferControl-DieselGenerator E-"D"CommonA-12 APPENDIXBCodesStandards, andRegulations Applicable toDieselGenerator EFacility Thisgeneraldocumentpresentsapartiallistingofcodes,standards, regulations applicable totheDieselGenerator EFacilityattheSusquehanna SteamElectricStation-Unit1andUnit2.Thislistingissegregated'y issuingorganization, andprovidesthecode,standard>

orregulation identification, title,andeffective date.Wheretheeffective dateisnotgiven,themostrecentissueineffectonSeptember 22,1983willapply.B-2 1.AMERICANCONCRETEINSTITUTE (ACI)STANDARDS a.ACI-211.1

'tandardPracticeforSelecting Proportions forNormalandHeavyweight Concrete1981b.ACI-214Recommended PracticeforEvaluation ofCompression TestResultsofFieldConcrete1977c.ACI-301Specifications forStructural ConcreteforBuildings 1981d.ACI-304Recommended PracticeforMeasuring, Mixing,Transporting, andPlacingConcrete'978e.ACI-305RACI-306Rg.ACI-308h.ACI-309HotWeatherConcreting ColdWeatherConcreting StandardPracticeforCuringConcreteRecommended PracticeforConsolidation ofConcrete1977197819811972ACI-315~(SP-66)ACIDetailing Manual1980j.ACI-318BuildingCodeRequirements ofReinforced Concrete1977k.ACI-3471.ACI-349Recommend PracticeforConcreteFormworkCodeRequirements forNuclearSafety-Related Safety-Related ConcreteStructures, 19781980m.SP-2ACIManualofConcreteInspection 1981B-3 2.AMERICANINSTITUTE OFSTEELCONSTRUCTION (AISC)a.AISCb.AISCc.AISCAISCSpecification fortheDesign,Fabrication andErectionofStructural SteelforBuildings CodeofStandardPracticeforSteelBuildings andBridgesManualofSteelConstruction Specification forStructural JointsUsingA'STMA325orA490Bolts1978'97619801978B-4 3.AMERICANIRON&STEELINSTITUTE (AISI)a.C1008b.Standards SteelsSpecification ColdFormedSteelDesignManual1977 4.AMERICANNATIONALSTANDARDS INSTITUTE (ANSI)a.A380b.ANS-52.1c.Bl.ld.82.1e.816.1f.816.3g.816.5h.816.9816.10Recommended PracticeforCleaningandDescaling Stainless SteelParts,Equipment andSystemsAmericanNationalStandardNuclearSafetyCriteriafortheDesignofStationary BoilingWaterReactorPlantsUnifiedInchScrewThreads(UNandUNRThreadForm)PipeThreads(ExceptDryseal)CastIronPipeFlangesandFlangedFittingsMalleable IronScrewedFittings, 150lbs.and300lbs.SteelNickelAlloyandOtherSpecialAlloysPipeFlangesandFlangedFittingsSteelButtwelding FittingFace-to-Face andEnd-to-End Dimensions ofFerrousValves19781983198219731975-1977198119731973816.11k.816.211.816.25m.816.34Socket-Welding andThreadedNonmetallic FlatGasketforButtwelding EndsForgedSteelFittings1980PipeFlanges197819791981FlangedandButtwelding EndValves,Steel,NickelAlloy,andOtherSpecialAlloysn.830.2.0o.831.1p.836.10pl.836.19q.Cl-NECOverheadandGantryCranesPowerPiping(Use831.1-)967forpipesupportsfornuclearpiping,withallowable stressesper831.1-1973.Use831.1-1973forpipesupportsfornon-nuclear piping.)WeldedandSeamlessWroughtSteelPipeStainless SteelPipeSpecification ofGeneralRequirements foraQualityProgram197619801979197919688-6 r.C37.04RatingStructure forACHigh-Voltage CircuitBreakersRatedonaSymmetrical.

CurrentBasis1982s.C37.06Preferred RatingsandRelatedRequired1979capabilities forACHigh-Voltage CircuitBreakersRatedonaSymmetrical CurrentBasisC37.09TestProcedures forACHigh-Voltage CircuitBreakersRatedonaSymmetrical CurrentBasis1979u.C37.11Requirements forElectrical ControlforACHigh-Voltage CircuitBreakersRatedonaSymmetrical CurrentBasisandaTotalCurrentBasis1979v.C37.010Application GuideforACHigh-Voltage CircuitBreakersRatedonaSymmetrical CurrentBasis1982w.C37.20Switchgear Assemblies, Including Metal-Enclosed Bus(IEEE27}[includes ANSI/IEEE supplements C37.20a-1970, C37.20b-1972, andC37.20c-1974]

1969x.C37.98y.C37.100z.C57.12.80 SeismicTestingofRelaysDefinitions forPowerSwitchgear Terminology forPowerandDistribution Transformers 197819801978aa.C57.13bb.C533Requirements forInstrument Transformers Specification forCalciumSilicateBlockandPipeThermalInsulation 19781980cc.H35.1AlloyandTemperDesignation SystemforAluminum1982dd.MC96.1"Temperature Measurement Thermocouple 1982eeN18.7Administrativ=

ControlsandQualityAssurance fortheOperational PhaseofNuclearPowerPlants1976ff.N42.2gg.'45.2QualityAssurance ProgramRequirements forNuclearFacilities 1977High-Voltage Connectors forNuclearInstruments 1971hh.N45.2.2Packaging,

Shipping, Receiving, StorageandHandlingofItemsforNuclearPowerPlants(DuringtheConstruction Phase)1978ii.N45.2.5Supplementary QualityAssurance Requirements for1974Installation, Inspection andTestingofStructural B-7 ConcreteandStructural SteelDuringtheConstruct-tionPhaseofNuclearPowerPlantsgg.N45.2.6Qualifications ofInspection, Examination, and1978TestingPersonnel forNuclearPowerPlantskk.N45.2.9ll.N45.2.10mm.N45.2.11Requirements forCollection, StorageandMaintenance ofQualityAssurance RecordsforNuclearPowerPlantsQualityAssurance TermsandDefinitions QualityAssurance Requirements fortheDesignofNuclearPowerPlants197419731974nn.N45.2.12Requirements forAuditingofQualityAssurance 1977ProgramsforNuclearPowerPlantsoo.N45.2.13QualityAssurance Requirements forControlofProcurement ofItemsandServicesforNuclearPowerPlants1976pp.N45.2.23Qualifications ofQualityAssurance ProgramAuditPersonnel forNuclearPowerPlants1978qq.N101.4QualityAssurance forProtective CoatingsAppliedtoNuclearFacilities.

1972rr.N195FuelOilSystemsforStandbyDiesel-Generators 1976ss.N626.3Qualifications andDutiesofPersonnel EngagedinASMEBoilerandPressureVesselCode,SectionIII,Division1and2,Certifying Activities.

1979B-8 5.AMERICANSOCIETYFORTESTINGANDMATERIALS (ASTM)a.Standards oftheAmericanSocietyforTestingandMaterials B-9 6.AMERICANSOCIETYOFCIVILENGINEERS (ASCE)a.PaperNo.3269WindforcesonStructures

-FinalReportoftheTaskCommittee onWindForces,Committee onLoadsandStresses, Structural Division1961B-10 7.AMERICANSOCIETYOFMECHANICAL ENGINEERS (ASME)a.ASMEBoilerandPressureVesselCode,SectionIII,NuclearPowerPlantComponents

-1971EditionThroughandincluding Winter1972Addendumb.ASMEBoilerandPressureVesselCode,SectionII,1971orlaterEdition,MaterialSpecifications, asreferenced bySectionIIIc.ASMEBoilerandPressureVesselCode,SectionIX,Edition,WeldingQualifications, asreferenced bySectionIII.1983d.ASMEBoilerandPressureVesselCode,SectionXI,1980Edition,1980throughandincluding Winter1980Addendum, RulesforIn-Service Inspection ofNuclearPowerPlantComponents ReactorCoolantSystems 8.AMERICANWATERWORKSASSOCIATION (AWWA)a.D1OOStandardforWeldedSteelTanksforWaterStorage1979b.M11SteelPipeManual1964B-12 9.AMERICANWELDINGSOCIETY(AWS)a.b.A2'.4WeldingHandbookSixandSeventhEditionsSymbolsforWeldingandNondestructive Testing1979Including Brassingc.A5.1Spec.forCoveredCarbonSteelArcWeldingElectrodes 1981d.A5.2Specification 6SteelOxyfuelGasWeldingRods1980e.A5.3f.A5.4Specification forAluminumandAluminumAlloyCoveredAreWeldingElectrodes Specification forCoveredCorrosion Resisting ChromiumNickelSteelWeldingElectrodes 19801981g.A5.5Specification LowAlloyStudCoveredArcWelding1981Electrodes h.A5.6Specification forCooperandCopper<<Alloy Covered1976Electrodes A5.7A5.8k.A5.9Specification forCopperandCopper-Alloy Bare1977WeldingRodsandElectrodes Specification forBrazingFillerMetal1981Specification forCorrosion Resisting Chromium1981andChromium-NickelSteelBareandComposite MetalCordandStrandedWeldingRods1.A5.10Specification forAluminumandAluminumAlloyBareWeldingRodsandElectrodes 1980m.A5.11n.,8.12o.A5.13Specification forNickelandNickelAlloyCovered1976WeldingElectrodes Specification forTungstemArcWeldingElectrodes 1980Specification forSolidSurfaceWeldingRodsand1980Electrodes p.A5.14Specification forNickelandNickelAlloyBare1976WeldingRodsandElectrodes q.A5.15Specification forWeldingRodsandCoveredElectrode's forCastIron1982r.A5.16Specification forTitaniumandTitaniumAlloyBareWeldingRods6Electrodes 1970 s.A5,17t.A5.18Specification forCarbonSteelElectrodes andFluxesforsubmerged ArcWeldingSpecification forCarbonSteelFillerMetalsforGasShieldedArcWelding19801979u.A5.19Specification forMagnesium AlloyWeldingRods1980andBareElectrodes v.A5.20Specification forCarbonSteelElectrodes forFluxCoveredArcWelding1979A5.21Specification forComposite Surfacing WeldingRodsandElectrodes 1980x.A5.22Specification forFluxCordCorrosion-Resisting 1980Chrominum andChromium-Nickel SteelElectrodes y.A5.23Specification forLowAlloySteelElectrodes andFluxesforsubmerged ArcWelding1980z.B3.0aa.Dl.lStandardQualification Procedure Structural WeldingCode19771983B-14 l10.CONCRETEREINFORCED STEELINSTITUTE (CRSI)a.ManualofStandardPractice1981B-15 11.INSTITUTE OFELECTRICAL 6ELECTRONICS ENGINEERS (IEEE)a.IEEE-4StandardTechniques forHighVoltageTesting(ANSIC68.11978b.IEEE-93GuideforTransformer ImpulseTests1968c.IEEE-279CriteriaforProtection SystemsforNuclearPowerGenerating Systems1971IEEE-308StandardCriteriaforClass1EPowerSystemsforNuclearPowerGenerating Stations1980e.IEEE-323StandardforQualifying Class1EEquipment forNuclearPowerGenerating Stations1974IEEE-334StandardforTypeTestofContinuous DutyClass1EMotorsforNuclearPowerGenerating Stations1974g.IEEE-336Installation, Inspection, andTestingRequirements forInstrumentation andElectricEquipment DuringtheConstruction ofNuclearPowerGenerating Stations(ANSIN45.2.4)1980h.IEEE-338StandardCriteriaforthePeriodicTestingofNuclearPowerGenerating StationSafetySystems1977i.IEEE-344IEEERecommended Practices forSeismicQualification ofClass1EEquipment forNuclearPowerGenerating Stations19755.IEEE-378TrialUseCriteriaforthePeriodicTestingofNuclearPowerGenerating StationProtection Systems1971k.IEEE-379IEEE-381StandardApplication oftheSingle-FailureCriterion toNuclearPowerGenerating StationClass1E.SystemsStandardCriteriaforTypeTestsofClass1EModulesUsedinNuclearPowerGenerating Stations19771977m.IEEE-.382 StandardforQualification ofSafety-RelatedValveActuators 1980n.IEEE-383StandardforTypeTestofClass1EElectricCables,FieldSplices,and1974 Connections forNuclearPowerGenerating Stationso.IEEE-384StandardCriteriaforIndependence ofClass1EEquipment andCircuits1981p.IEEE-387StandardCriteriaforDiesel-Generator UnitsAppliedasStandbyPowerSuppliesforNuclearGenerating Stations1977q.IEEE-415GuideforPlanningofPre-Operational TestingProgramsforClass1EPowerSystemsforNuclearPowerGenerating Stations1976r~IEEE-420StandardDesignandQualification of-Class1EControlBoards,PanelsandRacksusedinNuclearPowerGenerating Stations1982s~IEEE-450Recommended PracticeforMaintenance, Testing,andReplacement ofLargeLoadStorageBatteries forGenerating StationsandSubstations 1980IEEE-467QualityAssurance ProgramRequirements fortheDesignandManufacture ofClass1EInstrumentation andElectricEquipment forNuclearPowerGenerating Stations1980u~IEEE-484Recommended PracticeforInstallation DesignandInstallation ofLargeLeadStorageBatteries forGenerating StationsandSubstations 1981VeWoIEEE-485IEEE-494Recommended PracticeforSizingandLargeLeadStorageBatteries forGenerating StationsandSubstations StandardMethodforIdentification ofDocuments RelatedtoClasslEEquipment

.andSystemsforNuclearPowerGenerating Stations19781974X~IEEE-498StandardRequirements fortheCalibration andControlofMeasuring andTestEquip-mentUsedintheConstruction andMaintenance ofNuclearPowerGenerating Stations1980IEEE-535StandardQualification ofClass1ELeadStorageBatteries forNuclearPowerGenerating StationsB-171979 z.IEEE-603aa.IEEE-622StandardCriteriaforSafetySystemsforNuclearPowerGenerating StationsRecommended PracticefortheDesignInstallation ofElectricPipeHeatingSystemsforNuclearPowerGenerating Stations19801979bb.IEEE-627StandardforDesignQualification ofSafetySystemsEquipment UsedinNuclearPowerGenerating Stations1980cc.IEEE-649StandardforQualifying ClasslEMotorControlCentersforNuclearPowerGenerating Stations19&0dd.IEEE-650Qualifications ofClass1EStaticBatteryChargersandInverters forNuclearPowerGenerat'ing Stations1979B-18 12.INSTRUMENT SOCIETYOFAMERICA(ISA)a..55.1Instrumentation Symbolsb.RP18.1Specification andGuidesfortheUseofGeneralPurposeAnnunciators 19731965c.RP42.1Nomenclature forInstrument TubingFittings1965B-19 13.INSULATED CABLEENGINEERS ASSOCIATION (ICEA)P-46-426PowerCableAmpacities, CopperConductors (IEEES-135-1)b.P54<<440Ampacities

<<CablesinOpenTopCableTrays(NEMAWC-51)C~S-19-81Rubber-Insulated Wire&CablefortheTransmission andDistribution ofElectrical Energy(NEMAWC-3)d.P-32-382Short-Circuit Characteristics ofInsulated Cablese.S-66-524S-68-516Cross-Linked-Thermosetting-Polyethylene-Insulated Wire&CablefortheTransmission andDistribution ofElectrical Energy(NEHAWC>>7)Ethylene<<Propylene RubberInsulated WireandCablefortheTransmission andDistribution ofElectricEnergy(NEMAWC-8)B-20 14.INTERNATIONAL CONFERENCE OFBUILDINGOFFICIALS a.UniformBuildingCodeB-21 15.NATIONALELECTRICCODE(NEC)a.NationalElectricCode1981B-22 16.NATIONALELECTRICAL MANUFACTURERS ASSOCIATION (NEMA)a.AB1MoldedCaseCircuitBreakers1975b.DC-10Temperature LimitControlsforElectricBaseBoardHeater1977c.DC-13LineVoltageIntegrally MountedThermostats forElectricHeaters1979d.FUILow-Voltage Cartridge Fusese.ICSIndustrial ControlsandSystems19781978ICS6Enclosures forIndustrial ControlsandSystems1978g.MG1MotorsandGenerator 1978h.PB-1Panelboards i.PB-2Deadfront Distribution Switchboard 197719785.SG3Low-Voltage PowerCircuitBreakers1981k.SG4Alternating CurrentHighVoltageCircuit1975Breakers1.SG5m.SG6n.TR27PowerSwitchgear Assemblies 1981PowerSwitching Equipment 1974Commercial, Institutional andIndustrial 1965Dry-TypeTransformers o.VE1'ableTraySystems1979B-23 17.NATIONALFIREPROTECTION ASSOCIATION (NEPA)a.NECNationalFireCodes1981b.NEPA13Sprinkler Systemsc.NPFA15WaterSprayFixedSystemsd.NEPA30Flammable andCombustible LiquidsCode198319821981e.NEPA37Installation andUseofStationary Combustion EnginesandGasTurbines1979f.NFPA72ALocalProtective Signaling Systems1979g.NFPA72DProprietary Protection Signaling Systems1979h.NFPA72EAutomatic FireDetectors 1982B-24 18.UNDERWRITERS LABORATORY (UL)a~b.UL>>50c.UL-58d.UL-67e.UL-499f.UL-507g.UL-845h.UL-883FireProtection Equipment Directory CabinetsandBoxesSteelUnderground TanksforFlammable andCombustible LiquidsPanelboards SafetyStandards forElectricHeatingAppliances ElectricFansStandardforMotorControlCentersSafetyStandards forFanCoilUnitsandRoomFanHeaterUnits1983198019761979197819761980i.UL-1025ElectricAirHeaters1980UL-1042ElectricBaseBoardHeatingEquipment 1978B<<25 19.U.S.NUCLEARREGULATORY COMMISSION (USNRC)a.b.10CFR2110CFR50Reporting ofDefectsandNoncompliance Licensing ofProduction andUtilization Facilities C~10CFR50AppendixBQualityAssurance CriteriaforNuclearPowerPlantsandFuelReprocessing Plantsd.10CFR'50FireProtection ProgramforNuclearAppendixRPowerFacilities Operating PriortoSectionsIII.GJanuary1,1979andIII.Je.BTP9.5<<1AppendixANUREG0588Rev.1Guidelines forFireProtection forNuclearPowerPlantsInterimStaffPositiononEnvironmental Qualification ofSafetyRelatedElectrical Equipment B-26 20.U.S.NUCLEARREGULATORY COMMISSION (USNRC)REGULATORY GUIDESa~1.6,Independence BetweenRedundant Standby,3/71Rev.0(Onsite)PowerSourcesandBetweenTheirDistribution Systems1.9Rev.2Selection, DesignandQualification ofDiesel-Generator UnitsUsedAsStandby(Onsite)ElectricPowerSystemsatNuclearPowerPlants12/79c~1.17Rev.1Protection ofNuclearPowerPlantAgainst6/73Industrial Sabotaged.1.22Rev.0PeriodicTestingofProtection SystemActuation Functions 2/72e.1.26Rev.3QualityGroupClassifications andStandards forWater,Sean,andRadio-Active-Waste-Containing Components ofNuclearPowerPlants2/76l.28Rev.1QualityAssurance ProgramRequirements (Design&Construction) 3/78ge1.29Rev.3SeismicDesignClassification 9/78h.1.30Rev.0QualityAssurance Requirements fortheInstallation, Inspection, andTestingofInstrumentation andElectricEquipment 8/721.31Rev.3.,1.32Rev.2ControlofFerriteContentinStainless SteelWeldMetal1CriteriaforSafetyRelatedElectricPowerSystemsforNuclearPowerPlants4/782/77k.1.33Rev.2QualityAssurance ProgramRequirements (Operation) 2/78l.1.36Rev.0Nonmetallic ThermalInsulation forAustenitic Stainless Steel2/73m.1.37Rev.0QualityAssurance Requirements forCleaning3/73ofFluidSystemsandAssociated Components ofWater-Cooled NuclearPowerPlantsB-27 n.1.38Rev.2QualityAssurance Requirements forPackaging,

Shipping, Receiving, Storage,andHandlingofItemsforWater-Cooled NuclearPowerPlants5/770~l.39Rev.2Housekeeping Requirements forWater-Cooled 9/77NuclearPowerPlantspe1.41Rev.0Preoperational TestingofRedundant On-Site3/73ElectricPowerSystemstoVerifyProperLoadGroupAssignments 1.47-Rev.0BypassedandInoperable StatusIndication 5/73forNuclearPowerPlantSafetySystems1.48Rev.0DesignLimitsandLoadingCombination for5/73SeismicCategoryIFluidSystemComponents s~1.50Rev.0ControlofPreheatTemperature forWelding5/73ofLow-Alloy Steel1.53Rev.0Application oftheSingle-Failure Criterion 6/73toNuclearPowerPlantProtection Systemsu~1.54Rev.0QualityAssurance Requirements forProtec-6/73tiveCoatingsAppliedtoWater>>Cooled NuclearPowerPlantsul.1.58Rev.1Qualification ofNuclearPowerPlantInspection, Examination, andTestingPersonnel 9/80v~1.60Rev.1DesignResponseSpectraforSeismicDesign12/73ofNuclearPo~erPlantsw.1.61Rev.0DamplingValuesforSeismicDesignofNuclearPowerPlants10/73Xol.62Rev.ManualInitiation ofProtective Actions10/73l.64Rev.2QualityAssurance Requirements fortheDesignofNuclearPowerPlants6/76Z~1.68Rev.2InitialTestProgramsforWater-Cooled ReactorPowerPlants8/78aa~l.74Rev.0'ualityAssurance TermsandDefinitions 2/74B-28 bb.1.75Rev.2PhysicalIndependence ofElectricSystems9/78cc.1.76Rev.0DesignBasisTornadoforNuclearPowerPlants4/74dd.1.81Rev.1SharedEmergency andShutdownElectricSystemsforMulti-Unit NuclearPowerPlants1/75ee.l.84Rev.19DesignandFabrication CodeCaseAccepts-4/82bilityASMESectionIIIDivisionI1.85Rev.19Materials CodeCaseAcceptability ASMESectionIIIDivisionI4/82gg.1.88Rev.2Collection, Storage,andMaintenance of10/76NuclearPowerPlantQualityAssurance Recordshh.1.89ProposedRev.1Qualification ofClass1EEquipment for11/74NuclearPowerPlants1.92Rev.1Combining ModalResponses andSpatialComponents inSeismicResponseAnalysis2/765j.1.93Rev.0Availability ofElectricPowerSources12/74kk.1.94Rev.1QualityAssurance Requirements forInstallation, Inspection, andTestingofStructural ConcreteandStructural SteelDuringtheConstruction PhaseofNuclearPowerPlants-4/76ll.1.100Rev.1SeismicQualification ofElectricEquipment 8/77forNuclearPowerPlantsmm.1.105Res.Instrument Setpoints 11/76nn.1.106Rev.1ThermalOverloadProtection forElectric3/77MotorsonMotor-Operated Valvesoo.1.108Rev.1PeriodicTestingofDieselGenerator Units8/77UsedasOnsiteElectricPowerSystemsatNuclearPowerPlantspp.1.115Rev.1Protection AgainstLow-Trajectory Turbine7/77MissilesB-29 1.116Rev.0l.117Rev.1QualityAssurance Requirements forInstallation, Inspection>

andTestingofEquipment andSystemsTornadoDesignClassification 6/764/78ss~1.118Rev.2PeriodicTestingofElectricPowerandProtection Systems6/78l.122Rev.,lDevelopment ofFloorDesignResponseSpectraforSeismicDesignofFloor-Supported Equipment orComponents 2/78uu~1.123Rev.1"QualityAssurance Requirements forControl7/77ofProcurement ofItemsandServicesforNuclearPowerPlantsVV~1.128Rev.1Installation DesignandInstallation of10/78LargeLeadStorageBatteries forNuclearPowerPlants1.129Rev.1Maintenance, Testing,andReplacement of2/78LargeLeadStorageBatteries forNuclearPowerPlantsCXX+1.131Rev.0Qualification TestsofElectricCables,FieldSplices,andConnections forLight-Water-Cooled NuclearPowerPlants8/771.132Rev.1SiteInvestigations forFoundations ofNuclearPowerPlants3/79ZZ~1.137Rev.1Fuel-OilSystemsforStandbyDieselGenerators 10/79aaa.1.142Rev.1Safety-Related ConcreteStructures forNuclearPowerPlants(otherthanReactorVesselsandContainments) 10/81aaal.1.144Rev.0AuditingofQualityAssurance ProgramsforNuclearPowerPlants1/79aaa2.1.146Rev.0Qualification ofQualityAssurance ProgramAuditPersonnel forNuclearPowerPlants8/80bbb.1.147.Rev.2Inservice Inspection CodeCaseAccepta-bilityASMESectionXIDivisionI6/83B-30 ccc.1.148Rev.0Functional Specification forActiveValveAssemblies inSystemsImportant toSafetyinNuclearPowerPlants3/81MEi.1.151Rev.0Instrument SensingLines7/83B-31 APPENDIXCSeismicAnalysisProcedure andModelsforTheDieselGenerator EBuilding TABLEOFCONTENTSSECTIONPAGE1.Introduction 2.DynamicModelsC-3C<<32.1Generation ofStiffness Matrices2.2Computation ofMassMatrices3.ModalFrequencies andParticipation FactorsoftheModelsC-64.Structural DampingValues5.,SeismicInputC-6C-65.1GroundDesignResponseSpectra5.2GroundMotionTimeHistories 6.SeismicAnalysisbyModalResponseSpectrumMethod7.Development ofFloorResponseSpectra7.1TimeHistoryAnalysisofDynamicModels7.2Development ofFloorResponseSpectralCurves8.ComputerPrograms9.Rexences10.FiguresC-7C-7C-8C-9C-2 1.Introduction Thisdocumentdescribes theprocedure forthedevelopment ofthemathematical modelsoftheDieselGenerator EBuildingandtheDieselGenerator Pedestal.

Italsodescribes theprocedure fortheseismicanalysisofthemodelsandthedevelopment ofthefloorresponsespectralcurves.2.DynamicModelsTwomathematical models(onehorizontal andonevertical) fortheDieselGenerator EBuildingandonemathematical modelforthedieselgenerator pedestalareconstructed fortheseismicanalysispurposes.

Themodel,sketchesareshowninFigures1to3.Thehorizontal DieselGenerator Ebuildingmodelconsistsoffourlumpedmasses(1,2,3and4)locatedatthemasscentersofthepenthouse roof,themainroofandthetwolowerfloorelevations.

Themodelhassixdegree-of-freedoms (DOF's)pernode.Thismodelhasbeenusedforthedynamicanalysesofearthquake intwoperpendicular horizontal dir'ections.

Sincethemodelestablished reflectstheeccentricity effectoftheasymmetrical buildingconfiguration, itiscapableofproducing torsional responseduetoahorizontal earthquake.

TheverticalDieselGenerator Ebuildingmodelisessentially thesameasthehorizontal model,exceptthatishasfouradditional lumpedmasses(5,6,7and8)representing theflexiblefloors,connected byverticalspringstothefourlumpedmassesofthebuildingtoformaneightlumpedmasssystem.Thismodelhasbeenusedfortheverticalanalysisonly.Thedieselgenerator pedestalmodelhasthreelumpedmasses(1,2and3)locatedatthemasscenterofthedieselgenerator, andthetopandthemidpointofthepedestal.

ThismodelhassixDOF'spernodeandhasbeenusedforthedynamicanalysisofearthquake inthreeperpendicular directions.

TheDieselGenerator Ebuildingmodelsandthedieselgenerator pedestalmodelwerefixedatthebasesintheseismicanalysis.

Thiswasconsidered becausethestructures aresupported ontherockfoundation (Re~rence1,'2SNRCStandardR:iewPlan3.7.2)whichhasarelatively hip..young'smodulusofelasticity ofapproximately 3millionpsi.Consequently, thesoil-structure interaction effectandtheinteraction effectbetweenth'etwostructures canbeignored.Thetwomodelscantherefore beanalyzedseparately fortheirdynamicresponses.

2.1Generation ofStiffness MatricesA.Horizontal DieselGenerator EBuildingModelThe'tiffness ofthehorizontal DieselGenerator Ebuildingmodelhasbeengenerated fromafiniteelementmodelconstructed forthebuildingswallsC-3 consisting ofplateandbeamelements, andcondesned tothelumpedmasslocations atfloorelevations.

Ingenerating thiscondensed stiffness, thefloorwasconsidered toberigidinthehorizontal directions.

Thecomputation ofthemodelstiffness wascarriedoutbyusingtheMSCversionoftheNASTRANprogram(Gibbs&HillProgramNo.3030).Themodelstiffness obtainedaboverepresents thegrossstiffness ofthebuilding.

Thismodeldoesnotincludeadditinal DOF'storepresent thelateralvibrations ofthewallpanels.Theamplification effectduetothelateralflexibility ofawallpanelwastherefore separately evaluated.

usingasingleDOFsystemasdescribed inSection7.2.B.VerticalDieselGenerator EBuildingModelThestiffness oftheverticalDieselGenerator Ebuildingmodelconsistsoftwoparts.Thefirstpartiscontributed fromthebuildingwallsandisidentical tothatofthehorizontal modeldescribed above.Thesecondpartisthestiffnesses ofthefloorslabsintheverticaldirection whicharerepresented bytheverticalspringsattachedtothelumpedmasspointsatthefloorelevations (seeFigure2).Inordertoderivetheverticalspringforafloor,aseparatefiniteelementmodelofthefloorisconstructed byusingbeamandplateelementsandthefloorfrequencies areanalyzed.

Thespringconstantisthencomputedbasedonthefloorfrequency andtheverticaleffective floormassderivedinSection2.2B.C.DieselGenerator PedestalModelThestiffness oftheDieselGenerator pedestalmodelwascomputedbasedontheelasticbeamtheory.Thedieselgenerator isconnected tothetopofpedestalbyanequivalent beam.Theequivalent beamproperties wereevaluated suchthatthevibrational frequencies ofthedieselgenerator modelitselfinthehorizontal andverticaldirections areequaltothegivenfrequencies of29Hzand33Hz,respectively (Reference 8).2.2Computation ofMassMatricesA.Horizontal

=.'elGenerator EBuildingModelThemassesandmassmomentsofinertiaofthehorizontal DieselGenerator Ebuildingmodelwereevaluated atthefourlumpedmasspoints(1,2,3and4)locatedatthemasscentersonthefourfloorelevations.

Described belowistheinformation whichhasbeenconsidered inthecomputation oftheselumpedmasses:A.lThestructural massofthebuil'ding including floorsandwallsA.2Themassesofma)orequipment oneachfloor A.3Theeffective massesforthelineloadsconsidered tobeone-eighth ofthefullliveloads(L)listedbelow(Reference 2):OnRoofL30psftoaccountforsnowandiceOnelevatedfloorsL~200psf(excluding 50psfasdescribed belowinItemA.4)A.4Themassequivalent totheuniformloadof50psfonconcretefloorstoaccountforpiping,electrical traysandducts(Reference 2)Themassesoneachfloorasdescribed aboveinItemsA.2toA.4andthestructural massofthefloorinItemA.lwerelumpedtothemasscenteronthatfloor.Thestructural massofthewallsbetweenthetwofloorelevations wasdividedandlumpedtothemasscentersonthetwoad)scentfloor.Thefullliveloads(L)described abovearenotexpectedtooccursimultaneously withthedesignearthquakes, andmostofthemwillbeabsentduringtheplantoperation.

One-eighth oftheseloadsconsidered aseffective andincludedinthemodelingisintendedtosimulatethedynamiccharacteristics of'hestructure (frequencies andmodeshpaes)sothattheoveralldynamicresponses (accelerations andresponsespectra)canberealistically predicted.

Themassesandmassmomentsofinertia(atlumpedmasspoints1,2,3and4)oftheverticalDieselGenerator Ebuildingmodelarethesameasthoseofthehorizontal modeldescribed above,exceptthattheverticalmasscompoents werereducedbytheamountsofeffective floormassesdescribed below.Theseeffective floormasseswereattachedtothetopofthesprings(atlumpedmasspoints5,6,7and8)mentioned aboveinSection2.1B.Theeffective massforeachfloorwasevaluated byequatingthekineticenergyofthefundamental modeofvibration oftheentirefloorintheverticaldirection tothekineticenergyoftheequivalent one-masssystemconsisting oftheeffective mass.Thisstatement canbeformulated asfo'ws:inwhichmarethenodalmasses,vwxd,v~wxd,andwisthefundamental frequency ofthefloor.darethecomponents ofthefundamental eigenvector andd,isthemaximumvalueofd.Theaboveequationcanbesimplified to:C-5 fromwhichtheequivalent massMwasevaluated, C.DieselGenerator PedestalModelThedieselgenerator masswaslumpedtothenodalpointlocatedatthemasscenterofthedieselgenerator.

Appropriate structural masseswerecomputedandlumpedtothetwonodalpoints(2and3)representing thepedestal.

Themassassociated withtheupperportionofthepedestalwaslumpedtothetopofpedestal.

Thiswillslightlylowerthefrequencies ofthedieselgenerator pedestalsystem,andistherefore considered tobeaconservative approachfromtheseismicanalysispointofview.3,ModalFrequencies andParticipation FactorsoftheModelsFreevibration analyseshavebeenseparately performed ontheDieselGenerator Ebuildingmodelsanddieselgenerator pedestalmodeltoobtainthenaturalfrequencies andmodalparticipation factors.TheMSC/NASTRAN programwasusedtocarryoutthecomputation.

=4.Structural DampingValuesThepercentsofcriticaldampingconsidered forthereinforced concretestructure (Reference 6)are:4%forOperating BasisEarthquake (OBE)case7%forSafeShutdownEarthquake (SSE)case5.SeismicInput5.1GroundDesignResponseSpectraThemaximumhorizontal andverticalgroundaccelerations'onsidered areO.lgforSSEand0.05gforOBE.Thehorizontal andverticaldesignresponsespectralcurvesusedintheanalysisarebasedonthespectralcurvesdefinedintheUSNRC.Regulatory Guide1.60(Reference 3)scaleddowntomatchtheabovemaximumgroundaccelerations.

5.2GroundMotionTimeHistories Onehorizontal andoneverticalsynthetic groundmotiontimehistories compatible withthegrounddesignresponsespectraweregenerated forthetimehistoryanalysisofthemodelsinordertodevelopfloorresponsespectra.Responsespectraatthedampingvaluesof1%,2%,5%,7%and10%weredeveloped usingthesetimehistories andcomparedwiththegrounddesignresponsespectra(Reference 7).C-6 6.SeismicAnalysisbyModalResponseSpectrumMethodThelumpedmassmodelsoftheDieselGenerator Ebuildingandthedieselgenerator pedestalhavebeenseparately analyzedforthefollowing earthquake casesbyemploying themodalresponsespectrummethodtodetermine thestructural responses.

~SSE-Xearthquake SSE-Yearthquake SSE-Zearthquake OBE-Xearthquake OBE-Yearthquake OBE-Zearthquake whereXandZarealongtheNŽSandE-Wdirections respectively, andYisalongtheverticaldirection.

Theanalyseshavebeenperformed byusingthecomputerprogramMSC/NASTRAN (Gibbs&HillProgramNos.3030).Thegroundresponsespectralcurvesdescribed inSection5wereusedasinputloads.Theprogramcomputedstructural responses (accelerations andrelativedisplacements) modebymodeandcombinethemodalresponses bymeansoftheSRSSmethodaccording totheUSNRCRegulatory Guide1.92(Reference 4).Theanalysisresultsobtainedwereusedfortheseismicdesignofthestructures.

7.Development ofFloorResponseSpectra7.1TimeHistoryAnalysesofDynamicModelslnordertodevelopresponsespectra,timehistoryanalyseswerefirstperformed onthedynamicmodels.Theinputtotheanalysisarethemodalshapes,frequencies, participation factors(seeSection3),andthegroundmotiontimehistories described inSection5.Theresulting timehistories wereobtainedateachlumpedmasslocationofthemodels.Ada~tional timehistories weregenerated atthecranerunwaygirderlocationbyusingaseparatelocalcranerunwaymodelthatincludestheflexibilities oftherunwaygirdersandsupporting columns,Theinputloadstothismodelarethetimehistoryresponses oftheuppersupporting floor.Theresulting timehistories generated attherunwaygirderlocations wereusedtodevelopresponsespectraforthecranedesign.Theaboveanalyseshavebeenperformed forthesameearthquake casesasmentioned

'inSection6.Thetimestepsizeof0.005secondswasusedinthenumerical integration.

C-7 7.2Development ofFloorResponseSpectralCurvesTheacceleration timehistoryresponses generated fromthetimehistoryanalysisdescribed inItem7.1abovewereusedtodevelopfloorresponsespectra.Themaximumtimestepsizusedinthisanalysisis0.005seconds.Thefloorresponsespectraweregenerated atsufficient discretefrequency pointsobtainedinaccordance withtherequirements oftheUSNRCRegulatory Guide1.122(Reference 5),andatthedampingvalues(percents ofcriticaldamping)listedbelow:forOBE:0.5X,1X,2X,3X,4X,and5XSSE:1X,2X,3X,4X,5X,and7XIThecomputerprogramRESPECT(Gibbs&HillProgramNo.3914)wasusedtocarryoutthenumerical computation.

Theresponsespectradeveloped ateachfloorelevation inaspecificdirection forthethreeorthogonal earthquakes werecombinedbytheSLSSmethod.Asmentioned inSection2.1A,thehorizontal DieselGenerator Ebuildingmodeldoesnotreflectthelocallateralflexibilities ofthewallpanels.Thehorizontal responsespectrumofawallinthelateraldirection wastherefore separately analyzedbyusingasingleDOFsystemandthetimehistoryattheuppersupporting floorelevation asinput.Themaximumresponsewasthenobtainedbyenveloping thehorizontal responsespectradeveloped fromboththewallandthebuildingmodels.Theresulting responsespectraobtainedabovewerethensmoothened andbroadened by15%oneachsideoftheresponsespectralpeakstobecomethefinalresponsespectralcurves.Thesefinalspectralcurveswereusedfortheanalysisanddesignofthepipingandequipment insidethebuilding.

8.ComputerProgramsThecomputerprograms, brieflydescribed below,havebeenusedintheabo~-seismicar";-.Iyses.

A.MSC/NASTRAN (Gibbs&HillProgramNo.3030),fromMacneal-Schwendler Corporation, isageneralpurposefiniteelementcomputerprogramforthesolutionofstatic,dynamic,transient, stability, andheattransferproblemsinstructural engineering andotheralliedfields.CurrentversionnumberforIBMmachineis61.B.RESPECT(Gibbs&HillProgramNo.3914),byGibbs&Hill,Inc.,isaresponses'pectrageneration program.Itcanbeusedtogenerateresponsespectralvalues,plotspectralcurvesonlinearorsemi-logarithemic scales,smoothandbroadenthecurvesoneachsidesofspectralpeaks.C-8 Theabovementioned Gibbs&Hillin-houseprogramshavebeenverifiedanddocumented inaccordance withGibbs&HillQAprocedure.

Theverification includescheckingofbasicformulation, comparison oftheanalysisresultsfromafewsamplerunswiththeresultsfromeitherhandcomputation ortheanalysesbasedonotherverifiedcomputer.

programs.

~,9.References 1.USNRCStandardReviewPlan,Section3.7.2-SeismicSystemAnalysis, Rev.1,July19812.PP&LSpecification G-1001-DesignInputTechnical Specification forNewEmergency DieselGenerator

Facility, Rev.1,September 22,19833.USNRCRegulatory Guide1.60-DesignResponseSpectraforSeismicDesignofNuclearPowerPlants,Rev.1,December19734.USNRCRegulatory Guide1.92-Combining ModalResponses andSpatialComponents inSeismicResponseAnalysis, Rev.1,February19765~6.USNRCRegulatory Guide1.122-Development ofFloorDesignResponseSpectraforSeismicDesignofFloor-Supported Equipment orComponents, Rev.1,February1978USNRCRegulatory Guide1.61-DampingValuesforSeismicDesignofNuclearPowerPlants,October19737.USNRCStandardReviewPlan,Section3.71-SeismicInput,June19758.PP&LLetterG&H/EDG-132, "NaturalFrequency oftheEDieselGenerator",

datedFebruary28,1984C-9 Elev.741'-6"Elev.726'-0"Elev.708'-0"Elev.675'-6"Elev.656'-6"FIGURE1HORIZONTAL DIESELGENERATOR EBUILDINGMODEL VerticalSpring(typical)

Elev.741'-6"Elev.726'-0"Elev.708'-0"Elev.675'-6"Elev.656'-6"FIGURE2VERTICALDIESELGENERATOR EBUILDINGMODEL 0r Elev.680'-ll"Elev.676'-0"Elev.666'-3"Elev.656'-6"FIGURE3DIESELGENERATOR EPEDESTALMODEL

'N SUSQUEHANNA STEAMEl,ECTRIC STATION,UNITS1AND2PENNSYLVANIA POWER6LIGHTCOMPANYGIBBS6iHIILPROJECT3544THISDOCUMENTCOVERSNUClEARSAFETYRELATEDSTRUCTURES DESIGNCRITER1AFORCIVIL/STRUCTURAL WORKFORNEWEMERGENCY DIESEIGENERATOR FACILITY3544-SDC-001 ISSUENO.0JANUARY1984GIBBSEcHILL,INC.ENGINEERS, DESIGNERS, CONSTRUCTORS NEWYORK,NEWYORK CONTENTSSectionPacae1.02.03.0GENERALDESCRIPTION CIVILANDSITEWORKDESIGNCRITERIA2.1PlantDatumandOrientation2.2DesignDepthforFrostProtection 2.3DesignElevation ofGroundWater2.4Roadways2.5SiteDrainage2.6Earthwork SlopesDESIGNCRITERIAFORCATEGORYISTRUCTURES 3.1DesignLoads'.2LoadingCombinations-Reinforced ConcreteStructures 3.3LoadingCombinations-Structural Steel3.4FactorofSafety3.5MethodsofAnalysisandDesign3.6Materials 1012124.0APPLICABLE CODES,STANDARDS ANDSPECIFICATIONS 135.0QUALITYCONTROLPROCEDURES 13 Gzbbs6Hall,Inc.Document3544-SDC-001 IssueNo.0January1984Page1GENERAIDESCRIPTION Thedesigncriteriacoverthestructural associated withtheDieselGenex'ator (EDG)ElectricStation.presented hereinareintendedtodesignandcivildesignwoxkconstruction ofthenewEmergency FacilityoftheSusquehanna SteamSpecifically.

thecriteriacoverthedesignofthefollowing majorcomponents ofthenew.EDGfacility.

a.Emergency DieselGenerator buildingstructure b.Foundation andthemanholecoverfortheunderground dieselfueloil'torage tank.cdUnderground electrical ductbanks.d.Sitecivilworkconsisting ofaccessandpatrolxoads,pavedareas,stormdrainagesystemandfinalgrading.e.AnyotherseismicCategoryIstructural components.

Alloftheabovecomponents except.item'd'resafetyelated.Description ofSafetyRelatedStructures Emergency DieselGenerator (EDG)Building:

TheEDGbuildingisaSeismicCategory1,two-story structure withabasement, consisting primarily ofreinforcedconcretewalls,floorslabs,androof.Theeddieselgenexator pedestalisalsoofreinfoxce concrete.

Thebuildingtogethexwiththepedestalisfoundedonsoundrock.Agapbetweenthebuildingfloorandthepedestalatgradelevelisprovidedsothatnovibrations fxomthedieselgenerator aretransmitted tothebuilding.

Aportionofouterwallshallbedesignedtoberemovable inordertofacilitate thedieselgenerator installation and/oremergency xemovalofDGformaintenance.

Gibbs&Hill,Inc.Document3544-SDC-001 IssueNo.0January1984Page21.1~2Underground DieselFuelOilStorageTankSupportStructure:

Thefoundation slabandthecoverforthetankmanholeareofreinforced concreteconstruction.

2.02.1CIVILANDSITEWORKDESIGNCRITERIAPlantDatumandOrientation a.Plantdatumcorresponds toU.S.Geological SurveyMeanSeaLevel(MSL)datum.Approximate plantgradeis675aboveMSL.b.PlantNorthcorresponds totruenorth.c.Horizontal controlshallconformtothePennsylvania StateGridSystemcurrently inuseatthesite.22DesignDepthforFrostProtection Bottomsofallfoundations shallbelocatedataminimumdepthof4feetbelowthegrade.Allwaterpipingshallhavea-minimumcoverof4ft.6in.2.3DesignElevation ofGroundWaterAtplantstructures

-665ft.aboveMSL.2.4Roadwaysa.Minimumlanewidthb.'aximum grade1090/c~Roadalignment andgeometryshallbebasedontheturningmovements ofexpectedoperations andmaintenance

vehicles, butnotsmallerthanstandardAASHTO50feetlongsemitrailer.

Gibbs6Hill,Inc.Document3544-SDC-001 IssueNo.0January1984Page32.52.5.1SiteDrainageDesignFlowRunoffflowshallbecalculated bytherationalformula:Q=CiAwheretheprecipitation intensity, ishallbedetermined asfollows:a~Fordrainageditchesandculverts, precipitation intensity shallbederivedfromrainfallintensity-duration curvesforScranton, Pennsylvania, 1903-1951, Technical PaperNo.25,published bytheU.S.Department ofCommerce.

Returnperiodof25yearsshallbeassumedforallculverts.

b.Foryardstormsewers,precipitation intensity shallbeassumedas6in.perhouronbuildingroofs.2.5.2DesignVelocityandSize2.5.3a.Minimumdiameterofmainyardstormsewers-8in.b.Minimumdiameteroflaterals-4in.c.Minimumdesignvelocity2fps.ExternalLoads2.6CulvertsandstormsewersbeneathroadsshallbedesignedforH20-S16liveloading.Earthwork Slopesa.b.~Maximumearthembankment 1/2Horiz.to1Vert.slopesRecommended rockslopes-1Horiz.to4Vert.

Gibbs6Hill,Inc.Document3544-SDC-001 IssueNo.0January1984Page43.03.1DESIGNCRITERIAFORCATEGORYISTRUCTURES DesignI.oadsThefollowing loadsshallbeconsidered inthedesignofseismicCategoryIstructures:

3.1.1D=Deadloadofstructure andanypermanent equipment.

Hydrostatic loadsshall,beconsidered asdeadloads.3.1.2I=ZiveToadsliveloadsareconventional floororroofliveloads,including liveloadsresulting frommovingofequipment components, snow,etc.Soilpressureloadsduetofluctuations ofgroundwaterelevation

.andduetosurcharge, shallbeconsidered asliveloads.Anallowance of50poundspersquarefoot(lbs./ft.

~)isincludedinthefloorliveloadsspecified below,'to accountforthesupportofhungloadssuchaspiping,electrical conduitsandtraysandheating,ventilation

'andairconditioning (HVAC)ducts.3.1.2.1Thefollowing valuesofliveloadshallbeusedunlessmorerealistic uniformorconcentrated'oads aredetermined afterequipment information hasbeenevaluated:

RoofGroundandelevatedfloorsExhaustpipeenclosueroomGratingandcheckered plate30psf250psf150psffloorsandplatforms Stairways andwalkway100psf100psfStairhandrailsandguardrails25pounds/linear footappliedattopofrailingor200poundsconcentrated loadappliedinanydirec-Gibbs.EcHill,Inc.Document3544-SDC-001 IssueNo.0January1984Page5tionattopofrailingSurcharge outsideandadjacenttostructures 250psf3.1.2.2Supplementary Concentrated LiveLoads:a~Inadditiontothespecified uniformliveloads,thebeamsandgirdersshallbedesignedfortheconcentrated loadof5kips.Thisloadshallbeappliedatpointsofmaximummomentandshear.However,itisnotcumulative andisnotcarriedtocolumnsandshallnotbeconsidered inaccesscontrolareas.b.Theslabsshallbedesignedforaconcentrated loadof5kipsdistributed overanareaof3squarefeetatthepointsofmaximum.momentandshear,oruniformliveloadsspecified inSection3.1.2.1,whichever isgreater.Theconcentrated loadisnotcumulative andisnotcarriedtocolumnsandshal'1notbeconsidered incontrolaccessareas.3.1.2.3Nhendesigning floormembersinareaswherefixed.equipment willbelocatedandwheretheoperating weight-.oftheequipment willbelargerthanthefloordesign.liveload,thefloormembersshallbedesignedtakingintoconsideration the.floorareacoveredbytheequipment tobeloadedbytheequipment weight,andthesurrounding floorareatobeloadedbythedesignliveload.3.1.2.4ImpactLoadsandDynamicLoadsCraneliftedloadshallbeincreased 25percenttoaccountforimpact.Thecranegirdershallbedesignedtocarrythedeadloadandliftedloadaswellasalateralloadof20percentofthecombinedweightoftheliftedloadandtheweightofthecranetrolleyappliedone-halfoneachsideoftherunwayandatthetopofrail.'hecranegirdershallalsobedesignedforalongitudinal loadof10percentofthemaximumwheelloadappliedatthetopoftherail.Supportsforhoistsandmonorails shallbedesignedassumingthenominalverticalloadcapacityincreased by15percent Gibbs6Hill,Inc.Document3544-SDC-001 IssueNo.0January1984Page6toallowforimpact.Theabovenotedimpactloadsshallnotbeassumedtoactconcurrently withseismicloads.3.1.3WindandTornadoLoadingThestructural components ofnewEDGfacilityshallbedesignedforwindandtornadoloadingwithappropriate loadcombinations specified inSections3.2and3.3.3.1.3.1W=WindLoadThedesignwindvelocityfortheEDGBuildingis80milesperhourfora100yearrecurrence interval.

Thecorresponding windpressurewithconsiderations forheightvariations andshapecoefficients shallbecalculated inaccordance withAmericanSocietyofCivilEngineers (ASCE)PaperNo.3269,"WindForcesonStructures

-FinalReportoftheTaskCommitteonWindForces,Committee onLoadsandStresses, Structural Division".

Theverticalwindvelocitydistribution andcorresponding effective windpressures tobeusedonbuildingwallsareasshownonthefollowing table:WindLoadonStructures Heigh-'".BasicDynamic:WINDLOADSWindWindwardLeewardTotalDes.SuctionZoneVelocitPressurePressureSuctionPressureonRoofFeetq(+sf)0.8q0.Sq1.3q0.6q0-5080.201610261250-1509530241539183.1.3.2W=Tornadoload:tThestructural components ofEDGfacilityshallbedesignedtowithstand theeffectoftheDesignBasisTornadoasoutlinedinReg.Guide1.76.Tornadoloadingshallinclude(a)DynamicWind,(b)Differential Gibbs6Hill,Inc.Document3544-SDC-001 IssueNo.0January1984Page7Pressureand(c)TornadoGenerated Missiles.

Totaltornadoloadingshallbedetermined usingthefollowing designparameters:

a~W=DynamicwindloadingwWindspeedscorresponding totornadoconditions shallbeasfollows:MaximumwindspeedRotational windspeed-360mph-290mphTranslational wind.speed-70mph(maximum) 5mph(minimum)

W=Differential pressureloadingpThedifferential pressureshallbeassumedtovaryfromzeroto3psiattherateof2psipersecond,remainat3psifor2secondsandthenreturntozeropsiat2psi/second.

c~W=Tornadogenerated missileloadm"d.Fordesignparameters fortornadogenerated missilesincluding missilestobeconsidered, seeSection3.1.4.1.Totaltornadoload:~Totaltornadoloadshallbecalculated usingfollowing combinations:

I.W=WtwIV.W=W+0.5WwpII.W=WtpV.W=W+WtwmIII.W=WtmVI.W=W+0.5W+Wtwp' GibbsEcHill,Inc.Document3544-SDC-001 IssueNo.0January1984Page8MissileProtection I.oadsTheindividual postulated missileshallbeevaluated andadequatemissileprotection shallbeprovidedtopreventperforation andspallingoftheinsidefaceofthemissilebarrierwalls.Themethodology usedindesigning missilebarriersshallbeinagreement withtheprocedures outlinedintheStandardReviewPlanSection3.5.3,"BarrierDesignProcedures",

Rev.1.Following twocategories ofmissileloadsshallbeconsidered:

W=TornadoGenerated MissileloadmFollowing tornadogenerated missileparameters shallbeusedincalculating missileloads:MissileWeight~lbImpactVelocity~fsA)Woodplank,4in.x12in.x12ft.,traveling end-'on108B)Steelpipe,3in.dia.,Schedule40,10long,traveling end-on72147D)Steelpipe,6in.dia.,Schedule40,15ft.longSteelpipe,12in.dia.,Schedule40,15ft.long285750170155E)Steelrod1-inchdia.x3ft.long317F)Automobile flyingthroughtheairatnotmorethan25ft.abovethegroundandhavingcontactareaof20sq.ft.4000195G)Utilitypole13.5in.dia, Gibbs6Hill,Inc..Document3544-SDC-001 IssueNo.0January1984Page9Missile35ft.longWeight~lh1490ImpactVelocity~fsNote:Theverticalvelocities willbeconsidered equalto80percentofthehorizontal velocities mentioned above.3.1.4.2'=SiteProximity MissileLoadsmsFollowing parameters shallbeusedincalculating siteproximity missileloads:SITEPROXIMITY MISSILEPARAMETERS Missile~WelhtImactVelocitA)Riflebulletfiredbyvandals2oz~2667fpsB)Fragmentfromatruckexplosion 6oz.fragment15fps3.3..5SeismicLoadsThefollowing twomagnitudes ofearthquake shallbeconsidered.

3.1.5.13.1.5.2E=Loadsgenerated byoperating basisearthquake (OBE)E'Loadsgenerated bysafeshutdownearthquake (SSE)'.2IoadingCombinations-Reinforced ConcreteStructures:

Thefollowing combinations ofserviceandfactoredloadingsshall-beconsidered inthedesignofreinforced concreteseismicCategoryIstructures.

Uistherequriedultimateloadcapacityofthestructure asdefinedin,AmericanConcreteInstitute (ACI)Standard349-76.Indetermining themostcriticalloadingcondition tobeusedfordesign,theabsenceofaloadorloadsshallbeconsidered asappropriate.

Gibbs6Hill,Inc.Document3544-SDC-001 IssueNo.0January1984Page103F1ServiceLoadCombinations:

a.U=1.4D+1;7Lb.U=1.4D+1.7L+1.9Ec.U=1.4D+1.7L+1.7Wd.U=1.2D+1.9Ee.U=1.2D+1.7WWheresoilorhydrostatic pressures arepresentandhavebeenincludedinLandD,inadditiontoallthepreceding combinations, therequirements ofSections9.2.4and9.2.5ofACI.318.77shallbesatisfied.

3.2.2-FactoredLoadCombinations a.U=1.0D+1.0L+1.0E'.U=1.0D+1.0L+1.0Wc.U=1.0D+1.0L+1.0Wms3.2.3Regarding precedir"-

loadswhicharevariable, thefullrangeofvariation shallbeconsidered inordertodetermine themostcriticalcombination ofloading.3.3LoadingCombinations-Structural SteelThefollowing combinations

'floadingsshallbeconst.dered inthedesignofstructural steelseismicCategoryIstructures.

Sistherecgxired section,strength basedontheelasticdesignmethodsandtheallowable stressesdefinedinPartIofAmericanInstitute ofSteelConstruction (AISC)Specification fortheDesign,Fabrication andErectionofStructural SteelforBuildings,

November, 1978,exceptthatthe33-percent increaseinallowable stressesforseismicorwindloadingswillno"bepermitted.

Indetermining themostcrtical loadingcondition tobeusedindesign, GibbsSHill,Inc.Document3544-SDC-001 IssueNo.0January1984Page11theabsenceofaloadorloadsshallbeconsidered asappropriate.

3.3.1ServiceLoadCombinations a.S=D+L3.3.2b.S=D+I+Ec.S+D+L+W FactoredLoadCombinations a.1.6S=D+L+E'.1.6S=D+I+Wc.1.6S=D+L+Wms3.4FactorofSafetyForallstructures, minimumfactorofsafetyagainstoverturning, slidingandflotation shallbemaintained asfollows:LoadMinimumFactorofSafetCombination Overturning SlidingFlotation a.D+H+W1.51.5b.D+H+WorD+H+Wtmsc.D+H+E1.51.5d.D+H+E'.D+FH=IateralearthpressureIF=BuoyantForceduetogroundwaterpressure Gibbs6Hill,Inc.Document3544-SDC-001 IssueNo.0January1984Page123.5MethodsofAnalysisandDesignStaticanalysisanddesignofstructures shallbeconsistent withgenerally acceptedengineering practiceandshallbebymethodssuitableforhandanalysis.

Theseismicanalysisofnew'EDGBuildingshallbeperformed byusingcomputerprograms.

Fordescription ofseismicanalysisprocedure, seedocumentNo.3544-SDC-002.

3.5.2Allsteelstructures shalLbedesignedbyworkingstressmethodsinaccordance withPartIofAmericanInstitute ofSteelConstruction' specification forDesign,Fabrication andErectionofStructural SteelforBuildings.

3.5.33.6Reinforced ConcreteStructures shallbedesignedbyUltimateStrengthDesignmethodinaccordance withAmericanConcreteInstitute's "CodeRequirements forNuclearSafetyRelatedConcreteStructures" (ACI349-~.$0Materials 3.6.1Concreted Minimumcompressive strengthofconcreteat28daysforvariousstructures anditsapplications shallbeasfollows:ItemStructural ConcreteMatfoundation, walls,slabs,etc.DesignStrengthf'c(psi)'4000MassConcretefill,mudmatandductbanks20003.6.23.6.3Reinforcing SteelshallbedeformedbilletsteelofGrade60conforming toASTMA615.Structural SteelshallconformtoASTM-A36orotherASTMdesginations listedinSection1.4.1.1ofAISCSpecifications fortheDesign,Fabrication andErectionofStructural SteelforBuildings, whereconsidered necessary.

Gibbs6Hill,Inc.Document3544-SDC-001 IssueNo.0January1984Page133.6.43.6.5'Anchorboltsshallbeunfinished boltsconforming torequirements ofASTMA307orthreadedrodsconforming toASTMA36.BoltmaterialconformfingtootherASTMstandards willbeusedasrequired.

Weldingelectrodes shallbeE70XXandallweldingshallbeinaccordance withAWSDl.1.4.04.1APPLICABLE CODES,STANDARDS ANDSPECIFICATIONS CodeRequirements.

fog>NuclearSafetyRelatedConcreteStructures (ACI349-Wfshallbeusedfordesign.ofreinforced concretestructures.

4.24.3BuildingCodeRequirements forReinforcedConcreteACI318-77shallbeusedassupplement toACI349-~foritemsnotcoveredinAC1349-~gQAISCSpecification fortheDesign,Fabrication andErectionofStructural SteelforBuildings, EighthEdition,shallbeusedforthedesignofsteelstructures.

4.44.54.6AmericanAssociation ofStateHighwayandTransportation Officials (AASHTO)Form408specifications

-Department ofTransportation-Commonwealth ofPennsylvania.

AmericanWeldingSociety(AWS)-"Structural WeldingCode"AWSD1.1-81.4.75.0US-NRCRegulatory Guide1.142,Revision1Safety-Related ConcreteStructures forNuclearPowerPlants(otherthanReactorVesselsandContainments).

QUALITYCONTROLPROCEDURES ThedesignshallcomplywiththeGibbs6HillQualityAssurance Manualandtheexceptions toitstatedintheProjectGuide.

NUREG-0800 rmerlyNUREG-76/087>

seaetc(((+0on"C0r+4>>O~<<<<*<<>>8'Il'ANDARD RIEVIENPLAN3.3.1MINOLOADINGS'EVIEW RESPONSIBILITIES Primary-Structtrral; Engineering Branch(SEB)Secondary

-None;I.AREASOFREVIEW,Thefollowing areas.relating tothedesignofstructures thathavetowithstand theeffectsofthe,designwind"specified fortheplantarereviewedtoassureconform-ancewiththerequirements ofGeneralOesignCriterion 2(Ref.1).Thedesignwindvelocityanditsrecurrence

interval, thevelocityvariation wMh-heigh/,andtheapplicable gustfactorsarereviewedfromthestapdpo&t ofuseindefiningtheinputparameters forthestructural designcriteriaappropriate toaccountforwindloadings.

Thebasesfortheselection andthevaluesoftheseparameters arewithinthereviewresponsibility oftheMeteorology SectionoftheAccidentEvaluation Branch(AEB)asstatedinSRPSections2.3.1and2.3.2.Theprocedures thatareutiliredtotransform thedesignwindvelocityintoaneffective pressureappliedtostructures arereviewedtakingintoconsidera-tionthegeometrical configuration andphysicalcharacteristics ofthestructures an/thedistribution ofwindpressureonthestructures.

II.ACCEPTANCE CRITERIASEBacceptsthedesignofstructures thatmustwithstand theeffectsofthedesignwindloadiftherelevantrequiremeiits ofGeneralDesignCriterion 2concerning naturalphenomena arecompliedwith.Thecriterianecessary tomeettherelevantrequirements ofGgC2areasfollows:"RRilo:.y pid"fi1fi"iSRPSi2.3.Rev.2-July1981USNRCSTANDARDREV)EWPLANStandardreviewplansare,grpPsred fortheguidanceoftheOfficeofNucjearReactorRegulation staffresponsible forthereviewofapplications toconstruct-and operatenuclearpowerplants.Thesedocuments aremadeavailable tothepublicssportotthoCommission's policyto',irrforrn ttenuclearindustrysndthegeneralpublicofregulatory procedures andpolicies.

Standardreviewplanssrenotsubstitutes.

for.,regulatory guidesortheCommission's regulations sndcompliance withthemlsnotrequired.

Thestandardreviewplansect(OPiarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotsllsectionsoftheStandardFo'rmsthavescorresponding reviewplan.Published standardreviewplanswillberevisedperiodically, ssappropriate.

toaccommodate commentsandtoreflectnowInforma-tionsndexperience.

  • commentsandsuggestions'for Improvement willbeconsidered andshouldbesenttotheU.s.NuclearRegulatory commission, officeofNuclearReactor,,Regulation.

washington, o.c.2065L Windvelocities of80MPH,(0;50Ft.)and95MPH(50-150,Ft

),wereusedinthedesignoftheDieselGenerator (OG)"E"building.

These-are-the samewindvelocities, usedin.,the'esign ofallexistingCategorpekustYuCtures.

RefertoSusg.SES'sFSARSection'.3.

1.1.Agustfactorofq~j.:.@VS'sed forASCEpaperNo.3269entitled"WindForcesonStructures"..;6~'<o't

')sbfggi.Thesewindvelocities weretransformed intoequivalent pressures usingtheexpression providedinthisSRPsection.~on&~qe-'eNff986d'Ff~O'PJ'(cbog1.f,~2Q>1~f(c.bof-'&.ff.9'tUf",f'~ffAE&~,~/r;:rasp6~,f'tE~~,/IJQfJeO1f'4.<Thevariouspressureloadsappliedarepresented inRef.3>>Pape6.Thesearethesamepressureloadsusedinthedesignofallexistfhg~Category IStruEcturps.

f'flbv,+~hnb~~.inp;tqfebbeni'3tIIL,f.<>,gntoneof Uac',&"~'AIc,NApn9[i1U~"'",-granbn!'gfHOOAE 2..w(~qO'-OiqPa3ZgI('hewin$~sed;~gthedesignshallbethemosts'everewind'that'h'asbeenhistoriq@lily2,reported forthesiteandsurrounding'area withsufficient marginforthe.,limited

accuracy, quantity, andperiodoftimeinwhichhistorical datahasbeenaccumulated.

.<zagqq0rTheacŽceptance criteriaforthedesignwindvelocityanditsrecurrence

interval, thevelocityvariation withheight,theapplicable gustfactors,andthebasesfordetermining thesesite-related parameters, areestab-lishedbytheAccidentEvaluation Branch(AEB)andarecontained inSRPSections2.3.1and2.3.2.Theapprovedvaluesoftheseparameters shouldserveasbasicinputtothereviewandevaluation ofthestructural designprocedures.

3.Theprocedures utilizedtotransform thewindvelocityintoaneffective pressuretobeappliedtostructures andpartsandportionsofstructures, asdelineated inANSIA58.1,"Building CodeRequirements forMinimumDesignLoadsinBuildings andOtherStructures" (Ref.2),areacceptable.

Inparticular, theprocedures utilizedareacceptable iffoundinaccord-ancewiththefollowing; For=adesignwindvelocityofV30mphspecified ataheightof30'0feetabovetheground,thevelocitypressure, q,isgivenby:q30000256V0psf2~6q,CThezyffpetive pressureforstructures, qF,andforportionsthereof,q,atvariousheightsabovethegroundshouldbeinaccordance withTable5andTable6ofANSIA58.1,respectively.

Sincemostnuclearpowerplantsarelocatedinrelatively opencountry,ExposureC,asdefinedinANSIA58.1,shouldbeselectedforbothtables.Depending uponthestructure geometryandphysicalconfiguration, pressurecoefficients maybeselectedinaccordance withSection6.4ofANSIA58.1.Geometrical shapesthatarenotcoveredinthisdocumentarereviewedonacase-by-case basis.ASCEPaperNo.3269,"WindForcesonStructures" (Ref.3),maybeusedtoobtaintheeffective windpressures forcaseswhichANSIA58.1doesnotcover.III.REVIEWPROCEDURES Thereviewerselectsandemphasizes materialfromthereviewprocedures described belowasmaybeappropriate foraparticular case.1.Thesite-related parameters described insubsection'.

1theAccidentEvaluation Branch(AEB)underSRPSectionsThestruc'tural reviewerexaminestheapprovedvaluesoftoassurethattheyareconsistent withthosecontained Sections2.3.1and2'.2.arereviewedby2.3.1and2.3.2.theseparameters inSRP3.3.1-2Rev.2-July1981 55ec31lq014~'oQns5>von5rnio\nie'5i..sps5sotes)~isicenobo;j.;gaolbssbna58nlliwenelqwelA NUBEG-0800(Formerly NUREG-75/087)

,iSSEC>,iSTANDARDREVIEWPLAN~oOFFlCE'OF NUCLEARREACTORREGULATION

~4sh**4'3.3.2TORNADOLOADINGSREVIEWRESPONSIBILTIES Primary-Structural Engineering Branch(SEB)Secondary

-NoneI.AREASOFREVIEWThefollowing areasrelatingtothedesignofstructures thathavetowithstand theeffectsofthedesignbasistornadospecified fortheplantarereviewedtoassureconformance withtherequirements ofGeneralDesignCriterion 2(Ref.1).1.Thedesignparameters applicable tothetornado,including thetornadowindtrarislational andtangential velocities, thetornado-generated pressuredif=fer'ential anditsassociated timeinterval, andthespectrumoftornado-generated missilesincluding theircharacteristics, arereviewed'from the'tandpoint ofuseindefiningtheinputparameters forthestructural designcriteria.

appropriate toaccountfortornadoloadings.

Thebasesfortheselection andthevaluesoftheseparameters arewithinthereviewresponsi-bilityoftheAccidentEvaluation Branch(AEB)asstatedinSRPSections2.3.1,(2.3.2,and3.5.1.4.2.Theprocedures thatareutilizedtotransform thetornadoparameters intoeffective loadsonstructures arereviewed, including thefollowing:

a.Thetransformation ofthetornadowindintoaneffective pressureappliedtostructure's, takingintoconsideration thegeometrical configuration andphysicalcharacteristics ofthestructures andthedistribution ofwindpressureonthestructures.

b.Ifventingofastructure isused,theprocedures fortransforming thetornado-generated differential pressureintoaneffective reducedpres-surearereviewedbytheAuxiliary SystemsBranch(ASB)uponSEBrequest.USNRCSTANDARDREYIEWPLANRev.2-July1981Standardreviewplansareprep'ared fortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments aremadeavailable tothepublicaspartoftheCommission's policytoInformthenuclearIndustryandthegeneralpublicofregulatory procedures andpolicies.

Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemisnotrequired.

ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveacorresponding reviewplan.Published standardreviewplanewillberevisedperiodically, asappropriate, toaccommodate commentsandtoreflectnewInforms.tionandexperience.

Commentsandsuggestiqps forimprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Commission, OfficeofNuclearReactorRegulation, Washington, O.C.20555.

er~f'.,i(P'jDP...

fft9ri"69'r"IIm2)obsn't<ThetornadodesignforDG"E"buildingisperReg,,',5u$

de1.76forRegionI."f)'-I+3+MaximumWindSpeed360MPH"Rotational Speed290MPH*q'pgMax.Translational Speed70MPH-'"bMin.Translational Speed5MPH.,~;~n b,PRadiusofMaximumRotational Speed150Ft.;,='"~~iPressureDrop3.0PSI,';(,jjg;RateofPressureDrop2.0PSI/Sjc;,

',,v'6'ns(SeeRef.I,Page3.3-2-3.3-4andRef.3,Pages,'and7.)Jnssfqe".~"(C2C9~.~grr*r~~y/AS'i3r'!9~irn(Nayg~<rl'>>'"'errur.':.3.i)Thetornadowindvelocitywastransformed intoap,;yqgivalent pressureusingtheexpression providedinthisSRPsection;.t

,'.z~asmii)Thetornadowindvelocitywastakentobeconstantwithheight.iii)Appliedtornadowindpressures arecalculated usipg~-the;maximumtornadowindvelocity.

srlT('",qo0trt&Q'ro3Jn&,;v~o c.Thetransformation oftornado""generated missileloadings, whichareimpactive dynam'icloads,intoeffective loads.d.Thecombination oftheaboveindividual loadingsinamannerthatwillproducethemostadversetotaltornadoeffectonstructures.

3.Theinformation providedtodemonstrate thatfailureofanystructure orcomponent notdesignedfortornadoloadswillnotaffectthecapability ofotherstructures orcomponents toperformnecessary safetyfunctions.

II.ACCEPTANCE CRITERIASEBacceptsthedesignofstructures thatmustwithstand theeffectsofthedesigntornadowindloadandtheassociated'missiles iftherelevantrequire-'mentsofGeneralDesignCriterion 2concerning naturalphenomena arecompliedwith.Thecriterianecessary tomeettherelevantrequirements ofGDC2areasfollows:2.3.Thetornadowindandassociated missilesgenerated bythetornadicwindsusedin.tgedesignshallbethemostseverewindthathasbeenhistorically reports"t'oi'he siteandsurrounding areawithsufficient marginforthelimitedaccuracy;

quantity, andperiodoftimeinwhichhistorical datahasbeenaccumulated.

Theacceptance criteriaforthetornadowindvelocity, thedifferential pressureanditsassociated timeinterval, thespectrumoftornado"generated missilesandtheircharacteristics, andthebasesfordeter-miningthese'arameters, areestablished bytheAcciderit Evaluation Branch(AEB)asdescribed inSRPSections2.3.1,2.3.2,and3.5.1.4.Theapprovedva'tuesoftheseparamenters shouldserveasbasicinputtothereview.and evaluation ofthestructural designprocedures.

inF8Theacceptance'riteria fortheprocedures usedtotransform thetornadoparameters int'oeffective loadingsonstructures areasfollows:a~Fortransforming thetornadowindvelocityintoaneffective pres-sureappliedtostructures, thecriteriadelineated ineithertheAmericanSocietyofCivilEngineers (ASCE)PaperNo.3269,"MindForcesonStructures" (Ref.2),orinANSIA58.1,"Building CodeRequirements forMinimumPesignLoadsinBuildings andOtherSti%5tur'4's" (Ref.3),are,ingeneral,acceptable.

Inparticular, thefollowing shallapply:,(i)Themaximumvelocitypressure, p,shouldbebaseduponthemaximumtornadovelocity, V,usingthefollowina formula:p=0.00256Vpsf,inwhichVisinmph.,(ii=)"-7tH'elocity pressureshouldbeassumedconstantwithheight.(iii)Themaximumvelocitypressure, p,appliesattheradiusofthetornadofunnelatwhichthemaximumvelocityoccurs.Thetan-gentialvelocityvarieswiththeradialdistancefromthecenterofthetornadocore.Thevariation maybeconsidered inaccord-ancewiththatdescribed inthepaper,"TornadoResistant OesignofNuclearPowerPlants"(Ref.4).3.3.22Rev2-4uly1981 (vShapeandpressurecoefficients aretakenfromASCEPaperNo.3269.x',.lwAgustfactorofunityisused.VentingoftheDG"E"buildingisnotusedtoreducesthe tornado-generated differential pressure.

Thefull3PSI'differential pressureisappliedasastaticload."E..)F>nngil6sc'~'~f-Sd>Equivalent staticloadsweredetermined usingRe'f."7-'dfSRP3.5.3.Allowable ductility ratiosweretakenfromAC1-349'b

%hemodifiedNDRCformulawasusedtocalculate thedepthofmiss'ilepenetration.

Thethicknesses oftheDG"E"building's wallsand",'r'deaf.

exceedthosevalueslistedinTable1ofSRP3.5.3.>'fvf5<e(3n9nThethreeindividual tornado-generated loads(w'ind:,~ViVferential pressureandmissile)arecombinedperthemethod"presented inthisSRPsection.(SeeRef.3,Page7.){i)g(ff(jr(I'vi",(v;f,>~.(rv'!,"gg&3io9fig..g'~&8&"...dnor08'2&m'Io<ions0".,Therearenostructures adjacenttotheDG"E"bu'i'M'i'hus, nostructures arepostulated tocollapseorfailonCfire'DG"E"building.

'.$$20Q9'hetornado-generated missilesusedinthedesignA%9feOG"E"buildingarethemoreseveremissilesofthose1AChcPR"ntheFSARTable3.5-4andtheSpectrumIImissilesforRegion>4P"(See Ref.1,Table3.5-4a.)Theverticalvelocities wereconsidered tobeequalto80percentofthehorizontal velocities.

b.~do(iv)Forcalculating velocitypressures onexternalsurfacesofstruc-=.9~Yures,onexternalportionsthereof,andoninternalsurfaces, wherethereareopeningsinthestructure, appropriate shapeco'efficients shallbeusedinaccordance withASCEPaperHo.3269(Ref.2).Gustfactorsmaybetakenasunity.Ifventingofastructure isadoptedasadesignmeasuretopermittiansforming thetornado-generated differential pressureintoaneffective reducedpressure, theacceptance criteriaareestablished onacase-by-case basis,uponrequest,bytheAuxiliary SystemsBranch(ASB).Theacceptance criteriafor.transforming thetornado-generated mis-sileimpactintoaneffective orequivalent staticloadonstructures agedelineated insubsection IIofSRPSection3.5.3.PPflfgyring,established theeffective loadsforeachoftheabovethreeindividual tornado-generated effects,thecombination thereofshouldthenbedetermined inaconservative mannerforeachparticular

-structure, asapplicable.

Anacceptable methodofcombining thesee.fsgcts, isasfollows:'Wt=W(ii)Wt=Wtp(iii)Wt'W()W=W+.5Wtw'(v)Wt=W+W(vi)Wt=W+.5W+Ww'mwhere:Wt.....totaltornadoload,Ww.....tornadowind'oad, W.....tornadodif'Perential pressureloadandP1W.....tornadomissileload.Foreachparticular structure orportionthereof,themostadverseoftheabovecombinations shouldbeused,asappropriate.

Thesecombinedeffectsconstitute thetotaltornadoloadwhichshouldthenbecombinedwithotherloadsasspecified inSRPSections3.8.1,3.8.4,and3.8.5.Theinformation providedtodemonstrate thatfailureofanystructure orcomponent notdesignedfortornadoloadswillnotaffectthecapability ofothe@,nsQuctures orcomponents toperformnecessary safetyfunctions, isacceg++iffoundinaccordance witheitherofthefollowing:

a.Thepostulated collapseorstructural failureofstructures andcom-poqept~gotdesignedfortornadoloads,including

missiles, canbesfowggot'.

toresultinanystructural orotherdamagetosafety-re1atyd:structures orcomponents.

b~",~.'~3~23Rev2-July1981 f929d."e~O'Yflab'f;C,bgr,'-"l&'Fp)9c.'RC,:)369li'.~ri"~>V9'lqPf=-9bC~)PIIVq":"i",(29gJb9DC'9~(Jl.9~99flri".:9V9lc.gaggqafi'9ZVBlBBZf~~giflO>,f"f9tt,HQQ959~9.r.9Vf"39590"~qrv9r'lQfg6'28~f.iSly>>"Ofl;l@ad2k~,i>9iIil'.~iN(.,iT'ff9~RO2df'S9fqlrO0(

bSafety-related structures aredesignedtoresisttheeffectsofthepostulated structural failure,collapse, orgeneratl.onofmissilesfromstructures andcomponents notdesignedfortornadoloads.III.REVIEWPROCEDURES Thereviewerselectsandemphasizes materialfromthereviewprocedures described below,asmaybeappropriate foraparticular case.1.Thesite-related parameters described insubsection I.l.arereviewedby2.3.2an5.theAccidentEvaluation Branch(AEB)inaccordance withSRPSt'31d3..1.4.Thestructural reviewerexaminestheapprovedvaluesofthesep'arameters toassurethattheyareconsistent withthosecontained intheSRPsectionsstatedabove.2.After.theacceptability ofthesite"related parameters isestablished, theSEBreviewerproceedswithhisreviewofthestructural aspectsoftornadodesigninthefollowing mannera.The.procedures usedbytheapplicant totransform tornadowindveloc"itiesintoeffective pressures arereviewedandcomparedwiththoseprocedures delineated ineitherASCEPaperNo.3269orinANSIA58.1,whichever isselected, and,inparticular, withtheacceptance criteriadelineated insubsection II.3.a.b.C.Whereventingisused,procedures fortransforming thetornado-generat'ed differential pressureintoaneffective reducedpressurearereviewed, uponrequest,bytheAuxiliary SystemsBranch(ASB)uponSEBrequest.Thetreatment oftornado-generated missilesiscoveredinSRPSection3.5.1.4andthereviewprocedures fordesignofmissilebarriersaredescribed inSRPSection3.5.3.d.Afterprocedures fordetermining theindividual tornadoeffectsarereviewed, themannerinwhichtheseeffectsare-then'ombined toarriveatthemostadversetotaltornadoeffectisreviewedandcomparedwiththeacceptance criteriadelineated insubsection II.3.d.Otherproposedmethodswhichmaydependuponthegeometryandconfi-gurationofaparticular structure arereviewedonacase-by-case basis.3,Theinformation providedtodemonstrate thatfailureofanystructure orcomponent notdesignedfortornadoloadswillnotaffectthecapability ofotherstructures orcomponents toperformnecessary safetyfunctions isreviewedtoassurethatoneoftheacceptance criteriaofsubsection II.4issatisfied.

IY.EVALUATION FINDINGSThereviewervefifiesthatsufficient information hasbeenprovidedtosatisfytherequirements ofthisSRPsection,andconcludes thathisevaluation issufficiently completeandadequategosupportthefollowing typeofstatement tobeincludedinthestaff'ssafetyevaluation report.3.3.2-4Rev2-July1981 3vThetornado-generated missilesusedinthedesignoftheDG"E",.facility arethemore'severe missilesofthoselistedinfSARTable3.5-4'~'and theSpectrumIImissilesforRegionI.(SeeRef.1,Table3.5-4a.)Theverticalvelocities wereconsidered tobeequalto80percentofthehorizontal velocities.

1548-.no-'tQ916~vnr.50U1.r~olnio!s1DIasti'not:oem svosSB~'

NUREG-0800 (Formerly NUREG-76/087)

<LaRtctrWpSTANDARDREVIEWPLAN+'.~o"OFFICEOFNUCLEARREACTORREGULATION pete3.5.1.4MISSILESGENERATEO BYNATURALPHENOMENA REYIEMRESPONSIBILITIES Primary-Auxiliary SystemsBranch(ASB)Secondary

-NoneI.AREASOFREYIBITheapplicant's assessment ofpossiblehazardsduetomissilesgenerated bythedesignbasistornado,flood,andanyothernaturalphenomena identified inSec-tion3.5ofthesafetyanalysisreport(SAR)isreviewedandevaluated bytheASBtoassurethatappropriate designbasismissileshavebeenchosenandpr'operly characterized, andtoassurethattheeffectscausedbythesemissilesareaccept-able.Currently, onlymissilesfromthedesignbasistornadoareconsistently consiaered intheplantdesignbases.Missilesfromotherphenomena arecon"sideredonacase-by-case basiswhentheyareidentified.

TheASBalsoreviewstheidentification ofthosestructures, systemsandcompo-nentsthatshouldbeprotected againstmissileimpactunderStandardReviewPlan(SRP)Section3.5.2.TheStructural Engineering Branch(SEB)determines theacceptability ofthedesignanalysis, procedures andcriteriausedtoestablish theabilityofseismicCate-goryIstructures and/ormissilebarrierstowithstand theeffectsoftornadomissilesaspartofitsprimaryreviewresponsibility forSRPSection3.5.3.Theacceptance criteriaandtheirmethodsofapplication arecombinedinthatSRPsection.II.ACCEPTANCE CRITERIAnMTheacceptabi),ity oftheassessment asdescribed intheapplicant's SafetyAnalysisReport(SAR)i,s.,based oncompliance with:GeneralDesignCriteria2and4asitrelatestothelcapability ofstructures, systems,andcomponents important tosafetytowithstand theeffectsoftornadoes andothernaturalphenomena.

Accept-anceisbasedonmeetingtheguidelines ofRegulatory Guide1.76and1.117.The,Rev2-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments aremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryandthegeneralpublicofregulatory procedures andpolicies.

Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemisnotrequired.

ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveacorresponding reviewplan.Published standardreviewplanswillberevisedperiodically, asappropriate.

toaccommodate commentsandtoreflectnewinforma.tionandexperience.

Commentsandsuggestions forimprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Commission, OfficeofNuclearReactorRegulation.

Vtashington, O.C.20555.

"1I30,WOA9a.,"f&1'C.,.'9litic',QO"f&jl~l%tl'41C~gi<<svr<f~~~(IQi.fV4ggC.f2fd~ib98&~."fictal99"g~~gB(k'ael'('+'L./sy~f',CIC'qr>&Cs"i)4+f/Alp":reer methodology ofidentification ofappropriatedesignbasis'issiles generated bynaturalphenomena shallbeconsistent withtheacceptance criteriadefinedfortheevaluation ofpotential accidents fromexternalsourcesinSRPSection2.2.3.III.REYIEMPROCEOURES determ'he procedures belowareusedduringtheconstruction permit(CP)'inethatthedesigncriteriaandbasesandthepreliminary dstreviewoforthintherepliminarysafetyanalys)sreportmeettheacceptance criteriagiveninsubsection II.Forreviewofoperating license(OL)applications, hatheprocedures areutilizedtoverifythattheinitialdavebeenappropriately implemented inthefinaldesignassetforthinthefinalsafetyanalysisreport.Uponrequestfromtheprimaryreviewer, SEBwillprovideinputfortheareasofreviewstatedinsubsection I.Theprimaryreviewerobtainsandusessuchinputasrequiredtoassurethatthisrevie~'rocedure iscomplete.

Thereviewerwillselectandemphasize materialfromthisSRPsection,asmaybeappropriate foraparticular case.Thejudgmentonareastobegivenattention andemphasisinthereviewistobebasedonaninspection ofthematerialpresented toseewhetheritissimilartothatrecentlyreviewedonotherplantsandwhetheritemsofsecialsafetsignificance areinvolved.

.1TheSARisreviewedfortheidentifi,cation ofthedesignbasisnaturalphenomena whichcouldpossiblygeneratemissiles.

Postulated missilesarereviewedforpropercharacterization.

2.Theprobability peryearofdamagetothetotalofallimportant struc-tures,systems,andcomponents (asdiscussed inRegulatory Guide1.117)duetoaspecificdesignbasisnaturalphenomena capableofgeneratin missilesisestimated.

ing3.Ifthisprobability isgreaterthantheacceptable probability statedinRegulatory Guide1.117,thenspecificdesignprovisions mustbeprovidedtoreducetheestimateofdamageprobability toanallowable level.4.Al1plantsarerequiredtobedesignedtoprotectsafety-related equipment againstdamagefrommissileswhichmightbegenerated bythedesignbasistornadoforthatplant.Thereviewerverifiesthattheapplicant haspostu-Ilatedmissilesthatincludeatleastthreeobjects:amassivehighkineticresienergymissilewhichdeformsonimpact,arigidmissiletotestpenetrt'aionthrou'stance,andasmallrig>dmissileofasizesufficient tojustpghanyopeningsinprotective barriers.

Untilmoredefinitive guide-asslinesareestablished, thesemissilesmaybeassumedtobean1800Kgsteeautomobile, a125Kg8"armorpiercingartillery shellanda1"1'd1sphere,allimpacting at35K.ofthemaximumhorizontal windspeed ofso1thedesignbasistornado.Thefirsttwomissilesareassumedtoimpactatnormalincidence, thelasttoimpingeuponbarrieropeningsinthemostdamagingdirections.

Thesemissilesareidentified asSpectrumI.Alternately, themissilesselectedbytheNationalBureauofStandards asrepresentative ofconstruction sitedebrisinreportNBSIR76-1050maybe3.5.1.4-2Rev.2-July1981 IIII~~~,J)lfP<e"q~OPi,tDQft~;ol>'~<<I' NUREG-0800 IFormerly NUREG-75/Qg) spastepSTANDARDREVIEWPLANo."OFFICEQFNUCLEARREACTORREGULATION 3.5.1.5SITEPROXIMITY MISSILES(EXCEPTAIRCRAFT)

REVIEWRESPONSIBILITIES Primary-SitingAnalysisBranch(SAB)Secondary

-NONEI.AREASOFREVIEWThestaffreviewsthenatureandextentofoffsiteactivities identified inSRPSection2.2.1-2.2.2todetermine whetheranymissilesresulting fromsuchactivities, otherthanaircraft(aircraft hazardsarereviewedseparately

-inSRPSection3.5.1.6),havethepotential foradversely affecting structures, systems,andcomponents (SSC)essential tosafety.Intheevent.thatanoffsiteactivityhasthepotential formissile-production (e.g.,explosion) andisfoundtobe-adesignbasiseventaccmd-ingtoSRPSection2.2.3,thestaffreviewstheplantdesigntodetermine whethertheplantisadequately protected againsttheeffectsofthepostulated missiles.

TheSSCthatshouldbeprotected againstmissilesareidentified inaccordance withSRPSection3.5.2aspartoftheprimaryreviewresponsibility oftheAuxiliary SystemsBranch(ASB).TheSitingAnalysisBranch(SAB)identifies andcharacterizes anyoffsitemissilesthatarerequiredtobeaccommodated withintheplantdesignbasisinordertoprotectadequately thesafety-related SSC.TheStructural Engi-neeringBranch(SEB)onrequestbySABreviewsthemissileimpacteffectsonthesafety-related SSC.Theacceptance criterianecessary forthereviewandthemethodsofapplica'tion fortheabovereviewsarecontained inthereferenced SRPsection.II.ACCEPTANCE CRITERIASABacceptance criteriaarebasedon'meetingtherelevantrequirements ofoneofthefollowing regulations:

10CFRPart100,5100.10indicates thatthesitelocation, in,conjunction withotherconsiderations (suchasplantdesign,construction, andoperation),

shouldinsurealowriskofpublicexposure.

Thisrequirement ismetiftheprobability ofsiteproximity missilesimpacting theplantandcausingradiological Rev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments aremadeavailable tothepublicaspartofthecommission's policytoinformthenuclearindustryandthegeneralpublicofreguiatory procedures andpolicies.

Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemisnotrequired.

ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveacorresponding reviewplan.Pubgshedstandardreviewplanswillberevisedperiodically.

asappropriate, toaccommodate commentsandtoreflectnewinforms.tionandexperience.

Commentsandsuggestions forimprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Commission.

OfficeofNuclearReactorRegulation.

Washington, O.C.20555.

<rCr~Thefollowing siteproximity missileswereconsidered inthe'designofthe06"E"facility:

MissileRifflebulletFragmentfromatruckOxygenbottleAcetylene bottle2erogasbottleexplosion

~lleiht2Oz.6Oz.143lb.198lb.70lb.~Velocit2667fps15fps262fps179fps342fps(SeeRef.2,Page4-1andRef.3,Page9.)

consequences greaterthan10CFRPart100exposureguidelines islessthanabout',10-peryear(seeSRPSection2.2.3).Iftheresultsofthedonotindicatethattheabovecriterion ismet,thentheacceptance criterion described in2belowapplies.2.GeneralDesignCriterion (GDC)4of10CFRPart50,AppendixA,requiresthatstructures, systems,andcomponents (SSC)important tosafetybeappro-priatelyprotected againsttheeffectsofmissilesthatmayresultfromeventsandconditions outsidethenuclearpowerunit.TheplantcomplieswithGDC4andisconsidered adequately protected againstsiteproximity missilesifthefollowing criterion ismet:TheSSCimportant tosafetyarecapableofwithstanding theeffectsofthepostulated missileswithoutlossofsafeshutdowncapability andwithoutcausingareleaseofradio-activitywhichwouldexceed10CFRPart100dosecriteria.

III.REVIEW.PROCEDURES Thereviewerselects.andemphasizes aspectsoftheareascoveredbythisSRPsectionasmaybeappropriate foraparticular case.Thejudgmentonareastobegivenattention andemphasisinthereviewisbasedonaninspection ofthematerialpresented toseewhetheritissimilartothatrecentlyreviewedonotherplantsandwhetheritemsofspecialsafetysignificance areinvolved.

1.The-identification anddescription ofaccidents whichcouldpossib'ly generatemissilesisobtainedfromthereviewperformed inaccordance withSRPSection2.2.1-2.2.2andSRPSection2.2.3.2.TheSSCidentified by'ASBinreference toSRPSection3.5,2arereviewedwithrespecttomissilevulnerability.

Usingconservative assumptions, andexperience gainedfrompastreviewsonsimilarSSCmissileinterac-tions,adetermination ismadeofthoseportionsoftheplantwhichclearlyhavethepotential forunacceptable missiledamage.IfallSSCappeartobeadequately protected againsttheeffectsofthepostulated

missiles, thenthereviewisterminated andevaluation findingsarewrittenintermsofdesignbasisconsiderations (Seesubsection II.2ofthisSRPsection).

3.Thetotalpiobabilityofthemissilesstrikingavulnerable criticalareaoftheplantisestimated.

Thetotalprobability peryear(PT)maybeestimated byusingthefollowing expression:

PT=PExP>RxPSCxPPxNwhere:PE=probability peryearofdesignbasiseventobtainedfromthereviewperformed underSRPSection2.2.3,P>R=probability ofPSC=probability ofplant,Pp=probability of,tovitalareasmissilesreachingtheplant,missilesstrikingavulnerable criticalareaofthemissilesexceeding theenergiesrequiredtopenetrate (e.g.,basedonwallthickness providedfortornado3.5.1.5-2Rev.1-Ju1y1981

~~~SL NUREG-0800.(Formerly NUBEG-76/087)

~~ARrcrirwpSTANDARDREVIEWPLANoFFIcEoFNucLEARREAcTGRREGULATION

+e*g43.7.1SEISMICDESIGNPARAMETERS REVIEWRESPONSIBILITIES Primary-Structural EngineeringBranch(SEB)Secondary

-NoneI.AREASOFREVIEWThefollowing areasrelatingtoseismicdesignparameters arereviewed.

1.DesinGroundMotionFortheseismicdesignofnuclearpowerplantsitiscustomary tospecifytheearthquake groundmotionwhichisexertedonthestructure oronthesoil"structure interaction system.Thedesigngroundmotion,sometimes knownastheseismicinput,isbasedontheseismicity andgeologicconditions atthesiteandexpressed insuchamannerthatitcanbeappliedtothedynamicanalysisofstructures.

Thedesigngroundmotionsfortheoperating basisearthquake (OBE)andsafeshutdownearthquake (SSE)arereviewed.

Theyshouldbeconsistent withtheinformation onseismicenvironment atthesiteprovidedinSRPSection2.5.2,whichincludesthevariation inanddistribution ofpeakgroundacceleration inthefreefieldatdifferent depthsacrossthesoilprofile,sourcesanddirections ofmotion,propagation andtransmission ofseismicwaves,andotherresponsecharacteristics..

DesinResonseSectraAresponsespectrumisaplotofthemaximumresponseofafamilyofsingle-degree-of-freedom dampedoscillators withdifferent frequency

.characteristics wh'enthebaseoftheoscillator'is subjected tovibratory motionindicated byanappropl'iate timemotionrecord.Theresponsespectraareusuallydisplayed ontripartite log-loggraphpaper.Whenobtainedfromarecordedearthquake, theresponsespectrumtendstobeirregular, withanumberofpeaksandvalleys.Adesignresponsespec-trumisarelatively smoothplot,obtainedfromanumberofindividual 4USNRCSTANDARDREVIEWPLANRev.1-July1981StandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments aremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryandthegeneralpublicofregulatory procedures andpolicies.

Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemisnotrequired.

ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveacorresponding reviewplan.Published standardreviewplanswillbereviseoperiodically, avappropriate, toaccommodate commentsandtoreflectnewinforma.tlonandexperience.

Commentsandsuggestions forimprovement willbeconsidered andshouldbesenttotheU,S.NuclearRegulatory Commission.

OfficeofNuclearReactorRegulation.

Washington.

O.C.20566.

a&b)Themaximumgroundacceleration valuesarebasedonthemostsevereearthquakes thathavebeenhistorically reportedforthesiteandsurrounding area.ThevaluesusedinthedesignoftheDG"E"facilityarethesameasthosevaluesutilizedinthedesignofexistingSusquehanna SESseismicCategoryIstructures.

TheNRChaspreviously reviewedandacceptedthesemaximumgroundacceleration values.FortheDG"E"buildingandpedestal, whicharefoundedonsoundbedrock,themaximumgroundaccelerations weretakentobe0.10gforSSEand0.05gforOBE.fortheDG"E"facility's fueltank,whichisfoundedonsoil,thevaluesare0.15gforSSEand0.08gforOBE.(SeeRef.1,Page3.7b-1.)

Inpractical seismicanalysis, whichusuallyemployslinearmethodsofanalysis, dampingisalsousedtoaccountformanynonlinear effectssuchaschangesin.boundaryconditions, jointslippage, plastichinges,concretecracking, gaps,andothereffectswhichtendtoalterresponseamplitude.

Inrealstructures, itisoftenimpossible toseparate"true"materialdampingfromsystemdamping,whichisthemeasureoftheenergydissipation,-

fromthenonlinear effects.Overallstructural dampingusedindesignisnormallydetermined byobserving experimentally thetotalresponseofthestructure.

4.OnlytheoveralldampingusedforCategoryIstructures, systems,andcomponents arereviewed.

Whenapplicable, thebasisforanydampingvaluesthatdifferfromthosegiveninRegulatory Guide1.61(Ref.4)isreviewed.

SuortinMediaforCateorIStructures Thedescription ofthesupporting mediaforeachCategoryIstructure isreviewed, including foundation embedment depth,depthofsoiloverbedrock,soillayeringcharacteristics, widthofthestructural foundation, totalstructural height,andsoilproperties topermitevaluation oftheapplica-bilityoffiniteelement.,or lumpedspringapproaches forsoil-structure interaction analysis.

SEBcoordinates otherbranches'valuations thatinterface withstructur@

engineering aspectsofthereviewasfollows:IReviewofgeological andseismological information toestablish thefreefieldgroundmotionisperformed bytheGeosciences Branchasdescribed inSRPSection2.5.Hydrologic andGeotechnical Engineering Branchreviewsthegeotechnical parameters andmethodsemployedintheanalysisoffreefieldsoilmediaandsoilproperties asdescribed inSRPSection2.5.Structural Engineering Branchacceptstheresultsofthereviewsperformed bythesebranchesincluding themaximumseismicgroundacceleratioqs fortheOperating BasisEarthquake (OBE)andtheSafeShutdownEarthquake (SSE),sitedependent freefieldgroundmotionrecords,soilproperties, etc.,asanintegralpartoftheseismicanalysisreviewofCategoryIstructures.

Forthoseareasofreviewidentified aboveasbeingreviewedaspartoftheprimaryreviewresponsibility ofotherbranches, theacceptance criterianecessary forthereviewandtheirmethodsofapplication arecontained in.thereferenced SRPsectionofthecorresponding primarybranch.ACCEPTANCE CRITERIASEBacceptsthedesignofstructures thatareimportant tosafetyandmustwith-standtheeffectsoftheearthquakes iftherelevantrequirements ofGeneralDesignCriterion 2(Ref.1)andAppendixAto10CFRPart100(Ref.2)concerning materialphenomena arecompliedwith.Therelevantrequirements ofGDC2andAppendixAto10CFRPart100are:a~ForDesignCriterion 2-Theearthquakes usedinthedesignshouldbethemostsevereonesthathavebeenhistorically reportedforthesiteandsurrounding areawithsufficient marginforthelimitedaccuracy, quantityandperiodoftimeinwhichhistorical datahasbeenaccumulated.

3.7.1-3Rev.1-July1981 ThedesignresponsespectrafortheDG"E"facilityisconstructed bylinearlyscalingdowntheamplification factorspresented inTablesIandIIofReg.Guide1.60.ThescalingfactorusedistheratiooftheSusquehanna SESmaximumgroundacceleration tothe1.0gacceleration valueassociated withtheabovetables(SeeRef.1,Page3.7b-1.).

'FortheDG"E"facility, themaximumverticalgroundacceleration wastakentobethesameasthemaximumhorizontal groundacceleration (SeeRef.1,Page3.7b-2.)FortheDG"E"Facility, twosynthetic timehistories (oneverticalandone,horizontal) weredeveloped tocarryouttimehistoryanalyses(See.Ref.1,Page3.7b-2).

/b.ForAppendixAto10CFRPart100-Twoearthquake levels,thesafeshutdownearthquake (SSE)andtheoperating basisearthquake (OBE),shallbeconsidered inthedesignofthesafety-related structures,.

components andsystems.Specificcriterianecessary tomeettherelevantrequiremen'ts ofGQC2andAppendixAto10CFRPart100aredescribed below.Theacceptance criteriafortheareasofreviewdescribed insubsection Iaboveareasfollows:1.DesinGroundMotiona.DesinResonseSectraDesignresponsespectrafortheOBEandSSEareconsidered tobeacceptable iftheassociated amplification factorsareinaccordance withRegulatory Guide1.60,"DesignResponseSpectraforNuclearPowerPlants,"foralldampingvalues.AsnotedinRegulatory Guide1.60,therearesitecircumstances wherethedesignresponsespectraaremoreappropriately developed tosuittheparticQlar sitecharacteristics.

Designresponsespectrabaseduponsite-dependent analysismustbederivedconsidering insitu-variable soilproperties, arepresentative numberofsiteearthquake.

records,verticalamplification, possibleslantedsoillayers,andtheinfluence ofanypredominant soillayers.,Variablesoilproperties andnonlinear stress-strain relations inthesoilmediashouldbeconsidered.

Ifsite-dependent designresponsespectraareused,thedataandbasesfromwhichthespectraarederivedshouldbeconsistent withthoseprovidedinSection2.5.2oftheSAR.Tobeacceptable thedesignresponsespectrashouldbespecified'for threemutuallyorthogonal directions; twohorizontal andonevertical.

Currentpracticeistoassumethatthemaximumgroundaccelerations inthetwohorizontal directions areequal,whilethemaximumverticalgroundacceleration is2/3ofthemaximumhorizontal acceleration.

ForthewesternUnitedStates(WestofRockies),

theresponsespectrumforverticalmotioncanbetakenas2/3theresponsespectrumforhorizontal motionovertheentirerangeoffrequencies.

~lli~illiThedesigntimehistorytobeusedatvariousdepthsinthefree-field ofthesoilmediashallbeconsistent withthatdeveloped orspecified inSection2.5.2.WhennospecifictimehistoryisprovidedinSection2.5.2oftheSAR,anartificial timehistorymaybegenerated foruseintheseismicanalysis.

Theartificial timehistoryisacceptable iftheresponsespectrainthefreefieldatthespecified levelofthesite3.7.1"4Rev.l-July1981 Timehistoryresponsespectrahavebeenshowntoenvelopethedesignresponsespectra(SeeRef.1,Page3.7b-2.)ThedesigngroundmotionisappliedtotheOG"E"Bldg.atthebasematlevel.Timehistoryresponsespectrahavemetthiscriteria.

(SeeRef.1,Page3.7b-2andtheprovidedfigures.)

Responsespectrahavebeencomputedatthesesuggested frequencies.

(SeeRef.1,Page3.7b-2.)~~~DampingvaluesutilizedfortheDG"E"Facilityarethosepresented inReg.Guide1.61.(SeeRef.1,Page3.7b-3.)Mostconduitandboxsupportsutilizedampingvaluesassociated withtheexistingplantcriteria.

Thiswasdonetotakeadvantage.

ofthenumeroustypicalconduit/box supportsthatareavailable fortheexistingcriteria.

obtainedfromsuchtimehistoryenvelopthedesignresponsespectraatthesamelocationforalldampingvaluesactuallyusedintheanalysis.

AppendixAto10CFR100specifies thatforsoilstructure interaction analysisorforseismicdesignofstructures, thedesignroundmotion(sometimes calledthecontrolmotionorreference motion)sappliedatthefoundation levelofCategoryIstructures inthefreefield.Whenspectralva'luesareca1culated fromthedesigntimehistorythefrequency intervals aretobesmallenoughsuchthatanyreduction intheseintervals doesnotresultinmorethan10Xchangeinthecomputedspectra.Table3.7.1-1providesanacceptable setoffre-quenciesatwhichtheresponsespectramaybecalculated.

Anotheracceptable methodistochooseasetoffrequencies suchthateachfrequency iswithin10Xofthepreviousone.Theacceptance criterion formeetingthespectra-enveloping requirement isthatnomorethanfivepointsofthespectraobtainedfromthetimehistoryshouldfallbelow,andnomorethan10Kbelow,thedesignresponsespectra.Table3.7.1-1Suggested Frequency Intervals forCalculation ofResponseSpectraFrequency RangehertzIncrement (hertz)0.2-3.03.0-3.63.6-5.05.0-8.08.0-15.015.0-18.018.0-22.022.0-34.0.10.15.20.25.501.0"2.03.02.CriticalOaminValuesThespecificpercentage ofcriticaldampingvaluesusedintheanalysesofCategoryIstructures, systems,andcomponents areconsidered tobeacceptable iftheyareinaccordance withRegulatory Guide1.61,"OampingVaIuesforSeismicOesignofNuclearPowerPlants."Higherdampingvaluesmaybeusedinadynamicseismicanalysisifdocumented testdataarepro-videdtosupportthem.Thesevalueswouldbereviewedandacceptedbythestaffonacase-by-case basis.Thedampingvalueforsoilmustbebaseduponactualmeasuredvaluesorotherpertinent laboratory dataconsidering'variation insoilproperties andstrainswithinthesoil.3.7.1-5Rev.1-July1981 Ageneraldescription ofthesupporting mediaisprovidedinRef.2,page3-6.~Sevenboringsweretakentodetermine thesoilandrockconditions intheareaoftheDG"E"facility.

Aplanshowingthelocationoftheborings,thesevenboringlogsandsoil/rock profilesareprovidedinSection2.5ofRef.1.Theexcavation fortheDG"E"buildingwascarriedtounweathered bedrockbyusingsoldierbeamsandlaggings.

Theexcavation forDG"E"facility's fueltankwascarriedoutinopencut(SeeRef.1,Page2.5-98.).

About8feet(northend)and20feet(southend)ofsand,gravelandbouldersarebelowthefoundation gradeofthefueltank.Fourstandardpenetration testsperformed onthesoilbeneaththefueltankwerenotedtohavevaluesexceeding 40blows/foot.

(SeeRef.1,Page2.5-91through2.5-94.)Thefoundation matfortheDG"E"fueltankis17feetwide,57feetlongand5feetthick.Thebearingpressureandsettlement ofthesoilbeneaththefueltankweredetermined tobelessthantheallowable values(SeeRef.1,Page2.5-108.)

FortheDG"E"building, leanconcretewasusedasfillforthevolumebetweenthesoundbedrockandthebottomelevation ofthebuildingbasementfloormat.Theexcavated areafortheDG"E"fueltankwasbackfiliedwithsand-cement-flyash totwo(2)feetbelowfinishedgrade.

3.SuortinMediaforCateorIStructures Tobeacceptable, thedescription ofsupporting mediaforeachCategoryIstructure mustincludefoundation embedment depth,depthofsoiloverbed-rock,widthofthestructural foundation, totalstructural height,andsoilproperties suchasshearwavevelocity, shea~modulus,anddensityasafunctionofdepth.III.REVIEWPROCEDURES Foreachareaofreview,thefollowing reviewprocedure isfollowed.

Thereviewerwi11select-and emphasize materialfromtheprocedures givenbelowasmaybeappropriate foraparticular case.Thescopeanddepthofreviewprocedures mustbesuchthattheacceptable criteriadescribed abovearemet.1.DesinGroundMotiona.DesinResonseSectraDesignresponsespectrafortheOBEandSSEforalldampingvaluesarecheckedtoassurethatthespectraareinaccordance withtheacceptance criteriaasgiveninsubsection II.Anydifferences

'betweentheregulatory guidespectraandtheproposedresponsespectrawhichhavenotbeenadequately justified areidentified andtheapplicant isinformedoftheneedforadditional technical justification.

b.DesinTimeHistorMethodsofdefiningthedesigntimehistoryarereviewedtoascertain thattheacceptance criteriaofsubsection II.2ofthisSRPsectionaremet.2.CriticalDaminValuesThespecificpercentage ofcriticaldampingvaluesfortheOBEandSSEusedintheanalysesofCategoryIstructures, systems,andcomponents arecheckedtoassurethatthe'damping valuesareinaccordance withtheacceptance criteriaasgiveninsubsection II.2ofthisSRPsection.Anydifferences indampingvalueswhichhavenotbeenadequately justified areidentified andtheapplicant isinformedoftheneedforadditional technical justification.

3.SuortinMediaforCateorIStructures Thedescription ofthesupporting mediaisreviewedtoverifythatsufficient information, asspecified intheacceptance criteriaofsubsection II.3ofthisSRPsectionisincluded.

Anydeficiency intherequiredinformation 15identified andarequestforadditional information istransmitted totheapplicant.

IV.EVALUATION FINDINGSThereviewerverifiesthatsufficient information hasbeenprovidedandthatehisevaluation supportsconclusions ofthefollowing type,tobeincludedinthestaff'ssafetyevaluation report:3.7.1"6Rev.1-July1981

NUREG-0800 (Formerly NUREG-75/087) sosstopU.S.NUCLEARREGULATORY COMMISSION

-::"::iSTANDARDREVIEW.PLAN+--4o'"OFFICEOFNUCLEARREACTORREGULATION 3.7.2SEISMICSYSTEMANALYSISREVIEWRESPONSIBILITIES Primary-Structural Engineering Branch(SEB)Secondary

-NoneI:AREASOFREVIEWThefollowing areasrelatedtotheseismicsystemanalysisdescribed intheapplicant's safetyanalysisreport(SAR)arereviewed.

1.SeismicAnalsisMethodsForallCategoryIstructures, systems,andcomponents, theapplicable seisaKcanalysismethods(response spectra,timehistory,equivalent staticload)arereviewed.

Themannerinwhichthedynamicsystemanalysismethodisperformed, including themodelingoffoundation torsion,rockingandtranslation, isreviewed.

Themethodchosenforselection ofsignificant modesandanadequatenumberofmassesordegreesoffreedomisreviewed.

Themannerinwhichconsideration isgivenintheseismicdynamicanalysistomaximumrelativedisplacements betweensupportsisreviewed.

Inaddition, othersignificant effectsthatareaccounted forinthedynamicseismicanalysissuchashydro-dynamiceffectsandnonlinear responsearereviewed.

Iftestsorempirical methodsareusedinlieuofanalysisforanyCategoryIstructure, thetestingprocedure, loadlevels,andacceptance basisarealsoreviewed.

2.NaturalFreuenciesandResonseslFortheoperating licensereview,significant naturalfrequencies andresponses formajorCategoryIstructures arereviewed.

Inaddition, theresponsespectraatmajorCategoryIequipment elevations andpointsofsupportareIreviewed.

USNRCSTANDARDREVIEWPLANRev.1-Jul1981StandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments sremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryandthegeneralpublicofregulatory procedures andpolicies.

Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemisnotrequired.

ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathavescorresponding reviewplan.Published standardreviewplanswillberevisedperiodically, asappropriate, toaccommodate commentssndtoreflectnewinforma-tionsndexperience.

Commentsandsuggestions forImprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Commission, OfficeofNuclearReactorRegulation, Washington, O.C.20555.

Cvs~sac~LI 13.AnalsisProcedure forDaminTheanalysisprocedure toaccountforthedampingindifferent elementsofthemodelofacoupledsystemisreviewed.

14.Determination ofCateorIStructure Overturnin MomentsThedescription ofthemethodandprocedure usedtodetermine designoverturning momentsforCategoryIstructures isreviewed.

15.SEBcoordinates otherbranches'valuations thatinterface withstructural engineering aspectsofthereviewasfollows:Reviewofgeological andseismological information toestablish thefreefieldgroundmotionisperformed bytheGeosciences Branchasdescribed inSRPSection2.5.Hydrologic andGeotechnical Engineering Branchreviewsthegeotechnical parameters andmethodsemployedintheanalysisoffreefieldsoilmedia,andsoilpropertiesasdescribed inSRPSection2.5.Struc-turalEngineering Branchacceptstheresultsofthereviewsperformed bythesebranchesincluding themaximumseismicgroundaccelerations fortheOperating BasisEarthquake (OBE)andtheSafeShutdownEarthquake (SSE),site-dependent freefieldgroundmotionrecords,soilproperties, etc.,asanintegralpartoftheseismicanalysisreviewofCategoryIstructures.

Forthoseareasofreviewidentified aboveasbeingreviewedaspartoftheprimaryreviewresponsibility ofotherbranches, theacceptance criterianecessary forthereviewandtheirmethodsofapplication arecontained inthereferenced SRPsectionofthecorresponding primarybranch,II.ACCEPTANCE CRITERIATheacceptance criteriafortheareasofreviewdescribed insubsection IofthisSRPsectionaregivenbelow.Otherapproaches whichcanbejustified tobeequivalent toor.moreconservative thanthestatedacceptance criteriamaybeused.SEBacceptsthedesignofstructures, systems,andcomponents thatareimportant tosafetyandmustwithstand theeffectsofearthquakes iftherelevant'requirements ofGeneralDesignCriterion (GDC)2(Ref.1)andAppendixAto10CFRPart100(Ref2)concerning naturalphenomena arecompliedwith.Therelevantrequirements ofGDC2andAppendixAto10CFRPart100are:A.GeneralDesignCriterion 2asitrelatestotheearthquakes usedinthedesignshouldbethemostsevereonesthathavebeenhistorically reported,forthesiteandsurrounding areawithsufficient marginforthelimitedaccuracy,

quantity, andperiodoftimeinwhichhistorical datahasbeenaccumulated.

B.AppendixAto10CFRPart100asitrelatestotherequirement thattwoearthquake levels,thesafeshutdownearthquake (SSE)andtheoperating basisearthquake (OBE),beconsidered inthedesignofsafety-related structures, components, andsystems.AppendixAto10CFRPart100furtherstatesthatthedesignusedtoensurethattherequiredsafetyfunctions aremaintained duringandafterthevibratory groundmotionassociated withthesafeshutdownearthquake shallinvolvetheuseofeithera3.7.2"4Rev.1-July1981 1.TheDG"E"buildingandpedestalwereanalyzedbytheresponsespectrummethodtoobtainthestructural responses (accelerations andrelativedisplacements).

SeeRef.2,PageC-7.TheDG"E"buildingandpe'destal wereanalyzedbythetimehistorymethodtodevelopfloorresponsespectra.SeeRef.2,PageC-7&C-8.2.3.TheDG"E"buildingandpedestalarefoundedonsoundbedrock.Asaresult,thesoil-structure interaction effectisinsignificant.

TheDG"E"building's horizontal dynamicmodelreflectstheeccentricity effectoftheasymmetrical buildingconfiguration.

Thus,itiscapableofproducing torsional responseduetoahorizontal earthquake.

(SeeRef.2,PageC-5andRef.1,Page3.7b-ll.)

4.FortheDG"E"buildingandpedestaldynamicmodels,thenumberofdegreesoffreedomexceedtwicethenumberofmodeswithfrequencies lessthan33Hz.5.FortheDG"E"buildinganditspedestalallmodeswereconsidered.

(SeeRef.1,Page3.7b-5.)6.7.Amodalresponsespectrumanalysiswasperformed usingtheDG"E"buildingandpedestalmodelstodetermine therelativedisplacements.

(SeeRef.2,PageC-7.)PipinginsidetheD.G."E"buildingisanalyzedindependently usingthefloorresponsespectra.(SeeRef.2,PageC-8.)Noexternally appliedstructural restraints areconsidered fortheDG"E"buildinganalysis.

Hydrodynamic loads(SRV&LOCA)neednotbeconsidered duetothephysicallocationoftheDG"E"building.

Stresslevelsarekeptbelowallowable levels,thus,nonlinear responses, arenotconsidered.

suitabledynamicanalysisorasuitablequalification testtodemonstrate thatstructures, systems,andcomponents canwithstand theseismicandotherconcurrent loads,exceptwhereitcanbedemonstrated thattheuseofanequivalent staticloadmethodprovidesadequateconservatism.

.Specificcriterianecessary tomeettherelevantrequirements ofGDC2andAppendixAtoPart100areasfollows:1.SeismicAnalsisMethodsTheseismicanalysisofallCategoryIstructures, systems,andcomponents shouldutilizeei,therasuitabledynamicanalysismethodoranequivalent staticloadmethod,ifjustified.

a.0namicAnalsisMethodAdynamicanalysis(e.g.,responsespectrummethod,timehistorymethod,etc.)shouldbeusedwhentheuseoftheequivalent staticloadmethodcannotbejustified.,

Tobeacceptable suchanalysesshouldconsiderthefollowing items:(1)Useofeitherthetimehistorymethodortheresponsespectrummethod.(2)Useofappropriate methodsofanalysistoaccount,foreffects'fsoil-structure interaction.

~~%(3)Consideration ofthetorsional, rocking,andtranslational responses ofthestructures andtheirfoundations.

(4)Useofanadequatenumberofmassesordegreesoffreedomindynamicmodelingtodetermine theresponse'f allCategoryIandapplicable non-Category Istructures andplantequipment.

Thenumberisconsidered adequatewhenadditional degreesoffreedomdonotresultinmorethana10Kincreaseinresponses.

Alternately, thenumberofdegreesoffreedommaybetakenequaltotwicethenumberofmodeswithfrequencies lessthan33cps.(5)Investigation ofasufficient numberofmodestoassurepartici-pationofallsignificant modes.Thecriterion forsufficiency isthattheinclusion ofadditional modesdoesnotresultinmorethana10Kincreaseinresponses.

(6)Consideration ofmaximumrelativedisplacements amongsupportsofCategoryIstructures, systems,andcomponents.

(7)Inclusion ofsignificant effectssuchaspipinginteractions, externally appliedstructural restraints, hydrodynamic (bothmassandstiffness effects)loads,andnonlinear responses.

b.EuivalentStaticLoadMethodAnequivalent staticloadmethodisacceptable if:3.7.2-5Rev.1-July1981 Theequivalent staticloadmethodasdescribed hereisusedforthedesignof~somesafetyrelatedsystemsandequipment foundwithintheDG"E"facility.

FortheDG"E"buildingandpedestal, modalfrequencies andparticipation factorsarepresented inRef.1,Table3.7b-8.Modeshapeshavebeencalculated andarepresented inthecomputeroutput.Floorresponsespectrahavebeencalculated andavailable uponrequest.Allsubsystems'equipment, piping,HVACducts,cabletrays,etc.)havebeendecoupled fromtheDG"E"buildingmodelsbasedonthesmallratioofindividual subsystem masstobuildingmass.However,thedieselgenerator hasnotbeendecoupled fromthedieselgenerator pedestal.

Anapproximate modelofthedieselgenerator isincludedinthepedestalmodel.

(1)Justification isprovidedthatthesystemcanberealistically represented byasimplemodelandthemethodproducesconserva-tiveresultsintermsofresponses.

Typicalexamplesorpublished resultsforsimilarstructures maybesubmitted insupportoftheuseofthesimplified method.(2)Thedesignandassociated simplified analysisaccountfortherelativemotionbetweenallpointsofsupport,(3)Toobtainanequivalent staticloadofastructure, equipment, orcomponent whichcanberepresented byasimplemodel,afactorof1.5isappliedtothepeakacceleration oftheappli-cablefloorresponsespectrum.

Afactoroflessthan1.5maybeusedifadequatejustification isprovided.

2.NaturalFreuenciesandResonseLoadsTobeacceptable fortheoperating licensereview,thefollowing information shouldbeprovided.

Asummaryofnaturalfrequencies, modeshapes,modalandtotalresponses, forarepresentative numberofmajorCategoryIstructures, including thecontainment

building, orasummaryofthetotal.responses ifthemethodofdirectinteraction isused.b.Atimehistoryofacceleration (orotherparameters ofmotion)orresponsespectrumatthemajorplantequipment elevations andpointsofsupport.Procedures 0sedforAnalticalModelinAnuclearpowerplantfacilityconsistsofverycomplexstructural systems.Tobeacceptable, thestiffness, mass,anddampingcharacteristics ofthestructural systemsshouldbeadequately incorporated intotheanalytical models.Specifically, thefollowing itemsshouldbeconsidered inanalytical modeling:

a.OesinationofSstemsYersusSubsstemsMajorCategoryIstructures thatareconsidered inconjunction withfoundation anditssupporting mediaaredefinedas"seismicsystems."

OtherCategoryIstructures, systems,andcomponents thatarenotdesignated as"seismicsystems"shouldbeconsidered as"seismicsubsystems.

"b.OecoulinCriteriaforSubsstemsItcanbeshown,in'general, thatfrequencies ofsystemsandsub-systemshavenegligible effectontheerrorduetodecoupling.

Itcanbeshownthatthemassratio,R,andthefrequency ratio,Rf,governtheresultswhereRandRfPredefinedas:Totalmassofthesuortedsubsstemmotalmassofthesupport>ng systemFundamental freuencofthesuortedsubsstemfom>nantfrequency otesupportmot>on3.7.2-6Rev.1-July1981 c)Adescription ofthemethodology usedtocomputethelumpedmassesfortheDG"E"buildinganditspedestalispresented inRef.2,PagesC-4throughC-6.d)Twolumpedmassstickmodels(1-horizontal and1vertical) fortheDG"E"buildingand1modelforthepedestalweredeveloped.

Adescription ofthesemodelsalongwiththewaytheywereusedisprovidedinRef.2,PageC-3.4)TheDG"E"buildingandpedestalar'efoundedonsoundbedrock.Asaresult,thesoil-structure interaction effectisinsignificant.

Thefollowing criteriaareacceptable:

A'I(1)IfR<0.01,decoupling canbedoneforanyRf.(2)'If0.01<R<O.l,decoupling canbedoneif0.8>Rf>i25-m-C.(3)IfR>0.1,anapproximate modelofthesubsystem shouldbeincludedintheprimarysystemmodel.Ifthesubsystem iscomparatively rigidinrelationtothesupporting system,andalsoisrigidlyconnected tothesupporting system,itissufficient toincludeonlythemassofthesubsystem atthesupportpointintheprimarysystemmodel,Ontheotherhand,incaseofasubsystem supported byveryflexibleconnections, e.g.,pipesupported byhangers,thesubsystem neednotbeincludedintheprimarymodel.Inmostcasestheequipment andcomponents,

'whichcomeunderthedefinition ofsubsystems, areanalyzed(ortested)'s adecouple'd systemfromtheprimarystructure andtheseismicinputfortheformerisobtainedbytheanalysisofthelatter.Oneimportant exception tothisprocedure isthereactorcoolantsystem,whichisconsidered asubsystem butisusuallyanalyzedusingacoupledmodelofthereactorcoolantsystemandprimarystructure.

LumedMassConsiderations Theacceptance criteriagivenundersubsection II.l.a(4)ofthisSRPsectionareapplicable.

d.ModelinforThreeComonentInutMotionIngeneral,three-dimensional modelsshouldbeusedforseismicanalyses.

However,simplermodelscanbeusedifjustification canbeprovidedthatthecouplingeffectsofthosedegreesoffreedomthatareomittedfromthethree-dimensional modelsarenotsignificant.

4.Soil-Structure Interaction Ananalytical modelofasoil-structure interaction systemisacceptable ifboththestructure modelandthesupporting soilmodela'eproperlycoupledandthedesignmotionisproperlyaddressed.

Thecoupledmodelissubjected tothedesigngroundmotionasspecified inSRPSection3.7.1ortotheregenerated excitation systemdescribe'd inSectionII.4(iii)below.Asuitabledynamicanalysisusingthetimehistorymethodisperformed fortheentiresoil-structure systemandthedynamicresponses atvariouslocations ofthesystemarecalculated.

Allassumptions tosimplifytheanalysisshouldbejustified andtheresulting errorsbestudied.Anydy'namicdecoupling orcondensation procedure shouldbesubstantiated bytheoretical verification andmathematical proofs.Atpresentmostcommonlyusedmethodsarethehalf-space andthefiniteboundaries modelingmethodsandthereisnoindication astowhichoneismorereliable, especially whentoomanyassumptions areinvolved.

There-fore,modelingmethodsforimplementing thesoil-structure interaction analysisshouldincludeboththehalf-space andfiniteboundaries approaches.

CategoryIstructures, systems,andcomponents shouldbedesignedtoaccommodate responses obtainedbyoneofthefollowing:

3.7.2-7Rev.1-July1981 ii)TheDG."E"Huildingandpedestaldynamicmodelsassumeafixedbasesincetheyrepresent structures whicharesupported onrock.Additional boringstakenintheareaoftheDG"E"facilityindicatethatthebedrockisofthesametypeasthatfoundundertheexistingSeismicCategoryIstructures locatednearby.Previoustestingdetermined theReactorArea'sbedrockcompression wavevelocitytobeapproximately 15,000fpsandtheshearwavevelocitytobeapproximately 7,000fps.(RefertoFSARTable2.5-7.)Thismethodology wasusedinthedevelopment offloorresponsespectrafortheOG"E"facility.

SeeRef.2,PageC-8.

a.Envelopeofresultsofthetwomethods,b.Resultsofonemethodwithconservative design.considerations ofeffectsfromuseoftheothermethod,c.Combination ofa.andb.withprovision ofadequateconservatism indesign.Theacceptance criteriafortheconstituent partsoftheentiresoil-structure interaction systemareasfollows:i.ModelingofStructure Theacceptance criteriagivenundersubsection II.3ofthisSRPsectionareapplicable.

ii.ModelingofSupporting SoilTheeffect'ofembedment ofstructure andthelayeringeffectofsoilshouldbeaccounted for.Forthehalf-space modelingofthesoilmedia,thelumpedparameter (soilspring)methodandthecompliance functionmethodsareacceptable.

Forthemethodofmodelingsoilmediawithfiniteboundaries, allboundaries shouldbeproperly.simulated andtheuseof'typesofboun'daries shouldbejustified and.reviewedonacase-by-case basis.Finiteelementandfinitediffer-encemethodsareacceptable methodsfordiscretization ofacontinuum.

Theproperties usedi.nthesoil-structure interaction analysisshouldbethosecorresponding tothelowstrainswhichareconsistent withtherealistic soilstraindeveloped duringthedesignearthquake.

Useofhighstrainparameters needstobeadequately justified onacase-by-case basis.Forstructures supported onrock,afixedbaseassumption isacceptable.

iii.Generation ofExcitation SystemAppendixAto10CFRPart100statesthatthevibratory groundmotionproducedbythesafeshutdownearthquake shallbedefinedbyresponsespectracorresponding tothemaximumvibratory acceleration attheelevations ofthefoundations ofthenuclearpowerplantstructure.

Aregenerated excitation systemisacceptable if,whenappliedtothesoilmodel,itproducesatthestructural foundation levelinthefreefieldaresponsemotionwhoseresponsespectraenvelopthedesignresponsespectraofearthquake motion.5.DevelomentofFloorResonseSectraTobeacceptable, thefloorresponsespectrashouldbedeveloped takingintoconsideration thethreecomponents oftheearthquake motion.Theindividual floorresponsespectralvaluesforeachfrequency areobtainedforoneverticalandtwomutuallyperpendicular horizontal earthquake motionsandarecombinedaccording tothe"squarerootofthesumofthesquares"methodtopredictthetotalfl'oorresponsespectrumforthatparticular frequency (Ref.3).3.7.2-8Rev.1-July1981 Atimehistoryapproachwasusedinthedevelopment offloorresponsespectra,SeeRef.2,PageC-8.FortheDG"E"facilitytheresponses duetothreesimultaneous orthogonal components ofanearthquake arecombinedbythesquarerootofthesumofthesquaresmethodperReg.Guide1.92,Rev.1.(SeeRef.1,Page3.7b-8.)FortheOG"E"facility, thetotalresponseisobtainedbycombining theabsolutevaluesofallcloselyspacedmodalresponses withthesquarerootsumofthesquares'f theremaining modalresponses.

Twoconsecutive modesaredefinedas.closelyspacedwhentheirfrequencies differfromeachotherby10percentorless'.Reg.Guide1.92isfollowedforthecombination ofmodalresponses.

(SeeRef.1,Page3.7b-8.)

Ingeneral,development ofthefloorresponsespectraisacceptable ifatimehistoryapproachisused.Ifamodalresponsespectramethodofanalysisisusedtodevelopthefloorresponsespectra,thejustification foritsconservatism andequivalency tothatofatimehistorymethodmustbedemonstrated byrepresentative examples.

6.ThreeComonentsofEarthuakeMotionOepending uponwhatbasicmethodsareusedintheseismicanalysis, i.e.,responsespectraortimehistorymethod,thefollowing twoapproaches areconsidered acceptable forthecombination ofthree-dimensional earthquake effects.(Ref.4)a.ResonseSectraMethodWhentheresponsespectramethodisadoptedforseismicanalysis, themaximumstructural responses duetoeachofthethreecomponents ofearthquake motionshouldbecombinedbytakingthesquarerootofthesumofthesquaresofthemaximumcodirectional responses causedbyeachofthethreecomponents ofearthquake motionataparticular pointofthestructureorofthemathematical model.b.TimeHistorAnalsisMethod'7.Whenthetimehistoryanalysismethodisemployedforseismicanaly-sis,twotypesofanalysisaregenerally performed depending onthecomplexity oftheproblem.(1)Toobtainmaximumresponses duetoeachofthethreecomponents oftheearthquake motion:inthiscasethemethodforcombining thethree-dimensional effectsisidentical tothatdescribed initem6.aexceptthatthemaximumresponses arecalculated usingthetimehistorymethodinsteadofthespectrummethod.(2)Toobtaintimehistoryresponses fromeachofthethreecomponents oftheearthquake motionandcombinethemateach'timestepalge-braically:

themaximumresponseinthiscasecanbeobtainedfromthecombinedtimesolution.

Whenthismethodisused,tobeaccept-able,theearthquake motionsspecified int'ethreedifferent direc-tionsshouldbestatistically independent, Combination ofModalResonsesWhentheresponsespectrummethodofanalysisisusedtodetermine thedynamicresponseofdampedlinearsystems,themostprobableresponseisobtainedasthesquarerootofthesumofthesquaresoftheresponses fromindividual modes.Thus,themostprobablesystemresponse, R,isgivenbyNR(ZR2)1/2whereRistheresponseforthekmodeandNisthenumberofsignificant thmodescLnsidered inthemodalresponsecombination.

Whenmodeswithcloselyspacedmodalfrequencies exist,themethodsdelineated inRef.4areacceptable.

Twomodeshavingfrequencies within10Kofeachotherareconsidered asmodeswithcloselyspacedfrequencies.

3.7.2-9Rev.1-July1981 Thecollapseofanynon-category Istructure willnotstriketheDG"E"building.

Responsespectralpeaksweresmoothedandbroadened by15%oneachside.(SeeRef.2,PageC-8.)ConstantverticalstaticfactorswerenotusedintheseismicdesignoftheOG"E"building.

ConstantverticalstaticfactorswereusedintheseismicdesignofseismicCat'egory Isubsystems whereshowntobeappropriate.

Themethodusedtoaccountfortorsional, effectsispresented inRef.1,Page~3.7b-11.

e,9.Otherapproaches whichgiveanequivalent degreeof'onservatism totheabovemethods,andwhichareadequately justified arealsoacceptable.

Interaction ofNon-CateorIStructures withCateor'Structures Tobeacceptable, theinterfaces betweenCategoryIandnon-Category I.structures andplantequipment mustbedesignedforthedynamicloadsanddisplacements producedbyboththeCategoryIandnon-Category Istructures andplantequipment.

Inaddition, astatement indicating thefactthatallnon-Category Istructures meetanyoneofthefollowing requirements shouldbeprovided.

Ia.Thecollapseofanynon-Category Istructure wi11notcausethenon-Category Istructure tostrikeaseismicCategoryIstructure orcomponent.

b.Thecollapseofanynon-Category Istructure willnotimpairtheintegrity ofseismicCategoryIstructures orcomponents.

c.Thenon-Category Istructures wi11beanalyzedanddesignedtopreventtheirfailureunderSSEconditions inamannersuchthatthemarginofsafetyofthesestructures isequivalent tothatofCategoryIstructures.

EffectsofParameter Variations onFloorResonseSectra10.Consideration shouldbegivenintheanalysistotheeffectsonfloorresponsespectra(e.g.,peakwidthandperiodcoordinates}

ofexpectedvariations ofstructural properties,

dampings, soilproperties, andsoil-structure interactions.

Anyreasonable methodfordetermining theamountofpeakwideningassociated withthestructural frequency canbeused,butinnocaseshouldtheamountofpeakwideningbelessthan+lOX.Ifnospecialstudyisperformed forthispurpose,thepeakwidthshouldbeincreased byaminimumofk15Ktobeacceptable.

(Ref.3)'UseofEuivalentStaticFactorsTheuseofequivalent staticloadfactorsasverticalresponseloadsfortheseismicdesignofallCategoryIstructures, systems,andcomponents inlieuoftheuseofaverticalseismicsystemdynamicanalysisisacceptable onlyifitcanbejustified thatthestructure isrigidintheverticaldirection.

Thecriterion forrigidityisthatthelowestfrequency intheverticaldirection ismorethan33cps.MethodsUsedtoAccountforTorsional EffectsAnacceptable methodoftreatingthetorsional effectsintheseismicanalysisofCategoryIstructures isto.carryoutadynamicanalysiswhichincorporates thetorsional degreesoffreedom.Anacceptable alternative,.if properlyjustified, istheuseof'static factorstoaccountfortorsional accelerations intheseismicdesignofCategoryIstructures inlieuoftheuseofacombinedvertical, horizontal andtorsional systemdynamicanalysis.

Toaccountforaccidental torsion,anadditional'eismicity of+5Xofthemaximumbuildingdimension atthelevelunderconside~ation shallbeassumed.3.7.2-10Rev,1-July1981 12.FortheDG"E"building, comparison oftheresponsespectraofthetimehistoryandthedesignresponsespectraareshowninFigures3.7b-109through3.7b-'18ofRef.1.Thestructural accelerations oftheDG"E"buildingobtainedfromthemodalresponsespectrumanalysiscomparedcloselywiththoseobtainedfromthetimehistoryanalysis.

13..FortheDG"E"facility, the'damping'values aretakenfromReg.Guide1.61.Forastructural systemconsisting ofvariouscomponents havingdifferent materials, composite modaldampingiscomputedusingequation(4)presented herein.(SeeRef.1,Page3.7b-l2.)

12.ComarisonofResonsesTheresponses obtainedfrombothmodalanalysisresponsespectrumandtimehistorymethodsatselectedpointsintypicalCategoryIstructures shouldbecomparedtodemonstrate approximate equivalency betweenthetwomethods.13.AnalsisProcedure forDaminEitherthecomposite modaldampingapproachorthemodalsynthesis technique canbeusedtoaccountforelement-associated damping.Forthecomposite modaldampingapproach, twotechniques ofdetermining anequivalent modaldampingmatrixorcomposite dampingmatrixarecommonlyused.Theyarebasedontheuseofthemassorstiffness asaweighting functioningenerating thecomposite modaldamping.Theformulations leadto:Ãj=ke3[M3f+k4KTjK(3)(4)where[K]=assembled stiffness matrix,p.=equivalent modaldampingratioofthejmode,[K],[M]=themodifiedstiffness ormassmatrixconstructed fromelementmatricesformedbytheproductofthedampingratiofortheelementanditsstiffness ormassmatrix,andf/)=jnormalized modalvector.thFormodelsthattakethesoil-structure interaction intoaccountbythe~lumpedsoiIspringapproach, themethoddefinedbyequation(4)isaccept-able.Forfixedbasemodels,eitherequation(3)or(4)maybeused.Othertechniques basedonmodalsynthesis havebeendeveloped andareparticularly usefulwhenmoredetaileddataonthedampingcharacteristics ofstructural subsystems areavailable.

Themodalsynthesis analysisprocedure consistsof(1)extraction ofsufficient modesfromthestructure model,(2)extraction ofsufficient modesfromthefiniteelementsoilmodel,and(3)performance ofacoupledanalysisusingthe,modalsynthesis technique, whichusesthedataobtainedinsteps(1)and(2)withappro-priatedamp'ingratiosforstructure andsoiIsubsystems.

Thismethodisbaseduponsatisfaction ofdisplacement compatibility andforceequilibriumatthesysteminterfaces andutilizessubsystem eigenvectors asinternalgeneralized coordinates.

Thismethodresultsinanonproportional dampingmatrixforthecomposite structure andequations ofmotionhavetobesolvedbydirectintegration orbyuncoupling thembyuseofcomplexeigenvectors.

3.7.2"11Rev.1-July1981 Themethodusedtodetermine overturning momentsispresented inRef.1,page3.7b-12.

14.Othertechniques whicharea1soconsidered acceptable forestimating equivalent modaldampingofasoil-structure interaction modelarereviewedonacase-by-case basis.Determination ofCateorIStructure Overturnin MomentsTobeacceptable, thedetermination of.thedesignmomentforoverturning shouldincorporate thefollowing items:a.Threecomponents ofinputmotion.b.Conservative consideration ofverticalandlateralseismicforces.REVIEWPROCEDURES Foreachareaofreview,thefollowing procedure isimplemented.

Thereviewerwillselectandemphasize materialfromtheprocedures givenbelow,as'aybeappropriate foraparticular case.Thescopeanddepthofreviewprocedures mustbesuchthattheacceptance criteriadescribed abovearemet.SeismicAnalsisMethods2.ForallCategoryIstructures, systems,andcomponents, theapplicable methodsofseismicanalysis(response spectra,timehistory,equivalent static1oad)arereviewedtoascertain thatthetechniques employedareinaccordance wi,ththeacceptance criteriaasgiveninsubsection II.1ofthisSRPsection.Ifempirical methodsortestsareusedinlieuofanalysisforanyCategoryIstructure, theseareevaluated todetermine whetherornottheassumptions areconservative, andwhetherthetestprocedure adequately modelstheseismicresponse.

NaturalFreuenciesandResonseLoads3.Fortheoperating licensereview,thesummaryofnaturalfrequencies andresponseloadsisreviewedforcompliance withtheacceptance criteriainsubsection II.2ofthisSRPsection.Procedures UsedforAnalticalModelinTheprocedures usedformodelingforseismicsystemanalysesarereviewedtodetermine whetherthethree-dimensional characteristics ofstructures areproperlymodeledinaccordance withtheacceptance criteriaofsubsec-tionII.3ofthisSRPsection,andallsignificant degreesoffreedomhavebeenincorporated inthemodels.Thecriteriafordecoupling ofastructure, equipment, orcomponent andanalyzing itseparately asasubsystem arereviewedforconformance withtheacceptance criteriagiveninsubsection II.3ofthisSRPsection.Soil-Struct'ure Interaction Themethodsofsoil-structure interaction analysisusedareexaminedtodetermine thatthetechniques employedareinaccordance withtheaccept-ancecriteriaasgiveninsubsection II.4ofthisSRPsection.Typicalmathematical modelsforsoil-structure interaction analysisarereviewed3.7.2-12Rev.1-July1981 S,

NUREG-0800 (Formerly NUREG-76I087) steerWp,oiACVl0Cyr~rQ>>o%+e~~aSTANDARDREVIEW'PLAN OFFICEOFNUCLEARREACTORREGULATION SECTION3.7.3SEISMICSUBSYSTEM ANALYSISREVIEWRESPONSIBILITIES Primary-Struct'ural Engineering Branch(SEB)Secondary

-NoneI.AREASOFREVIEWThefollowing areasrelatedtotheseismicsubsystem analysisarereviewed:

1.SeismicAnalsisMethodsThe..information reviewedissimilartothatdescribed insubsection I.1ofStandardReviewPlan(SRP)Section3.7.2,butasappliedtoseismicCategoryIsubsystems.

2.Determination ofNumberofEarthuakeCclesCriteriaorprocedures usedtoestablish thenumberofearthquake cyclesduringoneseismiceventandthemaximumnumberofcyclesforwhichapplicable Cate-goryIsubsystems andcomponents aredesignedarereviewed.

3.Procedures UsedforAnalticalModelinThecriteriaandprocedures usedformodelingtheseismic'subsystem arereviewed.

4.BasisforSelection ofFreuenciesAsapplicable, criteriaorprocedures usedtoseparatefundamental frequencies ofcomponents andequipment fromtheforcingfrequencies ofthesupportstruc-turearereviewed.

5.AnalsisProcedure forDaminTheinformation reviewedissimilartothatdescribed insubsection I.13ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.

Rev.1-Jul1981USNRCSTANDAROREViEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments aremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryandthegeneralpublicofregulatory procedures andpolicies.

Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemisnotrequired.

ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathave.acorresponding reviewplan.Published standardreviewplanswillberevisedperiodically.

asappropriate.

toaccommodate commentsandtoreflectnewinforms.tionandexperience.

Commentsandsuggestions forimprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Commission, OfficeofNuclearReactorRegulation, Washington.

D.C.20666.

0 6.ThreeComonentsofEarthuakeMotion7.Theinformation reviewedissimilartothatdescribed in'subsection ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.

Combination ofModelResonses8.Theinformation reviewedissimilartothatdescribed insubsection I.7ofSRPSection3.7.2,butasappliedtoCategoryIsubsystems.

Interaction ofOtherSstemsWithCateorISstems9.Theseismicanalysisprocedures toaccountfortheseismicmotionofnon-CategoryIsystemsintheseismicdesignofCategoryIsystemsarereviewed.

Multi1-SuortedEuimentandComonentswithDistinctInuts10.Thecriteriaandprocedures forseismicanalysisofequip'ment andcompo-nentssupported atdifferent elevations withinabuildingandbetweenbuildings withdistinctinputsarereviewed.

UseofEuivalentStaticFactorsTheinformation reviewedissimilartothatdescribed insubsection I.10of'SRPSection3.7.2,butasappliedtoCategoryIsubsystems.

Torsional EffectsofEccentric Masses12.Thecriteriaandprocedures thatareusedtoconsiderthetorsional effectsofeccentric massesinseismicsubsystem analysesarereviewed.

CateorIBuriedPiinConduitsandTunnels13.ForCategoryIburiedpiping,conduits, tunnels,andauxiliary systems,theseismiccriteriaandmethodswhichconsiderthecompliance characteristics ofsoilmedia,dynamicpressures, settlement duetoearthquake, anddiffer-entialmovements atsupportpoints,penetrations, andentrypointsintostructures providedwithanchorsarereviewed.

MethodsforSeismicAnalsisofCateorIDamsTheanalytical methodsandprocedures thatwillbeusedforseismicanalysisofCategoryIdamsarereviewed.

Theassumptions made,,the boundaryconditions used,thehydrodynamic effectsconsidered, andtheprocedures bywhichstrain-dependent materials properties areincorpo-ratedintheanalysisarereviewed.

ACCEPTANCE CRITERIATheacceptance criteriafortheareasofreviewdescribed insubsection IofthisSRPsectionar'egivenbelow.Othercriteriawhichcanbejustified tobeequival'ent toormoreconservative thanthestatedacceptance criteriamaybeused.SEBacceptsthedesignofsubsystems thatareimportant tosafetyandmustwithstand theeffectsofearthquakes iftherelevantrequirements of~GeneralDesignCriterion (GDC)2(Ref.1)andAppendixAto10CFRPart1003.7.3-2Rev.1-July1981 a)Equipment hasbeenqualified byanalysisand/ortesting.Bothdynamicanalysismethodandequivalent staticloadmethodhavebeenused.(SeeRef.1,Section3.10.)SupportsforHVACductsandelectrical racewayhaveusedtheequivalent staticloadmethod.Forpiping,thisacceptance criteriaismetbyfollowing Ref.3.7b-14(Ref.1)whichcomplieswiththeSRP.b)OneSSEand5OBE'sareconsidered inthedesignofCategory1subsystems.

Thesynthetic timehistoryhasadurationof25seconds.Forpiping,thisrequirement issatisfied asdescribed onPage3.7b-19ofRef.1.c)ThecouplingcriteriagiveninSRP3.7.2,SectionII.3,aswellastheotherguidelines arefollowedinanalytical modeling.

(SeealsotheresponsetoSRP3.7.2,SectionII.3.)TheDG"E"facility's pipingismodeledbasedonRef.3.7b-14(Ref.1)whichcomplieswiththeSRP.Mainlineandbranchrunswereanalyzedtogether.

Nodecoupling criteriahadtobeconsidered.

ThenumberofmassessatisfythecriteriaofnumberofDDOFequaltotwotimesthenumberofmodeswithfrequency lessthan33Hz.Athreedimensional modelwasused.d)e)Components andequipment aredesigned/qualified fortheloadsdeveloped fromtheapplication oftheappropriate DG"E"facility's floorresponsespectra.DampingvaluesutilizedfortheDG"E"facilityarethosepresented inReg.Guide1.61(SeeRef.1,Page3.7b-3).Mostconduitandboxsupportsutilizedampingvaluesassociated withtheexistingplantcriteria.

Thiswasdone,totakeadvantage ofthenumeroustypicalconduit/box supportsthatareavailable fortheexistingcriteria.

(Ref.2)concerning materialphenomena arecompliedwith.Therelevantrequirements ofGDC2andAppendixAto10CFRPart100are:1.GeneralDesignCriterion 2,asitrelatestotheearthquakes usedinthedesignshouldbethemostsevereonesreportedtohaveaffectedthesiteandsurrounding areawithsufficient marginforthelimitedaccuracy,

quantity, andperiodoftimeinwhichhistorical datahavebeenaccumulated.

2.AppendixAto10CFRPart100asitrelatestotherequirement thattwoearthquake levels,thesafeshutdownearthquake (SSE)andtheoperating basisearthquake (OBE),beconsidered inthedesignofsafety-related structures, components, andsystems.AppendixAto10CFRPart100furtherstatesthatthedesignusedtoensurethattherequiredsafetyfunctions aremaintained duringandafterthevibratory groundmotionassociated withthesafeshutdownearthquake shallinvolvetheuseofeitherasuitabledynamicanalysisorasuitablequalification testtodemonstrate thatstructures, systems,andcomponents canwithstand theseismicandotherconcurrent loads,exceptwhereitcanbedemonstrated thattheuseofanequivalent staticloadmethodprovidesadequateconservatism.

Specificcriterianecessary tomeettherelevantrequirements ofGDC2andAppendixAtoPart100areasfollows:b.SeismicAnalsisMethodsTheacceptance criteriaprovidedinSRPSection3.7.2,subsection II.1,areapplicable.

Determination ofNumberofEarthuakeCclesC.Duringtheplantlifeatleastonesafeshutdownearthquake (SSE)andfiveoperating basisearthquakes (OBE)shouldbeassumed.Thenumberofcyclesperearthquake shouldbeobtainedfromthesynthetic timehistory(withaminimumdurationof10seconds)usedfor.thesystemanalysis, oraminimumof10maximumstresscyclesperearth-quakemaybeassumed.Procedures UsedforAnalticalModelind.,e.Theacceptance criteriaprovidedinSRPSection3.7.2,subsection II.3,areapplicable.

BasisforSelection ofFreuenciesToavoidresonance, thefundamental frequencies ofcomponents andequipment shouldpreferably beselectedtobelessthan1/2ormorethantwicethedominantfrequencies ofthesupportstructure; Useofequipment frequencies withinthisrangeisacceptable iftheequipment is.adequately designedfortheapplicable loads.Anal.sisProcedure forDaminTheacceptance criteriaprovidedinSRPSection3.7.2,subsection II.13,areapplicable.

3.7.3-3Rev.1-Duly1981 ForseismicCategoryIsubsystems locatedwithintheDG"E"facilitytheresponseduetothreeorthogonal components ofanearthquake arecombinedby.thesquarerootofthesumofthesquaresmethodperReg.Guide1.92,Rev.1(SeeRef.I,Page3.7b-8)*.

g)ForseismicCategoryIsubsystems locatedwithintheDG"E"facilityandanalyzedbytheresponsespectrummethod,thetotalresponsewasobtainedbyusingthecriteriapresented inReg.Guide1.92forthecombination ofmodalresponses.

(SeeRef.1,Page3.7b-8.}h)Non-Category Isubsystems haveeitherbeenlocated,physically

isolated,

,ordesignedsuchthattheywillnotinterfere withthefunctionofCategoryIsubsystems duringaseismicevent.TheattachedNon-Category IpipingwasanalyzedasaCategoryIpipeinordernottocausefailureofCategoryIsystems.(SeeRef.3.7b-l4ofRef.1.)i}Anupperboundenvelopeofexcitations atmulti-support pointsofequipment isusedinthe'seismic analysisofequipment.

Thepipingsupported atdifferent elevations wasanalyzedusinganupperboundenvelopeoftheindividual responsespectra.Inaddition, therelativedisplacement ofthesupportpointsduetoequipment movementwasconsidered inthemostconservative way;theabsolutesumoftheabsolutemaximumrelativedisplacements (SeeRef.3.7b-14ofRef.1).*ForthemajorityoftheClass1Econduitroutings, theexistingplantcriteriawasappliedtotakeadvantage ofthenumeroustypicalconduit/box supportsthat.areavailable fortheexistingcriteria.

Thesesupportshavebeendesignedbycombining themoresevereresponsefromoneofthehorizontal earthquakes withtheresponsefromtheverticalearthquake bytheabsolutesummethod.Tocompensate forthisvariation fromthemethodology presented inReg,Guide1.92,thepermissible attachment loadsforthesesupportsarereducedby25K.Anevaluation determined thattypicalexistingsupportsmeettheReg.Guide1.92requirements (i.e.combination oftheresponses fromthethreeorthogonal earthquakes bythesquarerootsumofthesquaresmethod)ifthepermissible attachment loadsarereducedby25%.

ThreeComonentsofEarthuakeMotionTheacceptance criteriaprovidedinSRPSection3.7.2,subsection II.6,areapplicable.

Combination ofModalResonsesTheacceptance criteriaprovidedinSRPSection3.7.2,subsection II.7,areapplicable.

Interaction ofOtherSstemsWithCateorISstemsTobeacceptable, eachnon-Category IsystemshouldbedesignedtobeisolatedfromanyCategoryIsystembyeitheraconstraint orbarrier,orshouldberemotelylocatedwithregardtotheseismicCategoryIsystem.Ifitisnotfeasibleorpractical toisolatetheCategoryIsystem,adjacentnon-Category Isystemsshouldbeanalyzedaccording tothesameseismiccriteriaasapplicable totheCategoryIsystem.Fornon-Category IsystemsattachedtoCate-goryIsystems,thedynamiceffectsofthenon-Category Isystemsshouldbesimulated inthemodelingoftheCategoryIsystem.Theattachednon-Category Isystems,upto'thefirstanchorbeyondtheinterface, shouldalsobedesignedinsuchamannerthatduringanearthquake ofSSEintensity itwillnotcauseafailureoftheCate=goryIsystem.Multi1-SuortedEuimentandComonentsWithDistinctInutsEquipment andcomponents insomecasesaresupported atseveralpointsbyeitherasinglestructure ortwoseparatestructures.

Themotionsoftheprimarystructure orstructures ateachofthesupportpointsmaybequitedifferent.

Aconservative andacceptable approachforequipment itemssupported attwoormorelocations istouseanupperboundenvelopeofalltheindividual responsespectrafortheselocations tocalculate maximuminertialresponses ofmultiply-supported items.Inaddi-tion,therelativedisplacements atthesupportpointsshouldbeconsidered.

Conventional staticanalysisprocedures areacceptable forthispurpose.Themaximumrelativesupportdisplacements canbeobtainedfromthestruct'ural responsecalculations or,asaconser-vativeapproximation, byusingthefloorresponsespectra.Forthelatteroptionthemaximumdisplacement ofeachsupportispredicted bySd'Sg/e,whereSisthespectralacceleration in"g's"atthehighfrequency endofthespectrumcurve(which,inturn,isequaltothemaximumflooracceleration),

gisthegravityconstant, andeisthefundamental frequency oftheprimarysupportstructure inradianspersecond.Thesupportdisplacements canthenbeimposedonthesupported iteminthemostunfavorable combination.

Theresponses duetotheinertiaeffectandrelativedisplacements shouldbecombinedbytheabsolutesummethod.Inthecaseofmultiplesupportslocatedinasinglestructure, analternate acceptable methodusingthefloorresponsespectrainvolvesdetermination ofdynamicresponses duetotheworstsinglefloorres-ponsespectrumselectedfromasetoffloorresponsespectraobtained3.7.3-4Rev.1-July1981 j)ConstantverticalstaticfactorswereusedintheseismicdesignofSeismicCategoryIsubsystems whereshowntobeappropriate.

ConstantverticalstaticfactorsarenotusedintheseismicanalysisofCategory1piping.k)ModelingofseismicCategoryIsubsystems'ctual massandlocations areconsidered, thereby,accounting foranyeccentricity.

tThelocationofmasspointsinthepipingmodelreflectsthetorsional effectsofeccentric massessuchasvalvesandvalveoperators (SeePage3.7b-22andRef.3-7b-14ofRef.1).1)TheDG"E"buriedCategoryIpipeswereanalyzedinaccordance withRef.3.7b-13ofRef.1.DuringaSSEevent,thedifferential displacement betweentheDG"E"buildingandthesurrounding soilwhichsupportsthepipeswasincludedinthecomputation ofpipingstress.m)NoCategoryIdamshavebeenaddedasaresultoftheDG"E"facility.

j~atvariousfloorsandappliedidentically toallthefloors,providedthereisnosignificant shiftinfrequencies ofthespectrapeaks.Inaddition, thesupportdisplacements shouldbeimposedonthesupported iteminthemostunfavorable combination usingstaticanalysisprocedures.

Inlieuoftheresponsespectrumapproach, timehistories ofsupportmotionsmaybeusedasexcitations tothesubsystems.

Becauseoftheincreased analytical effortcomparedtotheresponsespectrumtechniques, usuallyonlyamajorequipment systemwouldwarrantatimehistoryapproach.

Thetimehistoryapproachdoes,however,providemorerealistic resultsinsomecasesascomparedtotheres-ponsespectrumenvelopemethodformultiply"supported systems.UseofEuivalentStaticFactorsTheacceptance criteriaprovidedinSRPSection3.7.2,subsec-tionII.10,areapplicable.

k.Torsional EffectsofEccentric MassesForseismicCategoryIsubsystems, whenthetorsional effectofaneccentric massisjudgedtobesignificant, theeccentric massand'.itseccentricity shouldbeincludedinthemathematical model.Thecriteriaforjudgingthe'significance willbereviewedonacase-b~casebasis.1.CateorIBuriedPiinConduitsandTunnelsm.ForCategoryIburiedpiping,conduits, tunnels,andauxiliary systems,thefollowing itemsshouldbeconsidered intheanalysis:

(1}Theinertialeffectsduetoanearthquake uponburiedsystemsandtunnelsshouldbeadequately accounted forintheanalysis.

Incaseofburiedsystemssufficiently flexiblerelativetothesurrounding orunderlying soil,itisacceptable toassumethatthesystemswillfollowessentially thedisplacements and.deformations thatthesoilwouldhaveifthesystemswereabsent.Procedures whichtakeintoaccountthephenomena ofwavetravelandwavereflection incompacting soildisplacements fromthegrounddisplacements areacceptable.

(2)Theeffectsofstaticresistance ofthesurrounding soilonpipingdeformations ordisplacements, differential movements ofpipinganchors,bentgeometryandcurvature changes,etc.,'shouldbeadequately considered.

Procedures utilizing theprinciples ofthetheoryofstructures onelasticfoundations areacceptable.

(3).Mhenapplicable, theeffectsduetolocalsoilsettlements, soil'.arching,etc.,shouldalsobeconsidered intheanalysis.

MethodsforSeismicAnalsisofCateorIOamsFortheanalysisofallCategoryIdamsanappropriate approachwhichtakesintoconsideration the.dynamicnatureofforces(due3.7.3-.5Rev.l-July1981 e

tobothhorizontal andverticalearthquake loadings),

thebehaviorofthedammaterialunderearthquake

loadings, soilstructure inter-actioneffects,andnonlinear stress-strain relations forthesoi1,shouldbeused.Analysisofearth-filled dams.shouldincludeanevaluation ofdeformations.

Forrock-filled dams,theanalytical procedure usedwillbereviewedonacase-by-case basis.III.REVIEWPROCEDURES Foreachareaofreview,thefollowing reviewprocedure isfollowed.

Thereviewerwillselectandemphasize materialfromtheprocedures givenbelow,asmaybeappropriate foraparticular case.Thereviewprocedures aresuchastosatisfytherequirements ofacceptance criteriastatedinsubsection II.1.SeismicAnalsisMethodsTheseismicanalysismethodsarereviewedtodetermine thattheseareinaccordance withtheacceptance criteriaofSRPSection3.7.2,subsection II.l.2.Determination ofNumberofEarthuakeCclesCriteriaorprocedures usedtoestablish thenumberofearthquake cyclesarereviewedtodetermine thattheyareinaccordance withtheacceptance criteriaasgiveninsubsection II.2ofthisSRPsection.Justification for-aeviating fromtheacceptance criteriaisrequested fromtheapplicant,-

asnecessary.

3.Procedures UsedforAnalticalModelinThecriteriaandprocedures usedformodelingfortheseismicsubsystem analysisarereviewedtodetermine thattheseareinaccordance withtheacceptance criteriaof.SRPSection3.7.2,subsection II.3.4.SasisforSelection ofFreuenciesAsapplicable, criteriaorprocedures usedtoseparatefundamental fre-quenciesofcomponents andequipment fromtheforcingfrequencies ofthesupportstructure arereviewedtodetermine compliance withtheaccept-ancecriteriaofsubsection II.4ofthisSRPsection.5.AnalsisProcedure forDaminTheanalysisprocedure toaccountfordampingindifferent elementsofthemodelofacoupledsystemisreviewedtodetermine thatitisinaccordance withtheacceptance criteriaofSRPSection3.7.2,subsection II.13.6.ThreeComonentsofEarthuakeMotionTheprocedures bywhichthethreecomponents ofearthquake motionarecon-sideredindetermining theseismicresponseofsubsystems arereviewedtodetermine compliance withtheacceptance criteriaofSRPSection3.7.2,subsectionII.6.3.7.3-6Rev.1-July1981 0

NUREG-0800 (Formerly NUREG-76/087)

~Ctgsstcur1p0lOCy+J+0+%1<<+STANDARDREVIEWPLANOFFICEOFNUCLEARREACTORREGULATION SECTION3.8.4OTHERSEISMICCATEGORYISTRUCTURES REVIEWRESPONSIBILITIES Primary-Structural Engineering Branch(SEB)Secondary

-NoneI.AREASOFREVIEWThefollowing areasrelatingtoallseismicCategoryIstructures andothersafety-related structures thatmaynotbeclassified asseismicCategoryI,otherthanthecontainment anditsinteriorstructures, arereviewed:

DescritionoftheStructures Thedescriptive information including plansandsectionsofeachstructure, isreviewedtoestablish thatsufficient information isprovidedtodefinetheprimarystructural aspectsandelementsrelieduponforthestructure toperformthesafety-related function.

Alsoreviewedistherelationship betweenadjacentstructures including theseparation providedotstructural ties,ifany.Amongthemajorplantstructures thatarereviewed, togetherwiththedescriptive information reviewedforeach,arethefollowing:

Containment Enclosure BuildingThecontainment enclosure

building, whichmaysurroundallorpartoftheprimaryconcreteorsteelcontainment structure, isprimarily intendedtoreduceleakageduringandafteraloss-of-coolant (LOCA)fromwithinthecontainment.

Concreteenclosure buildings alsoprotecttheprimarycontainment, whichmaybeofsteelorconcrete, fromoutsidehazards.Theenclosure buildingisusuallyeitheraconcretestructure orastructural steelandmetalsidingbuilding.

Whereitisaconcretestructure, itusuallyhasthegeometryofthecontainment and,asapplicable, thedescriptive information reviewedisRev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplanta.Thesedocuments aremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryendthegeneralpublicofregulatory procedures andpolicies.

Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthamisnotrequired.

ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotallsectionsoftheStandardFormathaveecorresponding reviewplan.Published standardreviewplanswillberevisedperiodically, asappropriate, toaccommodate commentsandtoreflectnewinforms.tionandexperience.

Commentsandsuggestions forimprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Commission, OfficeofNuclearReactorRegulation, Washington, O.C.20666.

7.8.Specialconstruction techniques, ifproposed, arereviewedonacase-by-case basistodetermine theireffectsonthestructural integrity ofthecompleted structure.

Inaddition, theinformation contained initemsa,b,andcofsubsection I.6ofStandardReviewPlanSection3.8.3isalsoreviewed.

TestinandInservice Surveillance ProramsIfapplicable, anypost-construction testingandinservice surveillance programsarereviewedonacase-by-case basis.MasonrWallsAreasofreviewpertaining tomasonrywallsshouldinclude,asaminimum,thoseitemsidentified inAppendixAtothisSRPsection.SEBcoordinates otherbranchesevaluations thatinterface withstructural engineering aspectsofthereviewasfollows:determination ofstructures whicharesubjecttoqualityassurance programsinaccordance withtherequirements ofAppendixBto10CFRPart50isperformed bytheMechanical Engineering Branch(MEB)aspartofitsprimaryreviewresponsibility forSRPSections3.2.1and3.2.2.'EBwillperformitsreviewofsafety-relatedstructures onthatbasis.De'termination ofpressureloadsfromhighenergylineslocatedinsafetyrelatedstructures otherthancon-tainmentisperformed bytheAuxiliary SystemsBranch(ASB)asdescribed aspartofitsprimaryreviewresponsibility forSRPSection3.6.1.SEB-acceptstheloadsthusgenerated asapprovedbytheASBtobeincludedintheloadcombination equations ofthisSRPsection.Determination ofloadsgenerated duetopressureunderaccidentconditions isperformed bytheContainment SystemsBranch(CSB)aspartofitsprimaryreviewrespon"sibilityforSRPSection6.2.1.SEBacceptstheloadsthusgenerated, asapprovedbytheCSBtobeincludedintheloadcombinations inthisSRPsection.Thereviewforqualityassurance iscoordinated andperformed bythegualityAssurance Branchaspartofitsprimaryreviewresponsibility forSRPSection17.0.Forthoseareasofreviewidentified aboveasbeingreviewedaspartoftheprimaryreviewresponsibility ofotherbranches, theacceptance criterianecessary fortherev'iewandtheirmethodsofapplication arecontained inthereferenced SRP.sectionofthecorresponding primarybranch.ACCEPTANCE CRITERIASEBacceptance criteriaforthedesignofstructures otherthancontainment arebasedonmeetingtherelevantrequirements ofthefollowing regulations:

A.B.10CFRPart50,f50.55aandGeneralDesignCriterion 1astheyrelatetosafetyrelatedstructures beingdesigned, fabricated, erected,andtestedtoquality:standards commensurate withtheimportance ofthesafetyfunctiontobeperformed.

GeneralDesignCriterion 2asitrelatestothedesignofthesafety-related structures beingcapabletowithstand themostseverenaturalphenomena suchaswind,tornadoes, floods,andearthquakes andtheappropriate combination ofallloads.3.8.4"5Rev.1-July1981

/Adescription oftheOG"E"facilityisprovidedinRef.1.ACI349-1980 andAISC-1978 werefollowedinthedesignoftheOG"E"facility.

TheAISC33Kincreaseinallowable stressesforseismicorwindloadingisnotused.(SeeRef.3,Page10.)Reg.Guides1.10,1.15and1.55werewithdrawn (seeUSHRCdistribution list,Division1,July8,1981).

C.GeneralDesignCriterion 4asitrelatestosafety-related structure beingcapableofwithstanding thedynamiceffectsofequipment failuresincluding missilesandblowdownloadsassociated withthelossofcoolantaccidents.

D.GeneralDesignCriterion 5asitrelatestosharingofstructures important tosafetyunlessitcanbeshownthatsuchsharingwillnotsignificantly impairtheirvaliditytoperformtheirsafetyfunctions.

E.AppendixBto10CFRPart50asitrelatestothequalityassurance criteriafornuclearpowerplants.TheRegulatory Guidesandindustrystandards identified initem2ofthissubsection providesinformation, recommendations andguidanceandingeneraldescribes abasisacceptable tothestaffthatmaybeusedtoimplement therequirements of10CFRPart50,950.55aandGDC1,2,4,5andAppendix8to10CFRPart50.Also,specificacceptance criterianecessary tomeettherelevantrequirements oftheseregulations fortheareasofreview,described insubsection IofthisSRPsectionareasfollows:1.DescritionoftheStructures Thedescriptive information intheSARisconsidered acceptable ifitmeetstheminimumrequirements setforthinSection3.8.4.1oftheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants"(Ref.4).Deficient areasofdescriptive information areidentified bythereviewerandarequestforadditional information isinitiated attheapplication acceptance review.Neworuniquedesignfeaturesthatarenotspecifi-'callycoveredinthe"Standard Format..."

mayrequireamoredetailedreview.Thereviewerdetermines theadditional information thatmayberequiredtoaccomplish ameaningful reviewofthestructural aspectsofsuchneworuniquefeatures.

2.AlicableCodesStandards andSecifications Thedesign,materials, fabrication,

erection, inspection, testing,andsurveillance, ifany,ofCategoryIstructures arecoveredbycodes,standards, andguidesthatareeitherapplicable intheirentiretyorinportionsthereof.Alistofsuchdocuments isasfollows:TitleACI349"CodeRequirements forNuclearSafety-Related ConcreteStructures" AISCReulatorG'uides"Specification fortheDesign,Fabrication, andErectionofStructural SteelforBuildings" 1.10Mechanical (Caldweld)

SplicesinReinforcing BarsofCategoryIConcreteStructures 3.8.4-6Rev.1-July1981 Reg.Guide1.69isnotapplicable totheD.G."E"facility.

Thesametruckexplosion fragmentasthatconsidered inthedesignoftheexistingCategoryIstructures, wasconsidered inthedesignoftheDG"E"building(RefertoPP&L'sresponsetoSRP3.5.1.5).ThedesignoftheDG"E"buildingcomplieswithReg.Guide1.94.Reg.Guide1.115isnotapplicable totheDG"E"facility.

ThedesignoftheDG"E"buildingcomplieswiththeapplicable provisions ofReg.GuideI.I42.Reg.Guide1.143isnotapplicable totheDG"E"facility.

1.15l.55l.69TestingofReinforcing Bars.forCategoryIConcreteStructures ConcretePlacement inCategoryIStructures ConcreteRadiation ShieldsforNuclearPowerPlants1.911.94l.115Evaluations ofExplosions Postulated toOccuronTransportation RoutesNearNuclearPowerPlantsequalityAssurance Requirements forInsta1lation, Inspection, andTestingofStructural ConcreteProtection AgainstLowTrajectory TurbineHissiles1.142l.143Safety-Related ConceteStructures forNuclearPowerPlants(OtherThanReactorVesselsandContainments}

DesignGuidanceforRadioactive WasteManagement Systems,Structures,.

andComponents Installed inLWRPlants3.LoadsandLoadCombinations Thespecified loadsandloadcombinations areacceptable iffoundtobeinaccordance withthefollowing:

a~LoadsDefinitions andNomenclature Allthemajor1oadstobeencountered ortobepostultd1'below.Alaeare>steabl1theloadslssted,howeverarenotnecessarily ap1'-etoallthestructues andtheirelements.

Loadsandtheapplicable app1cdeendontloadcombinations forwhicheachstructure hastobdllphecond>talons towhichthatparticular structure maybsubjected.

remayeNormalloads,whicharethoseloadstobeencountered duringnormalplantoperation andshutdown, include:Deadloadsortheirrelatedinternalmomentsandforces,inludinganypermanent equipment loads.Liveloadsortheirrelatedinternalmomentsandforces,including anymovableequipment loadsandotherloadswhichvarywithintensity andoccurrence, suchassoilpressure.

ToTherma1effectsand1oadsduringnorma1operatingorshutdownconditions, basedonthemostcriticaltransient orsteadystatecondition.

3.8.47Rev.1-July1981 Nohigh-energy pipingexistsintheDG"E"facility.

Pipereactions duringnormaloperating orshutdownconditions, basedonthemostcriticaltransient orsteady..statecondition.

Severeenvironmental loadsinclude:E-Loadsgenerated bytheoperating basisearthquake.

W-Loadsgenerated bythedesignwindspecified fortheplant.Extremeenvironmental loadsinclude:ElLoadsgenerated bythesafeshutdownearthquake.

Wt-Loadsgenerated bythedesigntornadospecified fortheplant.Tornadoloadsincludeloadsduetothetornadowindpressure, thetornado-created differential

pressure, andtotornado-generated missiles.

Abnormalloads,whicharethoseloadsgenerated byapostulated high-energy pipebreakaccident, include:P-Pressureequivalent staticloadwithinoracrossacompartment generated bythepostulated break,andincluding anappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.RYrY~JThermalloadsunderthermalconditions generated bythepostulated breakandincluding T.0Pipereactions underthermalconditions generated bythepostulated breakandincluding R.0Equivalent staticloadonthestructure generated bythereactiononthebrokenhigh-energy pipeduringthepostu-latedbreak,andincluding anappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.Jetimpingement equivalent staticloadonastructure

'enerated bythepostulated break,andincluding anappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.Y-Missileimpactequivalent staticloadonastructure generated byorduringthepostulated break,asfrompipewhipping, andincluding anappropriate dynamicloadfactortoaccountforthedynamicnatureoftheload.Indetermining anappropriate equivalent staticloadforYYandrsjlV,elasto-plastic behaviormaybeassumedwithappropriate duct-ilityratios,providedexcessive deflections willnotresultinlossoffunctionofanysafety-related system.3.8.4-8.Rev.1-July1981 TheworkingstressdesignmethodwasnotusedinthedesignoftheDG"E"faci1ity.Theultimatestrengthdesignmethodandtheseloadcombinations wereusedinthedesignoftheDG"E"facility.

(SeeRef.3,Page10.)

b.LoadCombinations forConcreteStructures Forconcretestructures, theloadcombinations areacceptable iffoundinaccordance withthefollowing:

(i)Forserviceloadconditions, eithertheworkingstressdesign(WSD)methodasoutlinedinACI318Codeorthestrengthdesignmethodmaybeused.(a)IftheWSDmethodisused,thefollowing loadcombinations shouldbeconsidered:

(1)0+L(2)0+L+E(3)0+L+WIfthermalstressesduetoTandRarepresent,thefollowing combinations shouldbealamoconsidered:

(4)D+L+T+R,00(5)0+L+T+R+E00(6)0+L+T+R+W00BothcasesofLhavingitsfullvalueorbeingcompletely absentshouldbechecked.(b)Ifthestrengthdesignmethodisused,thefollowing loadcombinations shouldbeconsidered:

(1)1.40+1.7L(2)1.4D+1.7L+1.9E(3)1.40+1.7L+1.7WIfthermalstressesduetoTandRarepresentthe00tfollowing combinations shouldalsobeconsidered:

(4)(0.75)(1.4D+1.7L+1.7T+1.7R)00(5)(0.75)(1.40+1.7L+(6)(0.75)(1.40+1.7L+Inaddition, thefollowing (7)1.20+1.9E(8}1.20+1.7W1.9E+1.7T+1.7R}001.7W+1.7T+1.7R)00combinations shouldbeconsidered:

/(ii)Forfactoredloadconditions whichrepresent extremeenvironmental,

abnormal, abnormal/severe environmental, and3.8.4"9Rev.1-July1981 Factoredloadcombinations (a)8(b)wereconsidered.

Sincenohighenergypipingexists,factoredloadcombinations (c),(d)5(e)werenotconsidered.

Inadditionthefollowing loadcombination wasconsidered.

D+L+MmswhereMms=SiteProximity HissileLoads(SeeRef.3,Page10.)Forloadswhicharevariable, thefullrangeofvariation wasconsidered inordertodetermine themostcriticalcombination ofloading.Theelasticworkingstressdesignmethodandtheseloadcombinations wereusedinthedesignofsteelfortheDG"E"facility.

(SeeRef.3,Page11.)

abnormal/extreme environmental conditions, thestrengthdes;gnmethodshouldbeusedandthefollowing loadcombinations shouldbeconsidered:

(a)0+L+T+R+E'0(b)0+L+T+R+Wt00(c}0+L+T+R+15Paa'(d)0+L+T+R+1.25P+1.0(Y+Y.+y)+1.25E<(e)0+L+T+R+1.0P+1.0(Y+Y.+Y)+10f'a'rjmIncombinations (c),(d),and(e),themaximumvaluesofP,T,R,Y.,Y,andY,including anappropriate dynamicloadfactor,shouldbeusedunlessatime-history analysisisper-formedtojustifyotherwise.

Combinations (b)and(d)and(e)andthecorresponding structural acceptance criteriaofsub-sectionII.5ofthisSRPsectionshouldbesatisfied firstwithoutthetornadomissileloadin(b)andwithoutYY.r1andYin(d)and(e}.Whenconsidering theseconcentrated loads,localsectionstrengthcapacities maybeexceededprovidedtherewillbenolossoffunctionofanysafety-related system.Whereanyloadreducestheeffectsofotherloads,thecorresponding coefficient forthatloadshouldbetakenas0.9ifitcanbedemonstrated thattheloadisalwayspresentoroccurssimultaneously withotherloads.Otherwise thecoefficient forthatloadshouldbetakenaszero.Wherethestructural effectsofdifferential settlement, creep,.or shrinkage maybesignificant, theyshouldbeincludedwiththedeadload,0,asapplicable.

LoadCombinations forSteelStructures Forsteelinteriorstructu'res, theloadcombinations areacceptable iffoundinaccordance withthefollowing:

(i)Forserviceloadconditions, eithertheelasticworkingstressdesignmethodsofPart1oftheAISCspecifications, ortheplasticdesignmethodsofPart2oftheAISCspecifications, maybeused.(a)Iftheelasticworkingstressdesignmethodsareused,thefollowing loadcombinations shouldbeconsidered:

,(1)0+L(2)0+L+E(3)0+L+W3.8.4-10Rev.1-July1981 ThermalloadsarenotpresentintheOG"E"facility.

TheplasticdesignmethodwasnotusedinthedesignoftheOG"E"facility.

Factoredloadcombinations (1)5(2)wereconsidered.

Sincenohighenergypipingexists,factoredloadcombinations (3),(4)8(5)werenotconsidered.

Inadditionthefollowing loadcombination wasconsidered:

0+L+lhos(SeeRef.3,Page11.)

IfthermalstressesduetoTandRarepresent,thefollowing combinations shouldbealloconsidered:

(4)0+L+T+R00(5)0+L+T+R+E00(6)D+L+T+R+W00(b)Ifplasticdesignmethodsareused,thefollowing loadcombinations shouldbeconsidered:

(1)1;70+1.7L(2)1.70+1.7L+1.7E(3)1.7D+1.7L+1.7WIfthermalstressesduetoTandRarepresent,thefollowing combinations shouldalso3econsidered:

(4)1.3(D+L+T+R)00(5)13(0+L+E+T+R)00(6)1.3(D+L+W+T+R)00(ii}Forfactoredloadconditions thefollowing loadcombinations shouldbeconsidered:

(a)Ifelasticworkingstressdesignmethodsareused:(1)0+L+T+R+E'0(2)0+L+T+R+W.oot=(3)0+L+T+R+Paaa(4)0+L+T+'R+P+l.0(Y+Y.+Y)+Eaaa'j,m(5)0+L+T+R+P+1.0(Y+Y.+Y)+E'aa'jm(b)Ifplasticdesignmethodsareused:(1)0+L+T,+R0'(2)0+L+T+R00(3)D+L+T+Raa(4}D+L+T+Raa(5)D+L+T+Raa+E'W+1.5Pa+1.25P+-1.0(Y+Y.+Y)+1.25Earjm+1.0P+1.0(Y+Y+Y)+Ejm3.8.4"llRev.1-July1981 Indetermining themostcriticalloadingcondition tobeusedindesign,theabsenceofaloadorloadswasconsidered asappropriate.

TheDG"E"facility's designandanalysisprocedures complywithACI-349.b.C.TheDG"E"facility's designandanalysisprocedures complywithAISCSpec.,exceptthe33%increaseinallowable stressesforseismicorwindloadingisnotfollowed.

Thecomputerprograms(NSC/NASTRAN andRESPECT)usedfortheDG"E"buildingseismicanalysesmeettherequirements ofsubsection II.4.eofSRPSection3.8.1.d.Adesigndescription reportalongwithvariousdrawingsfortheDG"E"facilityhavebeensubmitted totheNRC.Additional information isavailable uponrequest.Notapplicable totheDG"E"facility.

Intheabovefactored1oadcombinations, thermalloadscanbeneglected whenitcanbeshownthattheyaresecondary andself-limiting innatureandwherethematerialisductile.Incombinations (3),(4),and(5),themaximumvaluesofP,a',R,Y.,Y,andY,inc1uding anappropriate dynamicloada'actor, shouldbeusedunlessatime-history analysisisper-formedtojustifyotherwise.

Combinations (2),(4)and(5)andthecorresponding structural acceptance criteriaofsubsec-tionII.5ofthisSRPsectionshouldfirstbesatisfied withoutthetornadomissileloadin(2)andwithoutY,Y.,andYin(4)rand(5).Whenconsidering theseconcentrated loads,localsectionstrengthmaybeexceededprovidedtherewi11benolossoffunctionofanysafety-related system.Mhereanyloadreducestheeffectsofotherloads,thecorresponding coefficient forthatloadshouldbetakenas0.9,ifitcanbedemonstrated thattheloadisalwayspresentoroccurssimultaneously withotherloads.Otherwise, thecoefficient forthatloadshouldbetakenaszero.Mherethestructural effectofdifferential settlement maybesignificant itshouldbeincludedwiththedeadload,0.4.DesinandAnalsisProcedures lThedesignandanalysisprocedures utilizedforCategoryIstructures including assumptions onboundaryconditions andexpectedbehaviorunderloads,areacceptable iffoundinaccordance withthefollowing; a.Forconcretestructures, theprocedures areinaccordance withACI-349,"CodeRequirements forNuclearSafetyRelatedStructures" (Ref.1).b.Forsteelstructures, theprocedures areinaccordance withtheAISC"Specification..."

(Ref.3).c.Computerprogramsareacceptable ifthevalidation providedisfoundinaccordance withprocedures delineated insubsection II.4.eofSRPSection3.8.1.5.d.Designreportisconsidered acceptable ifitcontainstheinformation specified inAppendixCtothisSRPsection.e.Structural auditisconducted inaccordance withtheprovisions ofAppendixBtothisSRPsection.f.Designofspentfuelpoolandrodsisconsidered acceptable whentherequirements ofAppendixDtothisSRPsectionaremet.Structural AccetanceCriteriaForeachoftheloadingcombinations delineated insubsection II.3ofthisSRPsection,thefollowing definestheallowable limitswhichconstitute thestructural acceptance criteria:

3.8.4-12Rev.1-July1981 Thelimitsprovidedhereinwereusedintheloadcombinations forconcretestructures.

(SeeRef.3,Page10.)Thelimitsprovidedhereinwereusedintheloadcombinations forsteelstructures.

(SeeRef.3,Page11.)

InCombinations forConcrete'aragraphs 3.b.(i)(a)(l),

(2),and(3)Paragraphs 3.b.(i)(a)(4),

(5),and(6)Paragraphs 3.b.(i)(b)(l),

(2),and(3)Paragraphs 3.b.(i)(b)(4),

(5),and(6)Paragraphs 3.b.(i)(6),

(7),and(8).Paragraphs 3.b.(ii)(a),

(b),(c),(d),b.InCombinations forSteeland~~(e)Llllllts(s)1.3SU(2)UUULimitParagraphs Paragraphs Paragraphs Paragraphs Paragraphs Paragraphs Paragraphs Notes3.c.(i)(a)(1),

(2),and(3)....3.c.(i)(a)(4),

(5),and(6).3.c.(i)(b)(1),

(2),and(3).3.c.(i}(b}(4),

(5},and(6)....3.c.(ii)(a)(1),

(2),(3),and(4)2.(c)(ii)(a)(4),

and(5)(}....3.c.(ii)(b)(l),

(2),(3),(4),and(5)S1.5Sy(3)Y1.6S1.7SY(1)S-Forconcretestructures, Sistherequiredsectionstrengthbasedontheworkingstressdesignmethodandtheallowable stressesdefinedinACI318Code.Forstructural steel,Sistherequiredsectionstrength'asedonelasticdesignmethodsandtheallowable stressesdefinedinPart1oftheAISC"Specification fortheDesign,Fabrication, andErectionofStructural SteelforBuildings" (Ref.3)Theone-third increaseinallowable stressesforconcreteandsteelduetoseismicorwindloadingsisnotpermitted.

(2)U-Forconcretestructures, Uisthesectionstrengthrequiredtoresistdesignloadsbasedonthestrengthdesignmethodsdescribed inACI349Code(Ref.1).(3)Y(4)Forstructural steel,Yisthesectionstrengthrequiredtoresistdesignloadsandbasedonplasticdesignmethodsdescribed inPart2oftheAISC"Specification fortheDesign,Fabrication, andErectionofStructural SteelforBuildings" (Ref.3).Forthesetwocombinations, incomputing therequiredsectionstrength, S,theplasticsectionmodulusofsteelshapes,exceptforthosewhichdonotmeettheAISCcriteriaforcompactsections, maybeused.3.8.4"13Rev.1-July1981 6.Nospecialconstruction techniques wereusedfortheDG"6"facility,

~Weldingofrebarwasnotpermitted.

Theapplicable codesreferredtoherearecompliedwith.7.Nospecialtestingorin-service surveillance requirements fortheDG"E"structure wererequired.

8.NomasonrywallsareusedintheDG"E"facility.

6.7.e.Materials ualitControlandSecialConstructionTechniuesForCategoryIstructures outsidethecontainment, theacceptance criteriaformaterials, qualitycontrol,andanyspecialconstruction techniques areinaccordanc'e withthecodesandstandards indicated insubsection I.6ofSRPSection3.8.3,asapplicable.

TestinandInservice Surveillance Reuirements Atpresenttherearenospecialtestingorinservice surveillance require-mentsforCategoryIstructures outsidethecontainment.

However,wheresomerequirements becomenecessary forspecialstructures, suchrequirements arereviewedonacase-by-case basis.MasonrHallsAcceptance criteriaformasonrywallsarecontained inAppendixAtothisSRPsection.REVIEMPROCEDURES Thereviewerselectsandemphasizes materialfromthereviewprocedures described below,asmaybeappropriate foraparticular case.DescritionoftheStructures 2.After,thetypeofstructure anditsfunctional characteristics areidenti"fied,information onsimilar,andpreviously licensedplantsisobtainedforreference.

Suchinformation, whichisavailable insafetyanalysisreportsandamendments ofpreviouslicenseapplications, enablesidenti-ficationofdifferences forthecaseunderreview.Thesedifferences requireadditional scrutinyandevaluation.

Newanduniquefeaturesthathavenotbeenusedinthepastareofparticular interestandarethusexaminedingreaterdetail.Theinformation furnished intheSARisreviewedforcompleteness inaccordance withthe"Standard Format..."

(Ref.4).Adecisionisthenmadewithregardtothesufficiency ofthedescriptive information provided.

Anyadditional requiredinformation notprovidedisrequested fromtheapplicant atanearlystageofthereviewprocess.AlicableCodesStandards andSecifications 3.Thelistofcodes,standards, guides,andspecifications iscomparedwiththelistinsubsection II.2ofthisSRPsection.Thereviewerassureshimselfthattheappropriate codeorguideisutilizedandthattheapplicable editionandstatedeffective addendaareacceptable.

LoadsandLoadinCombinations Thereviewerverifiesthattheloadsandloadcombinations areasconserva-tiveasthosespecified insubsection II.3ofthisSRPsection.Anydeviations fromtheacceptance criteriaforloadsand'loadcombinations thathavenotbeenadequately justified areidentified asunacceptable andtransmitted totheapplicant.

3.8.4-14Rev.1<<July1981

.0 NUREG4800[Formerly NUREG-76/OB7)

<is"<<urWpe0e>~io)n004***4STANDARDREVIEWPLAN3.8.5FOUNDATIONS REVIEWRESPONSIBILITIES Primary-Structural Engineering Branch(SEB)Secondary

-NoneII.AREASOFREVIEWThefollowing areasrelatedtothefoundations ofallseismicCategoryIstructures arereviewed.

1.DescritionoftheFoundations Theedescriptive information, including plansandsectionsofeach'oundation, isreviewedtoestablish thatsufficient information isprovidedtodefinetheprimarystructural aspectsande'lements reliedupontoperformthefoundation function.

Alsoreviewedistherelationship betweenadjacentfoundations, including themethodsofseparation providedwheresuchseparation isusedtominimizeseismicinteraction betweenthebuildings.

Inparticular, thetypeoffoundation isidentified anditsstructural characteristics areexamined.

Amongthevarioustypesoffoundations reviewedaremat-foundations andfootings, including individual columnfootings, combinedfootingssupporting morethanonecolumn,andwallfootingssupporting bearingwalls.Othertypesoffoundations thatmayalsobeusedarepilefoundations, drilledcaissons, caissonsforwaterfrontstructures, suchasapumphouse, androckanchorsystems.Thesetypesoffoundation arereviewedonacase-by-case basis.ThemajorplantCategoryIfoundations thatarereviewed, togetherwiththedescriptive information, arelistedbelow:Rev.1-July1981USNRCSTANDARDREVIEWPLANStandardreviewplansarepreparedfortheguidanceoftheOfficeofNuclearReactorRegulation staffresponsible forthereviewofapplications toconstruct andoperatenuclearpowerplants.Thesedocuments aremadeavailable tothepublicaspartoftheCommission's policytoinformthenuclearindustryandthegeneralpublicofregulatory procedures andpollclee.

Standardreviewplansarenotsubstitutes forregulatory guidesortheCommission's regulations andcompliance withthemlsnotrequired.

ThestandardreviewplansectionsarekeyedtotheStandardFormatandContentofSafetyAnalysisReportsforNuclearPowerPlants.NotsllsectionsofthaStandardFormathavescorresponding reviewplan.Published standardreviewplanswillberevisedperiodically, ssappropriate, toaccommodate commentsandtoreflectnewinforms.tlonendexperience.

Commentsandsuggestions forimprovement willbeconsidered andshouldbesenttotheU.S.NuclearRegulatory Cominleelon, OfficeofNuclearReactorRegulation, Washington, O.C.20655.

Adescription oftheDG"E"facility's foundation isprovidedinRef.1,Section3.8.5.1.Additional information isprovidedinRef.2,Page3-6.

Earthquake (OBE)andtheSafeShutdownEarthquake (SSE),sitedependent freefieldgroundmotionrecords,soilproperties, etc.,asanintegralpartofthe.seismicanalysisreviewofCategoryIstructures.

ThereviewforgualityAssurance iscoordinated andperformed bythegualityAssurance Branchaspartofitsprimaryreviewresponsiblity forSRPSection17.0.Forthoseareasofreviewidentified aboveasbeingreviewedaspartoftheprimaryreviewresponsibility ofotherbranches, theacceptance criterianecessary forthereviewandtheirmethodsofapplication arecontained inthereferenced SRPsectionofthecorresponding primarybranch.II.ACCEPTANCE CRITERIASEBacceptance criteriaforthedesignofseismicCategoryIfoundations arebasedonmeetingtherelevantrequirements ofthefollowing regulations:

A.lOCFRPart50,K50.55aandGeneral.DesignCriterion 1astheyrelatetosafety-related structures beingdesigned, fabricated, erected,andtestedtoqualitystandards commensurate withtheimportance ofthesafetyfunctiontobeperformed.

8.C.GeneralDesignCriterion 2(Ref.3)asitrelatestoappropriate considerations beinggiventothemostsevereofthenaturalphenomena

.thathavebeenhistorically reportedforthesiteandsurrounding areawithsufficient marginforthelimitedaccuracy,

quantity, andperiod oftimeinwhichthehistorical datahavebeenaccumulated, andtothecombinations oftheeffectsofnormalandaccidentconditions withtheeffectsofthenaturalphenomena.

GeneralDesignCriterion 4(Ref.4)asitrelatestostructures, systems,andcomponents important tosafetybeingappr'opriately protected againstdynamiceffects,including theeffectsofmissiles, pipewhipping, anddischarging fluids,thatmayresultfromequipment failuresandfromeventsandconditions outsidethenuclearpowerunit.D.GeneralDesignCriterion 5(Ref.5)asitrelatestostructures, systems,andcomponents important tosafetynotbeingsharedamongnuclearpower',units.unlessitcanbeshownthatsuchsharingwillnotsignificantly impairtheirabilitytoperformtheirsafetyfunctions.

TheRegulatory Guidesandindustrystandards identified initem2ofthissubsection providesinformation, recommendations andguidanceandingeneraldescribes abasisacceptable tothestaffthatmaybeusedtoimplement therequirement-of10CFRPart50,K50.55a,andGDC1,2,4,and5.Also,specificacceptance'riteria necessary tomeettheserelevantrequirements oftheseregulations fortheareasofreview,described insubsection IofthisSRPSectionareasfollows:1.DescritionoftheFoundation Thedescriptive information intheSARisconsidered acceptable ifitmeetstheminimumrequirements setforthinSection3.8.5.1ofRegulatory Guide1.70,"Standard FormatandContentofSafetyAnalysisReportsforNuclearPowerPlants."3.8.5-5Rev.1-July1981 Alistofthecodesstandards andregulations considered inthedesignofthe~DGEfacility's foundation isprovidedinRef.2.Theloadsandloadcombinations usedinthedesignoftheDG"E"foundation complywiththoselistedinSubsection II.Thelistedloadcombinations wereusedtocheckagainstslidingandoverturning duetoearthquakes, windsandtornadosand,againstfloatation duetofloods.(SeeRef.3,Page11.)ea0ThedesignoftheDG"E"facility's foundation doesnotconsidersoil-structure interaction sinceitisfoundedonsoundbedrock.b.CeHydrodynamic loadsneednot.beconsidered sincetheDG"E"facilityislocatedfarenoughawayfromthecontainment structures.

Dynamicsoilpressurehasbeenconsidered inthedesignoftheDG"E"faci1ity.Thedesignandanalysisprocedures fortheDG"E"facility's foundation complywithACI-349.TheAISCspecification isnotapplicable forthedesignandanalysisprocedures usedinthedesignoftheDG"E"facility's foundation sinceitisconstructed outofreinforced concrete.

Oeficient areasofdescriptive information areidentified bythereviewerandarequestforadditional information isinitiated.

Neworuniquedesigrfeaturesthat'arenotspecifically coveredinthe'"Standard Format...",

requireamoredetailedreview.Thereviewerdetermines theadditional information requiredfora,meaningful reviewofsuchneworuniquedesignfeatures.

2.AlicableCodesStandards andSecifications Thedesign,materials, fabrication,

erection, inspection, testing,andsurveillance, ifany,ofseismicCategoryIfoundations arecoveredbycodes,standards, andguidesthatareeitherapplicable intheirentiretyorinportionsthereof.Alistofsuchdocuments iscontained insubsec-tionI.2oftheSRPSection3.8.3.Inadditionthedocuments listedinsubsection II.2ofSRPSection3.8.1areacceptable forthecontainment foundation.

3.LoadsandLoadCombinations Thespecified loadsandloadcombinations usedinthedesignofseismicCategoryIfoundations areacceptable iffoundtobeinaccordance withthosecombinations referenced insubsection II.3ofSRPSection3.8.1forthecontainment foundation, andwiththosecombinations listedinsubsection II.3ofSRPSection3.8.4forallotherseismicCategoryIfoundations.

Inadditiontotheloadcombinations referenced above,thecombinations usedtocheckagainstslidingandoverturning duetoearthquakes, winds,andtornados, andagainstfloatation duetofloods.arefoundacceptable ifinaccordance withthefollowing:

a0b.C.d.e.0+H+E0+H+M0+H+E'+H+M0+F'here0,E,M,E',MareasdefinedinSRPSection3.8.4,Histhelateralearthpressure, andf'sthebouyantforceofthedesignbasisflood.Justification shouldbeprovidedforincluding liveloadsorportionsthereofinthesecombinations.

4.OesinandAnalsisProcedures Thedesignandanalysisprocedures usedforseismicCategoryIfoundations areacceptable iffoundinaccordance withthefollowina:

a~b.C.Thedesignshouldconsiderthesoil-structure interaction,hydrodynamic effect,anddynamicsoilpressure.

ForseismicCategoryIconcretefoundations otherthanthecontainment foundations, theprocedures areinaccordance withtheACI-349Code,asaugmented byRegulatory Guidel.142.ForCategoryIsteelfoundations, theprocedures areinaccordance withtheAISC"Specifications...".

3.8.5"6Rev.1-July1981 d.Notapplicable totheDG"E"facility.

e.Adesigndescription reportalongwithvariousdrawingsfortheDG"E"facilityhavebeensubmitted totheNRC.Additional information isavailable uponrequest.5.Theallowable limitslistedinSubsection II.5ofSRPSection3.8.4wereusedinthedesignoftheDG"E"foundation.

Thelistedfactorsofsafetyagainstoverturning, slidingandfloatation areusedinthedesignoftheDG"E"facility.

(SeeRef.3,Page11.)6.Thecriteriapertaining tocontainment foundations isnotapplicable fortheDG"E"facility.

Nospecialconstruction techniques wereusedfortheDG"E"facility's foundation.

Weldingofrebarwasnotpermitted.

Theapplicable codesreferredtoherearecompliedwith.7.Nospecialtestingorin-service surveillance requirements fortheDG"E"foundation wererequired.

jv/e059c:mg d.Forthecontainment foundation, thedesignandanalysisprocedures referenced insubsection II.4ofSRPSection3.8.1areacceptable.,

e.Thedesignreportisfoundacceptable ifitsatisfies theguidelines contained inAppendixCtoSRPSection3.8.4.f.Thestructural auditisconducted asdescribed inAppendixBtoSRPSection3.8.4.Fordetermining theoverturning momentduetoanearthquake, thethreecomponents oftheearthquake shouldbecombinedinaccordance withmethodsdescribed inSRPSection3.7:2.Computerprogramsareacceptable ifthevalidation providedisfoundinaccordance withprocedures deline-atedinsubsection II.4.eofSRPSection3.8.1.5.Structural AccetanceCriteriaForeachoftheloadingcombinations referenced insubsection II.3ofthisSRPSection,theallowable limitswhichconstitute theacceptance criteriaarereferenced insubsection II.5ofSRPSection3.8.1forthecontainment foundation, andarelistedinsubsection II.5ofSRPSection3.8.4forallotherfoundations.

Inaddition, forthefiveadditional loadcombina-tionsdelineated insubsection II.3ofthisSRPsection,thefactorsof~safetyagainstoverturning, slidingandfloatation areacceptable iffouefinaccordance withthefollowing:

MinimumFactorsofSafetForCombination a~b.C.d.e.Overturnin1.51.51.11.1~Slid>nFloatation 1.51.51.11.16.Materials ualitControlandSecialConstruction TechniuesForthecontainment foundation, theacceptance criteriaformaterials, qualitycontrol,andanyspecialconstruction techniques arereferenced insubsection II.6ofSRPSection3,8.1.Forallother.seismicCategoryIfoundations, theacceptance criteriaaresimilartothosereferenced insubsection II.6ofSRPSection3.8.4.7.Testin'andInservice Surveillance Reuirements Atpresenttherearenospecialtestingorin-service surveillance require-'ents forseismicCategoryIfoundations otherthanthoserequiredforthecontainment foundation, whicharecoveredinsubsection II.7ofSRPSection3.8.1.However,shouldsomerequirements becomenecessary forspecialfoundations, theywillbereviewedonacase-by-case basis.III.REVIEWPROCEOURES Thereviewerselectsandemphasizes materialfromthereviewprocedures described below,asmaybeappropriate foraparticular case.3.8.5"7Rev.1-July1981 TheStandbyacPoverSupplySystemconsistsoffourdiesol-qenerator sets.Thediesel-generators aresizedaothatthreedieselscansupplyallthenecessary Porerrequirexents foroneunitinthedesiqnbasisaccidentconditionr PlusthenecessarY requiredloadstoeffectthesafeshutdovnofthesecondunit-Thedieselqenerato.s aresPecified tostartupandattainratdroltaq4andfrequency rithin10seconds.Fourindependent 4kVenqineered safetyfeaturesvitchqear assexblies areprovidedforeachreactor'nit-Eachdiesel-generator feedsanindependent 4kybusforeachreactorunit.Eachdiesel-qenerator startsautomatically uponlofPoverordetection ofanuc7earaccid~ntengineered safetyfeaturesystemloadsareapPliedintimesequence.

Eachgenerator

.operates independent7y andParallelinq duringalossofoff-sitepoverorLOCAsign3~2~2~9~32 DdQ22"CXXQMXXTachreactorunitisproridedvithfourindependent 125Vandtvnindependent 250Vdcsystems.Eachdcsystemissuppliedfromaseparatebatt'erybankandbatterycharger.The125VdcsystemsareprovidedtosuPPlystationdccontrolpoveranddcpover'tofourdieselqenerators andtheirassociated svitchgears.

The2507Vdcsystemsareprovidedtosupplypoverrequiredforthelaoadssuchasdcmoto'rdriven.Puxps.andvalves.4JM44rfdggjg/f'arger12'SesuezymQrgczoviueo~ezFrigPZdN4eaRfoc.The125/250-V dcSystemisdesiqnedtosupplyp'overadequateto.satisfytheengineered safetyfeatureloadreguirexenti oft'eunitviththePostulated lossofoff-sitepoverandanyconcurrent single'failureinthedcsystex.2~2~4~19gq~i,C~qg BeniZemmxl2~rrimate~'~~qtem hResidualHeatRemovalServiceRater.Systemisprovidedtoremovetheheatre)ectedbytheResidualHeatRemovalSystemduringshutdovnoperation andaccidentconditions.

1)~)~419gmyggegcy Qy~rfggQygygSystemTheEmerqency ServiceRaterSystemsuppliesvatertocoo1thestandbydiesel-uenerators andtheFCCSandEngineered SafetyFeaturesequipment rooms,andotheressential heat1cads.

sk'ECyC.,%yJf Pow~rfroxthegenerators

~sscepneaupsroac~avioc.'$Mg.vofUnitHo.1andfrox20kyto500kVonUnitHo.2bytheunitxainfransgorxers andsuppliedby.overheadlinestothe230kVand500kVswitchyards, resPectivelY.

>.ggygZZeaizigZmerRiuirihuffun XxMmnTheelectricpowerdistribution systexincludesClassIEandnon-ClassIEacanddcPowersYstexs.TheclassIF,powersystexsuppliesa11safetyrelatedeguiPxent'and soxenon-class IEgoadswhilethenon-Class IEsystexsuppliesthebalanceofplanteauipxent.ThoClassIEacsystexforeachunitconsistsoffourindependent LoadgrounsTwoindependent off-sitepowersystexsprovidethenorxalelectrJ.c Powertothesegroups.Eachloadgroupincludes0.16kvswitchgear, 080Vloadcenters,xotorcontrolcentersand120vcontrolandinstruxent powerpanel.'hevitalacinsfzuxentation andcontrolpowersupplysystexsincludebatterysystexsstaticinverters Voltageslistedarenoxinalvalues,andallelectrical ecruigxent essential tosafetyisdesignedtoacceptarangeof+10percentinvoltage.pourindependent dieselgenerators aresharedbetweenthetwounits.Eachdieselgenerator isprovidedasistandbysourceofexorgnncy PowerforoneofthefourClassIEacloadgroupsiweachuni+.issuxingthetotallossofoff-sitepowerandfailureofonedieselgenerator, therexaining dieselgenerators havesufficient caPacitytooperateallthe-'equipxent necessary toPreventunduerisktopublichealthandsafetyintheeventofadesignbasisaccidentononeunitandaforcedshutdownofthesecondunit.pg~zHJ'Cc74k'EM-$EEgl7jgcN'Fb)

Thenon-Class IEacsystexincludes13~8kVswitchgear, 0.16kVswitchqear, 080Vloadcentersandxotorcontrolcenters.pourindependent ClassIE125Vdcbatteries and.twoindependent ClassIE250Vdcbatteries andassociated batterychargersProvidedirectcurrentpowerfortheClassIEdcloadsofeachunit.Powerfornon-Class IEdcloadsissuppliedfr'oxtheClassIE125and250Vbatteries throughanadditional circuitbreake"'forredundant faultProtection.

gypreal~~'g'k'NMlAfJdcJfD)hesesvstexsarediscussed inChapter8.1~2-26

~4Eyg-z~)~/+/dSV'~~

4 DIESELGENERATOR 0BLDG-00jt~~hrruCAkr/(Qa1toc~lgL0Rev.35.07'4SUSOUEHANNA STEAMEI.ECTRIC STATIONUNITS1AND2FINAI.SAFETYANAI.YSIS REPORTSITEFACE:STIES P~IFIGURE2.1-2 1'I

\i,S.i1~~~11I-/~1IiDIESEL/I'GENERAtOR'

~~~,.-'f1-:i.LBLDG.'ri,<A~.iII1:-.iiI1'Ii:-'I'!II!rr~-~)~,......

~I'~iiI,Il\1.~1r.'I,ii>1rt-'rhI)T's":)r~rprr"fIrfi*i,r/F.g~LI~III~Iir>~'~4iT~.-'-WWj'/r~ilai,IqII.II<<ji~/rIE~4~~-i'=.~i..'itwP)~,~fa~iI3507/84SUSQUENANNA STEAMELECTRICSTAUNITS1ANO2FINALSAFETY ANALYSISREPOR1SITELOCATIOII IVITHR-S?-CTOSJ?ROUiVDiaIC TOPOCRAPH1 F!rttRE

IIsIUlg,g-DIESELGERR"A-D'LDG[

/jG'=:.::::0 aerrEACTOBBLDG.~seDIESELGENERATOR EBLDG.O~tOtJSTRTUQEP>sl(5Rev.35,07/84SUSCUENANNA

~ELECTIUCSTATION.UNITS1AND2FINAI.SAFETYANALYSISIIEFOATL~CaweSHOWINGSAFETYRELATFACILITIES ONPLANTSITEFIGURE2~4-2~vMht~Ji OISCHAAGK TOOILAETKNTICNtONOANOSUSSEOUKNTLY TOAIVEAVIAANATUAALWATEACOURSEUNITICOOLINGTOWERRAOWASTESUILOINGSKAVICK8AOMINISTRATIONSUILOINGtAAKINGIILOTJrOIESELGNKRATSIQUILOINDIESELGENERATOR EBLDG.NOATH~~~~~II~*CIO8CHLOALNE8UILOINCCICULATIWATER~MFHOUTUASINESUILOINGAEACTORSUILOINQRAILAOAOSCALE50050I00FEETUNIT2COOUNGTOWEAI~I~~AAILAOAOLKCKNOSS.STCAMSEWEA0ROOFOAAINIKXTEAIOAI QCATCH8ASINQMANHOI.ESUMtOAAINRev.35,07/84SUSCUEIIANNA STEAldELECTIIIC STATIONUNITS1ANO2FINALSAFETYANALYSISREFORTPLANTCOMPLETESRO'HZNGSTORMDRAZNPZPELAYOUTFIGURE SSES-FSAR thonorthandwestbranchesoftheSusquehanna River.Post-Olean advancesdidnotreachthesitevicinity(Ref.2.5-5and2.'5-6).Peltier<Ref~2.5-5)mappeddiscontinuous kameterracesalongtheSusquehanna Riverinthesitevicinity.

Thehighestsuchterraceformedbyicemarginalstreamsoccursatabout650feetabovesealevelatthe.site."Ref.ertoSubsections 2.5.1.2.2and2.5.1.2.3.3for.furtherdiscussion ofPleistocene erosionanddeposition atthesite.,SincetheretreatoftheRisconsinan icesheetsfromtheregion,broadregionalupliftappearstohaveoccurred, probablyatleastinpartasaresultofcrustalreboundsubsequent totheremovaloficeload.Erosionhascontinued andsoilprofileshaveformed.5f~g5Eggj,peep',gg Geologyg~luytgon Sitesubsurface exploration isdescribed anddiscussed inSubsection 2.5.4.3.Laboratory testsoffoundation materials, andinsituqeophysical testsof.thefoundation materials are.discussed inSubsections 2.5.4.2and2.5.5.Geologicmappingofthefinalfoundations isdescribed inSubsections 2.5.1.2.2

~2.5.1.2.3 and2.5.4.1.3.

It'asconcluded fromthesestudiesandevaluations thatthesitegeologicandfoundation conditions areentirelvsuitablefortheconstruction andoperation ofthenlant.i.2.5.1.).5 1Ggo~ogicConditions UnderCateo1StructurAllSeismicCateqory1plantfacilities, exceptthespraypondandtheEnqineered Safequard ServiceRater(ESSW)pumphouse andpipelinearefounded,onbedrock.TheESSMpipelinetrenchisexcavaednartlyinsoilandpartlyinrock.Thelocationof'.hesefacilitiesisshownonFiqure2.5-24.Yhefoundation rockisahard,indurated siltstone, amemberoftheDevonianNahantanqo Formation.

Inthefoundations areaitisquitemassiveandlitholoqically homogeneous, withbeddinPROFT<c(PeTE.gaenerally notwelldefined,andlackinqthebeddingplanefissility usuallyassociated withlesswellindurated shalysilts+ones andsiltyshales.Xnplacestherockexhibitsaslatycleavaqe, furtherevidenceofitsindurated nature.AllCategory1rockfoundations wereexcavatedtounweathered bedrock.GeologicmapsandsectionsoftheCateqory1excavations inrockareshowninF>>qures2.5-1and.-19.Noredetaileddiscussion of+hefoundation qeooqiconditions iscontained inSubsections gQv'5'4povlc(4$Y4Pcc'k,PAApp~lip+~c(~gg4:Qs'0gQA.gypg+8Pev.35,07/84bugs;np~~~(uy'""j"""(SICf5~~c~z.5;Lil) ceer*'f 2.5.1.2.2 and2.5.1.2.3.

Fngineerinq properties ofthefoundation rockaredescribed inSubsection 2.5.4.over50,000yearsago.Ingeneral,thedepositsarepermeable topofthesequence.

Naturalslopesadjacentor.closetotheprincipal plantstructures arerelatively flat.Mostoftheseslopesarecomposed.ofsoil;fewrockslopesoccur(Fiqure2.5-17showsareasofrockoutcrops).

SSES-PSAR a/Thespraypondissituatedoveraglacialorpreglacial, east-westtrendinqbedrockvalleyasoutlinedbycontoursontopofbedrock(Fiqure2.5-17).Thevalleyisfilledwithdensegravellyandsandyqlacialoutwashandtilldepositswhichattainamaximum,thickness

'ofabout110feetadjacenttothespraypondaea.Theyweredeposited nolaterthantheOleansubstage(earlyWisconsinan) oftheQisconsinan glaciation whichoccurredandconsistofasequenceofsand,gravel,andbouldersoverlainbvsandandqravel,overlainin'urnbysiltysand.Theentiresequenceishighlyvariableinqrainsizedistribution andsortinq,andcontainsdiscontinuous pocketsofsimilarmaterials.

Asarule,qrainsizedecreases andsortinqincreases towardtheThesouthwestern

+ipofthespraypondi'scutintobedrockwhiletheremainder wasexcavated inthesepermeable glacialmaterials.

Thethickness oftheclacialdepositsbeneaththebottoaofthespraypondrangesfromzeroattherockcontactto93feetattheeasternendofthepond.Thespraypondislinedtominimizeseepaqelossestotheunderlying permeable glacialdeposits.

Thefoundation ofthepumphouse structure located'at thesoutheastern cornernfthepondisunderlain by35to60feetofqlacialmaterial.

TheFSSWcirculation pipelines betweenthepumphouse and+heplantintersect bedrockatanelevation of668feet,anproximately 260feetsoutheast ofthepumphouse (refertoFigure2.5-17A).Aqeoloqicmapofthespraypondareaisoresented onFigure2.5-15.Furtherdiscussion ofconditions attheESSQpumphouse andspraypondarecontained inSubsections 2.5.1.2.2, 2.5.3and2.5.5.77lR.cPQVkilt/EJ)l"@~A(

7V/ale+p(at2<MIEpJ;vQS't(yaaaIel2,5.$,2,5,2JagQsjde-Pgte))gimel IR"$p;jJ~~~,)fQg6gtnv~fovavp'd'eaveyAci:PgkaNorthofthespraypondtheTrimmersRockFormation formsarelatively steepridqerisinqapproximately 380ft.abovethepond.Thesouth-facing slopeofthisridqeisessentially arockslopeunderlain byflaqqy,resistant sandstone thinlymantledwithsoilandrockfraqments.

Theclosestapproachofthisslopetothesn'raypondisalongthenorthernperimeter ofthepond;the+oeoftheslope,atelevation 710-720feet,is250feetormnefrom+heedqeofthepond(atelevation 679feet)-Themaximumslopealonqtheridgeisabout2horizontal to12.5-57 0

SSES-FSAR 1,000ft.Thisrockcontainsnaunstablemineralsandprovideshiqhlystablefoundation conditi.ons.

soilsatthesiteareglacialinarigin~depositeR mostlybyflovinq@lucia)meltwater, xuchunRertorrential conditions.

The~oilisnnncalrareous.

Hostof.therockfragments consistofindurated sandstones.

Theoriqinandmineralogy ofthesesoils'ssuchthattheypresentnohazardous conditions (refertoSubsection2.5.1.2.5.7).Afewofthesafety-related principal plantstructures arefoundeRansoil.Thesestructures consistoftheEngineered Safequard serviceWater(ESSM)pumphouse, thespraypond,andportionsoftheSeismicCategoryIaipelinelinkingthereactorbuildingto<<hespraypandHostotherplantstructures areounedanroc.eocationofthesestructures isshovnonFiqure2.5-24:soilandrockfoundations areidentified onFigure2.5-17A<hestaticanddynamicenqineerinq properties ofthesitebedrockandoverhurden soilsveredetermined byfieldinvestigation andlaboratory tetinq.Theresultsoflaboratory testingofthematerials sampledfromtheprospectsitearecoveredintvoreparts(Bof.2.5-97and2.5-98).Adetailedstudyofthesoilproperties atthesiteafthesprayponRandESSWpumphouse i.sqiveninSubsection 2.5.5.75~421ProueXti.a afZmndnfiaa BackTheCateqnryIreactorbuildinqs anddieselgenerator

building, aswellasthenon-cateqory Iturbineandradwastebuildinqs (seePi.qure2.5-24)arefoundedonunweathered siltstone bedrack.Thesiltston~,

amemberoftheNahantanqo Formation ofDevonianage+'shardanRindurated, andinthefoundations areaislitholoqically hoxoqeneous vithbeddinggenerally no<<veilRefin~d,andlackinqthebeddingplanefissility usuallyassociated vithlessveilindurated shalysiltstanes andsilty.-.ha1~s.Inplaces<<herockexhibitscleavage, furtherevidenceofi<<sindurateR nature..n>hoaro.aof<<heprinci.pal plantstructures, bedrockbeddi.nqwhereobserveRaenerally dipsgently(lessthan104)south;locally,suchasnorthofthecirculatinq waterpuxphouse, bedsRipslightlynorth~AtthenorthendoftheradvastebuildinganRthenarthsideofthevnit1coolinqtower,beddingdipsxorep~y.35,07j842.5-89 SSES-PSAR'.ha~~resliqhtlylover,byafactorofaho>>t15percent~is,>Vva)u>ofabout14,000fnsanr)Vofabout6,200Fps.1'he.,rinsit>resultsareinqoodaqreement viththelaboratory i)etermina tions.Additional cross-hole and>>p-hole insituPeismicvelocit.y measurements veremadeinthespraypondarea(Ref.2.S-99).Resultsofthecross-hole explorations atthesitraref>>rtherdiscusserl inSubsections 2.5.4.2.2and2.5.4.4.PlateloadtestsverecarriedoutonsoundrocknearthecenteroftheUnits1and2reactorb>>ildingexcavation inthevicinityof'orinn105(refertoPiqure25-18).Plates24,13.5,andRin.indiameto.r veresuhjected, tosuccessively increasing totalloarlinqs of7,22,and60tonspersquarefoot(tsf),rr.so~rtively.

Atotaldeflection of.062in.occurredvhenthe24in.o]atevasloar)erltoamaximumof.7tsf.Anadditional deflection of0.036in.vasrecordedonsubsequent loadinqto'?2tsf,and'another A.O'36in.ofdeflee+iononapplication ofthe<0~sfmaximumload,producinq atotalsettlement of0.134in,forthethree-stage loadinqto60tsf.Recoveryoftherockby:.las..ic rebounduponreleaseoftheseloadsvassubstantial:

68,75,.and80percentrepeatable elasticrecoverycfthetotalReflections vererecorderl afterreleaseofthe7,22,and60tsf1carlinqs,resprctivelv.Additional deflections duetocyclicloarlinqverasmall.Application of14cyclesofloadat7,15,and3pt..fresultedinarlditional settlements ofonly0.012,0.00'1,and0.002in..respectively, overthecorrespondinq sinqleloadinqs.

Theseresultsareconsistent viththehighmodulusvalu~sardseismicvelocities ofthefoundation rock,andindicatestructurally strong,competent materialforfoundations in>>nveatheredrock.i.concludor)fromtheengineerinqpropertiesunvoa<hererl herlrockoftheNahantanqo Formation provides1rl~auat~

supportforthema]orplantsbothsaba'icanddynamiccnnditions.Set+lement~>nd>>sta~iclour)inqisinsiqnific..ant.

It.cons:.lasticcnmn~..sionoftheunderlying rocksand~ssential ly>>pnnloadapplication.

moreover, t>>rderqorolossofstrenqthanr)villexperience ar)hitiona1settlementunrlerearthq>>ak~

loadinq.ofthethattherocktructuresunderofstructures istsofpseudo-occurshebedrockv'lneq1iaihlesummaryofth~properties ofthefoundation rockiscompiledinabler2.2,.4.2~2proportios ofFoundation Soils:h~r~s>>itsofdetai]edexploration ofthesoilsinthesprayponda~aareqivcninSubsection 2.5.5.onlyinformation ont.h~proper+i...-nfthep>>mpho>>sc fo>>ndationsoilsisqiveninthiss>>h."-er.~

ion.~)i<Ig.-e,s~g'p~Q<~k pcC{.~ge.g/~I~P%~"~'H:A':~

Rv.)S,07/84

\a>>(q;as>>g~>>gSix>>lcp~>-.E5-F~~R~~~*>>p'henaturalsoilsattheoumphouesitearenormallyconsolidaterl andconsistpredominantl yofsand,aravel,cobbles,andboulders.

-hesoilsarepnor]vstratified,startinqassandorsanrly<<ravelatthesurfareandqradinqtomostlycobblesandbouldersnearherlrork.

Therlepthofthesoildepositbelowfoundation arablerona~..fromahout35ftatthesouthenrlcfthepumphous~

"oato!itFAfta'.th~northend.~Asubsureoss-sect>on hrouahh'umphousesitisshownonFigure2.5-30cross-s~rtionD-D.Thesoilshelovteoa.nearenr~rlominar tlvsanrlyaravelswithlargeamountsofcobblesandhr>>lders.

Th~properties ofthesesandyandgravellysoilsarefollovs:(rainSizeDistribution

~tSolQC~Grainsizedistribution testsweremadeonmostofthesnlit:spoonsamplesforclassificationpurposes.'ieve anrlhydrometer analysesvereperformed according tnASTNProcerlure P-422.Therangeofgrainsizecurvesis"-~ownnnFia>>re2.S-31.Themeanqrainsize(D50)of+heqravellysoils,whicharethepredominant materialh~lovthepumnhouse vasfounrltobein+he.rangeof4..Stn2S.0mm.Mhcreverhesandisnresentbelovthepumphouse, theDSOsizisintherangeof0.14to1.0mm.QelatiyeDensityF~]ativerlr;nsity rlataverederivedfromstandardnen>>ratinn tr.st.resultsusinqthe6ibbsandHoltzprocedure (pef.2.5-100)~Thisprocedure isvalidfornormallyconsolirlatedsands.Va1>>esofrelativodensityohtainerl inthiswayare..>>mmarizc rlonFiaure2.5-32.Adirectcomparison ofro1ativ~l~nsi~yfrom'tl'alues qiveninFigure2.5-32a-.rlfromundisturherl samplesand/orinsitedensityrannnthamad~hecausenorelativedensitytestsv~remaR~.Thesoildeposi+sareglacialinnature.Th~depositsarequitevariableinparticlesizeanrl.,or+inaandconta'ndiscontinuous sandpocketsandaravelnorkots.Grainsizeingeneralincreases vithd-'p'h.A!'hefoundationlevelofthep!!'mphouse maximumsizesofthopartinch!!s.undis+urbedobtainedinthearavellyinf]uenco

+herosultsof<hrymay.notrepresent th<heStandarclnenetrationaiVenOnFigure2.S-33.iclesareintherangeof3touhesamplesco>>ldnothesoils.Thegravelalsovillinsitedensitytestssothatinsiter.onditionasavhole.resistance vorsuselevation isThe'N~valuesvillbepev.15,07/R42.5-q2

SSES-PSAR influenced hygravel.Secauseofthisthehigherhlovcounts verenotconsidered representative ofsiteconditions.

hvalueofW=40vasselectedfordesiqn.,Ofthe()9standard.penetration testsmadebneaththefodndltz6n levelattheESSQPumphouse 43.xceeed40blowsperfoot.Ofthe6value"thatwerelessthan40blowsperfootonlyonevalessthan30blovsperfoo?.+>>~.ra~~~~g~g+~$~1~~5QX5X~g;~~g~~pi~+-"~',q~.gJ~4\tJndisturhed samplingofqravellysoilsvasnotpossible.

Therefore, shearstrenqthtestinqvasconducted onlyonthesands.Thesheastrenqthoftheqravellysoilsvast.henconservatively assumedtoheequaltothatofthesands.Tho.detailsofthetestinqprocedures andselection ofResignstrengths aregiveninSubsection 2.5.5.Theeffective anqleofinternalfrictionwasselectedfrom'be+estdatatohe35~(Piqure2.5-34).Thecyclicshearstressratiosatthetvoeffectiveconsolidation pressures 1'.0ksfand6.0ksfveredetermined tobe0.320and0.260,resoectively, for5loadinqcycles(Figure2.5-35,Subsection 2.5.'5).Alinearrolationship wasassumedincomputing cyclicshearstressratiosatothereffee+iveconsolidation Dressures

~d)ShearRaveVolocitgandSheartloduliCross-hol~

shearvavevelocitymeasurements vereperformed hyteston('eophysical Engineers, Inc.(ref.2.5-99).Compressional andshearwavevelocities obtainedfromthemeasurements areqivenonPigure2.5-36.Shearmodu!iverecomputedfromthevaluesofshearvav~volocity:G=-V2gSwho.re:shearmodulus,psfunitveiqht,pcfqravitational acceleration, ft/sec~ncv.35,07/842.5-93 ll q+~@(~@SSFS-FSAR v=shearvav~velocity, fpsAdisc>>ssior.onhowtheshearmodulusisinfluenced byronfinina pre,sure, thes+rainamplitude, andth~"ela+iv~dansi+visaivenin~uhsection 2.5.5.2.~helocationofal1fieldexplorations isshovnnntheplotplan,F'quro2.5-72.n4.Atotalnfapproximately 250exploratory boringswasmadeinsoil~ndrocka-thesiie.Oorinqswereloggedindetail;horin'glogs~recontained inRef.s.2.5-97,2.5-98and2.5-99andAppendix2.5C.-hesoilswereclassified inaccordance withtheUnified"oilClassificationSvsiem.RockloqsincludeRQD(rockqualitydosiqnation) values.Coringinrockwasperformed usinqNXdo>>".le-tahe'or inaeauipment.

Drillinawasconducted inlate1970(100and200seriesborinqs)toestahlishq~reralqeoloqicrelationships overthesiteareaandtodetormine generalsoilandrockconditions atthesite.Amor~inten.iveDoqram(300.seriesborinqs)wasconducted inthe<nrnqof1971todcfinefoundation conditions intheprincipal olartst"ucturo.s ar~a.Four45-degree angleholesweredrilledin"h~reactoraea.Additionalexploraiion drillingwasr.ocessary

.olocatethesi+efortheSusquehanna Riverintakeandlischaran structure~

(700-B00seriesborinqs),

todefinesoilandockcondi+ions atthe,spraypondandESSQpumphouse site(1100..eriesandsome400seriesborings),

andtoinvestigate foundation conditions forthecoolingtowers(boringsB1to810)handtherailroadspurandbridgeoverStateHighway11(borings417to455and92atpq40).BeCauSeOftheSafety-rela+ed f(a+aaory T)urcitronofthespraypond>mad=

PSSMpumphouse the'xDloration proaramforthesefacilities wascomprehensive ard'ncludedsnliispoonandundisturbed samples,lahoratory testing,hvdroloaic survevs,nermeabilit.y tests,andseismiccross-hole

~ndup-holosurveys.Af+ercomple+ionofqeoloqicborinqs,~iaiicwaterlcvelsweremeasuredinsomeoftheboringsdr'iedon~hesite.Pcrforatedplasticpipeswereinstalled inarumblerofthohnrinas'oallowcollection offuturewaterleveldata.geesehnrirasare6no>edontheplotplan,Figure2.5-22.Portly-sever.

t~stpit~vereexcavated bybackhoeatselected1ccaiions toohservesoi.landrockconditions.

Twonorth-south trarchestotallinaover700ftinlenqthwereexcavated toobtaininfcrmat'on onphvsicalprop~rties, structure, andvariability of>h~near-surfac~

materials atthe.site.LoasofthetestpitsarhtrenthesarecompiledinAppendix2.5C.~ev.35,07/A42.5-94IIAAR):K~)p SSES-FShR gf54)~)~1ggcgygtjonslnRockA]1SnismicCa'.~gory Irockfoundations werecarriedtoorwellholovunweathered hedrock.Rockfoundations fortheturhineandradwastetuildinqs, althoughtheyarenotSeismicCategoryIstruc+uro.,

werepreparedaccording tothesameqeneralorncedures andcri+eriausedinpreparinq theSeismicCategoryTrockfoundations.

Fxcava+.ion ofrockproceeded hyinitialrippingofanyweathered surficial rockmaterialfollovedvherenecessary bylineblastingandpro.split tinqinhnlesdrilledtoprovideslopesof1horizontal to4ver+ical.

Fssentially verticalslopesinunweathered rockprovedstablethroughout thedurationofconstruction andnnspecialprotective measuresvererequired.

'eath~red rockwascu~on'slopes of1horizontal to2vertical.

~naf~vplaces,vie'~meshvasusedforprotection ofhighervoa~hered rockslopes+hatvereexposedforextendedperiods.hesurfacenftheexcavated foundation rockvasscaledtoremove1nosedebrisandJettedvithvaterorairtoremoveloose~rauments andtopreparethesurfaceforconcrete.

Beforeolacemert nfstucturalconcreteorconcretebackfilltodesignelovation,allSeismicCateqoryIfoundations vereinspected hyanenqin~erinq geologist toverifythesuitability oftherockandi.snropersurfacepreparation toreceiveconcrete.

Illfoundation rockhea.inqaSeismicCategoryEstructure wasrvooloqica]lymapoed(seeFigure2.5-183.Foundations foreachofthecoolinqtowers(nonsAismic-Category Es+ruct.ures) consistof40individual pedestals supportinq thecolumnardex+endedtobedrock.Excavation proceeded bycuttinqringtrenchandrrenarinaforeachpedestalasuitablesurfaceinunvca'hired orpartlyweathered bedrockbyrippinqorblastin4nares.".ary, followedhvscalinqandsetting..

Duringcons.ructionoforircipal plantstructures foundedonrock,excavationsextendedbelowthevatertableandsome.~l~waterinq vasroquired.

Dueto"thelovpermeability oftherock,groundwater inflovvassmall.Devaterinq wasaccomplish'ed hysurfacedrainsandsumos.Th~excavaticnfnr~hespraypond>sask ESSQPumphouse asorodominan+1v insoils.Fxcavation proceeded initially hyusinqgnv,15,(}7/R42.5-97~gl~gpa.(w<~4t4h~pg,pQ~~E SS~S-PSALM larqeear>>hmovingoquipment, thenfinishedbyusingmorerefinedpocedur~s..

Oncompletion ofexcava<<ion, thesurfacelayerofhena<<uralsoilformation wasrecompactcd asfollows:pnrsoilshavingnotmorethan12percentpassinqtheNn.200..ievasize,80nercentrelativedensityasRcterminedbyASTI02009h)F'rallo<<hersoils,95percentofmaximumdrydensityasdetermined byASTI015~7>ps>>Resul>>sar~includedinAppendix2.5C.Thelocationoftestspecimens withrespecttnthespraypondisshownon)'iqure2.5-~9.Astatistical analysisofthetestresultswasmadeandissummarized onFigure2.5-60.Therequiredcompaction wasm~torexceeded.

ADrotectiveconcretema+wasimmediately placedoverthecompacted soilundetheESSEPumphouse andaminimumof5in.thickreinforced concretelinerplacedovertheentirespraypondarea.A11temporarv slopesinsoilwereformedatamaximumslopeof11/2horizontalto1vertical.

Thetemporary slopesinthev'cinityofthe'?SSWpumphous>>

vereprotected wi>>ha3in.layerofconcret~tomaintain<<henatura}soilformation intact.Allpormanen>>

slopesinsoilwereformer)ataslopo,of3horizontal

.o1vertical...h~~xcava<<ion for<<ho.SeismicCategory1pioelines insoilwascarr.'cdoutsimilarly.

Allslopeswerecutat'maximumof11/2.",or'zontalto1vertical.

Theminimumclearances were1ftben~a<<hhepipeand2ft<<othesiRes.p9JISQY~?.'>.0.5.

3packf.illandCompaction

<;~neral]

v,the,excavated

~area,foraminimumdistanceof10ft:-.urrounRina

<<hemad'orstructures, washackfilledwithanon-corrosive 1eanmixconcreteknownassand-cement-flyash backfill.

minima3amountofbackfilling hastakenplaceusingqranularbackfill, wi<<h<<hoexception of<<hespravpondandvicinityaddrcsed1'at~rinthssection.h~Sie'smicCategoryTpipelines wereqenerallybackfilledwith<<)>,~sand-cern<

nt-f]yach;othcrwis~

qranularmaterialwasused.PurisdS~i.,micCategoryIelectrical ductbanks arecomposedofoirfore~.dconcr~>>aencasements aroundplasticcrmetalducting;>>heconc".ct~~ncas<<m~nt brinecastdirec+lyaqainstheexcavated2.5-98 J3HSoI4IIPPfILMocLInLPIAo pv-I(:egwgpoeycLuceo(g;<<gupcLoo-o-r>~P+Ioccocoq7Viar+

kwc(p-oo/c.

ALIIJc(erIfooLodMAP'P'tP//f+Q~]ac+oecP,Py~copPr~lQ~4gp-~~a~a7:ou.

k~y~~darurooossQRPole('JgoccUNgaoccQapp'IcpwPgaoa..Ttl~/Id'r(Q~'(~j'1'z.s'oc(op~ceclAdIP+2acLcp:II/5eveIce-d/eHspo.ct".Jy~goat~.y.voatsg

-ga.ysuM'goop<<(oo7~

grocIXui~

ederaeon'p"ogh~~~a.v.(o+eooctraf~vao'IL(Ji gx2cML(cartc+eoe7P oplAn~g;~TiigQMS/o>~~7'luu)o~

~r~/adToLPec.ceA.ct+o5'cecetoo'Ig~plSd(s'calpog'dpcPpc(-cere(gaefpace.kgv-o(dodecg:u~uncocrcLprocL(oPPILuuode.ocg'g/Pev7'Q.

SSHS-PSARlarqeearthmovinqequipment, thenfinishedbyusinqmorerefinedprocedures.

Oncompletion ofexcavation, thesurfacelayerofihenaturalsoilformation wasrecompacted asfollovs:a)Porsoilshavinqnotmorethan12percent.passingtheNo.200sievesize,80percentrelativedensityasdetermined byAST!lD2049h)Forallothersoils,95percentofmaximumdrydensityasdetermined byASTID1557Tes+ResultsareincludedinAppendix2.5C.Thelocationoftestsp~cimens withrespecttothespraypondisshovnonPiqure2.5-59.Astatistical analysisofthetestresultsvasmadeandisummarized onFigure2.5-60.Therequiredcompaction vasmetorexceeded.

Aprotective conrretema+vasimmediately placedoverthecompacted soilundertheESSMPumphouse andaminimumof5in.thickreinforced concretelinerplacedovertheentirespraypondarea.Alltemporarv slopesinsoilvereformedatamaximumslopeof.11/2horizontal to1vertical.

Thetemporary slopesinthevicinityofthe~SSWpumphouse vereprotected vi+ha3in.layerof,concretetomaintainthenaturalsoilformation intact.Allpormanen+

slopesinsoilvereformedataslopeof3horizontal

+o1vertical, Tbeexcavation for+heSeismicCategory1pipelines insoilvascarriedoutsimilarly.

Allslopesverecutatamaximumof11/2horizontal to1vertical.

Theminimumclearances vere1ftbeneaththepipeand2fttothesides.2.".>.4.5~)BackfillgndComportion'Generall v,theexcavated area,foraminimumdistanceof10ftsurrounding themaiorstructures, vasbackfilled withanon-corrosive leanmixconcreteknovnassand-cement-flyash backfill.

Aminima)amountofbarkfillinqhastakenplaceusinggranularbackfill, viththeexreption ofthespraypondandvicinityaddressed laterinth'ssection.p<gs+vg-heSeismicCategoryTpipelines veregenerally backfilled viththesand-cement-flyash; otherwise qranularmaterialwasused.BuriedSeismicCategoryIelectrical ductbanks arecomposedofreinforced concre+eencasements aroundplasticcrmetalducting;'heconcreteencasement beingcastdirec+lyaqainst'heexcavated Rev.35,07j842.5-98 3pzu+Qa.~n.v~tQp~~~~ELM~4@i(:II)atra-3Ajc-p;(/Q w+L.s~$-'c.~~Jg(p,l,+,~(~)$al~~p-,~:~l

~>tr'rial,'".>>.",m~rinq."pacification int~n<<.~)os>>hqraqealsoinsn"r!r)forunsuitahl<<'ateria 1suchasvnterfrozen,~manicorr)'r1-"t~rir>>.-

maerial.s>>chma<<aria),

whenfoundrnmovpg,Thes~nh-r~mr r<<-flva.,h heddinqmaterialvaseithermixedattheta<<c)plant ornh>ainrdfromanapprovedoffsitasource.T).psan)-r.~m~n-f1yashvasthenplacerlirliftsnotexceerlinq 30:.nChi.-i.)ai>>'htnOrUfee<p~rhnur.FOrpipeSthepourWaS).ro>>qh<<<<o thep'n~sprinqlinean0vasalloved<<oset.Fo.ducttink.",>h~)er)dinqwasno'.placeduntiltheductbankconcretP.rrachier)'hcrooui".~4 strenqth.Sand-cement-flyash wasthennour"rl<<o<<h<trpoftho.d>>cthankandallovedtoset.Analysisof.herrlevantfieldtestsforbeR6inqmaterialisnc)udo)in<<he~umvaryqiveninTable2.5-61.g,5.U,6(go>>ndva<<~r Conrli'+ions."n~c'alroa~ur~sforcontolofqroundvater levelsbeneaths:~ismicCa<<~ao".y Inlantst.ructures founrledonrockarenot-.rq>>'red.

How~v~r,controlofqroundva<<er levelsandseepaqesr~~0~i)a<<<<h~snravoonrl;discussion ofdesiqncriteriaforahili<<vof<<hospravpondispresrn'tedinSuhsection 2.5.5.d>>."ioticvat=rlevelreadinqsverrobtainedinthevicinityofp".in'nal nlant(powerblock)structures betweenDecember~n7Pandhuaus'672.

Groundwater fluctuations ranqedfrom1.5i,".4r))).olds209,311,to6.2findrillhole213.maxim>>mqrounrlva terlevelmeasuredintheplantstructures

)urinath'spreconstruction perior)ranqerlfromapproximately f.a.<<h~v~st~dqeofthesiteofthe<<urhinehuildinq, to,>)~n>>'6'e a!thoeas<<edqeofthesiteofthereactor.">>i).);na".

(re.e".<<.o.Fiqure 2.5-55).Thesrlevelsvore'ohviously nfl>>~nc>r)hv.hr<<onoqraphic hiqhof7U9ftjustvestof'thenf<<h~pnv.rh)nckstructures.

However,subsetquent~xr~vatovandnrar)innintheso.aroasprecludewaterlevelsfrom".isirq.nhish~i>>htinthefutue.P>>ri'.>>cnr.",tr>>c rior,,>hrareajustvest.of.hepoverhlock-trueur=..va~arxr)~)toelevation710ftorlrss.Excavations fnrth~fn>>rrla~inns oftheprincipal plantstructures ex<<ender)

)airv<<h~va<<or<<ab]eandsomeminorrlevato.r inq*vasrequired.

>u~<<nt)-rlr:vnnrm~ahi1ityoftherock,qro>>ndvater inflowwas=mallan).va..cnnfinedtnseopaqefromfractures.

Devaterinq vasaccomnli..hr,))vrumninqfromlovareasandsumps.Mh~reseepsv.'r~no'~r)issu)nqfromfracturesintherock,holesvererlillcAir,n>h~fractur~sandpipscaulkedintheholestocontrolvhilrthemudmatwasplaced.Inthefoundation forthe2.5-102 sSFS-PSARreactorhuildina(elevation 619ft)andintheturbinecondensate pumppit(atelevation635ft),hydrostnticoressurecausedliftinaofsmallareasofthe3inchthickconcretemudmatthathadheenplacedovetheimpervious membrane.

Approximately 20reliefve]lsdriliedthrouqhthemudmatreleasedthepressureardallowsdthemat:+oset;tiebacktoitsoriqinalposition.

Theweiahtofthestructural concreteslabsubsequent:ly placedonhismudmatwasmor>thansufficientto'esistanyupliftnressures.Thehiqhostseepsno+edinthefoundationrockdurinqconstruct ionwereatelevation 642ftir.theradvastebuildinq~xcavation andataboutthesameelevatinninthepipet"enchin.hesouthempart:'of.theUnit2turbinehuildinq.

Someseepswerealsonotedinthe.foundation rockforthereactorbuildings eleva+ion 619ft.andinsumpsbelowthis.Tothewestoftheurbinehuildinqin.hecirculatinq vaterpumphouse excavation, vatnrwasnotedtoen+ertheexcavation toanelevation ofanprnximat.~ly 660.ft.Hvdrostatic liftinq(described above)ofimperv'ous momhranedidnotoccuratfourdation elevetions ahove640ft.gjf5'av+C.hi}d'ona)informationwithreqardtogroundvater monitorinqandvato,.tzbl~fluctuat.i.ons intheprincipal plartstructures areaproyidFs1inSubsect:ion 2.4.13andTables2.4-31and2.4-32.+htsorwvpond,w~terlevelirformatior.

'akenbetveenJuly29,1974andhuaust4,1975,ardfromJanuary<hrouqhMarch1977,indiCateaminimumVa~erleVelfluCtuatiCn Cf4.0ftreCOrdeda+nts~rva'r.wells1111and1113,andamaximumfluctuationof7.0<<tin11~5.Additional discussion ofqrcundvater fluctuatiors irhoFnravpondareacanhefoundinSuhsect'on 2.5.5.Because<<"oun!wa.e".levelss-.thepordwillbehighert.hanthemaximumn"ojecedfloodel~vation (refertoPiaure2.5-38andSubsectior.

7.4.t,resp~r+ively),

floodinqconditions v'llnotsiqnificantly

><<fr<-whoaroundvaterlevels.4'.~ca1v~!l..wi~hir.+vomil~softheplan'etov~reinventoried and+heinformaior.isqivonir.Table2.4-22.':rour<'.wa+

.flovsavavfromtheprincipal p!antstructures areah~nor+h,east,hardsouth.Hovevor,thepredominant fairerionofflowi.-totheeastandsoutheast a'radients of0.05~nd0.0~,r.snect;ively.

Theflovrateinbedrockisimater'.>Oh~'..e.-.;-"

thar.1ftperdayaSdiSCuSSed inSubSeCtiOn2.4.1l.Groundva".er contoursatthesiteareshcwnonFigure>.)-'10.n:~rm'ahil itynfthointactbedrockatthef/viir.h~av1raa~pormcahilitvofthesnravnonlis7,000ft/year;hovever,~Onrilerabl VeXC-~dr]inSameteStS.FOrsi'eislessthan1qlacialmaterials atthisvaluehasheenacompletedescrip+ion7..6-103 Qzwavf+~~>40~~4'Qs'~pg<ltawaM+8cu'@:gg~X4lt04%(IW/eAJ7VtgCu~~~(~b:Mvo(<~~er:ep

>gvs~;p-Q.73'~~un.f~~+La.mm~~~'h~~~ur~aleWa-~p~~~yo:>>fMrs'"a.~du'~f kypulAa/plpp

'

SSPS-PSAR2,5.4.10Static..".ahi1itv2.5.4.10.1S<aticStahi1ityotSafety-P~1a'<)Sttuct(iresSuppnr+.edongock~hereactorhu'dinqs, controlstructure, andth<diesele'en<rotorhuildinq, allofwhichar<'eismic Cateqory-~r>>c+ur~s, ar<foundodonsound,'nweathered siltstone bedrock.~heSoismic(.a+eqnry Ipipelineslinkinathereactorbuildings withthespravpondaretrenchedpartlyinsoilandpartlyinbo.drock.>h~strenq+hoftheunweathered bedrockamplyaccommodates theload.nf<.heplantprnvidinq hiqhlystablefoundation cnnditions.

m<as>>redintheSeismicCateqoryIreactorarea,compressional v~1ncitinsareintheranqeof14,000to16,000fps;shearwavevelocityranqeshetween6,200and7,600fps.StaticdeFcrmational mnd>>l'smeasuredonrockcoresvaryhetween3.1nq.4x10~psi(refer~oTahl~2.5-3).measurements of>>neonfinedcornpressivestrengthofunweathe'redfcun()ation rockfrom<hevicini".v nftheprincipal plantst"octureswerebetween3,650and16,000psi(Table2.5-3).Staticproperties of'thefnun.lationnckar~summarizedin>able2.5-5.Loadsinducedbythnnlantstructures arelessthantheallowable bearinqpressurenf+);ernckandfarbelowtheultimatehearinqcapacity.

Thestrue+uralloadswillproducenosiqnificant totalord'f<r~n+ialsettlement ofthefoundations.

Safety-r~lat<<d structures foundedonrockweredesiqnedforahvdrosta+it around'water loadirqcausedhyamaximumqroundwater

,1<~v~1of.665f+.Thisishigherthantheexpectodmaximum,waterlev~l,a<<)iscussedinSuhsection 2.4.13.?.'5.4.10."S'.atic~'ahilityofSafetv-R~la~od St,ucturesSunonr<<donSoil~hema~fon.inqoftheFSSWpumphouso is112ft,1onq,64ftwide,and3.ftthick..Thetotaldeadandliveloadsare20,000kipsand2,100kps,resnectively.

Thecorresponding>>nit pressures ar2.PAk.".fandA.30ksf,respectively.

Thehotoraoft;hemat:~,at,e'ovation 6'>7f+..h>ultimat<bearingcapacitvoftho((atcanbeestimated bythefnl)owinq~q<>ation (Ref.2.5->>5):whi+rP~1/?0<N+D(N"1)fc)2.5-106 SSFS-FSAnultimatehearingcapacjty8=widthofthemat=64Y=unitweiqhtofthesoil=130pcfDf=dapthof,surcharge, conservatively assumedtobezerohearinqcapacityfactorsYq38,and33,respectively (Fef.2.5-115}correspondinq tog=35~(Subsection2.5.4.2.?)Tho.ul+ima+ahaarinqcanacityofthematfoundation vasfoundtobe158kips/saft.Thefactorofsafetywascomputedtohe51,vhichindicates rodanqarinoverstrassinq thesupportinq granularsoil.Therefore, theallowable hearinqpressureandsattlament ofthematfootingwereevaluated bythemethodoflimi+inqsettlaments suggested byPeck,Hanson,andThornhurn

{3~f.2.5-116).Th~allovable hearinqpressureforamaximumso,.+tlament nottoqxcaad2in.wascomputedbytheformula:vher~:0.22CnCwHallowable hearinqpressures, tsfnumberofblovsparfootinthestandardpenat.ationtestn'Cwcorrection factorsfor"N",fortheeffectsofoverburden pressureandlocationofgroundwater surfac~co;..ervaiveNvalueof4Avasselectedtorepresent thasoilsl.elow+hama'oundation (El~vation 657ft,Fiqure2.5-38).TheStardardPcn<.trationTestshelovthefounda'.ion levelveremadeanavaraqeoverburden pressureofabout6,000psf(Figure2.5-39);thecorraspondinq correction factorCvasobtairedfromFigure19.6ofBaf.2.5-115tobe0.63.Assuminqthatthegroundwater surfaceisat7ftbelovthematandnosurcharqe, thecorrection factorCvascomputedtobe0.55hyequatio194ofFc~f.2.5-115.~hanllnvablebaarinqpressurevascomputedtohe6.0kips/sqfthasadnnthovaluesof,N,C,andCwqivanabove.Atthishoarinqpressure, thesettlement of~thematfoundation shouldheloess',han2in.anRthedifferent ialsettlement shouldbelessher1/4.in.Therefore, hvproportion,foradesiqntotalnrossuraof3.1kips/sqft,thecorresponding maximumandPav.)5,07/842.5-107 SSFS-FShR

~Ij~fnentillsettlements wouldbelessthan1in.and1/2in.,respectv~lv.Settlement insandardqraveldepnsitsoccursalmostsimultaneously vith~heapplication oflead.Sincemorehen00nercon>nfthetotalloadisdcadload,'henlessthan0.2in.nfsettlom~nt jsexpectedafterthecompletion ofthecng.-.~runtinn.'agert"heŽtructural stability oftheESSvpumphouse isdiscussed inSuhection 3.8.4and3.8.5.~hesustairedloadfromthespraypondislessthantheveiqhtofoverburden removed;therefore, thereisanadequatefactorofsafotyaaainstoverstressinq theunderlying soil.Soilrebounddurinaexcavation ir.granularsoilsofthetypefoundatthesnrzvpondisinsiqnificant.

h~maximumpredicted elevation ofthewatertableisbelovthehaseofth~spravpondandESSMpumphouse; therefore, hydrostatic waterloadinqswerenotconsidered inthedesignoftheses+ru'ctures.

Afulldiscussion ofthewatertableinthisvicinityisinSubsection, 2.5.5..hela'nralnarthpressureactingonsuhterranear.

vallsofsmicCa+eqorvIstructures vascomput.od assumingqranularhackfillhavinathepropertiesstatedinSubsection 2.5.4.5.3.~heco~fficiont ofearthpressure"at-rest" vasused.:idditinnallv, thewallsveredesiqnedforsurcharge loadinqsanddynamicsoilpressuesasappropriate.

Thetypicalpressurediaqramsandcomhinatiors areshovnonFiqure2.5-39.>'aterlevelsin'hespraypondareaarediscussed inSubsection 2.5.5.1.2.

Contoursof'heqroundvater tableinthespraypondareaaresho~nonFigure2.5-38..Profilesofmeasuedandprospected prnfilesoftheqroundwater tableheneaththsprayoondareshovnnnFigure2.5-40.2,.'>.4.11 DesignCriteria2.5.4.11.1 PesiqnCriteriaofSafety-Related Structures nnRock-h~plant';=+ructures foundedonrockaredesignedforamaximumacceleration nf0.10qfromanoccurrence oftheSSF.event.Fromc.onsideationofitsenqireerinq properties, itisevidentthatth~foundationroc:kvillnotbemeasurably affectedhyseismiclozdinas, andnealiqible additional foundation settlement villaI-.compa ny,thesomaximumpotential dynamicloads.~hemaximumcnn'emplat~d to>alstaticanddynamicloadsof40tsfareonlya2.5-108 S'awc<<~kt.YksQ]rdcd+yes.cdfscyp/;Rst~.~le4c.rig~~~hRsr:nge~~c.4+LN~~+s~+4d(o~14.b~r:hW~:mu.kWatftc.WaV~g+~<<aMVCESS.TYs.@'~gk7~~W~Ms~~~fW~(c~P.>>k>gPC'fddkp~~+CV4:ck.7SSC.QdaPCSCP+9:vC.g4s,.sdrWJ(/,9as~e(CEPS,k./psylzspcc7'cr.7gc.csrrcspskg.'st sRhgprcssdSrRs 0,/~/cSg~SSil/krf-)dspwc7.'acyl

~/AZJ4q~p~va+r'.o7IdskGllpdkkgslssscY:llf~ss-cQdt'f4Qw.Qa.7~ArtccQcckdtvtsg>>+4cgsg~771q~c~Pg~~~V~~@-CA/'CdCSCkpMadj~l.-Mc~c.v-aa.~a}x.o)Ys'f~a,gch,-skdkkd s@ffcsdiew+

'hR7QY2I/lcY+~+~SkddS'PkllLkd5cfffelk~cdrY-asPAlg;Jl)

~4o(osQ+y~~srcyoZ3kg~YES(hR/s~~/g~~PSS~q~YPR'-c7'in2g/

SSES-PSAR 2~5115peckp,Bf{anson,R~P~.andThron'burn, T~H~,1974,Foundation Fnaineerina, 2ndHd.,JohnRiley6Sons,Inc.~>Z~WA~~<+ac~Ary<<~7gY5'E'f.~~i8a7.av9ov.35,07/R42.5-151 tr//(EXPLANATION f/,///////;~<<ggg>>CoraourontoaotueorocslcoraourintenKIIOrect.Sersn'.Kcctecor7I~iI~.)I~~~>Jl/IDIESELGENERATBLDG.t,gQCM~-MA~J'r/(Q~Strue-.Utes ornerroonsesnKcategor7I:SasrnKCarertory Ipipeones.

~/Jj+SeisrnKcofciof7?"iEfr/~g~~rrrya=R~lnIIIIIIIIIIIIIIShaarngrtenoresstructures

~'founcle4cnhearock,em%J(:-)~Ir'ooeco'ooecoSCALEINFEETTIO~~-r:/j~J.'/Jeseeceel%l)IIIIRev.35.OT94~SUSQUEHANNA STEAMELECTAICSTATIONUNITS1ANO2FINALSAFETYANALYSIS8EFOIITEXTEVTO.ROC'OSOrLFOUNOATTONS FIGURE

~AS~I>>>>IIIsT)-.=:.stt4sII'F<<~<<=-///ee<<%>>eee<<sUPr)-.:.iI/ee/'elIl..Is4'"XI(1s4[.I-e,e-~l4-:',l4L-l~<<e~ste4e+eeeee~eI~~ee~4~ee~<~e<<9tT'is~~t<<ee>>e>>e~~/v~eee<<rS<<<<w>>e<<w4<<>>>>S<<<<4~>>eweeeeeew>>>>~ee>>Seee0~<<>>ww<<<<>>eew<<eee<<Sv>><<~IL0~St<<eeet<<ee'Sees<<eSw<<et<<~I<<e<<w>>C<<>>tie/4NOTES1.CEOLOCICSECTIONSARESNOMNINFICURES2.19,2.5-21A.2.5-219,2.~0AND2.5-56.2.CEUPNTSICALEIPLORATIONANOORILLROLESUSERFRRCEOFNTSICAL MEASURE-MENTSAlECROONINFIRURE2.5-20,S.RURINC1116AND'l12'IRERENOIOllLLEANOARETHEREFORE NOISNOINONTNEPLOtFLAN.A.TElLAPIAKIOORINCMO-2ARENOR'INOFPLOTPLPIAREA;INEIRTRUELOCAtlONS AlEINOICAIEO RttNEARROISANOOISTANCES SNOINON'INEFLAN.ssgseessteCi co~IAa<<e<<H'-SetwN4--j~J~1'.IIL=sIfiesgU'el.-I(~./t'erej'R~Jll(ll(ll,ill.w(IIl,l,tI~eeI'~Mse4>>iI<<~<<re>>5CaateeICItRseV.35,0t34SUSOVEHANNA STEAAIELECTRICSTATIONUNITS'IANO2FINALSAFETYAJIALYSIS AEPORTPL%'LANFIGUREZ,0.22 OVILOVCC~lVvtVIIIdTIS(TIg'r'LCICR.ICIsOTC5LTNCCRIOCs4CATCOCCRRESPOsOS TOTIttPstlttt5yLYANSA STATCCCOROSNATC 5TCTCIL~~~8~3+COCvtoastyOCSCLNCRATOROVILOItSO Qc(SS)+sOyCRPLOTtIsARKIICCr(SS>WCCsCVROSPROPOSCCI 45$5LPVC.TSVCC LCOCNO+CONCNOLOLOCATKNCytCISSLyOICCACOOORPso(RcsLotsl SJPtcoRCR PVIITIvtattea~OTVROeeCMLOQICIPsCVst5tIPLANT55CVRITTPCstCCPIANTg-./I4O'LINCR.R.:IIIIIIIJs~t~(:~~~~g70tORAPtasC SCALCtovEtt~gy~ANASDRILLEOBORINGLOCATIONPLANOltstsvCHIICgrttg.svvvASSNONNFIGUREI~STLyAISA IICIIGI8LIGIII'OOMI'AN SVCCVOVSPtA STCAVCLCCTACSTJTKNN(WfV(RCCNCT4(S(LC(K(GATOR fJCCITT

@nil(lllllllllllllllllll f(tIII(IIIIIIIIIIfP".IIIIII(III~IIIIIft((((((aw(l(((((l((((((((((((l((((((((((((((((l (IrYrrcr1I~'r//j,,J)'rJr~I/tITT,"I~47~r!II~I~'llt)()'grESrvrVvrrverrvrlrf~v~k4tf~~vr(~v(GENERATOR E)Illc1r(.(i.-'.1III.(s(sI~~r.~(~(~.I>>~rr~'~~Unsg~)1.rrI~,(l~El'~lrr=1If~rr'rrr+~~~rII~~~~~~/~>>~rr4~I'I(arrlrrrrr(r,rrrrr1J~rrRev.35,pal~.ENANNASTEAAtELECTR!CSTATIONUNITS1ANQSRNALSAFETYA1(ALYSIS REPORT1FIGVRE2~5

0I>><<e0~lIglIi00T'F.,/<</w./,///<<r;/'//.///tJY/000~Ketrt<<<<te<<0>>0~liteI'00.l/J/gE'tIfl/'I'~0~~/07te0JtIIIItlIt)~,l~I'4ILIfi',Qi000<<K<<tee~.a.0<<~<<0L~>>I<<e>><<fa)II>>Kte~e<<tttt0~<<K~I~tDIEEEIGENERATOR E'LDG.'yf:g~:~piKKete~0,<<>>teeertetee<<er'<<000<<I000~teeee~e04c~r~t4JC0e~0<<I<<lettre~0<<it~0~+000~oocrtouD>ESC~POEc.OILSTCRAGETAAfKFINISAEO6&AOEEIQP7bIESEE,I<<crVEIRATl7

'.:8LD4.-:;,

IhIATI/IerAL SO/C~gg0~0e~/-(LL...IJOEL'EC'7ICW AI.7;5.C3eCJC00000ttt aWlHtKW~00>>eee<<<<0(Kte0etreJettee<<0~t<<eeeteet~teerrteej>><<<<ee<<emJr~'I'ev.35,07/84SUSCUEIIANNA STEAEEELECTRICSTATIONUNITSIANO2FINALSAFFTYANALYSISREPORTLOCATIONAIDLIMITSOFE:(CAVATION FILLANDBACXFILLFORCLASSISTRUCTURES FICURE2447 1'

~I~~Sl~I%$,0~'45,1I4fJ~4Ir~EJ~\~I~4~rIOOIO~P$10CR!EQSOS5%55 earaaxrn&%%%%%%%%

WHNHRRQQQ

%%%%%%SHE

&WHHWWQQA

%WHHWRRQR SSSOSOOSS

%%%%RRSQQWMH&%RHHRBHQQR SANDY6RAYEL~~4WITHCOOOLESANOOOIADER5'*'t7BHAI.LSANOI~bOIlDESbO LUNDYCRAYELWITHCODDLE%AHOaXLOERS,tSlFINETOCOARSEOANDTRACE SLT,TRACE

~-:-:=-"---:--"jy-;gII@~P;,

L~M>>~~~-..~gIÃ'--'g(S.s.qtII(5~"I' wee~'aaronIOTTOHOFHOLESECTION4-APREiIOVBLV DeLLEOErrOTHERS)BOIHS60Ra6OCRINCHOI5OmIOeSANDANDCRAYELEJUSTINCCRADCECRINCNO.5FILL(FINESAND,TRACEBLT).FREE.TDCOARSESANDANDSRAVELWITHBHNLOOULDLII5.5ANDAHD%RAVELOCCABIONAL COOOLESJOOULOERSFINCTDCOARSESANOWITHSHALLEOILOCRSo DORINOt4X4RU.(CRUSHEDSTCNCOORINCAI4)FivE&H5.I2b(PREVIOUSLY DRILLEDSfOTI6RB)FINEBANDBRAV54NO,GRAVELANDDOULDERSLAl4DCOOBLES5~F~TOCOAR5E5AND.AhCICRAVEL()ARICeRAYSILTSTDNE

~sBo&'.s:sDARIIoRAYSILTSTDNE FINETOCO4IIQEBANDTIIACLbaT>~CCCRAIKLDARKQeAVBILTBTONE eIDOTTYOFHOLEeEL.Sea.SI~ISECTIC)N6-OOTTDHOFHOLY0ELS55.0'~tmeevai~gQy~~~~+~0sagpss

~~~~IIIII~NmrrraaXaaaa aeaeeermmmeaeaeam

%%LWLL&RlXW&W SRLLLL%%%%%%

WRRRRRHHHKR

%%%%%IN%l%%88~8%X marraaaaaaa K%KlENZRLEK%ESKREHKER~

muaaaraan

.NNNSSRE%%%%%R KQTRRL%%%%&%

RRW%%4%NNRRBR%5%5%~

KSLRLLWW&WW&

eaaarXaAAAaa UNRRLHAAXAA itLrrrrreaaa l5%REESRR 16KlK1KRERERA RSLRLLHXXXWW eaaraIWAAaeX

,%ILRSIQXAAQR 5%LRLLRHRRHX ESWWNIWRSN%5NWX IWTRLLW&WWW&

SHI%FHR4I5%8%E~RRREWX

%%I5IILXLXRR 55ILIIQXXXWX!K$585ERHHX%%

KSILSIHXAAAXN5588I%X%X%X,l5%%%5505%lNSWWWW 4

igitCLIENTCONTRACTOR Gibba6Hill.Inc.IRAQ>'eIIll$

,DISEQhfA$

.CahST>UCTQRS ROJECTNEE.44547BORINGNEE.1SHEET2PF2,YBORINGLOCATION'OREMAN

-DRILLERJRTxLldePROJECTNAMEaciitiesINSPECTOR T.C.ShiehLOCATIONBerwick,Pa.SURFACEELEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIZEI.D.~~E"HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"TIMEDATEDRILLINGSTARTDRILLS~FINISHXXIlaJOlL0O<<nox3..u.0JEAIV%4SAMPLE(QBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB0-66-I2EA0o<vi>~>9EhSOILDESCRIPTION ANDREMARKS0.4.5REC.33SandyGRAVEL,withCOBBLESandB5tJLDBRS>>2 34.5'5DarkgraySZLTSTONE.

4044.5RECRQD9044.5'ottom ofhole644.5'>Aj~WlFf.F5FS>E>Fl.60NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'FT.CODING:U.S.C.S.*

IINIFIEDSOILCLASSIFICATION SYSTEMH.S.A.HOLLOWSTEMAUGERA-AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLETsTHINWALLV=VANESHEAR 14lVllIISkilDWSPR~"I~1S.'III,<Weal'~>~.Bf<P' I)9DE~La."cllII~,lIi~<I~I

~~~~~~Ii~~~I~.-1IIRCl.'NQLQQO&W&WW&

558@%58%5$

%WR%5%%amaaraeaaaaaa aararmaaaaa QNRRLRRRRWR KSLSLQRRR%%%

eesmmreammeesam R%55IQQLSLQS RSRLQQN%%&HW

,5%LLS8%%%%%%

5%LRQQQRRRRIR ESRE55iQKKRK5%9%5'%lSLL58%%%%%%

5%8%88%WW&W&

%%ERR5%%%%WW 8%%%%%RERRRW&&W E%OQQQ&&%&W&

8%%%%%&WW&W&

iiaarammmmmm

.SIQLLQLLRQQQ 8%QQRQWW&WWW IIHHN%%5%8%%R%%5RS58C~

INSSQRWWW&WW E%8%88%&W&&W SSRHNCSREEEW&&W RRRL88%%%%%%

lWOLLQHWW&&&

5588LQA%%%%%

aeraraeaexaa

,5t%CJWW&CR4MHSHKBIRE%~

'~~~~

~s~s"~'.I.SiQddl't6 M~5rrJfAS CLIENTGibbs8Hill./nc.IFEGIFGIIRS.

OISIGFIIRS,COFISTRUCIORS BORINGNo.~SHEET~OF~:

CONTRACTOR

.'OJECTNo.FOREMAN-DRILLER J.R-TrudePROJECTNAMEaitiesBORINGLOCATION:

INSPECTOR T.C.ShiehLOCATIONBerwick,Pa.SURFACEKLEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESITELD.~~3CG--NE-TIMEHAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEDRILLINGSTARTDRILLINGFINISHZIWWOIS30IO<EFIOZyIE.NoSAMPI.EW0SBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-186-I206plIOOPSOILDESCRIPTION ANOREMARKS579832727SS24'.018213039ReddishbrownandgrayfinetocoarseSAND,tracesilt,traceclay.Gradingwithsmallboulders.

36.0'036.0-38.C.100%QD.80%DarkgraySZLTSTONE-QD.97.5460'ottomofhole646.0'0lI~60NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C,S.UNIFIEOSOILCLASSIFICATION SYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLV=VANESHEAR vs~sae0'.-.p..:=".;"I',IJJIN"

'-+HSING'lK.?.'~.:sieii2-'."li(7',i~'(IQ'(i~P4H'Jo'"zehXb<

l' nPoweraLihtCo.ClIENTCONTRACTOR gFOREMAN-DRILLER J.R.TrudeINSPECTOR T.C.ShiehWATERLEVEI.27OsDATE~119/83HOURSCASINGDEPTHGibbs8Hill,Inc.j4MI'ROOKSSGFYCISS CO'VSlESUMTORS ROJECTNo.44547PROJECTNAMELOCATIONBerwick,Pa.ac'tiesCASINGSAMPLERCOREBAR.TYPESiZEI.O.HAMMERW,T.300lbs.140lbs.BITHAMMERFALL18"30"BORINGN.~SHEET1OF'BORINGLOCATION:

N.341341.000.00SURFACEELEV.669.51'RILLING DRILLINGSTARTFINISH,TIME~Am~2:00.m.DATEll/7/83'l/9/83zI-xleId4$ClILIO<(noKyuCFECEgO40CLSAMPLETHEC.BOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)0-66-I212-IBQlpoC9PKaWSOILDESCRIPTION ANDREMARKS371030292SS4N24'.0'5.0'7252757151013.PaLL(DarkgrayfinetocoarseSANDwithcrushedstone).(Hitconcretebetween30'nd40')5.0'ellowish brownsiltyfineSAND.10579.7'51793122.0-15.00C.SandyGRAVELwithcobblesandboulders-.~iirIg2125.0-20.C.221152513710011020.0-2PSC.583013125.0-30.C.~20COOING:U.SCS.=UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A.HOLLOWSTEMAUGERAAUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLV=VANESHEARNOTEKUSEDIN.CASINGTOFT.,TNENIN.CASINGTO'T.

~A"%14a&gt+llM

~4~)N!JSlfU>i"fARl-f."'.<rp"TQg~fIgtrstlI.ith.4t'Ps'I44Vg nnPower&LihtCo.CLIENTCONTRACTOR Gibbs8Hill,lric.E'EGItsEEEIS OES'G'oE+S.

COPISTEEUCTOIIS ROJECTNEE,44547GORINGNo.~SHEET~OF2BORINGLOCATION:

FOREMAN-DRILLER J.R.TrudePRO~ECTNAMEactiesINSPECTOR T.C.ShiehWATERLEVELDATEHOURSCASINGDEPTHLOCATIONBerwick,Pa.SURFACEEI.EV.ORII.LING

'RILLING'TART FINISHCASINGSAMPLERCOREBAR.TYPESIZEI.O:~~UJ!-~TIMEHAMMERW.T.300lbs.140lbs.BITHAMMDATEXXI0OISIOeETIOAC3,LSCllOQ0C)0SAMPLEISIIBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)Ia-IB0-66-IRMIIO~OKaIAIC/IOOCOEO)X5S2TSOILDESCRIPTION ANDREMARKS30170160SS3"31.253650/1SandyGRAVELwithCobblesandboulders.

179167SS0"3260'/0'0'EC~6241701701761.0-46.REC.6.0-4.5'EC47.5'arkgraySILTSTONE.

47.5-5.0'EC.RQD.~10%~86053.0-57.QD~109357.5'ottomofhole857.5'OTES:

USEDIN.CASINGTOFT.,THENIN.CASINGTD'T.CODING:U.S.C,S.=

UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A.-HOLLOWSTEMAUGERAAUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLV=VANESHEAR

PCVj'bHJdP.=iPIHF.C'-"v~iV-'I&vsQl'~'t~IV@f1'Q0,Dp Penn.Power6LightCo.CLIENTCONTRACTOR Gibbe8Hill,inc.E'S~."GERS OESIGAEISS.COFEST4VBOORSOJECTNo.44547SDRINGNo.~SHEET~OF~

BORINGLOCATION:

FOREMAN"DRILLERJ.RTrudePROJECTNAMEace4492INSPECTOR T.C.ShiehWATERLEVEL18.5'4.6'ATE

~1117~1121HOURSCASINGDEPTHLOCATIONBerw<<ks>>-

SURFACEKLKV.674'9sCASINGSAMPLERCOREBAR.DRILLINGFINISHDRILLINGSTART11/17/83TYPESITEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEI+noKyVESTQgVCD4SAMPLEECBLOWSPER6IN.ONSAMPLER(FORCEONTUBE)BOT.0-6I2-IB6-I2gIg0CSEA,SOILDESCRIPTION ANDREMARKS2024'0'9625870PILL(DarkgrayfinetocoarseSANDandcrushedstone).40465059222SS24'0'037I35417.0'eddishgrayfinetocoarseSAND,gradingwithsmallboulders.

1030242.067694061iiiI~I207167275SS2422.01313141925811200306SS2427.01213121727.0'OULDERS.

30.0'OOING:

U.S.C.S.*

UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERVD*UNDISTURBED SAMPLE'=THINWALLV=VANESHEARNOTES:USEDIN.CASINGTOFT.,THENINCASING.TO'T.I~~

0OK!JJl&.H8tHi~90~~<<IEI4)P.I1II1CJtIlkHWAPAIWMPW

~A CLIENTCONTRACTOR Gibbs8Hill,inc;C'GQINCCTCSOSSIQ'SIAS,COFGSZAUCTOAS ROJECTNo.44547GORINGNo.~SHEET2OF2BORINGLOCATION:

FOREMAN-DRILLERJ.R.TriodePROJECTNAMEacilities INSPECTOR T.C.ShiehLOCATIONBerwick,Pa.SURFACEELEV.WATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESI2EI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL1B"30"TIMEDATEDRILLINGSTART.DRILLING FINISHXIWWo4.lO<cnoZ3:CA.CF)OC5vco4NoSAMPLEWo.BOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB0-66-12pllOOOXCA,CO0OCclcri~%coSOlLDESCRIPTION ANDREMARKS301174136ReddishbrownfinetocoarseSAND,tracesilt,tracegravel.3513012716124ll37.2630395637.3'0DarkgraySILTSTONE 7.3'47.REC~~9747.3'ottom ofholels47.3'060NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C.S.~UNIFIEOSOIL'CLASSIFICATION SYSTEMH.S.A.HOLLOWSTEMAUGERA=AUGERSSRSPLITSPOONSAMPLERUD4UNDISTURBED SAMPLET=THINWALLV=VANESHEAR E-c~M!J.ll~~Hc.>H,CB'i&i%"'DGW"<>4lll0'I nnPower6LihtCo.CLIENTCONTRACTOR oxsanGibbs8Hill.Inc.IVviFAEERS, DfSIGFEI<$.COFSST<VCTORS ROJECTNo.44547GORINGNo.~SHEET2OF2BORINGLOCATION:

FOREMAN-DRILLERJ.R.TrudeINSPECTOR T.C.ShiehI'ROJECTNAMELOCATIONBerwick,Pa.aciities341360.752402.84SURFACEELEV.671.00'ATER LEVEL17.0'5.9'ATE'~1683AFTER'OURS

~C1NGCASINGDEPTHRVCCASINGSAMPLERCOREBAR.TYPESIZEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"TIMEDATEDRILLINGSTARTDRILLINGFINISH11/16/83I2l-o.CEU0I-C2ecnOZgbEYEQO'2WcJcloNoSAMPLEBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)6-I212-IB06EYE0vi+SOILDESCRIPTION ANDREMARKSFILL'(Yellowish brownfineSAND,tracesilt).501SS31703.0'7563136403.0'eddish andgrayishbrownfinetocoarseSANDandGRAVEL,withsmallboulders.

10791103SS4ls12.'0272739'991251614SS24ss7.0'6293146201201305SS20'.7'537460/2'001196SS24'.01926313030300'OTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.SCS.~UNIFIEDSOILCI.ASSIFICATION SYSTEMH.S.A.~HOLLOWSTEMAUGERAAUGERSS=SPI.ITSPOONSAMPLERUD>UNDISTURBED SAMPLET=THINWALL'=VANESHEAR Cl*Wf(l)J)Pi.~~VIIrIr,r.CI1SJ'44%4 CLIENTGibbs8Hill,Inc.KAY",iEERS (5'QFESSS,COFG5ZRUCiORS CONTRACTOR

'OJECTNo.4547GORINGNo.~SHEET2OF2BORINGLOCATION:

FOREMAN"ORILI.ERJ.R.TrudePROaECTNAMFactieINSPECTOR T-C.ShiehLOCATIONBerwxck,Pa.SURFACEELEV.WATERLEVELOATEHOURSCASINGOEPTHCASINGSAMPLERCOREBARTYPESIZELD.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18"30"DATEDRILLINGSTARTDRILLINGFINISHZXUJWUJO30IoocnoKglLQH50COELSAMPLE'LOWS PER6IN.ONSAMPLER(FORCEONTUBE)I2-IB6-l2BOT.0-6IIPoE5PICWEhOoclvi>~)SOILOESCRIPTION ANOREMARKS1014948ReddishbrownfinetocoarseSANDandGRAVEL,withsmallboulders.

351201178SS24'.030293641401379SS24'.02928404716110SS0"45.050045.0'6.0'"

-BOULDERS5546.0-56.56.0'ottom ofhole656.0'yNOTES:USEDIN.CASINGTOFT~THENIN.CASINGTO'FT,CODING:U.S.C.S.UNIFIEDSOILCL'ASSIFICATION SYSTEMH.S.A.*HOLLOWSTEMAUGERAAUGERSS>SPI.ITSPOONSAMPLERUO>UNOISTURBEO SAMPLET=THINWALLY=VAHESHEAR 1RiA.fi40 Penn.Power&LightCo.'LIENT Gibbe8Hill.Inc.E4uIFTIIRS DISCGFSfCCS,COSCSTCCVCZOCCS BORINGNo.6SHEET1OFZINSPECTOR T.C.ShiehLOCATIONBerwick,Pa.CONTRACTOR

.ROJECTNcs,44547FOREMAN-DRILLERJ.R.TrudeIROJECTNAMEac'lities BORINGLOCATION:

N41451.00E2442450.00SURFACEELEY.673-31'ATER LEVEL23~5'ATE11~2383HOURS0CASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIZELD.HAMMERW.T.300lbs.140lbs.BITHAMMERFALI18"30"TIMEDRILLINGSTARTDRILLINGFINISH11/22/8311/23/83TIIwccccccc.ICl<coOKycc,COCFgoI)cc.NoSAMPLEQBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)I2-IB6-l20-6CLCIOKC0csccccfJO~C)cri>~)SOILDESCRIPTION ANDREMARKSt50394102MFILI(DarkgrayfinetocoarseSAND,somecrushedstone)'.1061714046502SS24ss.0'051707.0'rownish grayfinetocoarseSANDwithgravel,gradingwithcobblesandboulders.

11015160809721224T7.0'93847611772117135160417911612113025.0PGREC.30.0'OTES:

USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.CODING:U.S.C.E,'UNIFIEOSOILCLASSIFICATION SYSTEMH.S.A.*HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLY=YANKSHEAR

~~~II~~~marraaaMMMAA eeameermeeaememesm RSQQOSAAAMMM RQSSQLRMRRRR R55$55%%%%%%ERSRRRWW~

KRHKHKELQKRBKRlRW@RM SRRRLLMWMWWM QItIIARRAAA

.,amaarrAAAAAA

'aarrraeraaa SHR%88PII~R%RSR5555~

ALLLLMMMMMM AIQIIAAAAAR.A1%88AAAAAA aarLLMMMMMM AISIEAAAAAA ARRILAAAAAA aararAAAAAA

.AararAAAAAA MEE&HLHK~SQRKIEKKR QLQQIRRAHKRES WQQQR&&MMMM

&RRSIA&AAAAARRLIAAAAAAALOLLWRAAAA ALRLLMAAAMR AISiRIAAAAAW AIXIIAAAAAA

.,maarrwmmmma Penn.PowerGLightCo.CLIENTCONTRACTOR sanGibbs8Hill,inc;f4GINEERS.OC5IGFGCRS,CODES'CRIICTORS ROJECTNos44547SORIIIGNo.~SHEET1OF2BORINGLOCATION:

FOREMAN-DRILIERJ.R.TrudePROJECTNAMEacitic442450.00INSPECTOR T.C.ShiehWATERLEVEL286'ATE1~122/83HOURS0CASINGDEPTHLOCATIONBezwick,Pa.CASINGSAMPLERCOREBAR.TYPESIZEI.D.HAMMERW.T.300lbs.140lbs.BITHAMMERFAII18n30nSURFACEELEV.672.55'RILLING STARTDRILLINGFINISHTIMEDATE11/21/83'l/22/83XIIAIIIIII.IO>cnOKQIZIFIOgCJIEICLSAMPLEIAIIBOT.BLOWSPER6IN.ONSAMPLER(FORCEONTUBE)l2-IB0-66-I2MII0&ISCOOOCI)CO)SOILDESCRIPTION ANDREMARKS376000212790SS8"SOn1.5'.0'70/0'0PILL(ReddishbrownaDarkgraymediumtocoarseSANDandCINDERStracecrushedstone.Gradingwithboulders.

12102SS4n2.0'59.0'ellowish brownsiltyfineSANDwithsomecrushedstone.Gradingwithsmallbouldersbetween19.5'nd23.0'.2925S247.0'3~~~lo31'0'70SS2n0.2'0/21156923.0'eddish brownmediumtocoarseSANDwithsomegravel,tracefinesand.10127.021302946COOING:U.SC.S.=UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A.=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD=UNDISTURBED SAMPLET=THINWALLV=VANESHEAR30NOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.

lSCLIENTGibbs8Hill,Inc.IFSGIFGIETES, OjSIGFEE45, COFSST<UCTORS BORINGNo.SHEET~OF~

CONTRACTOR

'OJECTNo.544547FOREMAN-DRILLERJ-R-TrudePROJECTNAMEa'tisBORINGLOCATION:

INSPECTOR T.C.ShiehLOCATIONBerwick,Pa.SURFACEEI.EV.IWATERLEVELDATEHOURSCASINGDEPTHCASINGSAMPLERCOREBAR.TYPESIEE1.0.HAMMERW.T.300lbs.140lbs.BITHAMMERFALL18ss30"DATEDRILLINGSTARTDRILLINGFINISHXlutwLLIOegoZalaNo.SAMPLESBOT.SLOWSPER6IN.ONSAMPLER(FORCEONTUBE}12-186-I20-6SOlLDESCRIPTION AHDREMARKS304039101211301417SS4Ts20'04'62937ReddishbrownmediumtocoarseSANDwithsomegravel,tracefinesand.33.4s40.0'arkgraySZLTSTONE.

450.0'50~REC.~9650RQD~8150.0'ottom ofhole850.0'loCODING:U.S.C.S.*

UNIFIEDSOILCLASSIFICATION SYSTEMH.S.A=HOLLOWSTEMAUGERA=AUGERSS=SPLITSPOONSAMPLERUD"-UNDISTURBED SAMPLET=THINWALLV"-VANESHEARNOTES:USEDIN.CASINGTOFT.,THENIN.CASINGTO'T.

'5~pCIl.

SSFS-PSAR poggoI}gy coJ;vj,go NCgCZNIQCQR-~~~-"~~

FsgSisdesignedtoa}SupplycoolinqwatertotheRHRpuapsandtheirassociated rooacoolersduringtheseveralnon-emergency andesofRHRpuepo'peration suchasfuelpoolcooljnq,normalshutdovn, andhotstandbyb)Supplycoo)ingvatertothevariousdieselqenerator heatexchanqors, RHRpuaps,rooacoolersRBCCQandTBCCtrboatexchanqers duringeaerqency shutdovn.

conditionssuchasaLOCh.TheESvspumpsare1ocatedintheESSESpurghouse viththeRHPSNpumpsThPRSvSpuwphouse isdesignedasSeisaicCategoryIand!hepsvsconsistsof+vnredundant loops.(denotedAandB)eachcapableofprovidirq 100percentofthecooling,vaterrequiredbyallt.ho,FSFequipaen!

ofbothUnits1and2siaultaneously.

Thesystemisdesiqnedsothatnosingleactiveorpassivecoaponent fai)urevillperon!i!froaachiering itssafetyrelatedoh)ective.

1'hesystesstar+sautoaatica)ly onadieselstartsignal.Foradditional discussion

~seeSubsection 925dieselQeaer~kazs

  • ~glThefourdieselgenerators arehousedinaSeisaicCategoryIstructure.

Theyareseparated fromeachotherbyconcretevallsvhichprovideoissi)eprotection.

Lossofonedieselgeneratorvil)notiwpairthecapabilxty tosafelyshutdovnbothunits,since.thiscanbedonevi!hthreedieselgenerators.

Pgrpddi+iona) djsyusyion>

ye~QbsejtiynJ~3~~14+/>

+1~>+~+~j

++++J>orlesErkptxons of'hef)dieselGenerator PuelOil'Systea, CcrolinqQatarSyst'ea,hirStartinqSystemLubeOil'ystem, andthe.-En!akeandKxhaustSysteasseeSubsections 9~54,9.5.5,95;6,9.5.7,and9.5.8respectively..Poraissi)oprotection seeSubsection 35Separation isdiscussed inSections312and83'I~>"~Q~ggmiaHgfs$ng$$2KyxPgx}gl,ThespraypondprovidesthevaterforboththeESlfSsysteaandtheRHRSIsytees.XtistheultimateheatsinkforbothUnits1and2.The.returnlinesfroatheESSESandtheBHRSVarecosbinedandthetotalquantityofvaterfroaboththesesysteesisdischarq~d throuahspraynetvorks, vhichdissipate theheathack'85HVjtt3~1-71I f SSES-FShPfol]ovjnqa)o..s-of-coolantaccidenttoassurethatcorecocling,y,maintain~d.Provisions shal]be'ncluded tominimizetheprobability oflosinqelectricpoverfromanyoftheremaining suppliesasaresultof.,nrcoincidont vith,thelosscfpovex'generated bythlossofpoverfromthetransmission netvork,ozthelossofpoverfromtheonsiteelectricpoversupplies.A)g)CPTvooffsitepovertransmission systemsandfouronsitestandbydieselqonerato."s viththeirassociated batterysystemsareprovided. Eitherofthetvooffsitetransmissicn poversyste)Isoranythreeofthefouronsitestandbydieselgenerator systemshavesufficient capability" tooperatesafetyrelatedequipment forcoolinq.hereactox'ore andmaintaininq primarycontainment inteqritv andothervitalfunctions intheeventofapostulated accidentinoneun'vithasafeshutdovnoftheotherunit.~(Agyru~az7"/c'"mme-mCZa~~>')~Thetvoindependent offsitepoversystemssupplyelectricpovertotheonsitepoverdistribution systemviathe230kVtransmission arid.Eachoft'eoffsitepoversourcesissuppliedfromatransmission linevhichtexminates 'insvitchyards (orSabstations) notcommontotheothertransmission line.Thetvo'ransmission linesareonseparaterights-of-vay. Thesetvotransmission circuitsarephysically independent andaredesignedtominiaiz)thepossibility oftheirsimultaneous failureunderoperatinq andnostulated accidentandenvironment conditions. Fach~ffsitepoversourcecansupplyallEngineered SafetyFeature(ESF)busesthrouqhtheassociated transformers. Poverisavailable totheFSFbusesfromtheirpreferred offsitepoversourcedaringnormaloperation andfromthealternate offsite.+~p~pover sourceifthepreferred paverisunavailable. Eachdiesel(Ai+)qenexator suppliesstandhypovertooneofthefourESPbusesineachunit.LossofbothoffsitepoversourcestoanESFbasresultsinautomatic startinqandconnection oftheassociated yP,'~giC4P)sequentially addedtoavoidqenexator instabili ties.Therearefourindependent acloadgroupsprovidedtoassureindependence andredundancy ofequipment function. Thesemeetthesafetyr~quirements assuainqasinqlefailuresinceanythree-ofthefourloadqroupshavesufficient capacitytosupplythe.minimumloadsrequiredtosafelyshutdovntheunit.Independent nu~inqoftheprefer.edandalternate offsitepoversourcecircuit.. toheFSFbusesareprovidedtomeetthesinglefailuresafetyrequirements. Rev.31-18 \~j'ISE/~7 IC.(>f~~~,/-g<:.CA,8,~D).D~CCa~~g~~l

Lilt:<!niIh<'atI'I.ulnoi).cifculatiii Ip<tnp+nil~sc1st.lIII10.Ilftlvstcin/nlplnnantvalve-fcondovnn\rca ~nfti!iln'ovlnnmapfcssordis-charuntnen<II!icsk1d."ipinntii)valvi~,nthnfsllff~~i'<Ivcrsrnapco'sfe<)t".Id>clotcn<>llnqv!I~icplpinq/CoolInnItckntvat<.fhna'ti!rCni!II!otIacketvat<;chcatcc.put<nAir1nt.itn4rthao::IpiplnqIovrctitnufflees.!ndnvpao!<Itngniot)DirtVlul.<!oildr.nt<tnkUbdllns<.Z< btjlnbdn51j,tIgg)jljnnjid<iutbbye/<'<-~p/.-.pPe/r/ee-PNAntherNONEnntherNlCr.,f,5r5r<.,~5ZZZ3~other831.1.01/ZZZ-3ntlrcrNi,otherb31,1otherNLntherNl)ZZZ-3r$5ncg/~5Cc<Snrr>.~nr..r"NAr</<CDr~~SNA'\ntbcrN0Nv<Ijj!i..C,i5ClNl1NlNANlNl1NYNNNNYNAYNA<NIfANI/~~j7~r<nlr01..".NCINCN1~1~I-rnnt<ilcoonCCnnputorRoonIIVAC.J/Wntnr.".e"cbNA3-=NANNANGIZCKF.-)t!1/323Ncv.~D-~~Refertoth<nun<catNotesat:theendofthistabLR.

"0~~~~CESAR"bhdi<)a1'u!li!ySourcc.<~1ilufiofinca-rl.l>>oi.- S<afnty111j90fjrv)ll~bflLf)rPrdnc)n11Cosntruc-tdonCo<)osandSkah<)LIJNQua)ltISetsslcLsouranc<! fa1.<<<)EggRs~gfgbbbbl ~!il1'<.1!:!rincina) c.lsponi!ntnila~)(I)4.12)~i3)s(4)4.(S)4is<)~l7)4pusnantnrs,funlnilsystesDieseli!cni!r4turn~lrctric1l sndulnsv)th<safetyfunction>> Catle,vlthsaf<tyfunctlonsnicselfui!lstoraqi!tanksI<)c"cllui<.olf~yntesplplnq4nilva1vcs+Healearhanqcmt1seLitvater'n)lut<<!nilyll1'ec'ousinnsLut<!ni1hiia1<rhuhnoi)-.i-.icculatin<> pusp~ni<sulss'lstinq.!ir!systemsgnip)ni!.1<i)va)v<<ufron4ovnntreas oft<!<fn'lovioqrnsnressnr 4ln-ch4rutnanni!<eshl4i".i)>inn1<iivalv<~i',nth<!rsAirci~<"ivcrr.rnsnre:Silrn41C)u'1nill1ngV!'1~<rp1pinqrCool)nil1.!Ctnlvat<~1'ua'tw!r Co<!iini!1.!eketvaI<rheater,pusnAirfnt.<i<!E<shan>>tp)p)nqfocc<!it~Ilfflem.1n<lnsp.ln!<l-!ngnint>>)Dirtylul,c.oi)4r'ntantUCL))0<)~.)<0)ll~baLaddit--rnid+)jn<<) p~jSu)EINp/CA'/CsfP//L.wp./<LG~Q5Nln~'G,~v5CG,r5'p/.-p/~G4rc5r,,c,gr..-,5ri,.95CNAnr.pPp/!"4PP"'.P0,45nGr<gSCG,4$nr-r'5.NlriicCDCries/!llp/Isl/igO,G,$5NAP/Pgri~d~5NlP/iCG,65Nl4IREE-32')/314IREE-3875311)<!therntherIII-7/TEELCVIII/OlNONENLOtherlnt)cer.otherothernther)III-3'3)~1,0111-3NLb31~1NLNL111-3otherNON+IEER-279/ 323IREE-279/ 323/3b3')---IXE-3--.- Nl1NlNANlill1NrNNNNyNArN)fiNiur<<))f0).-NG)<)CR9~4~1rnn/t<<)ponsCCnsputorRoonIIVAC,.'untorn/g..nov~n7!<utP'CSNElllNG11IREE-344/ 323~Refertoths<'<n<'ral Nosesattheen4nfthistable. Y t~ikSSVS-FSAR TABI,E3.2-!!Continued) Pae22!'SARSeclolSour">>of~Su~iLcca-tionequalityGroup'assi-ficationSafeteClassPrincI)a1Construc-tionCodesandStandards SeismicCatecLo~rQuali'tyAssurance -'lleuvres'ent CommentsPrice:"a! Ccmporen.-I3'~)I2)'3)~Il)'5)'6)'istu..cnta'tlonAssociated vtioterrPiteousIles::ireir ior~sfi.'.6Spentfuelpcolangcoolsngs:.stemFuelhandlingareaventilation isolatxon systemControlroompanelsccalinstrument racksassocatcdvithsafetyreaacedecuipment Instrumentation Associated withPPR:InRNACSNAALLNnIEEE-274IIEEE279IIEEE-279IIEEE-279IYY'stemsotReuvreorSaetSeismtcinstrumentation brearadiation monitorirg .LeakDetection Znstrumentatior. ~~7PPALINAALLNhOtherNhotherNhINhTemperature elemensDifferential temperature switchDifferertial flo~indicator PressureswitchDifferential pressureindicator smitchDifferential flo~sunimerProcessRadiation NonitorsGEGEGECEGEGECSCSNANhC,R,TNh2C,ANh~2CSNA'C,RHA2IEEE-323IREE-323, IEEE-323IEEE-323IEEE-323IEEE-323IYIYIYIY,YY393939393939Electrical modules,mainsteamlineandreactbrbuildingventilation'monitor Cable.mqlnstcamlineandreactorbuildingventIlaIronmonitorsElectricSstemsGEAPRNhIEEE-323I=IEEE-279/ Hh323/38315mP'~KnineeredSafetFeaturesAC~illIIIIIlit4.16kvswitchgear /BIDRev.~+RH-8.3+eP/$/IQO!45HAIEEE-308/ I323/344AefertotheCeneralNotesattheendofthistable, ' SSES-FSAR TABLE3.2-1(Continued) Pae23SourceFSAR-ofSection~no~tLoca-tionQualityGroupClassicsSafetyficationClassPrincipal Construc-tionCodesandStandards QualitySeismicAssurance ~Cetoor~neotrsnentCoementnPrincipal Components (34~)12)'3)'4)'5) '6)a(7)'80Vloadcenters480Vmotorcontrolcenters4,g,Kv'-<a~'!)/,w)ssojfv/.'-/z. -"::):EnineeredSafetFeaturesDC~Eauxment125Vand250Vstationbatteries androcks,batterychargers8.3125Vs)"itchgear anddistribution panels~aa~]j)5VMayajf.Cou7gnLCC/P-/A-D/S E74PP~"HA/PS/'njS! SA//jj)PCS/$5NAP/4aICS)l5HA2.222IREE-308/ IY323/344IEEE/308/ IY323/344IEEE-308/ I323/344IEEE-308/- I323/344120VVitalACSstemEuimentStaticinverters120Vdistribution panels8.3CSNACS,RNAIEEE"308/NA323/344IEEE-308/ I323/344ElectricCablesforESFEuimen.35kVpoR)ercables600VpowercablesControlandinstrumentation cablesNi,scellaneous Electrical P/4H~P)S//ALLNAALLHAALLHA2.IEEE-323/ NA383IEEE-323/ NA383IEEE-323/ Nh383151515Primarycontainment buildingelectrical penetration assemblies Conduitsupports, safetyrelated~ggTraysupports> safetyrelatedEmergency lightingsystemsEmergency communications systemsDieselgenerator 77~/5fEPPr)/-'l-L5 DPE'~+wArjojJCj!/u~gup'p'ev.~}~/qgPCP)$//ALLP)/m)HALLP))5//ALLP))5//=ALL'PLG)4505<s'efertotheNANhHANhNhHhNh4/AGeperal222Other2?2NotesatIEEE-317/ I344/383IREE-344IIEEE-344-IIEEE-344INONENhIEEE"387Imrs/."Jzf/344/X +ECd823/JffXtheendofthisYYYHYtable1515 SSES-FSAR TABLE3.2-1(Continued) Pae,26Principal. Components (34')-FSARSectionSourceofLoca-~Su~1tion(1)"(2)*QualityGroupClassi-fication(3)"SafetyClass(4)*Principal Construc-tionCodesandStandards (5)'eismicC~ar.eor(6)'ualityAssurance ~nenirementComments(7)'emineralized WaterHakeuSstem9.2.9TanksPumpsMotorsPipingandvalves~BnildinReactorBuildingPressureresistant doorsWatertight doorR.B.Equipment doorPrimaryContainment Accesshatchesjlocks/doors LinerplatePenetration assemblies VacuumreliefvalvesDowncomers Downcomer BracingDieselgenerator buildingControlstructure RadwasteandoffgasbuildingTurbinebuildingAdministration buildingCirculating waterpumphouseESSWpumphouse LowLevelRadwasteMoldingFacilityDIE.S6LCj6t46RAToR 'E.~l<&44Structures RoofScuppersandParapetOpeningsSpraypondaEmergency SpillwayCondensate storagetankSpentfuelpoolSpentfuelpoollinerRefueling waterstoragetankPipeWhipRestraints PPPPPPPPPPPPPP~RHCWCWCWALLRRCCCCCCCGCSRW,T0000Dc'e,',CS,G 00RR0R,CDD88888,8888NANANANANANANANANANANADNANADNAOther0herOtherOther22222222OtherOtherOtherOther3Other23Other22Other3VIII-1831.1.0/Nyd.INEMAMG1831.1.0ACI/AISCASTH/AWSAISCASTH/AWSASTH/AWSACI/AISC/ IIIIII-HCIII-MCIII-HCIII-2III-2AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISCACI/AISC/ UBCAt:yqrcd. ACI/AISCACID100ACI/AISCACI/AISCD100AISCNANANANAIIIIIIIIINANANANAINANAINAIINAIYYYYYYYYYYYNNNNY~NYYNYYNY2427,3029442221Rev.35,07/84*RefertotheGeneralNotesattheendofthistable.

SSES-PSAR TABLE3.2-1(Continued) Pae27PS:..SectionSourceof.Loca-~Sui~itionQualityGroupClassi-ficationPrincipal Construc-tionSafetyCodesandSeismicClassStandardC~ateorQual,ityAssurance ~aenirementCommentsPrincipal Components (34">(1)'2)'3)*(4)*(5)*(6)*(7)*rHissileBarriersforsafetyrelatedequipment Biological shielding withinPrimarycontainment, reactorBuildingandcontrolbui.lding SafetyrelatedmasonrywallsC,R,NACS,SH,GC,R,NACSR,G,NACS0herACI/AISCIOtherACI/AISCOtherACI/UBCRev.35,07/84RefertotheGeneralNotesat,theendofthistable. ~~SSES-FSAR TABLE3.2-1SSESDESIGNCRITERIASUMMARY(Continued) Pae29GeneralNotesandComments1)GE~GeneralElectricPL~Pennsylvania PoweraLightp~BechtelasagentsforPennsylvania PoweraLightNA~NotApplicable seecommentsgy=yegg(euyncs Aws~rsrcP~syc.~~a P~~aagu+gp2)LocationCPartoforwithinprimarycontainment RReactorBuildingTTurbineBuildingCSControlStructure RadwasteandOffgasBuildingg)gGgQDieselGenerators)Building IntakeStructure. Administration BuildingCWCirculating WaterPumphouse .SWEngineering Safeguards ServiceWater(ESSW)Pumphouse CAChlorineandAcidStorageBuilding0Outdoors. Onsite,pied/l.4hdDCA7'3)A,B,C,D-Qualitygroupclassification asdefinedinRegulatory Guide1.26.Theequipment shallbeconstructed inaccordance withcodeslistedinTables3.2-2,3.2-3,and3.2-4.NA-Notapplicable toqualitygroupclassification 4)l,2,3,4,other=safetyclassesdefinedinANSI-N212 andSection3.2.3.NA-Notapplicable tosafetyclassification SSES-FSAR TABLE3.2-1SSESDESIGNCRITERIASUMMARY(Continued) GeneralNotesandComments1)GE=GeneralElectricPL=Pennsylvania Power&Light,Pae29P=BechtelasagentsforPennsylvania Power&LightQINtH=Gi&SSAHiLL,Mc.Ii>rurrNA=NotApplicable, seecomments2)LocationCPartoforwithinprimarycontainment RReactorBuildingTTurbineBuildingCSControlStructure RWRadwasteandOffgasBuildingG,DieselGenerator BuildingDq'aDias~~4~weRAvoR'6,'IntakeStructure AAdministration BuildingCWCirculating WaterPumphouse SWEngineering Safeguards ServiceWater(ESSW)Pumphouse CAChlorineandAcidStorageBuilding0Outdoors, Onsite3)A,B,C,D-Qualitygroupclassification asdefinedinRegulatory Guide1.26.Theequipment shallbeconstructed inaccordance withcodeslistedinTables3.2-2,3.2-3,and3.2-4,NA-Notapplicable toqualitygroupclassification 4)1,2,3,4,other=safetyclassesdefinedinANSI-N212 andSection3.2.3.NA-Notapplicable tosafetyclassification Rev.35,07/84 'I04 SS>S-FSAP 3~3QT"IDAFDTORNADOLOAO~RGS33"VTNDTOADX~1GS89AllexposeRstructures aredesignedformindloading.3.').11Des'adValor+v~KGfThedesignvindvelocityforallstructures is80mphat30ftaboveqroardfora100-yearrecurrence inte"val. TheResignvin9velocity'sbaseRonFigure5ofReference 3.3-1.(Refeencesare1'stedinSubsection 3.3.3).Theverticalvelocitydistribution isbaseRonTable1(a)ofReference'.3-2. Thevelociydistribat'on istabalated inTable3~3-1AqustfactorofasgiveninPeference 3.3-2,isu.oR.~heprocedu"e usedtotransform thewindvelocityintoaneffective pressureapoliedtoexposeRsurfacesofstructures isasRescribed inPeference 3.3-2and'ssummarizeR asfollovs:Thedynamicpressueisgivenby:cr=0.002558V~vhere,a=Dynamicpessa"einpsfV=Rindvelocityinmph(desiqnwindvelocityxgustLac'~Thelocalpressureatanypointonthesarfaceofabuildingis.qualto:gxCpwhereCn=pressurecoefficient Rev.35~07/803~3 SSZS-FSaR.he.otalpressureonabuildingisequal+o:qxCDwhee,CD-~Shapecoefficient.TheSusquehanna SESstructures haveslopingroofswithapitchlessthan20degrees.Thefollowinq arevaluesforCpandC(SeeReference 3.3-2~p.1151andPiqure7)Cpforwindwardwall~0.8(pressure) Cpforleewardwall~-0.5(suction) Cpforwindwardslope=0'CpforLeewardslope~-0.6(suction) C~1.3(pressure) .Dwindloadsonstructures aretabulated in'able3.3-1ExposedtanksaredesignedtoresistaminimumwindLoadof30psfontheverticalpro1ection ~basedonReference 33-3.ForcvlindricaL tariks,windisconsidered actingonsix-tenths ofthevrticalnro1ection. Voincreases inallovanle vorkingstressesarepermitted forthesestructures forLoadingconditions involvinq wind.3~/~/TOQNQDOLOAQENGQTable3.3-2liststhesYstemsthatareprotected againsttornadoes andtheenclosures whichprovidethisprotection. ThistableisbasedonNRCRegulatorY Guide1.11'7(Reference 3-3-4)33*3~.hPPliQRbke QeMKRQRather+>XsThefollowing designparameters areusedforthedesignoftornado-resistant structures andarebasedonReference 3.3-5:a)~~icFjordQgg5i)Lg(FoRS7'R,ucyvReso7'HeR,1'HAHbIeseLGEHERR7oR ~f8tlirtg)IMg)Tangential speed:300mphTranslational speed:'0mphRev~35,07/843~32 SSZS-PSAR b)PressareDifferential BetweentheZnsideandOgtsgdeofgBuigggngQFoR>l'RocTOR6S OTHBgTHAW5g<sRAApressuredrop,of3psi.attherateof1psiprsecond.c)oggaQo-Qggega tingQgg.ig'~eg Thesearediscussed inSubsection 3.5.1.4.IMsgra7'<>g.Q.g~pQeteggi))gtggg~f Zogr2sogStgucfureg Thefollovinq procedures areusedtotransform thetornadoloadinqsintoeffective loadsonstructures: a)DgngmgcwoundJ,o~dgggAprocedure thesameastheoneutilizedtotransform thewindvelocityintoaneffective

pressure, asdescribed inSubsection 3.3.1.2,isusedvith.hefollowinqexceptions:

1)Velocityandvelocitypressureareassumednotto-varyvithheight.2)-Thegastfactoristakenasunity.AsshovninFigure5ofReference 3.3-5,andasexplained therein,theequivalent aniformtornadowindvelocityonthebuildingduetoatangential component of300mphandatranslational component. of60mphis220mph.OnSusquehanna SEStheprssueloadsarecalculated onthebasisofauniform300mphwindvelocityandareasfollowsspygSygdcpeg,Ego7HER,7ahH')ESEL+ENERAToN'O'QILDINq. IEi8Mindwadp'ressure onwalls:185sfLeewardsuctiononvalls:115psfl66pc/Totaldesignpressure: Suction(uplift)onroof:300psf140psf.gyp@STI90~~/<Theturbinebuildingisdesignedtoresistthetornadoloadinqassaminq2/3ofthemetalsidingandtheroofdeckbeingblownaway.However,alltheframesaredesignedforthefulltornadoloadinq.Themetalsidingand'heroofdeckofalls.ructares arenotdesignedtoresistfulltornadoloading.< Rev.35,07/8433-3 b)Dgff~geggjal>ges~ug~~odin'ifferential pressureloadingiscalculated usingthefolloving pressure-time function: Thedifferential pressureisassumedtovaryfromzeroto3psiattherateof1psi/sec,remainat3psifor2secondsandthenreturntozeroat1psi/sec.r~/Blowoutpanelsareusedasnecessary onsafetyrelatedlN~<<T+structures tominimizedifferential pressure. c)~oMQQ-game~~54ggQSsTornado-generated missilesareclassified asiveninTable&35-4AHpThe barrierdesignprocedures aredescribed'n Subsection 3.5.Z'.Load'ngsa),b),andc)arecombinedinthefollowing mannertoobtainthetotaltornadoloading:Cii)(iii)(iv)(v)(vi)Q~~VpV~=ffmWv+0.5RpW~=Qv+QmR~~Rv+0.5Qp+Wm where,TotaltornadoloadWw~TornadovindloadRp=Tornadodifferential pressureload,andMm~Tornadomissileload3.3.23EffectofFailureofStructures orComponents NotDe2493eifoX<<RMQo<MCRStructures notdesignedfortornadoloads'a"echeckedtoensurethatduringatornadotheyvillnotgeneratemissilesthathavemoresevereeffectsthanthoselistedinTable3.5-4.Rev.35,07/843.3-4 SSES-FSAREThemodesoffailureofthesestructures areanalyzeRtoverifythattheyvillnotcollapseonsafetyrelatedstructures. 33~QRg~B~C~S33-1.3.3-23~33~3.3-4~H.C.S.Thos,>>NevDistributions ofExtremeRindsintheUnitedStates",gouryagoftheS~tuctugal

giyision, ASCE,(July1968}~pp1787~>>RindForcesonStructures",

ASCZPaperNo.3269,Transactions, Volume126,PartII(1961),p1124."SteelTanks,Standpipes, Reservoir, andElevatedTanksforRaterStorage>>, AWRAStandard, 0100-73."TornadoDesignClassification>>, USNRCRegulatory Guide,1.117,(June1976).3.3-5.J.A.DunlapandKarlRiedner,"NuclearPoverPlant*TornadoDesignConsiderations",Journal ofthePoverDivision, ASCE,(Aarch1971).Rev.35,07/843~3-5 I!IIlH1' d)Dynamicelandloading(forDieselGenerator 'E'uilding) .'Tangential Speed:360mphTranslationa LSpeed:70mph~1~~~~~')>'"<ssul. g.,I'"".'v'ni'.,i3',";l,':.*;'n 1;hoinsit!cAndoutside0,'.dies+1generatoruilding. Apressuredropof3psiattherateof2psipersecond.INSERThedifferential pressureisassumedtovaryfromzeroto3psiattherateof2psi/sec,remainat3psifor2secondsandthenreturntozeroat2psi/second. (p~p~sssL,gagaRhTog 'c'ulL.Dlgg) ~, SSES'"FSAR TABLE3.3-2TORNADOWINDPROTECTED SYSTEMSANDTORNADORESISTANT ENCLOSURES (Pg.lof2)Protected SstemTornadoResistant Enclosure ReactorcoolantpressureboundaryReactorBuilding3.Reactorcoreandreactorvesselinternals ISystemsorportionsofsystemsrequiredforReactorBuildinga)Reactorshutdownb)ResidualHeatRemovalReactorBuildingReactorBuildingc)CoolingthespentfuelstoragepoolReactorBuildingd)MakeupwaterforprimarysystemReactorBuildinge)Systemsnecessary tosupportservicewater,coolingwatersource,andcomponent coolingESSWPumphouse andReactorBuilding4.Reactivity controlsystemsReactorBuildingandControlBuilding5.ControlroomControlBuilding6.Monitoiing, actuating, andoperating systemsimportant tosafetyReactorBuildingandControlBuilding7.Electricandmechanical devicesandcircuitry betweentheprocesssensorsandtheinputterminals oftheactuatorsystemsinvolvedingenerating signalsthatinitiateprotective actionReactorBuilding, DieselGenerator

Building, andESSWPumphouse CgggalEAA7~SIP(LDl~8tRev.35,07/84

~, SSES-FSAR TABLE3.3-2(Continued) (Pg.2of2)8.Protected SstemLong-term emergency corecoolingsystemClass1EelectricsystemsTornadoResistant Enclosure ReactorBuilding, DieselGenerator

Building, andESSWPumphouse pjgZELg~4f+~7o8 6uIc.A(44AllSeismicCategoryIstructures

.Rev.35,07/84

SSP.S-FSAR 3~4MATjQLgVQLggLOODQDESIGNAsdiscus,ed inSection2.4,allSeismicCategoryIstructures sncuroagainstfloodinqdue>oprobablemaximumflood(PNF)oftheSusauchannaRiverorprobablemaximumprecipitation (PNP)ontheareasurroundinq theplant.Therefore, specialfloodprotec+ion measuresareunnecessary. TheSeismicCateqoryIstructures have,how~ver,beendesiqnedforhydrostatic loadsresulting f=omgroundwater, asdiscussed inSection3.8.Thegroundwater tableisatelevation 665NSLinthemainplantarea.Aoostulated breakinthecoolingtowerbasinscrofthewaterdeliverypinos+othebasincouldresultinabuild-upofwateragainstthewallsofeithero"bothoftheESSMpumphouse andthe+urbinebuilding. Intheeventofsuchwaterbuild-upbreaching theturbinebuildinqwall,waterthatwouldnotbeintercepted hythefloordrainsorqrillesandthuswouldflowthrough+heturbinebui'.ding to+hereactorbuildingwouldbeprevented fromendangering eguipmen+ inthelatterbymeansofwatertiqht doors.Floodwaterh>>ildinqupagainsttheESSMpumphouse wouldalsobeprevented fromenteringthehuildinqbymeansofwatertight doors.Impactforcesandwaterpressureduetofloodwaterwillnotendangertheintegrity oftheESSMpumphouse. Allsafe~y-related systemsarelocatedintheReactozBuildingDieselGenerator

Building, ControlStructure andtheEngineered Safequard S~rviceMater(ESSM)Pumphouse p~gggg,gggggpfyg BASIL&Sufficient physicalseparation betweenthesebuildinqs isprovidedtopreven+internalspreadinq ofanyfloodsfromonebuildingtoanother.Redundant Engineered SafetyFeatures, pumpsanddrives,heatexchangers andassociated pipes,valvesandinstrumentation inthereactorbui'dingsubjecttopotential
flccding, arehousedinseparatewatertiqht rooms,withtheexcep+ion ofHPCIandRCICroomsin(tnit2.SeismicCateqoryIleveldetectors tripalarmsin,the-.inconir.=lroomwhen"'.!:ewaterlevelinanyroomexceedsthesetpoint.Isolation ofthefloordrainagelinesfromtheseroomsisprovidedbyoutsid'emanualvalves.Allotherroomsin+hereactorbuildingandcontrolstruc+ure containinq safetyrelatedequipment whicharesubjecttopotential floodinqbyprocessfluidleakageorfireprotection waterareprovidedwithatleastoneopenfloordrain.Floodsinexcessoftheapproximately ROqpmfleerdraincapacityincreaseth~waterlevelintheaffectedareaandarereleasedthroughth~door-to-floor clearance oftheserocms.3.4-1 SSES-PSAR RefertoSubsection 9.3.3foradetaileddescription ofthereactorbuilding.

andcontrolstructure drainaqesystem.Thefourdieselgenerator setsarehousedinindividual vatertiqhtcompartments withinthedieselgenerator building. Ploordrainlinehranchesfromeachofthesecompartments areequippedwithcheckvalvestopreventbackfloodinq fromthecommonsump.TheESS'Rpumphouse isdividedintotvoredundant compartments, Ploodinqfrominternalleakaqewould,therefore, onlyaffectoneoft.heredundant pumpsets.Thecontrolandelectrical panelsaremountednnminimum4inchhighconcretepadsorstructural supports. nperatinq flooropeningsallovdrainaqeofanyleakaqetotheESSVpumpsuctionspacebelovortoareservesumpspacethatcouldbeemptiedvit.haportahlepump.TheHPCTandRCXCroomsinUnit2areinterconnected throughaventplenumvhichleadstothecommonblowoutpanel.Ploodinqineitherroomcouldpotentially spillovertotheotherviatheventpath.Theven.pathis10'-8"abovethefloor.A'oderate enerqypipebreakineachroomhasbeenpostulated andanalyzedinconsi.toncewithBTPAPCSB3-1. Itisconservat ivelyestimated, withouttakingcreditforfloordraincapacity, thatitvilltakeapproximately 13'oursforthemaximummoderateenergy.pipecrackleakageintheRCZCroomtooverflovintotheHPCIroom,and5hoursfromHPCIroomtoRCICroom.Themaximummoderate, o.nerqypipecrackleakagethatcannotbeisolatedfromoutsidethese.pumproomsvilltakeapproximately 23hourstooverflowfromRCICroomtotheHPCIroomand6hourstooverflowfromHPCXroomtoRCZCroom.Thereissufficient time'toidentifythepipefailureandtakeappropriate actiontomitigatetheconsequence ofpipefailurepriortooverflewoccurredhetveenthesetvointerconnected rooms./N7//S9SZnFb/SS~/.Cr~rRA7o4EFu//-4//4fCOOL+04/45.4y'L~Cgg-g4gfEg4l/pPZDHIT//CACO@VAL7opR~~supSic/AoobA/gFRohfT~f~o//b/44'~MP. AgeFZoo4toF7pf4/CSEE6EH<Rh7OQE5U/Cp///$ WA'/C'ffA8F+~@<+7~oPo7<N7/aL FaceJ/4PSP'/RfPA7sc7/ok At~7~<QI7//+Cook+RAIAIS,Rev.35,07/843.4-2 SSES-FShR cgg@eXggal

hiXgLgft, TnV-23218~000movements x012x10-<~/mi~x~04mi~.Oqx10-6peryear.TnV-106.3,000movements x1.9x10-<</mimx.04mi~.23x10-8oeryear.Thesumoftheseeventprobabilities attheSusquehanna SESsiteisabout9.3x10-6.5~31Qisggleggotegtjon QesggngQgggsoghg Systemsthatarereviewed-for missileprotection arelistedinSubsection I.12.2.Forinto.mallyqenerated
missiles, protection isprovidedthroughbasicstationcomponent arranqement sothat,ifequipment failureoccurs,+hemissiledoesnotcausethefailureofaSeismicCateqoryIstructure oranysafetyrelatedsystem.Whereitisimpossible toprovide.protection throughstationlayout,suitablephysicalbarriesareprovidedwhosefunctioniseithertoisolatethemissileortoshieldthecriticalsystemor'omponent.

Znaddition, redundant SeismicCategoryIcomponent ~aresuitablyprotected sothatasinglemissilecannot'simultaneo>>sly damageacriticalcomponent anditsbackupsystem.3~5.2~)S'guet>>~es Degiggegd toMiggstagd /lissyleEffectsSeismicCaoqo.yIstructures aredesiqnedtowithstand postulated externalorinternalmissileswhichmayimoac+tho.m.Tahle-'-2isaiistofthestructures designedtowithstand externaltornadogenerated

missiles, andthesafetyrelatedequipment whichtheyprotect.ThemissilesarelistedinTableS3-5-4aNp8.5'-4o,PSIv~~o~the~3)jagg~~~'E.'et4ldQ

&Not0hcDtcscA.g~~ftrv'~((.y(gqv~353OARPIE>DESIGNPROCPDURES ,.t.L2.hestructures andbarriersaredesignedinaccordance withtheprocedures deta'edinReference 3.5-5.Theprocedures include:Rev.35,07/843'-33 SSES-FSARa)Prediction oflocaldamaqe(penetration, perforation, andspallinq) intheimpactareaincluding estimation ofthedepthofpenetration ))Fstimation ofbarrierthickness requiredtoprevent-perforation c)Prediction oftheoverallstructural responseofthibarrierandportionsthereoftomissileimpact.Thouseofaduct'lity ratiohiqherthan10butlessthantheallowables qiveninReference 3.5.5willbeqovernedbythefol3cwinqconditions: (1)Reinforced concretebarriersTheallowable displacement ofreinforced concre"eflexurememberscanbebasedonanupperlimitforplastichinqerotationr6asfollows:dr&=0.0065-<0.07whered=distancefromcompression facetocentroidoftensilesteelreinforcement (inch)c=distancefromcompression facetotheneutralaxisat~'ltimate strenqth(inch)Thiscondition isqiveninsectionC.5ofAppendixCandcommntarytoAppendixCofACI349g>(2)St~elbar"iersTcins>>retheabi1ityofasteelbeamtosustainful).yplasticbehaviorandthustopossesstheassumedd>>ctility atnlastichinqeformation, itisnecessary thattheelementsofthebeamsectionmeetminimum>hickn=ss renuirements sufficient topreventlocalhucklinqfailure.Theconditions toprecludelocalbucklingasgiveninAI~Cmanualaresatisfied. Rev.35,07/8435-34 SSES-FSAR 3~~/~EfgRQPCgg 3.5-1.3.5-2.3.5-3.35-4GFNemoReport"Hypothetical TurbineNissileData-38,inchLastStageBucketUnits<<(Narch f6,f973).GENemoReport"Hypothetical TurbineNissiles-GeneralDiscussion>> (Narch13,1973).GENemoReport"Hypothetical TurbineNissilesProbability ofOccurrence" (Narch14,1973).D.C.Gonyea,"AnAnalysisoftheEnergyofHypothetical wheelNissilesEscapinqfromTurbineCasinqs", GETechnical Information SeriesNo.DP73SL12(February 1973).3.5-5.<<DesiqnofStructures forMissileImpact<<,BC-TOP-9A, Rev.2,BechtelPoverCorporation, SanFrancisco, California (September 1974).3~5"6.3~5-735-83.5-93.5-103.5-11U.S.Army,"Structures toResisttheEffectsofAccidental Explosions>, Dept.oftheArmy,Navy,andAirForce,(1969).NuclearRegulatory Commission, <<Standard RevievPlanSection3.5.1.6<<, NUREG-751087, (24Nov.1975).Solomon,K.A.,"HazardsAssociated vithAircraftandNissiles>>, presented atAmericanandCanadianNuclearSocietyNeetinq,Toronto,Canada,(June,1976).Solomon,K.A.,"Estimate ofprobability thatanAircraftvillimpactthePVNGS",NUS-1416, NUSCorp.,(June1975).NationalAirTransportation SafetyBoard,>>AnnualPevievvf:AircraftAccidentData",Published 1972andannuallythereafter. Chelapati, C.V.,Kennedy,R~P.,andSall,I.B.~ProbabilisticAssessment ofAircraftHazardforNuclearPoverPlants,Nuc.Eng.Design19,336(1972).3.5-123.5-13Barber,R.B.,SteepgoggCgngggfe SggbImpactTeytggggeggme n+ggSggg],afford), Bechte1Corp.,(October,1973)Vasallo,F.A.,fissileIntactgestjngofgej,ngorced .Concge+e panels,PreparedforBechtelCorp.,CalspanCorp.,(January, 1975)-Rev.35,07/843.5-35 SSES-FSAB 3~5-143.5-15NationalDefenseBeseatchCoaaittee,gffecgNof~ffactaddggglosion, Suleary.echnical ReportofDivision2,'olume1,Washington, DC,1946Gvaltnet',R.C.~QisggleGegez;agio'ad ggcgyction ig.LgQhg-Wates;-Cog],ed Pgvgg~eyggogg, ORNLNSIC-22,OakRidgeHationalLaboratory, OakRidge,Tennessee, fortherr.s.A.z.c.,(septcaber,1968).05.hlOCL8AR.BEAULAToR'tfCoW<<SS>d< ~7AHQAkgReviewPt.AH3-5~I~'+~<v~NDNECa,-oSoo(JuaYlDBl)35'-l7V.g.,NuC~eARRocUL,AToay~TMDARD8KV)<NPLAQ3.F.gVffCt-OSOo(tvhMip8i)goHhhISS(odVRev.IBev.35,07/843'-36 TABLE3.5-4aTornado-Generated MissileParameters forDieselGenerator 'E'uilding. 11issiie!>4~s1/'1t(lb}T!tlj>sIs~t11~1A)Woodplank,4in.v12in.x12ft.,traveling end-on108440B)Steelpipe,3in.dia.,Schedule40,10ft.long,traveling end-on72147C}Steelpipe,6in.dia.,Schedule40,15ft.long285170D)Steelpipe,12in.dia.,~HCOua.a4o,E)Steelrodl-a.nchdia.x3ft.long7508'55317F)Automobile flyingthroughtheairatnotmorethan25ft.abovethegroundandhavingcontactareaof20sq..'t.4000195G)Utilitypole13.5in.dia,35ft.long1490211Note:Thovcr".ical:~toes tiesi~sl.l'.~1~const."'.ered oa::alto80:~~~!cen"theho-1zontagi~1ocitiesme'o'LOnedabove.

SSES-PSARP7XENIX3~5=4.TORNADO-GENERATED EMISSILEPARANETERS/gagGYROSft3gGS0TH6RTHhHDiesELgeweRATog.PQuJgy~~q) Hi~sileMoodplank,4in.r12in.r12ft,traveling end-onSteelpipe,3in.dia.,Schedule40,10ftlong,travelinq end-onAutomobile flyinqthroughtheairatnotsorethan25ftabovetheqroundandhavingcontactareaof20sqft.1083001004000MeiqhtVelocityAlber./mphilSteelrod1-inchdiameterx3feetlongDtilitypole13-1/2inchdiameter, 35feetlongactinqnotmorethan30feetabovetheqround1490216144'OTETheverticalvelocities willbeconsidered equalto80%ofthehorizontal velocities mentioned above.Bev.35,07/84 00 IrTff~~~erI~-)t!JJ-))ettr>>fLI>>NLeoel,,I~fI)I~ILNNe'I/12IIN<<LNOO<<f~3toeeN~e>>ftefo4LONoo>>NL<<fe58ee>>eNe>>4>>N<<t~7toeloeI>>NON<<tg8910t.>>~4<<Tl~~~LoL12131415'7<<o~QN<<e>>I>>eee 19fteON<<OO<<>>feN fNOOff<<etNOLI4ff<<e>>OI>>eeeONIoet~ebeetllIOgc.~)/II'Ie=>>OeOOht<<<<OOINO>>NN4'l>>leWNe<<\>>f~~Pf54<<>>I<<OIO4~0e>>Ot~lOQtfNWtfl>>feONIfM>>4e>>fIRev.35,07/84SUSCUEHANNA STEANELECTAICSTATIONUNITSIANP2FINALSAFETYANALYSISAE.ORTteeG'KRALARRANCESan A'VDPATROLROADFICUAE3.5-8 'ie SSES-FSAR $~7bSEISMICQESZGQ~Thissectiondescri.bes theseismicdesignrequi.rements andmethodsusedforSusquehanna SESandtheseismicdesignandanalysisofnon-hSSSequipment SeismicdesiqnofNSSSequipment isdescribed inSection3.7a.IIXL~e~M-'y,~'7b.1SEIS.'fICINPUTp=~~WefccccXi(cccPcccgpf~~j.pc37h.1.4DesianRosaonse'Spectraoi.)r";,~n>~i~qb-N5i.~ThesitedesignresponsespectraforrockfoundedstructuresAare illustrated onFiqures3.7b-1.and3.7b-2forthehorizontal components oftheOperatinq BasisEarthquake (OBZ)andSafeShutdownEarthquake (SSE)respectively. eesxgnearthquake isasumedtobethe.freefield.motionatthebasematofthestructure withouttheeffectofthestructure. ForallseismicCategoryIstructure foundedonrockthehorizontal ground..*acceleration valuesare5and10percentofgravityforOBEandSSErespectively (refertoSubsections 2.5.2.6and2.5.2.7).However,SeismicCategoryIstructures foundedonsoil,andthespraypondhavebeendesiqnedforgroundaccelerations of8percent(OBE).;and15percent(SSE)ofqravity.Themaximum'qrounddisplacement istakenproportional to.themaximumground.acceleration and.isset.a't40in~foragroundacceleration of1.0.qravitv. ','~3/i'(4Dga/~le)IThebasediaqra'mofalldesiqnspectraconsistsofthreeparts:'.themaximumqroundacceleration lineontheleftpart,themaximumqounddisplacement lineontherightpart,andthemiddlepartdependsonthemaximumpseudo-velocity. etcqForvariousdampingvalues,thenumerical 'valuesofdesigndisplacements andaccelerations forthehorizontal component .desiqnresponsespectraareobtainedbymultiplying thevaluesofthemaximumqrounddisplacement andacceleration bythy,correspondi >gfactorsgiveninTable.3.7b-1.~~>4<P"~~'~'+v~~'jMcja~~<y>~P~lMeTheacceleration lin~softheesignresponsespectraaredrawnparalleltothemaximumqroundacceleration linebetweenthefrequency linesof6.67cps(controlpointBofFigures3.7b-1and3.7b-2)and2cps(controlpointC).Theacceleration linesconverqeat.the)unctionofthemaximumqrcundacceleration lineandthe33cpsfrequency line(controlpointh).Forfrequencies higherthan33cps,themaximumqroundacceleration linerepresents tbedesiqnresponsespectra.Thedisplacement lines'*:-Rev.35,07/843.7b-1g&f~lP~~cc~~~~C.ccat~c.~ c'rpCr~~r' SSES-PSARlaredrawnparalleltothemaximumqrounddisplacement line.maximumpseudo-velocity isassumedtobeconstantLinesweredrawnparalleltotheconstantvelocitylinesconnecting theacceleration lines.atcontrolpointtŽandthedisplacement lines.~~pe~~Q@g,~g~//.CO~g/bM/m/It/2~,~pesiqnresponsespectrava'luesfortheverticalcomponent ofo~PCarthquahe,aretakenas2g3ofth.correspondinq valuesofthehorizontal:,component of'the'earthquake. ~~gg'~'~yg.~+esitedesiqnspectradevratefromthosesugqested inequlatorv Guide1.60.piqures3.7b-102through3.7b-105provideqo,.>'0/;-'ttcomparison ofthetao,Thedampinqvaluesforthe'RRGspectra.(~ry/'rethosespecifiedhyRegulatory Guide1.61forreinforced CP':.concre'ti. structures. /rvL.~/Pcv~"~/G~~f'da/db8./~da/.6/~Av.oa3.7Q.1.gDegjggTggeHisgogy~mffScud~/c.~2:>~/~4Acefttke.D6&I=~(i'QzAsynthetic timehistorymotion>isgenerated bymodifying theactualrecordsofthe1952Taftearthquake according tothetechniques proposedinReference 3.7b-1.Figure3.7b-3showsthe:normalized synthetic timehistorymotion.'he durationofthetimehistoryis20sec.The.timeintervalofthetimehistoryis0.005sec.Fiqures3.7b-0:,and 3.7b-5showacomparison ofthetimehistoryresponsespectraandthedesiqnresponsespectrafor2,3,5,and7percentdampinqvalues.Thespectraarecomputedatthefollowinq frequencyvalues(incps):Ik0;2to1.0(increment of0.05)a1.0to10.0(increment of0.1)'10.0+o30.0(increment of1.0)Figure3.7b-6howsacomparison ofthetimehistoryresponsespectraandthedesignresponsespectrafor2and5'ercentdampinqvaluesforafrequency rangebetween0.2and1.0cps,'ithintervals of0.0125cps.Alltheabovefiguresshowthatthetimehistoryresponsespectraenvelopthedesignresponsespectra.y/'/GeW~liQ,W~PM~a~A'M~P~~cfogw376/oy~3.70/oI+6~TM~~~JfXXI~~~~~,o/P'~~+Amrpp7~/ee~~,Q~9~~pi,i,~.~/o~-pr-~-m~s-.mcp-'~m~~~,v~~~~~pM~c'f~'~Jm~4Jg SaS~~g~~)l~ SSZS-PSAP. 3~7h.1.3CggtgcalDamogngValues/Non-HSSSl Table3.7b-2summarizes thedampingvaluesusedonSusquehanna SESTheyareexpressed asapercentage ofcrit'caldampinqandarebaseRonRference3.7b-2.P~$'6EP~JrMgap'y~~3~767aTheESswpumphouse, pipingtothereactoroui.lding ac@3thesprayponaretheonlYSeismicCategoryIstructures andsystemsoundednnscil.Theequivalent springconstants andthesoilRampirqcoefficintsusedintheanalysisoftheESSQpumphouse areshowninTable3.7b-3.Thesevaluesarebasedonformulae.containW inTable3-2ofReference 3.7b-3.Alumpedrepresentation ofsoilstructure interaction wasused.g.g.<l.Soilstructure iriteactionisalsoconsidered in'hegeneration of'theresponsespectraforthecontainment.. AsintheESSVpumphouse, a.lumpedrepresentation ofthosoilstructure interaction is'onsidered. Table3.7b-3showstheequivalent sprinqarRdampinqcoefficientsusedintheconta'ment model.$~7b~1~4$uggogtina NediaforSeismicCategoryIStructures All.SoismicCategoryIstructures, '.withtheexception ofZSSMpumphouse andthespraypond,and-itspipesupportsarefoundedcnrock.Forthestructural analysisoftherockbasedstructures, soilstructure interaction isconsidered tobenegligible duetothehighstiffness oftherockwhichhasamodulusofelasticity ofapproximately 3.0x10~psi.However,theresponsespectraofthecontainmert arederivedfromamodelthatconsiders theflexibility oftherock.Theproperties,.oftherockandsoilsupporting theESSMpumphouse areshowr.inTable3.7b-4.Discussion oftheembedment ofstructures insoilw'llbelimitedtotheES5Hpumphouse, sincealltheotherstructures arefoundedonrock.TheESSPpumphouse i59fthighandrestsona64ft'x112ftreinforced concretomat,foundation. Theembedment depth'fthe-foundation i."'qft.Thedepthofsoilbelowthematfoundation variesfrom35'to60ft.Thesoilispredcminantly sand,gravel.cobbles,andboulders. Near.hesurface,thesoilisprimarily sandandsandyqravel.Withincreasing depth,thesoilchanqe'stomorecobblesandboulders. Hearbedrock,thesoilismostlycobbles.andboulders. Thesitegeologyisdiscussed indetailinSection2-5~IRev.35,07/843.7b-3yi~z/I~~I'L

SSES-PSAR 3,7b.2S-ISilICSYSTEMANALYSISSection3.2identifies SeismicCateqoryIstructures, systems,andcomponents. SeismicCategoryIstructures areconsidered seismicsystemsan1arediscussed here.SeismicCategoryIsystemsandcomponents aeconsidered seismicsubsystems andarediscusodinSubsection 3.7b.3.SeismicsystemsareanalyzedforboththeOBEandSSR.Theresponsespectrummethod,asdescribed iii'ection 4.2.1ofReference 3.7b-3,isusedforseismicanalysisofSeismicCategoryIstructures. Separatelateralandverticalanalysesof.structures areperformed. Theresponses arethencombinedtopredictthetotalresponseofthestructure., AtimehistoryanalysisoftheSeismicCategoryIstructures isdonetogeneratethereponse:spectra atthevarious.masspointsofthe.model.Themathematical modelsusedfortheseanalysesarelumpedmass,stickmodels.Thesamemodelswereusedforboththeresponsespectrumandtimehistoryanalyseswiththeexception ofcontainment.. In'thiscase,'hetime.historyanalysisusedtheflexiblebase'models shovninFigures3.7b-7and3.7b-8~whereasthestructural analysisusedafixedhasemodel.Thefixedhasemodeldiffersfromtheflexiblebaseonlyinthatthesoil"sp'rinqs anddampersareassumedtobeinfinitely riqid,vhichresultsinafixedbase.Theequivalency ofthetvomodelsdetermined bycomparinq theirdynamiccharacteristics isdiscussed inansvertoNRCQuestion130.20inVolume16ofPSAR.ThemathematicaL modelsofthereactorandcontrolbuildingareshownonFigures3.7b-9through3.7b-11."Forallmodels,themassesarelocatedatelevations ofmassconcentrations, suchasfloorsandroofs.Hovever,inthecaseofthecontainment. whichisastructure ofcontinuous massdistribution, massesare.lumpedatapproximately 15ftintervals alonqthecont.ainment shellandreactorpedestal. Thesemethodsofmasdistribution areinaccordance withtheprocedures ofSection3.2ofReference 3.7h-3toprovideanadequatenumberof.masses.E~Thereactorandcontrolbuildinqs actasasinglestructure duetothemonolj.thic construction. TheentirereactorandcontrolRev.35,07/843.7b-4 'IIL5 SSES-FSAR buildingstructure isshownasasingleunitinpiguze3.7b-12.Boththecontrol'uildinq andtheline29wallofthereactorbuildinqareconnected totheP-linevali,vhichiscommontoboththereactor'nd controlbuildings. Intheeast-west direction, thecontrolbuildingandtheline29wallareconsidered torespondasasingleunit.Thehorizontal mathematical modelsareshownonPiguzes3.7b-9and3.7h-l0.Thesticksrepresent shearwallslocatedatthebasemateleva.ioninthereactorbuildinqinthedirection oftheearthquake m'otion.Intheeast-vest model(Figure3.7b-.9)thecontrolbuildinqislumpedentirelyontheline29'stick.Theentrecontrolbuildin'q isconsidered tocontribute tothestiffness of'heline29stick.Inthenorth-,southdirection, thecontrolhuildinqhasitsovnstickccnnected totheP-linewallbysprings.rJThesprinqsbetween'he sticksrepresent theflexibility 'of.thefloorslabconnectinq eachstick.Sincethesesprinqsact'nthedirection oftheearthquake motion,themodelallovsrelativedisplacemor tbetveensticks.Fiqure3.7b-11shovstheverticalearthquake modelofthereactorardcontrolbuildings. Theleftstickrepresents thesteelcolumns.Therightstickrepresents theshearvallsofboththereactorandcontrolbuildin'gs. Thefloorsarerepresented bylumpedmassesandbeamelementsviththeappropriate stiffness tocapturetheoutofplaneflexuralvibration. Vertical~translatioral couplinqsprinqsazeprovidedtorepresent thecouplinqstiffness ofthefloorslabbetveenthevaliandcolumnsticks.Massnumbers8,55~and57represent the.fuelpoolqirdermasses.Massnumbers34;35,41,43,44,46,53and.54represent thefloorsbetveen.thefuelpoolgirdersandcolumns/walls. Figure3.7h-13showsthecorrelation betveenthemodelmass'oints andtheactualstructure. Tomoreaccurately determine thedyramiccharacteristics ofthemathematical modelsthemodulusofelasticity forconcreteusedirtheanalysis, isdetermined basedontest.resultsofconcretesamplesobtainedfromtheplant.site.Themodulusvalueusedism5~720,000ksf.TheseismicanalysisoftheSeismicCategoryIstructures considers allmodeswhosefrequencies arelessthan-33cps.However,if-atructurehasonlyoneortwomodesvithanaturalfrequency below33cps,thenthethreelowestmodesareused.If'structure hasthreeorlessdeqreesoffreedom,thenallmodes'reconsidered intheanalysis. Dq.e"BM~~~M,.~~A~c~~'reRev.35'7/S43.7b-5Iq~l~~l Ie pz07ADANMcz4a374-!Iffy~'3-7L-ll95)~~~.~7WZ~+Mgm,~..~~~~~~~.~.~~.aIA~IMRD4-II'l~.>ac~'~~g~~.....,.. ~I'*II[~~g<<~)'k<<A*I~~A~II4~~D@a'P~~~Q~Sl~aI~(~~K.7L-tZO)~~~.)~~~,~3~~~p~IIII+'~~3',gggoV~~ SSES-FSAR TheSeismicCategoryIstructures aresupported bycontinuous basemats;therefore, relativedisplacement ofsupportsconsideration. Nonlinear responses arenotconsideedsincetheSeismicCategoryIstructures aredesiqnedtoremainelastic.$~7b~2,$Natura/ggeguggcies ag~Resnogse LoadsThenest;>>ra1 frequencies...of thecontainment andthereactorandcontrol-building below33cpsareshovninTables3.7b-5and3~7b-6respectively. Thefirstsevenfrequencies ofthereactor'ndcontrolbuildingintheeast-vest direction aredePendent uponthelocationofthereactorbuildingcranes.Thesignificant modeshapesofthecontainment andthereactorandcontrolbuildingareshownonFigures3.7b-14throuqh3.7b-43.Themodeshapesforcontainment arefc"thehorizontal andverticaldirections. Thereactorandcontrolbuildingmodeshapesareforeacho'.thethreeprincipal directions: east-west,noth-south, andvertical. Aswiththefrequenci'es, thefirstsevenmodeshapesofthereactorandcontrolbuildingintheeast-.west'.rection dependonthelocationofthecranes.Figures3.7b-20throuqh3.7b-26-shov thatitisthesuperstructure ofthereactorbuildingthatisexcitedattheselovfreguoncies. Thelocationofthecranesisnotedonthefigures~Fiqures3.7b-44through3.7h-57shovtheresponse(i.e.,displacements, accelerations, shearforces,bendingmoments,andaxialforces)ofthecontainment forbothOBEandSSE.TheresponseofthereactorandcontrolbuildingisshownonFigures3.7b-58through3.7b-79.Responsespectraatcriticallocations areshovnonFigures3.7b-80through3.7b-101. Thecurvesareshovnforeachofthethreeprincipal 'directions atthedampingvaluesusedforeachdesiqnearthquake (seeSubsection 3.7h.2.15 forfurtherdiscussion ofdampinqvalues}.Abriefdescription ofthelocationofeachseriesofcurvesisprovidedbelovviththecorrespondinq figurenumbers.Fiqures3.7h-80throuqh'3.7b-83RPVPedestalFigures3.7h-04throuqh3.7h-89Figures3.7h-90throuqh3.7h-95RefuelinqbreaA-DDieselGenerator>Pedestals,Rev.35,07/843.7b-6 Cl SSESPSARPiqures3.7h-96through3.7b-10'l Operating FloorofESSWpumphouse Seismic.systemsandsubsystems veedefinedinSubsection 3.7b.2.EAllequipment, components, andpipingsystemsazelumpedintothesupportirq structure massexceptforthereactorvessel,vhichisanalyzedusinq'acoupledmodelofthecontainment structure andthereactorvessel(refertoFigures3.7b-7and3.7h-8).SeeSanction3.2ofreference 3.7b-3forthecriteriaoflumpingtheequipment, components andpipinqsystemsintothesupporting 'tructure mass..Adequacyofthenumberofmassesanddegreesoffreedomisdiscussed inSubection3.7b.2.1.EachSeismicCategoryIstructure isconsidered tobeindependent becauseofaqapbetveenadjacentstructures. Forexample,thereisa2in.horizontal qapbetveenthereactorandcontrolbuildingandthecontainmen abovethefoundation mat.Toformtheseqapsrodofoammaterial(Ref.3.7b-12)vasused.~Rodofoamvasleftinplaceinthefolloving areas:(1)Jointsvhezetheprovidedactualqapis0-5inchgreaterthanthatoriginally specified onthecivildzavings. (2)Jointsvheretheinteraction forcesbetveenstructures duetopresenceofrodofoamcauseinsignificant effectonshearandmoment.I'llSeismicCateqoryIstructures, excepttheESSNpumphouse andspraypond,arefoundedonrock.Theseismicanalysisofthesestructures isdoneassuminqafixedbase.AsstatedinSubsection 3.7b.2.1, thecontainment responsespectrumcurvesaregenerated fromaflexiblehasemodel.Therockisassumedtobeahomoqeneous materialcomprisinq anentireelastichalf-space. Thesoilspringsanddampersusedtorepresent theeffectofthesoilarediscussed inSubsection 3.7b.1.3.Rev.35,07/8437b-7

0na.WM~cu~~~~~)M~P%<B~~~p~~M~~~~7~~~Z.7L-PZ'7k-9'Igr-~~&vl~~to%/,p~.I.,BSS~.~~+jg~2-~3~+.~S.~~~OE~.r~~~'L'/tI*IIIIP>>) SSESFSAR40TheESSMpumphnuse issupported bynaturalsoilformation; consequently, soilstructure interaction hasbeenconsidered intheanalysisofth,.pumphouse. Information regarding soilcharacteristics, foundation embedment, etc.,iscontained inSubsection 3.7b.1.4. Theoilstructure interaction analysisisperformed usinqthelumpedspringapproach. Thesoilisconsidered ahomoqeneous material. Theequivalent springconstants andthesoildampingcoefficients arediscussed inSubsection 3.7b.1.3. Theseismicanalysisofthespraypondisdiscussed i'nSubsection 2.5.5.g.7h.7,,5'evelopment offloorresponseSpectraAtimehi..toryanalvsisisusedtodevelopth'efloorresponsespectra.'hemathematical modelsusedforthisanalysisarediscuss~cd inSubsections 3.7b.2.1, 3.7b.2.3, and3.7b.2.0. eThefloorresponsespectraarecalculated atthe.frequencies listedinTable5-1ofReference 3.7b-3.Structural freguencies 'upto'33cpsareused."17<'RI-~li'r'p /~,~(eZZI'p$,7ba2,6TheaComuonenhs oEgarthguake Sation~j.I,~yEIa8:Rev~35,07/BQ3.7b-8Independent analysesare,donefortheverticalandtwohcrizcntal feast-vest 'andnorth-south) directions. Fordesignpurposes, theresponsevalueusedisthemaximum'value obtainedbyaddingthe'response duetoverticalearthquake with'helargervalueoftheresponse'du'.tooneofthehorizontal earthquakes bytheabsoluteSummethcdafathePSeEsca'/ltE,ZE ~~r~NoZ~,~~A~etof-~~.3.7127Combination ofNodalHosoonseg ~2~natNThemodalresponses, i.e.,shears,moments,deflections, acceleration, andinertiaforces,arecombinedbyeitherthesumoftheabsolutevaluesmethodorbythesquarerootofthesumofthesquaresmethodsMhenthelattermethodisused,theabsolutevaluesofcloselyspacedmodesforeachgroupareaddedfirstandthencombinedwiththeothermodesorgroupsofcloselyspacedmodeshythesquarerootofthesumofthesquaresmethod.Twoconsecutive modesaredefinedascloselyspacedwhentheir~frequences differfromeachotherby0.5,cpsorless.Ims~ c/Q~lk~e="-<<-/,.....-o-~~AI""CIC~'~~~1I7~.'II'~II'I<4*,P

SSES-PSAR 37b28Interaction ofNon-Category IStructures withSeismicCateaorvIStructures tfon-Category Istructures thatareclosetoSeismicCategorystructures,'iz., theturbineandradwastebuildings, havebeendesignedtowithstand anSSE.Dynamicanalysesoftheso'.structures weredonebytheresponsespectrummethod.ITheremaining non-Category Istructures veredesignedforseismicloadsaccording totheUBC(Ref.3.7b-4).Thecollapseofanyoftheseremaining non-Category Istructures willnotcausethefailure-of aSeismicCateg'ory Istructure. ~~structural separations havebeenprovidedtoensurethatinteraction betweenCategoryIandnon-Category Istructures doesnotoccur.Theminimumseparation atanypointismaintained atoneandahalftimestheabsolutesumofthepredicted maximumdisplacemerts ofthetwostructures. Therodofoammater'alwhichwasusedtoformtheseparation gapswaslefinplaceinsomeareasasmentioned inSection3.7b.2.3. 3.7b.2.9FffectsofParameter Variations onFloorResponseSpectraToaccountforvariations inthestructural frequencies owinqto'uncertaint'es inthematerialpxopertios ofthestructure andtoapproximat'ons inthomodelinqtechniaues usedintheseismicanalysis, thecomputedfloorresponsespectraaresmoothedandpeaksassociated witheachofthestructural frequencies are.broadened. Theparameters, whichareconsidered

variable, arethomasses,themodulusofelasticity ofthematerial, andthecross-soct ionalproperties ofthemembers.Xn.addition,

.'ariation inthestructural.frequency isalsotakenintoaccountbecausethebaseofthestructures maynotbefullyfixedasassumedintheanalysis. Rev.35,07/843'h-9 SSES-PSAP.getnf=Naturalfrequency ofthebuildingatapeakvalueofthefloorresponsespectrahnfhnfmTotalvariation innf'Variation in'fduetovariation inthemass5nfeVariation innfduetovariation inthemodulusofelasticity ofthematerialVari.ationinnfduetovariation inthecross-sectional properties ofthemembersfactorof0.05isusedtoaccountforthedecreaseinnfdue'othepossibility thatthebaseofthest'ructures maynotbefullyfixed.Sine'.eitishiqhlyimprobable thatthemaximumvariations inthe~individual parameters mouldoccursimultaneously, bnfisdetermined bvthe.squarerootofthesumofthesquar'esoftheindividual variations asfollows:V'hemaximumincreaseinnfi.sgivenby:+conf=(~)+(~)+(~)2mes-hnf=(~)+(~)+(~)+(0.05)5+~~~~~'V'gQ-md/5c>~i~I-I'ES,thefollovinq valuesofi5nfareused:+deaf=012nfLhf=-0.14nf3~7b.2~10 UseofConstantVertgcalStaticFactorsConstantverticalstaticfactors're notusedintheseismicdesignofSeismicCateqoryIstructures. Themethodology usedfortheverticalseismicanalysisissimilartothehorizontal analysis. ~~pc~ePz~'$~~erma>~~'ix.~MBP~dp~~~~~~0/+~~M..aev.,35,07l843.7b-10(+

SSES-PSAR 3~7b./~11 methodsUsedToAccountforTorsional EffectsTorsional effectsforthedieselqenerator buildingandESSQpumphouse areaccounted asfollovs:Astaticanalysisvasdonetoaccountfortorsiononthesetvostructures. FortheESSMpumphouse theeccentricity vasdetermined bytheditancebetweenthecenterofmassandthecenterofrigidityofthestructure. Theinertiaforcefromtheresponsespectrumanalysisvasappliedatthecenterofmass.Theresultinq torsional momentisequaltotheinertialforcetimesMeeccentricity. The~shearforcesduetcthetorsional momentverethendistributed tothewalls.-The.,torsional shearforcesaredistributed accordinq to.themethoddescribed inSection3..4ofRefeence3.7b-5.lnthedieselqenerator

buildinq, torsionisconsidered duetotheeccentricity causedbythedifference inrigidities of,theeastandvestshear,valls.'he torsional

.shearforcesareassumedtobetakenentirelybyeastandvestwallsonly.ATorsional effectsareneqliqible forthe.containment becauseofthesymmetryofthestructure. Th'ereactor/control buildingismodeledforhorizontal dynamicanalysisasmultiplestickscoupledbysprirqsrepresenting the.shearstiffness ofthefloorslab.Eachstickrepresents a~.ma]orstructural shearvali.Themassandstiffness distribution .ofthestructural vallsissuchthattorsional effectsareproperlyrepresented inthedynamicanalysis'. Torsional effectfothedieselgenerator

building, ESSMpumphouse, andreactor/control buildingarealsodiscussed inresponsetoHBCquestions 130.21and130.22.~~Q63.7h.2~12CoragagisonofgeryonsesFigures3.7b-4through3.7b-6shovthattherespcnsespectraofthetimehistoryenvelop/thedesignresponsespectraatallfrequencies.

Thetimehistoryhasbeenusedtoqenerateresponsespectra,inthestructures buthasnotbeenusedtocalculate forceinthestructures. Responseincontainment; atypicalCategoryIStructure, obtainedfromtheresponsespectrumanalysiscomparecloselyviththoseobtainedfrcmtimehistoryanalysisbasedonstudiescomparing displacements and.accelerations obtainedbythetvomethods.,pnMph8R'~,~p+~~Ccnp~~~~~,W~37~"I/d.Rev.35,07/043.7b-11 ~~I'W II~lp~pi~DRaB~>~,~A~~<<~~~~L~5~~'s.7$~aP~SSFS-FSARa-~~~y~~*3,7b.2~13methodsforSeismicAnalysisofDamsDam..'renotprovidedonSusquehanna SES.3.7b.2.1QDetermination ofSeismicCateqcryIStructure overt.ugnj,ngNomegtsTheoverturninq momentsforSeismicCategcryIstructuresgis thesumof.themomentsatthebaseofe'achstickofthemathematical model.'oreach@tick,th'emomentatthebaseisdetermined bycombininq themodplovezturninq mo'ments. The.momentsarecombinedhythemethodsdescribed inSubsection 3.7b2.7.Thecomponents oftheearthquake motior.usedarethesameasthosediscussed inSubsection 3.7b.2.6.Subsectic.. 3.8.5discusses thefactorofsafetyagainstoverturninq forseveralloadinqswhichincludeseismicloads.Thestructures consistofreinforced concreteandwelded/bolted st"ucturalsteel.Dampinqvaluesforthesematerials areshcwninTable3~7b-2.~Ho ever,.jntheseismicanalysisofthestructures<,'ampfnq vafu~es4f2and5percentareusedfor(.BEandSSF.respectiv'ely forreinforced

concrete, aswellawelded/bolted structural steel.-Therefore,.

analysisofcomposite modeldampinqisnotnecessary.AllSeismicCato.qory Istructures excepttheESSMpumphouseandspraypondanditspipesupportsarefoundedonrock.Consequently, soildampinqvaluesare.calculated fortheESSMpumphouse asdescribed inAppendixDofReference 3.7b-3.Theinteraction dampinqvaluesforthetimehistoryanalysisofthecontainment arealsocalculated bythemethoddescribed inAppendixDofpreference 3.7b-3.P.ev.35,07/803.7b-12 SSES-PSAR Forriqidequipment havingafundamental frequency greaterthan33Hz,thedynamicloadconsistsofastaticloadobtainedastheequipmen~ ~weiqhttimestheacceleration corresponding to33Hz.Forstructurally complexequipment:, whichcarnotbe.classif'ed asstructurally simnlorriqid,theequipment isidealized byamathematical modelanddynamicanalysiisperformed usinqstandardanalytical procedures. Analternative methodusedforverifvinq structural integrity ofmembersphysically similartobeamsandcolumnsisthestaticcoefficient method..?n thismethodnodetermination ofnaturalfrequency ismade.Dynamicforcesarecalc~ilated a"productoftheweightandpeakacceleration ofresponsespectramultiplied byastaticcoefficient of1.5.'sanninevalupsuseda"euiveninTable3.7b-2/en',/$ Dynamictestinqisperfomedwhenanalysisisinsufficient todetermine eitherthestructural orfunctional adequacyoftheequinment orboth.Typicaltestmethodsusedareasfollows:a)Sinqlefrequency sinebeattestb)Sinqlefrequency dwelltestc)t".ultiffrequency test'IAL1seismicqualification testssubjecttheequipment toexcitation foratleast30seconds.Q~7Q~QQ,1gCombj,ra+jog ofQnalysjsandgyngmgcJestinghCertainequinment isaualified bya.combination ofanalysisanddynamictestinme3,7h~g~1.2 pipinqSystemmsRP-TOP-l, Rev.3(Ref.3.7b-6)describes themethodsusedforseismicanalysisofpipinqsystems.Reference 3.7b-6isfollowedonSusquehanna SESwiththefollowinq exceptions: 3.7b-14 SSES-FSAR Porrigidequipment havingafundamental frequency greater33Hzthedynamicloadconsistsofastaticloadobtainedasth>equipment ~sweighttimestheacceleration corresponding to33Hz.Forstructurally complexequipment, whichcannotbeclassified asstructurally simpleorrigidtheequipment isidealized byamathematical modelanddynamicanalysisisperformed usinqstandardanalytical procedures. Analternative methodusedforverifying structural integrity ofmembersphysically similartobeamsandcolumnsisthestaticcoefficient method..Inthismethodnodetermination ofnaturalfrequency ismade.Dynamicforcesarecalculated asproductoftheweightandpeakacceleration ofresponsespectra.multiplied byastatic'oefficient of1.5.'DampinqvaluesusedaregiveninTable3.7b-2~37h2~12~2QYnnia~afiaaDynamicbeestingispe'rformed whenanalysisisinsufficient todetermine eitherthestructural orfunctional adequacyoftheequipment orboth.Typicaltestmethodsusedareasfollovs:a)Singlefrequency sinebeattestb)Singlefrequency dwelltestc)pultifrequenrytestAllseismicqualification testssubjecttheequipment toexcitation foratleast30seconds.22h21..l2Gamhirntion uXk,naXZair. ~UnSYaaUmc~eCertainequipment isqualified byacombination ofanalysisanddynamictestina..3a7b~3ilaZ PiRRMSYsXQH~fi8~an+Pdd)~o 2;<((ck~('(("~~)RP-TOP'-l, Rev.3(Ref.3.7b-6)hdescribes themethodsusedforseismicanalysisofpipingsystemsReference 3.7b-6isfollovedonSuquehannaSESwithvinqexceptions: 'L'I(~g~~~'~Q,IgW~~~E~AyRev.35,07/843'b-10

SSES-PSAR Tnseismicanalysisthemodalresponses arecombinedbySRSSandlow~rdamoinqvaluesthanspecified inReference 3.7b-6areused.SeeSubsection 3.71.3.7.$.7)..3.1.3ClassIP.CableTraysThecabletraysareseismically qualified bythecapacityevaluation mothodwhichconsistsofthefollowing: a)~-Calculation ofthefundamental frequency ofthecabletray'ased onthetrayproperties obtainedfromstatictestsc)Seismicloadcomputation baseduponthetrayfrequency, .thepossiblesupportfrequencies andthedesignspectraCalculation ofthetrayallowable capacityd)Evaluation ofthetraycapacitybyinteraction formulaeC"3.7.3.1.4'uort~fS'sm'cCatISc5Partially crackedsectionanalysisisbasedonthefollowinq AC1I318(Ref.10AofTable3.8-1)formulagggggglorylHVACDuctsThesupportsofHVACductsareanalyzedbytheresponsespectrummethod.3,7h~3~1,5Cogcgeg~BlockNasongyStructures QBlockwalgsg .'IThedynamicanalysisofsafetyrelatedconcretemasonryCLa,blockvalls 'nClass.Istructures. isperformed bytheresponsepectrummethod.Responsespectrumforthelowerfloorhasbeen.usedforverticalmotionandforwalls,cantilevered fromthefloor.Forhorizontal motion,theacceleration ofthelo~erfloororaverageofthe'loverandupperfloor,whichever isqreater,isusedindetermining inertialoads.Prequency calculations forblockwalls supporting classIattachments orLJlocatedinareasofclassIequipment arebasedone'thercrackedIsection,partially crackedsection,oruncracked sectionClproperties; whichever represents thecondition baseduponthecalculated loads.3.7b-15 SSES-CESAR t=(i/Nl>T<(l-(t'5)~)e'ra'cracrwhere,=effective momentofinertiaofcrackedSectionIcr=momentofinertiaofcrackedSection=bendinqmomentappliedtotheblockwall =Grossectionmomentofinertia(uncracked) gcrackinqbendinqmoment=ytfr=mo<)ulusofruptureformasonry=50psimodulusnfruptureforconcrete=6f'psiYt=distancefromcentroidarisofqrosssectiontothe~extremefiberintension.Forassessinq theeffectsoffrequency variations onthe,responses, t,hevariableitemssuchasboundaryconditions, mass,modulu'f<<lasticity, crackinqmomentareconsidered. Dampingvaluesusedareir.accordance withTable3.7b-2.Theresponseofattachments toblockwalls isdetermired asdescribed .inSubsection 3.7b.3.1.l.l. Thethreecomponents ofearthquake motionarecombinedinaccordance withSubsection 3.7b.2.6. 3.7b.3.1.6SupportsofSeismicCateqoryIElectrical Raceway~~Xw~M-.<<issectior.defines+heprocedures uedfcrthedes'qnofthe=-'>>oports ofelect.icalracewaysystems;i.e.,cabletray,con<)uit, andwire~ayauttersystems,subjecttotheseismicandotherapplicable loads.Theracewaysupportsystemusuallyconsistsofraceways, horizontal ardverticalsupportmembersandlateralandlonqitudinal bracinqmembers.gev.3)~07/R43.7h-16 SSFS-PSAR s~wXvtao,~d xcD~QG~.~E'5eadequacyofracewaysystemstowithstand seismicandotherapplicable staticloadsisdetermined accordinq totheloadingcombinations andallowable responses qirenbelow:EauationCondj,trop LoadCombination hlgowgble gesponeNotes:NormalD4LNormal/Severe D+L+E(Eauation 2appliesonlytoconnections forfatiqueconsiderations.) Abnormal/Extreme D+Ei1..Fornotations, seeTable3.8-2.F-Seenote4SeeNotes264SeeNotes2,3,642.Thefollowinq equationisapplicable forbendinginoverheadconnections: 5'BESSEl.owhere:"EQOBESSETotalnumberofload/stress cyclesperearthquake. Allowab3e numberofload/stress cyclesperOBF.event.Allowable numlerofload/stress cyclesperSSEevent.3.-Thefollowinq criteriaareusedforcheckinqthemembers.Innocas~shalltheallowable stressexceed0.90Finbendinq,0.85Finaxialtensionorcompression, and0.50Finshear.Wherethedesiqnisqovernedbyrequirements ofstability 'localorlateralbucklinq), theactualstressshallnotexceed1.5F.Allowable shearandnormalloadsinconnections aredo.~ermined fromthemanufacturers'ata orfromcodeallovablestresseswhichever isapplicable. Bev.>5,07/H43.7b-17

SSRS-FSAq heallowable valuesareincreased 50%forload~cnmbi.na~ionequation3.ASSR77b2162AM1YtiQRL XRGhGiK>>QR ~~~~I~fVX'~~~~Fith~roftwomethodsofanalysisisused.method1isasimplifi~d methodofanalysisvhichdetermines thefundamental frequency ofbracedsupportsusingtvodimensional analysis. Frequencies aredetermined ineachofthreeprincipal directions. Thenloadsaredetermined bytakinqthespectralaccelerations timestheweight;andstressesaredetermined fromstaticanalysis. Allmembersandconnections arecheckedusingstresscriteria. method2usedathreedimensional computeranalysisandincludesspringstorepresent jointstiffnesses. Responsespectrumanalysesaredonetodetermine stressesanddeformations. Thenumberofstresscyclesisdetermined bymultiplying thetimeofmaximumearthquake motionhythenaturalfreguency ofthesystem.Theallovable numberofcyclesistakenfromReference 3.7b-8for,thejointrotations calculated. Onlyoverheadconnections arecheckedforfatiquesincethetestresults{ref.3.7b-8,pg.7-19)demonstrate thatfailuresoccuronlyinoverheadconnections. Thebasisforthedesiqncriteriaandanalysismethod2isthe"CableTrayandConduitRacevayTestProgram"(references 3.7b-7throuqh3.7-10).tl~seaTe7Qg1,6gDqmplngI~Is~~,~~c4O~ePg~~~'~"~t)ampingof7%ofthecriticalisusedforthe'esign ofakk-racevaysystems.Thetestprogramdemonstrates thatforcabletraysystemsdampinqis,ingeneral,muchhiqherthan7'%.Ref~rene~3.7h-7recommends usinq20%butvaluesupto50%arereported. Therecommended dampinqvalues,developed fromthe~stproaramandbasedonloverboundvalues,aresho~ninFigure).7b-106. Damagingisamplitude dependent, i.e.,itincreases vithinc'casingamplitude of'nputmotion.Forconduitsystemsthedampinqincreases vithincreasinq amplitude, butismuchlowerthanforcabletraysystems.This7'Jtisarealistic valueforinputmotionexceeding O.lqforconduitsystems.Mirevaygutterswerenottested;hovever,themannerinvhichtheyareconstructed -withmorebo]tedconnections andmorecablesthanconduit-'provides moredampinqmechanisms thatarepresentinconduitsystemssothat7%isaconservativelylovdampinqvalue.4laJECA'N>R87a448tll<DAIfADWMPratgVW<~EFPogO8ECoHDly'IqQ8<3>%FOR$4FCo+DITiyg IausFD3.7b-18yg4)ISyPP'ORTS./W~4Eoia+D~<7S"P'P4~7$ k%h4APrefabISuSCD~OROBZAHbirioaPD/oahQPIA4P'ogStECe/DIJ'/oQ. 6/+/+FRTog++g+Efff+77+Epgs]gy(gcoNSERvh7IvE DIESEL'E<Eg,4fo+ESOIL/)r'~Cy.

IPSEA7pgAE4EC.gdAZgA7oCEGcJ/C.Nr&y, ~/pc'ct~cda~p~~l.(4d~~a/CLEtii~a~p>~g./mA.CCc4cs.<caivCac4p4r..~)~~lief>'n+celiac876b~/,g.J7g'~+~~Cop'Cct.pe/g~J/cf)o(<.<4>ikpp,~~,~e*.'mg~. SSES-FSARVbS,g6<gger~Xjng lna<allnzihamh~ AMJ1.(s<<~><~'<~~<~@)TheOBEisconsidered intheloadcombinations onlyfortheoverheadconnections whicharecheckedforfatigue.TheOBEstressesarenotcheckedduringdesignfortworeasons:first,racewaysystemsdonot.failinabrittleorcatastrophic modeasdemonstrated bythetestproqraminwhichsuchfailuresdidnotoccurandtheelectrical systemswereabletocontinuetofunctioninallcases.Thus,thereisnoneedtolimittheOBEstressestothelowlevelsusuallyusedtoprecludesuch,failures. Second,theOBEstresseswillalwaysbelessthantheSSEstressesasdemonstrated below.InallcasestheZPAvaluesarehiqhenoughtouse7$dampinqbasedonFiqure3.78-106sincethey'allexceedO.lq.Acomparison ofresponsespectraforcorrespondinq dampinqvaluesdemonstrates thatforallresponsespectratheOBEacceleration valuesarelessthanthecorrespondinq SSEacceleration values.(SeeReferences 3.7b-8and3.7b-10)Thus,theOBEacceleration responseandstressesarebelowtheSSEacceleration responseandstresses. 3.74*3~3.De+eZmiQagion ofNgmherofgagtQguake cycles.Inaeneral,thedesiqnoftheequipment isnotfatiquecontrolled becausetheequipment iselasticandthenumberofcyclesinanearthauake islow.Equipment thatisqualified byanalysisisdesignedtoremainelasticduringtheearthquake. Anyfatiqueeffectsintestedequipment areaccounted forbyperforminq extendeddurationtestonselectedspecimen.Consequently, thenumberofcyclesofthemarthauakehasheenaccounted for.Tncdertoron<luctafatiaueevaluation fornuclearClassIpipina,>h<numberofcyclesforaqivenloadsetisobtained. Thisis<!or~hycon~iderina <<enmaximumstresscyclesperearthquake andfiveOBE'sandoneSSEtooccurwithinthelifeoftheplant.37b.33Procedure UsedforNodelinaP.,<hemodels'ro. developed torepresent theeauipment. Twoor<<hreedime~sinnal modelsareuseddependinq onthecomplexity oftheeauipm~:r t.Theboundaryconditions aremodeledtoreflee+Rev.35,07/B43.7b-19

SSFS-FSAR thein-plantmountinqconditions. Theequipment isrepresented bylumpedmassmodels.masslesselasticmembersareusedtoco'nnectthemasses.SuooortsforHVACductsaremodeledastvodimensional, lumpedmass,planeframemodels.Themassesarelumpedatthecenteroftheducts.Thecabl~traysupportanalytical techniques arediscussed inSubsection 3.7b.3.1.6.2. Thecabletrayproperties aredetermined fromtheloaddeflection tests(seeReference 3.7b-ll).Sections2.0and3.0ofReference 3.7b-6discussthetechniques andorocedures usedtomodelpipingotherthantheburiedtype.3~7h,3~4BasgsforSelecfgo)l gfggeguenc~es Thenaturalfrequencies ofcomponents arecalculated. Ifthenat.uralfrequency ofthecomponent fallswithinthebroadened peakoftheresponsespectrumcurve,thenitisdesignedtoMithstand tleooakacceleration. Theequivalent staticloadmethodofanalysisisusedwhenthenaturalfrequency oftheequipment isnotdetermined. Iftheequipment canbeadequately represented byasingledegreeoffreedomsystem,thentheappliedinertiaload-isequaltotheweightoftheequipment -timesthepeakvalueoftheresponsespectrumcurve.Iftheequipment requiresmorethanonedegreeoffreedomforanadequaterepresentation, thenafactorofl.5isaooliidtot.hepeakoftheresponsespectrumcurve-Section7.l.2andAno~ndixDof.Reference 3.7h-6discusstheuseofeguival~n. staticloadmethodofanalysisasapplicable tooipina.Foreciuioment, cabletrays,andsupportsforcabletraysandHVACducts,thethreesoatialcomoonen+s oftheearthquake areconsidered inthesamemannerasforstructures (described inSubsection 3.7h.7.6).Fev.35,07/04').7h-20

SSFS-CESAR Thecriteriausehdforcomhininq theresultsofhorizontal andverticalseismicresponses forpipinqsystemsaredescribed inSection51afReference 3.7b-6~e~4rnn"e-kaig.'~25~aaahiaaCiaa ~fSaCaLXemuaaaa(~~<4~tP~w.~b~G~~F.f~Themodalresnanses ofequipaenthare coibinedbythesquarerootofthesumofthesquaresmethodTheabsolutevaluesoft<<o-closelypacedmodesareaddedfirstbeforecombininq <<iththeothermohasbvthesquarerootafthesumofthesquaresmethod.Twaconsecutive modesaredefinedascloselyspaced<<hentheirfre~cencies Siff~efron~ech otherby10nercintorless.I;f2iTAeOf~frAe"g"tea,~~>~chNf.gem~~~CriProcedures qiveninRequlatary Guide1.92forcombining modalresponses, <<henclosoly-spaced modesarepresent,arenotcomplied<<ithintheseismicresponsespectraanalysisforppnq>hllmodalresponses arecombinedbysquarerootof'umofsquares(SRSS)in.theresponsespectramethodofmodalanalysisforseismicloadinq(OBEandSSE).Seismicresponsesoectrausedinthepipinqanalysiscorresponds toconservative ampinqvaluesof1/2%fprOBEandJ.%forSSE~6arnni'no vcducf.mW~"E."ee:ibga.C'Ct'-Vpf'nd ta~5~-~<SknMisB+uhC@~Guide/nb/,Theprocedures uedinevaluatinq thepipinqsystemforhydrodynamic loads(SFVandLOCA)byresponsespectramethodisincompliance <<i+hRequlatory GaMe1~92.Themodalresponses in+hiscasearecombinedinaccordance <<ithsection5~2ofBP-TOP-1,Pev.3,<<hichhasbeenacceptedbytheIRCstaff,pertheletterdatedSeptember 29,1976~framKarlKniel,ChiefLightRaterReactorsBranchNo.2,DivisionofProgectHanaqeaent toBurtanL.Lex,DechtelPo<<erCorporation. Therriteiausedforpipinqsystemsaredescribed inSections5.1and5.2ofReference 3.7b-63~753Bhnakxian3,2Xucehuz~a XurRimmedTheResiqncriteriaandtheanalytical procedures applicable topipinqsystemsareasdescribed inSectian2.0ofReference 3.7b-6.Themethodsusedtoconsiderdifferential pipinqsupportmovements atdifferent supportpointsareasdescribed inSection4.0ofReference 3.7b-6~'ev.35,07/8437b-2f I0 SSESFSAR3.7b.3.9NultiplySupported Eguipment andComponents vit49'a.'isn't XaamForcab!.etraysandductsvhosesupportshavetvodistinctinnu~s,aresponsespectrumcurveisusedthatenvelopes thecurve:attletvolocations. ~Section4.0ofReference 3.7b-6discusses ~hemethod'susedfor,theanalysisofmultiplesupported nipinosvstems.g~1y~g~>n-o;.~g~gggggyggyQxgigy~~g~kg goalConstantv~."tical staticfactorsarenotusedintheseisaicdesignofsubsystems. 3<71.3~1>:-aa'aiaaaL ZffaalauXXaaaufZia 3~N~Thetorsional effectsofvalvesandothereccentric massesareconsidered intheseismicanalysisofpipingbythetechniques discussed inSection3.2ofReference 3.7b-6.$L7b~)~1?Pqs;j,0~4sg~gC'atggQgg T7i~~~g>Z~g~ms~lieZ~ull~g~PuriedSeism'cCateaoryIpininghasbeenanalyzedanddesigredforseismiceffectsinaccordance vithSection6.0ofReference 3~7h"lq<<n6RAc'~oce<.7b-I8k~.-ice.~"E."Fc.iilig, ~hema1ori+vnfth~anticinated settlement duetnstaticloadingoftheE."SMPumpho>>sa villhaveoccurredpriortoconnecting thepipingtothhuilding. DuringaSSEevent,thedifferential settlement hdtv"rr.th~:pumphouse and~hesurrounding soilvhichsupports>hevining,villhelessthanoneinch(seeSubsection 2.5.0.7forfurtherdiscussion ofsettlement ).~hismovementvillheaccommodated bythepipingvithoutexceeding codeallcvab'les.ress~s. ~unnelsontheSusen~hanna SESarenon-Seismic CategoryZ.~Rev.35,07/<<53.7b-22 SSRS-FSilP.3.7b-12Ic<fofoxmIImarufac"ureQb7W.8~GraceCt:o.oreauivalcn~ equal.87bIs-H.8XgInsln-n'a~g,~sess'PIen~&n1ynje~sf'~+/Zne/'IVneJnnp/~f.~yg,c)f.at~Q/~stan~~Voce~~Jf>5>>g,s~,<-ppnsysser-pipit,5psr6nepi>>A/usleciw ~Qyssn~/M~TS3++sSOR)P~&g~~p~gPlM>ZnsAe'ick.isuform:(~oneIqgI)Bev.35,07/RO3.7b"28

D~pt~gIIALu&sfbEN<<-+sssQAT~iALspLDg&p~<<>7p'(PercentofCriticalDamping)Structure azComponent Operating BasisEarthquake (OBE)<SafeShutdownEarthquake (SSE)Equipment andlazge-diameter pipingsystemsa, pipediametezgreatsthan12Small-diametez pipingsystems,diameterequaltoorlessthan12in~~,~'o~~~~~~~SWe1.dedsteelstructures 2Boltedsteelstructures Reinforced concetestructures 'I~Inthedynamicanalysisofactivecomponents asdefinedinU.S.NRCRegulatory Guide1.48,thesevaluesshouldbeusedfortheSSE.~Includebothmaterialandstructural damping.Ifthepipingsystemconsistsofonlyoneortwospanswithlittlestructural damping,usevaluesforsmall-diameter piping.sIfthemaximumcombinedstressesduetostatic,seismic,andotherdynamicloadingaresignificantly lowerthantheyield'stressand1/2yieldstressforSSEandOBE,respectively, inanystructure orcomponent, dampingvalueslowerthanthosespecified abov'eshouldbeusedforthatstructure orcomponent, toavoidunderestimating theamplituide ofvariations ordynamicstresses. QOQAQPZS9uEA/</8'S MPPM+apR7jo4Pbo-~M+R,Pi~~g~~~o&~PO/Lg/~5'+5M/c.WoP~O~'k.lh4Jdl-....u~Am/MOJO'/"N/t=~gg(H).7./7..P'.7$zr.2go...,3f.3$,..g.x.gg6/.Oz--a./o.<<(5'e2/O.dg-o.zg.8'0D~OSO.2/-/~52.-0.6g5:72....O$4..-o.)o-o./III-oa3do03I-o.~g0~op-o.s(f+,02I0.03d~d3.-/S'36.,.O.I/-.o.yf7eo(a/0-.o.o(f-Z.s3./~Q~~o.0,02oo0&.Ogo.o/.O~07Os03o.iI.,-o.oS'.$2.-o.I'(t~aOOg...o.agO.a/O.D2.~-"7/7-'"...f.75/g.ogm.8s.,aspic30.$'0:....33.Q.;,g6./7....3//.// '..S.ggg.ot/03.2oi/3.'t43~/o-o.Sh/2..704m+/D./0..'.oo+3.,$~'3$'.boo.S'75o.o'FoedSo.oS-n.>Fg~d.Z'2-+,02~a.g4../~o~$'>..Oe37d

055es-/5+87~5&3-jb-Pgm~~c,m~o~oP~PM71wP+Po+ ~P<~EIp~~c~~r'>'~~"~~~ 'g.CHp)ggyg27.8'/gyp'Pz.if+o,gg7y.sc+.)ol,o7/2,f,4g%.5/5'O,o7+/g3,o3ZSP.P72..t/Bog.>2.../3$-47r.00~o.30o.l7d0O0.QO.O0ddip-a.7$0...0O-2.450-ov/Oo.M/dy5I'en~I/~/g/Uop~:,~>~,~~ewe<<p('n/-s) gy~~tio~fpp'venric~~) aC~-~)

1C)CQC)C)CZmXIco2,1lm>~R>mK0m~mnCOmnCO037OzCUZo+0CCCalcuQJOLLJiCCC)IC30.003.256.509.751'3.00TIHE(SECQNDS) 16.2519.5022.7526.00 oD(DoD~@aojyahgCZAlXcoZZ~zcnzz+0~BunthImnoDI0ZL3hl~DCt:CC(UQJOLIJICC'3ooIo10.003.256.509;7513.0016.25TIHE(SECGNDS) 19.5022.7526.00 C)CIaCOC)e)+Ab(~nCZmXCcoZ'llmZcn~--I<~mCnZ%Oman~wn332mCOOOZ(DC)~(DDOI-CCCCQJOLLjoCLC)AJClC)C)C3.0.2001.000.FREQUENCY (HZ)~\10.003Q.0 C3COC)R'NWg.lh4~hQ+CmXrCOZllZCo>>mZrZmr<OmC"mOCllCllCO03)O?CD~CDCIOI-.Ct:CCWCDQJoCCC)MC)(DC3CD0.2001.000FREQUENCY (HZ)10.00 C)C)CUP)C)e)s~~It'g<gAlCmXrNZmm<~mCOzr.>~mrZr<Um~ssoCAmocn0OZ~AJQOI-CC'CC~(OLLjoCCCOC)C3C)CD0.2001;000FREQUENCY (HZj10.0034.0

AJP)C)tnQAlu))+Ac$1~~mQCZmXlthZ'llmH--ICZm~Om~mOCAflloD0Z~CUCIO.CCCCW<hJnCCCOC)C)C)C3C)0.200j..000FREQLIENCY tHZ)10.00C" C)C7AJP)C)vt)+6s$~'OqCZmXCllZr'llmZcoH--IZm<Om"'wACOXI-2mnCll0O'Z~NDOI-QJCDMoC3C)C)C)C3C)C)0.2001.000FREQUENCY (HZ)10~0030.0

oCOO~~~)+A~$~8Om'XrcoZZllmZcn--c<~~mZ~2lZr<Omc"wnCllmncnOOZz~QOCCCCQJOMoCCOMoooo0.200'1.000FREQUENCY (Hz)~~10.003Q.0w)

CILAC)C)a')~5+h~RClW~~to~C2fflXrCI1Zm~~C/fCmCOffl+0mf~mOCAmCnO0zCDC)~CA+OI-CZCCLLjo~CULUnCL0oC)C)0.200':-1;000FREQUENCY (HZ)10.003Q.0 o~oCUo'Crent~t\to~CztflXrvlz>c2C/lzzIll<O~BenCAmno~QzzCUQol-CCCt:QJCD43oCCIooooo0.200~~1.000=-"'FBEGUENCY(HZ)10.00

C)C)P)C)~5+Cgg>cn~my~>~~8~~W~~to~C'ZmXrthZ2ZllmZ~COZ3g+~mmKOgnHwACAmcn033OZzCUI-CCCCQJ(DLLjoCECOC3C)C)tDC)0.2001.000FREQUENCY (HZj'10.00 C)C)0PCUP)C3gh~~q,ul)+A>s$ooCZIllXrEhZZZCA<~rnC/IZ+~mrzr<Oml"rOnCll2CAoOZ~CDQOl-CCQ:QJCOUJaCCoC)C)o.aOO1.000FREQUENCY (Hz)10.00

fX7zgo-@~op'-aELcps'.Uu@pc~cwo~~,ii~iSUSQUEHANNA STEAMELECTRICSTATIONUNITS1AND2FINALSAFETYANALYSISREPORTggesaL~P~poeagwLJi~HoCr&o~ctL. An/DYEE77cAL.5+>>Mi~Haec.s'~R,w'3.7b-IIf 33C7SUSQUEHANNA STEAMELECTRICSTATIONUNITS1ANO2FINALSAFETYANALYSISREPORT~g0\~glMeLQEnl~poRm~+sr'e75elc.HoPeL SSFS-PSALM '1.8.3.6.5.2WeldinqandNondestructive Examination~gfWe~dqMeldingandnondestructive examination isperformed inaccordance withAWSD1.1.).Q~3~6~$ ,'3PgectjogTogepqgces Erectiontolerances forthedrywallplatforms areinaccordance withAISCSpecification (Ref.2HofTable3.8-1)38366gugggtXcogggolpualitycontrolrequirements forconstruction arediscussed inAppendixDandamendmen+s tothePSAR.83.7.1Preooerational Testina~44~!e~pQ~Thedrywel1flooristestedto1.15timesthedesigndownwarddifferentia1 prossure. SeeSubsection 3.8.1.7.1.1fora'description ofthestructural acceptance tests.VDeflection.. andstrainsofthedrywellfloormeasuredduringthettnit1tes+werelessthanthepredicted values.Thus,thedesiqnof+hedrywellfloorprovidesanadequatesafetymarginaqainstinternalpressure. Piqure3.8-79showsacomparison hotweenmeasuredandpredicfed deflections forthedrywellflooratp'"~differen-:.ial pressure. 3.8.3~7~1~$ g~akByte<eggj,ggPreoperational leakrate'testinqisdiscussed inSubsection 6.2.6.Rev.35,07/843~8-.51 SSPS-.~SAR38372.In-service LeakRateTestincIn-service leakratetestinqisdiscussed insubsection 6.2.6.Thissectionqives'nformation onallSeismicCategoryItructures excepttheprimarycontainment anditsinternals. Italsodescribes safetyrelatednon-Seismic CategoryIstructures. Thestructures includedinthissectionareasfollows:ReactorBuildinaControlBuildinqDieselGenerator BuildinqEngineered Safeguards Service'RaterPumphouse SprayPond.y)g.sG.LQgt46kAToR6.SulL5>86pop-Seismic CategoryI~SgfegxRegatedStguctgros TurbineBuildingPadwasteBuildinqTheqenealarranqement ofthesestructures 'sshownonFigures3.8-80throuqh3.8-103.Amp89-tO5'Tgpooqg 38-lo6.Reac',-"Bui1.-"."..RefertoFigures3.8-80throuqh3.8-89.Thereactorbuildingenclosestheprimarycontainment, andprovidessecondary containment whentheprimarycontainment isinservicedurinqpowerop~ration. It-alsoservesas.containment durinqreactorrefuelinq andmaintenance operations, whentheprimarycontainment isopen.Ithousestheauxiliary systemsof'henucleasteamsupplysystem,newfuelstoraqevaults,therefueling

facility, andequipment essentia1tothesafeshutdownof~hereactor.Rev.35,07/8Q3.8-52 SSFS-PSAR Thereactorbuilding, uptoandincluding theoperatinq floor,ofreinforced concreteonamatfoundation.

Thebearingwallsareofreinforced concreteandaredesignedasshearvallstoresistlateralloads.Thefloorsareofreinforced concretesunported byasteelbeamandcolumnfraainqsystemandaredesiqnedasdiaphraqms toresistlateralload.Theframingrunsinbotheast-vest andnorth-south directions, viththeexteriorendsofthebeamssupported byeitherthebearingvallsorsteelcolumns.Thesteelcolumnsaresupported bybaseplatesonthematfoundation. Thereinforced concretevallsandfloorsaeetstructural aswell'asradiation shielding requirements. Rherestructurally pemissible, concreteblockmasonrywallsareusedatcertainlocations toprovidebetteraccessforerectionandinstallation ofequipmen+. Theblockwallsalsomeettheradiation shieldinq requirements. Thereactorbuildingsuperstructure abovetheoperatinq floorissteelstucture..hestructural steelframingsupportstheroof,metalsidinq,andoverheadcranes.Theframinqconsistsofaseriesof.riqidframesconnected byroofandvalibracingsystems.~heroof.consistsofbuilt-uproofingonmetaldeck.Therefuelinq facilityislocatedabovethecontainment struc+ure. Itcons'tsof'spentfuelpool,fuelshippingcaskstoraqepool,s+eamdryerandseparator storagepool,reactorcavity,skimmersurqetankvault,andloadcenterroom.Thefacilityissupported bytworeinforced concretegirdersrunningnorth-south, spanningoverthecontainment. Thegirdersaresupported attheendsbyconcretevallsandatintermediate pointsbysteelboxcolumns.Aqapisprovidedbetweenthebottomofthegirdersandthetopofthecontainment toensurethatloadsfrom+herefuelinq facilityarenottransferred tothecontainment. Thewallsandslabsofthespentfuelpool,thefuelshippinqcaskstoragepool~thereactcrcavity,andthesteamdryerandseparator storagepoolarelinedontheinsidevi+hastainless steellinerplate.Thefacilitymeetstheradia+ion shieldinq requirements. Thereactorbuildinqisseparated fromtheprimarycontainment byqap,oxcopta+thefoundation level,vhereacoldjointis.pro~idedbetveenthetvoaa's.Aqapisalsoprovidedattheint.faceofthereactorbuildinqviththedieselgenerator and+urbinebuildinqs. contqo],Buif'ggRefertoPiqures3.8-80throuqh3.8-88.Thecontrolbuilhinqhousesthecontrolroom,thecablespreading rooms,computerandrelayronm~thebatteryroom,HGVequipment room,off-qastreatment room,andthevisitors'allery forthecontrolroom.Fev.35,07/843.8-53~>>I~>,~i~~c~1~\~\g~~,s'>>qtnbvAtL>>4>> Thecontrolbuildingisstructurally inteqrated withthereactorbuildinq. Itisareinforced concretestructure onamatfoundation. Thebearingwallsareofreinforced concreteandaredesiqnedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforced concretesupported bysteelbeams,andaredesiqnedasdiaphragms tor~sistlateralloads.Thebeamsspanintheeast-west Airctionandaresupported bythebearingwallsattheends.Theeinfo'reed concretewallsandfloorsmeetstructural asveilasradiation shielding requirements. Wherestructurally permissible, concreteblockmasonryvallsareusedatcertainlocations toprovidebetteraccessforerectionandinstallation ofequipment. Theblockwallsalsomeettheadiationshieldinq requirements. ~.Thecontrolbuildinqisseparated fromtheturbinebuildingbyaqap,exceptatthefoundation level,vhereacold)ointisorovidedbetveenthetvomats.Qge59$Geoggagog BuilgjggPefertoPiqures.3.8-92and3.8-93.Thedieselgenerator bui1dinqhousesthedieselgenerators o.ssentia1 forsafeshutdownoftheplant,.Thedieselgenerators areseparated fromeachoherbyconcretevalls.Aconcreteoverhanqontheeastsideofthebuildingservesasanairintakeplenum.Aconcreteplenumfordieselexhaustislocatedontheroof.I.isareinforced concretestructure onamatfoundation. Thehearingvallsareofreinforced concreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforced concretesupported bysteelbeams,andaredesignedasdiaph"aqms toresistlateralloads.Thesou..hsideofthebuildinqin>erfaces viththereactorbuilding; there,areinforced concretevaliisprovidedfromfoundation uptothedesianhiqhvatert'ablelevelandthenasteelframeisprovideduptotheroof.Wherestructurally permissible, concreteblockmasonryvallsareusedatcertain'ocations toprovidebetterace~";forerec-.ion andinsta~lation ofequipment. Thedieselgenerators aresupported byreinforced concretepedesta1s. Thenedestals areseparated fromtheoperatinq floorbvaqaptoallowfortheirindependent viht'ation. 3'-54 SSES-FShRgggj,peeped Safeggygdg Serg~>l(y~eggSQVJ gumppguse RefertoFigure3.8-94.TheESSQPumphouse containstheemergency servicevater(ESM)andresidualheatremoval(RHR)pumpsandtheweiranddischarge conduit.forthespraypond.Itisatvo-story reinforced concretestructure onamatfoundation. Thebearingwallsareofreinforced concreteandaredesjqnedasshearvallstoresistlateralloads.Theoperating floorandroofareofreinforced concretesupported bysteelbeamsandaredesignedasdiaphragms toresistlateralloads.hmezzanine floorcomposedofqratinqoversteelbeamsisprovidedtnsupporttheheatinqandventilating equipment. SPXaZpQpdRefertoF'qures3.8-q5throuqh3.8-98.Thespraypondisareservoir, freeforminshape,vhichholdsapproxima+ely 2Rmilliongalofwa~erduringnormaloperation. Thavatersurfaceareaisapproximately eiqh+acresandhasadepthofapproximately 10ft6in.Itisdesignedsothatnormaloperatinq vaterisretainedinexcavation alone,ie,notbyconstructed embankments. Embankments areprovidedtoensureaminimumfreeboard nf3ftandtodirectfloodwateravayfromsafetyrelato.dfacilities inacontrolled manner.heESSWpumphouse islocatedatthesoutheast cornerofthespraypond.Areinforced concretelinercoverstheentirespraypondandisintegrated withtheoutervallsnftheESSMOumphouse. The'waterlevel.inthepondiscontrolled byavei"housedintheFSSM.pumphouse. Purinqnormaloperation,excessvater'sdischarqed intotlesusquehanna riverviaacorduitfromtheESsMpumphouse. Anemerqency spillvayisprovidedattheeastendofthepond.he'lyarticioated useofthisspillvayvillbeeitherduringamalfunction of'.hedischarge conduitleadinqoutoftheESSMpumphouse ordurinqcertainpostulated floodconditions. Thisisdiscussed inSuhsec~ion 2.4.8.'rhe'SSWandPHPpipesenterthesouthsideofthepondandtraversetothespraybankareasburiedin18in.ofcorcrete, providedasmissileprotection. Concretecolumnssupporttheriserpipesinthespraybankareas.Rev.35,07/8438-55 SSES-PShH TurbjggBgj,gdgjq RefertoPiqures3.9-80through3.8-84,3.8-88'.8-90,and38-q~.Theturbinebuildingisdividedintotwounitswithanexpansion jointset>aratina thetwounits.Ithousestwoin-lineturbineqenerato" unitsandauxiliary equipment including condensersg condensate pumps,moistureseparators, airejectors,feedwater heaters,reactorfeedpumps,motor-generator setsforreactorrecirculating pumps,recombiners, interconnecting pipingandvalves,andswitchqears. Two220-tonoverheadcranesareprovidedabcvetheoperating floorforserviceofboth-tubinegenerator units.Twoeinforced concretetunnels,oneforeachunit,areprovidedfortheoff-qaspioelineatthefoundation levelbe~weentherecomhiners andtheradwastebuilding. Reinforced concretetunnelsarealsoprovidedforthemainsteamlines.belowtheoperating floorfromthereactorbuildingtothecondenser areasoftheturbinegenerators. Theturbinebuildinqrestsonareinforced concretematfoundation. Th~superstructure isframedwithstructural steelhardreinforced concrete. Riqidsteelframessupportthetwo220-.oncranes.Th~yalsoresistalltransverse (east-west) lateralloads.Stoelhracinqsresistlongitudinal (north-south) .lateralloadsabovetheoperatinq floor.Belowthislevel,reinforced concreteshearwallstransferalllateralloadstothefoundations. Aseismicseparation gas,alsoservingasanexpansion )oint,isorovidednearthecenterofthebuildinqbetweenthetwounits.~eismicseparation qapsarealsoprovidedattheinterface ofturtincbuildingwiththereactor,control,andradwastebuildinqs. Thefloorsoftheturbinebuildingareofreinforced concreteonstructural steelbeams.Theyaredesignedasdiaphragms forlate~1loadtransfertothe".hearwalls.Theroofisbuilt-uproof;,.qonmetaldeckinq.Pxteriorwallsareprecastreinforced concetepanelsexceptfortheupper30ft,whicharemetalsiding.Interiorwallsrequiredforradiation shielding orfireprotection areconstructed ofreinforced concreteblock.Thesewallsarenotusedaselementsoftheloadresistant system~Theturbineqeno.rator unitsaresuppor.ed onfreestanding reinforced concretepedestals. Themat-foundations forthenedes+als arefoundedonrockatthesamelevelasthebasematRev35'7/843.8-56 SSLS-PSARfortheturbinebuildinq. Separation pointsareprovidedbetweenthepedestals andtheturbinebuildingfloorsandwallstopreventtransferofvibration tothebuilding. 'heoperating -floorofthebuildingissupported onvibration dampingpadsatthe%opedgeofthepedestal. gOQw5sgQpuj,lgXQQRefer.toPiqures3.8-99through3.8-103.Theradwastebuild'nqhousessystemsforreceiving, processing, endtemporarily storinqtheradioactive wasteproductsqenerated durinqtheoperation oftheplant.Xtisareinforced concretestructure onamatfoundation. Thebearingwa.llsareofreinforced concreteandaredesignedasshearwallstoresistlateralloads.Thefloorsandroofareofreinforced concretesupported byabeamandcolumnframingsystemandarede.iqnedasdiaphraqms toresistlateralloads.Thecolumns.aresupported bybaseplatesonthematfoundation. Thereinforced concretewallsandfloormeetstructural aswellasradiation shieldinq requirements. Mherestructurally nermissible, concreteblockmasonrywallsareusedatcertainlocations toprovidebetteraccessforerectionandinstallation ofequipment. Theblockwallsalsomeettheradiation shielding requirements. Theradwastebuildingisseparated fromtheturbinebuildingbyazap.IN5KLTThecodes,standards'nd speci'fications usedinthedesign,fabrication, andconstruction ofthestructures listedinSuhsection 3.8.4aresho~ninTable3.8-1an4includereference numbers10A,18,1H,2H,3H,1J,2K,3K,and1L.l2A8,'..3Loads.;"dLoadComb.nationsn.hefollowinq loadsandloadcombinations areconsidered inthedesiqnofSeismicCategoryIstructures (otherthanthe.ontainment) .Rev.35'7/843.8-57 SSFS-FSAR O7384,31Descriotion of.Loads~24,Forageneraldescription ofloads,seeSubsection 3.8.1.3.2.Table3.8-8describes theloadrombinations applicable tothereartorhuildinq. TableS3.8-9'ontainptheloadcombinations applicable toSeismicCategoryIstructures otherthanthereactorbuilding. Table3.8-10describes theloadrombinations usedinthedesiqnoftheturbineandtheradvastebuildings. .hestructures described inSubsection 3.8.4.1aredesignedtomaintainelasticbehaviorundervariousloadsandtheircombinations. Theloadsandtheloadcombinations arefullydesrribed in'Subsection 3.8.4.3.Allreinforced concretecomnen+ofthestructure aredesignedbythestrengthmethodqp.'cI~yperACI318(Reft.10A ofTable3.8-1.Allstructural steecomponents aredesiqney.eworkingstressmethodperAISCspecification(ReflHofTable3.8-1).cay>>ADet'ermination of.windandtornadoloadsisdescribed inSection3.3Seismicdeianofs+ructures isdescribed inSection3.7.Thebuildinqs areanalyzeddvramically. Desiqnofstructure formissileprotection i"coveredinSubsection 3.5.3.ComputerprogramsSTRESSandICFSSTRIJDL-II (Ref1and2respectively ofSubsection 3.R.4.8)areusedtoanalyzestrn:..~ural "..":-"'raminq. Therefuelinq'acili'y ofthereactorbuildinqisdesiqnedbasedonfiniteelementanalysisbyuseofcomputerprogramNRI/STARDYNE 3(Ref3ofSubsection 3.8.4.8).47hesoraypondisbasically aconcrete-lined soilstrurture. Itsdesiqnisdiscussed inSubsection 2.5.5.Concretemasonryblockvalls inallSeismicCateqory,T. structures havebeenanalyzeddynamically asdescribed inSection3.7b.3.1.5. Theyaredesiqnedforout-of-plane andin-planeiner+iaforcesgenerated bythemassoftheblockwall andRev.35,0718438-58~- j+58g.7CQa"'IESELGENERATOR UILDING Referto-Figures3.8-l05and3.8-l06rhedieselgenera'o!. i'.bu1ldinchousesthediesel<i,"no,-at<ir, wnicnwillbeusedasareplacement'or anyoneofthe.ou;uxi:;tin>>; dz.eselgenerators. Themainpurposeofthedieselgenerator 'E'stoallowmaintenance tobeperformed onanyoneofthefourexistingdieselgenerators withoutthenecessity foraunitoutage.Thedieselgenerator 'E'uilding isatwo-story structure withabasementconsisting primarily ofreinforced concrete. Agapisorovidedbetweenthepedestalandthefloorslabatgradelevelsothatnovibrations fromthedieselgenerator aretransmitted tothebuilding. Theouterreinforced concretewallsandroofofthedieselgenerator 'E'uilding aredesignedtoresisteffectsoftornadomissiles. Aportiono'ftheouterwallisremovable tofacilitate dieselgenerator installation and/or"emergency removalandmaintenance operation. Thisremovable wallportionisalsodesignedtoresisttheeffectsoftornadomissiles. 0 SSES-PSAR attachment loads,combinedwithotherloadsasdescrihed inTables3.8-8and38-9.Mailsintheturbineandradvastebuildings havebeendesignedforseismicloadsperUBC(Ref.1LofTable3.8-1).gg4QS+guctugg1 ~pepggceggjtegj,a Re2,gfogced Co))QXQie hupA4%309Thereinforced concretestructural components aredesignedbythestrengthmethodperACI318~(ReQ.10A ofTable3.8-1forloadsandloadcombinations described inSusection3.8.4.3.StJ:Zc.uralSter,lAuPl'LAThes+ructural steelcomponents aredesignedbythevorkingstressmethodperAISCspecification (Ref1HofTable3.8-1)forloads.and loadcombinations described inSection3.8.4'.Theallowable stes.esfordifferent loadcombinations areindicated therein.Allmasonryblockvalls arereinforced wallsanddonotactasshearvalls.Masonryblockvalls aredesignedbytheworkingstressmethodperUBC(Ref.1LofTable3.8-1).Theallovable loadsperUBCTables24-Bor24-H(specialinspection) aremodifiedasdescribed inTables3.8-8,3.8-9and3~8-12,exceptasnotedbelow.Fordoublevythcwallsdesignedascomposite sectionsandhavingconcreteorgroutinfillthickness of8inchesormore,theallowable shearortensionbetveenmasonryblock'andinfillis1.1f~i.e.43p.s.i.However,theactualdesignstressdoesno+exceed15p.s.i.Forotherdoublevythewalls,allowable ."-hear/tension stressisassumedtobezeroattheinterface. 3.8.~.6Haterials, Qual'ityControl,andSpecialCogsfgugtiog Tecggj,gus s38461ConcreteandPeinforcina Steelc----~9Theconcreteandreinforcing steelmaterials arediscussed inAppendix3.RP.Concretedesigncompressive strengths aregiveninTable3.8-11.Materials forconcreteblockmasonrywallsarediscussed inAppendix3.RC.Rev.35,07/843.8-59 SSHS-PSAR 'Thevariousstructural steelcomponents conformtothefollowinq specificat ions:ItemReams,qirder,andplatesPoxcolumnsincludinq baseplato.sandcapplatesStructural tubinqHiqhstrenathboltsStudsSpeciQ,gyt2,onASTNA36andASTIA588AST<A588ASTIA500andASTHA501AST".lA325andASTIA490ASSD1~1d>8~4~6~ZaZ Huldinaaalu2aadsizuctiva eatinqMeldinqandnondestructive testinqisperformed inaccordance witheitherAMSD1.1(Ref.10ofTable3.8-1)orSectionEXoftheASIDECede(Ref.1JofTable3.8-1).Rev.35,07/843.8"60 SSES-FSAR g8467,gfabZgglfgon MdgKQ~$29Thefabrication anderectionofstructural steelconformstotheAISCspecification (Ref.1H,28and3HofTable3.8-1).13~8~4~6~g~4 pug],gyContgolgualitvcontrolofstructural steelfortheconstruction phaseisdiscussed inAppendixDofthePSABandamendments tothePSAR.4$g'gycgglConsgpgctgon gecgpigueg Techniques involvedintheconstruction ofSeismicCategoryIstructures arestandardconstruction procedures. g,8~4~7TestingyndI))-gepyice Inypection pegui~emgnfs Testingandin-service inspection arenotrequiredforSeismicCategoryIstructures (otherthan+hecontainment) .3.8.4.8ComputerProgramsUsedintheDesiqnandAnalysisofOtherSggsmgcCgtggo~~Stgug~gQs STRESS,Department ofCivilEngineering, massachusetts Institute ofTechnology 2)ICESSTRUDL-II, Department ofCivilEngineering, massachusetts Institute ofTechnology 3)NRI/STABDYNE (Version3),ControlDataCorporation. Forrthercomouterprograms.efertoSubsection 2.5.5andSection3'3~85FOUNDATIONS Thissubsection describes foundations forallSeismicCategoryIstructures exceptthospraypond.Thespraypondisbasically asoilstructure enditsdesignisdiscussed inSubsection 2.5.5.Descriptions offoundations forsafetyrelatednon-Seismic Rev.35,07g8438-61 SSES-PSARQucateqoryIstructures, suchastheturbinebuildingandtheradvastebuilding, arealsoincludeRinthissection.3~/~5~/pyscgfption ofthegogndgtiggg TypicalRetailsofthefoundations forvariousstructures areshovnonFiqure'.8-104. Reinforced concretematfoundations havebeenprovidedforallstructures. ThematsrestonsoundrockexcepttheESSWpumphouse matissupported bynaturalsoil.Allbearingvallsofthestructures arerigidlyconnected tothefoundation mat.Wheresteelcolumnsareprovided, theyareattachedtothematbybaseplatesandanchorbolts.Thebearingwallsandthesteelcolumns,carryalltheverticalloads.fromthestructure tothemat.Horizontal shearsduetowind,tornado,andseismicloadsaretransferred totheshearvallsbytheroofandfloordiaphragms. Theshearvallstransferthehorizontal shearstothefoundation matandfromtheretothefoundation mediumthroughfriction. Also,asshownonFigure3.8-104,the.idesofthebasematsofallthestructures excepttheESSWpumphouse arekeyed+o<<hefoundation rockallaroundbypouredconcrete, vhichhelpsintransferrinq thehorizontal shearstothefoundation rock.TheedqesoftheESSWpumchousebasematarepoureddirectlyaqainsttheexcavated slopesofthenaturalsoilformation. Amudmat(unreinforced concretelayer)isprovidedbetweenthebaseofthefoundation matandthefoundation medium.ExceptfortheESSWpumphouse, avaterpoofingmembraneisprovidedinthemudmatardontheoutsidefaceofperipheral subterranean wallsperforated pipesareprovidedaroundtheperiphery oftheb'uildinqs tocollectgroundvater seepageanddrainittothesumps.Waterproofing membraneurdertheESSWpumphouse foundation matisnotconsidered necessary asthepredicted groundwater, tableatthepumphouse siteiswellbelovthefoui".tion mat-refertoSubsection 2.5.5).Peripheral subterranean vallsaredesignedtoresistlateralpressures duetobackfill, qroundvater, andsurcharge loads,inadditiontodeadloads,liveloads,andseismicloads.Cd@<<gj,ggapg: Thecontainment foundation isdescribed inSubsection 3.8.1.gyagtogBuild/I)g andCogtgolQuilting: Thefoundation matsofthereactorandcontrolhuildinqs arepouredmonolithically. Rev.35,07r843~8-62 SSES-PSAR Thereactorbuildingfoundation matisapproximately 4ft9in~thick-.and isreinforced typically withf11barsat12in.centers.attopandbottominboththenorth-south andeast-vest directions. Thematsurrounds thecontainment mat,withacoldjointseparating thetvo.Thecontrolbuildingfoundation matisabout2ft6in.thickandisreinforced typically with48barsat12in.centersattopandbottominthenorth-south direction andf11barsat12in.centersattopand$8barsat12in.centersatbottomintheeast-west direction. Acoldjointisprovidedbetveenthecontrolandtheturbinebuildingmats.Oping~],Gogegagog Bujlaqnq: Thefoundation matofthe.dieselaenerator building'isapproximately 2ft6in.thickandisreinforced typically with49barsat12in.centersattopandbottominboth+henorth-south andeast-vest directions. hcoldjointisprovidedbetveenthedieselgenerator pedestalmatandthedieselgenerator buildingFSSQgum@house: Thefoundation matoftheFSSMpumphouse isabout3ftthickandisreinforced typically vith09barsat12in.centersat+opandbottominboththenorth-sout'h andeast-vest directions. guqbineBuilding: Theturbinebuildingmatisapproximately 2ft6in.thickandisreinforced typically vith06barsat12in.cent'ersattopandbottominboththenorth-south andeast-west directions. Acoldjointisprovidedbetveentheturbinepedestalmatandtheturbinebuildingmat.gagvasggBujgging: Theradvastebuildingmatisabout3ftthickandi..reinforced typically vith49barsat12in.centersattopandbottominboth-thenor+,h-south andeast-west directions. II4$6Rihecodes,standards, andspecifications usedinthedesign,fabri.".ation, andconstruction offoundations ofstructures arelist..inTable3.8-1.Theloadsandloadcombinationsusedinthedesignofthecontainment foundation aredescribed inSubsection 3.8.1.3.Theloadsandloadcombinations usedinthedesignoffoundations ofotherSeismicCategoryIstructures arediscussed inSubsection 3.8.4.3.Inaddition, thefollowing loadcombinations areBev.35,07/843~8-63 SSES-FShR considered todetermine thefactorsofsafetyagainstslidingandoverturning duetowinds,tornadoes, andseismicloads,andaqainstflotation duetogroundwater pressure: a)D+H+Wb)c)D+H+W'RDe~+eS,D+,H+'Ed)D+H+8')D+Pwhere:D,W,W',S,andE'reasdescribed inSubsections 3.8.1.3and3.8.4.3andHandPareasfollows:H=LateralcarthpressureF=Buoyantforceduetoqroundwater pressure. g~g~g~4Pepingpd ggalgsgsPgoceduges Thefoundations areqenerally designedtomaintainelasticbehaviorunderdifferent loads-andtheircombinations. Theloadsandtheloadcombinations aredescribed inSubsection 3.8.5.3.Thedesignandanalysisofthereinforced concretematfoundations havebeencarriedoutinaccordance withACE318A<oAcZ549(Refs.10A~fTahie3.8-1).-AwDI>AThehearingwallsandthesteelcolumnscarryallthevertical,loadsfromthestructure tothefoundation mat.The-lateralloadsaretransferred totheshearwallsbytheroofandfloordiaphragms, whichthentransmitthemtothefoundation mat.Dotermination ofoverturning momentdue,toseismicloadsisdisc'issed inSubsection 37."..14.%bFxceptforESSWpumphouse, settlement ofthefoundations ofSeismicCategoryIstructures isconsidered negligible asthefoundations aresupported hysoundrock.Thesettlemen oftheHSSWpumphouse matisconsidered inthedesignandisdiscussed inSubsection 2.5.4.As~xplained inSubsection 3.8.5.1andshowninFigure3.8-104,thesidesofthefoundation mats(exceptfortheKSSWpumphouse) arekeyedtotherockbypouredconcrete, whichresistsslidingofthemats.Stability aqainstslidinqfortheESSWpumphouse isRev.35,07/8438-64 XNSERT'D'XESELGENERATOR UXLDXNGMATThefoundation ofthedieselgenerator 'E'uildin isa3'-10"thickandzsreinforced tyllhcentersattopandbottominboththenorth-ypicaywith59barsadirections. oenort-southandeast-west

SSFS-FSAR maintained bythefrictionontheunderside ofthebasematandpassiveresistance ofthesoilagainsttheedgeofthemat.Detaileddescription ofthefoundation rockandsoiliscontained inSubsections 2.5.4and2.5.5.Pordesignpurposes, thea'llowable bearingpressures ofrockandsoilare40and2.5tons/sq-ftrespectively. Thecalculated bearingpressures forloadsandloadcombinations described inSubsection 3.8.5.3donotexceedtheseallowable values.'JThedesignandanalysisofthecontainment foundation matarediscussed indetailinSubsection 3.8.1.4.3~8~5~)Stggcgugy1QccgpfggeeQ$teggaThefoundations ofallSeismicCategoryIstructures aredesignedtomeetthesamestructural'cceptance criteriaasthestructures themselves. Thesecriteriaarediscussed inSubsections .3.8'.5and3.84.5.Inaddition, fortheadditional loadcombinations delineated inSubsection 38.5.3,theminimumallorable factorsofsafetvagainstoverturning, sliding,andflotation areasfollows:I.ggdComggngtj,an Oyertuggigg SlidingFloatation a)b)c)d)e)D+H+I1.5D~H~W~~aD+H+W~s1.1D+H+81~5D+H+P.i11D+P1~51~11.51~1Thecalculated factorsofsafetyexceedtheaboveminimumfactorofsafetv.4ev.35,07/843~8-65 SSES-PSAR 3~8~5~6Haterials,'uality Control,andSpecialconstruction Taahnlm~a Thefoundations ofSeismicCategoryIstructures areconstructed ofreinforced concrete. Theconcreteandreinforcing steelmateria.ls arediscussed inAppendix3.8B.Concretedesigncompressive strenqths areqiveninTable3.8-11.Techniques involvedintheconstruction ofthesefoundations arestandardconstruction procedur'es. Thecontainment foundation isloadtestedduringthestructural acceptance testasdescribed inSubsection 3.81.7Anin-servicesurveillance programtoaonitorthesettlement oftheESSIpumphouse foundation hasbeeninstituted. Detaileddiscussion oftheproqramiscontained inSubsection 2.5.I.Testinqandin-service inspection isnotnecessary forfoundations ofallotherSeismicCategoryIstructures. pev,35,07g803.8-66 SSES~LRXhl(52+9=1LISTOPAPPLICABLE CODESSTANDARDS RECORRENDATIONS ~LNDSPECIFICATIONS Page1of6Reference NuahecDesiqnation TitleEditloniQg'6,ELDER.(A)hnariaaacaaararazaifirafB LCI2111ACI21qACI301Lcy304Becoaaended PracticeforSelecting Proportions forNocaalaadHeavyveiqht CoacreteRecoaaended PracticefocEvaluation ofCoapression TestResultsofPieldCoacreteSpecifications forStructural ConcreteforBuildings Recoaaended Pcacti.ce forBeasurinqiBiringgTransporting, andPlacingConcrete197019651972197319()977)98l(9787A10A12L13lACI305LCI306ACI307ACI308ACT309ACI318ACI3q7LCI399ACISP2Recoaaended PracticeforHotNeatherConcreting Recoaaende4 PracticeforColdQeatherConcreting Specification.fortheDesignan4Construction ofReinforced ConcreteChi.aneys Recoaaunded PracticeforcuringconcreteRecoaaended PracticeforConsolidation ofConcreteBuildinqCodeRequireaents forReinforced ConcreteBecoaaended Practicefo'rConcretePocavorkCciteciafocReinforced ConcreteNuclearPaverContainaent Structures (included inACIannualofStandar4Practice, Pact2,1973)RanualofConcreteInspectioa 19721966(1972)1969197'11972197119681975(917)$78l98((077(978)$8l(8)hn~ricdnMeldingRaaintx18LNSDl1Stcuctucal NeldinqCode1972(Generally allvock)19a~1975,1980,1981(SoaevockafterJune1975)28ANSD121Recoaaended PracticeforNe14ingBeinforcing Steelan4connections inReinforced concreteconstruction 1961Ciprinciplp //ditions usedarelisted;laterppditions maybeapplied,forspecificcases>clhSp16SECcz<ekAToR ~8uicAl4$.Rev.35,07/84 Reference NuaberDesianation SSES-PSakk KALI@1B-1iConlin004). Title-EditioniP~ae2of6bQCBLDG,.(C)q5HRQl.Bif. BBBRlRCBfY CQRBiM1MICBG110Bschaaical {Cadveld) SplicesiaRei.nforciag BarsofCategoryIConcreteStructures Revision\Jaa19732C3C4CSC6C7CSCRG1~15BGI~IBRGI19BGI54RGI~SSBG1~57BG1kSBTestingofReinforciag BarsfocCategoryICoacrsteStructures Stcuctural Ac"sptaacaTestforCoacretsPciaaryReactorContainaents Iloadsstructive Exaaiaatioa ofPriaaryCoataiaasat LinerRsl4sQualityAssucaace Reguireaents forProtective CoatingsAppliedtoRater-Coole4 PovsrPlantsCoaccstsPlaceaeat iaCategorylStructures DesignLiaitsandLoadingCoabinations forBetalPriaacyReactorCoatainasat SysteaCoaponeats rQualification ofRuclsarPovsfPlantZaspectionr Exaainationr andTestingPsrsonael Revision1Dec1972Revision1Dec.1972Revision1Aug.1972June1973June1973June1973Aug.1973CoacreteRadiatioa ShieldsforNuclear-Pover PlantsBGI~69RG1~94QualityAssurance Bsquireaeats forIastallationr Inspection, andTestingofStructural Coacretean4Stcuctucal SteelDuciagtheConstruction PhaseofNuclearPoverPlaats10CC~<fIASf/LPE~lklkkrirkk-.kkiktxoikkkkiikkkkkckkkkiklk Dsc1973Apr1975AP/t.I976,102030ASTIAS)9ASTBA615ASTBC29ASTBC31SeaalesaCacbonaadAlloySteelNechaaical TubiagDsforsedaa4PlainBilletsteelBarsforconcreteReinforcsaent UnitVsightofAggregate llakiaqandCuciagCoaccsteTestSpeciasns inthePisid19711974,19751972r1974r1975'I9711969I983C~g.kI5ABATOR~principl)/ Xjditions usedarelisted>laterjj(ditions maybeappliedforspecificcases>SOC)) ASDI<eO)l.yIQQ.Rev.35,07/B4 SSES-FSLR spill,gia-1gcookkRH94l. Page3of6Reference NuabarDesignation TitleEditionoDO'Cl3t.OC,.7Danqn10o11D12D13D14n15O16DLSTNC33LSTNC39LSTNC40LSTNC87ASTNC88LSTNC94ASTNC109ASTNC117ASTNC123LSTNC127ASTNC128,ASTNC131Concrataiqqragatas Coapraasiva StrengthofCylindrical ConcreteSpeciaans Organictapurities inSandsforConcreteEffectofOrganicZapurities inFineAggregate onStrengthofNortarSoundness ofAqgraqates byUseofSodiuaSulfateorNaqnasiua SulfateReady-Nixad Concretecoaprassiva stronqthofHydraulic caaeatNortarsNaterials FinerthanRo.200SieveinNineralAqqraqates byMashingLiqhtvaiqht PiecesinAggregate specificGravityan4Absorption ofCoarseLgqragata SpecificGravityandlbsorption ofPineLgqregate IResistance tonebraskan ofSaallSizeCoarseAggregate byUsaoftheLos.AngelesNachine1971r197419721966'97319691971'9731973~19741973,1975196919691968,19731968,19731969tgeli979>)7619SBi98ol98olg&3<)8Il919l)SI17D18020n22D23DASTNC136ASTNC138LSTNC142LSTNC143lSTNC150LSTNC215ASTNC231SieveorScreenAnalysisofFiaean4CoarseAggregates UnitMakqht~yieldsan4lircontentofConcreteClayLuapsan4FriableParticles inlgqraqatas SluapofPortlan4CaaantConcretePortlandCaaaatFundaaantal Transverse, Lonqitudinali an4Torsional-Fraquancias ofConcreteSpeciaans LirContentofFreshlyNixadConcretebythePressureNathod19711973'974'975 19711971,19741973~1974r1976+1978'9601973~1974~1975(ps3itsl>9781978l980>yP4A-+>ylgS6i,l48l4SC,ATOL 6*Principld Zjfditions usedarelisted;laterNditionsmaybeappliedforspecificcasespli'OitSl46Rav.35,07/84 Reference NuabecDesignation SSES-PSLH ThQl,a)5=}}coafiaaail Page4of6EditionvDg'SLDQ.24D25n26027028D29n3nn31D32n3'10ASTHC235'ASTHC260ASTHC289LSTHC295ASTHC311ASTHC330LSTHC469LSTHC494ASTHC566ASTHC618ASTHC637ScratchHardnsssofCoarseLqqregate Particles AirEntraining Ldaixtures focConcretePotential Reactivity ofLqqregates Petrographic Exaaination ofLqgregates forConcreteSaaplingandTestingPlyLshforUseasaaLdaixture inPoctlandCeaentConcreteLiqhtveiqht Aggregates forStructural ConcreteStatl.cHodulusofElasti.city andPoisson's RatioofConcreteinCoapcession cheaicalAdaixtures forConcretetotalHoistureContentofLggcegate byDcyinqPly.LshandRavorCalcinedHaturalPoxxolans forUseinPortlan4CesentConcreteLqqreqates forRa4iation Shiel4ing Concrete19681973'9741971196519681969m197519651971196719731973198II)7glg82.f978(E)hREKicaahaaaQiakiaa ofuatalliahMRY404XXaaramlaliaa~Uakali LASH'TOT26AASHTOT150AASHTOT161[plLt5hfaYcnL'Baof Eaaiaaal'a QualityofHatertobeUsedinConcreteParcentaqe ofParticles ofLessThan1.95SpecificOravityinCoarseAggregate Resistance ofConcreteSpeciaens toRapidPreexinqan4thavinginRater1970194919701P2PCRDC36CRnc39TostforTharaalDiffusivity ofConcreteTestfocCoefficient ofLinearThecaalExpansion ofConcrete197319553PCRDC1194FCRJ)G572+Principlg ypditions usedarelistedgTestfocPlatan4Elongated Particles inCoarse1953Lqqreqate5pgclFlCA/If'ORPolVVI<VLclLOkl>a HgTLRSgoP 1970iaterpdditions maybe,appliedforspa.cific casesy50C HhSDl6$EL.Ca<~<4~oR~L>i<4PCgRov.35,07/84

0Reference HuaberDesiqaation SSES-PSAhThh))lys=llcanlinna4). Tit.leEdition+Page5of6QG,'a)L<yq.(G)haaxjnaannziannlQlaadax{la Iaaajhnln 10LHSIHu'5~2~5Supplesentacy QLRequireaents forInstallationt Inspection andTestingofStructural ConcreteandStructural SteelDucingtheConstcuction PhaseofHucleacPoverPlants.1972)$7'dSfa.TFAHSIH1016ConcreteRadiation Shields(H)daarjnaaInnljlnja af5lnnlQanajrncljon 19721HLISCSpecification fortheDesign,Pabricstion, andErectionofstructural SteelforBuildings andSupplesent Hos.1~2and3196907s2HAISCCodeofStaadardPracticeforSteelBuildings andBridges1970(Soaevorkbefore))0761972(Generally allvock)1976(SoaeworkaftecSept1976)3H4HAISCAISCSpecification forStructural JointsUsingASTIA325orl490BoltsSpecification forthedesign~fabrication anderectionofStructural Steel.forbuildiags 1966,1972 and197&1978(SoaevorkafterJuly1977))f75(J)dan@jean50njntXafnachanjgaj hagjaaaca ASHEASHEBoilerandPcessureVesselCode,SectionsII,III,V,VIII'ndIX1971vithAddendathcoughSusaer1972{K)gacb)ejpnHRICDIaolaljnn~ dnagKangjanai CnjjfnKnja~,goajcaj ))apogean 1K2K3KBC-TOP-1DC-TOP-4-l DC-TOP-9A Containaent BuildinglinerPlateDesignReportSeisaicAnalysesofStructures andEquipaent torHuclearPoverPlantsOesiqnorStructures forHissileIspactRevision1Dec1972Revision3Hov1974Revision2Sept1974(L)IntngndjjnnaiCnnfefaaca oft)ajjgjng OffjcjajsA8<eg&nhloP-c~Principlpfgpfditions usedarelisted>later+ditions maybeappliedforspecificcases>~VC.HA>SuLDIIJQ.Rev.35,07/84 .Reference IlnaherDesiqnation SSES-PSLa. ~ggl,g3S-1ICoatinue41. TitleBditionePage6of6UniforaQuildinqCode1973,1976Principljjfj(ditions usedarelistedslaterpgditions maybeappliedforspecificcasesSVCn4><4al6RAToREWIt>~<0.Rev.35,07/84 12CINSERTQQktgOoooSTaADhRPRGVJGQpCAQFOL1'l<a~~~>>~oF~+Fa~~AiALgstsQgp>pygFoRHvccbhRPoplck1.28QualityAssurance ProgramRequirements 2/79(DesignandConstruction) 1'fC1.60Rev.1DesignResponseSpectraforSeismicDesignof12/73NuclearPowerPlantsACl.61Rev.0DampingValuesforSeismicDesignofNuclear10/73PowerPlants15C1.76Rev.0DesignBasisTornadoforNuclearPower':;Plants 4/74lgC1.92Rev.1AC1.117Rev.Combining ModalResponses andSpatialComponents inSeismicResponseAnalysisTornadoDesignClassification 2/764/781PC1.132Rev.1SiteInvestigations forFoundations ofNuclear3/79PowerPlants)ACl.142Rev.1Safety-Related ConcreteStructures forNuclearPowerPlants(otherthanReactorVesselsandContainments) 10/81 IH5ERQpZcFGR~WC~ao. 9a'ipHATipseANSIN45.2TITLEQualityAssurance RequirementsforFacilities, Rite%ProgramNuclearSb>T>Oul977ANSIN45.2.2Packaging,

Shipping, Receiving, StorageandHandlingofItemsforNuclearPowerPlants,i)78N45.2.5Supplementary QualityAssRequirements forlation,Inspectio TestingofSalConcreteandtructuraelDuringtheConstruction PhaseearPowerPlants,1974ANSIN45.2.6Qualifications ofInspection, Examination andTestingPersonnel fortheConstruction PhaseofNuclearPowerPlants,i)78,IIANSIN45.2.9Requirements forCollection, Storage,andMaintenance ofQualityAssurance RecordsforNuclearPowerPlants,ANSIN45.2.10QualityAssurance TermsandDefinitions, sqANSIN45.2.11QualityAssurance Requirements fortheDesignofNuclearPowerPlants,ANSIN45.2.12Requirements forAuditingofQualityAssurance ProgramsforNuclearPowerPlants,l)7IIANSIN45.2.13QualityAssurance Requirements forControlofProcurement=

ofItemsandServicesforNuclearPowerPlants,I<76lipANSIN45.2.23Qualifications ofQualityAssurance ProgramAuditPersonnel forNuclearPowerPlants,l)78E9'i71045ARE05t'.'II SSES-FSAR TABLE3-a-8(P~1<>~4)Q6LOADCOHBENATZONS APPLICABLE 703:-ACOHBUELDINr, W~s,=<<Ta,P~o'KIHIT/Missla.6Iop>Notations Ifs=Fs=Fy=Ho=Ha=DsD's.v'indloadTornadowindloadCalculated stressinstructural s"e1Allovable stressforstructural steelYieldstrengthofstructu"al seelForceonstructure dueto..hermalexpansion ofpipesunderope"ating conditions "-orceonstructure duetothermaliexpansion ofpipesunderacciden+,,condi.ions Forceonblockvall duetostorydriftunderoperating BasisEarthquake LoadingForceonblockwall duetostorydriftunderSafeShutdownEarthquake LoadingAllowable stressforreinorcedcon"retemasonryperUBC,Table24-H(specialinspec..ion) forglobalwallanalysis; orallovable stressorunreinforced concretemaonryperUBCTable24-3(specialinspection) fo=localvalianalysisasaresultoa.+achments. Allovable vorkingstressintens'onfo"reinforcing steel(asspecified inUBC).Yieldstrengthofreinforcing -teel.Forallothernotations, seeTable3.8-2.A>einorcedConcreteNormaloperating loads:U=1.4=.--:1.7L+1.0T +25H00Normaloperaingloadsvi.hSevereenvironmental loads:U=0~75[14D+1~7L+1~7(1~1)E]+1~OTO+1~25HHU=075(14D+17L+17H)+1OTO+'25HoWhereoverturning forcescausenettens'onintheabsenceofliveload,thefolloving loadcombinations areconsidered: U=0~9D+13{11)E+1~OTo~1~25U='090+139+1OTO+125HoRev.35,07/84

SSES-.".S ARTABLe3.8-8~Continue+) (p82ofn)Pors"ucuralshearwallscarryingse'smi"orces,thefollowing loadcombination isalsoconsidered: U=1.0D+1.0I+1 SE+1OTo+1.25HoNormaloperating loadswithExtremeenvironmental loads:7=1OD+1.0L+1.0T +1.0W'1.0HNormaloperating loadswithAbnormalloads:U=1.05D+105L+10(To+T)+1.0P+l.5P+1.0HoaNormaloperating loadswithSevereenv'ronmental andAhnormalloads:rU=1OSD+105L+1~0(TO+T)+1~OR+125.+125E+10HoWhereoverturning forcescause,net tension'ntheabsenceoliveload,thefollowing load,combination isconsidered: U=0e95D+125E+10(To+T)+1~OR+10HoNormaloperating loadswithExtremeenvironmental andAbnormalloads:U=1.0D+1OL+1e0(To+T)+1.0-'+1~OP+1OR+1.0U=1OD+1OL+1OTo+1Sc,'+1-OR +1.25HaRev.35.07/84 SSZS-FSARTABLE3.8-8~Continue"..) (Pg3of4)B.Structural SteelCondition LoadCombingionAllowable StressIncreaseNormaloperating loads:Normaloperating loadswithSevereenvironmental loads:Normaloperating loadswithExtremeenvironmenta1loads:Normaloperating loadswithExtremeenvironmental 'andAbnormalLoads:D.+L+T+00D+L+To+5+HoD+L+T+N+H00D+L+T+-.l~.+H00D+L+R+T+"+P+HD+L+R+(T+T) +P+~'Hl.25Fs>.33FASeenotebelo~Seeno.ebelo~Seenotebelo~Note:;heallowable stressinstructural steeldoesnotexceed,O.gFyinbending,0.35Fyinaxialtensionorco~pression, and0.5Fyinshear.<<hereZsisgovenedbyrequirements ofstability (localorlateralbuckling}, fsdoesnotexceed1.5Fs.Rev.35,07/84 SSES-...SAP.TILB~E3.~8-8 ContgnuEB) (u8uuf8)QzqC.Conc"ete<ason~rStructures~31ockra lieLSafety"elatedblockwalls incategory.".stucturesothe"than"hereactorbuildingaredesignedforthefollowing loadcombinations andallowable stressincrease. Theload"ombinations applytoout-o-planeloadingassellasin-planeloading.Acceptance criteriaisinaccordance vithSubsection 3.8.4.5.Condition LoadCombination Allovab1e StresIncreaseNormalNormal/Severe Normal/Extreme AbnormalAbnormal/Severe .Abnorma1/ExtremeD+L+T+HoaD+L+T+H+E+D00sD+L+T+H+o0D+L+(T+T}+q+0 oa.aD+L+(T+T)+3!+H+1~25E+Doa"'a"sD+L+(T+T)+2+2+E'+D'a-"asNoincreaseNoincreaseSeeTable3.8'SeeTable3,8SeeTable3.8SeeTable3.8Rev. SSES-FSAR TABLE389(pgIpf3)LOACCOMBINATIONS APPLICABLE TOSEISMICCATEGORYISTRUCTURES OTHERTHANCONTAINMENT~M4 REACTORBUILDINGSLABSCl"QEAGRATOR.~6Sett.DtdNotations: SeeTables3.8-2and38-8A.ReinfocedConceteNormaloperatinq loads:U=14'D+17L+1~OTp+1.25HpNormaloperating loadswithSevereenvironmental loads:YU=075(1>>4D+1 7L+17(1~1E))+1OTo+125"oU075(14D+17L+17W)+10Tp+1 25HpWhereoverturninq forcescausenettensionintheabsenceofliveload,thefollowing loadcombinations areconsidered: \UO~9D+13(,11E)+1 ~Of()+125HUO~9D+13W+1~OTp+125HForstructural elementscarryingmainlyseismicforces:U1~0D+1~OL+18E+1OTp+125H'ormaloperatinq loadswithExtremeenvironmental loads:U=1'DC+1OL+1OW'+1~OTp+1.0HpNormaloperating loadwithSevereenvironmental andAbnormalloads:U='.-05Dt1.05L+1~<5E+1~0(Tp+Ta)>1.0R+1.0HWhereoverturning forcescausenettensionintheabsenceofliveloa<i,thefo1lowinqloadcombination isconsidered: 0=0>>95D+l>>25E+1~0(Tp+Ta)+1>>OR+1>>0HaNormaloperating loadswithExtremeenvironmental and'bnormal loads:U10D10L1E10To10R12HoU100+10L+1"DE+10(To+T)+10R+ 10HRev.35,07/84

SSES-PSAR TABLE3.8-9QContinuedg <pg~B,StgucturalSteelConditionrNormaloperating loads:Normaloperating loadswithSevereenvironmental loads:Normaloperating loadswithExtremeenvironmental loads:Normaloperating loadswithExtremeenvironmental andAbnormalloads:LoadCombination D+L+To+D+L+To+E+QD+L+To+M+Ho D+LiTp+N'+Hg D+L+R4To+F '+NoD+L+R+To+Ta4 8'+HaAllowable StressPs1.25Fs33PsSeenotebelowSeenote'elow SeenotebelowNote.Theallowable stressinstructural steeldoesnotexceed0.9Fyinbending,0.85Fyinaxialtensionorcompresion,and0.5Pyinshear.%herePsisgovernedbyrequirements of.stability (localorlateralbuckling) ~fsdoesnotexceed1.5Ps.Rev.35,07/84 SSES-FSAR TABLE3.8-9Continued (pg.3of3)C.ConcreteMasonrStructures Blockwalls Safetyrelatedblockwalls inthereactorbuildingaredesignedforthefollowing loadcombinations andallowable stressincrease. Theloadcombinations applytoout-of-plane loadingaswellasin-planeloading.Acceptance criteriaisinaccordance withSubsection 3.S.4.5.Condition NormalNormal/Severe Normal/Extreme AbnormalAbnormal/Severe LoadCombination D+L+T+HooD+L+T+H+E+DoosD+L+T+H+W'00D+L+(T+T)+R+1.25P+8aD++(To+a)++1o25P+Ha+1~25E+DsAllowable StressIncreaseNoincreaseNoincrease.SeeTable3.8-12SeeTable3.8-12SeeTable3.8-12Abnormal/Extreme D+L+(To+Ta)+R+P+Ha+D's+E'eeTable3.8-12Rev.35,07/&4

TAUIE3.8-9aLoadCombinations forDieselGenerator 'E'uilding (Seetables3.8-2and3.8-8fordefinitions ofloadsandothernotations)TheDieselGenerator 'E'uilding isdesignedforthefollowing loadcombinations: A.Reinforced ConcreteServiceLoadCombinations: a.U=1.4D+1.7Lb.U=1.4D+1.7L+1.9Ec.U=1.4D+1.7L+1.7Wd.U='.2D+1.9Ee.U=1;2D+1.7WWheresoilorhydrostatic pressures arepresentandhavebeenincludedinLandD,z.nadditiontoallthepreceding combinations, therequirements ofSections9.2.4and9.2.5ofACl318.77havebeensatisfied. FactoredLoadCombinations: a.U=1.0D+1.0L+l.OE'.U=1.0D+1.0L+1.0Wc.U=1OD+1.0L+1.0WmsRegarding preceding loadswhicharevariabl~, thefullrangeofvariation havebeenconsidered inorderto'etermine themostcriticalcombination ofloading. PAgf2.OE23HB.Structural SteelThefollowing combinations ofloadingshavebeenconsidered inthedesignofstructural steelseismicCategoryIstruc-tures.Sistherequiredsectionstrengthbasedontheelas-ticdesignmethodsandtheallowable stressesdefinedinPartIofAmericanInstitute ofSteelConstruction (AISC)Specifi-cationfortheDesign,Fabrication andErectionofStructural SteelforBuildings,

November, 1978,exceptthatthe33-percentincreaseinallowable stressesforseismicorwindloadingshasnotbeenpermitted.

Indetermining themostcriticalloadingcondition tobeusedindesign,theabsenceofaloadorloadshasbeenconsidered asappropriate. ServiceLoadCombinations a.S=D+Lb.S=D+L+E c.S='+L+WFFactoredLoadCombinations a.1.6S=D+L+E'.1.6S=D+L+Wtc.'.6S=D+L+Wms SSES-FSARTABLE3,8-11CONCRETEDES1GNCONPRESSXVE STRENGTHS 8tgnctu~e>urbinegenerator pedestalAllotherSeismicCategoryIandsafety-related, non-Seismic CateqoryIstructures andtheirassociated foundation matsincludinq: a)Containment(includinqitsinternalstructures) b)ReactorBuildingr)ControlBuildingd)DieselGenerator Buildinge)ESSVPumphouse E)SprayPondq)TurbineBuildingh)RadwasteBuildingA.)g($,56446~KNATO~ConcreteDesignCompressive

Strength, f'c(osis30004000Rev.35,07/84 SSES-FSAR QscAPPENDZX388CONCRETE, CONCRETEMATERIALS'UALITY Naterials, workmanship, andqualitycontrolarebasedonthecode,standards, recommendations andspecifications listedinTable3.8-1.Thesedocuments aremodifiedasrequiredtosuittheparticular

'conditions associated withnuclearpowerplantdesignandconstruction whilemaintaininq structural adequacy. Extentofapplication andprincipal exceptions are-indicated herein,andasfollows:ACX221=72a).Provisions ofACI301-72,Chapter12~CuringandProtection, shallbemodifiedasfollows:')gagggggph 1g.2~1shallberevisedtoreadasfollows:~"Forconcretesurfacesnotincontactwithforms,oneofthefollowing procedures shallbeappliedimmediately aftercompletion ofplacement andfinishinq exceptthatthecuringprocessmaybeinterrupted asnecessary nottoexceed8hoursprovidinq requirements forweatherprotection aremaintained. Suchcuringprocessmaynotbeinterrupted morethantwicewithaminimumof8hourselaosinqbetweeninterruptions. Ifthecurinqi"interrupted forupto8hours,thecurinatimeshallbeextendedtoprovideatotalof7dayscurinq.ii)gyggggggQ 1g,2~/shallberevisedtoreadasfollows:<Curinginac"ordance withSection12.2-.1and12.2.2shall',be contained foratleast7daysinthecaseofallconcreteexcepthigh-early- .'trenqth concreteforwhichtheperiodshall,beatleast3days.Alternatively., iftestsaremadeofcylinders keptadjacenttothe'tructure andcuredbythesamemethods,moistureretention measuresmaybeter'minafed priorto7dayswhentestresultsindicatethattheaveragecompressive

strength, hasreached70percentofthespecified
strength, f'c.Requiredperiodofinitialcuringneednotbeqreaterthanthelesserofthetwoperiods.Ifoneofthecuringprocedures ofSection12.2.1.1through12.2.1.0isusedinitially, itmaybereplacedbyoneoftheotherRev.35'7y803~88-1

SSES-PSAR Qpinterpretation ofthesedetaildrawingsinerectingthereinforcinq steel.WhilethisisalsotrueofBechtelfieldoperation ~wedohavetheadditional helpandquidanceofthefieldenqineers bothduringthe"installation phaseandfinallyattheinspection phasenriortofinalsiqn-offonthereportcard.Thefieldenqineers havetheaddedbenefitofbeinqabletoplanandwitnesstheactualinstallation andcan,therefore,.better foreseeanydi.fficulties inmeetinqtheintendeddesiqnrequirements. Theirassessment ofthesituation isfurtherassistedbyrequlartelephone communication withthedesiqnenqineers whoalsoperiodically visittheJobsite.Theaboveprocedure ofdelegation ofthedesiqnengineering office'sresponsibility tothefieldpersonnel andperi.odic monitorinq hytheenqineerinq officeensurescorrectness andconformance oftheshopdrawingstothedesigndrawingsand-therefore meetsthe-intent ofRequlatory Guide1.55(gsELg~hlENAbR8c(ILb/AAfAyeR]Al.s~WO((l4H~NSHh'e8 ~oA(.(v'yCoarwoLQ4E'%7oRS4u(Cbldg4'Mgccoggg~cc >I7qg~'gCDES~s7x~dhass, SpE'cl+icn rrW~us4WcRaw(((.4rozy Cozogs,4uc) AQUI.boc.uHE<7$ LlsTFP<<f~&.'e38-/.Ro.v.35,07r8((38B-17 sjPII.I+INI~.-IyD+~liV~i~~-CGA:=~I~-~0T840WU~T(ueRC IVWRCECOI4CCA'fCRg040l/V~il=~~I-QQ'=M'-=~Ilgy+I=WWI~ICWL.,I=OLIWUW IlOI~')'=IWII!~I:AC7OHCONTRQIVII-SI=IBI=%I-RAIOfhDl~szc<i~~eresRmalnw~II=~luwel!MI=Hullc)IIRG-~)rR.aACKF>t>-III~Jza2/)~MrIIU~-V='3I~-.0OO4gXi=Fil~.c~P.~tv=.~~=ZI=:i.RGOVCc.J.0'oc.J.~04Mn'LL~~U~ri~W(vhlRPwFopCBD CoNC.LAYER)I=OUIIC)WIle'VC)~I'll~ST~ialm,~i-IDLY I=Rev.35,07/84SUSOUEHANNA STEAIIELECUNITS1ANO2FINALSAFETYANAL'IQUIIEXO-104}}