RS-19-093, Secondary Containment Drawdown Analysis

From kanterella
Jump to navigation Jump to search
Secondary Containment Drawdown Analysis
ML19294A305
Person / Time
Site: Dresden  Constellation icon.png
Issue date: 10/17/2019
From: Jason Wright
Exelon Generation Co
To:
Office of Nuclear Reactor Regulation
Shared Package
ML19294A303 List:
References
RS-19-093 DRE19-0015, Rev 0a
Download: ML19294A305 (176)


Text

RS-19-093 Enclosure A DRE19-0015, Revision 0a Dresden Units 2 & 3 Secondary Containment Drawdown Analysis

CC-AA-309-1001-F-01 Revision 0 Design Analysis Cover Sheet Form Page 1 Design A nalysis I Last Page No.

  • 39, G2 .. **- -

Analysis No.: ' DRE19-0015 Revision: ,. OA Major 0 Minor [81

Title:

3 Dresden Units 2 & 3 Secondary Containment Drawdown Analysis EC No.:

  • 628318 Revision:
  • 0 Station(s): 1 Dresden Component(s): "

Un ~~ No.:

  • 2,3 NIA Discipline:
  • MEDC Descrip. Code/Keyword: *0 N02 Safety/QA Class: " Safety-Related System Code: " 01 , 75 Structure: " NIA CONTROLLED DOCU MENT REFERENCES ,,

Document No.: . From/To Document No.: From/To See Section 4

'\ )RF- CL<:: - on4 9.. \D Is this Design Analysis Safeguards Informat ion? 1

  • YesO No [81 If yes, see SY-AA-101-106 Does this Design Analysis contain Unverified Assumptions? " YesO No llSJ If yes. ATl/AR#:

This Design Analysis SUPERCEDES: 1

  • in its ent irety.

Description of Revision (list changed pages when all pages of original analysis were not changed): *0 Updated Attachment E to Revision 1 of TOOi 19-007. Affected pages: 1-5, 15, 39, all pages of Attachment E.

Preparer: '° John Wright {ENERCON) a~ vJ~IA- ,..._,{;/19 Print Name I Sign Name\I D'1to Method of Review: ,, Detailed Review llSI Alternate Calculations (attached) O Testing 0

~ ~c...-s Reviewer: .,, Guy Spikes {ENERCON) lo- 11-1 lt Prinl Nome SiQ11Namo Oa1e Review Notes: " Independent review [81 Peer review 0

' . The document has been reviewed in its entirety and found to be acceptable. All recommended changes were discussed, accepted . and incorporated into the final document. The review was performed by the preparer's supervisor. The supervisor is the only technically qualified person available. The need to use the supervisor was approved by the supervisor's manager.

~;;;

(For Ex1erna1Ana lyses Only)

Ext~rnal Approver: ,. Jeffrey Head {ENERCON)

Prinl Name J0/1'7 " "

Date Exelon Reviewer: " "D~ UL Print Name S1Qn Name ifll I

n. I

' Dl te

/ Q, I

Independent Party Review Reqd? Yes O No~

3rd 2*

Exe,lon Approver: " B r1 d.rJ T. /!laJ.ieco.,,.

Pnnt Name

- I n/f/\~

Stan Name

/O/J<J. IJ't r Dau'

ŽEŽZ ZŽ WŽ

&&$$

5HYLVLRQ

$WWDFKPHQW

2ZQHU¶V$FFHSWDQFH5HYLHZFKHFNOLVWIRU([WHUQDO'HVLJQ$QDO\VLV

3DJHRI

'HVLJQ$QDO\VLV1R'5( 5HY$ 3DJH 

&RQWUDFWBBBBBBBBBBBBBBBB5HOHDVHBBBBBBBBBBBBB

1R 4XHVWLRQ ,QVWUXFWLRQVDQG*XLGDQFH <HV1R1$

 'RDVVXPSWLRQVKDYH $OO$VVXPSWLRQVVKRXOGEHVWDWHGLQFOHDUWHUPVZLWKHQRXJK

VXIILFLHQWGRFXPHQWHG MXVWLILFDWLRQWRFRQILUPWKDWWKHDVVXPSWLRQLVFRQVHUYDWLYH

UDWLRQDOH"

)RUH[DPSOH WKHH[DFWYDOXHRIDSDUWLFXODUSDUDPHWHUPD\

QRWEHNQRZQRUWKDWSDUDPHWHUPD\EHNQRZQWRYDU\RYHU

WKHUDQJHRIFRQGLWLRQVFRYHUHGE\WKH&DOFXODWLRQ,WLV

DSSURSULDWHWRUHSUHVHQWRUERXQGWKHSDUDPHWHUZLWKDQ

DVVXPHGYDOXH 7KHSUHGLFWHGSHUIRUPDQFHRIDVSHFLILF

SLHFHRIHTXLSPHQWLQOLHXRIDFWXDOWHVWGDWD,WLVDSSURSULDWH

WRXVHWKHGRFXPHQWHGRSLQLRQSRVLWLRQRIDUHFRJQL]HG

H[SHUWRQWKDWHTXLSPHQWWRUHSUHVHQWSUHGLFWHGHTXLSPHQW

SHUIRUPDQFH

&RQVLGHUDWLRQVKRXOGDOVREHJLYHQDVWRDQ\TXDOLILFDWLRQ

WHVWLQJWKDWPD\EHQHHGHGWRYDOLGDWHWKH$VVXPSWLRQV$VN

\RXUVHOIZRXOG\RXSURYLGHPRUHMXVWLILFDWLRQLI\RXZHUH

SHUIRUPLQJWKLVDQDO\VLV",I\HVWKHUDWLRQDOHLVOLNHO\

LQFRPSOHWH

 $UHDVVXPSWLRQV (QVXUHWKHGRFXPHQWDWLRQIRUVRXUFHDQGUDWLRQDOHIRUWKH

FRPSDWLEOHZLWKWKH DVVXPSWLRQVXSSRUWVWKHZD\WKHSODQWLVFXUUHQWO\RUZLOOEH

ZD\WKHSODQWLV RSHUDWHGSRVWFKDQJHDQGWKH\DUHQRWLQFRQIOLFWZLWKDQ\

RSHUDWHGDQGZLWKWKH GHVLJQSDUDPHWHUV,IWKH$QDO\VLVSXUSRVHLVWRHVWDEOLVKD

OLFHQVLQJEDVLV" QHZOLFHQVLQJEDVLVWKLVTXHVWLRQFDQEHDQVZHUHG\HVLIWKH

DVVXPSWLRQVXSSRUWVWKDWQHZEDVLV

 'RDOOXQYHULILHG ,IWKHUHDUHXQYHULILHGDVVXPSWLRQVZLWKRXWDWUDFNLQJ

DVVXPSWLRQVKDYHD PHFKDQLVPLQGLFDWHGWKHQFUHDWHWKHWUDFNLQJLWHPHLWKHU

WUDFNLQJDQGFORVXUH WKURXJKDQ$7,RUDZRUNRUGHUDWWDFKHGWRWKHLPSOHPHQWLQJ

PHFKDQLVPLQSODFH" :2'XHGDWHVIRUWKHVHDFWLRQVQHHGWRVXSSRUWYHULILFDWLRQ

SULRUWRWKHDQDO\VLVEHFRPLQJRSHUDWLRQDORUWKHUHVXOWDQW

SODQWFKDQJHEHLQJRSDXWKRUL]HG

 'RWKHGHVLJQLQSXWV 7KHRULJLQRIWKHLQSXWRUWKHVRXUFHVKRXOGEHLGHQWLILHGDQG

KDYHVXIILFLHQW EHUHDGLO\UHWULHYDEOHZLWKLQ([HORQ¶VGRFXPHQWDWLRQV\VWHP

UDWLRQDOH" ,IQRWWKHQWKHVRXUFHVKRXOGEHDWWDFKHGWRWKHDQDO\VLV$VN

\RXUVHOIZRXOG\RXSURYLGHPRUHMXVWLILFDWLRQLI\RXZHUH

SHUIRUPLQJWKLVDQDO\VLV",I\HVWKHUDWLRQDOHLVOLNHO\

LQFRPSOHWH

 $UHGHVLJQLQSXWV 7KHH[SHFWDWLRQLVWKDWDQ([HORQ(QJLQHHUVKRXOGEHDEOHWR

FRUUHFWDQGUHDVRQDEOH FOHDUO\XQGHUVWDQGZKLFKLQSXWSDUDPHWHUVDUHFULWLFDOWRWKH

ZLWKFULWLFDOSDUDPHWHUV RXWFRPHRIWKHDQDO\VLV7KDWLVZKDWLVWKHLPSDFWRID

LGHQWLILHGLI FKDQJHLQWKHSDUDPHWHUWRWKHUHVXOWVRIWKHDQDO\VLV",IWKH

DSSURSULDWH" LPSDFWLVODUJHWKHQWKDWSDUDPHWHULVFULWLFDO

 $UHGHVLJQLQSXWV (QVXUHWKHGRFXPHQWDWLRQIRUVRXUFHDQGUDWLRQDOHIRUWKH

FRPSDWLEOHZLWKWKH LQSXWVVXSSRUWVWKHZD\WKHSODQWLVFXUUHQWO\RUZLOOEH

ZD\WKHSODQWLV RSHUDWHGSRVWFKDQJHDQGWKH\DUHQRWLQFRQIOLFWZLWKDQ\

RSHUDWHGDQGZLWKWKH GHVLJQSDUDPHWHUV

OLFHQVLQJEDVLV"

ŽEŽZ ZŽ WŽ

&&$$

5HYLVLRQ

$WWDFKPHQW

2ZQHU¶V$FFHSWDQFH5HYLHZFKHFNOLVWIRU([WHUQDO'HVLJQ$QDO\VLV

3DJHRI

'HVLJQ$QDO\VLV1R'5(5HY$3DJH

1R 4XHVWLRQ ,QVWUXFWLRQVDQG*XLGDQFH <HV1R1$

 $UH(QJLQHHULQJ 6HH6HFWLRQLQ&&$$IRUWKHDWWULEXWHVWKDWDUH

-XGJPHQWVFOHDUO\ VXIILFLHQWWRMXVWLI\(QJLQHHULQJ-XGJPHQW$VN\RXUVHOI

GRFXPHQWHGDQG ZRXOG\RXSURYLGHPRUHMXVWLILFDWLRQLI\RXZHUHSHUIRUPLQJ

MXVWLILHG" WKLVDQDO\VLV",I \HVWKHUDWLRQDOHLVOLNHO\LQFRPSOHWH

 $UH(QJLQHHULQJ (QVXUHWKHMXVWLILFDWLRQIRUWKHHQJLQHHULQJMXGJPHQW

-XGJPHQWVFRPSDWLEOH VXSSRUWVWKHZD\WKHSODQWLVFXUUHQWO\RUZLOOEHRSHUDWHG

ZLWKWKHZD\WKHSODQWLV SRVWFKDQJHDQGLVQRWLQFRQIOLFWZLWKDQ\GHVLJQ

RSHUDWHGDQGZLWKWKH SDUDPHWHUV,IWKH$QDO\VLVSXUSRVHLVWRHVWDEOLVKDQHZ

OLFHQVLQJEDVLV" OLFHQVLQJEDVLVWKHQWKLVTXHVWLRQFDQEHDQVZHUHG\HVLI

WKHMXGJPHQWVXSSRUWVWKDWQHZEDVLV

 'RWKHUHVXOWVDQG :K\ZDVWKHDQDO\VLVEHLQJSHUIRUPHG"'RHVWKHVWDWHG

FRQFOXVLRQVVDWLVI\WKH SXUSRVHPDWFKWKHH[SHFWDWLRQIURP([HORQRQWKHSURSRVHG

SXUSRVHDQGREMHFWLYHRI DSSOLFDWLRQRIWKHUHVXOWV",I\HVWKHQWKHDQDO\VLVPHHWV

WKH'HVLJQ$QDO\VLV" WKHQHHGVRIWKHFRQWUDFW

 $UHWKHUHVXOWVDQG 0DNHVXUHWKDWWKHUHVXOWVVXSSRUWWKH8)6$5GHILQHG

FRQFOXVLRQVFRPSDWLEOH V\VWHPGHVLJQDQGRSHUDWLQJFRQGLWLRQVRUWKH\VXSSRUWD

ZLWKWKHZD\WKHSODQWLV SURSRVHGFKDQJHWRWKRVHFRQGLWLRQV,IWKHDQDO\VLV

RSHUDWHGDQGZLWKWKH VXSSRUWVDFKDQJHDUHDOORIWKHRWKHUFKDQJLQJGRFXPHQWV

OLFHQVLQJEDVLV" LQFOXGHGRQWKHFRYHUVKHHWDVLPSDFWHGGRFXPHQWV"

 +DYHDQ\OLPLWDWLRQVRQ 'RHVWKHDQDO\VLVVXSSRUWDWHPSRUDU\FRQGLWLRQRU

WKHXVHRIWKHUHVXOWV SURFHGXUHFKDQJH"0DNHVXUHWKDWDQ\RWKHUGRFXPHQWV

EHHQLGHQWLILHGDQG QHHGLQJWREHXSGDWHGDUHLQFOXGHGDQGFOHDUO\GHOLQHDWHGLQ

WUDQVPLWWHGWRWKH WKHGHVLJQDQDO\VLV0DNHVXUHWKDWWKHFRYHUVKHHW

DSSURSULDWH LQFOXGHVWKHRWKHUGRFXPHQWVZKHUHWKHUHVXOWVRIWKLV

RUJDQL]DWLRQV" DQDO\VLVSURYLGHWKHLQSXW

 +DYHPDUJLQLPSDFWV 0DNHVXUHWKDWWKHLPSDFWVWRPDUJLQDUHFOHDUO\VKRZQ

EHHQLGHQWLILHGDQG ZLWKLQWKHERG\RIWKHDQDO\VLV,IWKHDQDO\VLVUHVXOWVLQ

GRFXPHQWHG UHGXFHGPDUJLQVHQVXUHWKDWWKLVKDVEHHQDSSURSULDWHO\

DSSURSULDWHO\IRUDQ\ GLVSRVLWLRQHGLQWKH(&EHLQJXVHGWRLVVXHWKHDQDO\VLV

QHJDWLYHLPSDFWV

5HIHUHQFH(5$$

 "

 'RHVWKH'HVLJQ $UHWKHUHVXIILFLHQWGRFXPHQWVLQFOXGHGWRVXSSRUWWKH

$QDO\VLVLQFOXGHWKH VRXUFHVRILQSXWDQGRWKHUUHIHUHQFHPDWHULDOWKDWLVQRW

DSSOLFDEOHGHVLJQEDVLV UHDGLO\UHWULHYDEOHLQ([HORQFRQWUROOHG'RFXPHQWV"

GRFXPHQWDWLRQ"

 +DYHDOODIIHFWHGGHVLJQ 'HWHUPLQHLIVXIILFLHQWVHDUFKHVKDYHEHHQSHUIRUPHGWR

DQDO\VHVEHHQ LGHQWLI\DQ\UHODWHGDQDO\VHVWKDWQHHGWREHUHYLVHGDORQJ

GRFXPHQWHGRQWKH ZLWKWKHEDVHDQDO\VLV,WPD\EHQHFHVVDU\WRSHUIRUP

$IIHFWHG'RFXPHQWV/LVW VRPHEDVLFVHDUFKHVWRYDOLGDWHWKLV

$'/ IRUWKHDVVRFLDWHG

&RQILJXUDWLRQ&KDQJH"

 'RWKHVRXUFHVRILQSXWV &RPSDUHDQ\UHIHUHQFHGFRGHVDQGVWDQGDUGVWRWKHFXUUHQW

DQGDQDO\VLV GHVLJQEDVLVDQGHQVXUHWKDWDQ\GLIIHUHQFHVDUHUHFRQFLOHG

PHWKRGRORJ\XVHGPHHW ,IWKHLQSXWVRXUFHVRUDQDO\VLVPHWKRGRORJ\DUHEDVHGRQ

FRPPLWWHGWHFKQLFDODQG DQRXWRIGDWHPHWKRGRORJ\RUFRGHDGGLWLRQDOUHFRQFLOLDWLRQ

UHJXODWRU\ PD\EHUHTXLUHGLIWKHVLWHKDVVLQFHFRPPLWWHGWRDPRUH

UHTXLUHPHQWV" UHFHQWFRGH

Calculation No. DRE19-0015 Revision OA Page 4 of 39 CC*AA*103*1003 Revision 13 Attachment 2 Owner's Acceptance Review checklist for External Design Analysis Page 3of3 Design Analysis No.: DRE19-0015 Rev: OA Page_!__

No Question Instructions and Guidance Yes I No IN/A 16 Have vendor supporting Based on the risk assessment performed during the pre-job igi D D technical documents brief for the analysis (per HU-AA-1212), ensure that and references sufficient reviews of any supporting documents not provided (including GE DRFs) with the final analysis are performed.

been reviewed when 17 Ensure the Tech Specs, Operating Procedures, etc. contain igi D D operational limits that support the analysis assumptions and 18.

Calculation No. DRE19-0015 Revision 0A Page 5 of 39 Table of Contents

1. PURPOSE ............................................................................................................................................... 6
2. INPUTS .................................................................................................................................................. 6
3. ASSUMPTIONS ...................................................................................................................................... 7
4. REFERENCES ........................................................................................................................................ 13
5. COMPUTER PROGRAMS ..................................................................................................................... 16
6. METHOD OF ANALYSIS........................................................................................................................ 16
7. NUMERIC ANALYSIS ............................................................................................................................ 20
8. RESULTS .............................................................................................................................................. 31
9. CONCLUSION....................................................................................................................................... 39
10. ATTACHMENTS ................................................................................................................................... 39 A. GOTHIC Model Schematic Diagram 1 page B. GOTHIC input File for Case 1 and Changes for Cases 2, 3, and 4 46 pages C. Calculation of GOTHIC Inputs 12 pages D. GOTHIC Results 40 pages E. Exelon TODI No. (DRE) TODI-19-007, Rev. 1. 14 pages F. Drawdown Test Case 21 pages G. Initial Reactor Building Humidity Sensitivity Study 2 pages

ŽEŽZ ZŽ WŽ

  



WhZWK^

dŽŽŽZŽZŽ

ŽŽŽŽŽŽ>KŽŽŽŽŽ

>KKWEWŽ^Žh

dZŽŽŽ^ŽŽ^ZdZŽ

ŽZŽ

sŽ&ŽŽZŽsŽŽ

^'d^'ddŽZŽ

ŽŽZŽ^'dŽ

ŽŽŽŽZŽZ/

ZŽŽŽŽ

ZŽŽEZZŽ'Z'

ZŽWŽŽŽ

ŽŽŽ^ŽŽ

ŽŽd^ŽZ'Ž

ŽŽŽŽŽŽ

ŽŽZ'Ž

ŽŽŽ

dŽZŽ

ŽŽŽŽŽŽŽZ

ŽŽŽŽd

Ž>KŽZ^Ž

d^Žd^Ž

d^^ZŽŽ

/EWhd^

dZŽŽŽŽŽZ

ZdZŽŽŽŽŽ>K

Žd&/ŽZ

K^'d^ŽŽ

ŽŽŽŽŽ

Z

d^'dŽŽŽZ

d^'dŽZ

d^'dŽ^ŽŽ>KZ



dŽ^'dŽŽ

ŽŽ^'dZ

ŽEŽZ ZŽ WŽ

  



dŽŽŽ^'dŽŽ

ŽŽŽZ

d^'dŽŽŽŽZŽZ

ŽZd^'dŽŽ^'d

ŽŽZ

dZŽZŽŽŽŽŽ

>KŽŽŽ

ŽŽZ

dŽŽŽŽZŽ^

ŽŽŽZ

dZŽŽŽŽŽZ

ŽŽŽZd

ŽŽŽZŽŽ



^^hDWd/KE^

Z'ŽŽŽŽŽŽŽ

>KKWŽŽŽŽŽŽ

ŽdŽ>KKWŽŽ>KKWŽŽŽŽ

ŽŽŽ>KKWŽŽŽ^'d

ŽŽŽ^ŽWŽŽŽŽ

Ž>KKWŽŽŽZŽŽŽ

dŽŽ>KKWŽ>KKWŽŽŽŽ

ŽŽŽŽ,ŽŽŽ

ŽŽ

dŽŽŽ

Ž&ŽŽ&ŽŽZ

WZ'ZŽŽ

ŽŽŽŽŽŽŽŽ

ŽŽŽdŽŽ

Ž&&

ŽtŽ/ŽŽZd

dŽ

ZddŽŽ

ŽŽZŽ

dŽZŽŽŽŽŽ

Z

ŽEŽZ ZŽ WŽ

  



dŽZŽ&

ŽŽ&ŽŽdŽŽŽ

ŽZŽZ

dZŽŽŽ

ŽŽZDŽŽZ

dŽŽŽZŽ

^'dŽŽ,ŽŽŽ

ŽŽdŽ

ŽŽŽ

Ž'

ZŽŽŽŽDŽ

ZŽŽŽŽ&ŽZd

ZŽŽŽŽŽd

ZŽŽŽŽŽŽŽ

ŽZdŽŽŽ

ŽŽŽŽŽŽŽ>KŽ

ŽŽŽhŽŽŽŽŽŽ

&ŽZZ

dŽZŽŽ

ŽZŽŽŽ

ZŽ

ŽZŽŽŽŽŽŽ

ŽdŽŽŽŽŽŽ

ŽŽZ&ŽŽZŽ

ŽŽŽŽ

,ŽZŽŽŽ

ŽŽŽŽD

^dŽŽŽŽŽŽŽŽ

'Ž'ZŽŽŽdŽZ

ZŽŽŽŽŽŽŽ

ŽŽŽŽ'ZŽŽZ

,ŽŽZŽŽ

ŽŽŽ

ŽŽŽŽŽŽŽ



,ŽZŽŽZŽŽ

ŽtŽŽ^&WŽŽŽ

ŽŽ

ŽEŽZ ZŽ WŽ

  



^ŽWŽŽ^WtŽ&&

ŽŽŽ>KŽŽŽ>KŽŽ

ŽŽdŽŽŽ

ZŽdtŽŽd^

^WŽŽŽŽd^Z



dt>KŽŽŽ

ŽŽ&>KŽŽ

tŽZŽŽŽ

Ž&ŽZ

dŽ>K^WŽŽWhŽŽŽZ

ŽŽŽ>KŽŽ

ŽŽdŽ>K>KKWŽŽ

ŽŽ

dŽŽŽŽŽŽŽ

ŽdZŽŽŽ

ŽŽŽŽdŽ^ŽŽ

ŽŽŽŽŽŽŽŽ

Ž

Ž^&WŽ&ŽŽ>KŽ>K

ŽZd^&WŽŽ&

ŽŽŽZ

dŽŽŽZŽŽŽŽŽŽ

Ž&&ŽŽŽŽŽŽ

ŽŽdŽŽ

Ž&ŽZŽŽŽ

Ž&ŽŽŽŽŽ

&ŽŽdŽŽ

ŽŽŽ

dŽŽŽŽŽ

ŽŽŽŽ^ŽŽ

ŽŽ

ŽŽŽZ

hŽ>KhŽ>KŽŽ

Z,ŽŽŽŽŽ

Ž

dŽŽŽŽŽ>KKWh

ŽŽŽ>KdŽ

ZŽŽZŽdŽŽ

ŽŽŽ>KKWŽŽŽŽŽ

ŽEŽZ ZŽ WŽ

  



Ž>KKWŽŽ

ŽŽŽŽŽŽ

ZŽŽŽZthŽŽ

ŽD^dŽŽ

ŽŽŽŽ>KŽd

Ž^ŽŽŽ^ŽŽŽŽŽ

>Kd/ZŽŽ

dŽŽZth,yŽŽŽŽŽ

>KŽŽŽZth,yŽŽŽ

Ž>KŽŽŽŽŽZth

ŽŽ

,ŽŽ^ŽŽ

^ŽŽŽŽŽŽdŽZ

dŽŽŽŽŽZ

Ž>W/ŽŽŽŽŽ,W/ŽŽŽŽ

ŽŽZŽŽŽŽ

ŽŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽ

ŽŽEŽŽŽŽŽŽŽ

ŽŽŽŽŽ&

dŽZdŽ

ŽŽŽŽŽZdŽŽŽŽ

ŽŽŽŽŽŽŽ&

dŽZ

dŽŽŽ^ŽŽŽŽZŽ>K

ŽŽŽ>W/ŽŽŽŽdŽ,W/

ŽŽŽŽŽ>W/ŽŽŽŽ>KŽ

d^Ž>W/ŽŽ,W/ŽŽŽŽ

ŽZŽŽŽŽ

ŽŽŽŽŽŽŽŽŽ^

ŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽEŽŽŽ

ŽŽŽ>K

dŽZŽŽŽŽZŽ

ZZ

ZŽŽŽŽŽŽZ

ŽŽŽZŽŽ

dŽŽZŽŽ

ŽŽZŽŽŽŽŽ

ŽŽZdZŽŽŽZ

ŽŽŽŽŽŽŽŽZ

ŽEŽZ ZŽ WŽ

  



,ŽŽŽŽŽ

ŽZŽŽŽ

ŽŽŽŽŽ

EŽŽŽŽŽEZ^ZW

^ZWZ

ŽŽWZ'Z

ŽŽŽŽ

ŽŽŽ&Ž'ŽZ

ŽŽŽŽ

ŽŽZŽdŽ

ŽŽŽŽtŽ/ŽŽZ

dŽŽŽdZ

ŽŽŽZ

ŽdŽŽŽŽŽ

ŽŽŽŽ

Z

ŽŽŽŽ^'dŽŽ

Ž'>KŽZdŽ

>KKWŽŽŽ^'dŽ>KKWŽŽ

ŽŽZŽŽ

d^'dŽ>K^'d

Ž/dŽ^'dŽ

>KŽŽŽŽ>Khd

^'dŽŽŽZŽdŽ

ŽŽŽ^'dŽŽ

Ž>KZŽ>K

d^'dŽŽŽŽ

ŽŽŽŽ/h

ŽŽŽŽŽ^'dŽ

ŽŽŽŽŽŽŽŽ^'d

Ž

d^'dŽŽŽŽŽŽŽ

ŽŽŽŽŽŽZ



d^'dŽŽŽd

ŽŽ^'dŽŽŽ^'dŽŽ

Ž^'dŽŽZ

ŽEŽZ ZŽ WŽ

  



dZŽ^'dŽdŽ

ZŽ>KŽZŽ

^'dŽd

ŽŽŽŽŽ^'dŽŽ

^'dŽ,ŽŽŽ

Ž^'dZŽŽŽZ

ŽŽŽ^'d

ŽŽ^'dŽdŽŽŽ

^'dŽŽŽ^'dŽŽŽ

ŽŽŽŽŽŽŽŽ



dŽZŽŽŽŽ>K

Z

dZŽŽŽŽŽ

ŽZdŽZ

ŽŽŽŽŽZ

ŽŽŽZ

hŽŽZŽŽ

ŽŽ

dŽZŽŽŽŽŽŽ

ZŽŽŽZ

dZ^ŽŽ>KŽ

ZŽŽŽŽZ

dZŽ

ŽŽŽŽŽZ

d^'dŽŽŽŽŽŽŽ

ŽŽŽŽŽ

ŽŽŽZŽŽŽ

dŽŽŽŽŽŽŽ

ŽŽ

dŽZŽ

ŽŽZdŽŽ

ŽŽŽZŽŽZŽ

>KŽZŽŽ

 

ŽEŽZ ZŽ WŽ

  



Z&ZE^

EZZŽ'ZŽŽ^ŽdŽ

EWŽZŽ:

ŽŽZZŽWŽ>KdZ



ŽŽZhY?ŽWd&ŽŽ

/ŽŽWŽhZ

ŽŽZŽŽ&ŽyYŽZ

Z

ŽŽZ/ŽZŽWŽ>Kd

Žd,Z

'WŽdZŽ'EY

WŽhŽddŽ^ZŽZ

'WŽdZŽ'EY

WŽhŽddWŽ,sZ

'WŽdZŽ'EZ>DDWdŽ

ŽŽŽŽE^Z



^>Ž

s'^'d^WŽŽZ

s'^'d^&WŽŽZ

d^ŽŽ

d

^ŽWŽŽd

^ŽŽ

^ŽŽ/ŽŽs

^'d^'d^

^ŽK

ŽEŽZ ZŽ WŽ

  



dZDdZDd^ŽŽ/ŽŽ

sZ

h&^ZŽh&^ZZ

^Ž^ŽŽ&Ž

^Ž&ŽWŽŽŽ^

^Ž^&WŽŽŽŽ^

^ŽZŽsŽ^

^Ž^'Ž^

WŽK^^ŽŽ>ZdZ

WŽK>ŽŽ^&WŽŽŽŽZ

WŽKWZŽsŽZ

WŽDWKŽZ&ŽŽsŽŽŽŽ

,Z

WŽKW^'d^KŽZ

WŽ/^h^'dŽŽ^ŽŽ/ŽŽ

^>Ž^&ŽdZ

WŽK^^'d^^/^ddZ

'&ŽŽW

DD&ŽŽWZW

DD&ŽŽWZ?

D'Ž&ŽŽWZ:

D&ŽŽWZE

DZŽ&ŽŽWZ/

'^Ž

D^ŽZ

D^ŽZ

Calculation No. DRE19-0015 Revision 0A Page 15 of 39

22. Drawing M-49, Diagram of Standby Gas Treatment, Rev. RB.
23. Drawing M-269, Diagram Reactor Building Ventilation, Sheet 1, Rev. K and Sheet 2, Rev. F.
24. Drawing M-529, Diagram of Reactor Building Ventilation, Sheet 1, Rev. N and Sheet 2, Rev.

O.

25. Drawing M-278, Turbine & Reactor Bldg Vent Fan Floor Plan El 601-4 and 581-4, Rev. O.
26. Drawing M-279, Vent Fan Floors - Sections, Turbine and Reactor Building, Rev. M.
27. Drawing M-286, Reactor Building Ventilation Plans, EL 613-0 & 589-0, Rev. G.
28. Drawing M-287, Reactor Building Ventilation Plans, EL 570-0 & 545-6, Rev. R.
29. Drawing M-288, Reactor Building Ventilation Plans, EL 517-6 & 476-, Rev. S.
30. Drawing M-289, Reactor Building Ventilation Sections, Rev. J.
31. Drawing M-526, Pneumatic Diagram of Reactor Building Ventilation System, Sheet 1, Rev. O.
32. Drawing B-333, Door & Hardware Schedule, Rev. BP.
33. Drawing B-335, Window and Louver Schedules and Details, Rev. J.
34. Drawing B-412, Reactor Building Ground Floor Plan South Area elevation 517-6, Rev. H.
35. Quadrex Corporation Document QUAD-1-79-234, Rev. 4.
36. GOTHIC Thermal Hydraulic Analysis Package User Manual, Version 8.2(QA), October 2016.
37. GOTHIC Thermal Hydraulic Analysis Package Technical Manual, Version 8.2(QA), October 2016.
38. Fundamentals Handbook, ASHRAE, 1997.
39. HVAC Applications Handbook, ASHRAE, 1999.
40. HVAC Duct System Design, SMACNA, 1981 - Second Edition.
41. Handbook of Hydraulic Resistance, Idelchik, 3rd Edition.
42. Standard Review Plan (SRP) 6.2.3, Secondary Containment Functional Design, from NUREG-0800: Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants: LWR Edition, Revision 3, March 2007.
43. Exelon Transmittal of Design Information (TODI) No. (DRE) TODI-19-007, MSIV Leakage Rate Optimization - Input Data Request for RB Drawdown Analysis, Rev. 1.

ŽEŽZ ZŽ WŽ

  



KDWhdZWZK'ZD^

'Kd,/ŽZŽZŽ

ŽŽŽ'Kd,/WZ/ŽŽŽ

ŽŽŽŽŽ

ŽŽ'Kd,/y>KEd^YŽ

'Kd,/ŽŽŽŽŽ

ŽŽ

Dd,KK&E>z^/^

dŽ>KŽŽŽŽ

ŽEZZ'ZŽ^ZWZdŽ

>KZŽŽŽZŽZŽ

ŽŽdZŽŽŽŽ

ZŽŽŽŽŽŽd

ŽŽŽŽ'Kd,/ŽŽŽŽZ

ŽŽŽŽŽ/ŽWhŽŽ

ŽŽŽsŽŽ

ŽŽŽŽŽŽ'Kd,/ŽŽ

^'dZŽZŽ^&WŽŽ

ŽŽŽ>KŽ

Ž'Kd,/Ž'Kd,/ŽŽŽ

ŽŽŽdŽŽŽŽŽ

^ŽŽ'Kd,/Ž

&Ž>K'Kd,/ŽŽŽ

ŽŽŽŽŽ

Ž'Kd,/Ž

ŽdŽŽŽŽŽŽ

Ž

dŽŽŽŽZŽ

Z

Ž>KŽŽŽ>KKWEŽZŽ

ŽŽŽŽ>KKWŽŽŽ

Ž^Ž

dŽŽŽŽZŽŽŽ

ZŽdZŽ

ŽŽŽŽ/

dŽ^'dŽŽŽ'Ž

>KŽŽ



ŽEŽZ ZŽ WŽ

  



d^'dŽŽŽŽ'

^'dŽŽŽŽŽ

Ž



d^'dŽŽŽŽŽŽ

^'dŽŽŽŽ^'d/

ZŽŽsŽ

dZŽ'Kd,/ŽŽ'Kd,/ŽŽŽŽŽ

ŽŽZŽŽŽŽ

ZŽŽŽŽŽŽsdŽ

ŽŽŽŽŽŽŽŽŽŽŽŽŽŽ

ŽZdŽŽŽŽŽŽŽ

ŽŽŽŽ

ZŽŽŽdŽŽŽŽ

ŽZ

Z&ŽW

Ž'Kd,/ŽŽŽŽŽŽŽŽ

Ž&WdŽŽ

ŽŽŽŽZdŽŽŽŽ

ŽŽŽŽŽZŽ

ŽŽZŽŽŽŽ

ŽŽŽŽdŽŽ

ŽZdŽŽŽŽŽ

ŽŽZŽŽŽ

ŽZŽŽ

ZdŽŽ

'Kd,/ŽŽdŽŽŽZd

ŽŽZŽZŽŽ

ŽŽŽ'Kd,/Ž/ZŽŽ

tŽŽ^&WŽŽ

ŽŽŽ,ŽZŽ

ŽŽŽŽZŽŽŽŽ

ŽŽŽŽ

ŽŽŽŽdŽŽŽŽŽŽ^

Ž>KŽŽŽŽ

ZŽd

Z,>Ž

'Kd,/ŽŽZŽ

'Kd,/ŽŽŽZŽŽŽ

ŽEŽZ ZŽ WŽ

  



,,,dŽŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽŽdŽŽŽd/

ŽZŽ'Kd,/ŽŽ

>KŽ

ZŽŽ

'Kd,/ŽŽŽŽŽŽŽŽ

>KŽŽŽ>W/ŽŽŽŽ

ŽdŽŽŽŽŽŽŽŽ

ŽŽŽŽŽ'Kd,/Ž'Kd,/Ž

ŽŽŽ>KŽ

Ž

&'Kd,/ŽŽŽŽŽŽŽŽŽŽ

ŽŽŽŽZŽŽŽ

Ž^'dZŽW&W&W&W&W&s

&W^ŽŽŽ

ŽŽŽŽ

ŽŽŽZŽd

ŽŽŽŽŽŽ

ŽŽŽŽ&

ŽŽŽŽ&Ž



Z>

&ŽŽŽŽŽŽŽŽZŽ

ZŽŽ

Ž&WdŽŽZ

ŽŽŽŽŽZŽ

ŽŽŽŽŽŽŽ

ŽŽŽŽ

hZŽŽŽŽ&W

'Kd,/ŽŽŽŽŽ

ŽŽŽŽZŽ

ŽŽ

^'d

dŽ'Kd,/ŽŽŽZŽŽŽŽ

ŽŽŽŽŽŽŽ

ŽŽ^'d&WdŽŽŽŽ

ŽŽ^'dŽZ'Kd,/

ŽŽŽŽ^'dŽ&Y

YdŽŽ^'dŽŽ

ŽEŽZ ZŽ WŽ

  



ŽdŽ^'d^'d

ŽŽŽŽŽŽŽ^'dŽ

ŽŽ'Kd,/ŽŽŽ

Ž^'dŽŽ

ZsŽ^

&Ž'Kd,/ŽŽŽsŽZ

ŽŽŽŽŽZŽ

ZdZŽŽŽŽŽ

'Kd,/Ž&WŽŽŽŽŽŽ

ZŽEŽWŽŽŽ

ZŽZŽŽŽŽŽŽ

'Kd,/ŽŽŽŽZŽ

ŽŽŽŽŽŽŽŽ

ŽŽŽŽŽ&WŽŽ

ŽŽZŽŽŽŽŽŽ

&YYŽŽZŽ

ŽŽŽŽŽŽŽsss

EŽdŽŽŽZŽ

ŽŽŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽdŽŽZ

ŽŽŽŽ'Kd,/Ž

ZŽZŽŽ'Kd,/ŽŽZ

ŽŽ>KŽdŽŽŽZ

ŽŽŽŽŽŽŽ'Kd,/Ž

^&WŽŽ

^&WŽŽŽŽŽŽŽŽ^&WŽŽ

Ž^&W&&dŽŽŽŽ

ŽŽŽŽŽŽŽ'Kd,/Ž&W

d^&WŽŽ^,ZŽŽŽŽ

ŽŽ/ŽŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽd



dŽ

dŽŽŽŽdŽŽŽ

ŽŽŽ>KŽdŽŽ>K

ŽŽŽŽŽŽŽ

dŽŽŽ>K

Ž

'Kd,/ŽŽŽŽŽŽ

ŽŽŽ'Kd,/ŽŽ

ŽEŽZ ZŽ WŽ

  



ZŽ

ZŽŽŽŽ

ŽZŽŽŽŽ

ZŽŽŽ^ŽŽŽŽŽŽ^&WŽŽ

ŽŽŽŽdZ

ZŽŽŽ'Kd,/ŽŽŽZŽ

ŽdŽŽŽŽŽŽŽ

ŽŽŽŽŽŽ

ŽŽŽŽŽŽŽŽŽ

>KŽŽŽ

ŽŽŽŽŽŽŽŽ^&WŽŽ

ZŽ^ŽŽŽŽŽŽŽ

EhDZ/E>z^/^

dŽŽ'Kd,/ŽŽŽŽŽD

ŽŽŽ'Kd,/Ž



ZŽŽsŽ

dŽŽŽŽŽZŽŽŽŽdŽ

dŽŽŽŽZŽ

ŽŽZŽŽŽdŽŽŽW&>hŽŽ

ŽZW&>hŽŽdŽŽŽŽŽŽ

ŽŽŽŽŽŽŽŽKŽ

ŽŽŽŽhŽŽ

ŽŽhdŽŽŽŽ'Kd,/ŽŽŽ

sŽhdŽŽZth

ŽŽŽŽŽ

ZŽŽ'ŽŽŽŽ

ŽŽW&>hŽŽŽZdŽ

ŽŽŽŽdŽ

ŽŽŽŽŽŽŽŽŽZd

ŽŽŽŽŽZŽ

ŽŽŽŽŽŽŽŽŽ

dŽŽŽŽŽŽ

ŽŽŽŽŽŽŽ

ŽŽŽŽdŽ

ŽŽŽŽ'Kd,/ŽŽ

ŽŽŽZ

Z&ŽW

dŽŽŽŽZŽŽd&ŽZ

dŽŽŽŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽŽ

ŽEŽZ ZŽ WŽ

  



ŽŽŽŽŽŽ

ŽdŽŽŽŽŽ

ŽŽZŽŽdŽ

KŽŽŽŽŽŽ

ŽŽdŽŽŽ

ŽŽŽŽDDZŽ&W

Ž'Kd,/ŽŽŽŽŽŽŽ

ŽŽZŽŽŽŽŽ

ŽŽdŽŽ

ŽŽŽZŽZdŽŽ

dŽŽŽŽ

ŽŽZŽŽ

dŽŽŽZ

ŽŽŽd&ŽZdŽ

ŽŽŽŽŽŽ

dŽŽ

ŽŽŽŽ

ZdŽŽ

dŽŽŽŽŽŽŽZ'Kd,/

ŽŽŽ^&WŽŽŽŽŽd

^&WŽŽŽdŽŽŽ

ŽŽŽZŽŽ

ZdŽŽŽŽŽŽ

ŽŽtŽŽŽ

ŽŽŽŽŽ

tŽŽŽŽŽ

ŽŽŽŽŽŽŽ

ŽŽŽŽ/

ZŽŽtŽŽ^&W

ŽŽŽdŽŽ

ŽŽŽŽ^Ž>KŽŽŽ

dW&>hŽŽZŽŽdŽZth

Zth,yŽŽŽ>KŽŽŽ

ŽŽŽ,ŽŽŽŽZth,y

Ž'Kd,/ŽŽŽŽŽŽ

ŽŽŽŽŽdŽ

Ž^ŽŽZŽŽŽŽdŽ

ZŽŽ^ŽŽZZŽŽ

ŽŽŽŽŽŽŽŽŽŽŽ

ŽŽŽŽŽZdZ

ŽŽŽŽdŽ

ŽŽŽŽŽŽŽ

ŽŽ>KZŽŽŽ

ŽEŽZ ZŽ WŽ

  



dŽŽŽZŽŽŽŽZ

Ž'Kd,/ŽŽŽŽ

ŽŽŽŽŽŽ

ZŽŽŽŽŽZ

ŽŽŽ

ŽŽ'Kd,/ŽdŽŽŽ

ŽŽŽŽŽŽŽ

dŽŽŽŽŽ

ŽŽŽŽŽŽŽŽ

ŽŽdt^W

ŽŽŽŽŽ

ŽŽŽŽdŽ

ŽŽŽŽ

ŽŽŽŽŽŽŽ^&W

ŽŽŽtŽ&&ŽŽ>K

>KŽ^&WŽ&ŽŽ

ŽŽ^WŽ&ŽŽ>K

^WŽdŽZŽ

>K'Kd,/ŽŽŽ

Z,>Ž

dŽŽŽŽŽŽŽŽ

'Kd,/ŽZŽŽŽdŽŽŽŽŽ

ŽŽŽŽŽŽŽŽŽŽd>K

ŽŽŽd/ŽZŽhŽŽ>K

ŽŽhŽdŽŽd/Ž

ŽŽŽZŽŽŽŽd

ŽŽŽŽZŽŽŽŽŽŽ

ŽŽŽŽŽdŽ>KŽŽZth,yŽŽŽ

ŽŽŽŽ>KŽŽŽŽŽŽ

ŽŽŽŽ'Kd,/

ŽŽŽŽ>KŽ

ZŽŽ

dŽŽŽŽ>W/,W/ŽŽ

ŽŽŽdŽZKŽŽ>W/ŽŽ

ŽŽŽŽŽŽ'Kd,/ŽŽŽŽ

Ž>KŽdŽŽŽ>W/

ŽŽŽŽ,W/ŽŽŽŽŽŽ

'Kd,/ŽŽŽŽŽŽŽŽŽŽŽ

Ž>KŽŽŽdŽŽŽŽŽŽ

Ž&ŽŽŽŽŽ&Ž

'Kd,/Ž^ŽŽŽŽŽ>KŽ

ŽEŽZ ZŽ WŽ

  



Z>

&ŽdŽŽŽŽZŽ

dŽŽZŽŽŽŽZŽ

Ž





dŽZŽŽZ

 

t

  

 Y Ž

 WŽ

 < ŽŽŽ



dZŽŽŽŽZŽ

Ž,ŽŽŽŽŽ

ŽŽŽ'Kd,/Ž

ŽŽŽŽŽŽŽd

ŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽ

ŽZŽdŽ

ŽŽŽŽ&W

ŽŽŽŽŽ&W

ŽŽŽŽŽŽŽŽŽ

ŽŽŽZŽŽŽŽŽZ

ŽŽŽŽŽŽ

Ž,ŽŽŽŽ

ŽŽŽŽŽŽŽŽŽŽ

ZŽŽŽŽZŽŽ

ŽŽŽŽŽŽ

ŽŽŽŽŽŽŽ

ŽŽŽ

ŽŽŽZŽ

ŽŽŽŽŽ&W

ŽEŽZ ZŽ WŽ

  



Ž

ŽŽŽ'Kd,/ŽŽŽ

ŽsdŽŽŽZŽ

ŽŽŽŽŽŽ^'d

dŽŽŽŽŽŽW&W&

ŽŽZŽŽŽd

ŽŽŽŽŽŽŽŽŽ

ŽdŽZŽŽŽŽŽ

>KŽZŽŽŽŽ

>K>KŽŽŽŽŽ

ŽŽŽŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽŽŽŽŽ

ŽŽŽŽŽŽdŽŽ

ŽŽŽŽŽŽ

ŽZŽŽŽŽŽŽd

ŽŽŽ

ŽŽZ



 t

 W 

 W Ž

  Ž

h ŽŽ

  &Z,ŽŽ

 &Z,ŽŽ

 ŽZd



ZWŽŽ

ŽŽŽŽŽ

dŽWŽŽŽ

ŽŽŽŽZdŽŽ

ŽŽŽŽŽŽ

ŽŽŽŽŽZŽ

ŽŽŽŽŽ

ŽŽŽŽZŽŽ

ŽŽd

ŽŽŽŽZŽŽ

ŽŽŽZ&dŽ

ŽŽŽŽŽŽŽ

ŽŽW&W&ŽŽŽdŽ

ŽŽŽŽŽŽ

ŽŽŽŽŽZŽ

ŽEŽZ ZŽ WŽ

  



ŽWŽŽ

Ž&WŽŽŽŽŽŽŽ

ŽŽŽŽŽŽ

^'d

dŽŽ^'dŽŽZŽ

ŽŽŽŽŽ^'d^ŽŽ

ZŽŽŽŽŽ

ŽŽ^'dŽŽŽ^'dŽZ

dŽŽŽ^'d^'dŽŽ

ZdŽŽ^'d

ŽŽZ



t

 < ^'dŽŽ

 Y ^'dŽZ

 ^'dŽŽŽŽZ

 W^'dŽZ



EŽd^'dŽŽŽŽŽŽŽ

ŽdŽŽŽŽŽŽ^'dŽ

,ŽŽŽŽ^'dŽŽŽ

ŽŽŽŽ^'dZdŽ

ŽŽŽŽŽŽŽ

ŽŽŽŽŽ



dŽŽ^'dŽŽŽŽŽd

ŽŽ^'dŽŽŽŽ'Kd,/ŽdŽ

Ž^'dŽŽ

Ž>KŽŽŽ^'dŽŽ'Ž

ŽŽ^'dŽ^'dŽŽ

dŽŽ^'dŽŽ

^'dŽŽŽ

dŽŽŽ^'dŽŽŽ

ŽŽ^'dŽŽŽ^'dd^'dŽ

ŽŽ^'ddŽ^'dŽŽ

ŽŽŽ^'dŽŽ

ŽŽŽŽ^'dŽŽ



ŽEŽZ ZŽ WŽ

  





t

 Y ^'dŽ

 W^'dŽ^'d

  ZŽ

 < Ž^'dŽŽ<

 < ^'dŽŽZ

 ^'dŽŽ



dŽ^'dŽŽŽŽŽŽŽŽŽ

ŽŽ^'dŽZŽŽ

d^'dŽŽŽŽ

ŽŽZ^ŽŽŽŽŽŽŽ

ŽŽŽŽŽ^'d

d^'dŽŽŽŽdŽ

dŽŽŽŽŽŽŽdŽ

ZdŽŽŽ

ŽŽŽŽŽŽd^'dŽ

ŽŽŽŽŽd

^'dŽŽŽŽŽŽ

ŽŽŽŽŽŽd

Ž^'dŽŽŽ

ŽŽ^'dŽŽdŽ^'dŽ

ŽŽŽŽ^'d

Ž>K^'dŽ

Ž>Kd^'dŽŽŽŽ

ŽŽ>KŽ^'d

ŽŽ>Kd^'dŽ

ŽŽd^'dŽ^'d

ŽŽ'Kd,/ŽŽ

ZsŽ^

ŽŽŽŽZŽŽŽŽ

ŽŽŽŽŽZŽZ

EŽdŽŽŽŽŽ

ŽZŽdŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽ

ŽZŽŽŽZdŽŽ

ZŽŽŽŽŽZŽŽŽ

ŽŽŽdŽŽ

ŽŽZŽŽŽŽŽZŽ

ŽŽŽZŽ

ŽEŽZ ZŽ WŽ

  



ŽŽŽŽŽŽ

ŽŽŽŽŽŽdZ

ŽŽŽŽŽŽŽ

ZdŽŽŽŽŽŽŽ

ŽŽŽŽŽŽŽŽ

ŽŽŽŽŽ

ŽŽŽŽŽŽŽŽ

ŽŽZŽŽŽŽdŽŽ

ŽŽŽŽŽŽŽ

Ž

dŽŽZŽŽŽŽŽ

ŽŽZŽŽŽZŽ

ŽŽŽdŽŽŽŽŽ

ŽŽŽŽŽŽZŽŽŽd

ŽZŽŽ

ZdŽŽ

ŽŽŽŽŽŽ

ŽŽdŽŽŽŽ

ŽŽŽŽZ

ŽŽŽŽŽŽŽZ

dŽŽŽŽŽŽ

ŽŽŽŽdŽŽŽ

ZŽŽŽŽZ



t

 WŽŽŽŽ

 < ZŽŽŽŽŽŽ

Y ŽZŽŽZ

 ŽŽŽ



dŽŽŽŽŽZŽŽ

ŽŽZdŽŽ

ŽŽŽŽŽŽ

ŽŽŽŽ

dŽŽŽŽŽZŽŽ

ŽŽ

ŽdŽŽŽŽ

dŽŽŽŽ

ŽŽZdŽŽŽ

ŽŽŽŽŽZ



ŽEŽZ ZŽ WŽ

  



dŽŽŽZŽŽŽŽŽŽŽ

ŽŽZŽŽŽŽZ

ŽŽŽ>KŽŽ

'Kd,/dŽŽŽŽŽŽ

ZŽ'Kd,/ŽŽ

ŽEŽZŽŽ>KŽdŽŽŽZ

ŽŽŽŽŽŽŽŽd

ŽŽŽŽŽ'Kd,/Ž>K

ŽZŽŽŽŽŽd

ŽŽ>KdŽŽ

ŽŽ>KŽ

ŽŽŽŽZŽŽ

Ž

^&WŽŽ

dŽŽŽ^&WŽŽŽŽZ



t

 t^&W^&WŽŽ

  ^&WZ/Z

  ŽŽŽ^&W

 dh&dZ

W ŽŽ^&W

 ,&dZ

W ŽŽŽŽ,Z,

s ŽŽŽŽŽ>K



d^&WŽŽŽŽŽ

ŽŽWdŽŽŽŽŽ

ZŽŽŽŽŽŽŽŽŽ

ŽŽŽŽ'Kd,/ŽŽŽŽd^&W

Ž&ŽŽŽŽŽŽ

ŽŽŽŽŽŽŽdZ

d^&WŽŽZ

^&WŽŽZŽŽ&W

Ž^&WŽŽŽŽŽŽŽŽŽŽ

Ž^&WŽŽŽ

Ž^&WŽŽŽŽ

ŽŽ

ŽEŽZ ZŽ WŽ

  



dŽŽŽŽŽŽŽŽ^&W

ŽŽŽdŽ^&WŽd

ŽŽŽŽŽŽŽŽŽŽŽŽ

ŽŽŽŽŽ^&WŽ&

ŽdŽŽŽŽŽŽ

ŽŽŽŽŽ

ŽŽ

/ŽŽ

dŽŽŽŽŽŽŽd

ŽŽŽ&ŽŽŽ&Ž

ŽŽŽŽd

ŽŽŽŽŽŽ

ŽŽŽZŽd

Ž'Kd,/ŽŽŽ

ZŽŽŽZ

ZŽŽŽŽ>KŽ

dŽ

ŽŽŽŽŽZ

ŽŽŽŽŽŽ

ŽŽdŽ>KŽŽŽŽŽŽ

ŽŽŽŽŽŽ

>KŽ

'Kd,//&

d'Kd,/ŽŽŽŽŽ

ŽdŽŽ

ZŽŽŽ

ŽdŽŽdŽd

ŽŽŽdŽd

'Kd,/ŽŽEŽd&

'

ŽEŽZ ZŽ WŽ

  



d/WŽŽ

s    

^ ^ t t

Ž

EŽt t EŽt t

Kd&    

^Ž&    

/ZŽ

   

d&

t^    

tW^Ž&

   



tWEŽ&

   



tW

   

t&



d'Kd,//&

'Kd,/

/& Ž

s

ZŽ'd, ^ŽŽEŽt 

ZŽ'd, ^ŽŽDt 

ZŽ'd, tŽŽEŽt 

ZŽ'd, tŽŽDt 

ZŽ^'d,  

ZŽ^'d,  

ZŽ^'d,  

ZŽ^'d,  

ZŽd

dŽŽ& 

'd,

 

ŽEŽZ ZŽ WŽ

  



Z^h>d^

dŽŽŽd>KŽŽ

ŽŽŽ&ŽŽŽ

ŽEŽd&ŽŽ

ŽŽŽŽ'Kd,/Ž>K

ŽŽdZŽŽŽŽŽŽ

&ŽŽŽZZ

>KŽŽ&Ž

ŽŽŽŽŽZŽdZ

ZŽ

>KZŽd

ŽŽŽŽŽ>K

ŽŽZŽdZ

Ž^'dŽ

ZŽŽ&ŽŽŽŽ

&ŽŽŽZŽ

ŽŽŽZŽŽŽ

ŽŽŽŽ'Kd,/Žd

ŽZŽŽŽŽ

ŽŽZZŽ



Ž&ŽŽŽŽZŽ

ŽŽŽŽŽŽdŽ

ŽŽŽŽŽŽ

&ŽŽŽŽŽ

,ŽŽ

ŽŽŽŽŽ&

ŽŽŽŽŽd

ŽŽŽŽŽŽ

ŽŽŽŽZŽ&Ž

ŽŽŽŽŽd

ŽŽŽ

ŽŽŽŽŽ

,ŽŽ

Ž



dŽŽŽŽŽŽd

ŽŽŽŽŽŽ

ŽŽ^'dŽd^Ž

ŽZdŽŽ

'Kd,/ŽŽŽ>KŽ

ŽŽŽŽ

Ž>KŽdŽŽŽ

ŽŽŽ,Ž

ŽŽ

ŽEŽZ ZŽ WŽ

  



ŽŽŽdŽŽŽŽŽ

ŽdŽ^Ž

ŽŽŽ



dZŽŽd

    

^ ^ t t

Ž

EŽt t EŽt t

Žd    





Figure 1: Unit 2 Temperatures for Case 1 150 Q n

c:

Q;"

...+

()"

145  ::I z

?

0

0 140 m I-lo IDI

- - lVl 0 0

I-lo

......... 1V2 U"I 135

- . - 1V3

- - -1V4 130 1V5 u:-

~

1V11

I
0

~ 125 tl)

Q) <

c.. v;*

E Q) 5*

I I-0 120 -*-*-*-*-*-*-*-*-*-*-*-*-*-*-*

115

./ ~ ~ ------~.=. ~ .~. ~*=*=*=.~.:.:.:. : .::.:.: :.:.::.:. : .::.:.::.:. : .:. : .::.:.: .:.::.:.: :.: .: :.:.::.:.: :.: .

/ ,' ............

110 .,,

QJ

~~~~;.:~*~*: :~~*:*:* ;. .-::"*'"- .---~** "-" .-.*.: : '. ~ ~: .-~~ : ~ ~.-::_-.~ :.=:~~ . -~~ : ~ ~-*:_"~ :_ ~

w w

105 0

.. ~ ;,...~*

~*.,. w ID 100 0 500 1000 1500 2000 2500 3000 3500 4000 Time after LOCA (s)

Figure 2: Unit 2 Pressures for Case 1 14.8 n DJ n

c:

iii'"

r+

a*

14.78  ::::s z

?

0

~

14.76 m 1-1 l.O I

- - PRl 0 0

,......... ......... PR2 ~

/ .

14.74 .,

l I , . . . . **... - * - PR3

. , ..... \ *.

i , ' ... - - - PR4

/, . ...
., / , ...

14.72 :I . . ' . . PRS

I . . \ *,

Ii

  • v; f*I / \ , \ \_ PR11

~

/ 1* , .... *. ' \ . .

CV f. ~

14.7 C1>

Ii .,' ' .' \ . \\ *,\\

Ill ,

=11. I . \ * <

Ill iii'

~

.** . \ , .\ a*

I Q..  ::::s

\ .. \ \ *.** ***** ................. ..

/I . 0 14.68 ,: .' *, \ ', *, ...................................................................................................................... .

1/ / *, *. ' . -- * - .

..I* .\ ' ~ ....... __..-. * ...._.-.-..-...-*~*-*--*-**

-~

14.66

\ \. --------------------------------- -

14.64 "O

' DJ (JQ C1>

w

~

14.62 0 w

l.O 14.6 0 500 1000 1500 2000 2500 3000 3500 4000 Time after LOCA (s)

Figure 3: U2 Differential Pressures for Case 1 2 n D.I n

c::

Qi" 5*

- z

~

1.5 0

- - El.476  :::c m

~

......... El. 517

"°6 0

- * - El.545 ~

U"I

- - - El. 570 1

El. 589 QC Refuel

==

§

~

J In In Q)  :::c 0..

0.5 '1>

-ro Vi'

.E 5*

~

0 c

0

"'tJ D.I

-0.5 OQ

'1>

w I.fl 0

w

-"°

-1 0 500 1000 1500 2000 2500 3000 3500 4000 Time after LOCA (s)

Figure 4: Leakage and SGT Flows for Case 1 6 n DJ n

c:

ii)"

...+

5*

s z

?

4 c

c m

~

l.O I

0 0

~

1.11 2

- - SGT Flow VI .. * *..... Total Leakage

~

.......................................... ***~

c (I) 30 v;*

..2 u.. 5*

s 0

-2

                                                          • -*************************************************************...............................,............................. ""C DJ

-4 OQ (I) w 0

°'

w l.O

-6 0 500 1000 1500 2000 2500 3000 3500 4000 Time after LOCA (s)

Figure 5: Refueling Floor Differential Pressures for Case 2 2.5 n Q1 n

c:

Qi" r+

s*

~

2 z

~

0

c m

._,i.

U)

I 0

0

._,i.

1.5 - - - Average V1

                  • EWall QD - * - wwall

~

.~ - - - SWall 1 I Q>

5 I VI - *
  • NWall VI  :::c Q> C1>

I c:. ,' <

v;*

~ I s*

EQ> ~

0.5 0 I

I

£i5 I

I 0

""C Q1

......... ..-.... ................__...~ ~-* -..~ ~-

~

' IJJ

-0.5 .... ' - --- - '-I 0

IJJ


- U)

-1 0 500 1000 1500 2000 2500 3000 3500 4000 Time after LOCA (s)

Figure 6: Average Refueling Floor Differential Pressures for Each Case 3.5 n Q,)

n c:

.,,.., . Qi"

..+

,1

,, " \*

c:r

s 3

( \ z

~

0

0 i '\. m

~

2.5 l.O I \ I 0

0

~

I \ U1 2

\ \'

\ - - - case 1 QD 3: "\ ......... Case 2 c \.

Q>

- * - case3 1.5 11'1 - - - Case 4 11'1 '-  :::0

~ ct>

Q.. <

Vi'

~ '- ()"

c 1 :J

-~

\ 0

£ 0 ' \

0.5 0 ""O Q,)

(IQ ct>

w 00 0

-0.5 w l.O

-1 0 500 1000 1500 2000 2500 3000 3500 4000 Time after LOCA (s)

Calculation No. DRE19-0015 Revision 0A Page 39 of 39

9. CONCLUSION The differential pressure inside the Dresden Reactor Building after a design basis LOCA will be less than the Technical Specification criteria of -0.25 inwg with respect to the outside air pressure after a drawdown time of 1334 seconds (22.2 minutes) under the limiting outside air temperature and wind conditions conforming with the RG 1.183 guidance. This insures that there will be no unfiltered exfiltration from the Reactor Building after the drawdown time under these conditions.

An additional case to simulate RB isolation during normal operation, documented in Attachment F, was performed to estimate the drawdown time during test conditions. A drawdown time of 11.4 minutes, to reach an average RB pressure of -0.25 inwg, was calculated for the test conditions assumed in Attachment F.

10. ATTACHMENTS A. GOTHIC Model Schematic Diagram B. GOTHIC input File for Case 1 and Changes for Cases 2, 3, and 4 C. Calculation of GOTHIC Inputs D. GOTHIC Results E. Exelon TODI No. (DRE) TODI-19-007, Rev. 1.

F. Drawdown Test Case G. Initial Reactor Building Humidity Sensitivity Study

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW$ 3DJH$RI$



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

3    )

9 4 4 4 9 4

     

  )

)

) )

  

 



 + 

 



 

 

 

 

3 3

)   +   +  )

 

 





  

 

9  +   + 9

   

 



4 4

 

 

 +  +

 

   

 

3 3

   

 +   +







 

 +  +

   

&



&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Control Volume Parameters Vol Vol Elev Ht Hyd. D. L/V IA SA Min Film Min Film

  1. Description (ft3) (ft) (ft) (ft) (ft2) FF (ft) FF 1 U2 Basement 476 283359. 476.5 41. 10.8 DEFAULT DEFAULT 2 U2 Ground 517 278726. 517.5 28. 26.5 DEFAULT DEFAULT 3 U2 Mezz 545 221360. 545.5 24.5 21.1 DEFAULT DEFAULT 4 U2 Main 570 174898. 570. 19. 22.6 DEFAULT DEFAULT 5 U2 Reactor 589 187986. 589. 24. 21.1 DEFAULT DEFAULT 6 U3 Basement 476 277635. 476.5 41. 10.6 DEFAULT DEFAULT 7 U3 Ground 517 278726. 517.5 28. 26.5 DEFAULT DEFAULT 8 U3 Mezz 545 221360. 545.5 24.5 21.1 DEFAULT DEFAULT 9 U3 Main 570 174898. 570. 19. 22.6 DEFAULT DEFAULT 10 U3 Reactor 589 187986. 589. 24. 21.1 DEFAULT DEFAULT 11 Refueling 613 1222452. 613. 45.5 60.7 DEFAULT DEFAULT 12 E Wall Ambient 1e+10 517.5 400. 1e+06 DEFAULT DEFAULT 13 W Wall Ambient 1e+10 517.5 400. 1e+06 DEFAULT DEFAULT 14 Exhaust Ambient 1e+10 517.5 400. 1e+06 DEFAULT DEFAULT 15 U2 HVAC Supply 1000. 581.33 6. 6. DEFAULT DEFAULT 16 U3 HVAC Supply 1000. 581.33 6. 6. DEFAULT DEFAULT 17 U2 HVAC Exhaust 1000. 581.33 6. 6. DEFAULT DEFAULT 18 U3 HVAC Exhaust 1000. 581.33 6. 6. DEFAULT DEFAULT 19 S Wall Ambient 1e+10 517.5 400. 1e+06 DEFAULT DEFAULT 20 N Wall Ambient 1e+10 517.5 400. 1e+06 DEFAULT DEFAULT Control Volume Options Vol S Wave Pool HMT Pool Pool Pres. Pool Dp. Gas Burn ICIP
  1. Damper Mult Opt Correction FF Tracking Opt Drag 1 1. DEFAULT LOCAL ON ON NONE ON 2 1. DEFAULT LOCAL ON ON NONE ON 3 1. DEFAULT LOCAL ON ON NONE ON 4 1. DEFAULT LOCAL ON ON NONE ON 5 1. DEFAULT LOCAL ON ON NONE ON 6 1. DEFAULT LOCAL ON ON NONE ON 7 1. DEFAULT LOCAL ON ON NONE ON 8 1. DEFAULT LOCAL ON ON NONE ON 9 1. DEFAULT LOCAL ON ON NONE ON 10 1. DEFAULT LOCAL ON ON NONE ON 11 1. DEFAULT LOCAL ON ON NONE ON

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Control Volume Options (cont.)

Vol S Wave Pool HMT Pool Pool Pres. Pool Dp. Gas Burn ICIP

  1. Damper Mult Opt Correction FF Tracking Opt Drag 12 1. DEFAULT LOCAL ON ON NONE ON 13 1. DEFAULT LOCAL ON ON NONE ON 14 1. DEFAULT LOCAL ON ON NONE ON 15 1. DEFAULT LOCAL ON ON NONE ON 16 1. DEFAULT LOCAL ON ON NONE ON 17 1. DEFAULT LOCAL ON ON NONE ON 18 1. DEFAULT LOCAL ON ON NONE ON 19 1. DEFAULT LOCAL ON ON NONE ON 20 1. DEFAULT LOCAL ON ON NONE ON Laminar Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid or Model Rep Subvol Area
  1. (%/hr) (psia) (F) (%) Src Option Wall Option (ft2) 1 0. CNST T UNIFORM DEFAULT 2 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT 7 0. CNST T UNIFORM DEFAULT 8 0. CNST T UNIFORM DEFAULT 9 0. CNST T UNIFORM DEFAULT 10 0. CNST T UNIFORM DEFAULT 11 0. CNST T UNIFORM DEFAULT 12 0. CNST T UNIFORM DEFAULT 13 0. CNST T UNIFORM DEFAULT 14 0. CNST T UNIFORM DEFAULT 15 0. CNST T UNIFORM DEFAULT 16 0. CNST T UNIFORM DEFAULT 17 0. CNST T UNIFORM DEFAULT 18 0. CNST T UNIFORM DEFAULT 19 0. CNST T UNIFORM DEFAULT 20 0. CNST T UNIFORM DEFAULT

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Turbulent Leakage Lk Rate Ref Ref Ref Sink Leak Vol Factor Press Temp Humid or Model Rep Subvol Area

  1. (%/hr) (psia) (F) (%) Src Option Wall Option (ft2) fL/D 1 0. CNST T UNIFORM DEFAULT 2 0. CNST T UNIFORM DEFAULT 3 0. CNST T UNIFORM DEFAULT 4 0. CNST T UNIFORM DEFAULT 5 0. CNST T UNIFORM DEFAULT 6 0. CNST T UNIFORM DEFAULT 7 0. CNST T UNIFORM DEFAULT 8 0. CNST T UNIFORM DEFAULT 9 0. CNST T UNIFORM DEFAULT 10 0. CNST T UNIFORM DEFAULT 11 0. CNST T UNIFORM DEFAULT 12 0. CNST T UNIFORM DEFAULT 13 0. CNST T UNIFORM DEFAULT 14 0. CNST T UNIFORM DEFAULT 15 0. CNST T UNIFORM DEFAULT 16 0. CNST T UNIFORM DEFAULT 17 0. CNST T UNIFORM DEFAULT 18 0. CNST T UNIFORM DEFAULT 19 0. CNST T UNIFORM DEFAULT 20 0. CNST T UNIFORM DEFAULT Discrete Burn Parameters Min Min Max Burn Flame Burn Un Vol H2 O2 H2O Length Speed Rate Burn Burn
  1. Frac Frac Frac (ft) (ft/s) FF Frac Opt 1 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 2 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 3 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 4 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 5 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 6 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 7 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 8 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 9 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 10 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 11 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 12 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 13 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 14 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 15 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Discrete Burn Parameters (cont.)

Min Min Max Burn Flame Burn Un Vol H2 O2 H2O Length Speed Rate Burn Burn

  1. Frac Frac Frac (ft) (ft/s) FF Frac Opt 16 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 17 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 18 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 19 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR 20 0.07 0.05 0.55 DEFAULT DEFAULT DEFAULT FBR Continuous Burn Parameters Vol Min H2 Min Max Max Burn Vol Flow O2 H2O H2O/H2 Frac
  1. (lbm/s) Frac Frac Ratio 1 0. 0.05 0.55 1000. 1.

2 0. 0.05 0.55 1000. 1.

3 0. 0.05 0.55 1000. 1.

4 0. 0.05 0.55 1000. 1.

5 0. 0.05 0.55 1000. 1.

6 0. 0.05 0.55 1000. 1.

7 0. 0.05 0.55 1000. 1.

8 0. 0.05 0.55 1000. 1.

9 0. 0.05 0.55 1000. 1.

10 0. 0.05 0.55 1000. 1.

11 0. 0.05 0.55 1000. 1.

12 0. 0.05 0.55 1000. 1.

13 0. 0.05 0.55 1000. 1.

14 0. 0.05 0.55 1000. 1.

15 0. 0.05 0.55 1000. 1.

16 0. 0.05 0.55 1000. 1.

17 0. 0.05 0.55 1000. 1.

18 0. 0.05 0.55 1000. 1.

19 0. 0.05 0.55 1000. 1.

20 0. 0.05 0.55 1000. 1.

Mechanistic Burn Rate Parameters Min Min Max Lam Burn Burn Turb Turb Vol H2 O2 H2O Da Rate Temp Limit Burn Burn

  1. Frac Frac Frac No. (lbm/ft3-s) FF (F) FF Opt FF 1 0. 0. 1. 1. DEFAULT 350. EDIS

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Mechanistic Burn Rate Parameters (cont.)

Min Min Max Lam Burn Burn Turb Turb Vol H2 O2 H2O Da Rate Temp Limit Burn Burn

  1. Frac Frac Frac No. (lbm/ft3-s) FF (F) FF Opt FF 2 0. 0. 1. 1. DEFAULT 350. EDIS 3 0. 0. 1. 1. DEFAULT 350. EDIS 4 0. 0. 1. 1. DEFAULT 350. EDIS 5 0. 0. 1. 1. DEFAULT 350. EDIS 6 0. 0. 1. 1. DEFAULT 350. EDIS 7 0. 0. 1. 1. DEFAULT 350. EDIS 8 0. 0. 1. 1. DEFAULT 350. EDIS 9 0. 0. 1. 1. DEFAULT 350. EDIS 10 0. 0. 1. 1. DEFAULT 350. EDIS 11 0. 0. 1. 1. DEFAULT 350. EDIS 12 0. 0. 1. 1. DEFAULT 350. EDIS 13 0. 0. 1. 1. DEFAULT 350. EDIS 14 0. 0. 1. 1. DEFAULT 350. EDIS 15 0. 0. 1. 1. DEFAULT 350. EDIS 16 0. 0. 1. 1. DEFAULT 350. EDIS 17 0. 0. 1. 1. DEFAULT 350. EDIS 18 0. 0. 1. 1. DEFAULT 350. EDIS 19 0. 0. 1. 1. DEFAULT 350. EDIS 20 0. 0. 1. 1. DEFAULT 350. EDIS Mechanistic Burn Propagation Parameters Unburned Burned CC Flow Flame Ig Min Ig Min Ig Max Auto Ig Vol H2 H2 Vel Thick H2 O2 Steam Temp
  1. Frac FF Frac FF (ft/s) FF (ft) FF Frac Frac Frac (F) FF 1 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 2 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 3 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 4 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 5 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 6 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 7 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 8 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 9 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 10 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 11 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 12 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 13 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 14 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 15 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 16 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Mechanistic Burn Propagation Parameters (cont.)

Unburned Burned CC Flow Flame Ig Min Ig Min Ig Max Auto Ig Vol H2 H2 Vel Thick H2 O2 Steam Temp

  1. Frac FF Frac FF (ft/s) FF (ft) FF Frac Frac Frac (F) FF 17 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 18 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 19 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT 20 0.04 0.001 DEFAULT 0.164 0.04 0.05 0.55 DEFAULT Fluid Boundary Conditions - Table 1 Press. Temp. Flow S J ON OFF Elev.

BC# Description (psia) FF (F) FF (lbm/s) FF P O Trip Trip (ft) 1P E Wall Ambient 14.7 1 2T N N 517.5 2F E Wall Ambient 14.7 1 2T v1e10 N N 517.5 3P W Wall Ambient 14.7 1 2T N N 517.5 4F W Wall Ambient 14.7 1 2T v1e10 N N 517.5 5P Exhaust Ambient 14.7 1 2T N N 517.5 6F Exhaust Ambient 14.7 1 2T v1e10 N N 517.5 7F U2 SFP Evap 1.945 125 0.07 8T N N 613.

8F U3 SFP Evap 1.945 125 0.07 8T N N 613.

9P S Wall Ambient 14.7 1 2T N N 517.5 10F S Wall Ambient 14.7 1 2T v1e10 N N 517.5 11P N Wall Ambient 14.7 1 2T N N 517.5 12F N Wall Ambient 14.7 1 2T v1e10 N N 517.5 Fluid Boundary Conditions - Table 2 Liq. V. Stm. V. Drop D. Drop Drop Cpld Flow Heat Outlet BC# Frac. FF Frac. FF (in) FF GSD Frac. FF BC# Frac. FF (Btu/s) FF Quality FF 1P H100 9T NONE 1. DEFAULT 2F H100 9T NONE 1. DEFAULT 3P H100 9T NONE 1. DEFAULT 4F H100 9T NONE 1. DEFAULT 5P H100 9T NONE 1. DEFAULT 6F H100 9T NONE 1. DEFAULT 7F 1 NONE 1. DEFAULT 8F 1 NONE 1. DEFAULT 9P H100 9T NONE 1. DEFAULT 10F H100 9T NONE 1. DEFAULT 11P H100 9T NONE 1. DEFAULT 12F H100 9T NONE 1. DEFAULT

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Fluid Boundary Conditions - Table 3 Volume Fractions Air BC# Gas 1 FF Gas 2 FF Gas 3 FF Gas 4 FF 1P 1.

2F 1.

3P 1.

4F 1.

5P 1.

6F 1.

7F 1.

8F 1.

9P 1.

10F 1.

11P 1.

12F 1.

Fluid Boundary Conditions - Table 4 Volume Fractions Liquid BC# Gas 5 FF Gas 6 FF Gas 7 FF Comp. Set FF 1P 2F 3P 4F 5P 6F 7F 8F 9P 10F 11P 12F Flow Paths - Table 1 F.P. Vol Elev Ht Vol Elev Ht Tilt Rot.

  1. Description A F (ft) (ft) B F (ft) (ft) (deg) (deg) 1 U2 Basement-Grd 1 - 516.5 1. 2 - 517.5 1.

2 U2 Ground-Mezz 2 - 544.5 1. 3 - 545.5 1.

3 U2 Mezz-Main 3 - 569. 1. 4 - 570. 1.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Flow Paths - Table 1 (cont.)

F.P. Vol Elev Ht Vol Elev Ht Tilt Rot.

  1. Description A F (ft) (ft) B F (ft) (ft) (deg) (deg) 4 U2 Main-Reactor 4 - 588. 1. 5 - 589. 1.

5 U2 Reactor-Refu 5 - 612. 1. 11 - 613. 1.

6 U3 Basement-Grd 6 - 516.5 1. 7 - 517.5 1.

7 U3 Ground-Mezz 7 - 544.5 1. 8 - 545.5 1.

8 U3 Mezz-Main 8 - 569. 1. 9 - 570. 1.

9 U3 Main-Reactor 9 - 588. 1. 10 - 589. 1.

10 U3 Reactor-Refu 10 - 612. 1. 11 - 613. 1.

11 U3-U2 Grnd Flr 2 - 517.5 7. 7 - 517.5 7.

12 U3-U2 Mezzanine 3 - 545.5 7. 8 - 545.5 7.

13 U3-U2 Main Flr 4 - 570. 7. 9 - 570. 7.

14 U3-U2 Reactor F 5 - 589. 7. 10 - 589. 7.

15 U2 Primary SGT 17 - 581.33 2. 14 - 827.5 2.

16 U3 Standby SGT 18 - 581.33 2. 14 - 827.5 2.

17 U2 Exhaust Vlv 17 - 581.33 6. 14 - 676.38 6.

18 U3 Exhaust Vlvt 18 - 581.33 6. 14 - 676.38 6.

19 U2 Supply Vlv 12 - 581.33 6. 15 - 581.33 6.

20 U3 Supply Vlv 13 - 581.33 6. 16 - 581.33 6.

21 E Wall Ambient 12 - 517.5 1. 1P - 517.5 1.

22 E Wall Ambient 12 - 517.5 1. 2F - 517.5 1.

23 W Wall Ambient 13 - 517.5 1. 3P - 517.5 1.

24 W Wall Ambient 13 - 517.5 1. 4F - 517.5 1.

25 Exhaust Ambient 14 - 517.5 1. 5P - 517.5 1.

26 Exhaust Ambient 14 - 517.5 1. 6F - 517.5 1.

27 U2 Supply Fan 12 - 581.33 6. 15 - 581.33 6.

28 U2 Exhaust Fan 17 - 581.33 6. 14 - 676.38 6.

29 U3 Supply Fan 13 - 581.33 6. 16 - 581.33 6.

30 U3 Exhaust Fan 18 - 581.33 6. 14 - 676.38 6.

31 U2 Torus Supply 1 - 476.5 1. 15 - 581.33 1.

32 U2 517 Supply 2 - 517.5 1. 15 - 581.33 1.

33 U2 545 Supply 3 - 545.5 1. 15 - 581.33 1.

34 U2 570 Supply 4 - 570. 1. 15 - 581.33 1.

35 U2 589 Supply 5 - 589. 1. 15 - 581.33 1.

36 U2 Refuel Suppl 11 - 613. 1. 15 - 581.33 1.

37 U3 Torus Supply 6 - 476.5 1. 16 - 581.33 1.

38 U3 517 Supply 7 - 517.5 1. 16 - 581.33 1.

39 U3 545 Supply 8 - 545.5 1. 16 - 581.33 1.

40 U3 570 Supply 9 - 570. 1. 16 - 581.33 1.

41 U3 589 Supply 10 - 589. 1. 16 - 581.33 1.

42 U3 Refuel Sup 11 - 613. 1. 16 - 581.33 1.

43 U2 Torus Exh 1 - 476.5 1. 17 - 581.33 1.

44 U2 517 Exhaust 2 - 517.5 1. 17 - 581.33 1.

45 U2 545 Exhaust 3 - 545.5 1. 17 - 581.33 1.

46 U2 570 Exhaust 4 - 570. 1. 17 - 581.33 1.

47 U2 589 Exhaust 5 - 589. 1. 17 - 581.33 1.

48 U2 Refuel Exh 11 - 613. 1. 17 - 581.33 1.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Flow Paths - Table 1 (cont.)

F.P. Vol Elev Ht Vol Elev Ht Tilt Rot.

  1. Description A F (ft) (ft) B F (ft) (ft) (deg) (deg) 49 U3 Torus Exh 6 - 476.5 1. 18 - 581.33 1.

50 U3 517 Exhaust 7 - 517.5 1. 18 - 581.33 1.

51 U3 545 Exhaust 8 - 545.5 1. 18 - 581.33 1.

52 U3 570 Exhaust 9 - 570. 1. 18 - 581.33 1.

53 U3 589 Exhaust 10 - 589. 1. 18 - 581.33 1.

54 U3 Refuel Exh 11 - 613. 1. 18 - 581.33 1.

55 U2 SFP Evap 11 - 613. 1. 7F - 613. 1.

56 U3 SFP Evap 11 - 613. 1. 8F - 613. 1.

57 W Refuel Wall 11 - 621. 1. 13 - 621. 1.

58 E Refuel Wall 11 - 621. 1. 12 - 621. 1.

59 S Wall Ambient 19 - 517.5 1. 9P - 517.5 1.

60 S Wall Ambient 19 - 517.5 1. 10F - 517.5 1.

61 N Wall Ambient 20 - 517.5 1. 11P - 517.5 1.

62 N Wall Ambient 20 - 517.5 1. 12F - 517.5 1.

63 S Refuel Wall 11 - 621. 1. 19 - 621. 1.

64 N Refuel Wall 11 - 621. 1. 20 - 621. 1.

65 U2 476 DP 1 - 516.5 1. 12 - 517.5 1.

66 U2 517 DP 2 - 517.5 1. 12 - 517.5 1.

67 U2 545 DP 3 - 545.5 1. 12 - 545.5 1.

68 U2 570 DP 4 - 570. 1. 12 - 570. 1.

69 U2 589 DP 5 - 589. 1. 12 - 589. 1.

Flow Paths - Table 2 Flow Flow Hyd. Inertia Friction Relative Lam Dep Mom Strat Path Area Diam. Length Length Rough- Geom Bend Trn Flow

  1. (ft2) (ft) (ft) (ft) ness Fact (deg) Opt Opt 1 32. 4. 34.5 DEFA 0. - NONE 2 380. 19.5 26.25 DEFA 0. - NONE 3 380. 19.5 21.75 DEFA 0. - NONE 4 130. 9.7 21.5 DEFA 0. - NONE 5 380. 19.5 35.625 DEFA 0. - NONE 6 32. 4. 34.5 DEFA 0. - NONE 7 380. 19.5 26.25 DEFA 0. - NONE 8 380. 19.5 21.75 DEFA 0. - NONE 9 130. 9.7 21.5 DEFA 0. - NONE 10 380. 19.5 35.625 DEFA 0. - NONE 11 35. 5.8 147. DEFA 0. - NONE 12 1e-06 4.2 147. DEFA 0. - NONE 13 1e-06 4.2 147. DEFA 0. - NONE 14 1e-06 4.2 147. DEFA 0. - NONE 15 3.14 2. 1. DEFA 0. - NONE

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Flow Paths - Table 2 (cont.)

Flow Flow Hyd. Inertia Friction Relative Lam Dep Mom Strat Path Area Diam. Length Length Rough- Geom Bend Trn Flow

  1. (ft2) (ft) (ft) (ft) ness Fact (deg) Opt Opt 16 3.14 2. 1. DEFA 0. - NONE 17 28.3 6. 1. DEFA 0. - NONE 18 28.3 6. 1. DEFA 0. - NONE 19 28.3 6. 1. DEFA 0. - NONE 20 28.3 6. 1. DEFA 0. - NONE 21 1e+10 1e+10 1. DEFA 0. - NONE 22 1e+10 1e+10 1. DEFA 0. - NONE 23 1e+10 1e+10 1. DEFA 0. - NONE 24 1e+10 1e+10 1. DEFA 0. - NONE 25 1e+10 1e+10 1. DEFA 0. - NONE 26 1e+10 1e+10 1. DEFA 0. - NONE 27 28.3 6. 1. DEFA 0. - NONE 28 28.3 6. 1. DEFA 0. - NONE 29 28.3 6. 1. DEFA 0. - NONE 30 28.3 6. 1. DEFA 0. - NONE 31 28.3 6. 1. DEFA 0. - NONE 32 28.3 6. 1. DEFA 0. - NONE 33 28.3 6. 1. DEFA 0. - NONE 34 28.3 6. 1. DEFA 0. - NONE 35 28.3 6. 1. DEFA 0. - NONE 36 28.3 6. 1. DEFA 0. - NONE 37 28.3 6. 1. DEFA 0. - NONE 38 28.3 6. 1. DEFA 0. - NONE 39 28.3 6. 1. DEFA 0. - NONE 40 28.3 6. 1. DEFA 0. - NONE 41 28.3 6. 1. DEFA 0. - NONE 42 28.3 6. 1. DEFA 0. - NONE 43 28.3 6. 1. DEFA 0. - NONE 44 28.3 6. 1. DEFA 0. - NONE 45 28.3 6. 1. DEFA 0. - NONE 46 28.3 6. 1. DEFA 0. - NONE 47 28.3 6. 1. DEFA 0. - NONE 48 28.3 6. 1. DEFA 0. - NONE 49 28.3 6. 1. DEFA 0. - NONE 50 28.3 6. 1. DEFA 0. - NONE 51 28.3 6. 1. DEFA 0. - NONE 52 28.3 6. 1. DEFA 0. - NONE 53 28.3 6. 1. DEFA 0. - NONE 54 28.3 6. 1. DEFA 0. - NONE 55 1353. 36.6 1. DEFA 0. - NONE 56 1353. 36.6 1. DEFA 0. - NONE 57 0.294 1. 1. DEFA 0. - NONE 58 0.294 1. 1. DEFA 0. - NONE 59 1e+10 1e+10 1. DEFA 0. - NONE

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Flow Paths - Table 2 (cont.)

Flow Flow Hyd. Inertia Friction Relative Lam Dep Mom Strat Path Area Diam. Length Length Rough- Geom Bend Trn Flow

  1. (ft2) (ft) (ft) (ft) ness Fact (deg) Opt Opt 60 1e+10 1e+10 1. DEFA 0. - NONE 61 1e+10 1e+10 1. DEFA 0. - NONE 62 1e+10 1e+10 1. DEFA 0. - NONE 63 0.734 1. 1. DEFA 0. - NONE 64 0.734 1. 1. DEFA 0. - NONE 65 1e-12 1. 1. DEFA 0. - NONE 66 1e-12 1. 1. DEFA 0. - NONE 67 1e-12 1. 1. DEFA 0. - NONE 68 1e-12 1. 1. DEFA 0. - NONE 69 1e-12 1. 1. DEFA 0. - NONE Flow Paths - Table 3 Flow Fwd. Rev. Critical Exit Drop Homog.

Path Loss Loss Comp. Flow Loss Breakup Flow

  1. Coeff. FF Coeff. FF Opt. Model Coeff. Model Opt.

1 2.85 2.85 OFF OFF 0. OFF OFF 2 2.85 2.85 OFF OFF 0. OFF OFF 3 2.85 2.85 OFF OFF 0. OFF OFF 4 2.85 2.85 OFF OFF 0. OFF OFF 5 2.85 2.85 OFF OFF 0. OFF OFF 6 2.85 2.85 OFF OFF 0. OFF OFF 7 2.85 2.85 OFF OFF 0. OFF OFF 8 2.85 2.85 OFF OFF 0. OFF OFF 9 2.85 2.85 OFF OFF 0. OFF OFF 10 2.85 2.85 OFF OFF 0. OFF OFF 11 2.85 2.85 OFF OFF 0. OFF OFF 12 2.85 2.85 OFF OFF 0. OFF OFF 13 2.85 2.85 OFF OFF 0. OFF OFF 14 2.85 2.85 OFF OFF 0. OFF OFF 15 160.1 1e+60 OFF OFF 0. OFF OFF 16 160.1 1e+60 OFF OFF 0. OFF OFF 17 1e+60 0.38 OFF OFF 0. OFF OFF 18 1e+60 0.38 OFF OFF 0. OFF OFF 19 0.38 1e+60 OFF OFF 0. OFF OFF 20 0.38 1e+60 OFF OFF 0. OFF OFF 21 1e-60 1e-60 OFF OFF 0. OFF OFF 22 1e-60 1e-60 OFF OFF 0. OFF OFF 23 1e-60 1e-60 OFF OFF 0. OFF OFF 24 1e-60 1e-60 OFF OFF 0. OFF OFF 25 1e-60 1e-60 OFF OFF 0. OFF OFF

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Flow Paths - Table 3 (cont.)

Flow Fwd. Rev. Critical Exit Drop Homog.

Path Loss Loss Comp. Flow Loss Breakup Flow

  1. Coeff. FF Coeff. FF Opt. Model Coeff. Model Opt.

26 1e-60 1e-60 OFF OFF 0. OFF OFF 27 1e-20 1e-20 OFF OFF 0. OFF OFF 28 1e-20 1e-20 OFF OFF 0. OFF OFF 29 1e-20 1e-20 OFF OFF 0. OFF OFF 30 1e-20 1e-20 OFF OFF 0. OFF OFF 31 345.5 345.5 OFF OFF 0. OFF OFF 32 683. 683. OFF OFF 0. OFF OFF 33 240.8 240.8 OFF OFF 0. OFF OFF 34 714.8 714.8 OFF OFF 0. OFF OFF 35 2091.6 2091.6 OFF OFF 0. OFF OFF 36 193.3 193.3 OFF OFF 0. OFF OFF 37 345.5 345.5 OFF OFF 0. OFF OFF 38 683. 683. OFF OFF 0. OFF OFF 39 240.8 240.8 OFF OFF 0. OFF OFF 40 714.8 714.8 OFF OFF 0. OFF OFF 41 2091.6 2091.6 OFF OFF 0. OFF OFF 42 193.3 193.3 OFF OFF 0. OFF OFF 43 343.2 343.2 OFF OFF 0. OFF OFF 44 516. 516. OFF OFF 0. OFF OFF 45 260.8 260.8 OFF OFF 0. OFF OFF 46 678.5 678.5 OFF OFF 0. OFF OFF 47 19201.8 19201.8 OFF OFF 0. OFF OFF 48 141.7 141.7 OFF OFF 0. OFF OFF 49 343.2 343.2 OFF OFF 0. OFF OFF 50 516. 516. OFF OFF 0. OFF OFF 51 260.8 260.8 OFF OFF 0. OFF OFF 52 678.5 678.5 OFF OFF 0. OFF OFF 53 19201.8 19201.8 OFF OFF 0. OFF OFF 54 141.7 141.7 OFF OFF 0. OFF OFF 55 1e-10 1e-10 OFF OFF 0. OFF OFF 56 1e-10 1e-10 OFF OFF 0. OFF OFF 57 1e+20 2.85 OFF OFF 0. OFF OFF 58 1e+20 2.85 OFF OFF 0. OFF OFF 59 1e-60 1e-60 OFF OFF 0. OFF OFF 60 1e-60 1e-60 OFF OFF 0. OFF OFF 61 1e-60 1e-60 OFF OFF 0. OFF OFF 62 1e-60 1e-60 OFF OFF 0. OFF OFF 63 1e+20 2.85 OFF OFF 0. OFF OFF 64 1e+20 2.85 OFF OFF 0. OFF OFF 65 2.85 2.85 OFF OFF 0. OFF OFF 66 2.85 2.85 OFF OFF 0. OFF OFF 67 2.85 2.85 OFF OFF 0. OFF OFF 68 2.85 2.85 OFF OFF 0. OFF OFF 69 2.85 2.85 OFF OFF 0. OFF OFF

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Flow Paths - Table 4 Forward Reverse Prop Flow Min Min Max Min Min Max Burn With Path H2 O2 H2O H2 O2 H2O Time Zero Prop

  1. Frac Frac Frac Frac Frac Frac Frac Flow Opt 1 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 2 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 3 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 4 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 5 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 6 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 7 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 8 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 9 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 10 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 11 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 12 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 13 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 14 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 15 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 16 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 17 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 18 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 19 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 20 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 21 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 22 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 23 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 24 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 25 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 26 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 27 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 28 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 29 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 30 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 31 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 32 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 33 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 34 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 35 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 36 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 37 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 38 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 39 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 40 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 41 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 42 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 43 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Flow Paths - Table 4 (cont.)

Forward Reverse Prop Flow Min Min Max Min Min Max Burn With Path H2 O2 H2O H2 O2 H2O Time Zero Prop

  1. Frac Frac Frac Frac Frac Frac Frac Flow Opt 44 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 45 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 46 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 47 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 48 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 49 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 50 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 51 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 52 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 53 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 54 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 55 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 56 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 57 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 58 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 59 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 60 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 61 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 62 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 63 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 64 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 65 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 66 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 67 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 68 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW 69 0.06 0.05 0.55 0.06 0.05 0.55 0.5 NO COFLOW Thermal Conductors Cond Vol Srf Vol Srf Cond S. A. Init. Grp
  1. Description A Opt B Opt Type (ft2) T.(F) I/X #

1 U2 Base - 517 1 2 2 3 5 11539. 103. X 2 U2 517 - 545 2 2 3 3 2 11641. 103. X 3 U2 545 - 570 3 2 4 3 4 9799. 103. X 4 U2 570- 589 4 2 5 3 1 8801. 103. X 5 U2 589 - Refuel 5 2 11 3 5 10064. 103. X 6 U3 Base - 517 6 2 7 3 5 11539. 103. X 7 U3 517 - 545 7 2 8 3 2 11642. 103. X 8 U3 545 - 570 8 2 9 3 4 9799. 103. X 9 U3 570- 589 9 2 10 3 1 8801. 103. X

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Thermal Conductors (cont.)

Cond Vol Srf Vol Srf Cond S. A. Init. Grp

  1. Description A Opt B Opt Type (ft2) T.(F) I/X #

10 U3 589 - Refuel 10 2 11 3 5 10064. 103. X 11 U2 - U3 Base 1 1 6 1 8 6124. 103. X 12 U2 - U3 517 2 1 7 1 6 3000. 103. X 13 U2 - U3 545 3 1 8 1 5 2574. 103. X 14 U2 - U3 570 4 1 9 1 5 1188. 103. X 15 U2 - U3 589 5 1 10 1 7 1917. 103. X 16 U2 Base - Adj 1 1 1 4 3 36519. 103. I 17 U2 517 - Adj 2 1 2 4 3 9698. 103. I 18 U2 545 - Adj 3 1 3 4 3 9217. 103. I 19 U2 570 - Adj 4 1 4 4 3 5220. 103. I 20 U2 589 - Adj 5 1 5 4 3 8031. 103. I 21 U3 Base - Adj 6 1 6 4 3 35021. 103. I 22 U3 517 - Adj 7 1 7 4 3 9698. 103. I 23 U3 545 - Adj 8 1 8 4 3 9217. 103. I 24 U3 570 - Adj 9 1 9 4 3 5220. 103. I 25 U3 589 - Adj 10 1 10 4 3 8031. 103. I 26 U2 Base - DW 1 1 1 8 9 9068. 103. I 27 U2 517 - DW 2 1 2 8 11 4842. 103. I 28 U2 545 - DW 3 1 3 8 12 3382. 103. I 29 U2 570 - DW 4 1 4 8 11 1657. 103. I 30 U2 589 - DW 5 1 5 8 10 1838. 103. I 31 U3 Base - DW 6 1 6 11 9 9068. 103. I 32 U3 517 - DW 7 1 7 11 11 4842. 103. I 33 U3 545 - DW 8 1 8 11 12 3382. 103. I 34 U3 570 - DW 9 1 9 11 11 1657. 103. I 35 U3 589 - DW 10 1 10 11 10 1838. 103. I 36 U2 Base - Torus 1 5 1 7 15 32000. 103. I 37 U2 Base - Pipes 1 6 1 7 16 5152. 103. I 38 U2 517 - Pipes 2 6 2 7 16 793. 103. I 39 U2 545 - Pipes 3 6 3 7 16 445. 103. I 40 U3 Base - Torus 6 5 6 10 15 1e-06 103. I 41 U2 545 - SFP 3 2 3 9 11 2008. 103. I 42 U2 570 - SFP 4 1 4 9 11 2942. 103. I 43 U2 589 - SFP 5 1 5 9 11 5064. 103. I 44 U3 545 - SFP 8 2 8 12 11 2008. 103. I 45 U3 570 - SFP 9 1 9 12 11 2942. 103. I 46 U3 589 - SFP 10 1 10 12 11 5064. 103. I 47 Refuel - U2 DW 11 3 11 8 12 1452. 103. I 48 Refuel - U3 DW 11 3 11 11 12 1452. 103. I 49 Refuel - TB 11 1 11 13 13 662. 103. I 50 Refuel -Outside 11 1 11 14 13 22830. 103. I 51 Refuel - Roof 11 2 11 15 14 34000. 103. I 52 U2 SFP - Refuel 11 3 11 9 17 1353. 103. I 53 U3 SFP - Refuel 11 3 11 12 17 1353. 103. I

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Thermal Conductors - Radiation Parameters Cond Therm. Rad. Emiss. Therm. Rad. Emiss.

  1. Side A Side A Side B Side B Scope 1 No No FULL 2 No No FULL 3 No No FULL 4 No No FULL 5 No No FULL 6 No No FULL 7 No No FULL 8 No No FULL 9 No No FULL 10 No No FULL 11 No No FULL 12 No No FULL 13 No No FULL 14 No No FULL 15 No No FULL 16 No No FULL 17 No No FULL 18 No No FULL 19 No No FULL 20 No No FULL 21 No No FULL 22 No No FULL 23 No No FULL 24 No No FULL 25 No No FULL 26 No No FULL 27 No No FULL 28 No No FULL 29 No No FULL 30 No No FULL 31 No No FULL 32 No No FULL 33 No No FULL 34 No No FULL 35 No No FULL 36 No No FULL 37 No No FULL 38 No No FULL 39 No No FULL 40 No No FULL 41 No No FULL 42 No No FULL 43 No No FULL 44 No No FULL 45 No No FULL

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Thermal Conductors - Radiation Parameters (cont.)

Cond Therm. Rad. Emiss. Therm. Rad. Emiss.

  1. Side A Side A Side B Side B Scope 46 No No FULL 47 No No FULL 48 No No FULL 49 No No FULL 50 No No FULL 51 No No FULL 52 No No FULL 53 No No FULL Conductor Surface Options - Table 1 Surf Heat Cnd/ Sp Nat For Opt Transfer Nominal Cnv Cnd Cnv Cnv Cnv
  1. Description Option Value FF Opt Opt HTC Opt Opt 1 Interior Wall Direct 3T DLM-FM VERT SURF OFF 2 Int Ceiling Direct 3T DLM-FM FACE DOWN OFF 3 Int Floor Direct 3T DLM-FM FACE UP OFF 4 Insulated Sp Heat 0.

5 Torus Direct 3T DLM-FM HORZ CYL OFF 6 Pipes Direct 3T DLM-FM HORZ CYL OFF 7 LOCA SP Temp Sp Temp 1. 6T 8 LOCA DW Temp Sp Temp 1. 7T 9 LOCA SFP Temp Sp Temp 125.

10 Normal SP Temp Sp Temp 98.

11 Normal DW Temp Sp Temp 150.

12 Normal SFP Temp Sp Temp 125.

13 Turbine Bldg Sp Heat 0.

14 Outside Air Sp Temp 93.

15 Roof Sol-Air T Sp Temp 127.

Conductor Surface Options - Table 2 Surf Min Max Convection Condensation Rad to Steam Opt Phase Liq Liq Bulk Temp Bulk Temp Emissivity

  1. Opt Fract Fract Model FF Model FF Dry Wet 1 VAP Tg-Tf Tb-Tw DEFAULT DEFAULT 2 VAP Tg-Tf Tb-Tw DEFAULT DEFAULT 3 VAP Tg-Tf Tb-Tw DEFAULT DEFAULT 4

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Conductor Surface Options - Table 2 (cont.)

Surf Min Max Convection Condensation Rad to Steam Opt Phase Liq Liq Bulk Temp Bulk Temp Emissivity

  1. Opt Fract Fract Model FF Model FF Dry Wet 5 VAP Tg-Tf Tb-Tw DEFAULT DEFAULT 6 VAP Tg-Tf Tb-Tw DEFAULT DEFAULT 7

8 9

10 11 12 13 14 15 Conductor Surface Options - Table 3 Surf Char. Nom Minimum Char. Cond.

Opt Length Vel Vel Conv HTC Height Length

  1. (ft) (ft/s) FF (B/h-f2-F) (ft) (ft) 1 DEFAULT DEFAULT DEFAULT 2 DEFAULT DEFAULT DEFAULT 3 DEFAULT DEFAULT DEFAULT 4

5 DEFAULT DEFAULT DEFAULT 6 DEFAULT DEFAULT DEFAULT 7

8 9

10 11 12 13 14 15 Conductor Surface Options - Table 4 Surf Total Peak Initial BD Post-BD Post-BD Opt Const Heat Time Exp Value Exp Exp Direct

  1. CT (Btu) (sec) XT (B/h-f2-F) yt xt FF 1

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Conductor Surface Options - Table 4 (cont.)

Surf Total Peak Initial BD Post-BD Post-BD Opt Const Heat Time Exp Value Exp Exp Direct

  1. CT (Btu) (sec) XT (B/h-f2-F) yt xt FF 2

3 4

5 6

7 8

9 10 11 12 13 14 15 Conductor Surface Options - Forced Convection Variables htc = (k/l) * (A + B*Re**C*Pr**D)

Surf Opt Conv Var A Conv Var B Conv Var C Conv Var D

  1. Nom. FF Nom. FF Nom. FF Nom. FF 1 0. 0.023 0.8 0.4 2 0. 0.023 0.8 0.4 3 0. 0.023 0.8 0.4 4 0. 0.023 0.8 0.4 5 0. 0.023 0.8 0.4 6 0. 0.023 0.8 0.4 7 0. 0.023 0.8 0.4 8 0. 0.023 0.8 0.4 9 0. 0.023 0.8 0.4 10 0. 0.023 0.8 0.4 11 0. 0.023 0.8 0.4 12 0. 0.023 0.8 0.4 13 0. 0.023 0.8 0.4 14 0. 0.023 0.8 0.4 15 0. 0.023 0.8 0.4

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Conductor Surface Options - Natural Convection Variables htc = (k/l) * (A + B*Gr**C*Pr**D)

Surf Opt Conv Var A Conv Var B Conv Var C Conv Var D

  1. Nom. FF Nom. FF Nom. FF Nom. FF 1 0. 0.59 0.25 0.25 2 0. 0.59 0.25 0.25 3 0. 0.59 0.25 0.25 4 0. 0.59 0.25 0.25 5 0. 0.59 0.25 0.25 6 0. 0.59 0.25 0.25 7 0. 0.59 0.25 0.25 8 0. 0.59 0.25 0.25 9 0. 0.59 0.25 0.25 10 0. 0.59 0.25 0.25 11 0. 0.59 0.25 0.25 12 0. 0.59 0.25 0.25 13 0. 0.59 0.25 0.25 14 0. 0.59 0.25 0.25 15 0. 0.59 0.25 0.25 Thermal Conductor Types Type Thick. O.D. Heat Heat
  1. Description Geom (in) (in) Regions (Btu/ft3-s) FF 1 1 Wall WALL 12. 0. 1 0.

2 1.25 Wall WALL 15. 0. 1 0.

3 1.5 Wall WALL 18. 0. 1 0.

4 1.75 Wall WALL 21. 0. 1 0.

5 2 Wall WALL 24. 0. 1 0.

6 2.25 Wall WALL 27. 0. 1 0.

7 2.5 Wall WALL 30. 0. 1 0.

8 3 Wall WALL 36. 0. 1 0.

9 4 Wall WALL 48. 0. 1 0.

10 5 Wall WALL 60. 0. 1 0.

11 6 Wall WALL 72. 0. 1 0.

12 8 Wall WALL 96. 0. 1 0.

13 Refuel Wall WALL 1.25 0. 1 0.

14 Refuel Ceiling WALL 5.5 0. 3 0.

15 Torus WALL 0.5 0. 1 0.

16 Pipe WALL 0.12 0. 1 0.

17 SFP Surface WALL 0.001 0. 1 0.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Thermal Conductor Type 1

1 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 12. 10 0.

Thermal Conductor Type 2

1.25 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 15. 10 0.

Thermal Conductor Type 3

1.5 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 18. 10 0.

Thermal Conductor Type 4

1.75 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 21. 10 0.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Thermal Conductor Type 5

2 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 24. 10 0.

Thermal Conductor Type 6

2.25 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 27. 10 0.

Thermal Conductor Type 7

2.5 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 30. 10 0.

Thermal Conductor Type 8

3 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 36. 10 0.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Thermal Conductor Type 9

4 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 48. 10 0.

Thermal Conductor Type 10 5 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 60. 10 0.

Thermal Conductor Type 11 6 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 72. 10 0.

Thermal Conductor Type 12 8 Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 96. 10 0.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Thermal Conductor Type 13 Refuel Wall Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 3 0. 1.25 6 0.

Thermal Conductor Type 14 Refuel Ceiling Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 1 0. 3.5 5 0.

2 4 3.5 1. 5 0.

3 5 4.5 1. 5 0.

Thermal Conductor Type 15 Torus Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 2 0. 0.5 10 0.

Thermal Conductor Type 16 Pipe Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 2 0. 0.12 5 0.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Thermal Conductor Type 17 SFP Surface Mat. Bdry. Thick Sub- Heat Region # (in) (in) regs. Factor 1 6 0. 0.001 1 0.

Cooler/Heater Heater On Off Flow Flow Heat Heat Cooler Vol. Trip Trip Rate Rate Rate Rate Phs Ctrlr

  1. Description # # # (CFM) FF (Btu/s) FF Opt Loc 1H U2 Basement 1 1 145. VTI 1 2H U2 Ground Flr 2 1 42.4 VTI 2 3H U2 Mezzanine 3 1 95.4 VTI 3 4H U2 Main Flr 4 1 59.2 VTI 4 5H U2 Reactor Fl 5 1 20.8 VTI 5 6H U3 Basement 6 1 17.3 VTI 6 7H U3 Ground Flr 7 1 41.2 VTI 7 8H U3 Mezzanine 8 1 126. VTI 8 9H U3 Main Flr 9 1 69.6 VTI 9 10H U3 Reactor Fl 10 1 20.8 VTI 10 11H Refueling Flr 11 1 61.5 VTI 11 12C Pump Rm Coole 1 1 1. 4T VTE 1 Volumetric Fan - Table 1 Vol Flow On Off Min Max Fan Path Trip Trip DP DP
  1. Description # # # (psi) (psi) 1Q U2 Standby SGT 15 DEFAULT DEFAULT 2Q U3 Primary SGT 16 DEFAULT DEFAULT 3Q U2 RB Supply 27 1 DEFAULT DEFAULT 4Q U3 RB Supply 29 1 DEFAULT DEFAULT 5Q U2 RB Exhaust 28 4 3 DEFAULT DEFAULT 6Q U3 RB Exhaust 30 4 3 DEFAULT DEFAULT

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Volumetric Fan - Table 2 Vol Flow Flow Heat Heat Fan Flow Rate Rate Heat Rate Rate Disch

  1. Option (CFM) FF Option (Btu/s) FF Vol 1Q Time 1. 1T Time 14 2Q Time 1e-06 1T Time 14 3Q Time 100000. Time 15 4Q Time 100000. Time 16 5Q Time 110000. Time 14 6Q Time 110000. Time 14 Valves & Doors Flow Open Close Valve Valve Path Trip Trip Type Disch.
  1. Description # # # # Vol.

1V U2 RB Supply 19 2 1 15 2V U2 RB Exhaust 17 2 1 14 3V U3 RB Supply 20 2 1 16 4V U3 RB Exhaust 18 2 1 14 Valve/Door Types Valve F Open Opn Cls Full Flow Flow Flow Flow Cd Type Valve Area Trv Trv Open Char Char Char Char Mult

  1. Description Option (ft2) Crv Crv Cd Coef A Coef B Coef C Exp Crv 1 RB isolation T OPEN 28.3 5T 1. 1. BLTN Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vapor Liquid Vol Pressure Temp. Temp. Humidity Volume Comp. Tracer Tracer
  1. (psia) (F) (F) (%) Fract. Set Set Set def 14.7 103. 103. 20. 0. NONE NONE NONE

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Initial Volume Fractions Vol Air

  1. Gas 1 Gas 2 Gas 3 Gas 4 Gas 5 Gas 6 Gas 7 def 1. 0. 0. 0. 0. 0. 0.

Drop Fields - Physical Parameters Field Dnom Geom Min No. Description (in) Std Dev V Frac 1 Default 0.00393 1. 1e-10 Drop Fields - General Options Field Unfm Temp Velocity Entrain-No. Dist Equil Equil ment 1 YES NO NO YES Drop Fields - Agglomeration Options Field Inter- Intra- Therm Turb Grav No. field field Diff FF Diff FF Coll FF 1 YES YES YES YES YES Drop Fields - Deposition Options Field Impac- Grav Therm Turb Thermo- Diffusio-No. tion FF Settle FF Diff FF Diff FF phoresis FF phoresis FF 1 YES YES YES YES NO NO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Noncondensing Gases Gas Description Symbol Type Mol. Lennard-Jones Parameters No. Weight Diameter e/K (Ang) (K) 1 Air Air POLY 28.97 3.617 97.

Noncondensing Gases - Cp/Visc. Equations Gas Cp Equation (Required) Visc. Equation (Optional)

No. Tmin Tmax Cp Tmin Tmax Viscosity (R) (R) (Btu/lbm-R) (R) (R) (lbm/ft-hr) 1 200. 3000. 0.2889163+5.130 Materials Tracer Type # Description Gap Tracking 1 Concrete NO NO 2 Steel NO NO 3 Siding Insulation NO NO 4 Roof Insulation NO NO 5 Built Up Roofing NO NO 6 Water NO NO Material Type 1

Concrete Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F) 143. 0.92 0.21

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Material Type 2

Steel Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F) 490. 25. 0.11 Material Type 3

Siding Insulation Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F)

2. 0.02 0.2 Material Type 4

Roof Insulation Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F) 4.5 0.02 0.4 Material Type 5

Built Up Roofing Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F)

70. 0.1 0.35

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Material Type 6

Water Temp. Density Cond. Sp. Heat (F) (lbm/ft3) (Btu/hr-ft-F) (Btu/lbm-F) 62.32 0.348 0.999 Component Trips Trip Sense Sensor Sensor Var. Set Delay Rset Cond Cond

  1. Description Variable 1 Loc. 2 Loc. Limit Point Time Trip Trip Type 1 LOCA Start TIME GE 1000. 0. AND 2 Initial TIME GE 0. 0. AND 3 RB Fan Off CONT VAR 4C LT -0.251 0. 4 1 OR 4 RB Fan On CONT VAR 4C GT -0.249 0. 3 5 AND 5 LOCA Time CONT VAR 6C LT 0. 0. AND Forcing Function Tables FF# Description Ind. Var. Dep. Var. Points 0 Constant - - 0 1T SGT Flow Ind. Var. Dep. Var. 6 2T OA Temperature Ind. Var. Dep. Var. 4 3T Cond HTC Coefs Ind. Var. Dep. Var. 4 4T Pump Rm Cooler Ind. Var. Dep. Var. 13 5T RB Valve Positi Ind. Var. Dep. Var. 5 6T LOCA SP Temp Ind. Var. Dep. Var. 19 7T LOCA DW Temp Ind. Var. Dep. Var. 4 8T SFP Evaporation Ind. Var. Dep. Var. 4 9T OA Humidity Ind. Var. Dep. Var. 4 Function 1T SGT Flow Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

0. 0. 1000. 0.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Function (cont.)

1T SGT Flow Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

1033. 0. 1063. 3400.

1100. 3975. 1e+06 3975.

Function 2T OA Temperature Ind. Var.: Ind. Var.

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

0. 103. 1000. 103.

1000.01 93. 1e+06 93.

Function 3T Cond HTC Coefs Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

0. 0. 999.9 0.

999.91 1. 1e+06 1.

Function 4T Pump Rm Cooler Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

-100. 0. 104. 0.

104.01 19.4 110. 32.1 115. 42.6 120. 53.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Function (cont.)

4T Pump Rm Cooler Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

125. 63.3 130. 73.5 135. 83.6 140. 93.6 145. 103.5 150. 113.3 500. 113.3 Function 5T RB Valve Positionpen Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

0. 0. 1000. 0.

1000.1 1. 1300. 0.

1e+06 0.

Function 6T LOCA SP Temp Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

0. 98. 1000. 98.

1074. 147.4 1106. 148.9 1156. 153.7 1203. 156.1 1309. 161.3 1406. 163.8 1510. 165.9 1600. 167.5 2065. 172. 3954. 182.8 5996. 189.1 11083. 196.9 16006. 200.1 21027. 201.1 26125. 201. 31020. 200.4 41000. 197.8

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Function 7T LOCA DW Temp Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

0. 150. 1000. 150.

1000.1 290. 1e+06 290.

Function 8T SFP Evaporation Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

0. 0. 1000. 0.

1000.1 1. 1e+10 1.

Function 9T OA Humidity Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

0. 0.2 1000. 0.2 1000.01 0. 1e+06 0.

Control Variables CV Func. Initial Coeff. Coeff. Upd. Int.

  1. Description Form Value G a0 Min Max Mult.

1C DP E side mult 0. 27.7 0. -1e+32 1e+32 0.

2C DP W side mult 0. 27.7 0. -1e+32 1e+32 0.

3C DP S Side mult 0. 27.7 0. -1e+32 1e+32 0.

4C DP N Side mult 0. 27.7 0. -1e+32 1e+32 0.

5C Avg DP Refuel sum 0. 1. 0. -1e+32 1e+32 0.

6C Time After LO sum 0. 1. -1000. -1e+32 1e+32 0.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Control Variables (cont.)

CV Func. Initial Coeff. Coeff. Upd. Int.

  1. Description Form Value G a0 Min Max Mult.

7C DP 476 mult 0. 27.7 0. -1e+32 1e+32 0.

8C DP 517 mult 0. 27.7 0. -1e+32 1e+32 0.

9C DP 545 mult 0. 27.7 0. -1e+32 1e+32 0.

10C DP 570 mult 0. 27.7 0. -1e+32 1e+32 0.

11C DP 589 mult 0. 27.7 0. -1e+32 1e+32 0.

12C Total Leakage sum 0. 1. 0. -1e+32 1e+32 0.

Function Components Control Variable 1C DP E side: G=27.7 a0=0. min=-1.e32 max=1.e32 mult Y=G*(a1X1*a2X2*...*anXn), a0 unused X: Gothic_s X: Variable a: Mult. Min. Max

  1. Name location coef. Value Value 1 Dpjnc cJ58 1. -1e+32 1e+32 Function Components Control Variable 2C DP W side: G=27.7 a0=0. min=-1.e32 max=1.e32 mult Y=G*(a1X1*a2X2*...*anXn), a0 unused X: Gothic_s X: Variable a: Mult. Min. Max
  1. Name location coef. Value Value 1 Dpjnc cJ57 1. -1e+32 1e+32 Function Components Control Variable 3C DP S Side: G=27.7 a0=0. min=-1.e32 max=1.e32 mult Y=G*(a1X1*a2X2*...*anXn), a0 unused X: Gothic_s X: Variable a: Mult. Min. Max
  1. Name location coef. Value Value 1 Dpjnc cJ63 1. -1e+32 1e+32

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Function Components Control Variable 4C DP N Side: G=27.7 a0=0. min=-1.e32 max=1.e32 mult Y=G*(a1X1*a2X2*...*anXn), a0 unused X: Gothic_s X: Variable a: Mult. Min. Max

  1. Name location coef. Value Value 1 Dpjnc cJ64 1. -1e+32 1e+32 Function Components Control Variable 5C Avg DP Refuel: G=1.0 a0=0. min=-1.e32 max=1.e32 sum Y=G*(a0+a1X1+a2X2+...+anXn)

X: Gothic_s X: Variable a: Mult. Min. Max

  1. Name location coef. Value Value 1 Cvval(0) cv1C 0.25 -1e+32 1e+32 2 Cvval(0) cv2C 0.25 -1e+32 1e+32 3 Cvval(0) cv3C 0.25 -1e+32 1e+32 4 Cvval(0) cv4C 0.25 -1e+32 1e+32 Function Components Control Variable 6C Time After LOCA: G=1.0 a0=-1000 min=-1.e32 max=1.e32 sum Y=G*(a0+a1X1+a2X2+...+anXn)

X: Gothic_s X: Variable a: Mult. Min. Max

  1. Name location coef. Value Value 1 Etime cM 1. -1e+32 1e+32

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Function Components Control Variable 7C DP 476: G=27.7 a0=0. min=-1.e32 max=1.e32 mult Y=G*(a1X1*a2X2*...*anXn), a0 unused X: Gothic_s X: Variable a: Mult. Min. Max

  1. Name location coef. Value Value 1 Dpjnc cJ65 1. -1e+32 1e+32 Function Components Control Variable 8C DP 517: G=27.7 a0=0. min=-1.e32 max=1.e32 mult Y=G*(a1X1*a2X2*...*anXn), a0 unused X: Gothic_s X: Variable a: Mult. Min. Max
  1. Name location coef. Value Value 1 Dpjnc cJ66 1. -1e+32 1e+32 Function Components Control Variable 9C DP 545: G=27.7 a0=0. min=-1.e32 max=1.e32 mult Y=G*(a1X1*a2X2*...*anXn), a0 unused X: Gothic_s X: Variable a: Mult. Min. Max
  1. Name location coef. Value Value 1 Dpjnc cJ67 1. -1e+32 1e+32 Function Components Control Variable 10C DP 570: G=27.7 a0=0. min=-1.e32 max=1.e32 mult Y=G*(a1X1*a2X2*...*anXn), a0 unused X: Gothic_s X: Variable a: Mult. Min. Max
  1. Name location coef. Value Value 1 Dpjnc cJ68 1. -1e+32 1e+32

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Function Components Control Variable 11C DP 589: G=27.7 a0=0. min=-1.e32 max=1.e32 mult Y=G*(a1X1*a2X2*...*anXn), a0 unused X: Gothic_s X: Variable a: Mult. Min. Max

  1. Name location coef. Value Value 1 Dpjnc cJ69 1. -1e+32 1e+32 Function Components Control Variable 12C Total Leakage: G=1.0 a0=0. min=-1.e32 max=1.e32 sum Y=G*(a0+a1X1+a2X2+...+anXn)

X: Gothic_s X: Variable a: Mult. Min. Max

  1. Name location coef. Value Value 1 Wjncc cJ57 1. -1e+32 1e+32 2 Wjncc cJ58 1. -1e+32 1e+32 3 Wjncc cJ63 1. -1e+32 1e+32 4 Wjncc cJ64 1. -1e+32 1e+32 Time Domain Data (Seconds)

Time DT DT DT End Print Graph Gas Error Dump Ph Chng L Flow Dom Min Max Ratio Time Int Int Relax T Int T Scale Shutoff 1 0.001 1. 1. 999.9 100. 2. DEFAULT 0. DEFAULT DEFAULT 2 0.001 1. 1e+20 1000. 50. 2. DEFAULT 0. DEFAULT DEFAULT 3 0.001 0.1 1. 4600. 50. 2. DEFAULT 0. DEFAULT DEFAULT Solution Options Time Solution Imp Conv Imp Iter Pres Sol Pres Conv Pres Iter Differ Burn Dom Method Limit Limit Method Limit Limit Scheme Sharp 1 SEMI-IMP 0. 1 DIRECT 0. 1 FOUP 0.

2 SEMI-IMP 0. 1 DIRECT 0. 1 FOUP 0.

3 SEMI-IMP 0. 1 DIRECT 0. 1 FOUP 0.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Control Limits Tot. Pres. Stm. Enth. Domain End --V Interface HT Shutoff--

Time Change Change Dt Start End Ramp Dom (psia) (Btu/lbm) Controls V Frac V Frac Exp 1 DEFAULT DEFAULT ON DEFAULT DEFAULT DEFAULT 2 DEFAULT DEFAULT ON DEFAULT DEFAULT DEFAULT 3 DEFAULT DEFAULT ON DEFAULT DEFAULT DEFAULT Run Options Option Setting Restart Option NONE Start Time (sec) 0.0 Parallel Processes 1 Preprocessor Multithreading YES Revaporization Fraction DEFAULT Maximum Mist Density (lbm/ft3) DEFAULT Drop Diam. From Mist (in) DEFAULT Minimum HT Coeff. (B/h-ft2-F) 0.0 Reference Pressure (psia) IGNORE Maximum Pressure (psia) DEFAULT Forced Ent. Drop Diam. (in) DEFAULT Vapor Phase Head Correction INCLUDE Kinetic Energy IGNORE Vapor Phase INCLUDE Liquid Phase INCLUDE Drop Phase INCLUDE Force Equilibrium IGNORE Drop-Liq. Conversion INCLUDE QA Logging OFF Debug Output Level 0 Debug Starting Time Step 0 Debug Time Step Frequency 1 Restart Dump on CPU Interval (sec) 3600.

Pressure Initialization Iteration 0 Pressure Initialization Convergenc 1.0e-6 Solver Command Line Options Restart Options Option Setting Restart Data File

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

Restart Options (cont.)

Option Setting Graphics Data File Restart Time Step # 0 Restart Time Control NEW Graphs Graph Curve Number Curve

  1. Description 1 2 3 4 5 Ops 0 M & E Imbalance EM EE 1 U2 Temperatures TV1 TV2 TV3 TV4 TV5 2 U3 Temperatures TV6 TV7 TV8 TV9 TV10 3 Refuel Floor Te TV11 4 U2 Pressures PR1 PR2 PR3 PR4 PR5 5 U3 Pressures PR6 PR7 PR8 PR9 PR10 6 Refuel Floor Pr PR11 7 Refuel Floor Di cv1C cv2C cv3C cv4C cv5C 8 U2 Differential cv7C cv8C cv9C cv10C cv11C 9 Leakage Flows FV57 FV58 FV63 FV64 10 SBGTS and Total FV15 FV16 cv12C Data Files File Inter- Output Detail Format
  1. Name Type polate Files Level Option 1 DRE Drawdown Ca TIME YES SINGLE FULL Table List Entry Description 1 Flow Paths - Table 1 2 Flow Paths - Table 2 3 Flow Paths - Table 3

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Data Files File Inter- Output Detail Format

  1. Name Type polate Files Level Option

/DRE Drawdown Ca 1 \DRE Drawdown Ca TIME YES SINGLE FULL Fluid Boundary Conditions - Table 1 Press. Temp. Flow S J ON OFF Elev.

BC# Description (psia) FF (F) FF (lbm/s) FF P O Trip Trip (ft)

/14.6962 1P E Wall Ambient \14.7 1 2T N N 517.5

/14.6962 2F E Wall Ambient \14.7 1 2T v1e10 N N 517.5

/14.6962 3P W Wall Ambient \14.7 1 2T N N 517.5

/14.6962 4F W Wall Ambient \14.7 1 2T v1e10 N N 517.5 5P Exhaust Ambient 14.7 1 2T N N 517.5 6F Exhaust Ambient 14.7 1 2T v1e10 N N 517.5 7F U2 SFP Evap 1.945 125 0.07 8T N N 613.

8F U3 SFP Evap 1.945 125 0.07 8T N N 613.

/14.7077 9P S Wall Ambient \14.7 1 2T N N 517.5

/14.7077 10F S Wall Ambient \14.7 1 2T v1e10 N N 517.5

/14.6959 11P N Wall Ambient \14.7 1 2T N N 517.5

/14.6959 12F N Wall Ambient \14.7 1 2T v1e10 N N 517.5

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Thermal Conductors Cond Vol Srf Vol Srf Cond S. A. Init. Grp

  1. Description A Opt B Opt Type (ft2) T.(F) I/X #

/65.

1 U2 Base - 517 1 2 2 3 5 11539. \103.

X

/65.

2 U2 517 - 545 2 2 3 3 2 11641. \103.

X

/65.

3 U2 545 - 570 3 2 4 3 4 9799. \103.

X

/65.

4 U2 570- 589 4 2 5 3 1 8801. \103.

X

/65.

5 U2 589 - Refuel 5 2 11 3 5 10064. \103.

X

/65.

6 U3 Base - 517 6 2 7 3 5 11539. \103.

X

/65.

7 U3 517 - 545 7 2 8 3 2 11642. \103.

X

/65.

8 U3 545 - 570 8 2 9 3 4 9799. \103.

X

/65.

9 U3 570- 589 9 2 10 3 1 8801. \103.

X

/65.

10 U3 589 - Refuel 10 2 11 3 5 10064. \103.

X

/65.

11 U2 - U3 Base 1 1 6 1 8 6124. \103.

X

/65.

12 U2 - U3 517 2 1 7 1 6 3000. \103.

X

/65.

13 U2 - U3 545 3 1 8 1 5 2574. \103.

X

/65.

14 U2 - U3 570 4 1 9 1 5 1188. \103.

X

/65.

15 U2 - U3 589 5 1 10 1 7 1917. \103.

X

/65.

16 U2 Base - Adj 1 1 1 4 3 36519. \103.

I

/65.

17 U2 517 - Adj 2 1 2 4 3 9698. \103.

I

/65.

18 U2 545 - Adj 3 1 3 4 3 9217. \103.

I

/65.

19 U2 570 - Adj 4 1 4 4 3 5220. \103.

I

/65.

20 U2 589 - Adj 5 1 5 4 3 8031. \103.

I

/65.

21 U3 Base - Adj 6 1 6 4 3 35021. \103.

I

/65.

22 U3 517 - Adj 7 1 7 4 3 9698. \103.

I

/65.

23 U3 545 - Adj 8 1 8 4 3 9217. \103.

I

/65.

24 U3 570 - Adj 9 1 9 4 3 5220. \103.

I

/65.

25 U3 589 - Adj 10 1 10 4 3 8031. \103.

I

/65.

26 U2 Base - DW 1 1 1 8 9 9068. \103.

I

/65.

27 U2 517 - DW 2 1 2 8 11 4842. \103.

I

/65.

28 U2 545 - DW 3 1 3 8 12 3382. \103.

I

/65.

29 U2 570 - DW 4 1 4 8 11 1657. \103.

I

/65.

30 U2 589 - DW 5 1 5 8 10 1838. \103.

I

/65.

31 U3 Base - DW 6 1 6 11 9 9068. \103.

I

/65.

32 U3 517 - DW 7 1 7 11 11 4842. \103.

I

/65.

33 U3 545 - DW 8 1 8 11 12 3382. \103.

I

/65.

34 U3 570 - DW 9 1 9 11 11 1657. \103.

I

/65.

35 U3 589 - DW 10 1 10 11 10 1838. \103.

I

/65.

36 U2 Base - Torus 1 5 1 7 15 32000. \103.

I

/65.

37 U2 Base - Pipes 1 6 1 7 16 5152. \103.

I

/65.

38 U2 517 - Pipes 2 6 2 7 16 793. \103.

I

/65.

39 U2 545 - Pipes 3 6 3 7 16 445. \103.

I

/65.

40 U3 Base - Torus 6 5 6 10 15 1e-06 \103.

I

/65.

41 U2 545 - SFP 3 2 3 9 11 2008. \103.

I

/65.

42 U2 570 - SFP 4 1 4 9 11 2942. \103.

I

/65.

43 U2 589 - SFP 5 1 5 9 11 5064. \103.

I

/65.

44 U3 545 - SFP 8 2 8 12 11 2008. \103.

I

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Thermal Conductors (cont.)

Cond Vol Srf Vol Srf Cond S. A. Init. Grp

  1. Description A Opt B Opt Type (ft2) T.(F) I/X #

/65.

45 U3 570 - SFP 9 1 9 12 11 2942. I

\103.

/65.

46 U3 589 - SFP 10 1 10 12 11 5064. I

\103.

/65.

47 Refuel - U2 DW 11 3 11 8 12 1452. I

\103.

/65.

48 Refuel - U3 DW 11 3 11 11 12 1452. I

\103.

/65.

49 Refuel - TB 11 1 11 13 13 662. I

\103.

/65.

50 Refuel -Outside 11 1 11 14 13 22830. I

\103.

/65.

51 Refuel - Roof 11 2 11 15 14 34000. I

\103.

/65.

52 U2 SFP - Refuel 11 3 11 9 17 1353. I

\103.

/65.

53 U3 SFP - Refuel 11 3 11 12 17 1353. I

\103.

Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vapor Liquid Vol Pressure Temp. Temp. Humidity Volume Comp. Tracer Tracer

  1. (psia) (F) (F) (%) Fract. Set Set Set

/65. /65.

def 14.7 20. 0. NONE NONE NONE

\103. \103.

Data Files File Inter- Output Detail Format

  1. Name Type polate Files Level Option

/DRE Drawdown Ca 1 TIME YES SINGLE FULL

\DRE Drawdown Ca Conductor Surface Options - Table 1 Surf Heat Cnd/ Sp Nat For Opt Transfer Nominal Cnv Cnd Cnv Cnv Cnv

  1. Description Option Value FF Opt Opt HTC Opt Opt 1 Interior Wall Direct 3T DLM-FM VERT SURF OFF 2 Int Ceiling Direct 3T DLM-FM FACE DOWN OFF 3 Int Floor Direct 3T DLM-FM FACE UP OFF 4 Insulated Sp Heat 0.

5 Torus Direct 3T DLM-FM HORZ CYL OFF 6 Pipes Direct 3T DLM-FM HORZ CYL OFF 7 LOCA SP Temp Sp Temp 1. 6T 8 LOCA DW Temp Sp Temp 1. 7T

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Conductor Surface Options - Table 1 (cont.)

Surf Heat Cnd/ Sp Nat For Opt Transfer Nominal Cnv Cnd Cnv Cnv Cnv

  1. Description Option Value FF Opt Opt HTC Opt Opt 9 LOCA SFP Temp Sp Temp 125.

10 Normal SP Temp Sp Temp 98.

11 Normal DW Temp Sp Temp 150.

12 Normal SFP Temp Sp Temp 125.

13 Turbine Bldg Sp Heat 0.

/-6.

14 Outside Air Sp Temp

\93.

/28.

15 Roof Sol-Air T Sp Temp

\127.

Function 2T OA Temperature Ind. Var.: Ind. Var.

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

/65. /65.

0. 1000.

\103. \103.

/-6. /-6.

1000.01 1e+06

\93. \93.

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Thermal Conductors Cond Vol Srf Vol Srf Cond S. A. Init. Grp

  1. Description A Opt B Opt Type (ft2) T.(F) I/X #

/65.

1 U2 Base - 517 1 2 2 3 5 11539. \103.

X

/65.

2 U2 517 - 545 2 2 3 3 2 11641. \103.

X

/65.

3 U2 545 - 570 3 2 4 3 4 9799. \103.

X

/65.

4 U2 570- 589 4 2 5 3 1 8801. \103.

X

/65.

5 U2 589 - Refuel 5 2 11 3 5 10064. \103.

X

/65.

6 U3 Base - 517 6 2 7 3 5 11539. \103.

X

/65.

7 U3 517 - 545 7 2 8 3 2 11642. \103.

X

/65.

8 U3 545 - 570 8 2 9 3 4 9799. \103.

X

/65.

9 U3 570- 589 9 2 10 3 1 8801. \103.

X

/65.

10 U3 589 - Refuel 10 2 11 3 5 10064. \103.

X

/65.

11 U2 - U3 Base 1 1 6 1 8 6124. \103.

X

/65.

12 U2 - U3 517 2 1 7 1 6 3000. \103.

X

/65.

13 U2 - U3 545 3 1 8 1 5 2574. \103.

X

/65.

14 U2 - U3 570 4 1 9 1 5 1188. \103.

X

/65.

15 U2 - U3 589 5 1 10 1 7 1917. \103.

X

/65.

16 U2 Base - Adj 1 1 1 4 3 36519. \103.

I

/65.

17 U2 517 - Adj 2 1 2 4 3 9698. \103.

I

/65.

18 U2 545 - Adj 3 1 3 4 3 9217. \103.

I

/65.

19 U2 570 - Adj 4 1 4 4 3 5220. \103.

I

/65.

20 U2 589 - Adj 5 1 5 4 3 8031. \103.

I

/65.

21 U3 Base - Adj 6 1 6 4 3 35021. \103.

I

/65.

22 U3 517 - Adj 7 1 7 4 3 9698. \103.

I

/65.

23 U3 545 - Adj 8 1 8 4 3 9217. \103.

I

/65.

24 U3 570 - Adj 9 1 9 4 3 5220. \103.

I

/65.

25 U3 589 - Adj 10 1 10 4 3 8031. \103.

I

/65.

26 U2 Base - DW 1 1 1 8 9 9068. \103.

I

/65.

27 U2 517 - DW 2 1 2 8 11 4842. \103.

I

/65.

28 U2 545 - DW 3 1 3 8 12 3382. \103.

I

/65.

29 U2 570 - DW 4 1 4 8 11 1657. \103.

I

/65.

30 U2 589 - DW 5 1 5 8 10 1838. \103.

I

/65.

31 U3 Base - DW 6 1 6 11 9 9068. \103.

I

/65.

32 U3 517 - DW 7 1 7 11 11 4842. \103.

I

/65.

33 U3 545 - DW 8 1 8 11 12 3382. \103.

I

/65.

34 U3 570 - DW 9 1 9 11 11 1657. \103.

I

/65.

35 U3 589 - DW 10 1 10 11 10 1838. \103.

I

/65.

36 U2 Base - Torus 1 5 1 7 15 32000. \103.

I

/65.

37 U2 Base - Pipes 1 6 1 7 16 5152. \103.

I

/65.

38 U2 517 - Pipes 2 6 2 7 16 793. \103.

I

/65.

39 U2 545 - Pipes 3 6 3 7 16 445. \103.

I

/65.

40 U3 Base - Torus 6 5 6 10 15 1e-06 \103.

I

/65.

41 U2 545 - SFP 3 2 3 9 11 2008. \103.

I

/65.

42 U2 570 - SFP 4 1 4 9 11 2942. \103.

I

/65.

43 U2 589 - SFP 5 1 5 9 11 5064. \103.

I

/65.

44 U3 545 - SFP 8 2 8 12 11 2008. \103.

I

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Thermal Conductors (cont.)

Cond Vol Srf Vol Srf Cond S. A. Init. Grp

  1. Description A Opt B Opt Type (ft2) T.(F) I/X #

/65.

45 U3 570 - SFP 9 1 9 12 11 2942. I

\103.

/65.

46 U3 589 - SFP 10 1 10 12 11 5064. I

\103.

/65.

47 Refuel - U2 DW 11 3 11 8 12 1452. I

\103.

/65.

48 Refuel - U3 DW 11 3 11 11 12 1452. I

\103.

/65.

49 Refuel - TB 11 1 11 13 13 662. I

\103.

/65.

50 Refuel -Outside 11 1 11 14 13 22830. I

\103.

/65.

51 Refuel - Roof 11 2 11 15 14 34000. I

\103.

/65.

52 U2 SFP - Refuel 11 3 11 9 17 1353. I

\103.

/65.

53 U3 SFP - Refuel 11 3 11 12 17 1353. I

\103.

Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vapor Liquid Vol Pressure Temp. Temp. Humidity Volume Comp. Tracer Tracer

  1. (psia) (F) (F) (%) Fract. Set Set Set

/65. /65.

def 14.7 20. 0. NONE NONE NONE

\103. \103.

Data Files File Inter- Output Detail Format

  1. Name Type polate Files Level Option

/DRE Drawdown Ca 1 TIME YES SINGLE FULL

\DRE Drawdown Ca Fluid Boundary Conditions - Table 1 Press. Temp. Flow S J ON OFF Elev.

BC# Description (psia) FF (F) FF (lbm/s) FF P O Trip Trip (ft)

/14.6953 1P E Wall Ambient 1 2T N N 517.5

\14.7

/14.6953 2F E Wall Ambient 1 2T v1e10 N N 517.5

\14.7

/14.6953 3P W Wall Ambient 1 2T N N 517.5

\14.7

/14.6953 4F W Wall Ambient 1 2T v1e10 N N 517.5

\14.7 5P Exhaust Ambient 14.7 1 2T N N 517.5 6F Exhaust Ambient 14.7 1 2T v1e10 N N 517.5 7F U2 SFP Evap 1.945 125 0.07 8T N N 613.

8F U3 SFP Evap 1.945 125 0.07 8T N N 613.

/14.7094 9P S Wall Ambient 1 2T N N 517.5

\14.7

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW% 3DJH%RI%

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Fluid Boundary Conditions - Table 1 (cont.)

Press. Temp. Flow S J ON OFF Elev.

BC# Description (psia) FF (F) FF (lbm/s) FF P O Trip Trip (ft)

/14.7094 10F S Wall Ambient 1 2T v1e10 N N 517.5

\14.7

/14.695 11P N Wall Ambient 1 2T N N 517.5

\14.7

/14.695 12F N Wall Ambient 1 2T v1e10 N N 517.5

\14.7 Conductor Surface Options - Table 1 Surf Heat Cnd/ Sp Nat For Opt Transfer Nominal Cnv Cnd Cnv Cnv Cnv

  1. Description Option Value FF Opt Opt HTC Opt Opt 1 Interior Wall Direct 3T DLM-FM VERT SURF OFF 2 Int Ceiling Direct 3T DLM-FM FACE DOWN OFF 3 Int Floor Direct 3T DLM-FM FACE UP OFF 4 Insulated Sp Heat 0.

5 Torus Direct 3T DLM-FM HORZ CYL OFF 6 Pipes Direct 3T DLM-FM HORZ CYL OFF 7 LOCA SP Temp Sp Temp 1. 6T 8 LOCA DW Temp Sp Temp 1. 7T 9 LOCA SFP Temp Sp Temp 125.

10 Normal SP Temp Sp Temp 98.

11 Normal DW Temp Sp Temp 150.

12 Normal SFP Temp Sp Temp 125.

13 Turbine Bldg Sp Heat 0.

/-6.

14 Outside Air Sp Temp

\93.

/28.

15 Roof Sol-Air T Sp Temp

\127.

Function 2T OA Temperature Ind. Var.: Ind. Var.

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

/65. /65.

0. 1000.

\103. \103.

/-6. /-6.

1000.01 1e+06

\93. \93.

ŽEŽZZ  WŽ

dZŽsŽ W&>h 'Ž

 sŽEŽ Ž sŽ sEŽ Ž sŽ ,  

h h h h dŽZŽŽ 

hEtŽhE

h^tŽ h^Žh^t h^Ž

,W/ZŽŽ

'& 'Ž&

^W D^d

Zth,y D

'&

^,y

W

,

'& D&ŽŽ

W

Zth

,

'&^ ZŽ&

'&E

,

Z Z&ŽŽ ZŽŽ dŽ EŽ

W&>hŽŽWŽZ

ŽŽŽŽŽŽŽŽ

ŽEŽZZ  WŽ

dZŽ&ŽW

/>

&WŽ &W sŽ sŽ t ,Ž>   > > EŽ h'Ž h'ŽD hDD hDZŽ hZŽZ h'Ž h'ŽD hDD hDZŽ hZŽZ hh'Ž&ŽŽ hhD hhD&ŽŽ hhZŽ>

dŽŽŽŽŽ

dŽŽŽŽ

dŽŽŽŽŽŽ'ŽŽŽŽŽŽ

&ŽŽŽd&ŽZ,ŽŽ>ŽŽŽŽŽŽ

ŽEŽZZ  WŽ

dZŽdŽŽ W&>h 'Ž EŽ Ž sŽ sŽ   d sŽ sŽ  

hŽ'&

hŽ^

h^t

h^

hŽhŽ hEthE

h^th^

h,W/h^

h,W/h,W/

hŽd d

hEtd d

h,W/' '

hŽŽ 

hEtŽŽ 

h^tŽ 

h^Ž 

h,W/Ž 

hŽt t hŽhEtŽ ŽŽ hŽh^Ž hŽh^tŽ hŽ^W ^W ^W hŽ ^W hŽ ^W h^t ^W h^ ^W h

h^,y h^

h^^,y

ŽEŽZZ  WŽ

W&>h 'Ž EŽ Ž sŽ sŽ   d sŽ sŽ  

hZth hh

hŽ K

hd d

h^d d

ht t h^t t h ^W h^ ^W h^ ŽŽ hZth

h

h^

hh

hŽ K

h^d d

hd d

hZtht t ht t h^t t h^&W ^&W hZth ŽŽ hZth^,y h^

h ^W h^ ^W hZth Ž ŽŽ

hZthZth,y Ž h

h

hh

hŽ K

ŽEŽZZ  WŽ

W&>h 'Ž EŽ Ž sŽ sŽ   d sŽ sŽ  

hd d

ht t h& ŽŽ h^ŽŽ ^&W h^&W ^&W hh

hh

h

h

hŽ K

hd d

hŽ K

ht t ht t h^ŽŽ ^&W h^ŽŽ ^&W h^&W ^&W h^&W ^&W hŽ

hŽ^

h^t

h^

hŽŽ 

hEŽ 

h^tŽ 

h^Ž 

h,W/Ž 

hŽ' '

h^' '

hŽd d

hEd d

h,W/' '

ŽEŽZZ  WŽ

W&>h 'Ž EŽ Ž sŽ sŽ   d sŽ sŽ  

hŽt t hŽE ŽŽ hŽ^

hŽ^t h,W/^

h,W/Ž hZth h

h^,y h^

h^^,y h' '

hŽ K

h^d d

hd d

ht t h^t t h^ ŽŽ hZth

h

h^,y

hŽ K

h^d d

hd d

hZtht t h^,yt t ht t hZth ŽŽ h^,y hZth^,y h^&W ^&W h

ŽEŽZZ  WŽ

W&>h 'Ž EŽ Ž sŽ sŽ   d sŽ sŽ  

h

hŽ K

hd d

ht t hZth ŽŽ h^ŽŽ ^&W h^&W ^&W h

h

hŽ K

hŽ K

hd d

ht t ht t h^ŽŽ ^&W h^ŽŽ ^&W h^&W ^&W h^&W ^&W ZŽ K

ZŽ K

Zd d

Zht t ŽŽ Zht t ŽŽ EŽW&>hŽŽZ

ŽEŽZZ  WŽ

dZŽ,>Ž W&>h 'Ž dŽ,>Ždh h ,>Ž h ,>Ž

 ZŽŽ >K Ž>K sŽ dh sŽ dh dŽ hEthE

h^th^

h^h^t

,W/

'&

^

Zth,y

'&

^,y

'&

'&

'&t Z

EŽW&>hŽŽd/ŽZ

ŽEŽZZ  WŽ

d^ZŽŽŽŽ,ZŽ

ŽŽdh

/d& >W/ ,W/ Ž EŽ

/ŽŽŽdŽZ

,W/ŽŽ&ŽŽ&ŽZ

ŽŽŽŽŽ>W/,W/ŽŽŽŽ

ŽEŽZZ  WŽ

d^ŽWdŽt W ^ŽŽ tŽŽ t



sŽWW

^W W ^W W

&  W W W W

^

E

t

ŽEŽZZ  WŽ

d^'d^&ŽZsK





Ž

< <Ž s  Y

  

&ŽZ

d

ŽEŽZZ  WŽ

dZsŽ^>ŽŽ

^ 

&&Ž

&^W s<

s

sW

W



 dŽ >Ž  dŽ >Ž

 &Ž &Ž Ž  &Ž &Ž Ž dŽ dŽ EŽ

EŽŽŽŽŽ

ŽŽŽŽŽ

dŽŽŽŽŽŽ

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU7HPSHUDWXUH 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU3UHVVXUH 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 8'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 /HDNDJH)ORZV

)9 )9 )9 )9







)ORZ OEPV







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 6%*76DQG7RWDO/HDNDJH)ORZV

)9 )9 FY&







)ORZ OEPV









     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU7HPSHUDWXUH 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU3UHVVXUH 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 8'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 /HDNDJH)ORZV

)9 )9 )9 )9







)ORZ OEPV







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 6%*76DQG7RWDO/HDNDJH)ORZV

)9 )9 FY&







)ORZ OEPV









     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU7HPSHUDWXUH 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU3UHVVXUH 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 8'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 /HDNDJH)ORZV

)9 )9 )9 )9







)ORZ OEPV







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 6%*76DQG7RWDO/HDNDJH)ORZV

)9 )9 FY&







)ORZ OEPV









     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU7HPSHUDWXUH 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU3UHVVXUH 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 5HIXHO)ORRU'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 8'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 /HDNDJH)ORZV

)9 )9 )9 )9







)ORZ OEPV







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $WWDFKPHQW' 3DJH'RI'



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

 6%*76DQG7RWDO/HDNDJH)ORZV

)9 )9 FY&







)ORZ OEPV









     

H

7LPH V

  • 27+,& 4$ -XO

Calculation No. DRE19-0015 Rev. OA Attachment E, Page E1 of E14 TODI No. (DRE)19-007 Rev. 01 Page 1of5 EXELON TRANSMIT IAL OF DESIGN INFORMATION

~ SAFETY-RELATED Originating Organization TODI No. <DRE} TODI 19-007 Rev.01 0 NON-SAFETY-RELATED ~ _Exelon 0 REGULATORY RELATED OOther (Specify)

Station: Dresden Page _ l_ of _ 5_

Unit (s): 02 / 03 System Designation: SBGT/Secondary Containment To: John Wright (Enercon) jlwrightenercon.com

Subject:

MSN Leakage Rate 0Qtimization - lnQut data r~uest for RB Drawdown Analysis Dan Lee Preparer

£-l e b -

Preparer's Signature I D/l;al~ B(f Brian Madderom Approver ~ Approver's =a~e

~ Dat Jq Status of Infonnation: X Approved for Use _Unverifie d Method and Schedule of Verification for Unverified TODis: NA Description of Information:

Reactor Building ventilation system, SBGT system, and building configuration parameters Rev. 01 is to Remove Att. A and revise Att. B to remove the inserted pages taken from vendor proprietary documents.

Purpose of Issuance:

Input Parameters for Dresden Units 2&3 Secondary Containment Drawdown Analysis Limitations: Only for use with project CORP 17-0070, BWR MSN Optimization, associated with DCR 628316, Increase MSN Limit, and calculation DRE19-0015.

References:

Provide within TODI information Distribution: Dresden Record :f1anagement, John Wright (Enercon)

Calculation No. DRE19-0015 Rev. 0A Attachment E, Page E2 of E14 TODI No. (DRE)19-007 Rev. 0 Page 2 of 5 Item # Parameter Description Value Reference/Comment 1 Reactor Bldg. Geometry Inputs data can be obtained the following calculations / x Copy of source document can be sources download from EDMS.

2 Reactor Bldg. Heat Loads x Copy of DRE97-00214 Rev.001 x DRE97-0214 Rev. 001 3 ECCS Room Cooler Heat has been transmitted via. E-mails x DRE05-0073 Rev. 000 Removal Capacity on 5/20/2019 x Dresden Drawing M-2 thru M-8 (latest revisions) x Drawings 12E-2393 Rev. AH, x The HPCI and LPCI room coolers will auto start at high 12E-3394 Rev. AB.

area temperature as detected by (temperature switches) x Passport D030 data panel.

TS 2/3-5746-A/B (set point 97+/- 1°F) and TS 2/3-5747 (set point 100+/- 2°F).

4 Drywell Temperature Maxmixum LOCA Drywell temperature is 290.0 °F at time x Calc. GE-NE-0000-0056-9883-(LOCA) 7.56 seconds. R0, Rev.0 x Report GE-NE-0000-0043-9608-Note: Assume drywell temperature remains unchanged after R0 29.62 seconds @ 274.9°F.

5 Suppression Pool See Attachment B x Analysis GE-NE-A22-00103 Temperature (LOCA) 01, Rev. 1 6 Spent Fuel Pool ) x Calc. DRE97-0214 Rev. 001A Temperature (LOCA) x Proc. DOA 1900-01 7 RB/SC In-Leakage 1 RB volume/day x NUREG-0800 SRP 6.2.3 8 RB/SC In-Leakage RB siding, RB access doors, penetrations x UFSAR 6.2.3.3 Locations 9 RB Pressure (Normal) LQFKYDFXXP. x TS SR 3.6.4.1.1 x Drawings M-526 Sht.1 Rev O, 12E2399C Rev. Y

Calculation No. DRE19-0015 Rev. 0A Attachment E, Page E3 of E14 TODI No. (DRE)19-007 Rev. 01 Page 3 of 5 Controlled by using the lowest differential pressure from x UFSAR 6.2.3.3 the four DPTs (see item 11) to two Differential Pressure Controllers (DPC 2/3-5703-7C/7F).

10 RB Pressure (LOCA) LQFKYDFXXP ZLWK6%*7&)0  x TS SR 3.6.4.1.3 x Proc. DOS 1600-32 Average value measured by four (4) dP gauges located on the four walls of the refuel floor @ Elev. 613 11 Location and number of RB Atmospheric pressure is sensed by four pressure sensors x Drawing M-526 Sht. 1 Rev. O Differential Pressure Sensors located through each exterior wall of the Reactor Building x UFSAR 6.2.3.3

@ Elev. Above the refuel floor. Building pressure is sensor by two pressure sensors located on the wall of both Unit 2 and Unit 3 refuel floors @ Elev. 621. The measured atmospheric and building pressures are supplied to four Differential Pressure Transmitters (dPT 2/3-5703-7A1/7B1/7C1/7D1) which determine the building to atmospheric D/P.

12 Wind Speed 24 mph x Wind speed that is only exceeded less than 5% of the time based on (1-hour average value exceeded only 5% of the total number Elev 35 and 150 wind speed of hours in the data set - per RG 1.183) from Attachment G of DRE 04-0030 Rev 02 13 RB HVAC SC Isolation 300 seconds x TRM Appendix B Table B-1 Valve Closure Time x Proc. DOS 1600-3, -5 14 SGTS Capacity 4000 cfm design flow nominal x UFSAR 6.5.3.1 x TS SR 3.6.4.1.3 15 SGTS Flow Control Method Flow Indication Controller is used to throttle the position of x UFSAR 6.5.3.2 the fan suction valve to control the flow to 4000 cfm +/- x Proc. DOP 7500-01 10% on the operating train. x Drawing M-49 Rev RB FCI 2/3-7451-28A/28B

Calculation No. DRE19-0015 Rev. 0A Attachment E, Page E4 of E14 TODI No. (DRE)19-007 Rev. 01 Page 4 of 5 16 SBGT Pressure Loss at 16.2 inwg at 4000 cfm (w/ dirty filter) x Calc. VG-05 Rev. 0 Design Flow 17 SBGT Fan Performance 16.0 inwg at 3975 cfm (w/ dirty filter) x Calc. VG-06 Rev. 0 18 SBGT Suction Location(s) From all levels of Reactor Bldg (see Dwgs M-269, sht2 and x M-49 Rev RB for LOCA conditions M-529 Sht 2). x M-269 Sht 2 Rev F x M-529 Sht 2 Rev H 19 SBGT Delay time to load 13 seconds to close DG breakers; SGTS loaded when x TS SR 3.8.1.8 onto DG after LOCA/LOOP breakers close x UFSAR 8.3.15 x UFSAR Figures 8.3-4 & 8.3-5 20 Delay time to start 20 seconds x TS B3.6.4.3 Secondary SGTS if Primary x Proc. DIS 7500-1 SGTS fails 21 SBGT Isolation Valve See Attachment C x Proc. DOS 7500-2 Opening Time (Max) x IST Acceptance Criteria Manual-Valve Test Acceptance Criteria Sheet for DOS 7500-2, dated 8/12/2011 22 Normal RB Ventilation Flow As shown on drawings M-269 and M-529 x M-269 Sht 2 Rev F Rates x M-529 Sht 2 Rev H 23 RB Ventilation Fan See Attachment E for RB supply and exhaust Fan data / Fan x VETIP D1506 Pressures or System Pressure curve.

Losses 24 Time Delay to Trip RB There is no time delay on tripping the RB ventilation supply x Per drawings 12E-2399A Rev. 3, Ventilation Fans and Start and exhaust fans and closing the isolation valves (dampers) 12E-2399C Rev. Y, there is no Isolation Valve Closure after upon receiving a secondary containment isolation signals. delay timer/relays shown on the LOCA drawings

Calculation No. DRE19-0015 Rev. 0A Attachment E, Page E5 of E14 TODI No. (DRE)19-007 Rev. 01 Page 5 of 5 25 Are Backdraft Dampers The supply fan isolation valves 2/3-5741-A, 2/3-5741-B and x Drawings M-269 Sht 1 Rev. K, Installed on Discharge of RB exhaust fan isolation valves 2/3-5742-A, 2/3-5742-B will M-529 Sht 1 Rev. N.

Ventilation Fans automatically close when the fans are tripped (See item 24 response). There are also backdraft dampers on both the supply fan (AO 2/3-5772-15A/B/C) and exhaust fan (AO 2/3-5772-16A/B/C) that will also close upon fan trip.

26 RB Hatches Open/Closed The equipment hatch (on both Units) is normally open from x Drawing M-4 Rev. AJ.

Between Levels the ground floor (Elev. 571) all the way up to the refuel x Proc. DMP 5700-05 floor. Both Unit 2 &3 hatch opening on the refuel floor will be covered up with tarps during refueling outage time for contamination control.

27 RB Doors Open Between The Roll-up fire door #57 (2/3-4100-57) between Unit 2 and x Drawings B-333 Rev. BP, B-412 Units Unit RB is normally open. The door will auto close upon a Rev. H fire alarm actuation on either unit.

28 SFP Temperature for Test See Attachment D for SBGT test data and fuel pool Case temperature.

Calculation No. DRE19-0015 Rev. 0A Attachment E, Page E6 of E14 50%* %3& 3FW

"UUBDINFOU" 1BHF""

$WWDFKPHQW$QRWXVH/HDYH%ODQN

Calculation No. DRE19-0015 Rev. 0A 50%* %3& 3FW

Attachment E, Page E7 of E14 Attachment B, Page B1/B1 Post LOCA Suppression Pool Temperature Time (sec) Pool Temperature (qF) 0 98 106. 148

203 156.1 406 163.8 600 167.5 2954 182.8 10,083 196.9 20,027 201.1 30,020 200.4

Calculation No. DRE19-0015 Rev. OA TODI (DRE)19-007 Rev. 01 Attachment E, Page EB of E14 Atatchment C, Page Cl/Cl Valve Test Accepta nce Criteria Sheet Procedure DOS 7500-02 Page 1 of 1 Valve Stroke lkfercnce Aeceplahle Alert Required Measured EPN Direction Value Rm1ge Range Action Range Value 2/3-7504A V' 1' Open 50.lJ 43.3 to 58.5 Hi: 58.5 to 63.6 Iii: 63.6 ,----- -*

I Low: 43.3 NIA

  • -***~---.

2/3-7504A f"' 0 Closed 5 1.1 43.5 to 58.7 Hi: >58.7 to 63.8 Hi: 63.8 r----------

l ____________

Low: <43.5 N/A Hi: >60.3 to 65.6 2/3-7505-A )A O Open 52 .5 44. 7 lo Ml.3 Low: <44.7 NIA Hi: >60.9 to (>(>.2 I-Ii: > (>(1.2 2/3-7505-A """ Closed 53 45.1 to (10. 9 Low: <45.1 N/A i) Hi: > 12.1 lo 14.5 Hi:> 14.5 2/3-7507-A *I'- Open 9.7 7.3 to 12.1 Low: <7.3 NIA

[-**--------,


--------*-*-*---------~*-*---

2/3-7507-Ai' Closed 10.1 8.6 to 11.6 Hi: > 11.6 to 12.6 Hi:> 12.6 r-*-*-*1 L______

Low: <8.6 NIA 2/3-75048 y\ i) Open 49.3 42 to 56.6 Hi: >56.6 to 61.6 Hi:> 61.6 1------

[______

J Low: <42


*-*- -*------ -------- ----*---- -------- ---**---- ------*-- --* --*------- ---------- NIA Hi: >57.2 to 62.2 Hi:> 62.2  :---------- 1 2/3-75048 fl' 0 Closed 49.8 42.4 to 57.2 l____ J Low: <42.4 NIA 2/3-7505-8 t0 Open 53.6 45.6 to 61.6 Hi: >61.6 to 67 Hi:> 67.

1--------*

_____ ___]

1 Low: <45.6 NIA Hi: >62.6 to 68.1 Hi:> 68.1 2/3-7505-8 {'fl 0 Closed 54.5 46.4 to 62.6 Low: <46.4 NIA 2/3-7507-B f'\O Open 9.8 7.4 to 12.2 Hi: >12.2 to 14.7 Hi:> 14.7

_______ J Low: <7.4 NIA Hi: >12.1to14 .5 Hi:> 14.5 1*------- 1 2/3-7507-8 'f'1\} Closed 9.7 7.3 to 12.1 L__J Low: <7.3 NIA

Calculation No. DRE19-0015 Rev. 0A 50%* %3& 3FW

Attachment E, Page E9 of E14 "UBUDINFOU% 1BHF%%

From: Franzen, Bruce D:(GenCo-Nuc)

To: Lee, Daniel K:(GenCo-Nuc)

Subject:

Re: RX Bldg D/P data during RBV Auto Isolations - SBGT Starts during DIS 7500-01 Date: Thursday, December 13, 2018 7:53:40 AM Yes I see your question. Should be -.81.

Get Outlook for iOS From: Franzen, Bruce D:(GenCo-Nuc) <bruce.franzen@exeloncorp.com>

Sent: Thursday, December 13, 2018 7:52 AM To: Lee, Daniel K:(GenCo-Nuc)

Subject:

Re: RX Bldg D/P data during RBV Auto Isolations - SBGT Starts during DIS 7500-01 It looks like both tests show it going negative approx 9 seconds after the trip. My guess is the timing between fan trips and damper closing.

Get Outlook for iOS From: Lee, Daniel K:(GenCo-Nuc) <danielk.lee@exeloncorp.com>

Sent: Thursday, December 13, 2018 7:32 AM To: Franzen, Bruce D:(GenCo-Nuc); Simpson, Patrick R.:(GenCo-Nuc)

Subject:

RE: RX Bldg D/P data during RBV Auto Isolations - SBGT Starts during DIS 7500-01

Bruce, Thanks for getting the test data. For the 2nd test, it shows the D/P trended negative and peaked at

-.081 nine seconds after the RBV trip - 2/3B SBGT Auto Start, should it be -0.81 ?

Dan Lee From: Franzen, Bruce D:(GenCo-Nuc)

Sent: Thursday, December 13, 2018 6:46 AM To: Lee, Daniel K:(GenCo-Nuc) <danielk.lee@exeloncorp.com>; Simpson, Patrick R.:(GenCo-Nuc)

<patrick.simpson@exeloncorp.com>

Subject:

Fwd: RX Bldg D/P data during RBV Auto Isolations - SBGT Starts during DIS 7500-01 Fyi Get Outlook for iOS From: Gallagher, Richard P:(GenCo-Nuc) <rick.gallagher@exeloncorp.com>

Sent: Thursday, December 13, 2018 4:43 AM To: Franzen, Bruce D:(GenCo-Nuc)

Cc: Netemeyer, Katharine A:(GenCo-Nuc); Passmore, Adam:(GenCo-Nuc); Griffith, Thomas James:

Calculation No. DRE19-0015 Rev. 0A 50%* %3& 3FW

Attachment E, Page E10 of E14 "UBUDINFOU% 1BHF%%

(GenCo-Nuc); Ciko, Michael A.:(GenCo-Nuc); Haarhoff, Patrick B:(GenCo-Nuc)

Subject:

RX Bldg D/P data during RBV Auto Isolations - SBGT Starts during DIS 7500-01

Bruce, Here is the data I got for the 2 RBV auto isolations and SBGT starts:

Observed the following RB D/P trends during DIS 7500-01 U2 and U3 Rx Bldg Vent trip with 2/3A SBGT Auto Start Initial D/P before transient: -0.62 D/P trended negative and peaked at -.81 ten seconds after the RBV trip - 2/3A SBGT Auto Start 60 sec: -0.37 trending positive 120 sec: -0.30 trending positive 163 sec: -0.28 peak 180 sec: -.030 trending negative 240 sec: -0.33 tending negative 300 sec: -0.41 stable U2 and U3 Rx Bldg Vent trip with 2/3B SBGT Auto Start Initial D/P before transient: -0.65 D/P trended negative and peaked at -.081 nine seconds after the RBV trip - 2/3B SBGT Auto Start 60 sec: -0.37 trending positive 120 sec: -0.30 trending positive 163 sec: -0.28 peak 180 sec: -.029 trending negative 240 sec: -0.31 tending negative 300 sec: -0.35 trending negative 360 sec: -0.37 trending negative 420 sec: -0.37 trending positive very slowly 600 sec -0.38 stable If you want more data, shift 2 has 2 more DIS 7500-01 auto isolations on days.

-Rick Gallagher

Calculation No. DRE19-0015 Rev. OA TODI (DRE)19-007 Rev. 01 Attachment E, Page E11 ofE14 Atatchment D, Page D3/D4 From: Camobell Michael:CGenCo-Nucl To: Hawman la500 Owen*(Ge0Co-N11cl; ZHQl I CHONG*(Ge0Co-N11c)

  • I ee panjel K*(Ge0Co-N11c)
  • C-grdner Shane R*<<Je0Co-N11cl Subj e ct: RE: FYI - possible change to get dr awdo wn data at Dresden today Date : Monday,December 17, 2018 3:02:25 PM Attachm e nts: ~

~

~

~

Here is some data include fuel offload - alarm at lOSF Summer both pools at lOOF Outage one pool at 90F and other potentially is lOSF Unit 2 Fuel Pool Temperature 12117/2018 2:57:06 PM

>--~~---~~~~~~~--~__...~~~~~~---~---~,._~~~~~~~~-o..---~~~~~~---~~--t

  • DRESDEN ADMIN LIMIT.c 110 1~~---:i===----,:--~-:1~~o-:;:=====t===::-;:;:1:"""--===::i:-~o--~~~-;:--~~~-===r=c!!:::==i====-~t o HIFPTE M P ALARM . a 105
  • Verify all available cooling operating/continous monitoring o Hi FP Temp Alarm
  • Verify temperature 1s not trendmg lldversel~

., U2 FUEL POOL TEMPERATURE SERVICE WATER TEMP Unit 2 Fuel Pool Temperature 12/17/2017 2:57:06.043 PM

  • Verify all available cooling operating/continous monitoring o Hi FPTempAlarm
  • Venfy temperature 1s nO( trending adversely

-0 U2 FUEL POOL TEMPERATURE

  • SERVICE WATER TEMP Unit 3 Fuel Pool Temperature 12/17/2018 2:57:06 PM DRE03V_3*1901-103 *U30001 98000 DEGF DRE03V _C342 69.493 1/14/18 3/11/18 5/6/18 9/23/18 11/18/18 DEGF
  • Verify all available cooling operating/continous monitoring o H1 FP Temp Alarm
  • Verify temperature is not trending adversely U3 FUEL POOL TEMPERATURE
  • SERVICE WA"(ER TEMP

Calculation No. DRE19-0015 Rev. OA TODI (DRE)19-007 Rev. 01 Attachment E, Page E12 of E14 Atatchment D, Page D4/D4 Unit 3 Fuel Pool Temperature 12/1712017 2:57:06.043 PM 80 i----t---t--..--J---::tt~HliH-ft-"--l;:;v-~IQl#llil:ll~"tt-*~l"!fl'-,Jtr---t----JI

  • TRENDING NOTIFICATION LIMIT.b 102 DRE03V_3-1901-103 U30001 94 000 DEG F
  • DRE03V_C342 40 VO Timeout

~- 1,-14~

1 1-7-~- , 1~11-17-~-- 5,~

&-17-~lll.

~ ~<J

-==,...,.

~ ~-n-29~

, 1-7-~--~-~- 1 1~

1s-11-7-~

9123117 DEG F

  • Verify all available cooling operating/continous monitoring o Hi FP Temp Alarm
  • Verify temperature is not trending adversely U3 FUEL POOL TEMPERATl.JRE

Sent: Monday, December 17, 2018 2:56 PM To: Campbell, Michael:(GenCo-Nuc) <Michael.Campbell3@exeloncorp.com>; ZHOU, CHONG:(GenCo-Nuc) <CHONG.ZHOU@exeloncorp.com>; Lee, Daniel K:(GenCo-Nuc)

<da nielk. lee@exeloncorp.com>; Gardner, Shane R:(GenCo-N uc) <shane.ga rdner@exeloncorp.com>

Subject:

RE: FYI - possible change to get drawdown data at Dresden today Do you ha ve access to the System Engineer Notebook for SFP? He has spreadsheets and tracking of actual temperatures.

Jason Hawman Mechanical Design Engineer Quad Cities Nuclear Generating Station 22710 2061h Avenue North Cordova. IL 61242-9740 (309)227-3943 From: Campbell, Michael:(GenCo-Nuc)

Sent: Monday, December 17, 2018 2:54 PM To: ZHOU, CHONG:(GenCo-Nuc) <CHONG ZHOl !@exeloncorp com >; Hawman, Jason Ow en :(GenCo-Nuc) < lasonOwen Hawman@exeloncorp com >; Lee, Daniel K:(GenCo-Nuc)

<danielk.lee@exeloncom.com >; Gardner, Shane R:(GenCo-Nuc) <shane.gardner@exeloncom.com >

Subject:

RE: FYI - possible change to get draw dow n data at Dresden today Let me figure out w hat the actual pool temperatures are.

From: ZHOU, CHONG:(GenCo-Nuc)

Sent: Monday, December 17, 20 18 2:50 PM To: Campbell, Michael:(GenCo-Nuc) <Michael.Campbell3@exeloncom.com >; Haw man, Jason Ow en:(GenCo-Nuc) < lasonOwen.Hawman@exeloncom.com>; Lee, Daniel K:(GenCo-Nuc)

<danielk.lee@exeloncom.com >; Gardner, Shane R:(GenCo-Nuc) <shane.gardner@exeloncom.com >

Subject:

RE: FYI - possible change to get draw dow n data at Dresden today Basically yes, 940 CF M is for both pools. The equaiton calculated the evaporate rate for each pool (33'x41' surface area), but later applied another 0.5 factor to account for the quiescent pool surface. So to account for both pools, you have to multiply by 2 so the factor is canceled out.

The SFP evaporation rate was conservati vely calculated assuming zero humidity on t he refueling floor, i.e. Pa = 0. The evaporation rate calculat ed above mu lt iplied by an activity fact or of 0.5 (Ref. 34 page 4.6) to account for t he quiescent pool surface conditions and was converted t o lb/s to give a flow rate of 0.07 lb/s fo r the GOTHIC flow boundary condition. The SFP tempera t ure of 125 °F and corresponding saturation pressure of 1.95 psia were also used for this boundary condition along with a steam volume fraction of 1.

From: Campbell, M ichael:(GenCo-Nuc)

Sent: Monday, December 17, 2018 2:45 PM To: ZHOU, CHONG:(GenCo-Nuc) <CHONG.ZHOlJ@exeloncom.com >; Hawman, Jason Ow en :(GenCo-Nuc) < lasonOwen.Hawman@exeloncom.com >; Lee, Daniel K:(GenCo-Nuc)

<danielk.lee@exeloncom.com >; Gardner, Shane R:(GenCo-Nuc) <shane.gardner@exeloncom.com >

Subject:

RE: FYI - possible change to get draw dow n data at Dresden today Is that both pools? That seems high.

I w ill look for the book.

From: ZHOU, CHONG:(GenCo-Nuc)

Sent: Monday, December 17, 2018 1:44 PM To: Campbell, Michael:(GenCo-Nuc) <Michael.Campbell3@exeloncom.com >; Haw man, Jason Ow en:(GenCo-Nuc) < lasonOwen.Hawman@exeloncom.com>; Lee, Daniel K:(GenCo-Nuc)

<danielk.lee@exeloncom.com >; Gardner, Shane R:(GenCo-Nuc) <shane.gardner@exeloncom.com >

Subject:

RE: FYI - possible change to get draw dow n data at Dresden today Follow ing is the equation used by Enercon to calculate the SFP evaporation. It comes from HVAC Applications Handbook, ASH RAE, 1999. M ike, do you have this book?

I t

I* I 1-h v -

--+--

- ----~-------

~-

> >-j

+ 0
  • * ~ t;l
r . . . .

. . L

,. ~B

.. I atT:I '-";;

  • v >-'

" '"d'°

. 2 8I - I 43 3 - -- ~ § 4

F IN I S H ,

_- - ~~

g:;t ~

. 1. J OY ORA NGE (oNE CoA T . FAN uN1 T

  • 1 "' s IN TER IOR 1 ONE COA T EXTE RIOR ) *
  • 5 251 24-5 76 FA N DATA MOT O R DAI A 11--- - - - - -- - - - -- -

M ODE L . 45-2 6-17 7 ,0 SER IES . 2000 M OTOR PAR T N .O . 6002 6 3- 08 0

Ol 0

SER tA L NO . SF 5864 0 THR .U SF 5864 6 BHP 1--~-~ -----------~ c::

  • ~~ . . b

§i:

iii 5

  • CF M 41,75 0  ::l NOM I NA L H P IQO . . ~z 0

~

Cl 1--- --- -- - - - - - - - - - - --

0

~

S TAT IC P R ESSU RE 1*N GHE S ~ 0 F RAM E (0 2 4 05 T C Z 'i 6 Ill ~

. rOTA L PR ESSU RE IN CHE S H 20 c.n 9: 7 ENC LO S U RE 'T. E .A .*o. ~ ::0 Cl>

i BLAD E SETT I N G 0 3 t/ - . . T YPE IN SU LATI ON

  • F' )>

2 ..~

I DENS ITY LB/F T3 .075 MA IN - VOLTS *460 PH 3 t-29 ENG . OROEMj~....~ I REVISIO NS l~~~A - J9 I ~ .

Calculation No. DRE19-0015 Rev. OA TODI (DRE)19-007 Rev. 01 Attachment E, Page E14 of E14 lb 1j 1' *11*;I 1"TiI ll,,.  ;,1yra.c1_lhITpim1errn1tn1fr 111 PlTaj~I I ~rT;'I2!11~*121 *1-1*r 111* i -,II!rl rrr~El;~;mT I . I I I * *11 ITN!?-1I:I m1\-r11JI 2T1121__ 17fl Ii !II I'I I . I;~~~~T:!: \1; ~ ~ :-r-:: 11,.4

! ~1 :r:: mil'Il: 1:r~:nm~1 I' ' * '* "" .1.1 .,11

[l!I : : :*:p:: !:,: : ~fl :!

I I I mi , W; illi1::@, 11li!

  • 11 !,!I I I 1 I I I '
Ii I II ;l11j I I i " [j: '111 11i Ll[IJ!t 1,rtd,u11111 I I w,[ _'[ *Jr J1 1

I' I 1

I :; I . . Ij 1 i t 11 11 I . I I I I I [ '.L L I I : I, ,

  • I ' ' i I 11 I i.

'I !i *I11r~1

.-,
;:;: : *11* *1**1 11*1'1 :1*11 ,1 .1 'j ... *-* r**1* **11**1 i****1i I

1*'11! J. I:

I*I ! ,*,,i*r  :::;

l ~ . ! ; l i : !I ! I . I ' I ' I 1  ; I I . I I l rr,f** 1-1i*, hi* ;:q -,;:i

~.: ' !o*' i.I. * * " . ~ * ' I . ! . 'J1_ ..:...._:..:_ _;~LL i-t : . . . *!1 ,~1 1 . !: iI "1 ' oI : .' *{ l. I '1 *I  ; ! !: ; : l ; : : ~ ! : ~ ' ; : j : . : ! : .

.J I I I I t i l I I  : I i 1

, , , ., , ..... . 1.1 . . .J , ....

ii i :*:i illl iil II !'Ji

~ i~ll/ ~-

1 l!Jl

&i~l1J - ~. llli mt*!~1*j -

l!li 1111 *!1! 1111 1*IJ illl 11 l li 'i !1

  • 11 :i1* !l!J 1lt* I'll p11 :"! 11 ;1 i' ::i:>: ii'! ;:::

01

-*~![~-! i, r!~,.- !1\*

1 111!H* 1 *1 . ..1'1 -*1 !I.J;,I I*, 1 [11 I !r1,.ljI 11,fI I J1*i*H_

' .* I 11 ' ,,

  • I ' I ,;

I* I I . "

I

!-; ii 1il1:1l I* l*1*j:1*

11 1 1 ** µ.l' *. ~  : I! *.

!:I;-!.

' :**I . .I :. I .

  • 1 I 1

!1 ir!1. j1*/1ll..!l.'11}

. 1 I *I I I'I

~! 1:! .

I li"'-'-'+*11.;:.. -d,/+

1 1 **

i~: ::*[:~:; :+, ~!:

i 71

'tq . I ! : 11* :. : ' ' I .* ' . I . : ' :.

i

. 1 **

i111 : l11 1* ir":-1 I

'1:,r11'1 ;1*1. .1* .*. II *1*,i, *1;--,1'! .111I !,*,* r n Til *C,iJT'1.......

~ l 11 u1i-l1' 11 i1,111 ;- '"-'-1t*,1,;1 ::1T i,11 1i1111i,1' *mt *111i:1! 11, *1:1:! i1i1  ;-:-,< :;1: :l:!TTT!iiTI

J..
_~~ i~1 Tifr 1 r, :rn ;  !~ ' ! ~ . ..*

I

  • I I I I

~1 r i I , ' I * : ' I j I I * '

  • I !  !- ' . .. I r r:  :* n n- ii~-; ,

I .

I 1 l - rn I

~1~

I I Fir~,~-;:

1 l

  • I * ' I ' '

1

.:..' I! 'I * : :..L1 1 ~-'I

  • 11 I'. I I I . , i .

1

,1111

.! I ...;...:..,

-
1* 1 ;1 l"1'

!-'-LL : I ' I 1 r,* r 11 I .

1 i r 1 r11 I ..... I .' I

  • 1 iT I I 11 P1 I ' .  : ' i r1*1

.. 1111 1

  • 1111 1111

. II mT' : I '

ii!:

I ' . ' *' : '

-r;;:I*

. I ' I

  • I: ' ..

!::T ii' 1 *J 11 1, 11 111

  • 1l1 ! u1.1 rm 11 11 1ii t li11 11 111 i1,: !11 i 1111 1j11 111 i i'.! _,*I l 1i11 : 1 i! :! i :~: i ! *iii!

rnf !i 111Ii'i ii il m . n11 rrl i lni iili m111. !ti 111 !! Ii nni H itn nn r1111j ij1 ni1 :m rm rm t1ti m:

1r 1*1 *

  • 1 1i1
  • hr! n: :!11*:t*I* ,*1 JI~ *111111 !fli Ill ! l! i! i!ll l.11' t' i~. I !l'i lll i Iii! I i! !l ij'Iii 1111 :j*! I lll:lil! ! !iii iii! iii! ! ~::

ii! ! lii i' i 1111* I liLUlLLJL ~ . I _!.:I 1 1 Ii: -! t**:* ~itr+ *1-:li :Jr; J*1*11** r*-- *:1lr -11'1*1 ~;-

i! !: I Jl I I 1I I 1I I : i . :ii;ITi:i -II I:µj.- 1.,..,._ll 1lj' j ; ~tµ.l~I~ :i ;-:- ~It;: :-i-1* *: :::

1 1

1 . LI **

I I l . ! ii I : ! ! ~: ! l i !: 1 !!

l1 w* '

1 i I  ! 1 1 j 1 ,...., 1 I l.U[ 1111 t I l'I ~

['() I!

tHI1..: Im*I I I 11 *11 I J.

I*I 1111 I: I N

('Y)

µs I Il I : II. I *1 1 i j :: tI .:LI  :..'..* ~I II lj I lr-o!

1 I I

~L u** 1*

1 I i 111*I 1I1** ijI' :11 I*I 1 l I 11 II iI i' I'I i I' I

111I 411 j j,1,I'I ~

t 111 */ ' I *. .

Ilt1! i lI " , , I'. I " I: . ,

'. I 1i ;** 1..'. 1 I, *

  • I '
11 JJ . I1. i** i ;I*; 1. * ; 1'.
1 :111 ii i::1r1 : ~r,Ni*,i I i 1: i 1
    • r1***1**-1* 1i1J"I ~;I I i1:*-'11 l1'*i !!il : -1:: *;;1:1i11*111i~ r1*1:::iTf:. ~ ifjif~: *,~ti iF 1 111 I ,.

'.!"ij

~ *.!.l 1: I i I : : .!...: _ N .. i ~I I H'1**1' *111 I. .

1 11111*,* *111*r u.,., . .,._,_ ii I. I ' ! : 11  ! j I , . i; ~ I : ! '. 11 . : .

l I ' *. I  !  ! I  ! : : : I '  !

I *.

I  ! '  ! I:

"j fl ! I I '

  • I:i I "ll 1 I I "  :

'. j i : : : ; I :I ! 11 *'-' : i:;;' *11 'I t:J I Ii l ! 11111 :: 11i : j j * : I i I: ii I I ' l*' +11 ! I i i Ii ; ; i i ; : : ; j i i i : ' * : i : :

~
1 %~l ~f ; 1~HHI 1t1r II tl!i Ii~ I1li itf fr~~~ Ii ti i!Hrrr fif ~H T11iti tiH $ TM ih.'-~ fr

! I I  !

1t I~ :~-,: ~~~~r=-L.I ~ILi: : 1~1, *'1 1 'u1*11i1 11,11;1hffi,1, i1i !j]I i' l il ;:1;1i!1* :1ii !11: -'1 ii~,. : ii ii :1:,.. mt. +it

1. ;_

1 1 1 1 1

IJ i'.11' 1'  !:ill **: 11i 1i!:

Plr-;: ~:.~! :;1 1 .itt1~ p;iJJ11 *1'1* : t~ll 1-:11i1 *1!11-*1 *b1-1 ir'11 T!11i1 i+:1_1+ti iHiHi+I +111* HH1 1l Ii l_t+'

I

Hil""L - :1!0 lf. ~! 11 !l1L.w~_JL_ ! tlil I 11 . !L I 11! 1 1111 !1 Ill!! il

.L:...11; ~: : : : ~: ~+; :~-~r rHi

!!!: l:!1 :'.: :

~~

!1 : ; 1:1 !

0' :~I!1tfrh'.J ~~ Ith~ . ~~iI ~ I~ I!'I I111 !I'jl'! I 1111 I 'I tI~I jWI Ii I!Ji

~ I. ' i' C l!!. ju ~

1 IZ :. N 1".11 ! I LIi I!I I i 1l !. 111, , !I iiI I !I L1 I 1*I ~I 1111 1

., ! I!1.111'. *i. Iii i !I: l: j : : Ii !: : !

I I. I' I . ! ' ' ' ' . ' '

  • I I '

~-J ~o* !*.!il,~i I 11

~;1'1RI Ii'°!-~.... tl':J!,,

~f 11, -. 1~.1"1 1jfl r I I

~ ~ .

i, u ...-, .

i ., t *1 *1 t, ,, ,- .Ii i11r'. 1* : I. 'H-* 11. 1 "i, ,. fft1Ti  ! iii, 1 . I ~' . '

l'1 I .\1-i 1' !IJ . l~r+i* i'11l *, jTi 101~ :!:! F;T : Fi! n:

' li 1

~:-iTm!Tb;?ft:;;-:

~, :.:n: IZ;i:;:] :o-1 ~I~ )t~ t~ ~I 1'. 1'1'-1 1*1*;

1 * * , * * . ,

,_,_11/jl 1i1'[ 1l i '111 Jll i:~:

1 . , **.

0

~i 1 1.1 .. l! 1'.. i'I;I :I;1tl- j"1 it'll

~ l ii ~ i ~ j ! Ii l: 11 \'i ii !i !It! *:1:1

+t-U '. ~* .:

i!jl !ii:

ii i:  ;:::

i L l : i ~: l 1 i ~ : i : : : :

a:)!Ti

~'6:. ~J~:~---~

~!~ : d~iilj jr_n-.~. 1ot~i '1! [~fj ~- ~1 fTti fl'il 1"11"! 1 1 j - ~ -I ti ff il!l I I 1

I 1

!q.n:; iili TnTDttn1i ~m !T J;i) 1F:*; Ti* *-~

j  :  ;

    • ~~L _!_f- ~I~  ! I 1. I£.! I !i
  • I I !Il l ~ **  ! :], 1 1 . f . l ! li 1111  !
  • I 11 1 , 1. 1. 11 **

rn:

~*

1 , , , 1*

c:n

  • o; V'J :~1 I'  :<i~i li 1* -l*i 'i-l*lj t1I; 1.1* !; !lij 1
  • ;; ;I :: ~. *1 . 0 .::

~: ~ j~l~': ~ : ~~ 11t~ 1tt~~*~,:-..

11 **111111 :*1 :li i !i1:1 ::; ; ;::;It;:! 1i11* :! 1 : 11:

!~~ J;-~r .t !H~ i.<-2~7(fu :; \; ~ : : : ~8+:

1

:j*
~.: ~H
  • n

"'1:

u

"""* ~

+: *'1:'.I ':l*t 11111-H.* rrf+u1-H1 ll! : :_::!. !' ::
  • ' ,. . *; ..- **~ , . ,,._. , .** *-1
  • ,.... ~ ,,c.,. . '""

1 1-:- 11wl 11n 1 : . .  ! I.I, 11  !, . . ! , I .:~~ .0.1 *-1 1 11 _ * .~ 'l'i .!* ~,

1 * . 1 , ,, , 1 ~~ . * ~  ! I . . . . ,,, 1 1,1 1 .:i Ii' ' '! t

  • 1  ; * . * * * * , , : ** *
  • * . *. .,1,1 1_ ., . , .. .

. * . 1 I . . . o->:; . . .

1 ill '*

i ! l *1 I ' ! I : : i I I I I 1+ - I J .

  • ** ' 'I' *11 1
  • 11 '" 'f/1 @** ** 11

,,,, i:i..* *1-:i'-~L...;.>i-j*l ' .. ,, ,,. , : .

111I i 11 i H . ~I! i 11 I j ! : i : : ; ; : i i : i I: I :"I Ii. I II" I1**l I**ft _,I

/

1 1'*1 - *11

/ :I i [t. I I '

  • * ; :* ****1 i i : ! ; ' ;; ' . :iJ : : .
    • "° .!~
i ! ! ! Li .i.
~.LL Lr w . - ***fJ ..J ! ~* Vi~L~: 1 J~- - Ll L~. ~ .: :.t U. ~ ~~ . ;..Lt : .~ r ; ~ q_g : ; 1* * ~.Ii 1 ~

11

_: _:_1 ~ ~~ .. :.:. .! .~ :....:.~

! l : I l ! I 11

  • I 1 i j i 1

..l-W.

I j ! I : : 1~ 1l. ;. .! !. ~-

'! I~ I * ' I I 1*1 . I I I*~I 1

  • i '11 i I IY. '1 [ I 1j ! ; i : ! I I f II l I l 1'I j i i 1: ! I l l ; : i i 1 I . t : : *11

' I ! : ' I ii 11 I j 1 f

1 1 1 I 1-r*I I; ::

I * ..:_: '.

l 1: ; ., : ' I: i' '  : ; 't.J : ; ;

r:

'1  :

11 , ,

I. I 1 1,, 1 11 t 1\; 1

' . '. Ll~""":~I,,

I *.V: I .' ~' t !. .. II~I I .. ! I I i I ' I I ' . '

  • I, ,.I J,I ..'

1 I " " I .. ' .

! : 1:1i:,1, , 11 ~'

  • I .~
ii. 11I' z.'1*i1 Tr I "

ii:: 0;;

l;.. 1,,1 .. " ' * * * :

  • _: **;'r~ :f-1 11: * , ,1. : 1:* :!, , : :~: i : 1,: ": i ii:! i: 11 : ji l!

1

! , , .* . , . ,! . I., I  :* *

  • 111 ..

1 ,

~:~ : : :

1 rm irn1 :rn 1r: i111 ::n :r-;:- ii~

i : I : : : ~ l ! 1.: i ! I l . I ! 1 1 1**

~  :.: : : ; : ; , * . .

. l' '11 I : : .~ ! ; : I I ! 11  ; ; l : I I 1; : I ~ t ; 1: ! ~ . : '. I 1 ; - :

n: I 1l p..  : t. -, :1 1
; ' ; I  : ; * : 1 1 i:: t .i
::: ::;: :1~ f-,;: ~ :In I  :
  • I ;  :
:Ot:~

I '.  : : :  :

  • 1 *. . :;.,, u 11; , , ll11 * ,, r *
ri+i i _i 1
11*

1*1Tf1 i

. * . I

f fi 1

! ' !1!:  !**:l;,t!

ji t1 1:

1 11 iT[:*~:*: ::J :::;* o....:.  ::;'. ~**:::*

  • 1-::1:: :.: *::i: l~-:*:! '. '1 :1r* ~,  : i-;, ,, i ': '.',1 1~
. ! ;_, .... ..l. :l.:.:_ 1'.'!"i~*!1 .. : ; : ::.l i' ! *l!*

' I ...... \ .: I I~ :' ::~

  • 1
  • lj , ** , 1 !
  • 11 l1
  • ! E-1 ti) z I~
  • u i~ 1 11 1
  • 1*11 :;TT-: 1r,::>-:- . JP, :---- .1 i'  ;:;: 1!1 , *, \ 11 : 11: : .: , 1;~ 1: . , * , :-:- --r. :~ ---::-:-

1 I . * * : .*

! 1 1 1I ' I! 11 J' 11 1 __

~ -~!  :

'I

!:: :, :: :: : . ;' I  !

  • I
~!1...:~.;.1 .:. '.l: L'..!. .. ::: '.1i.:. . :;! ;_:_; .!.!\ ~ __J.:_ _'. _1_:_1t ~ : * *. '*

' I I I I  : . ' . . ; I  : ' 'I I I

. _ . ~

I '!

~ j:j ii : * ;1:: ~j :Jl~ ti)1E-t'::;;: 11:1 !11: !l:i t*1'!'. l;;:1:*11 1 :: :* 1:1 1

  • *: : !i :: :'.!' " ; ( : 1 1., '*'*+.:.. l...~~i...

11 : ; *f 1 "ii /I* 111 ; 11 ': 11 I *;!"' 1 .: ! : 111 111: "!l 1  :::\ f f.il : l i J , ; ; . : :. : : : . . , ~ ; I ,

  • " _:_:.1.._~_i. ~ , 11t ~ *
  • l* *:: 1I . .:.' l,:1+-, i .;* ~!;... ~ -*cn*i:i:. +u

.L:.....: I

.
i :: *: : ::. :j; i 1
: il !'. : ~ ~; ::J.~ ~ 1J11-1LlLlJ .ElJ LL!l ;.Ci :!;~ s::
    • ii  !'-' *!' 1 ;i; j .. ;i;: i i; ' -;;1 :Ct>j11 ill

. !* : ::~ ..... 1.

j I l ll..iJ.._~fil .:'i * : * * ~ *.' * ! ~ :

Jill

  • ill 1 Ii :_I LL t J:l .:.1 i.~ ;_
  • :1; 1: .j i i ;*;. _il l! 'Ii: 1)1r'il'J i:I:

dl .:. :.J.Uill J. I,., I. ,I !

ti* rttJ. 'I " , . . 1 .... ' ' **

  • o *

.- ' I II . * *** * * *

: 1: ; : . 1* : :j .

~ i.!.:.! ~ : . < ~~-

  • * ~*

~

  • ;Ii-
    :;-

' *' I !* . **

  • i 1111 '*.*1 (51+ 1* 111 . ;I ' Ii..? **11* "" I.I""" lll'ttj 'I'll 1* 1
  • i ' ; i : , ; ; I : I i i i I !! ' *I l 11 i '. I i I . i I i 11 ! I 1*

I! j  ! ' 'i i' :'I! ! I": 11  :"_i i !' '1' I 1 !* I*1*1 I 'j! i 1 I I. ,,I ;,

J!:

, :1 * ;2 .: ;. .'.

17~Jf: ~i ii ii

i i"
'! !.. .. . .. .

ttjf:~~[

1 1:iJ 1 ~jfjli1i i;P i i;li ii: i:t llJ'I ;li1itiii Jij! l!li ;:l:i iiliwl~i:,jti ;iii ii< :: ! ti ::: ~ : i ;j : :

1 1 * [ 11 I o .i  ; : ! . * * ; '.

~.. ~ ;~1*hI : ii1-~:1 :-i 1*~~

, I 1' ~  !

1 .t: I

' j I' I m"

..l,,

,. !--. . 1' LA 1:-:-n- H+1- : 1*-d~

I* i I' : !*l.i1.i 1

_1 i-;

r* ! ' . j' I p Ii ![ 1 I

  • : t1 f'.i-in*} . . H!i tf!ld-! i~,, I!:H1_1+i.

1 ;

1 ix: .

11 1 I

It It 1*.-j

  • J II~ !o !: , i i ! I'

,!1 *

~~ 1 i 1 ~ * ~. +~ 1 +1 ~H-~ :~ :: :Y >:: :p:

  • I' 1 I 1 11 I 1 *' I 1 ! I ii~

I II

  • I * ,i ,I I,  !

1 i: I! I;

~ '~! :i :I i'

~::}'1 i i i

'-LL . . . . t . f.

  • I i 1

' J

~*11 I , * . , i

  • I * * ,
1 11 Iii ! il[t jlw!' IUi il fl f! illt iii iflJJi n'lil 11 11111* ij! l !1j! I-Iii illi 1'U! lfm.'llii 1

~ :.g>-- T.' '.; ii l!,I;i ;i :!*i:  : ! ~ d I' L 1*jr1 1 i!ll ,t" I '.

  • f +*,~1 l1 - "'11J1 I JI. H"! T,.~, . ! 111* 1 -'1 *1' 1111 !I '1t11 1!1 f ~ ~, 1- ~1 1' [1-t Iilj.!. I' I; r*1. ,-, ,LI..,  ; r+:I:iu*ill !!':. ~ili)*i-f!~iliiijIi :! illi:-~Irl1 :-!iiii!HI;

!-!-+. i

!, i ,,Ii Ii , !!I! I , . I ll J!J ,;!, .! 1. *,!! :i f lo 111.

§:~~g;nm!f!ITr

~ :~1. I if' J.1~:11r11*11111 -hjtt ..1 l* :11Ltt~1 1 :+1 i. 111+1*L1 -s 1 1 111* 1 ~i~11 1 1 li*1, (E :m+/--JJ ~ as :~Did- h-V.l .~! .

!! 1i1 :!11'7.11 i1*111n - 111.* 1 11.

,!:I

1! 111:: 1 l-1

.:1 11. :1 *i

~'-'..!  !..:..~

1

~:~ -~ -~-!ll4 !!! 11: 11 w1 1:1 1lW,J r1

.! I cl Li.I Ll *LJ_ .L t 1 Ii

!'!! Y'.- 1~ ! 1~1 :! :~111!1 ~n :r i!!! '!! ! : i!!i ci 1 I I. i-.J_ [ ;: ,l ;_'._jj_

1

~*~ !W l!d ~i~I! f.,1. ~~ l - !~.[...! 1,l~*W1+ iru, 11_ :1!1

~~Ulli{-~r1-. 1. qfti,'

!l !

!1!~1 !_G:1~!-J~a1' 1~a1'~!,i~~ JillJ,11*-l-~li,ll~-i11~~11:+1,1:: .:!1!1!-~ ',!.

1J11 t I

&~m~utu!1 rt _.: 1i:1i: . : id I- . f r 1111 1111 111I11 i11i :11 1H.n .. : : w11i 11d1 ,11

ŽEŽZZ & W&Ž&

  



ZtKtEd^d^

WhZWK^

dŽŽŽZŽZŽ

ŽŽZŽŽŽŽŽŽ

ŽŽŽ

/EWhd^

dŽŽ^ŽŽŽ

ŽŽŽŽ^'dŽ



^^hDWd/KE^

dŽŽŽŽŽŽŽŽŽ

ŽŽŽŽŽŽ

ŽŽ

dŽZŽ

ŽŽŽ>K&Ž&Z

ŽdŽŽŽ>KŽ

ŽŽŽŽŽŽŽ

Ž

EŽŽŽŽŽŽŽ

ŽŽŽŽŽ

EŽŽ^ŽŽŽŽŽ^

ŽŽŽŽŽŽŽ

ŽŽŽŽŽ

d^'dZŽŽŽŽŽ

dŽŽŽ^'dŽŽ'Ž

>KKWŽŽŽ^'d

ŽŽ^'dŽd^'d

hŽŽŽŽŽ

^'dhŽŽ

ŽŽŽŽŽŽŽZ

ŽZŽŽŽ



,ŽZŽŽŽ

ŽŽd

ŽŽ

ŽEŽZZ & W&Ž&

  



dŽŽŽZŽŽŽ

ŽŽ

Ž^WtŽ&&ŽŽ

d^WtŽ&Z

Ž

ŽŽŽ^&WŽŽ^&W

Ž&ZZZ,Žd^&W

ŽŽŽŽŽ&Ž

>KŽŽZZ,Ž

>KŽŽŽ^&WŽŽŽŽ



Z&ZE^

dŽŽŽŽ

Dd,KK&E>z^/^

d'Kd,/ŽŽ>KŽŽŽŽŽŽ^Ž

ŽŽŽŽŽŽŽdŽŽ

ŽŽŽŽ

'Kd,/ŽŽ&

Z&ŽW

dŽŽŽŽZŽ&W

ŽŽŽŽŽŽŽŽŽŽ

ŽŽŽZŽŽ

ZdŽŽ

ŽŽŽŽŽŽŽ

ŽŽ&ŽŽŽŽ

ŽŽŽŽŽŽZŽŽŽ

ŽŽŽŽŽŽŽ

ŽŽŽ&Žd

ŽŽŽŽŽhŽŽ

ŽŽŽŽŽhŽ

ŽŽŽ>KŽŽŽ

ŽŽŽŽŽ>Kh

Z,>Ž

dŽ'Kd,/,Ž,ŽŽŽŽh

ŽŽdŽŽŽŽ

Ž

ŽEŽZZ & W&Ž&

  



ZŽŽ

dŽŽ'Kd,/ŽŽŽŽŽŽ

^ŽŽŽŽŽ

^'d

'Kd,/ŽŽdŽŽ^'dŽŽŽ

ZŽŽŽŽŽŽŽŽ

^&WŽŽ

ŽŽŽ^&WŽŽ^&W

Ž&ZZ,ŽŽ

ŽŽ^&WŽŽZŽ&



t

 t^&W^&WŽŽ

  ^&WZ/Z

  ŽŽŽ^&W

 dh&dZ

W ŽŽ^&W

 ,&dZ

W ŽŽŽŽ

 ,&Z,dZ

s ŽŽŽŽŽ



DŽŽŽŽŽZ

ŽŽŽŽŽŽŽŽŽ

ŽŽŽ^&WŽŽŽŽ&&d^&W

Ž&ŽŽŽŽŽŽ

ŽŽŽ^&WŽŽ



ŽEŽZZ & W&Ž&

  



Z^h>d^

d'Kd,/ŽŽ&ZŽŽŽ

ŽŽŽŽ&&ŽŽŽ

ŽŽŽdŽZ

ŽŽŽ,ŽŽZŽ

ŽŽŽŽ

ŽdZŽŽŽ

ŽŽŽZŽŽ



KE>h^/KE

dZŽ'Kd,/Ž

ZŽŽŽŽŽŽ

ŽŽŽŽ

ŽŽZ



WWE//^

&'Kd,//&Žd

& 'Kd,/ZŽd

Figure Fl: Refueling Floor Differential Pressure for Test Case n Q) 0.25 nc:

Qi" er

J z

~

0

0 m

~

U) 0 I 0

0

~

V1

0

~

0 QC

~ -0.25

.~

~

J

~ ~

~ Q) a.. n

r

~ 3l'1) c:

J

~

~

-0.5

"'T1 Ci

"'ti Q)

-0.75 (JQ n>

"'T1 V1 0

"'T1

~

-1 0 500 1000 1500 2000 2500 3000 3500 4000 Time after RB Isolation {s)

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Flow Paths - Table 3 Flow Fwd. Rev. Critical Exit Drop Homog.

Path Loss Loss Comp. Flow Loss Breakup Flow

  1. Coeff. FF Coeff. FF Opt. Model Coeff. Model Opt.

1 2.85 2.85 OFF OFF 0. OFF OFF 2 2.85 2.85 OFF OFF 0. OFF OFF 3 2.85 2.85 OFF OFF 0. OFF OFF 4 2.85 2.85 OFF OFF 0. OFF OFF 5 2.85 2.85 OFF OFF 0. OFF OFF 6 2.85 2.85 OFF OFF 0. OFF OFF 7 2.85 2.85 OFF OFF 0. OFF OFF 8 2.85 2.85 OFF OFF 0. OFF OFF 9 2.85 2.85 OFF OFF 0. OFF OFF 10 2.85 2.85 OFF OFF 0. OFF OFF 11 2.85 2.85 OFF OFF 0. OFF OFF 12 2.85 2.85 OFF OFF 0. OFF OFF 13 2.85 2.85 OFF OFF 0. OFF OFF 14 2.85 2.85 OFF OFF 0. OFF OFF 15 160.1 1e+60 OFF OFF 0. OFF OFF 16 160.1 1e+60 OFF OFF 0. OFF OFF 17 1e+60 0.38 OFF OFF 0. OFF OFF 18 1e+60 0.38 OFF OFF 0. OFF OFF 19 0.38 1e+60 OFF OFF 0. OFF OFF 20 0.38 1e+60 OFF OFF 0. OFF OFF 21 1e-60 1e-60 OFF OFF 0. OFF OFF 22 1e-60 1e-60 OFF OFF 0. OFF OFF 23 1e-60 1e-60 OFF OFF 0. OFF OFF 24 1e-60 1e-60 OFF OFF 0. OFF OFF 25 1e-60 1e-60 OFF OFF 0. OFF OFF 26 1e-60 1e-60 OFF OFF 0. OFF OFF 27 1e-20 1e-20 OFF OFF 0. OFF OFF 28 1e-20 1e-20 OFF OFF 0. OFF OFF 29 1e-20 1e-20 OFF OFF 0. OFF OFF 30 1e-20 1e-20 OFF OFF 0. OFF OFF 31 345.5 345.5 OFF OFF 0. OFF OFF 32 683. 683. OFF OFF 0. OFF OFF 33 240.8 240.8 OFF OFF 0. OFF OFF 34 714.8 714.8 OFF OFF 0. OFF OFF 35 2091.6 2091.6 OFF OFF 0. OFF OFF 36 193.3 193.3 OFF OFF 0. OFF OFF 37 345.5 345.5 OFF OFF 0. OFF OFF 38 683. 683. OFF OFF 0. OFF OFF 39 240.8 240.8 OFF OFF 0. OFF OFF 40 714.8 714.8 OFF OFF 0. OFF OFF 41 2091.6 2091.6 OFF OFF 0. OFF OFF 42 193.3 193.3 OFF OFF 0. OFF OFF 43 343.2 343.2 OFF OFF 0. OFF OFF

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Flow Paths - Table 3 (cont.)

Flow Fwd. Rev. Critical Exit Drop Homog.

Path Loss Loss Comp. Flow Loss Breakup Flow

  1. Coeff. FF Coeff. FF Opt. Model Coeff. Model Opt.

44 516. 516. OFF OFF 0. OFF OFF 45 260.8 260.8 OFF OFF 0. OFF OFF 46 678.5 678.5 OFF OFF 0. OFF OFF 47 19201.8 19201.8 OFF OFF 0. OFF OFF 48 141.7 141.7 OFF OFF 0. OFF OFF 49 343.2 343.2 OFF OFF 0. OFF OFF 50 516. 516. OFF OFF 0. OFF OFF 51 260.8 260.8 OFF OFF 0. OFF OFF 52 678.5 678.5 OFF OFF 0. OFF OFF 53 19201.8 19201.8 OFF OFF 0. OFF OFF 54 141.7 141.7 OFF OFF 0. OFF OFF 55 1e-10 1e-10 OFF OFF 0. OFF OFF 56 1e-10 1e-10 OFF OFF 0. OFF OFF

/2.85 57 2.85 OFF OFF 0. OFF OFF

\1e+20

/2.85 58 2.85 OFF OFF 0. OFF OFF

\1e+20 59 1e-60 1e-60 OFF OFF 0. OFF OFF 60 1e-60 1e-60 OFF OFF 0. OFF OFF 61 1e-60 1e-60 OFF OFF 0. OFF OFF 62 1e-60 1e-60 OFF OFF 0. OFF OFF

/2.85 63 2.85 OFF OFF 0. OFF OFF

\1e+20

/2.85 64 2.85 OFF OFF 0. OFF OFF

\1e+20 65 2.85 2.85 OFF OFF 0. OFF OFF 66 2.85 2.85 OFF OFF 0. OFF OFF 67 2.85 2.85 OFF OFF 0. OFF OFF 68 2.85 2.85 OFF OFF 0. OFF OFF 69 2.85 2.85 OFF OFF 0. OFF OFF Thermal Conductors Cond Vol Srf Vol Srf Cond S. A. Init. Grp

  1. Description A Opt B Opt Type (ft2) T.(F) I/X #

1 U2 Base - 517 1 2 2 3 5 11539. 103. X 2 U2 517 - 545 2 2 3 3 2 11641. 103. X 3 U2 545 - 570 3 2 4 3 4 9799. 103. X 4 U2 570- 589 4 2 5 3 1 8801. 103. X 5 U2 589 - Refuel 5 2 11 3 5 10064. 103. X 6 U3 Base - 517 6 2 7 3 5 11539. 103. X 7 U3 517 - 545 7 2 8 3 2 11642. 103. X 8 U3 545 - 570 8 2 9 3 4 9799. 103. X 9 U3 570- 589 9 2 10 3 1 8801. 103. X 10 U3 589 - Refuel 10 2 11 3 5 10064. 103. X

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Thermal Conductors (cont.)

Cond Vol Srf Vol Srf Cond S. A. Init. Grp

  1. Description A Opt B Opt Type (ft2) T.(F) I/X #

11 U2 - U3 Base 1 1 6 1 8 6124. 103. X 12 U2 - U3 517 2 1 7 1 6 3000. 103. X 13 U2 - U3 545 3 1 8 1 5 2574. 103. X 14 U2 - U3 570 4 1 9 1 5 1188. 103. X 15 U2 - U3 589 5 1 10 1 7 1917. 103. X 16 U2 Base - Adj 1 1 1 4 3 36519. 103. I 17 U2 517 - Adj 2 1 2 4 3 9698. 103. I 18 U2 545 - Adj 3 1 3 4 3 9217. 103. I 19 U2 570 - Adj 4 1 4 4 3 5220. 103. I 20 U2 589 - Adj 5 1 5 4 3 8031. 103. I 21 U3 Base - Adj 6 1 6 4 3 35021. 103. I 22 U3 517 - Adj 7 1 7 4 3 9698. 103. I 23 U3 545 - Adj 8 1 8 4 3 9217. 103. I 24 U3 570 - Adj 9 1 9 4 3 5220. 103. I 25 U3 589 - Adj 10 1 10 4 3 8031. 103. I 26 U2 Base - DW 1 1 1 8 9 9068. 103. I 27 U2 517 - DW 2 1 2 8 11 4842. 103. I 28 U2 545 - DW 3 1 3 8 12 3382. 103. I 29 U2 570 - DW 4 1 4 8 11 1657. 103. I 30 U2 589 - DW 5 1 5 8 10 1838. 103. I 31 U3 Base - DW 6 1 6 11 9 9068. 103. I 32 U3 517 - DW 7 1 7 11 11 4842. 103. I 33 U3 545 - DW 8 1 8 11 12 3382. 103. I 34 U3 570 - DW 9 1 9 11 11 1657. 103. I 35 U3 589 - DW 10 1 10 11 10 1838. 103. I 36 U2 Base - Torus 1 5 1 7 15 32000. 103. I 37 U2 Base - Pipes 1 6 1 7 16 5152. 103. I 38 U2 517 - Pipes 2 6 2 7 16 793. 103. I 39 U2 545 - Pipes 3 6 3 7 16 445. 103. I

/32000.

40 U3 Base - Torus 6 5 6 10 15 103. I

\1e-06 41 U2 545 - SFP 3 2 3 9 11 2008. 103. I 42 U2 570 - SFP 4 1 4 9 11 2942. 103. I 43 U2 589 - SFP 5 1 5 9 11 5064. 103. I 44 U3 545 - SFP 8 2 8 12 11 2008. 103. I 45 U3 570 - SFP 9 1 9 12 11 2942. 103. I 46 U3 589 - SFP 10 1 10 12 11 5064. 103. I 47 Refuel - U2 DW 11 3 11 8 12 1452. 103. I 48 Refuel - U3 DW 11 3 11 11 12 1452. 103. I 49 Refuel - TB 11 1 11 13 13 662. 103. I 50 Refuel -Outside 11 1 11 14 13 22830. 103. I 51 Refuel - Roof 11 2 11 15 14 34000. 103. I 52 U2 SFP - Refuel 11 3 11 9 17 1353. 103. I 53 U3 SFP - Refuel 11 3 11 12 17 1353. 103. I

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Forcing Function Tables FF# Description Ind. Var. Dep. Var. Points 0 Constant - - 0

/5 1T SGT Flow Ind. Var. Dep. Var. \6 2T OA Temperature Ind. Var. Dep. Var. 4 3T Cond HTC Coefs Ind. Var. Dep. Var. 4 4T Pump Rm Cooler Ind. Var. Dep. Var. 13 5T RB Valve Positi Ind. Var. Dep. Var. 5 6T LOCA SP Temp Ind. Var. Dep. Var. 19 7T LOCA DW Temp Ind. Var. Dep. Var. 4 8T SFP Evaporation Ind. Var. Dep. Var. 4 9T OA Humidity Ind. Var. Dep. Var. 4 Data Files File Inter- Output Detail Format

  1. Name Type polate Files Level Option

/DRE Drawdown Te 1 \DRE Drawdown Ca TIME YES SINGLE FULL Fluid Boundary Conditions - Table 1 Press. Temp. Flow S J ON OFF Elev.

BC# Description (psia) FF (F) FF (lbm/s) FF P O Trip Trip (ft) 1P E Wall Ambient 14.7 1 2T N N 517.5 2F E Wall Ambient 14.7 1 2T v1e10 N N 517.5 3P W Wall Ambient 14.7 1 2T N N 517.5 4F W Wall Ambient 14.7 1 2T v1e10 N N 517.5 5P Exhaust Ambient 14.7 1 2T N N 517.5 6F Exhaust Ambient 14.7 1 2T v1e10 N N 517.5

/0.95 /100 /0.015 7F U2 SFP Evap \1.945 \125 \0.07 8T N N 613.

/0.95 /100 /0.015 8F U3 SFP Evap \1.945 \125 \0.07 8T N N 613.

9P S Wall Ambient 14.7 1 2T N N 517.5 10F S Wall Ambient 14.7 1 2T v1e10 N N 517.5 11P N Wall Ambient 14.7 1 2T N N 517.5 12F N Wall Ambient 14.7 1 2T v1e10 N N 517.5

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Cooler/Heater Heater On Off Flow Flow Heat Heat Cooler Vol. Trip Trip Rate Rate Rate Rate Phs Ctrlr

  1. Description # # # (CFM) FF (Btu/s) FF Opt Loc

/17.3 1H U2 Basement 1 1 \145.

VTI 1

/41.2 2H U2 Ground Flr 2 1 \42.4 VTI 2

/126.

3H U2 Mezzanine 3 1 \95.4 VTI 3

/69.6 4H U2 Main Flr 4 1 \59.2 VTI 4 5H U2 Reactor Fl 5 1 20.8 VTI 5 6H U3 Basement 6 1 17.3 VTI 6 7H U3 Ground Flr 7 1 41.2 VTI 7 8H U3 Mezzanine 8 1 126. VTI 8 9H U3 Main Flr 9 1 69.6 VTI 9 10H U3 Reactor Fl 10 1 20.8 VTI 10 11H Refueling Flr 11 1 61.5 VTI 11

/0.

12C Pump Rm Coole 1 1 \1.

4T VTE 1 Conductor Surface Options - Table 1 Surf Heat Cnd/ Sp Nat For Opt Transfer Nominal Cnv Cnd Cnv Cnv Cnv

  1. Description Option Value FF Opt Opt HTC Opt Opt 1 Interior Wall Direct 3T DLM-FM VERT SURF OFF 2 Int Ceiling Direct 3T DLM-FM FACE DOWN OFF 3 Int Floor Direct 3T DLM-FM FACE UP OFF

/Sp Temp /93.

4 Insulated \Sp Heat \0.

5 Torus Direct 3T DLM-FM HORZ CYL OFF 6 Pipes Direct 3T DLM-FM HORZ CYL OFF

/98. /

7 LOCA SP Temp Sp Temp \1. \6T

/150. /

8 LOCA DW Temp Sp Temp \1. \7T

/100.

9 LOCA SFP Temp Sp Temp \125.

10 Normal SP Temp Sp Temp 98.

11 Normal DW Temp Sp Temp 150.

/100.

12 Normal SFP Temp Sp Temp \125.

/Sp Temp /93.

13 Turbine Bldg \Sp Heat \0.

14 Outside Air Sp Temp 93.

/93.

15 Roof Sol-Air T Sp Temp \127.

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)

)LOH&RPSDULVRQ'RXEOHHQWULHVLQGLFDWHGLIIHUHQFHV 

&XUUHQW)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

?&RPSDUH)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ&DVH*7+

-XO

  • 27+,&9HUVLRQ 4$ 2FW

Function 1T SGT Flow Ind. Var.:

Dep. Var.:

Ind. Var. Dep. Var. Ind. Var. Dep. Var.

0. 0. 1000. 0.

/1030. /3400. /1067. /3975.

\1033. \0. \1063. \3400.

/1e+06 / /

\1100.

3975. \1e+06 \3975.

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 87HPSHUDWXUHV 79 79 79 79 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 5HIXHO)ORRU7HPSHUDWXUH 79







7HPSHUDWXUH ) 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 83UHVVXUHV 35 35 35 35 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 5HIXHO)ORRU3UHVVXUH 35







3UHVVXUH SVLD 





     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 5HIXHO)ORRU'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 8'LIIHUHQWLDO3UHVVXUHV FY& FY& FY& FY& FY&





'3 LQZJ







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 /HDNDJH)ORZV

)9 )9 )9 )9







)ORZ OEPV







     

H

7LPH V

  • 27+,& 4$ -XO

&DOFXODWLRQ1R'5(5HY $SSHQGL[) 3DJH)RI)



-XO

  • 27+,&9HUVLRQ 4$ 2FW

)LOH&?8VHUV?MOZULJKW?'RFXPHQWV?([HORQ$67?'UHVGHQ'UDZGRZQ?*RWKLF?)LQDO?'5('UDZGRZQ7HVW&DVH*7+

 6%*76DQG7RWDO/HDNDJH)ORZV

)9 )9 FY&







)ORZ OEPV









     

H

7LPH V

  • 27+,& 4$ -XO

Calculation No. DRE19-0015 Rev. 0 Attachment G Page Gl of G2 INITIAL REACTOR BUILDING HUMIDITY SENSITIVITY STUDY

1. PURPOSE The purpose of this attachment is to determine the sensitivity of the Dresden Secondary Containment drawdown time to the initial Reactor Building humidity.
2. INPUTS The inputs used in this attachment are the same as those from Section 2 in the body of the calculation.
3. ASSUMPTIONS The only assumption from the body of the calculation modified for this sensitivity case is the use of the maximum humidity of 90% during normal conditions (Ref. 3) for the initial relative humidity in the Reactor Building instead of the minimum humidity of 20% from Assumption 5.
4. REFERENCES The references are the same as those used in the body of the calculation.
5. METHOD OF ANALYSIS The GOTHIC models for each of the four cases from the body of the calculation were modified to incorporate an initial RB relative humidity of 90%. The only changes made to the Gothic models are the humidity value used in the initial conditions table and the table used for Function 9T.

These changes are show in the tables below. Function 9T specifies the outside air humidity in terms of a ratio, which is then multiplied by the relative humidity of 100% specified for the outside air boundary conditions. (The outside air boundary conditions are used to maintain the initial RB conditions in the GOTHIC model during the first 1000 seconds prior to the LOCA.)

Volume Initial Conditions Total Vapor Liquid Relative Liquid Liq. Vapor Liquid Vol Pressure Temp. Temp. Humidity Volume Comp. Tracer Tracer

  1. (psia) (Fl (Fl (\) Fract. Set Set Set

/90.

def 14. 7 103. 103.

\20.

0. NONE NONE NONB FUnction 9T OA Humidity Ind. var.:

Dep . Var . :

Ind. Var. Oep. var. Ind. var. Oep. Var.

/0.9 /0.9

o. \0.2 1000.

\0.2 1000 .01 0. le+06 0.

ŽEŽZZ ' W'Ž'

  





Z^h>d^

dŽŽZŽ

ŽŽŽŽdŽŽŽŽ

ZdŽŽŽŽ

ŽŽŽ

ŽŽdŽŽ

ŽŽZŽŽŽ

ZŽŽ



d'ZŽŽd

   

/Z,

^ ^ t t

EŽt t EŽt t

    

    





KE>h^/KE

dŽŽZŽŽ

ŽdŽŽŽŽ

Z,ŽŽ

ZŽŽŽŽ