ML20086D643
| ML20086D643 | |
| Person / Time | |
|---|---|
| Site: | Comanche Peak |
| Issue date: | 11/19/1991 |
| From: | Janne R, Killgore M TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC) |
| To: | |
| Shared Package | |
| ML20086D640 | List: |
| References | |
| NUDOCS 9111260198 | |
| Download: ML20086D643 (17) | |
Text
, --
d p
,p
.nw
...+zn nowt~..,w re n.wspg e
it
[,
(
I I
i I
f I
I I
REACTOR ENGINEERING I
I
'r, b
??
,u 1
i
!}
w
. _= = = _=
be 7t/ ELECTRIC 31 n u,19s m,o<go...
.~ 3 ~R ns noaa: o Fv p
.--.sm--.-
'I
RXE-91-008 I
CPSES UllIT 1 CYCLE 2 CORE OPERATIllG LIMITS REPORT llovember 1991 David P.
Goodman i
o I
(lI I
l l
// !/' '7 /
Reviewed:
((
'/S d >((/>,5, Uate:
Mickey Killgore[
/
/
I Superv o,
Reac r Physics
/
hi W'
Date:
II - I T-9 l Approved:
/
Rafidall anne Manaq clear Fuel I
I I
I I
DISCLAIMER I
I The information contained in this report was prepared for the specific requirement of Texas Utilities Electric Company (TUEC),
and may not be appropriate for use in situations other than those for which it was specifically prepared.
TUEC PROVIDES 110
- JARRANTY llEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WilATSOEVER, REGARDING T11IS REPORT OR ITS USE, I!1CLUDING BUT NOT LIMITED TO ANY WARRI~ TIES ON MERCilANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
By making this report available, TUEC does not authorize its use by others, and any such use is forbidde' except with the prior written approval of TUEC.
Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein.
In no event shall TUEC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.
I I
11 I
I TADLE OF CONTENTS DISCLAIMER 11 TABLE OF CONTENTS iii LIST OF FIGURES iv I
SECTION
,I 1.0 CORE OPERATING LIMITS REPORT 1
l 2.0 OPERATING LIMITS 2
i 2.1 MODERATOR TEMPERATURE COEFFICIENT 2
l 2.2 SHUTDOWN ROD INSERTION LIMIT 3
2.3 CONTROL POD INSERTION LIMITS 3
l 2.4 AXIAL FLUX DIFFERENCE 3
i 2.5 HEAT FLUX HOT CHANNEL FACTOR 4
l 2.6 NUCLEAR ENTHALPHY RISE HOT CHANNEL FACTOR 5
I I
I i
iii l
l
LIST OF FIGURES FIGURE PAGE I
1 ROD DAllK I!1SERTIO!1 LIMITS VERSUS TilERMAL FOWER 6
2 AXIAL FLUX DIFFEREllCE LIMITS AS A FUllCTIOli OF RATED T!!ERMAL POWER 7
I 3
K(Z) - 110RMALI Z E D F; ( Z ) AS A FUllCT10!i OF CORE ilEIGitT 8
4 W(Z) AS A FUllCTION OF CORE llEIGi!T - MAXIMUM g
LOAD FOLLOW 9
5 W(Z) AS A FUllCTIO!! OF CORE HEIGHT -
1ee MWo,MTU 10 6
W(Z) AS A FUllCTION OF CORE IIEIGHT -
4000 MWD /MTU.
11
- I l
7 W(Z) AS A FUNCTION OF CORE HEIGilT -
9000 MWD /MTU 12 l
I I
l
20 LR tor CPSES Uf1IT 1 CYCLE 2 I
I 1.0 CQRE OPERATIUG LIMITS REJ1QEI This Core Operating Limito Report (COLR) f or CPSES Ul1IT 1 CYCLE 2 has been prepared in according with the requirements of Technical Specification 6.9.1.6.
The Tecnnical Specifications affected by this report are listed below:
3/4.1.1.3 Moderator Tempercture Coefficient 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference t
3/4.2.2 lleat Flux flot Channel Factor 3/4.2.3 fluclear Enthalpy Rise !!ot Channel Factor I
I l
I I
I CO LP For CPSES U!11T 1 CYCLE.
I 2.0 OPERAT!!!G LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.
Thase limits have been developed using the 11RC-approved methodologies specified in Technical Specifications 6.9.1.6.
I 2.1 Moderator Temocrature Coefficient (Specification 3/4.1.1.3) 2.1.1 The Moderator Teutperature Coef ficient (MTC) limits are:
The BOL/ARO/IlZP-MTC shall be less positive than
+5 pcm/*F.
Tne EOL/ARO/RTP-MTC shall be less negative than
- 4 0 pcm/ F.
I 2.1.2 The MTC surveillance limit is:
The 300 ppm /ARO/RTP-MTC should be less negative than or equal to -31 pcm/'F.
Where:
BOL stands for Beginning of Cycle Life ARO stands for All Rods out ilZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER I
I I
20LR f or CPSES UNIT 1 CYCLE 2 2.2 Shutdown Fod Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be fully withdrasn.
Fully withdrawn shall be tne condition where shutdown rods are at a posi. tion '.tithin the interval of 222 and 231 steps withdrawn, inclusive.
2.3.
Control Rod Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control banks shall be limited in physical insertion as shown in Figure 1.
I
' 2. 4 2XLql Flux Difference (Specification 3/4.2.1) 2.4.1 The AXIAL r' LUX DIFFERENCE (AFD) target band is
+3%,
-12%.
2.4.2 The AFD Acceptable Operation Limits are provided in Figure 2.
I 4I 3
4
._.. - -.~.
I
':OLR fcr CPSES UNIT 1 C'lCLE 2 l
(Specification 3/4.?.2) 2.5 Heat Flux Ilot Channel Factor F "I" F (Z) $
[K (Z)] for P > 0.5 P
RTP F3 (K(Z)
- P s 0.5 F (Z) <
e U.J where:
P=
THERMAL POW 1R I
RATED THERMAL POW 1 2.5.1 F "" = 2. 3 2 a
2.5.2 K(Z) is provided in Figure 3 l
r 2.5.3 Elewition dependent W(Z) values for load follow operation are given in Figure 4.
Figures 5, 6,
and 7 give burnup dependent f
values for W(Z).
Figures 5, 6,
and 7 can be used in place of Figure 4 to interpolate or extrapolate (via a three point fit) the W(Z)
I at a particular burnup.
l I
8 I
4 I
I COLR for CPSES UNIT 1 C?CLE 2 I
2.6 Nuclear Enthalny Rise Hot Channel Factor (Specification 3/4.2.3)
I
- IP F"3, 1
F
[1 + PF, (1-P))
3, 3
where:
P=
THERMAL POWER RATED THERMAL POWER I
F 'P
= 1,55 8
2.6.1 3,
2.6.2 PF, = 0.2 3
I I
I I
I I
I I
I I
5 I
l, lIj il!iill m
.Ow uc$m
= H 6
'4 o.t u o 8g j
M n.gOoxm "oo gN s$Messo= 4s s8m >Wemg guy 4a m{ %
<.9
,.I<i.
i
! i:i i
- t iii!
ii.
rl:! iit f>,}
M i
tI:
i, tj i;).,
rj, t!!i
- ttr, i rr
,}
fr i;
.{
ir t,.
.h ij,; ;ti1 r
t,;!
I,Jr n8 s
J I
- c,;_
- +
ij{i ti2; ii.
I e d f,,_
e ijii t
{4 t{-fi i,1i f
j t, l; tt
=t etii t,
},}
,I.
}
17ti f}
t
.jl; i
l:
it!
!,,j o8 c
1, r!,
t%.}
it };
i;a '
!;q f t}
1i tt ti;{
tt j j tt,j tjil K
Ht, i t!'t
{
f{. }
I
.Ii M
x
=<y m f
j t it f-f.t
+;
t}; 1,iti
~
x.j T" } }
S I.
t;i1 t,t}
}iii f}e $
tff tt ii tt1t tI, f
ti
- 1 i.t
,{,
r!!i t I rl ti1!
I7
_f lI?
t4.;.
t" jii i
6t,.,
i
['
t!*;
tt!i t1}i S
\\; !':
tti;
- fj!
ti, (u
ur 3
t,;i t;;}
tit,4 f.ih p;
t,;!
t;;!
it;!-
f,;
i<
ti;;
> ~ 8:,3
~ ?;tg M
q
- 7. J1 t;,{
i.
l p
-?
. \\*}_
V4f t !J' t
e L
l
,t,
- i ij!l iI+,4
{
a
. ttt3 '_
+
i Igt_
n7
,l.1 lt[;
ti;!
b
.t tf
,1 p
f;i t
t l.l
"<e! u
't M
)
g -8 kiit' g
- a 4l L
ui f
t
?
fl f' t ff flp g
7
~}- tm}..
ttt,if[
-i,
~
rtt1 F 't}
l}
j 2
'L
!Lr i,5 t
M
,g r
1 r
}
8
_2 - +;k-ttj g
tf.tg~
3 f tl rj-
.4
_y ftq 1 t i
t' Ii-t s
tt g
~
Ji t-t j
t. _
rtj j
t1 (1
t
?
gj 8
}--
+1 L +-
4t4t 7 t__fi t}j-
~
~f
~
d_ ti
~
fti }
~
~_-
- %x_
T_ q t1Jd f
- i Nlt
t.
t1 1
t i
I' 4 4
=$2a t} p ttl 4,
4
~
~_
8 T
1 M
~ 1
^
j t}
fl. h t~c L r1 t
!L,j L
rt1t
~.t{
tt t.;
t!
f J
t}.{
1{<
t t{
,+
- rb_ } ijL
?
E s
h.
~
tt u
Il
- +
fLp m
c_._
~~..
t t
4
~
vt l
~
}
a t'
7
.dI{t 3-
!. }
}
t t
t. _
-.~-
8
~
~..
~
7- ] '
m rj_+_q -
t1 {
ii{L t,.,
T _g k "
f1
~
~
i j t
~
~
T
~
t t
r.
a o
"o "o
- o o
- o "o
0 "o
8 mNU15ygO I <faP:mQ <am@ex m
.E E' u 8as8 eji0c52 e2, z$me 2_b$e4&cs
$ %=mo5 E a cOE33g_5 n; 1m; 2e.
M I3c3e75~aa i
dy3*gjeo~y2&$?,e;.
r e
EEEE E
l l1 1
illtJil' I,
ll f
00LR for CPSES UNIT 1 CYCLE :
FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 9
100
~ -* ~
' ~ ( l 1,90) "-*~~
(11.90) ~~
~~~~
90 I
/
i i
e-==a W
-~ UNACCEITABLE UNACCEITABLEi-
~~
~
.I
~ ~~
~ " ~ ~
OPERATION I-OPERATION i
~*
80 I
i
- -.-+.-
1 1 t
i I
I I
i l
4 l
}
1 70 5_
l4
~ ~~ ACCElTABLE T
'~
~ ' - ~ ~
- ~ ~
._,_ OPERATION._'
i i
i i 4
y i
4 i
i i 4
i
- 60
, i i
i i i i
M j
r
.L T '
3,3 w_.
H_a i
3 i
j i m
i e i i i i
i i
5
!!li I'~ i !
iL I i l
I! i (!lIi I
i i
i,i
- i. !
,ij i i ii 1
1
! i i
)
i
! i i
I i,
_- 50 L*-=
, : ^
i i
i.
i aa i i i4 i i
^
(31,50),i i i I
8 i
Le i j (.31,50) i i 4
1 1 i
i i i 4-x
. i i i
. i 8
4
)
I i iii i ! !
'l i i
! ! 1 t
' i i !
I l i 1 i I t
! I I i (3
I j i i fiI i l I I i i i i i i
i i i i i
i i i i
i '
p.
i ! ! i i
I i i e
i i
! ! i i i
t i !
I w
f a
l
)
i k l
I f
[ I t
I i i l i
t i
i I
i E3 i i )
i
+ i i
i 4
t i !
i
, l i
'. C i [
t l
b i
i
. I k
l k
30 i
i i i i
i ;
I i
i i i
.I i
i l I
' I i
! I i i i_
i I I l l l i
- l l f i h !.
l l
l.
-i i i i i I t i i j i ! i j
i i l.
i i
i +
i i
i i '.
_.i
- =
I l i !
l l !
l l !
h h
i i i i
~ i i 4 i i i i Ti i
i i : i i i i 4
i i
i
. I i
'O i ! ! !
! i l !
i i :
! i
- i !
i i i i f i i i i i t I i i i
' I 1 i i i
i i i i i i i i j
I !I
!I I
!l !
i i l I
! l I
!I I i i l i i i i i i i l i l ii l
i
. i ! L i i i i
I i
i i i i i i i i i i i i i
! ! i t i i i i i i 10
! l :
I !
l I !
- I
! t ! i
? i I t i
i ii i I i i i i
i 4 i i-i ii i -i i-i 1
l l
l l
e l I I l l l I
I l I h l L!
!If I!!i I!b !!,ie
[!.
! ! !I l
i,i!
1 i i
- iii, i i i e i
i, e
i i i i iiii 0
i i
-40
-30
-20 10 0
10 20 30 40 AXIAL FLUX DIFFERENCE (%)
I l
7 l
COLR FCR CPSES UllIT 1 CYCLE :
I FIGURE 3 K(Z) - NORMALIZED F,(Z) AS A FU!iCTIOli OF CORE HEIGHT I
1.1 I
.i f
-.1_.-.
(0.0,1.0)! i (6.0,1.0);
,,1 1
(10.8.0.939) '
~%.5 I
,'1 ii i;
i,-
- , j >l 1,
1 i
_.L.Jlt 1
.._a 1,_._.. Jal -.
-.a 4, _..; - e.. h
.2. _. #. 2 ii l'lll ji ' !
!! l It i I.
,i 11 l
r i
l' ji i!'!
- j -
i il!
l I
b,ll,..j_;i;t.LL.l. _A, 0.9 I
II u! ! ! 4!!
l
!..L
!j!I I!!
li!
l il
! ll 4
_.~. ; a 4,_ 441..L.. L.L u_.
,t_...
i i >.
}.i!II I
j ! I ;l l ! !,!
1 4
i;!l
!l
'I I
llll ll,,
4 Ill r
t i
0.8 lll ll
! !!!l l
1 7
I
!Ii! ll l l,i l
i i
ii!
1 i
i i
0.7 R
lli I lli! !!!!
II;i llj! llg l l lJ glli!..IIll p!! !
Ij l
_L --.; u.L J_
.L g
44 4ql ! !
!g!!!. 44 4-g y
7_.
y!ll !I!! lIl l
I 2
l l
!I!
ll!l l
!!'! lll 0.6 (l2.0.0.646) -
id
- i i
i ill,!
l
'l ll
.i l.!!
lil li l
i l
- *t-1 L-0 i
i
_LL' 4,44 44 4 l
-t-
-+i TT I
4 s
4.
._.L- _ il 52 l
l
+tt
-+
3 lll.ill i
- li I II l
i l
j !!:1 I
o i
I!
l t
lll1
! ll i,
z 0.5 l u!.!_.lt4Ti_
u!.!_!!!
!._!l ll -la..TT.
I l _. f_f,_l _lll#
_t 4_
_ L. L.,J.
i q
+._
T i
i<
t' i
i i!
i' l11il lll !!i!
l !!l lll l
l ll lilll t!i tiji i
u I
0.4
-_I._
l!l _.!
s 7
. __,7 l
l
! !ll fl l _mll.l 0.3 l
l l
l u
7.
pl.
I
!,i I
0.2 I
l Il l
p... -
__y_._ _.7
_n!.
7_.__
I l
l
!l I
l I
l I
l i
0.1
. -l ___ __.__
_r _ __.
I 1
I l 1.
I l
i l1
}
l l
l l
iI l
o 0-1 2
3 4
5 6
7 8
9 10 11 12 BorroM CORE HEIGHT (FEET)
TOP I
8 I
COLR f or CPSES U!!IT 1 CYCLE 2 I-FIGURE 4 W(Z) AS A FUNCTION OF CORE ilEIGilT MAXIMUM LOAD FOLLOW I
I 1.30 _ _j __
q-9 i
t 1
. i, J_.
i i
i 1.20
,y T
.~
Ii I
I N
==
N 1.15
,mx N
y i
i g
i
/ !
N l
l l/
1-i 4
/'
i t
1.10
[
i
!(L i
I 1
i i
i i
I i.
j 1
I i
l I
~I i
i i
i i
i i
i i
i i
1.05 I
~ j I
i i
i i
i i
I i
i j
4 i
~
j i
i 6
i I
i i
i 4
i 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 TOP BOTTOM CORE HEIGHT (FEET)
I Axial Asial Atial Axial Node W(Z)
Node W(Z)
Node W(Z)
Node W(Z) 19 21 1.1667 33 1.1468 45 1.0961 10 1.2435 22 1.1666 34 1.1504 46 1.0904 I
11 1.2335 23 1.1661 35 1.1515 47 1.0895 12 1.2232 24 1.1650 36 1.1514 48 1.0964 13 1.2120 25 1.1629 37 1.15M 49 1.1052 14 1.2001 26 1.1599 38 1.1477 50 1.1144 I
15 1.1914 27 1.1563 39 1.1435 51 1.1226 16 1.1834 28 1.1522 40 1.1382 52 1.1359 17 1.1766 29 1.1494 41 1.1316
'3 -61 18 1.1716 30 1.1476 42 1.1233 I
19 1.1677 31 1.1446 43 1.1142 20 1.1663 32 1.1445 44
- 1. lM7 Core Height (ft) = (Node - 1)
- 0.2 9
I
20LR for CPSES UNIT 1 CYCLE 2 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT 150 MWD /MTU I
1.30
___l__
i 1.25 i
i
\\.
_u_
l L _.
_I __- __4 -
l l.20 y
j g
7
- t N
g 1.15 3
~f
^
p
\\i i/
I i
~
i i
i N
/
i i
i i
1.10 j
I i
i i
I i
I i
i I
I i
i i
i l
i i
i i
i t
I i
i i
i i
i i
i 7
i i
i i
1.05 I
i i
i i
i i
i i
I b
I f
k i
i i
e 1
4 i
i 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BorrOM CORE HEIGHT (FEET)
TOP Asial Axial Axial Axial I
Node W(Z)
Nale W(Z)
Node W(Z)
Node W(Z) 19 21
- 1. 508 33 1.1263 45 1.0932 10 1.2302 22 1.1177 34 1.1298 46
- .0896 I
11 1.2231 23 1.1544 35 1.1322 47 1.0895 12 1.2i60 24 1.1508 36 1.1334 48 1.0964 13 1.2082 25 1.1466 37 1.1335 49 1.1052 14 1.2001 26 1.1418 38 1.1323 50 1.1137 I
15 1.1914 27 1.1366 39 1.1296 SI 1.1201 16 1.1834 28 1.1311 40 1.1259 52 1.1265 17 1.1766 29 1.1239 41 1.1209 53 - 61 18 1.1716 30 1.1169 42 1.1140 I
19 1.1677 31 1.1167 43 1.1060 20 1.1641 32 1.1216 44 1.0082 Core Height (ft) = (Node - 1)
- 0.2 10
I COLR fcr CPSES UNIT 1 C'!CLE 2 I.
FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT 4000 MWD /MTU I
I 1.30 -
- +. _..
I
- __4 1.25 I
.4__
^
4-I L_
. __ L _
I
,g 1.15 3
x
._ r _
I
_ _. + -
I
(
a
_L.
__ i
!\\d
~~
i i
1.05 I
m_._
_.s_
__.s
..J __
._~.. ;
-s
_4_
l.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 '
BO N !
CORE HEIGHT (FEET)
TOP I
Anal Axial Axial Axial Node W(Z)
Nale W(Z)
Node W(Z)
Node W(Z) 1-9 21 1.1578 33 1.1330 45 1.0949 10 1.2206 22 1.1558 34 1.1361 46 1.0903 I
11 1.2126 23 1.1535 35 1.1384 47 1.08N 12 1.2446 24 1.1507 36 1.1392 48 1.0934 13 1.1969 25 1.1472 37 1.1391 49 1.0949 14 1.1894 26 1.1430 38 1.1375 50 1.lW3 15 1.1819 27 1.1382 39 1.1345 SI 1.1226 16 1.1744 28 1.1330 40 1.1304 52 1.1359 17 1.1675 29 1.1264 41 1.1250 53 - 61 18 1.1620 30 1.1209 42 1.1178 I
19 1.1604 31 1.1226 43 1.1098 20 1.1593 32 1.1282 44 1.1018 Core Height (ft) = (Nmle - 1)
- 0.2 11 I
COLR for CPSES UNIT 1 CYCLE 2 I
FIGURE 7 W(Z) AS A FUllCTION OF CORE HEIGHT 9000 MWD /MTU I
1.30
__._-._.}_..__
I
_ _ _.- _ + _
._1__
_._ w_._ _ - __x._
1.25 I
g
_.4 _._4_
._ 7
_;_._i_
l l
J_.__
-.. - A.-._ 4._
I 1.20 l
l 7
....__m
_ 7_.
.._ p_
3 I
. u
_._g_
u 1.15 g
7 s
.i l
-5 i
i i
I T--
i 7-'j i
i i
i i
4 i
j
'~
'i i
~
r 4
b l
l f
k I
I
_ _ L_._
_._4_
.e
__1_
_.J_ _
l
+
i i
i i
1 t
i
-- i ~
i i
i i
i i
i 1.05 I
+
__ h_.. _J.__
I l
l
_a__
j_
~
l
.j__
_ p._
i i
i i
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 TOP BOTTOM CORE HEIGHT (FEET)
Axial Anal Axial Axis!
Node W(Z)
Node W(7)
Nods W(Z)
Node W(Z) 19 21 1.1667 33 1.1468 45 1.0961 10 1.2435 22 1.1666 34 1.15N 46 1.0899 I
11 1.2333 23 1.1661
.35 1.1515 47 1.0865 12 1.2232 24 1.1650 36 1.1514 48 1.0860 13 1.2119 25 1.1629 37 1.1504 49 1.0894 14 1.2000 26 1.1599 38 1,1477 50 1.0967 15 1.1870 27 1.1563 39 1.1435 51 1.1082 16 1.1748 28 1.1522 40 1.1382 52 1.1197 17 1.1662 29 1.1494 41 1.1316 53 61 18 1.1637 30 1.1476 42 1.1233 19 1.1650 31 1.1446 43 1,1142 20 1.1660 32 1.144; 44 1lM7 Core Height (ft) = (Node.1)
- 0.2 12 I
.