ML20216J570

From kanterella
Jump to navigation Jump to search
Rev 2 to CPSES Unit 2 Cycle 5 Colr
ML20216J570
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 09/16/1999
From: Brozak D, Choe W, Maier S
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To:
Shared Package
ML20216J566 List:
References
NUDOCS 9910050276
Download: ML20216J570 (20)


Text

~ _.

6.,* , _ .

, ./

1

. ERX 99 001. Rev. 2' ,

4 4 I

CPSES UNIT 2 CYCLE 5 CORE OPERATING LIMITS REPORT September 1999 Prepared: ~-- 5 Date: '

'#fli Daniel E. Brozak [ I Reactor Physics i

Approved:

N NA Date: /f/f7 Stephen M. Maier Reactor Physics Supervisor Approved: h- Date:

' Whee G. C /

Safety Anal is Manager o

i i

'9910050276 991001 -.

PDR ADOCK 05000446 p PDR' .

l L_ __

<, ~ ~. -

DISCLAIMER The information contained in.this report was prepared for the specific requirement of TXU Electric and may not be appropriate for use in situations other than those

' for which it was specifically prepared. TXU Electric PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER,

~REGARDING THIS REPORT OR ITS USE INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON HERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available. TXV Electric does not authorize its use by others, and any such use is forbidden except with the prior written approval of TXV Electric. ' Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall TXU Electric have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

11 Revision 2

.. ..n .-

COLR fcr CPSES Unit 2 Cycle 5 TABLE OF CONTENTS

.. DISCLAIMER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 TABLE OF CONTENTS

........................... iii j . LIST OF FIGURES ............................ iv SECTION 28GE 1.0 CORE OPERATING LIMITS REPORT .................. 1 2.0 OPERATING LIMITS ........................ 2 2.1 SAFETY LIMITS ...................... 2

. 2.2 - SHUTDOWN MARGIN ..................... 2 2.3 ; MODERATOR TEMPERATURE COEFFICIENT ............ 2 2.4L R00GROUPALIGNENTLIMITS ................ 3

.2.5 SHUE0WN BANK INSERTION LIMITS ............ . 3 2.6 -CONTROL BANK INSERTION LIMITS ........ ..... 4 2.7' PHYSICS TESTS EXCEPTIONS - MODE 2 ............ 4 2.8 HEAT FLUX HOT CHANNEL FACT 9R . . ._. . .,. . . . . . . . . 4 2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR ......... 5 2.10 - AXIAL FLUX DIFFERENCE .................. 6 2.11. REACTOR TRIP SYSTEM INSTRUMENTATION ........... 6 2.12 .RCS PRESSURE, TEMPERATURE. AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS 7 l

2.13 BORON CONCENTRATION ................... 8 I i

i iii Revision 2

COLR for CPSES Unit 2 Cycle 5

~

(. .

C

' LIST OF FIGURES j I

FIGURE i

IMGE 1 REACTOR CORE SAFETY LIMITS .................. 9 2 R00 BANK INSERTION LIMITS VERSUS THERMAL POWER . . . . . . . . 10

-(:

3- K(Z) - NORMALIZED Fa(Z) AS A FUNCTION OF CORE HEIGHT .......................... 11 4 .W(Z) AS A FUNCTION OF CORE HEIGHT -

'(MAXIMUM) ........................... 12 5' W(Z) AS A FUNCTION OF CORE HEIGHT -

(150 M0/MTU) .......................... 13 6 W(Z) AS A FUNCTION OF CORE HEIGHT -

(10.000 MWD /MTU) ....................... 14 4

7 ..- W(Z) AS A FUNCTION OF CORE HEIGHT -

(20.000 MWD /MTU) ....................... 15

'8 . AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION

'.'0F RATED THERMAL POWER . . . . . . . . . . . . . . . . . . . . . 16 p

I i

(

'iv Revision 2

COLR far CPSES Unit 2 Cycle 5 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPSES UNIT 2 CYCLE 5 has been prepared

-in accordance with the requirements of Technical Specification 5.6.5 as described in Amendment 67 to the CPSES Technical Specifications.

The Technical Specifications affected by this report are listed below:

SL 2.1 SAFETY LIMITS LCO 3.1.1 SHlTIDOWN MARGIN LCO 3.1.3 MODERATOR TEMPERATURE C0 EFFICIENT LC0 3.1.4 R0D GROUP ALIGNMENT LIMITS LC0 3.1.5 $HUTDOWN BANK INSERTION LIMITS

_i. LCO 3.1.6 CONTROL BANK INSERTION LIMITS q LCO 3.1.8 PHYSICS TESTS EXCEPTIONS MODE 2 t

4 LCO 3.2.1 HEAT FLUX HOT CHANNEL FACTOR i LCO 3.2.2 NUCLEAR ENTHALPY RISE H0T CHANNEL FACTOR LC0 3.2.3 AXIAL FLUX DIFFERENCE

'LCO 3.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION

]

LC0 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS LCO3.911 BORON CONCENTRATION i i

i 1

Revision 2

^

COLR for CPSES Unit 2 Cycle 5 3

2.0 OPERATING LIMITS c .

The cycle specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Technical Specification 5.6.5b, Items 5 and 9 throt.;n 19. - These limits have been determined such that all applicable limits of the safety analysis are met.

2.1 SAFETY LIMITS (SL 2.1) 2.1.1 In H0 DES 1 and 2, the combination of thermal power, reactor coolant system highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 1.

2.2 SHUTDOWN MARGIN (SDM) (LC0 3.1.1) 2.2.1. The SDH shall be greater than or equal to 1.3% Ak/k in MODE 2 with K.,, < 1.0, MODES 3, 4, and 5.

2.3 MODERATOR TEMPERATURE COEFFICIENT (MTC) (LC0 3.1.3))

2.3.1 The MTC upper and lower limits, respectively, are:

The .BOL/AR0/HZP MTC shall be less positive. than +5 pcm/ *F.

The EOL/AR0/RTP MTC shall be less negative than -40 pcm/ F.

I!

2 Revision 2

ha

' ~

COLR for CPSES Unit 2 Cycle 5 i L

L ,

2.3.2 SR 3.1.3.2 l

l The HTC surveillance limit is:

{

l The 300 pps/AR0/RTP MTC should be less negative than or equal to -31 pcm/ 'F.

The 60 pps/AR0/RTP. MTC should be less negative than or equal to -38 pcm/ F. 4 i

where: BOL stands for Beginning of Cycle Life '

AR0 stands for All Rods Out HZP stands for Hot Zero THERMAL POWER 1

E0L stands for End of Cycle Life RTP stands for RATED THERMAL POWER a

2.4 ROD GROUP ALIGNMENT LIMITS (LC0 3.1.4) 2.4.1 The SEC ecil be greater than or equal to it3% ik/k in MODES 1 and 2.

2.5 SHUTDOWN BANK INSERTI0t! LIMITS (LC0 3.1.5) 2.5.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the  ;

interval of 222 and 231 steps withdrawn, inclusive.

I 3

Revision 2

g 1

COLR for'CPSES Unit 2 Cycle 5 2.6 CONTROL BANK INSERTION LIMITS (LC0 3.1.6) 2.6.1 . The control banks shall be limited in physical insertion as shown in Figure 2.

2.6.2 -The control banks shall always be withdrawn and inserted in the prescribed sequence. For. withdrawal, the sequence is control bank A, control bank B, control bank C, and control bank D. The insertion

. sequence is the reverse of the withdrawal sequence.

2.6.3 A 115 step Tip to Tip' relationship between each sequential control

)

' bank shall be maintained.

2.7 PHYSICS TESTS EXCEPTIONS MODE 2 (LCO 3.1.8) 2.7.1~ The SDH shall be greater than or equal to 1.3% Ak/k in MODE 2 during PHYSICS TESTS.

t 2.8 HEAT FLUX HOT CHANNEL FACTOR 2 (F (Z)) (LC0 3.2.1)*'

Fa*

2.8.1 Fa(Z) s [K(Z)] for P > 0.5 P ,

l Fa" '

Fa(Z) . s [K(Z)] for P s 0.5 l 0.5 l

where: P= THERMAL POWFR l RATED 1HERMAL POWER 4

Revision 2

i. . COLR far CPSES Unit 2 Cycle 5 l

2.8.2 - Fa* = 2.42 2.8.3 K(Z) is provided in Figure 3.

2.8.4 - Maximum elevation dependent W(Z) values are given in Figure 4.

Figures 5, 6, and 7 giva burnup dependent values for W(Z). Figures 5 l

- 6, and 7 can be used in place of Figure 4 to interpolate or extrapolate (via a three point fit) the W(Z) at a particular burnup.

2.8.5 - SR 3.2.1.2 1

  • If the two most recent Fa(Z) evaluations show an increase in the expression C

, maximum over Z [ Fa (Z) / K(Z) ] l i

Fa"(Z) shell be increased by a factor of 1.02. This requirehant is )

I for all cycle bur.'ups.

2.9 .NUCLEARENTHALPYRISEHOTCHANNELFACTOR(F5J (LCO 3.2.2) 2.9.1 F"s s F*on [1 + PF , (1-P)]

where: P= THERMAL POWER RATED THERMAL POWER 2.9.2 F " ,n = '1.55 H- ..

2.9.3 PF , = 0.3 L 5 Revision 2 8.

~

COLR for CPSES Unit 2 Cycle 5 2.10 A'IAL a FLUX DIFFERENCE (AFD) (LC0 3.2.3) 2.40.1 The AFD target band is +5%, -12% at 100* kiF linearly expanding to

+20%, -17% at 50% RTP. Below 50% RTP, the'AFD target band remains I

constant at +20% -17*. I 2.10.2 The AFD Acceptable Operation Limits are provided in Figure 8.

2.11 REEIOR 1 RIP SYSTEM (RTS) INSTRUMENTATION (LCO 3.3.1)

P.11.1 The numerical values pertaining to the Overtemperature N 16 reactor trip i

setpoint are listed below: j l

K3 = 1.150 K, = 0.0147 /'F K3 = 0.00077 /psig T/ = 560.6 'F P1 a 2235 psig T3 a 10 sec T s 3 sec f (aq) = 0.00 - {(q,-q ) + 65t}

i when (q,-q ) s -65% RTP

= Of when -65% RTP < (q,-q ) < +5.1% RTP

= 2.28 - {(qt-q.) - 5.1%y when (q,-q ) 2 +5.1% RTP i

I I

6 Revision 2

]

COLR for CPSES Unit 2 Cycle 5 2,12 RCS PRESSURE. TEMPERATURE. AND FLOW DEPARTURE FROM NUCLEATE BOILING (DIE) LIMITS (LC0 3.4.1) 2.12.1 RCS DNB parameters for pressurizer pressure RCS average temperature, and RCS total flow rate shall be within the surveillance limits specified below:

2.12.2 SR 3.4.1.1 Pressurizer pressure a 2220 psig (4 channels) 2 2222 psig (3 channels)

The pressurizer pressure limits correspond to the analytical limit of 2205 psig used in the safety analysis with allowance for measurement uncertsinty. These uncertainties are based on the use of control board indications and the number of ava11aMe channels.

4 2.12.3 SR 3.4.1.2 RCS average temperature s 592 'F '(4 channels) i s 592 'F (3 channels)

The RCS average temperature limits correspond to the analytical limit of 595.7 'F used in the safety analysis with allowance for measurement '

uncertainty. 'These uncertainties are based on the use of control board indications and the number of available channels.

7 Revision 2 t

~ '

COLR for CPSES Unit 2 Cycle 5

~

~

2.12.4 SR 3.4.1.3-i t

The RCS total flow rate based on precision heat balance shall be 2 408,000 gps.

2.12.5 SR 3.4.1.4 I

The RCS total flow rate based on precision heat balance shall j be 2 408,000 gps, l i The required RCS flow, based on an elbow tap differential pressure measurement prior to MODE 1 after the refueling outage, shall be greater than 317,000 gpe.

2. J BORON CONCENTRATION (LC0 3.9.1).

2.13.1 The required refueling boron concentration is 2400 ppm.

1 l

[

L 8

Revision 2

E.p "

, )

COLR fer CPSES thiit 2 Cycle 5 FIGURE 1 Y .

, REACTOR CORE SAFETY 1.IMITS 670

a. :

i- g N N UMCCEPTABLE

! P =_2385'p.ig OPERATION 650

\

N ^

. e' ~ x a 630 'N N , - - , .

^

.20 N N r N N

, . . 4, N

N x

l,10 3< ,,0 .

x x s s

ACCEPTABLE OPERATION 590

\ ,

580

,570

- i l

560

-l l

550 0 20 40 60 '- ' 80 100 ..

120 l

PERCENT OF RATED THERMAL POWER t-I l l

I

'9 Revision 2 i L

I. .

p . . ..

l-COLR for CPSES Unit 2 Cycle 5 L

FIGURE 2

. ROD BANK INSERTION LIMITS VERSUS THERMAL POWER l

I 240 l

-220 ' (27.3,222) ,e (81.6.222) 2 l l'/

/ /

200

  1. 7,

s/ r> >> >

l L ss; i V BANK B I l/

A l /

180

  1. ' I 'i ' 7' ff  ! /

^

/ /

/ l /i 160

-- (0.164) f ,, ,,,,

I h lI IIiI

  • i /l gg i / i ,,(100,146) /

i Ii /  !  ! !tI t  !!/

e ;V f/

M BANK C  ! gj h120 #I /

E M /

I t/-

Il k100 #' #

  • t / i ti/ i I f IV I

-k ._____

/ /i . 1

' '- M' ' '

- m 80 O '4.'._'_  !'I V

i11'  !!

O /

E / / BANK D 60

  1. ' ^'

t/i if/ i

/il i/ I

- (0.49) j

!l/

[ j ,

I

!/ . I

/l i 20 i!t i t/ i liI Z

~

0 0 10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED THERMAL POWER

. NOTES: 1. Fully withdrawn shall be the condition where control rods

-are'at a position within the interval of 222 and 231 steps

! withdrawn. inclusive.

2. Control Bank A shall be fully withdrawn.

r

.4 10 1

Revision 2 l

I . .. .

COLR for CPSES Unit 2 Cycle 5 l

FIGURE 3 1 .

. K(Z) NORMALIZED Fo(Z) AS A FUNCTION OF CORE HEIGHT 1.1 11lll11 l 111ll111 (0.0.1.0) (6.0,1.0) 1.0 t 'M.1.I I I IIl ll 0.9 I D (12.0.0.925) 0.8 O

o 0.7 O  !

0.6

.J l l

l g 0.5 Z .

Q 0.4 E I 0.3 0.2 l  !!

I 0.1 I I l I  !!! l lI  !

0.0 I O 1 2 3 4 5 6 7 8 9 10 11 12 CORE HEIGHT (FEET)

Axial Axial Axial Axial Node K(Z) Node K(Z) Node K(Z) Node K(Z) ,

61 0.9250 53 0.9450 45 0.9550 37 0.9850 60 0.9275 52 0.9475 44 0. % 75 36 0.9875 59 0.9300 0.9500 43 0.9700 35 0.9900 51 58 0.9325 50 0.9525 42 0.9725 34 0.9925 57 0.9350 49 0.9550 41 0.9750 33 0.9950 56 0.9375 48 0.9575 40 0.9775 32 0.9975 i 55 0.9400 47 0.%00 39 0.9800 1 31 1.0000 l 54 0.9425 46 0.9625 38 0.9825  !

Core Height (ft) = (Node 1)

  • 0.2 j I

t 11 Revision 2 l

c:

COLR for CPSES Unit 2 Cycle 5 FIGURE 4 I .

., . W(Z) AS A FUNCTION OF CORE HEIGHT (MAXIMUM) 1.300 1.250

(

1.200

^

\

N- \

!1.150 -- -

2 I I I

'N #'N ~k

\ / '

Q/ I '

1.100 1.050  ;

1 t

1.000 l 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node W(Z) Node W(Z) Node W(Z)  !

52 61 - 41 1.138 30 1.120 19 1.149 J 51 1.129 40 1.137 29 1.128 18 1.151 )

50 1.132 . 39 1.136 28 1.134 17 1.156 49 1.133 38 1.134 27 1.139 16 1.165 48 1.130 37 1.132 26 1.144 15 1.177

-47 1.129 36 1.129 25 '1.147 14 1.188 46 1.130 35 1.125 24 1.150 13 1.199 45 1.132 34 1.117 23 1.152 12 1.208 44 -1.135 33 1.110 22 1.152 11 1.218 I l

43 1.137 32 1.108 21 1.151 1 10 .- )

42 1.138 31 1.112 20 1.150 Core Height (ft) = (Node - 1)

  • 0.2 12 Revision 2 i

}

re COLR fsr CPSES Unit 2 Cycle 5 FIGURE 5

. W(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD /MTU) 1.300

..M "I l 1.250 ,

I i I

1.200  !

1 i

'@ )

<N S \

2 3 l 3 1.150 '

Y 2 I NI l . h i d I \ .e d 1.'100 I \

^

[ I i

i l

i I

1.050 t

l l 1.000

! 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (F5T) TOP Axial Axial Axial Axial Hode W(Z) Node W(Z) Node W(Z) Node W(Z) 52 61 -

41 1.111 30 1.099 19 1.139 51 1.126 40 1.109 29 1.104 18 1.142 50 1.118 39 1.107 28 1.110 17 1.147 I. 49 1.114 38 1.105 27 1.115 16 1.154 48 1.112 37 1.101 26 1.121 15 1.160 l 47 1.112 36 1.096 25 1.125 14 1.167 46 1.113 35 1.091 24 1.129 13 1.172

.45 1.114 34 1.088 23 1.131 12 1.177 44 1.114 33 1.089 22 1.133 11 1.183 43 1.114 32 1.091 21 1.135 1 - 10 --

42 1.113 31 1.094- 20 1.137 Core Height (ft) = (Node 1)

  • 0.2 13 Revision 2

C  :.

COLR for CPSES. Unit 2 Cycle 5 v

FIGURE 6 l- .

, WCZ) AS A FUNCTION OF CORE HEIGHT L (10,000 mlD/HTV) 1.300

)

1.250 )

1 Y '

1.200

\

Q

\

\

S T

\

h.1.150 L 3 I l

%- l N f &y 1 .

I I '

-1.100  ;

1.050 l'.000 0 1 2 3 .4 5 6 7~ 8 9 10 11 12

< BOTTOM. CORE HEIGHT (FEET) TOP j

.1 l

l- Axial Axial. Axial . Axial

Node W(Z) Node W(Z) Node W(Z) Node W(Z) 52 61 - 41~ 1.119 30 1.111 19 1.142 51- 1.121 40 '1.118 29 1.118 18 1.146 50 - 1.115 39 1.117 28 1.123 17 1.152 49 1.112. 38 1.115 27 1.227 16 .1.159 48 l'.111. 37 1.112- .26 1.133 15 1.168 47 1.112 36 1.108 25 1.133 14 1.176

' 46 ' 1.114 35- 1.103 24 1.136 u 1.183 45 1.116 34 ' 1.09a ' :: 1.au 12 1.190 44 '1.118 33 ,1.0% 22 1.139 11 1.197 43 - 1.120 32 1.098 21 1.140 1 10 ---

l 42 1.120 - 31 1.104 20 1.141 l

l- Core Height (ft) = (Node 1)

  • 0.2 l

14 Revision 2 1

Li_.

{

L COLR for CPSES Unit 2 Cycle 5 FIGURE 7 l .

. W(Z) AS A FUNCTION OF CORE HEIGHT (20,000 MWD /MTU) 1.300 1

1.250 1

1.200 \ j N

5 h i

'!1.150 -

N 1 i _j _ l 3 1 __ i N fA 'h . l

\ / l

\. / l 1.100 1.050 1.000 0 -1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z). Node W(Z) Node W(7). Node W(Z) 52 61 -

41 1.138 30 1.120 19 1.149 51 1.129 40 1.137 29 1.128 18 1.151 50 1.132 39 1.136 28 1.134 17 1.156

- 49 1.133 38 1.134 27 1.139 16 1.165 48 1.130 37 1.132 26 1.144 15 1.177 47 1.129 36 1.129 25 1.147 14 1.188 46 1.130 35 1.125 24 1.150 13 1.199 45 1.132 34 1.117 23 1.152 12 1.208 44 1.135 33 1.110 22 1.152 11 1.218 43 1.137 32 1.108 21 1.151 1 - 10 --

42 1.138 31 1.112 20 1.150 Core Height (ft) = (Node 1)

  • 0.2 15 Revision 2 a.

COLR far CPSES Unit 2 Cycle 5 FIGURE 8 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100

( 19,90) (11,90) 90 UNCEPTBLE OPERATION

~~f

-[ "\\ UNACCEPTABLd OPERATION II I i! l / \ ~~ l I ! I I i I I I I I II 'I I I I I I 80

/

[_ l ACCEPTABLE OPERATION 70

/ A, g -  !

3 r

o j 7 a 60 ,f , g, J

/ 1 g - -

\i W i\ "i 50 t\

h o ( 35.50) i (28,50)

& i g 40 O i i

p.  ;

+ -

Z ,

+

8 g 30 l ,

W D. '

20 i

i 10 ,

l-0 l -40. 30 -20 10 0 10 20 30 40 DEVIATION FROV TARGET AXtAL FLUX DIFFERENCE (%) 1 I

l 16 ,

{ Revision 2

{

t L.