SVPLTR 21-0061, Core Operating Limits Report for Dresden Unit 2 Cycle 28

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report for Dresden Unit 2 Cycle 28
ML21330A034
Person / Time
Site: Dresden Constellation icon.png
Issue date: 11/19/2021
From: Karaba P
Exelon Generation Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
SVPLTR # 21-0061
Download: ML21330A034 (50)


Text

Exelon Generation November 19, 2021 SVPLTR # 21-0061 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License No. DPR-19 NRC Docket No. 50-237 Dresden Nuclear Power Station 6500 North Dresden Road Morris, IL 60450

Subject:

Core Operating Limits Report for Dresden Unit 2 Cycle 28 The purpose of this letter is to transmit the Core Operating Limits Report (COLR) for Dresden Nuclear Power Station (DNPS) Unit 2 operating cycle 28 (D2C28) in accordance with Technical Specifications Section 5.6.5, "CORE OPERATING LIMITS REPORT (COLR)."

There are no regulatory commitments contained in this submittal.

Should you have any questions concerning this letter, please contact Mr. Duane Avery, acting Regulatory Assurance Manager, at (815) 416-2804.

Respectfully,

~

Peter J. Karaba Site Vice President Dresden Nuclear Power Station

Attachment:

Core Operating Limits Report (COLR) Dresden Unit 2 Revision 19 CC:

Regional Administrator - NRC Region Ill NRC Senior Resident Inspector - Dresden Nuclear Power Station

Prepared By:

COLR Dresden 2 Revision 19 Core Operating Limits Report For Dresden Unit 2 Cycle 28

~

Digitally signed by Eastmond, Ann

<ON: cn=Eastmond, Ann

  • o'ate: 2021.1 OB 16:50:12 -05'00' Ann Eastmond - Nuclear Fuels 2021.10.28 08:05:16 1{~1,P..&.-

Reviewed By:

'/

-05'00' Ryan Pullara - Nuclear Fuels R

dB ~

7.,W~ ll.. 2021.10.2716:55:38-05'00' ev1ewe y: _________________ _

JT Markland - Engineering Safety Analysis

/)

IJ 4f Digitally signed by Degraaf,

.,...~ /J1 p4 Brandon Michael Reviewed By:

Date:2021.10.2807:54:51-05'00' Brandon de Graaf-Reactor Engineering 17.lA j.

j,(

', Digitally signed by Kovacs, Ashley

(}/¥YVV.,'), 1l ~ ' DN: cn=Kovacs, Ashley Approved By: _____

U _____

  • _D_a_te_: 2_02_1_Jo_2_a_16_:0_2_:S4_-_os_'o_o' Ashley Kovacs - NF Senior Manager SQR By:

I)

/} f)f Digitally signed by Degraaf,

.,...~.I)/~

Brandon Michael Date: 2021.11.15 06:49:49 -06'00' Station Qualified Reviewer Page 1 of 49 Date: -----

Date: -----

Date: -----

Date: -----

Date: -----

Date: ___

COLR Dresden 2 Revision 19 Table of Contents Page Record of Dresden 2 Cycle 28 COLR Revisions............................ :................................................ 3 List of Tables...... :............................................. *............................................................................................. 4

1. Terms and Definitions............................................................................................................................... 5
2. General Information.................................................................................................................................. 6
3. Average Planar Linear Heat Generation Rate.......................................................................................... 7
4. Operating Limit Minimum Critical Power Ratio....................................................................................... 14 4.1. Manual Flow Control MCPR Limits............................................,.................................................... 14 4.1.1, Power-Dependent MCPR......................................................................................................... 14 4.1.2. Flow-Dependent MCPR............................................................................................................ 14 4.2. Scram Time....................................................................................................................................... 15 4.3. Exposure Dependent MCPRLimits.................................................................................................. 16 4.4. Recirculation Pump ASD Settings.................................................................................................... 16
5. Linear Heat Generation Rate................................................................................................................... 36
6. Control Rod Block Setpoints................................................................................................................... 41
7. Stability Protection Setpoints.................................................................................................................. 42
8. Modes of Operation................................................................................................................................. 43
9. Methodology................................... '......................................................................................................... 47
10. References............................................................................................................................................ 49 Page 2 of 49

COLR Dresden 2 Revision 19 Record of Dresden 2 Cycle 28 COLR Revisions Revision Description 19 Initial issuance for D2C28 Page 3 of 49

COLR Dresden 2 Revision 19 List of Tables Page Table 3-1: MAPLHGR SLO Multipliers.......................................................................................................... 7 Table 3-2: MAPLHGR for OPTIMA2 Lattices 81 and 89................................. :............................................ 7 Table 3-3: MAPLHGR for OPTIMA2 Lattice 163................................................................... :...................... 8 Table 3-4: MAPLHGR for OPTIMA2 Lattice 164.......................................................................................... 9 Table 3-5: MAPLHGR for OPTIMA2 Lattice 165........................................................................................ 10

. Table 3-6: MAPLHGR for OPTIMA2 Lattice.166........................................................................................ 11 Table 3-7: MAPLHGR for OPTIMA2 Lattice 167........................................................................................ 12 Table 3-8: MAPLHGR for ATRIUM 10XM.............................................. :................................................... 13 Table 4-1 : Scram Times............................................................................................ _.................................. 15 Table 4-2: Exposure Basis for Transient Analysis..............................,....................................................... 16 Table 4-3: ATRIUM 1.0XM TLO MCPRp Limits for NSS Insertion Times, BOC to EOFPLB (37,595 MWd/MTU CAVEX).........................................................................................,.............................. 17 Table 4-4: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, BOC to EOFPLB (37,595 MWd/MTU CAVEX)........................................................................................................................ 18 Table 4-5: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times, BOC to EOFPLB (37,595

. MWd/MTU CAVEX)............................................................................................................... :......... 19 Table 4-6: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, EOFPLBto EOCLB (38,127 MWd/MTU CAVEX)........................................................................ *................................................. 20 Table 4-7: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (38,127 MWd/MTU CAVEX)........................................................................................................................ 21 Table 4-8: ATRIUM 1 0XM TLO MCPRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (38,127 MWd/MTU CA VEX)........................................................................................................................ 22 Table 4-9: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, BOC to EOFPLB (37,595 MWd/MTU CA VEX)......... :........................................ :................................ :.... :................................................. 23 Table 4-10: OPTIMA2 TLO MCPRp Limits for ISS Insertion Times, BOC to EOFPLB (37,595 MWd/MTU CA VEX)..............................................................................................................................*........... 24

. Table 4-11: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, BOC to EOFPLB (37,595 MWd/MTU CAVEX}.. :..................................................................................................................... 25 Table 4-12: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (38,127 MWd/MTU CAVEX)........................................................................................................................ 26 Table 4-13: OPTI MA2 TLO MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (38, 127 MWd/MTU CAVEX)...................................... :........... :..................................................................... 27

  • .Table 4~14: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (38,127

.. ';. **.*. M\\Al~LMTU CA VEX)........................................................................................................................ 28 Table 4~15:'ATRIUM 10XM SLO MCPRp Limits for NSS Insertion Times, All Exposures......................... 29 Table 4-16: ATRIUM 1 0XM SLO MCPRp Limits for ISS Insertion Times, All Exposures.......................... 30 Table 4-17: ATRIUM 10XM SLO MCPRp Limits for TSSS Insertion Times, All Exposures....................... 31 Table 4-18: OPTIMA2 SLO MCPRp Limits for NSS Insertion Times, All Exposures................................. 32 Table 4-19: OPTIMA2 SLO MCPRp Limits for ISS Insertion Times, All Exposures................................... 33 Table 4-20: OPTIMA2 SLO MCPRp Limits for TSSS Insertion Times, All Exposures............................... 34 Table 4-21: ATRIUM 10XM and OPTIMA2 MCPRf Limits.................................................................. :....... 35 Table 5-1: LHGR Limits for OPTIMA2 Lattices 163, 164, 165, 166, 167.................................................... 37 Table 5-2: LHGR Limits for OPTIMA2 Lattices 81, 89................................................................................ 37 Table 5-3: LHGR Limits for ATRIUM 1 0XM................................................................................................ 37 Table 5-4: ATRIUM 10XM LHGRFACp Multipliers for All Scram Insertion Times, All Exposures............. 38 Table 5-5: OPTIMA2 LHGRFACp Multipliers for All Scram Insertion Times, All Exposures...................... 39 Table 5-6: ATRIUM 10XM LHGRFACf Multipliers for All Cycle 28 Exposures, All EOOS......................... 40 Table 5-7: OPTIMA2 LHGRFACf Multipliers for All Cycle 28 Exposures, All EOOS.................................. 40 Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints............................................................. 41 Table 7-1: OPRM PBDA Trip Settings........................................................................................................ 42 Table 8-1: Modes of Operation.................................................................................................................. 43 Table 8-2: Core Thermal Power Restriction for EOOS Conditions............................................................. 44 Page 4 of 49

COLR Dresden 2 Revision 19

1. Terms and Definitions AOO ASD BOC CAVEX CPR CRWE CTP D2C28 EFPD EFPH EOCLB EOFPL EOFPLB EOOS FHOOS FRV FWT ICF ISS LHGR LHGRFACt LHGRFACp LPRM.

MAPLHGR MGPR MCPRt MCPRp MELLLA MSIVOOS MWd/MTU MWth NRC NSS OLMCPR OOS OPRM PBDA PCOOS PLUOOS SLMCPR SLO SRVOOS TBV TBVOOS TCV TCVSLOWC

. TIP TLO TMOL TRM TSSS TSV Anticipated operational occurrence Adjustable speed drive Beginning of cycle Core average exposure Critical power ratio Control rod withdrawal error Core thermal power Dresden Unit 2 Cycle 28 Effective full power day Effective full power hour.

End of cycle licensing basis End of full power life End of full power licensing basis Equipment out of service Feedwater heater out of service Feedwater regulating valve Feedwater temperature Increased core flow Intermediate scram speed Linear heat generation rate Flow dependent linear heat generation rate multiplier Power dependent linear heat generation rate multiplier Local power range monitor Maximum average planar linear heat generation rate Minimum critical power ratio Flow dependent minimum critical power ratio Power dependent minimum critic.al power ratio Maximum extended load line *limit analysis Main steam isolation valve out of service Megawatt days per metric ton Uranium Megawatts thermal Nuclear Regulatory Commission Nominal scram speed Operating limit minimum critical power ratio Out of service Oscillation power range monitor Period based detection algorithm Pressure controller out of service Power load unbalance out of service Safety limit minimum critical power ratio Single loop operation Safety/relief valve out of service Turbine bypass valve_

Turbine bypass valves out of service Turbine control valve TCV slow closure Traversing in-core probe Two loop operation Thermal mechanical operating limit Technical Requirements Manual Technical Specification scram speed Turbine stop valve Page 5 of 49

COLR Dresden 2 Revision 19

  • 2. General Information This report is prepared in accordance with Technical Specification 5.6.5. The D2C28 reload is licensed by Framatome. However, some legacy analyses by Westinghouse are still applicable for OPTIMA2 fuel as described in Reference 9.

Licensed rated thermal power is 2957 MWth. Rated core flow is 98 Mlb/hr. Operation up to 108% rated core flow is licensed for this cycle. However, core flow cannot exceed 103.4% rated core flow due to unit specific limitations. For allowed operating regions, see the applicable power/flow map.

The licensing analysis supports full power operation to EOCLB (38,127 MWd/MTU CA VEX). Note that this value includes coastdown, where full power operation is not expected. Coastdown is defined as operation beyond EOFPL (37,595 MWd/MTU CAVEX) with the plant power gradually reducing as available core reactivity diminishes. The minimum allowed coastdown power level is 40% rated CTP per Reference 1.

The transient analysis limits are provided for operation up to specific CAVEX exposures as defined in Section 4.3.

Power and flow dependent limits are listed for various power and flow levels. Linear interpolation on power and flow,.as applicable, is to be used to find intermediate values. Linear interpolation is also to be used for table items intentionally left blank, as indicated by boxes which are grayed out.

Only MCPRp varies with scram speed. All other thermal limits are analyzed to remain valid with NSS, ISS, and TSSS.

LHGRFACt is independent of feedwater temperature and EOOS conditions.

For thermal limit monitoring above 100% rated power or 108% rated core flow, the 100% rated *power or the 108% core flow thermal limit values, respectively, shall be used. Steady state operation is not allowed in this region. Limits are provided for transient conditions only.

Page 6 of 49

COLR Dresden 2 Revision 19

3. Average Planar Linear Heat Generation Rate Technical Specifications Sections 3.2.1 and 3.4.1 Table 3-1 provides the MAPLHGR SLO multipliers for ATRIUM 10XM and OPTIMA2 fuel. For OPTIMA2 natural uranium lattices, TLO and SLO MAPLHGR values are provided in Table 3-2. For all other OPTIMA2
  • lattices, lattice-specific MAPLHGR values for TLO are provided in Tables 3-3 through 3-7. For ATRIUM 1 0XM fuel, the MAPLHGR values for TLO applicable for all lattices can be found in Table 3-8.

During SLO, the limits in Tables 3-3 through 3-8 are multiplied by the fuel-specific SLO multiplier listed in Table 3-1. The ATRIUM 10XM multiplier may be applied to OPTIMA2 for SLO conditions, as the ATRIUM 1 0XM multiplier is more limiting.

Table 3-1: MAPLHGR SLO Multipliers (References 7 and 9)

Fuel Type Multiplier ATRIUM 10XM 0.80 OPTIMA2 0.86 Table 3-2: MAPLHGR for OPTIMA2 Lattices 81 and 89 (Reference 6 and 7)

All OPTIMA2 Bundles Lattices 81: Opt2-B0.71 89: Opt2-T0.71 Average Planar Exposure TLO and SLO MAPLHGR (MWd/MTU)

(kW/ft) 0 7.65 75,000 7.65 Page 7 of 49

COLR Dresden 2 Revision 19 Table 3-3: MAPLHGR for OPTIMA2 Lattice 163 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 163: Opt2-B4.50-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU)

(kW/ft) 0 9.47 2,500 9.81 5,000 9.71 7,500 9.58 10;000 9.68 12,000 9.73 15,000 9.89 17,000 10.00 20,000 10.18 22,000 10.21 2{000 10.18 30,000 10.12 36,000 10.07 42,000 10.00 50,000 10.02 75,000 10.02 Page 8 of 49

COLR Dresden 2 Revision 19 Table 3-4: MAPLHGR for OPTIMA2 Lattice 164 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 164: Opt2-BE4.60-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU)

(kW/ft) 0 9.53 2,500 9.89 5,000 9.85 7,500 9.83 10,000 9.76 12,000 9.82 15,000 10.01 17,000 10.16 20,000 10.33 22,000 10.34 24,000 10.31 30,000 10.23 36,000 10.18 42,000 10.14 50,000 10.09 75,000 10.09 Page 9 of 49

COLR Dresden 2 Revision 19 Table 3-5: MAPLHGR for OPTIMA2 Lattice 165 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 165: Qpt2-M4.60-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU)

(kW/ft) 0 9.51 2,500 9.91 5,000 9.89 7,500 9.85 10,000 9.78 12,000 9.85 15,000 10.02 17,000 10.18 20,000 10.36 22,000 10.36 24,000 10.31 30,000 10.23 36,000 10.18 42,000 10.14 50,000 10.09 75,000 10.09 Page 10 of 49

COLR Dresden 2 Revision 19 Table 3-6: MAPLHGR for OPTIMA2 Lattice 166 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 166: Opt2-ME4.57-16G5.50 Average Planar TLO Exposure MAPLHGR (MWd/MTU)

(kW/ft) 0 9.68 2,500 10.09 5,000 10.04 7,500 9.93 10,000 9.95 12,000 10.03 15,000 10.31 17,000 10.47 20,000 10.62 22,000 10.56 24,000 10.51 30,000 10.44 36,000 10.37 42,000 10.28 50,000 10.22 75,000 10.22 Page 11 of 49

COLR Dresden 2 Revision 19 Table 3-7: MAPLHGR for OPTIMA2 Lattice 167 (References 6 and 7)

Bundle Opt2-4.10-14G5.50-2GZ5.50 Lattice 167: Opt2-T4.58-14G5.50 Average Planar TLC Exposure MAPLHGR (MWd/MTU)

(kW/ft) 0 10.13 2,500 10.45 5,000 10.44 7,500 10.17 10,000 10.08

. 12,000 10.10 15,000 10.29 17,000 10.44 20,000 10.56 22,000 10.56 24,000 10.52 30,000 10.46 36,000 10.39 42,000 10.31 50,000 10.17 75,000 10.17 Page 12 of 49

I COLR Dresden 2 Revision 19 Table 3-8: MAPLHGR for ATRIUM 10XM (Reference 9)

All ATRIUM 10XM Lattices Average Planar Exposure TLO MAPLHGR (MWd/MTU)

(kW/ft) 0 12.20 20,000 12.20 67,000 7.73 Page 13 of 49 I

COLR Dresden 2 Revision 19

4. Operating Limit Minimum Critical Power Ratio Technical Specification Sections 3.2.2, 3.4.1, arid 3.7.7 The OLMCPRs for D2C28 were established so that less than 0.1 % of the fuel rods in the core are expected to experience boiling transition during an AOO initiated from rated or off-rated conditions and are based on the Technical Specifications SLMCPR values (Reference 9). -*

Tables 4-3 through 4-21 include MCPR limits for various specified EOOS conditions. The EOOS conditions separated by "/" in these tables represent single EOOS conditions and not any combination of conditions.

Refer to Section 8 for a detailed explanation of allowable combined EOOS conditions.

4.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

4.1.1. Power-Dependent MCPR The OLMCPR as a function of core thermal power (MCPRp) is shown in Tables 4-3 through

20. MCPRp limits are dependent on scram times as described in Section 4.2, exposure as described in Section 4.3, fuel type, FWT, and whether the plant is in TLO or SLO. TLO limits for ATRIUM 10XM fuel are given in Tables 4-3 through 4-8 and SLO limits for ATRIUM 10XM.fuel are given in Tables 4-15 through 4-17. TLO limits for OPTIMA2 fuel are given in Tables 4-9 through 4-14 and SLO limits for OPTIMA2 fuel are given in Tables 4-18 through 4-20.

4.1.2. Flow-Dependent MCPR Table 4-21 gives the OLMCPR limit as a function of the flow (MCPRt) based on _the applicable plant condition.

These values are applicable to both ATRIUM 10XM and OPTIMA2 fuel.

Page 14 of 49

COLR Dresden 2 Revision 19 4.2. Scram Time TSSS, ISS, and NSS refer to scram speeds. The scram time values associated with these speeds are shown in Table 4-1. The TSSS scram times shown in Table 4-1 are the same as those specified in the Technical Specifications (Reference 2).

To utilize the OLMCPR limits for NSS in Tables 4-3, 4-6, 4-9, 4-12, 4-15, and 4-18, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the NSS time shown in Table 4-1 below.

To utilize the OLMCPR limits for ISS in Tables 4-4, 4-7, 4-10, 4-13, 4-16, and 4-19, the average control rod insertion time at each control rod insertion fraction must be equal to or less than the ISS time shown in Table 4-1 below.

The "Average Control Rod Insertion Time" is defined as the sum of the control rod insertion times of all operable control rods divided by the number of operable control rods. Conservative adjustments to the NSS and ISS scram speeds were made to the analysis inputs to appropriately account for the effects ot" 1 'stuck control rod and one additional control rod that is assumed to fail to scram (Reference 9).

To utilize the OLMCPR limits for TSSS in Tables 4-5, 4-8, 4-11, 4-14, 4-17, and 4-20, the control rod insertion time of each operable control rod at each control rod insertion fraction must be less than or equal to the TSSS time shown in Table 4-1 below. The Technical Specifications allow operation with up to 12 "slow" and 1 stuck control rod. One additional control rod is assumed to fail to scram for the system transient analyses performed.to establish MCPRp limits (Reference 9).

Conservative adjustments to the TSSS scram speeds were made to the analysis inputs to appropriately account for the effects of the slow and stuck rods on scram reactivity (Reference 9).

For cases below 38.5% power (Pbypass), the results are relatively insensitive to scram speed, and only TSSS analyses were performed (Reference 9).

Control Rod Insertion Fraction (%)

5 20 50 90 Table 4-1: Scram Times (References 2 and 9)

NSS (seconds)

ISS (seconds) 0.324 0.36 0.700 0.72 1.510 1.58 2.635 2.74 Page 15 of 49 TSSS (seconds) 0.48 0.89 1.98 3.44

COLR Dresden 2 Revision 19 4.3. Exposure Dependent MCPR Limits Exposure-dependent MCPRp limits were established to support operation from BOC to EOFPLB (CA VEX of 37,595 MWd/MTU) and EOFPLB to EOCLB (CA VEX of 38, 127 MWd/MTU) as defined by the CAVEX values listed in Table 4-2. The limits at a later exposure range can be _used earlier in the cycle as they are the same or more conservative.

Table 4-2: Exposure Basis for Transient Analysis (Reference 9)

Core Average Exposure (CAVEX)

Description (MWd/MTU) 37,595 Design basis rod patterns to EOFPL

+ 25 EFPD (EOFPLB) 38,127 EOCLB - Maximum licensing core exposure, includinQ coastdown 4.4. Recirculation Pump ASD Settings Technical Requirement Manual 2.1.a.1 D2C28 was analyzed with a slow flow excursion event assuming a failure of the recirculation flow control system such that the core flow increases slowly to the maximum flow physically permitted by the equipment, assumed to be 110% of rated core flow (Reference 9); therefore, the recirculation pump ASD must be set to maintain core flow less than 110% (107.8 Mlb/hr) for all runout events.

Page 16 of 49

COLR Dresden 2 Revision 19 Table 4-3: ATRIUM 10Xl'J! TLO MCPRp Limits for NSS Insertion Times, BOC to EOFPLB (37,595 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT EOOS Condition Core Flow Core Power (% rated)

(% rated) 0 25 S 38.5

> 38.5 Base/TCV Stuck

s; 60 2.57 2.57 2.20 1.92 Closed/MSIVOOS

> 60 2.62 2.62 2.28 TBVOOS S60 3.50 3.50 2.61 2.00

> 60 3.58 3.58 2.79 TCV Slow Closure/

s 60 2.57 2.57 2.26 2.26 PLUOOS/PCOOS

> 60 2.62 2:62 2.28 1 FRV in

s; 60 2.57 2.57 2.20 1.97 Manual Mode*

> 60 2.62 2.62 2.28

-FHOOS EOOS Condition Core Flow Core Power (% rated)

(% rated) 0 25 S 38.5

> 38.5 Base/TCV Stuck

s; 60 2.77 2.77 2.30 2.08 Closed/MSIVOOS

> 60 2.82 2.82, 2.31 TBVOOS S60 3.64 3.64 2.74 2.09

> 60 3.69 3.69 2.89 TCV Slow Closure/

s; 60 2.77 2.77 2.30 2.26 PLUOOS/PCOOS

> 60 2.82 2.82 2.31

  • See Table 8-2 for operational restrictions.

Page 17 of 49 100 1.42 1.43 1.42 1.42 100 1.42 1.43 1.42

COLR Dresden 2 Revision 19 Table 4-4: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, BOC to EOFPLB (37,595 MWd/MTU CA VEX)

(Reference 9)

Nominal FWT EOOS Condition Core Flow Core Power (% rated)

(% rated) 0 25 S 38.5

> 38.5 Base/TCV Stuck

,; 60 2.57 2.57 2.20 1.92 Closed/MSIVOOS

> 60 2.62 2.62 2.28 TBVOOS

5 60 3.50 3.50 2.61 2.00

> 60 3.58 3.58 2.79 TCV Slow Closure/

,; 60 2.57 2.57 2.26 2.26 PLUOOS/PCOOS

> 60 2.62 2.62 2.28 1 FRV in

,; 60 2.57 2.57 2.20 1.97 Manual Mode*

> 60 2.62 2.62 2.28 FHOOS EOOS Condition Core Flow Core Power (% rated)

(% rated) 0 25 S 38.5

> 38.5 Base/TCV Stuck

,; 60 2.77 2.77 2.30 2.09 Closed/MSIVOOS

> 60 2.82

. 2.82 2.31 TBVOOS

,; 60 3.64 3.64 2.74 2.09

> 60 3.69 3.69 2.89 TCV Slow Closure/

,; 60 2.77 2.77 2.30 2.26 PLUOOS/PCOOS

> 60 2.82 2.82 2.31

  • See Table 8-2 for operational restrictions.

Page 18 of 49 100 1.42 1.43 1.42 1.42 100 1.42 1.43 1.42

COLR Dresden 2 Revision 19 Table 4-5: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times, BOC to EOFPLB {37,595 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT EOOS Condition Core Flow Core Power (% rated)

{% rated) 0 25 S 38.5

> 38;5 Base/TCV Stuck

60 2.57 2.57 2.20 2.01 Closed/MSIVOOS

> 60 2.62 2.62 2.28

60 3.50 3.50 2.61 TBVOOS

> 60 3.58 3.58 2.79 2.02 TCV Slow Closure/

60 2.57 2.57 2.28 PLUOOS/PCOOS

> 60 2.62 2.62 2.28 2.28 1 FRV in

60 2.57 2.57 2.20 2.01 Manual Mode*

> 60 2.62 2.62 2.28 FHOOS EOOS Condition Core Flow Core Power (% rated)

{% rated) 0 25 S 38.5

> 38.5 Base/TCV Stuck

60 2.77 2.77 2.30 2.16 Closed/MSIVOOS

> 60 2.82 2.82 2.31 TBVOOS

60 3.64 3.64 2.74 2.17

> 60 3.69 3.69 2.89 TCV Slow Closure/

5 60 2.77 2.77 2.30 2.28 PLUOOS/PCOOS

> 60 2.82 2.82 2.31

  • See Table 8-2 for operational restrictions.

Page 19 of 49 100 1.42 1.43 1.42 1.43 100 1.42 1.44 1.42

COLR Dresden 2 Revision 19 Table 4-6: ATRIUM 10XM TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (38,127 MWd/MTU CA VEX)

(Reference 9)

Nominal FWT EOOS Condition Core Flow Core Power (% rated)

(% rated) 0 25 S 38.5

> 38.5 Base/TCV Stuck

!, 60 2.57 2.57 2.20 1.92 Closed/MSIVOOS

> 60 2.62 2.62 2.28 TBVOOS

!, 60 3.50 3.50 2.61 2.00

> 60 3.58 3.58 2.79 TCV Slow Closure/

!, 60 2.57 2.57 2.26 2.26 PLUOOS/PCOOS

> 60 2.62 2.62 2.28 1 FRV in

!, 60 2.57 2.57 2.20 1.97 Manual Mode*

> 60 2.62 2.62 2.28 FHOOS EOOS Condition Core Flow Core Power (% rated)

(% rated) 0 25 II

--.s Base/TCV Stuck

!, 60 2.77 2.77 2.30 2.08 Closed/MSIVOOS

> 60 2.82 2.82 2.31 TBVOOS

!, 60 3.64 3.64 2.74 2.09

> 60 3.69 3.69 2.89 TCV Slow Closure/

!, 60 2.77*

2.77 2.30 2.26 PLUOOS/PCOOS

> 60 2.82 2.82 2.31

  • See Table 8-2 for operational restrictions.

Page 20 of 49 100 1.42 1.43 1.42 1.42 100 1.42 1.43 1.42

COLR Dresden 2 Revision 19 Table 4-7: ATRIUM 10XM TLO MCPRp Limits for ISS Insertion Times, EOFPLB to EOCLB (38,127 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT EOOS Condition Core Flow Core Power (% rated)

(% rated)

I 0

25 S 38.5

> 38.5 Base/TCV Stuck

,; 60 2.57 2.57 2.20 1.92 Closed/MSIVOOS

> 60 2.62 2.62 2.28 TBVOOS

,; 60 3.50 3.50 2.61 2.00

> 60 3.58 3.58 2.79 TCV Slow Closure/

,; 60 2.57 2.57 2.26 2.26 PLUOOS/PCOOS

> 60 2.62 2.62

,; 60 2.57 2.57 2.20 1.97 Manual Mode*

> 60 2.62 2.62 2.28 FHOOS EOOS Condition Core Flow Core Power (% rated)

(% rated) 0 25 S38.5

> 38.5 Base/TCV Stuck

,; 60 2.77 2.77 2.30 2.09 Closed/MSIVOOS

> 60 2.82 2.82 2.31 TBVOOS

,; 60 3.64 3.64 2.74 2.09

> 60 3.69 3.69 2.89 TCV Slow Closure/

,; 60 2.77 2.77 2.30 2.26 PLUOOS/PCOOS*

> 60 2.82 2.82 2.31

  • See Table 8-2 for operational restrictions.

Page 21 of 49 100 1.42 1.43 1.42 1.42 100 1.42 1.43 1.42

COLR Dresden 2 Revision 19 Table 4-8: ATRIUM 10XM TLO MCPRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (38,127 MWd/MTU CA VEX)

(Reference 9)

Nominal FWT EOOS Condition Core Flow Core Power (% rated)

(% r:ated) 0 25

s; 38.5

> 38.5 Base/TCV Stuck s; 60 2.57 2.57 2.20 2.01 Closed/MSIVOOS

> 60 2.62 2.62 2.28 TBVOOS s; 60 3.50 3.50 2.61 2.02

> 60 3.58 3.58

  • 2.79
  • TCV Slow Closure/

s; 60 2.57 2.57 2.28 2.28 PLUOOS/PCOOS

> 60 2.62 2.62 2.28 1 FRV in s; 60 2.57 2.57 2.20.

2.01 Manual Mode*

> 60 2.62 2,62 2.28 FHOOS EOOS Condition Core Flow Core Power (% rated)

(% rated) 0 25

s; 38.5

> 38.5 Base/TCV Stuck s; 60 2.77 2.77 2.30 2.16 Closed/MSIVOOS

> 60 2.82 2.82 2.31 TBVOOS s; 60 3.64 3.64 2.74 2.17

> 60 3.69 3.69 2.89 TCV Slow Closure/

s; 60 2.77 2.77 2.30 2.28 PLUOOS/PCOOS

> 60 2.82 2.82 2.31

  • See Table 8-2 for operational restrictions.

Page 22 of49 100 1.42 1.43 1.42 1.43 100 1.42 1.44 1.42

COLR Dresden 2 Revision 19 Table 4-9: OPTIMA2 TLO MCPRµ Limits for NSS Insertion Times, BOC to EOFPLB (37,595 MWd/MTU CAVEX}

(Reference 9)

Nominal FWT EOOS Condition Core Flow Core Power % rated

(% rated}

0 25 S 38.5

> 38.5 Base/TCV Stuck

,:; 60 2.51 2.51 2.09 1.97 Closed/MSIVOOS

> 60 2.64 2.64 2.33 TBVOOS

,:; 60 3.27 3.27 2.48 1.99 1.45

> 60 3.52 3.52 2.81 TCV Slow Closure/

,:; 60 2.51 2.51 2.31 2:31 1.43 PLUOOS/PCOOS

> 60 2.64 2.64 2.33 1 FRV in

,:; 60 2.51 2.51 2.09 1.97 1.45 Manual Mode*

> 60 2.64 2.64 2.33 FHOOS EOOS Condi.

Core Power % rated 25 S 38.5

> 38.5 100 Base/TCV Stuck

,:; 60 2.67 2.67 2.23 2.15 1.42 Closed/MSIVOOS

> 60 2.85 2.85 2.33 TBVOOS

,:; 60 3.40 3.40 2.56 2.15 1.46

> 60 3.66 3.66 2.90 TCV Slow Closure/

,:; 60 2.67 2.67 2.31 2.31 1.92 1.43 PLUOOS/PCOOS

> 60 2.85 2.85 2.33

  • See Table 8-2 for operational restrictions.

Page 23 of49

COLR Dresden 2 Revision 19 Table 4-10: OPTIMA2 TLO MCPRp Limits for 155 Insertion Times, BOC to EOFPLB (37,595 MWd/MTU.CAVEX)

(Reference 9)

I Nominal FWT I

I EOOS Condition I Core Flow Core Power 1% rated)

(% rated) 0 25

S 38.5

> 38.5 75 100 Base/TCV Stuck

60 2.51 2.51 2.09 1.98 It 1.41 Closed/MSIVOOS

> 60 2.64 2.64 2.33 TBVOOS

5 60 3.27 3.27 2.48 1.99 1.45

> 60 3.52 3.52 2.81 TCV Slow Closure/

5 60 2.51 2.51 2.31 2.31 1.92 1.44 PLUOOS/PCOOS

> 60 2.64 2.64 2.33 1 FRV in

60 2.51 2.51 2.09 1.98 if
i,rr; '"

1.46 Manual Mode*

> 60 2.64 2.64 2.33 d:r;~;,r::.

FHOOS I

EOOS Condition I

Core Flow Core Power '% rated 1

(% rated) 0 25

S 38.5

> 38.5 75 100 Base/TCV Stuck

5 60 2.67 2.67 2.23 2.16 M 1.42 Closed/MSIVOOS

> 60 2.85 2.85 2.33 TBVOOS

5 60 3.40 3.40 2.56 2.16 1.46

> 60 3.66 3.66 2.90 TCV Slow Closure/

5 60 2.67
  • 2.67 2.31 2.31 1.92 1.44 PLUOOS/PCOOS

> 60 2.85 2.85 2.33

  • S.ee Table 8-2 for operational restrictions.

Page 24 of 49

I COLR Dresden 2 Revision 19 Table 4-11: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, BOC to EOFPLB (37,595 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT EOOS Condition I

Core Flow Core Power '% rated

(% rated) 0 25 S 38.5 >38.51 Base/TCV Stuck s 60 2.51 2.51 2.09 Closed/MSIVOOS

> 60 2.64 2.64 2.33 2.02 v;v, TBVOOS s 60 3.27 3.27 2.48 2.03

> 60 3.52 3.52 2.81

  • TCV Slow Closure/

s 60 2.51 2.51 2.33 2.33

  • c*1~

PLUOOS/PCOOS

> 60 2.64 2.64 2.33

  • 1 FRV in s 60 2.51 2.51 2.09 2.02 Manual Mode*

> 60 2.64 2.64 2.33

t.

FHOOS EOOS Co1...

Core Power '% rated IOI

I) 0 25 S 38.5

> 38.5 75 Base/TCV Stuck s 60 2.67 2.67 2.23 2.20 Closed/MSIVOOS

> 60 2.85 2.85 2.33

~

TBVOOS s 60 3.40 3.40 2.56 2.20

> 60 3.66 3.66 2.90 TCV Slow Closure/

s 60 2.67 2.67 2.33 2.33 1.95 PLUOOS/PCOOS

> 60 2.85 2.85 2.33

  • See Table 8-2 for operational restrictions.

Page 25 of 49 100 1.43 1.47 1.49 1.49 100 1.44 1.48 1.49

COLR Dresden 2 Revision 19 Table 4-12: OPTIMA2 TLO MCPRp Limits for NSS Insertion Times, EOFPLB to EOCLB (38,127 MWd/MTU CA VEX)

(Reference 9)

Nominal FWT EOOS Condition Core Flow Core Power % rated

(% rated) 0 25 S 38.5

> 38.5 75 Base/TCV Stuck

60 2.51 2.51 2.09 1.97 ~

Closed/MSIVOOS

> 60 2.64 2.64 2.33 TBVOOS

60 3.27 3.27 2.48 1.99

> 60 3.52 3.52 2.81 TCV Slow Closure/

60 2.51 2.51 2.31 2.31 1.92 PLUOOS/PCOOS

> 60 2.64 2.64 2.33 1 FRV in

60 2.51 2.51 2.09

,,zg 1.97 3/4L;{;: *.L Manual Mode*

> 60 2.64 2.64 2.33

,, ~,.};'i'\\/;,1 FHOOS EOOS Condition Core Flow Core Power % rated

(% rated) 0 25 S 38.5

> 38.5 75 Base/TCV Stuck

60 2.67 2.67 2.23 2.15 ~

Closed/MSIVOOS

> 60 2.85 2.85 2.33

60 3.40 3.40 2.56 TBVOOS

> 60 3.66 3.66 2.90 2.15 TCV Slow Closure/

60 2.67 2.67 2.31 2.31 1.92 PLUOOS/PCOOS

> 60 2.85 2.85 2.33

  • See Table 8-2 for operational restrictions.

Page 26 of 49 100 1.41 1.45 1.44 1.45 100 1.42 1.46 1.44

I I

COLR Dresden 2 Revision 19 Table 4-13: OPTIMA2 TLO MCPRp Limits for 155 Insertion Times, EOFPLB to EOCLB (38,127 MWd/MTU CAVEX)

(Reference 9)

Nominal FWT EOOS Condition I Core Flow Core Power '% rated

(% rated) 0 25 S 38.5

> 38.5 75 Base/TCV Stuck s 60 2.51 2.51 2.09 1.98

1, Closed/MSIVOOS

> 60 2.64 2.64 2.33 TBVOOS s 60 3.27 3.27 2.48 1.99 i~r~1,i'~,,l

> 60 3.52 3.52 2.81 TCV Slow Closure/

s 60 2.51 2.51 2.31 2.31 1.92 PLUOOS/PCOOS

> 60 2.64 2.64 2.33 1 FRV in s 60 2.51 2.51 2.09

'icl ;i;,i;f.,n:cvn 1.98,r*"?litrr:01 Manual Mode*

> 60 2.64 2.64 2.33 FHOOS EOOS Condition Core Flow Core Power % rated

(% rated) 0 25 S 38.5

> 38.5 75 Base/TCV Stuck s 60 2.67 2.67 2.23 2.16

  • Closed/MSIVOOS

> 60 2.85 2.85 2.33 TBVOOS s 60 3.40 3.40 2.56 2.16

> 60 3.66 3.66 2.90 rev Slow Closure/

s 60 2.67 2.67 2.31

. 2.31 1.92 PLUOOS/PCOOS

> 60 2.85 2._85 2.33

  • See Table 8-2 for operational restrictions.

Page 27 of 49 I

100 1.41 1.45 1.44 1.46 100 1.42 1.46 1.44

COLR Dresden 2 Revision 19 Table 4-14: OPTIMA2 TLO MCPRp Limits for TSSS Insertion Times, EOFPLB to EOCLB (38,127 MWd/MTU CA VEX)

(Reference 9)

Nominal FWT EOOS Condition Core Flow Core Power % rated,

(% rated) 0 25 S 38.5

> 38.5 g 100 Base/TCV Stuck

60 2.51 2.51 2.09 2.02 1.44 Closed/MSIVOOS

> 60 2.64 2.64 2.33 TBVOOS

5 60 3.27 3.27 2.48 2.03 1.47

> 60 3.52 3.52 2.81 TCV Slow Closure/

5 60 2.51 2.51 2.33 2.33 1.95 1.50 PLUOOS/PCOOS

> 60 2.64 2.64 2.33 1 FRV in

60 2.51 2.51 2.09 2.02 r
J 1.49 Manual Mode*

> 60 2.64 2.64 2.33 FHOOS EOOS Condition Core Flow Core Power % rated

(% rated) 0 25 S 38.5

> 38.5 I 100 Base/TCV Stuck

60 2.67 2.67 2.23 2.20 1.44 Closed/MSIVOOS

> 60 2.85 2.85 2.33 TBVOOS

5 60 3.40 3.40 2.56 2.20 1.48

> 60 3.66 3.66 2.90 TCV Slow Closure/

60 2.67 2.67 2.33 2.33 1.95 1.50 PLUOOS/PCOOS *

> 60 2.85 2.85 2.33

  • See Table 8-2 for operational restrictions.

Page 28 of 49

COLR Dresden 2 Revision 19 Table 4-15: ATRIUM 10XM SLO MCPRp Limits for NSS Insertion Times,

.All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S38.5

> 38.5 50 Base/TCV Stuck 2.59 2.59 2.22 2.15 2.15 Closed/MSIVOOS TBVOOS 3.52 3.52 2.63 2.15 2.15 TCV Slow Closure/

2.59 2.59 2.28 2.28 2.15 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25 S 38.5

> 38.5 50 Base/TCV Stuck 2.79 2.79 2.32 2.15 2.15 Closed/MSIVOOS TBVOOS 3.66 3.66 2.78 2.15 2.15 TCV Slow Closure/

2.79 2.79 2.32 2.28 2.15 PLUOOS/PCOOS Page 29 of 49

COLR Dresden 2 Revision 19 Table 4-16: ATRIUM 10XM SLO MCPRp Limits for 155 Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition

. Core Power (% rated)

(all include SLO) 0 25

5: 38.5

> 38.5 50 Base/TCV Stuck 2.59 2.59 2.22 2.15 2.15 Closed/MSIVOOS TBVOOS 3.52 3.52 2.63 2.15 2.15 TCV Slow Closure/

2.59 2.59 2.28 2.28 2.15 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25

5: 38.5

> 38.5 50 Base/TCV Stuck 2.79 2.79 2.32 2.15 2.15 Closed/MSIVOOS TBVOOS 3.66 3.66 2.78 2.15 2.15 TCV Slow Closure/

2.79

. 2.79 2.32 2.28 2.15 PLUOOS/PCOOS Page 30 of 49

COLR Dresden 2 Revision 19 Table 4-17: ATRIUM 1 OXM SLO MCPRp Limits for TSSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25

S 38.5

> 38.5 50 Base/TCV Stuck 2.59 2.59 2.22 2.15 2.15 Closed/MSIVOOS TBVOOS 3.52 3.52 2.63 2.15 2.15 TCV Slow Closure/

2.59 2.59 2.30 2.30 2.15 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

II (all include SLO) 0 25

<"n-II~ --.S 50 Base/TCV Stuck 2.79 2.79 2.32 2.18 2.15 Closed/MSIVOOS TBVOOS 3.66 3.66 2.78 2.19 2.15 TCV Slow Closure/

2.79 2.79 2.32 2.30 2.15 PLUOOS/PCOOS Page 31 of 49

I I

COLR Dresden 2 Revision 19 Table 4-18: OPTIMA2 SLO MCPRp Limits for NSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25

S 38.5

> 38.5 50 Base/TCV Stuck 2.53 2.53 2.11 2.09 2.07 Closed/MSIVOOS TBVOOS 3.29 3.29 2.50 2.09 2.07 TCV Slow Closure/

2.53 2.53 2.33 2.33 2.21 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25

~---II* "0,5 50 Base/TCV Stuck 2.69 2.69 2.25 2.17 2.07 Closed/MSIVOOS TBVOOS 3.42 3.42 2.58 2.17 2.07 TCV Slow Closure/

2.69 2.69 2.33 2.33 2.21 PLUOOS/PCOOS Page 32 of 49 I

I

I COLR Dresden 2 Revision 19 Table 4-19: OPTIMA2 SLO MCPRp Limits for ISS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOS Condition Core Power (% rated)

(all include SLO) 0 25

5. 38.5 I > 38.5 50 Base/TCV Stuck 2.53 2.53 2.11 2.09 2.07 Closed/MSIVOOS TBVOOS 3.29 3.29 2.50 2.09 2.07 TCV Slow Closure/

2.53 2.53 2.33 2.33 2.21 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

(all include SLO) 0 25

5. 38.5

> 38.5 50 Base/TCV Stuck 2.69 2.69 2.25 2.18 2.07 Closed/MSIVOOS TBVOOS 3.42 3.42 2.58 2.18 2.07 TCV Slow Closure/

2.69 2.69 2.33 2.33 2.21 PLUOOS/PCOOS Page 33 of49 I

COLR Dresden 2 Revision 19 Table 4-20: OPTIMA2 SLO MCPRp Limits for TSSS Insertion Times, All Exposures (Reference 9)

Nominal FWT EOOSConfil Core Power (% rated)

II (all include 0

25

S 38.5

> 38.5 50 Base/TCV Stuck 2.53 2.53 2.11 2.09 2.07 Closed/MSIVOOS TBVOOS 3.29 3.29 2.50 2.09 2.07 TCV Slow Closure/

2.53 2.53 2.35 2.35 2.24 PLUOOS/PCOOS FHOOS EOOS Condition Core Power (% rated)

II

  • ,- -~~ SLO) 0 25 II

~.,0_5 50 Base/TCV Stuck 2.69 2.69 2.25 2.22 2.07 Closed/MSIVOOS TBVOOS 3.42 3.42 2.58 2.22 2.07 TCV Slow Closure/

2,69 2.69 2.35 2.35 2.24 PLUOOS/PCOOS Page 34 of 49

COLR Dresden 2 Revision 19 Table 4-21: ATRIUM 1 0XM and OPTIMA2 MCPRt Limits (Reference 9)

EOOS Condition" Core Flow (% rated)

Base Case / FHOOS / PCOOS / PLUOOS /

0 TCV Slow Closure I PLUOOS + PCOOS in 35 TLO and SLO / 1 FRV in Manual Mode in TLO 108 0

Any Scenario** with One MSIVOOS 35 108 0

Any Scenario** with TBVOOS 35 108 0

Any Scenario"* with 1 Stuck Closed 35 TCV/TSV 108

  • See Section 8 for further operating restrictions.

MCPRtlimit 1.68 1.68 1.23 1.84 1.84 1.23

}~_~.9 1.86 1.35 1.68 1.68 1.23

    • "Any Scenario" implies any other combination of allowable EOOS conditions that is not otherwise covered by this table.

Note that the MCPRt limits for any scenario with 1 stuck closed TCV/TSV are identical to base case MCPRt limits. This is reflected in the thermal limit sets presented in Table 8-1.

Page 35 of49

COLR Dresden 2 Revision 19

5. Linear Heat Generation Rate Technical Specification Sections 3.2.3, 3.4.1, and 3.7.7 The TMOL at rated conditions for the OPTIMA2 and ATRIUM 10XM fuel is established in terms of the maximum LHGR as a function of peak pellet (rod nodal) exposure. The LHGR limits for OPTIMA2 fuel are presented in Tables 5-1 and 5-2. The limits in Table 5-2 apply to the OPTIMA2 natural uranium blankets in lattices 81 and 89. The LHGR limits for ATRIUM 10XM fuel are presented in Table 5-3.

The power-and flow-dependent LHGR multipliers (LHGRFACp and LHGRFACr) are applied directly to the LHGR limits to protect against fuel melting and overstraining of the cladding during an AOO (Reference 9).

In all conditions, the margin to the LHGR limits is determined by applying the lowest multiplier from the applicable LHGRFACp and LHGRFACr multipliers for the power/flow statepoint of interest to the steady state LHGR limit (Reference 9).

LHGRFACp and LHGRFACr multipliers were established to support base case and all EOOS conditions for all D2C28 exposures and scram speeds. The LHGRFACp multipliers for ATRIUM 1 0XM and OPTIMA2 are presented in Table 5-4 and Table 5-5, respectively. The LHGRFACr multipliers for ATRIUM 10XM and OPTIMA2 are presented in Table 5-6 and Table 5-7, respectively.

The LHGRFACp and LHGRFACr multipliers are applicable in both TLO and SLO.

The EOOS conditions separated by "/" in these tables represent single EOOS conditions and not any combination of conditions. Refer to Section 8 for a detailed explanation of allowable combined EOOS conditions.

Page 36 of 49

COLR Dresden 2 Revision 19 Table 5-1: LHGR Limits for OPTIMA2 Lattices 163, 164, 165, 166, 167 (References 6 and 8)

Peak Pellet Exposure LHGR Limit (MWd/MTU)

(kW/ft) 0 13.72 14,000 13.11 23,000 12.22 57,000 8.87 62,000 8.38 75,000 3.43 Table 5-2: LHGR Limits for OPTIMA2 Lattices 81, 89 (References 6 and 8)

Peak Pellet Exposure LHGR Limit (MWd/MTU)

(kW/ft) 0 11.96 14,000 11.43 23,000 10.66 57,000 8.87 62,000 8.38 75,000 3.43 Table 5-3: LHGR Limits for ATRIUM 10XM (Reference 9)

Peak Pellet Exposure LHGR Limit (MWd/MTU)

(kW/ft) 0 14.1 18,900 14.1 74,400 7.4 Page 37 of 49

COLR Dresden 2 Revision 19 Table 5-4: ATRIUM 10XM LHGRFACp Multipliers for All Scram Insertion Times, All Exposures (Reference 9)

Nominal FWT I

EOOS Condition I

Core Flow Core Power (% rated)

(% rated) 0 25

S 38.5

> 38.5 60 90 100 Base/TCV Stuck

560 0.50 0.50 0.58 0.61 0.68 0.89 1.00 Closed/MSIVOOS

> 60 0.50 0.50 0.58 TBVOOS s 60 0.38 0.38 0.54 0.61 0.68 0.89 1.00

> 60 0.36 0.36 0.48 TCV Slow Closure/

s 60 0.50 0.50 0.58 0.61 0.68 0.89 1.00 PLUOOS/PCOOS

> 60 0.50 0.50 0.58 1 FRV in

560 0.50 0.50 0.57 0.57 0.64 0.87 0.98 Manual Mode*

> 60 0.50 0.50 0.57 FHOOS EOOS Condition Core Flow Core Power (% rated)

(% rated) 0 25

S 38.5

> 38.5 60 90 100 Base/TCV Stuck s 60 0.46 0.46 0.52 0.61 0.68 0.89 1.00 Closed/MSIVOOS

> 60 0.44 0.44 0.52 TBVOOS

< 60 0.36 0.36 0.48 0.61 0.68 0.89 1.00

> 60 0.32 0.32 0.44 TCV Slow Closure/

s 60 0.46 0.46 0.52 0.61 0.68 0.89 1.00 PLUOOS/PCOOS

>.60 0.44 0.44 0.52

  • See Table 8-2 for operational restrictions.

Page 38 of 49

COLR Dresden 2 Revision 19 Table 5-5: OPTIMA2 LHGRFACp Multipliers for All Scram Insertion Times, All Exposures (Reference 9)

Nominal FWT Core Core Power (% rated)

EOOS Condition Flow(%

0 25

. 38.5

> 38.5 50 60 75 80 rated)

Base/TCV Stuck

< 60 0.58 0.58 0.65 0.80 <*

1, 0.88 0.68 0.73 Closed/MSIVOOS

> 60 0.57 0.57 0.64

< 60 0.42 0.42 0.53 TBVOOS 0.68 0.73 0.78 0.84

> 60 0.41 0.41 0.50 TCV Slow Closure/

< 60 0.58 0.58 0.64 0.64 0.67 0.70 0.88 PLUOOS/PCOOS

> 60 0.57 0.57 0.64 1 FRV in

< 60 0.58 0.58 0.65 0.65 0.68 0.71 0.85 Manual Mode*

> 60 0.57 0.57 0.64 FHOOS Core Core Power (% rated)

EOOS Condition Flow(%

0 25

. 38.5

> 38.5 50 60 75 80 rated)

Base/TCV Stuck

< 60 0.53 0.53 0.61 0.63 0.70 0.77 0.85 Closed/MSIVOOS

> 60 0.52 0.52 0.61

60 0.40 0.40 0.52 0.63 0.70 0.75 0.84 TBVOOS

> 60 0.40 0.40 0.49 TCV Slow Closure/

60 0.53 0.53 0.61 0.63 0.67 l!f1i{~ 0.70 0.85 PLUOOS/PCOOS

> 60 0.52 0.52 0.61

  • See Table 8-2 for operational restrictions.

Page 39 of 49 100 1.00 0.98 1.00 1.00 100 0.99 0.97 0.99

COLR Dresden 2 Revision 19 Table 5-6: ATRIUM 10XM LHGRFACt Multipliers for All Cycle 28 Exposures, All EOOS (Reference 9)

Core Flow (% rated)

LHGRFACt 0.0 0.57 30.0 0.57 80.0 1.00 108.0 1.00 Table 5-7: OPTIMA2 LHGRFACt Multipliers for All Cycle 28 Exposures, All EOOS (Reference 9)

Core Flow (% rated)

LHGRFACt 0.0 0.27 20.0 0.43 40.0 0.60 60.0 0.80 80.0 1.00 100.0 1.00 108.0 1.00 Page 40 of 49

COLR Dresden 2 Revision 19

6. Control Rod Block Setpoints Technical Specification Sections 3.3.2.1 and 3.4.1 The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown in Table 6-1.

Table 6-1: Rod Block Monitor Upscale Instrumentation Setpoints (Reference 3)

ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.65 Wd + 55%

Operation Single Recirculation Loop 0.65 Wd + 51%

Operation Wd - percent of recirculation loop drive flow required to produce a rated core flow of 98.0 Mlb/hr.

The setpoint may be lower/higher and will still comply with the CRWE analysis because CRWE is analyzed unblocked (Reference 9).

Page 41 of 49

COLR Dresden 2 Revision 19

7. Stability Protection Setpoints Technical Specification Section 3.3.1.3 The OPRM PBDA Trip Settings are provided in Table 7-1.

Table 7-1: OPRM PBDA Trip Settings (Reference 9)

Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp)

Confirmation Count Setpoint (Np) 1.11 14 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system (Methodology 2).

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power/flow dependent MCPR limits. Any change to the OLMCPR values and/or the power/flow dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable and the associated Technical Specifications are implemented.

Page 42 of 49

COLR Dresden 2 Revision 19

8. Modes of Operation The allowed modes of operation with combinations of EOOS are as described in Table 8-1. The EOOS conditions separated by "/" in these tables represent single EOOS conditions and not combinations of conditions.

Note that the following EOOS options have operational restrictions: all SLO, all EOOS options with 1 TCV/TSV stuck closed, MSIVOOS, and 1 FRV in Manual Mode.

See Table 8-2 for specific restrictions.

Table 8-1: Modes of Operation (Reference 9)

EOOS Option Thermal Limit Set BASE CASE Base Case TLO orSLO Nominal FWT or FHOOS TBVOOS TBVOOS TLO orSLO Nominal FWT or FHOOS BASE CASE 1 TCVrrsv Stuck Closed TLO orSLO Nominal FWT or FHOOS MSIVOOS One MSIVOOS TLO orSLO Nominal FWT or FHOOS PLUOosrrcv SLOW C TCV Slow Closure TLO orSLO Nominal FWT or FHOOS PLUOOSrrcv SLOW C PLUOOS TLO orSLO Nominal FWT or FHOOS PLUOOSrrcv SLOW C PCOOS TLO orSLO Nominal FWT or FHOOS PLUOosrrcv SLOW C PLUOOS and 1 Tcvrrsv Stuck Closed TLO for Nominal FWT or FHOOS SLO for Nominal FWT*

PLUoosrrcv SLOW C PCOOS and PLUOOS TLO for Nominal FWT or FHOOS SLO for Nominal FWT*

PLUOosrrcv SLOW C PCOOS and 1 TCvrrsv Stuck Closed TLO for Nominal FWT or FHOOS SLO for Nominal FWT*

1 FRV in Manual Mode**

1 MANUAL FRV TLO for Nominal FWT***

  • FHOOS cannot be applied to SLO for the cases of PLUOOS and 1 TCVrrsv Stuck Closed, PCOOS and PLUOOS, or PCOOS and 1 TCVrrSV Stuck Closed.
    • Operation with 1 FRV in manual mode in the fully closed position (e.g., startup and maintenance situations) is exempt from this scenario.
      • Both SLO and FHOOS cannot be applied for the case of 1 FRV in Manual Mode.

Page 43 of 49

COLR Dresden 2 Revision 19 Table 8-2: Core Thermal Power Restriction for EOOS Conditions (Reference 9)

EOOS Condition Core Flow (% of Core Thermal Power (%

Rod Line(%)

Rated) of Rated Power) 1 TCVffSV Stuck Closed PCOOS and 1 TCVffSV N/A

< 75

< 80 Stuck Closed PLUOOS and 1 TCVffSV Stuck Closed One MSIVOOS N/A

< 75 N/A SLO

< 51

< 50 N/A 1 FRV in Manual Mode*

N/A

> 38.5 (Pbypass)

N/A

  • Operation with 1 FRV in manual mode in the fully closed position (e.g., startup and maintenance situations) is exempt from this scenario.

All requirements for all applicable conditions listed in Table 8-2 MUST be met.

Page 44 of 49

COLR Dresden 2 Revision 19 Common Notes:

1.

Base case operation assumes:

a.

1 TBV OOS (only 8 of the 9 bypass valves are available) per Reference 9

b.

Between 25% and 50% rated power, the PLU will not actuate per Reference 11

c.

The limiting relief, safety, or safety/relief valve is OOS per Reference 9

d.

Both dome pressure and throttle pressure control are supported per Reference 9

e.

Operation with a feedwater temperature band of +10°F /-30°F relative to the nominal FWT presented in Reference 10, Item 2.4.2

f.

Operation for dome pressures between the minimum and maximum bands per Reference 10, Item 2.4.5

2. All modes are allowed for operation at MELLLA, ICF (up to 108% rated core flow but subject to the restrictions in Section 2), and coastdown subject to the power restrictior:is in Table 8-2 (Reference 9). The licensing analysis supports full power operation to EOCLB (38,127 MWd/MTU CAVEX). Note that this value includes coastdown, where full power operation is not expected. The minimum allowed coastdown power level is 40% rated CTP per Reference 1. Each EOOS Option may be combined with each of the following conditions (Reference 9):
a.

Up to 40% of the TIP channels OOS or the equivalent number of TIP channels, using the guidance in Reference 4 for startup with TIP machines OOS

b.

Up to 50% of the LPRMs OOS

c.

An LPRM calibration frequency of up to 2500 EFPH

3.

Nominal FWT results are valid for application within a +10°F/-30°F temperature band around the nominal FWT curve (Reference 9). For operation outside of nominal FWT, a FWT reduction of between 30°F an.ct 120°F is supported for all FHOOS conditions listed in Table 8-1 for cycle operation through

.EOCLB (Reference 9). At lower power levels, the feedwater temperature reduction is less (Reference 9). Per Reference 5, there is a restriction which requires that'for a FWT reduction greater than 100°F, operation needs to be restricted to less than the 100% rod line. For a feedwater temperature reduction of between 30°F and 120°F, the FHOOS limits should be applied.

4.

The base case and EOOS limits and multipliers support operation with 8 of 9 TBVs operational (i.e.,

one bypass valve OOS) with the exception of the TBVOOS condition, in which all bypass valves are inoperable (Reference 9). Use of the response curve in TRM Appendix H supports operation with any single TBV OOS. TRM Appendix H facilitates analysis with one valve OOS in that the capacity at 0.5 seconds from start of TSV closure is equivalent to the total capacity with eight out of the nine valves in service (Reference 10). The analyses also support Turbine Bypass flow of 29.8% of vessel rated steam flow (Reference 10), equivalent to one TBV OOS (or partially closed TBVs equivalent to one closed TBV), if the assumed opening profile for the remaining TBVs is.met. If the opening profile is NOT met, or if the TBV system CANNOT pass an equivalent of 29.8% of vessel rated steam flow, utilize the TBVOOS condition.

5.

TBVOOS assumes that ALL the TBVs do not trip open on TCV fast closure or TSV closure and that ALL the TBVs are not capable of opening via the pressure control system (Reference 11). Steam relief capacity is defined in Reference 10.

6.

Between 25% and 50% of rated thermal power, the PLUOOS/TCV Slow Closure thermal limit set ensures that the AOO acceptance criteria are met for a load rejection event if the 86 Device is OOS (Reference 9). Therefore, use the PLUOOS/TCV Slow Closure thermal limit set between 25% and 50% of rated thermal power if the 86 Device is OOS.

Page 45 of 49

COLR Dresden 2 R!3vision 19

7.

Operating restrictions apply when 1 FRV is placed in manual mode per Reference 9. Additional EOOS conditions that are supported with 1 FRV in manual mode consist of 40% of TIP channels OOS and 50% of the LPRMs OOS. Other conditions associated with base case conditions, such as the feedwater

-temperature band, the pressure band, single and three-element level control, dome and turbine pressure control, operation with

  • 1 SRVOOS, and operation with 1 TBV OOS, are supported as discussed in Section 5.1 of Reference 9. Operation with 1 FRV in _manual mode in the fully closed position (e.g., startup and maintenance situations) is exempt from this scenario.

Page 46 of 49

COLR Dresden 2 Revision 19

9. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRG, specifically those described in the following documents:
1.

GE Topical Report NEDE-24011-P-A, Revision 15, "General Electric Standard Application for Reactor Fuel (GEST AR)," September 2005.

2.

GE Topical Report NEDO-32465-A, Revision 0, "Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications," August 1996.

3.

Westinghouse Topical Report CENPD-300-P-A, Revision 0, "Reference Safety Report for Boiling Water Reactor Reload Fuel," July 1996.

4.

Westinghouse Report WCAP-15682-P-A, Revision 0, "Westinghouse BWR ECCS Evaluation Model:

Supplement 2 to Code Description, Qualification and Application," April 2003.

5.

Westinghouse Report WCAP-16078-P-A, Revision 0, "Westinghouse BWR ECCS Evaluation Model:

. Supplement 3 to Code Description, Qualification and Application to SVEA-96 Optima2 Fuel," November 2004.

6.

Westinghouse Report WCAP-16865-P-A, Revision 1, "Westinghouse BWR ECCS Evaluation Model Updates: Supplement 4 to Code Description, Qualification and Application," October 2011.

7.

Westinghouse Report WCAP-16081-P-A, Revision 0, "10x10 SVEA Fuel Critical Power Experiments and CPR Correlation: SVEA-96 Optima2," March 2005.

8.

Westinghouse Topical Report WCAP-15836-P-A, Revision 0, "Fuel Rod Design Methods for Boiling Water Reactors - Supplement 1," April 2006.

9.

Westinghouse Topical Report WCAP-15942-P-A, Revision 0, "Fuel Assembly Mechanical Design Methodology for Boiling Water Reactors, Supplement 1 to CENPD-287," March 2006.

10. Westinghouse Topical Report CENPD-390-P-A, Revision 0, 'The Advanced PHOENIX and POLCA Codes for Nuclear Design of Boiling Water Reactors," December 2000.
11. Exxon Nuclear Company Report XN-NF-81-58(P)(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," March 1984.
12. Advanced Nuclear Fuels Corporation Report ANF-89-98(P)(A), Revision 1 and Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995.
13. Siemens Power Corporation Report EMF-85-74(P), Revision O Supplement 1 (P)(A) and Supplement.

2 (P)(A), "RODEX2A (BWR) Fuel Rod Thermal-Mechanical Evaluation Model," February 1998.

14. AREVA NP Topical Report BAW-10247PA, Revision 0, "Realistic Thermal-Mechanical Fuel Rod Methodology for Boiling Water Reactors," February 2008.
15. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 1 Revision O and Supplements 1 and 2, "Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis," March 1983.

Page 47 of49

COLR Dresden 2 Revision 19

  • 16. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 4 Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology for BWR Reloads," June 1986.
17. Exxon Nuclear Company Topical Report XN-NF-80-19(P)(A), Volume 3 Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description," January 1987.
18. Siemens Power Corporation Topical Report EMF-2158(P)(A), Revision 0, "Siemens Power Corporation*

Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2,"

October 1999.

19. Siemens Power Corporation Report EMF-2245(P)(A), Revision 0, "Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel," August 2000.
20. AREVA NP Report EMF-2209(P)(A), Revision 3, "SPCB Critical Power Correlation," September 2009. *
21. AREVA Topical Report ANP-10298P-A, Revision 1, "ACE/ATRIUM 10XM Critical Power Correlation,"

March 2014.

22. AREVA NP Topical Report ANP-10307PA, Revision 0, "AREVA MCPR Safety Limit Methodology for Boiling Water Reactors," June 2011.
23. Exxon Nuclear Company Report XN-NF-84-105(P)(A), Volur:ne 1 Revision O and Volume 1 Supplements 1 and 2, "XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis," February 1987.
24. Advanced Nuclear Fuels Corporation Report ANF-913(P)(A), Volume 1 Revision 1 and Volume 1 Supplements 2, 3, and* 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient

-Analyses," August 1990.

25. Framatome ANP Report EMF-2361 (P)(A), Revision 0, "EXEM BWR-2000 ECCS Evaluation Model,"

May 2001.

26. Siemens Power Corporation Report EMF-2292(P)(A), Revision 0, "ATRIUM'-10: Appendix K Spray Heat Transfer Coefficients," September 2000.
27. Framatome ANP Topical Report ANF-1358(P)(A), Revision 3, "The Loss of Feedwater Heating Transient in Boiling Water Reactors," September 2005.
28. Siemens Power Corporation Topical Report EMF-CC-074(P)(A), Volume 4 Revision 0, "BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN-B2," August 2000.

Page 48 of 49

COLR Dresden 2 Revision 19

10. References
1.

Exelon Generation Company, LLC, Docket No. 50-237; Dresden Nuclear Power Station, Unit 2 Renewed Facility Operating License, License No. DPR-19.

2.

Exelon Technical Specifications for Dresden 2 and 3, Table 3.1.4-1, "Control Rod Scram Times."

3.

Exelon Design Analysis GE DRF C51-00217-01, "Instrument Setpoint Calculation Nuclear Instrumentation Rod Block Monitor," July 30, 2012.

4.

FANP Letter, NJC:04:031/FAB04-496, "Startup with TIP Equipment Out of Service," April 20, 2004. (Exelon EC 348897-000)

5.

Exelon Letter, NF-MW:02-0081, "Approval of GE Evaluation of Dresden and Quad Cities Extended Final Feedwater Temperature Reduction," Carlos de la Hoz to Doug Wise and Alex Misak, August 27, 2002.

(The GE Evaluation can be found in EDMS as GE-NE-A13-00487-00-01P.)

6.
  • Westinghouse Document NF-BEX-15-72, Revision 0, "Bundle Design Report for Dresden 2 Cycle 25," April 17, 2015.
7.

Westinghouse Document NF-BEX-15-101-NP, Revision 0, "Dresden Nuclear Power Station Unit 2 Cycle 25 MAPLHGR Report," September 2015.

8.

Westinghouse Document NF-BEX-15-157, Revision 0, "Linear Heat Generation Rate Limits for Fresh Fuel Loaded in Dresden Unit 2 Cycle 25," October 28, 2015.

9.

Framatome Report ANP-3950P, Revision 0, "Dresden Unit 2 Cycle 28 Reload Safety Analysis," August 2021.

10.

Exelon TODI NF210108, Revision 0, "Dresden Unit 2 Cycle 28 Plant Parameters Document (PPD),"

Fe~ruary 10, 2021.

11.

Exelon TOD! ES1500011, Revision 0, "Equipment Out of Service Description for Transition to AREVA Fuel

- Dresden," May 20, 2015.

Page 49 of 49