SVPLTR 06-0058, Core Operating Limits Report Cycle 20, Revision 0

From kanterella
(Redirected from SVPLTR 06-0058)
Jump to navigation Jump to search
Core Operating Limits Report Cycle 20, Revision 0
ML063420070
Person / Time
Site: Dresden Constellation icon.png
Issue date: 11/29/2006
From: Bost D
Exelon Generation Co, Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
SVPLTR #06-0058
Download: ML063420070 (41)


Text

Exekrn. Nuclear Exelon Generation Company, LLC www.exeloncorp.com Dresden Nuclear Power Station 6500 North Dresden Road Morris, IL60450-9765 November 29, 2006 SVPLTR: #06-0058 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington D.C. 20555-0001 Dresden Nuclear Power Station, Unit 3 Renewed Facility Operating License No. DPR-25 NRC Docket No. 50-249

Subject:

Core Operating Limits Report for Unit 3 Cycle 20 Revision 0 The purpose of this letter is to transmit the Core Operating Limits Report (COLR), Revision 0, for Dresden Nuclear Power Station (DNPS) Unit 3 operating cycle 20 (D3C20) in accordance with Technical Specifications Section 5.6.5, "CORE OPERATING LIMITS REPORT (COLR)."

The Unit 3 COLR was revised to utilize Westinghouse methodologies, which are approved by the NRC, for the transition to OPTIMA2 fuel and to support the reload design for Cycle 20.

Should you have any questions concerning this letter, please contact Mr. Jim Ellis at 815-416-2800.

Respectfully, Danny Bost Site Vice President Dresden Nuclear Power Station

Attachment:

A - COLR for Dresden Unit 3 Cycle 20, Revision 0 cc: Regional Administrator - NRC Region III NRC Senior Resident Inspector - Dresden Nuclear Power Station

,4ooJ

Attachment A COLR for Dresden Unit 3 Cycle 20 Revision 0

COLR Dresden 3 Revision 2 Page 1 Core Operating Limits Report for Dresden Unit 3 Cycle 20 Revision 0 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 2 Table of Contents

1. Terms and Definitions .............................. 4
2. General Information .................................................................. 5
3. Average Planar Linear Heat Generation Rate ........................... 6
4. Operating Limit Minimum Critical Power Ratio ........................... 7 4.1. Manual Flow Control MCPR Limits ...................................... 7 4.1.1. Power-Dependent MCPR ............................................... 7 4.1.2. Flow-Dependent MCPR ................................................ 7 4.2. Automatic Flow Control MCPR Limits .................................. 7 4.3. Scram Time ........................................................................ 7 4.4. Recirculation Pump Motor Generator Settings ..................... 8
5. Linear Heat Generation Rate ........................................................ 17
6. Rod Block Monitor ........ ................................. 33
7. Stability Protection Setpoints ................................................... 34
8. Modes of Operation............................................................... 35
9. Methodology ............................................................................ 37
10. References .................................... .... ............................... 38 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 3 List of Tables Table 3-1 MAPLHGR for bundle(s):

GE14-P1 ODNAB411-4G7.0/9G6.0-1 OOT-145-T6-2553 GE14-P1 ODNAB408-16GZ-1 00T-145-T6-2554 GE14-P1 ODNAB396-18GZ-1 00T-145-T6-2808 GE14-P1 ODNAB406-1 8GZ-1 00T-145-T6-2809 .............................................................................. 6 Table 3-2 MAPLHGR for bundle(s):

Opt2-3.90-1 0G8.00/6.00-4GZ8.00-2.00G6.00 Opt2-3.88-1 0G8.00/6.00-6GZ8.00-2.00G6.00 Opt2-3.93-14GZ6.00 ............ I....................................................................... 6 Table 3-3 MAPLHGR SLO multiplier for GE and Westinghouse Fuel ................................................. 6 Table 4-1 Scram Tim es .............................................................................................................................. 7 Table 4-2 MCPR TSSS Based Operating Limits - NFWT and RFWT ................................................. 9 Table 4-3 MCPR ISS Based Operating Limits - NFWT ..................................................................... 10 Table 4-4 MCPR ISS Based Operating Limits - RFWT .................................................................... 11 Table 4-5 MCPR NSS Based Operating Limits - NFWT .................................................................... 12 Table 4-6 MCPR NSS Based Operating Limits - RFWT .................................................................... 13 Table 4-7 MCPR(P) for GE and Westinghouse Fuel - NFWT .......................................................... 14 Table 4-8 MCPR(P) for GE and Westinghouse Fuel - RFWT .......................................................... 15 Table 4-9 MCPR(F) Limits for GE Fuel, DLO or SLO Operation ............................................. I............... 16 Table 4-10 MCPR(F) Limits for Westinghouse Fuel, DLO or SLO Operation ..................................... 16 Table 5-1 LHGR Limit for GE14-P1ODNAB411-4G7.0/9G6.0-100T-145-T6-2553 ............................. 17 Table 5-2 LHGR Limit for GE14-P1ODNAB411-4G7.0/9G6.0-100T-145-T6-2553, Lattice 5502 ..... 18 Table 5-3 LHGR Limit for GE14-P1ODNAB411-4G7.0/9G6.0-100T-145-T6-2553, Lattice 5503 ..... 19 Table 5-4 LHGR Limit for GE14-P1ODNAB408-16GZ-100T-145-T6-2554 ......................................... 20 Table 5-5 LHGR Limit for GE14-P1ODNAB408-16GZ-100T-145-T6-2554, Lattice 5506 ................... 20 Table 5-6 LHGR Limit for GE14-P1ODNAB408-16GZ-100T-145-T6-2554, Lattice 5507 ................... 21 Table 5-7 LHGR Limit for GE14-P1ODNAB408-16GZ-100T-145-T6-2554, Lattice 5508 ..................... 22 Table 5-8 LHGR Limit for GE14-P1ODNAB408-16GZ-100T-145-T6-2554, Lattice 5509 ................... 23 Table 5-9 LHGR Limit for GEl 4-P10DNAB396-18GZ-100T-145-T6-2808 ......................................... 24 Table 5-10 LHGR Limit for GE14-P10DNAB396-18GZ-100T-145-T6-2808, Lattice 6740 ................. 24 Table 5-11 LHGR Limit for GE14-P1ODNAB396-18GZ-100T-145-T6-2808, Lattice 6742 ................. 25 Table 5-12 LHGR Limit for GE14-P10DNAB396-18GZ-100T-145-T6-2808, Lattice 6743 ................. 26 Table 5-13 LHGR Limit for GE14-P1ODNAB406-18GZ-100T-145-T6-2809 ....................................... 27 Table 5-14 LHGR Limit for GE14-P1ODNAB406-18GZ-100T-145-T6-2809, Lattice 6748 ................ 27 Table 5-15 LHGR Limit for GE14-P1ODNAB406-18GZ-100T-145-T6-2809, Lattice 6749 ................. 28 Table 5-16 LHGR Limit for Westinghouse Optima2 Fuel Opt2-3.90-10G8.00/6.00-4GZ8.00-2.00G6.00 Opt2-3.88-10G8.00/6.00-6GZ8.00-2.00G6.00 O pt2-3.93-14G Z6.00 .......................................................................................................................... 28 Table 5-17 LHGRFAC(P) for GE Fuel, DLO ......................................................................................... 29 Table 5-18 LHGRFAC(P) for GE Fuel, SLO ......................................................................................... 29 Table 5-19 LHGRFAC(P) for Westinghouse Fuel .............................................................................. 30 Table 5-20 LHGRFAC(F) Multipliers, GE Fuel, DLO, All Cases Except TCV Stuck Closed .............. 31 Table 5-21 LHGRFAC(F) Multipliers, GE Fuel, DLO, TCV Stuck Closed ........................................... 31 Table 5-22 LHGRFAC(F) Multipliers, GE Fuel, SLO, All Cases Except TCV Stuck Closed ............... 31 Table 5-23 LHGRFAC(F) Multipliers, GE Fuel, SLO, TCV Stuck Closed ........................................... 32 Table 5-24 LHGRFAC(F) Multipliers, Westinghouse Fuel .................................................................. 32 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 4

1. Terms and Definitions APLHGR Average planar linear heat generation rate APRM Average power range monitor BOC Beginning of cycle DLO Dual loop operation EFPH Effective full power hours ELLLA Extended load line limit analysis EOC End of cycle EOOS Equipment out of service FFTR Final feedwater temperature reduction FWHOOS Feedwater heater out of service FW Feedwater GE14 GE14C fuel GNF Global Nuclear Fuel ICF Increased core flow ISS Intermediate scram speed LHGR Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MELLLA Maximum extended load line limit analysis MCPR Minimum critical power ratio MCPR(F) Flow dependent MCPR MCPR(P) Power dependent MCPR MSIV Main steam isolation valve NFWT Nominal feedwater temperature NSS Nominal scram speed OLMCPR Operating limit minimum critical power ratio OPRM Oscillation power range monitor PBDA Period based detection algorithm PLUOOS Power load unbalance out of service PROOS Pressure regulator out of service RBM Rod block monitor RFWT Reduced feedwater temperature RWE Rod withdrawal error RWCU Reactor water cleanup SLMCPR Safety limit minimum critical power ratio SLO Single loop operation SRVOOS Safety-relief valve out of service TBPOOS Turbine bypass valve out of service TCV Turbine control valve TIP Traversing incore probe TSSS Technical Specification scram speed TSV Turbine stop valve TSVOOS Turbine stop valve out of service Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 5

2. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 98 Mlb/hr. Operation up to 108% rated flow is analyzed for this cycle.

Licensed rated thermal power is 2957 MWth.

MCPR(P) and MCPR(F) values are independent of scram time.

LHGRFAC(P) and LHGRFAC(F) values are independent of scram time.

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow thermal limit values, respectively, should be used unless otherwise indicated in the applicable table.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

For both Base and EOOS DLO/SLO conditions, for operation at NFWT, the OLMCPR limit is applicable to a variation of +100F/-30 0 F in feedwater temperature. For operation outside of NFWT, a feedwater temperature reduction of up to 120OF (RFWT) is also supported at rated conditions for Base and EOOS DLO/SLO conditions for cycle operation through EOC. This includes, but is not limited to, Feedwater Heaters OOS (FWHOOS) and Final Feedwater Temperature Reduction (FFTR). At off-rated conditions, the allowed feedwater temperature reduction is defined in Figure 9.2 of Reference 3. For a feedwater temperature reduction of between 30°F and the allowable value (the "Minimum Feedwater Temperature Curve" as defined in Figure 9.2 of Reference 3), the RFWT limits should be applied.

Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 6

3. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice (excluding natural uranium) of each fuel type as a function of average planar exposure are given in Tables 3-1 and 3-2. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 3-3.

Table 3-1 MAPLHGR for bundle(s):

GE14-P1ODNAB411-4G7.O/9G6.0-10OT-145-T6-2553 GE14-P1 ODNAB408-16GZ-I0OT-145-T6-2554 GE14-Pl 0DNAB396-1 BGZ-IO0T-145-T6-2808 GE14-PlODNAB406-1 8GZ-10OT-145-T6-2809 (References 5 and 6)

Average Planar Exposure MAPLHGR (GWd/MTU) (kW/ft) 0.00 11.68 16.00 11.68 55.12 8.01 63.50 6.97 70.00 4.36 Table 3-2 MAPLHGR for bundle(s):

Opt2-3.90-1 OGS.0016.00-4GZ8.00-2.OG6.00 Opt2-3.88-1 0GS.0016.00-6GZ8.00-2.G0G6.00 Opt2-3.93-14GZ6.O0 (Reference 3)

Average Planar Exposure MAPLHGR (GWd/MTU) (kWtft) 0.00 8.671 7.50 8.250 17.50 8.250 24.00 8.651 58.00 8.651 72.00 7.128 Table 3-3 MAPLHGR SLO multiplier for GE and Westinghouse Fuel (References 3 and 6)

Fuelype SLO Fuel Type JMultiplier Optima2 0.86 GE14 0.77 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page7

4. Operating Limit Minimum Critical Power Ratio 4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power-Dependent MCPR For operation at less than 38.5% core thermal power, the OLMCPR as a function of core thermal power is shown in Tables 4-7 and 4-8. For operation at greater than 38.5% core thermal power, the OLMCPR as a function of core thermal power is determined by multiplying the applicable rated condition OLMCPR limit shown in Tables 4-2 through 4-6 by the applicable MCPR multiplier K(P) given in Tables 4-7 and 4-8. For operation at exactly 38.5% core thermal power, the OLMCPR as a function of core thermal power is the higher of either of the two methods evaluated at 38.5% core thermal power.

4.1.2. Flow-Dependent MCPR Tables 4-9 and 4-10 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.

4.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.

4.3. Scram Time TSSS, ISS, and NSS refer to scram speeds. TSSS is the Technical Specification Scram Speed, ISS is the Intermediate Scram Speed, and NSS is the Nominal Scram Speed.

The scram time values are shown in Table 4-1.

The NSS scram times are based on a conservative interpretation of scram time surveillance measurements. In the event that plant surveillance shows these scram insertion times to be exceeded, the MCPR limits are to default to the values which correspond to the ISS scram time. The ISS times have been chosen to provide an intermediate value between the NSS and TSSS, but the interpolation between these values is not supported by Westinghouse methodology. In the event that the ISS times are exceeded, MCPR limits for the TSSS apply.

Table 4-1 Scram Times (References 3 and 21)

Control Rod Insertion Fraction TSSS (seconds) ISS (seconds) NSS (seconds) 5 0.48 0.360 0.324 20 0.89 0.720 0.700 50 1.98 1.580 1.510 90 3.44 2.740 2.635 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 8 4.4. Recirculation Pump Motor Generator Settings Cycle 20 was analyzed with a maximum core flow runout of 110%; therefore the recirculation pump motor generator scoop tube mechanical and electrical stops must be set to maintain core flow less than 110% (107.8 Mlb/hr) for all runout events (Reference 17). This value is consistent with the analyses of Reference 3.

Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 9 Table 4-2 MCPR TSSS Based Operating Limits - NFWT and RFWT (Reference 3)

Cycle Exposure

< 10651 > 10651 EOOS Combination Fuel Type MWdIMT MWd/MT Optima2 1.67 1.69 BASE GE14 1.73 1.70 Optima2 1.70 1.73 BASE SLO GE14 1.76 1.73 Optima2 1.77 1.81 PLUOOS GE14 1.84 1.80 Optima2 1.81 1.85 PLUOOS SLO GE14 1.87 1.83 Optima2 1.83 1.88 TBPOOS GE14 1.89 1.86 Optima2 1.87 1.92 TBPOOS SLO GE14 1.92 1.89 Optima2 1.67 1.69 TCV SLOW CLOSURE GE14 1.73 1.70 Optima2 1.70 1.73 TCV SLOW CLOSURE SLO GE14 1.76 1.73 Optima2 1.67 1.69 TCV STUCK CLOSED GE14 1.73 1.70 Optima2 1.70 1.73 TCV STUCK CLOSED SLO GE14 1.76 1.73 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 10 Table 4-3 MCPR ISS Based Operating Limits - NFWT (Reference 3)

Cycle Exposure

< 10651 > 10651 EOOS Combination Fuel Type MWdWMT MWd/MT Optima2 1.54 1.53 BASE GE14 1.70 1.70 Optima? 1.57 1.56 BASE SLO GE14 1.73 1.73 Optima2 1.59 1.64 PLUOOS GE14 1.70 1.70 Optima2 1.62 1.67 PLUOOS SLO GE14 1.73 1.73 Optima2 1.64 1.68 TBPOOS GE14 1.71 1.70 Optima2 1.67 1.71 TBPOOS SLO GE14 1.74 1.73 Optima2 1.54 1.53 TCV SLOW CLOSURE GE14 1.70 1.70 Optima2 1.57 1.56 TCV SLOW CLOSURE SLO GE14 1.73 1.73 Optima2 1.54 1.53 TCV STUCK CLOSED GE14 1.70 1.70 Optima2 1.57 1.56 TCV STUCK CLOSED SLO GE14 1.73 1.73 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 11 Table 4-4 MCPR ISS Based Operating Limits - RFWT (Reference 3)

Cycle Exposure

< 10651 > 10651 EOOS Combination Fuel Type MWdcMT MWd/MT Optima2 1.58 1.58 BASE GE14 1.70 1.70 Optima2 1.61 1.61 BASE SLO GE14 1.73 1.73 Optima2 1.59 1.64 PLUOOS GE14 1.70 1.70 Optima2 1.62 1.67 PLUMOS SLO GE14 1.73 1.73 Optima2 1.67 1.69 TBPOOS GE14 1.73 1.71 Optima2 1.70 1.73 TBPOOS SLO GE14 1.76 1.74 Optima2 1.58 1.58 TCV SLOW CLOSURE GE14 1.70 1.70 Optima2 1.61 1.61 TCV SLOW CLOSURE SLO GE14 1.73 1.73 Optima2 1.58 1.58 TCV STUCK CLOSED GE14 1.70 1.70 Optima2 1.61 1.61 TCV STUCK CLOSED SLO GEl4 1.73 1.73 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 12 Table 4-5 MCPR NSS Based Operating Limits - NFWT (Reference 3)

Cycle Exposure

< 10651 > 10651 EOOS Combination Fuel Type MWd/MT MWd/MT Optima2 1.52 1.52 BASE GE14 1.70 1.70 Optima2 1.55 1.55 BASE SLO GE14 1.73 1.73 Optima2 1.58 1.62 PLUOOS GE14 1.70 1.70 Optima2 1.61 1.65 PLUOOS SLO GE14 1.73 1.73 Optima2 1.63 1.66 TBPOOS GE14 1.70 1.70 Optima2 1.66 1.69 TBPOOS SLO GE14 1.73 1.73 Optima2 1.52 1.52 TCV SLOW CLOSURE GE14 1.70 1.70 Optima2 1.55 1.55 TCV SLOW CLOSURE SLO GE14 1.73 1.73 Optima2 1.52 1.52 TCV STUCK CLOSED GE14 1.70 1.70 Optima2 1.55 1.55 TCV STUCK CLOSED SLO GE14 1.73 1.73 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 13 Table 4-6 MCPR NSS Based Operating Limits - RFWT (Reference 3)

Cycle Exposure

< 10651 > 10651 EOOS Combination Fuel Type MWd/MT MWd/MT Optima2 1.57 1.57 BASE GE14 1.70 1.70 Optima2 1.60 1.60 BASE SLO GE14 1.73 1.73 Optima2 1.58 1.62 PLUOOS GE14 1.70 1.70 Optima2 1.61 1.65 PLUOOS SLO GE14 1.73 1.73 Optima2 1.66 1.67 TBPOOS GE14 1.72 1.70 Optima2 1.69 1.70 TBPOOS SLO GE14 1.75 1.73 Optima2 1.57 1.57 TCV SLOW CLOSURE GE14 1.70 1.70 Optima2 1.60 1.60 TCV SLOW CLOSURE SLO GE14 1.73 1.73 Optima2 1.57 1.57 TCV STUCK CLOSED GE14 1.70 1.70 Optima2 1.60 1.60 TCV STUCK CLOSED SLO GE14 1.73 1.73 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 14 Table 4-7 MCPR(P) for GE and Westinghouse Fuel - NFWT (Reference 3)

Core Core Thermal Power (% of rated)

EOOS Combination Flow 0 25 38.5 38.5 150 160 180 1100

(% of OM rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp Base < 60 2.53 2.34 2.25 1.28 1.19 1.14 1.06 1.00

> 60 2.80 2.59 2.48 Base SLO < 60

> 60 2.58 2.85 2.39 2.64 2.30 2.53 1.28 1.19 1.14 1.06 1.00 PLUOOS _<60

> 60 2.53 2.80 2.34 2.59 2.25 2.48 1.52 1.46 1.31 1.10 1.00 PLUOOS SLO <60

> 60 2.58 2.85 2.39 2.64 2.30 2.53 1.52 1.46 1.31 1.10 1.00 TBPOOS <60

> 60 3.68 3.97 2.95 3.28 2.56 2.90 1.28 1.19 1.14 1.06 1.00 TBPOOS SLO <60

> 60 3.75 4.05 3.01 3.34 2.61 2.96 1.28 1.19 1.14 1.06 1.00 TCV Slow Closure <

  • 60 2.53 2.80 2.34 2.59 2.25 2.48 1.64 1.57 1.47 1.11 1.00 TCV Slow Closure SLO -<so

> 60 2.58 2.85 2.39 2.64 2.30 2.53 1.64 1.57 1.47 1.11 1.00 TCV Stuck Closed _<60

> 60 2.53 2.80 2.34 2.59 2.25 2.48 1.28 1.19 1.14 1.06 1.00 TCV Stuck Closed SLO <so 2.58 2.39 2.30 2.53 1.28 1.19 1.14 I

1.06 1.00

>N 1 2.85 2.64 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 15 Table 4-8 MCPR(P) for GE and Westinghouse Fuel - RFWT (Reference 3)

Core Core Thermal Power (% of rated)

EOOS Combination of 0 25 38.5 38.5 50 1o 60 1 80 100 rated) Operating Limit MCPR Operating Limit MCPR Multiplier, Kp Base < 60 2.70 2.49 2.38 1.28 1.19 1.14 1.06 1.00

> 60 3.00 2.77 2.65 Base SLO :S 60 2.75 2.54 2.43 1.28 1.19 1.14 1.06 1.00 B S60 3.06 2.82 2.70 PLUOOS < 2.70 2.49 2.38 1.52 1.46 1.31 1.10 1.00

>60 2.75 3.06 2.54 2.82 2.43 2.70 1.52 1.48 1.31 1.10 1.00 TBPOOS _<60 3.99 3.17 2.73 1.28 1.19 1.14 1.06 1.00

> 60 4.31 3.53 3.12 TBPOOS SLO <60 4.07 3.23 2.78 1.28 1.19 1.14 1.06 1.00

> 60 4.39 3.60 3.18 TCV Slow Closure <60 2.70 2.49 2.38 1.64 1.57 1.47 1.11 1.00

> 60 3.00 2.77 2.65 ___

TCV Slow Closure SLO <560 2.75 2.54 2.43 1.64 1.57 1.47 1.11 1.00

> 60 3.06 2.82 2.70 TCV Stuck Closed -S60 2.70 2.49 2.38 1.28 1.19 1.14 1.06 1.00

> 60 3.00 2.77 2.65 TCV Stuck Closed SLO 60 2.75 2.54 2.43 1.28 1.19 1.06 1.00

>60

> 3.06 2.82 2.70 ____ __

Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 16 Table 4-9 MCPR(F) Limits for GE Fuel, DLO or SLO Operation (Reference 3)

Flow MCPR(F)

(% rated) Limit 110.0 1.26 100.0 1.26 80.0 1.44 60.0 1.64 40.0 1.81 20.0 2.01 0.0 2.21 Table 4-10 MCPR(F) Limits for Westinghouse Fuel, DLO or SLO Operation (Reference 3)

Flow MCPR(F)

(% rated) Limit 110.0 1.17 100.0 1.17 80.0 1.34 60.0 1.49 40.0 1.56 20.0 1.63 0.00 1.70 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 17

5. Linear Heat Generation Rate The maxim'um LHGR shall not exceed the zero exposure limit of 13.4 (kW/ft) for the following fuel bundles (Reference 10):

GE14-P1ODNAB411-4G7.0/9G6.0-100T-145-T6-2553 GE14-P1ODNAB408-16GZ-OOT-1045-T6-2554 GE14-P1ODNAB396-18GZ-1OOT-145-T6-2808 GE14-P1ODNAB406-18GZ-1OOT-145-T6-2809 The thermal mechanical operating limit at rated conditions for the Optima2 fuel is established in terms of the maximum LHGR given in Table 5-16 as a function of rod nodal (pellet) exposure.

The limit applies to all Optima2 bundle designs.

The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Tables 5-1 through 5-16 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), or the flow dependent LHGR Factor, LHGRFAC(F). The LHGRFAC(P) is determined from Table 5-17, 5-18, or 5-19. The LHGRFAC(F) is determined from Table 5-20, 5-21, 5-22, 5-23, or 5-24.

Table 5-1 LHGR Limit for GE1 4-P1 ODNAB411 -4G7.0/9G6.0- OOT-11 45-T6-2553 (Reference 12)

Lattices 5500, 5501, 5504, and 5505 Composite Limit kW/ft 5500: P10DNAL071-NOG-100T-T6-5500 5501: P10DNAL458-4G7.019G6.0-1OOT-T6-5501 5504: P1ODNAL071-NOG-1OOT-V-T6-5504 5505: P1 0DNAL0711-113GE-1100T-V-T6-5505 U02 Pellet Bumup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 18 Table 5-2 LHGR Limit for GEl 4-P1ODNAB411-4G7.0/9G6.0-100T-1 45-T6-2553, Lattice 5502 (Reference 12)

Lattice 5502 Composite Limit kW/ft P1 ODNAL453-4G7.019G6.0-1 OOT-E-T6-5502 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.1155 13.40 16.4055 13.3539 17.6796 13.1694 18.9383 13.0139 20.1833 12.8740 22.2507 12.5985 25.9250 12.1329 31.9779 11.3724 37.9426 10.6460 43.8088 9.9638 49.5729 9.3308 55.2416 8.7448 60.8333 8.1967 66.3754 6.6729 70.00 5.00 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 19 Table 5-3 LHGR Limit for GEl 4-P 1ODNAB411-4G7.0/9G6.0-100T-145-T6-2553, Lattice 5503 (Reference 12)

Lattice 5503 Composite Limit kWMft P1ODNAL453-4G7.0/9G6.0-1OOT-V-T6-5503 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.0231 13.40 16.3045 13.1997 17.5697 12.8942 18.8192 12.7533 19.6777 12.6793 22.1391 12.3631 25.7931 11.9027 31.8166 11.1486 37.7552 10.4255 43.5974 9.7428 49.3382 9.1060 54.9830 8.5136 60.5487 7.9572 66.0623 6.6464 70.00 4.8953 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 20 Table 5-4 LHGR Limit for GE14-P1ODNAB408-16GZ-100T-145-T6-2554 (Reference 12)

Lattices 5500, 5504, and 5510 Composite Limit kW/ft 5500: P1ODNAL071-NOG-IOOT-T6-5500 5504: P1ODNAL071-NOG-100T-V-T6-5504 5510: P1ODNAL071-16GE-100T-V-T6-5510 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 5-5 LHGR Limit for GE14-P1ODNAB408-16GZ-100T-145-T6-2554, Lattice 5506 (Reference 12)

Lattice 5506 Composite Limit kW/ft P1ODNAL453-6G7.0/10G6.0-10OT-T6-5506 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.1029 13.40 16.3915 13.3555 17.8387 13.1910 19.0967 13.0480 20.3425 12.9063 22.8024 12.6267 26.4384 12.0410 32.4022 11.2075 38.2538 10.4682 42.7774 9.9945 48.5585 9.4147 54.2876 8.8630 59.9673 8.4016 66.2463 6.7325 70.00 5.00 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 21 Table 5-6 LHGR Limit for GE1 4-P1ODNAB408-16GZ-1 0OT-1 45-T6-2554, Lattice 5507 (Reference 12)

Lattice 5507 Composite Limit kWlft P1 ODNAL453-4G7.0/1 0G6.0-1 OOT-T6-5507 U02 Pellet Bumup Composite Limit (GWd/MTU) (kW/tt) 0.00 13.40 15.1091 13.40 16.4011 13.3544 17.5754 13.2209 18.8411 13.0770 20.0941 12.9346 22.5665 12.6535 26.2178 12.2384 32.2045 11.4033 38.0774 10.5818 42.5631 9.9920 48.3669 9.3715

.54.1169 8.7856 59.8150 8.2252 66.1438 6.7798 70.00 5.00 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 22 Table 5-7 LHGR Limit for GE14-P1ODNAB408-16GZ-100T-145-T6-2554, Lattice 5508 (Reference 12)

Lattice 5508 Composite Limit kW/ft P1ODNAL449-4G7.0/10G6.0-10OT-E-T6-5508 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.3349 0.2995 13.3904 1.4867 13.40 2.9450 13.3896 4.3716 13.3335 5.7199 13.3052 7.0940 13.3190 8.3865 13.3625 9.7191 13.40 14.6797 13.40 15.9349 13.1347 17.1752 12.7239 18.4013 12.5086 19.6149 12.3467 22.0145 11.9721 25.5738 11.4887 31.4239 10.7236 36.1209 10.1987 41.9286 9.6294 47.6904 9.0846 53.4002 8.5554 59.0576 8.0299 64.6690 6.6179 68.5288 4.3146 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 23 Table 5-8 LHGR Limit for GE14-P1ODNAB408-16GZ-100T-145-T6-2554, Lattice 5509 (Reference 12)

Lattice 5509 Composite Limit kW/ft P1ODNAL449-4G7.0/10G6.0-10OT-V-T6-5509 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWtft)

.0.00 13.2336 0.3021 13.2853 1.4995 13.3007 2.9694 13.2651 4.3763 13.2094 5.7878 13.2221 7.1749 13.2302 8.5372 13.2351 9.7588 13.2502 10.9018 13.3145 12.2024 13.40 14.7592 13.40 16.0142 13.1015 17.2530 12.6893 18.4767 12.4795 19.6874 12.3406 22.0815 11.9671 25.6334 11.4807 31.4698 10.7081 36.2217 10.1947 42.0217 9.6164 47.7731 9.0632 53.4702 8.5267 59.1133 7.9955 64.7098 6.6069 68.6043 4.3130 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 24 Table 5-9 LHGR Limit for GE14-P1ODNAB396-18GZ-1OOT-145-T6-2808 (Reference 4)

Lattices 6739, 6741, 6744, and 6745 Composite Limit kW/ft 6739: P1ODNAL071-NOG-1OOT-T6-6739 6741: P1ODNAL439-18G8.0-100T-T6-6741 6744: P1ODNAL071-NOG-1OOT-V-T6-6744 6745: P1ODNAL071-18GE-100T-V-T6-6745 U02 Pellet Bumup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 5-10 LHGR Limit for GE14-P1ODNAB396-18GZ-100T-145-T6-2808, Lattice 6740 (Reference 4)

Lattice 6740 Composite Limit kWMft P1ODNAL444-18G8.0-10OT-T6-6740 U02 Pellet Burnup Composite Limit (GWd/MTU) (kWift) 0.00 13.40 14.9712 13.40 16.3671 13.3583 17.7446 13.2017 19.1037 13.0472 20.4441 12.8948 21.7653 12.7446 24.3496 12.4508 28.0911 12.0254 34.0754 11.3451 39.8832 10.6849 43.7852 10.2413 49.5509 9.5858 55.2590 8.9369 60.9131 8.2573 67.5734 6.12 70.00 5.00 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 25 Table 5-11 LHGR Limit for GE14-P1ODNAB396-18GZ-100T-145-T6-2808, Lattice 6742 (Reference 4)

Lattice 6742 Composite Limit kW/ft P1 ODNAL432-15G7.0-1 OOT-E-T6-6742 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 14.9724 13.40 16.3337 13.3621 17.67 13.2101 18.9818 13.0610 20.2701 12.9146 21.5365 12.7706 24.0097 12.4894 27.6101 12.0801 33.4510 11.4161 37.3371 10.9656 43.1851 10.2911 48.9751 9.6432 54.7013 9.0003 60.3647 8.3033 66.4877 6.6211 70.00 5.00 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 26 Table 5-12 LHGR Limit for GE14-P1ODNAB396-18GZ-100T-145-T6-2808, Lattice 6743 (Reference 4)

Lattice 6743 Composite Limit kWMft P1 ODNAL432-1 5G7.0-1 OOT-V-T6-6743 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.1007 13.40 16.4658 13.347 17.8038 13.1949 19.1156 13.0458 20.4024 12.8995 21.6658 12.7559 24.1307 12.4757 27.7186 12.0678 31.5674 11.4927 37.4588 10.7989 43.2994 10.1306 49.0786 9.4878 54.7906 8.8678 60.4375 8.2591 66.3941 6.6642 70.00 5.00 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 27 Table 5-13 LHGR Limit for GE14-P1ODNAB406-18GZ-100T-145-T6-2809 (Reference 4)

Lattices 6739, 6746, 6747, 6750, and 6751 Composite Limit kW/ft 6739: P1ODNAL071-NOG-10OT-T6-6739 6746: P1 ODNAL451-12G5.0/6G2.0-1 OOT-T6-6746 6747: P1 ODNAL451-12G5.016G2.0-1 OOT-T6-6747 6750: P1 ODNALO71 -NOG-1 OOT-V-T6-6750 6751: P1 ODNALO71 -1 8GE-1 OOT-V-T6-6751 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.0 13.4 16.0 13.4 63.5 8.0 70.0 5.0 Table 5-14 LHGR Limit for GE14-P1ODNAB406-18GZ-100T-145-T6-2809, Lattice 6748 (Reference 4)

Lattice 6748 Composite Limit kW/ft P1ODNAL446-12G5.0/5G2.0-1OOT-E-T6-6748 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.3938 13.40 16.6632 13.3246 17.9126 13.1826 19.1444 13.0425 20.3618 12.9041 22.9022 12.6153 26.4710 12.2096 32.3475 11.5415 36.7448 11.0416 42.5408 10.3827 48.2824 9.6914 53.9658 8.9586 59.5939 8.2802 65.1764 7.2263 70.00 5.00 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 28 Table 5-15 LHGR Limit for GE14-P1ODNAB406-18GZ-100T-145-T6-2809, Lattice 6749 (Reference 4)

Lattice 6749 Composite Limit kWMft P1ODNAL446-12G5.0/5G2.0-10OT-V-T6-6749 U02 Pellet Burnup Composite Limit (GWd/MTU) (kW/ft) 0.00 13.40 15.7107 13.40 16.9856 13.2880 18.2402 13.1453 19.4771 13.0047 20.6999 12.8657 23.1169 12.5909 26.7017 12.1834 32.6038 11.5124 38.4063 10.8528 42.6488 10.3705 48.3802 9.6379 54.05 8.9110 59.6619 8.2408 65.2274 7.2027 70.00 5.00 Table 5-16 LHGR Limit for Westinghouse Optima2 Fuel Opt2-3.90-10G8.00/6.00-4GZ8.00-2.00G6.00 Opt2-3.88-10G8.00/6.00-6GZS.00-2.00G6.00 Opt2-3.93-14GZ6.00 (Reference 3)

Rod Nodal Exposure LHGR Limit (GWd/MTU) (kW/ft) 0.00 13.11 14.00 13.11 72.00 6.48 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 29 Table 5-17 LHGRFAC(P) for GE Fuel, DLO (Reference 3)

Core Core Thermal Power (% of rated)

EOOS Combination Flow(% 0 25 38.5 38.51 70 70 80 100 of rated) LHGRFAC(P) Multiplier

<60 Base 0.50 0.56 0.59 0.68 0.86 1.00

  • 60
  • 60 PLUoOS 0.54 0.54 0.54 054 073 0.78 1.00

> 60

S 60 0.22 0.48 TBPOOS > 60 0.33 0.39 0.42: 0. 54 .. 1.00

< 60.. ..

TCV Slow Closure - 0.54 0.54 0.54 0.54 0.73 0.78 1.00

> 60

<60 TCV Stuck Closed 0.50 0.56 0.59 0.68 0.86 1.00

> 60 Table 5-18 LHGRFAC(P) for GE Fuel, SLO (Reference 3)

Core Core Thermal Power (% of rated)

EOOS Combination Flow (% 0 25 38.5 38.5 1 70 1 CP* 100 of rated) LHGRFAC(P) Multiplier

< 60 Base SLO 0.50 0.56 0.59 0.68 0.77 0.77

>60 PLUOOS SLO 0.54 0.54 0.54 0.54 0.73 0.77 0.77

>60

  • 6 0.22 0.48 * "

TBPOOS SLO*60 0.22 0.39 0.48 054 0.77 0.77

  • 60 0.33 0.42 TCV Slow Closure SLO 0.54 o60 0.54 0.54 0.54 0.73 0.77 0.77

> 60 TCV Stuck Closed SLO - 0.50 0.56 0.59 0.68 0.77 0.77

> 60

  • CP is the cutoff power level and is equal to 59.25% for Base Case SLO and TCV Stuck Closed SLO, 70% for PLUOOS SLO, 69.25% for TBPOOS SLO, and 70% for TCV Slow Closure SLO.

Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 30 Table 5-19 LHGRFAC(P) for Westinghouse Fuel (Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 38.5 38.5 50 60 80 100 102 LHGRFAC(P) Multiplier Base 0.60 0.64 0.66 0.73 0.83 0.83 0.90 1.00 1.00 Base SLO 0.60 0.64 0.66 0.73 0.83 0.83 0.90 1.00 1.00 PLUOOS 0.60 0.64 0.66 0.66 0.68 0.75 0.90 1.00 1.00 PLUOOS SLO 0.60 0.64 0.66 0.66 0.68 0.75 0.90 1.00 1.00 TBPOOS 0.37 0.49 0.55 0.68 0.83 0.83 0.90 1.00 1.00 TBPOOS SLO 0.37 0.49 0.55 0.68 0.83 0.83 0.90 1.00 1.00 TCV Slow Closure 0.60 0.62 0.62 0.62 0.65 0.70 0.90 1.00 1.00 TCV Slow Closure SLO 0.60 0.62 0.62 0.62 0.65 0.70 0.90 1.00 1.00 TCV Stuck Closed 0.60 0.64 0.66 0.73 0.83 0.83 0.90 1.00 1.00 TCV Stuck Closed SLO 0.60 0.64 0.66 0.73 0.83 0.83 0.90 1.00 1.00 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 31 Table 5-20 LHGRFAC(F) Multipliers, GE Fuel, DLO, All Cases Except TCV Stuck Closed (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 100.00 1.00 80.00 1.00 50.00 0.77 40.00 0.64 30.00 0.55 0.00 0.28 Table 5-21 LHGRFAC(F) Multipliers, GE Fuel, DLO, TCV Stuck Closed (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 100.00 1.00 98.30 1.00 80.00 0.86 50.00 0.63 40.00 0.50 30.00 0.41 0.00 0.14 Table 5-22 LHGRFAC(F) Multipliers, GE Fuel, SLO, All Cases Except TCV Stuck Closed (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 100.00 0.77 80.00 0.77 50.00 0.77 40.00 0.64 30.00 0.55 0.00 0.28 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 32 Table 5-23 LHGRFAC(F) Multipliers, GE Fuel, SLO, TCV Stuck Closed (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 100.00 0.77 80.00 0.77 68.30 0.77 50.00 0.63 40.00 0.50 30.00 0.41 0.00 0.14 Table 5-24 LHGRFAC(F) Multipliers, Westinghouse Fuel (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 110.00 1.00 100.00 1.00 80.00 1.00 60.00 0.80 40.00 0.59 20.00 0.43 0.00 0.27 Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 33

6. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 11):

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 55%

Operation Single Recirculation Operation Loop 0.65 Wd + 51_%

The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98 Mlb/hr.

Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 34

7. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):

Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp) Confirmation Count Setpoint (Np) 1.18 18 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 35

8. Modes of Operation The allowed Modes of Operation with the combinations of EOOS are as described below:

EOOS Options1 ' 2 3,N7 9 IOperating Region EOOSOptionsl___'_______Standard ICF MELILLA Coastdow-n Base, TSSS, ISS, or NSS Yes Yes Yes Yes Base SLO, TSSS, ISS, or NSS Yes No Yes Yes TBPOOS, TSSS, ISS, or NSS Yes Yes Yes Yes TBPOOS SLO, TSSS, ISS, or NSS Yes No Yes Yes PLUOOS, TSSS, ISS, or NSS Yes Yes. Yes Yes PLUOOS SLO, TSSS, ISS, or NSS Yes No Yes Yes TCV Slow Closure, TSSS, ISS, or NSS Yes Yes Yes Yes TCV Slow Closure SLO, TSSS, ISS, or NSS Yes No Yes Yes TCV Stuck Closed', TSSS, ISS; or NSS Yes Yes Yes Yes TCV Stuck Closed SLOO, TSSS, ISS, or NSS Yes No Yes Yes 1 Each OOS Option may be combined with up to 18 TIP channels OOS provided the requirements (as clarified in Reference 20) for utilizing SUBTIP methodology are met with all TIPS available at startup from a refueling outage and up to 50% of the LPRMs OOS with an LPRM calibration frequency of 2500 Effective Full Power Hours (EFPH) (2000 EFPH +25%).

2 A single MSIV may be taken OOS (shut) under any of the OOS Options, so long as core thermal power is maintained _<75% of 2957 MWth (Reference 3).

3 Each EOOS option except TBPOOS requires the opening profile for the Turbine Bypass Valves provided in Reference 8 to be met. These conditions also support 1 Turbine Bypass Valve OOS (TBPOOS) ifthe assumed opening profile (Reference 8) for the remaining 8 Turbine Bypass Valves is met. If the opening profile is not met with 8 or 9 operating Turbine Bypass Valves, or if more than one Turbine Bypass Valve is OOS, utilize the TBPOOS condition.

4 Coastdown operation is defined as any cycle exposure beyond the full power, all rods out condition with plant power slowly lowering to a lesser value while core flow is held constant.

Coastdown analysis has been performed with bounding assumption of full power operation up to a cycle exposure of 16,338 MWD/MTU (or 16,450 MWD/MTU including FFTR).

r For operation with a Pressure Regulator Out-Of-Service (PROOS), the TCV Slow Closure limits should be applied. For operation with a PROOS and TCV Slow Closure, the TCV Slow Closure limits should be applied. For operation with a PROOS and PLUOOS, the PLUOOS limits should be applied. For operation with a PROOS and TCV Stuck Closed, the more restrictive of the flow-dependent limits (established by TCV Stuck Closed) and power dependent limits (established by TCV Slow Closure and PLUOOS limits) should be applied (Reference 3).

6 For operation with one Turbine Stop Valve Out-Of-Service (TSVOOS), the TCV Stuck Closed limits should be applied. Combination of one TSVOOS and TCV Stuck Closed is not analyzed (Reference 3).

7The cycle specific stability analysis may impose restrictions on the Power-to-Flow map and/or restrict the applicable temperature for a reduction in feedwater temperature (RFWT) (Reference 15).

8 For both Base and EOOS DLO/SLO conditions, for operation at NFWT, the OLMCPR limit is applicable to a variation of +100F/-30 0F in feedwater temperature. For operation outside of Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 36 NFWT, a feedwater temperature reduction of up to 120OF (RFWT) is also supported at rated conditions for Base and EOOS DLO/SLO conditions for cycle operation through EOC. This includes, but is not limited to, Feedwater Heaters OOS (FWHOOS) and Final Feedwater Temperature Reduction (FFTR). At off-rated conditions, the allowed feedwater temperature reduction is defined in Figure 9.2 of Reference 3. For a feedwater temperature reduction of between 30°F and the allowable value (the "Minimum Feedwater Temperature Curve" as defined in Figure 9.2 of Reference 3), the RFWT limits should be applied.

9 Asymmetric inlet enthalpy distribution produced by RWCU injection does not have a substantial impact on thermal limits; therefore no adjustments to the thermal limits are required (Reference 3).

Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 37

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. Commonwealth Edison Company Topical Report NFSR-0091, "Benchmark of CASMO/MICROBURN BWR Nuclear Design Methods," Revision 0 and Supplements on Neutronics Licensing Analysis (Supplement 1) and La Salle County Unit 2 benchmarking (Supplement 2), December 1991, March 1992, and May 1992, respectively.
2. NEDE-24011-P-A-15 (Revision 15), "General Electric Standard Application for Reactor Fuel (GESTAR-II)," September 2005.
3. NEDO-32465-A, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1996.
4. Westinghouse Report WCAP-1 5682-P-A, "Westinghouse BWR ECCS Evaluation Model:

Supplement 2 to Code Description, Qualification and Application," April 2003.

5. Westinghouse Report WCAP-1 6078-P-A, "Westinghouse BWR ECCS Evaluation Model:

Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel,"

November 2004.

6. Westinghouse Report WCAP-1 6081-P-A, "10x1 0 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2," March 2005.
7. Westinghouse Topical Report CENPD-300-P-A, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.
8. Westinghouse Topical Report CENPD-390-P-A, 'The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
9. Westinghouse Topical Report WCAP-1 5836-P-A, "Fuel Rod Design Methods for Boiling Water Reactors - Supplement 11," June 2002.
10. Westinghouse Topical Report WCAP-15942-P-A, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENP-287," October 2004.

Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 38

10. References
1. Exelon Generation Company, LLC, Docket No. 50-249, Dresden Nuclear Power Station, Unit 3, Facility Operating License, License No. DPR-25.
2. Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; "Removal of Cycle-Specific Parameter Limits from Technical Specifications," October 3, 1988.
3. Westinghouse Document, WCAP-16645-P, Revision 0, "Dresden Nuclear Power Station Unit 3 Cycle 20 Reload Licensing Report," October 2006.
4. GNF Letter, MJM-EXN-EB3-04-015, "Transmittal of the Dresden 3 C19 SRLR / LHGR Limits and R-factors," Mark J. Mneimneh to Haksoo Kim, October 12, 2004.
5. GNF Document, 0000-0025-1300-SRLR, Revision 1, "Supplemental Reload Licensing Report for Dresden 3 Reload 18 Cycle 19," October 2004. (TODI NF0400258 Revision 1, December 2004)
6. GNF Document, 0000-0006-9848-SRLR, Revision 2, "Supplemental Reload Licensing Report for DRESDEN UNIT 3 Reload 17 Cycle 18," October 2003. (TODI NF0200124 Revision 1, December 2003)
7. GE Document, GE-NE-J 11-03912-00-01-R3, "Dresden 2 and 3 Quad Cities I and 2 Equipment Out-Of-Service and Legacy Fuel Transient Analysis," September 2005.

(TODI NFMO100091 Sequence 03)

8. Exelon TODI, Ops Ltr:06-28, Revision 1, "OPL-W Parameters for Dresden Unit 3 Cycle 20 Transient Analysis," June 15, 2006.
9. Exelon Calculation Note, BNDG:02-001, Revision 0, "Determination of Generic MCPRF Limits," May 17, 2002.
10. GE Design Basis Document, DB-0012.03, Revision 1, "Fuel-Rod Thermal-Mechanical Performance Limits for GE14C," May 2005.
11. GE Document, GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation Rod Block Monitor Dresden 2 & 3," December 15, 1999.
12. GNF Letter, FRL02EX-013, "Quad Cities Unit 1 Cycle 18 and Dresden Unit 3 Cycle 18 Pellet Based LHGR Limits," F. R. Lindquist to J. Nevling, September 30, 2002.
13. Westinghouse Letter, NF-BEX-06-140, Revision 1, "Exelon Nuclear Final Task Report for Dresden 3 Cycle 20 Reload Licensing Generic Inputs Report, Revision 1," October 3, 2006. (TODI NF0600144 Revision 1, October 2006)
14. Exelon Letter, NF-MW:02-0413, "Approval of GE Evaluation of Dresden and Quad Cities Pressure Regulator Out of Service Analysis," Carlos de la Hoz to Doug Wise and Alex Misak, October 22, 2002.
15. Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.

Dresden Unit 3 Cycle 20

COLR Dresden 3 Revision 2 Page 39

16. Exelon Letter, NF-MW:03-069, "Dresden and Quad Cities Operation with one TSV OOS,"

Candice Chou to Alex Misak and Doug Wise, July 28, 2003.

17. Exelon TODI NF0600169, Revision 1, "Dresden 3 Cycle 20 Reload Licensing Analysis Plan (RLAP)," October 2006.
18. GE Document, GE-NE-0000-0040-2860-RO, "Dresden Units 2 and 3 and Quad Cities Units 1 and 2 Offrated Analyses Below the PLU Power Level," July 2005.
19. GE Document, NEDE-2401 I-P-A-15, "General Electric Standard Application for Reactor Fuel (GESTAR-II)," September 2005.
20. FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004 (EC 348897-00).
21. Technical Specifications for Dresden 2 and 3, Table 3.1.4-1, "Control Rod Scram Times."

Dresden Unit 3 Cycle 20