ML20205J783
ML20205J783 | |
Person / Time | |
---|---|
Site: | Comanche Peak |
Issue date: | 04/01/1999 |
From: | Brozak D, Choe W, Maier S TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC) |
To: | |
Shared Package | |
ML20205J776 | List: |
References | |
ERX-99-001, ERX-99-001-R00, ERX-99-1, ERX-99-1-R, NUDOCS 9904120192 | |
Download: ML20205J783 (16) | |
Text
-
i- .
l
?
ERX 99-001. Rev.'0 t
l CPSES UNIT 2 CYCLE 5 I CORE OPEPATING LIMITS REPORT l April 1999 l
l i
l l
1 l
Prepared: =- -
M Date: U Daniel E. Brozak / !
Reactor Physics ;
Approved: h e % Date: Y!'!Y7 Stephen M. Maier ,
Reactor Physics Supervisor i
Approved: 9CL Date: di197 i WheeG.Cho[
Safety Analysis Manager
~
9904120192 990401 yDR ADOCK 05000446 PDR .- ,
DISCLAIMER The information contained in this report was prepared for the specific requirement of Texas Utilities Electric Company (TUEC), and may not be appropriate for use in situations other than those for which it was specifically prepared. TUEC PROVIDES NO WARRANTY HEREUNDER. EXPRESS OR IMPLIED. OR STATUTORY. OF ANY KIND OR NATURE-WHATSOEVER. REGARDING THIS REPORT OR ITS USE. INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
By making this report available. TUEC does not authorize its use by others, and any such use is forbidden except with the prior written approval of TUEC. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall TUEC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized of this report or of the information in it.
1 ii
p 1 4
u ,
i .
COLR for CPSES Unit 2 Cycle 5 <
i l
l TABLE OF CONTENTS l
DISCLAIMER . . . . .... ... . . ii
. TABLE OF CONTENTS . . . ... . . . .. iii LIST OF FIGURES ..... .. .. . .... ..... . iv SECTION 1.0 CORE OPERATING LIMITS REPORT .................. 1 2.0 OPERATING LIMITS ........................ 2 2.1 MODERATOR TEMPERATURE COEFFICIENT ,........... 2 2.2 SHUTDOWN R0D INSERTION LIMIT ............... 3 l
2.3 - CONTROL R0D INSERTION LIMITS ............... 3 2.4 AXIAL FLUX DIFFERENCE .................. 3 2.5 HEAT FLUX HOT CHANNEL FACTOR ............... 4 2.6 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR ......... 5 i
2.7 5 SHUTDOWN MARGIN ...................... l l
L
r COLR for CPSES Unit 2 Cycle 5 l
LIST OF FIGURES FIGURE PAGE R0D BANK INSERTION LIMITS VERSUS THERMAL POWER 6 1
l 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER .... .. ... .... 7 3 K(Z) NORMALIZED F a (Z) AS A FUNCTION OF CORE HEIGHT . ......................... 8 4 W(Z) AS A FUNCTION OF CORE HEIGHT -
(MAXIMUM) . . ......................... 9 5 W(Z) AS A FUNCTION OF CORE HEIGHT - l (150 MWD /MTU) ......................... 10 ;
6 W(Z) AS A FUNCTION OF CORE HEIGHT -
(10.000 MWD /MTU) ....... ............... 11 7 W(Z) AS A FUNCTION OF CORE HEIGHT -
(20.000 MWD /MTU) ........ ... ........ 12 i
I iv t
l
[E COLR for CPSES Unit 2 Cycle 5 1.0 ' ' CQ8E OPERATING LIMITS REPORT I l
l 1
l This Core Operating Limits Report (COLR) for CPSES UNIT 2 CYCLE 5 l
has been prepared to satisfy the requirements of Technical Specification 6.9.1.6.
The Technical Specifications affected by this report are listed below:
3/4.1.1'1. Shutdown Margin T,,, Greater Than 200 F 3/4.1.1.2. Shutdown Margin T,,, Less Than or Equal to 200 F 3/4.1.1.3 Moderator Temperature Coefficient
! 3/4.1.2.2 Flow Paths Operating l 3/4.1.2.4 . Charging Pumps Operating 3/4.1.2.6 Borated Water Sources Operating 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 . Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat' Flux Hot Channel Factor
\
1 3/4.2.3 Nuclear Enthalpy Rise Hot Channel ~ Factor i
1
y -- \
COLR for CPSES Unit 2 Cycle 5 2.0 ' OPERATING LIMITS The cycle specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Technical Specification 6.9.1.6b. Items 5.
- 9. 10. 11. 12. 13. 14. 15. 16. 17. 19. and 20. These limits have been determined such that all applicable limits of the safety analysis are met.
J.1 Moderator Temoerature Coefficient (Specification 3/4.1.1.3) 2.1.1 The Moderator Temperature Coefficient (MTC) limits are:
The BOL/AR0/HZP MTC shall be less positive than +5 pcm/ F.
The E0L/AR0/RTP HTC shall be less negative than 40 pcm/"F.
2.1.2 The MTC surveillance limit is:
The 300 ppm /AR0/RTP MTC should be less negative than or equal to -31 pcm/*F.
where: BOL stands for Beginning of Cycle Life AR0 stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2
L _ _ - - - - - - - - - . -
' 2.2 ' Shutdown Rod Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the conaition where shutdown rods are at a position witnin the interval of 222 and 231 steps withdrawn inclusive.
2.3 Control Rod Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control bank shall be limited in physical insertion as shown in Figure 1.
2.4 Axial Flux Difference (Specification 3/4.2.1) 1 2.4.1 The AXIAL FLUX DIFFERENCE (AFD) target band is +5%, -12% at 100% RTP linearly expanding to +20%, 17% at 50% RTP. Below 50% RTP, the AFD target band remains constant at +20%, 17%.
2.4.2 The AFD Acceptable Operation Limits are provided in Figure 2.
3
COLR for CPSES Unit 2 Cycle 5 2.5 Heat Flux Hot Channel Factor (Specification 3/4.2.2)
F*
~
F (Z) 5 3 [K(Z)] for P > 0.5 P
F" 3
F (Z) 5 3 [K(Z)] for P 5 0.5
0.5 where
P= THERMAL POWER RATED THERMAL POWER 2.5.1 Fo "' = 2.42 2.5.2 K(Z) is provided in Figure 3.
2.5.3 Maximum elevation dependent W(Z) values are given in Figure 4.
Figures 5, 6, and 7 give burnup dependent values for W(Z). Figures 5, 6, and 7 can be used in place of Figure 4 to interpolate or extrapolate (via a three point fit) the W(Z) at a particular burnup.
. 2.5.4 A constant 2% decrease in Fa margin allowance shall be used to increase F/(Z) for compliance with the 4.2.2.2.f Surveillance Requirement for all cycle burnups.
t
COLR for CPSES Unit 2 Cycle 5' 2.6 Nuclear Enthalov Rise Hot Channel Factor (SpecificaMon 3/4.2.3)
F", 5 F* [1 - PF;,, (1 P)]
where: P= THERMAL POWER RATED THERMAL POWER 2.6.1 F*,= 1.55 2.6.2 PF , = 0.3 l 2.7 Shutdoua Marain 1
l 2.7.1 Shutdown Marain - T.,; Greater Than 2007 (Specifications 3/4.1.1.1. 3/4.1.2.2, 3/4.1.2.4, and 3/4.1.2.6)
The SHUTDOWN MARGIN shall he greater than or equal to 1.3% ak/k in MODES 1, 2 3, and 4.
I 2.7.2 Shutdown Harain T.,. Less Than or Eaual to 200'F l (Specification 3/4.1.1.2). i The SHUTDOWN MARGIN shall be greater than or equal to 1.3% ak/k in MODE 5.
1 5
COLR for CPSES Unit 2 Cycle 5 FIGURE 1 R0D BANK INSERTION LIMITS VERSUS THERMAL POWER 240 1..____. .._..._.__.4.___ . _ . _ _ . . _ _ _ _ . _ . . ___
-} _
I
. - - . --.. - _ - - . . _ _ _~ _ . . _ . -
220
> b 3.222$ 7855C~
j _.
.._____._,___._.]
'00
/
/
_. BANK B
. g.
-._ / '
n _. / ._-- ------ - - - - .
M / _ _ . . . _ . -
E 160 -(0.164) g 3 /
?J / (100,146) 2 140
/ - -= _.--[
/ [T u ,,, , , BANK C
~
7- ~~ ~~~ b-~ .
0 ' I ' ' ' '
120 '
5 , , , (( i,, i l .; I i i h M 'i ~~
p i r , , i i ,f ,
- r ,i .i;,- , ,
i G Mi i i 1 i ./ ~1~ , t , , i i P i if i o 100 w
l' j i
i!
l [;
1 ,
l ' [ "!
Em . , , ,
> /.
- ~
80 '
n ,_
g _
~ ~ ~ ~
~
BANK D
-- (0.49) - - - - ---
40 (31,0).- - --- - - - - -
0 O 10 20 30 40 50 60 70 80 90 100 l l
PERCENT OF RATED THERMAL POWER j l
j NOTES: 1. Fully withdrawn shall be the condition where control rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.
- 2. Control Bank A shall be fully withdrawn.
6 ,
i
e.
COLR for CPSES Unit 2 Cycle 5 FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 -
._ . _ _. j_ . _L _
_Q '
(-19.90) (11.90)
' i I l 1 i ~~~1~
l 90
{ .__
I
. _ . UNACCEPTABLE J UNACCEPTABLE
__ OPERATION _
- OPERATION __
x y_
~ ~ ~ ~
ACCEPTABLE l OPERATION IO . .
i . . i ii i i i - , ., ; 1 r ,
~
j g !
f' ) it i i i j i I~ ,
7 7
+
! {]
i l l i i i ! 1 i .
~
!i
, i ;
J Ii I ij i j ,
i i i i i T- ^ '
, j i i1 '~ I-~~ ~~
> , i h
w i i f~T~ ;
i i i i i i t '
i 4
i i 1 i r
!i i! Mii 4 i. i
~
i if i
$ 50 , , , , ,
l H-( 35,50) _
i ' I i!i I !4 i i i :
i i
' i_.!!
t i '
r (28,50) h I~ i t t 1
I i ! Q t i i
$ 40 .
g -. _
30 a_ _
20 10 0
30 -20 -10 0 10 20 30 40
-40 DEVIATION FROM TARGET AXIAL FLUX DIFFERENCE (O
[
7
COLR for CPSES Unit 2 Cycle 5 FIGURE 3 K(Z) - NORMALIZED Fo(Z) AS A FUNCTION OF CORE HEIGHT 1.1 I I I l t(0.0.1.0). (6. 0.1. 0 ) - . - - - -
1 I i 1
0.9 (12.0.0.925)-~
l,--
0.8 n
C'! - 0.7 2 ,
'N S 0.6 C l "
0.5 .
,i l lllt !
l
!, I i., !
< i ;, >;
.'li i .
, - , i! i I .,i ,
,!! .. I ! i N 0.4 EE lj !!!! illi llll !!il . ,jI 'ii i ll! !ll li!' 'tii '
I' i ll iiij llij Illi til' !!ll !il !Ill ill! ill! ! !! ;.
!l{l il> i !!i il nii 4ili *+:
i>lj 'ilj Illi 'lli li!!
0.2 t,!! :'il lii! ;i! 'l*> !!! i i lil ,i illi ,Il
,l ;{ !
!! 'l' , il li
~
l!', il.l! ,
ll .
1 i j, !, i j i i1 0.1
- ._._.m _.
0 3 4 5 6 7 8 9 10 11 12 0 1 2 8"
CORE HEIGHT (FEET)
Axial Axial Axial Axial Node K(Z) Node K(Z) Node K(Z) Node K(Z) 0.9250 53 0.9450 45 0.9650 37 0.9850 61 60 0.9275 52 0.9475 44 0. % 75 36 0.9875 0.9300 51 0.9500 43 0.9700 35 0.9900 59 58 0.9325 0.9525 42 0.9725 34 0.9925 49 0.9550 41 0.9750 33 0.9950 57' O.9350 56 0.9375 48 0.9575 40 0.9775 32 0.9975 55 0.9400 47 0.9600 39 0.9800 1 31 1.0000 54 0.9425 46 - 0.9625 38 0.9825 Core Height (ft) = (Node 1)
- 0.2 8
~
COLR for CPSES Unit 2 Cycle 5 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT (MAXIMUM) 1.300 .
q q-j p
4_-}__ - _4
_.._._.3 1.250
.- _L-
\ _
1.200
\
\
\
R
- \, _
a t _ _ _ _ .
\
g1.150 ,
m . _
^
h : /
! i U __ __L _
1.100 l , l l { l l ,
i i 1 i I i >
i i i
' t ! I i i l I i 1 l
e i ! i i l i
, t !
1.050 ! l ,
i -
1.000 1 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP l
Axial Axial Axial Axial
[
l Node W(Z) Node W(Z) Node W(Z) Node W(Z) 1.138 30 1.120 19 1.149
( 52 61 .-- 41 29 1.128 18 1.151 l 51 1.129 40 1.137
! 50 1.132 39 1.136 28 1.134 17 1.156 49 1.133 38 1.134 27 1.139 16 ' 165 48 1.130 37 1.132 26 1.144 15 1.177 I 47 1.129 36 1.129 25 1.147 14 1.188 46 1.130 35 1.125 24 1.150 13 1.199 45 1.132 34 1.117 23 1.152 12 1.208 44 1.135 33 1.110 22 1.152 11 1.218 43 1.137 32 1.108 21 1.151 1 10 42 1.138 31 1.11? 20 1.150 Core Height (ft) = (Node 1)
- 0.2 9
+
c COLR for CPSES Unit 2 Cycle 5 ;
I FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD /MTU) 1.300 l _. J._ _ 4 L _._ J __ . _ a . _ _ L __ _
i _ ._L ___i_J _ __ T __ ! _ !_. ____l.__._
_._ _ ._l_ . ___ __
1.250 l ._i__--} _ .-
1.200 3 __ _ _ _ . . _ _ _ _
E 1.150 r
_ _4_ '_.\ _ . _ _ _ . _ _
~ ~ ~ ~
h !
\ \
Q Y
i 1.100
' ' \ ,
l I
!'W _L_
i _
1.050 f , , ,
~~i-~ a i !
\
r 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node W(Z) Node W(Z) Node W(Z) 52 - 61 -- 41 1.111 30 1.099 19 1.139 51 1.126 40 1.109 29 1.104 18 1.142 50 1.118 39 1.107 28 1.110 17 1.147 49 1.114 38 1.105 27 1.115 16 1.154 48 1.112 37 1. 71 26 1.121 15 1.160 47 1.112 36 1.096 25 1.125 14 1.167 46 1.113 35 1.091 24 1.129 13 1.172 45 1.114 34 1.088 23 1.131 12 1.177 44 1.{14 33 1.089 22 1.133 11 1.183 43 1.114 32 1.091 21 1.135 1 10 -
42 1.113 31 1.094 20 1.137 I
Core Height (ft) = (Node - 1)
- 0.2 10 l
1
~
, FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT (10 000 MWD /MTV) 1.300 i ! l L_. _._1__. J-. J l 3
__.! q___ l . . _
~
l 1.250 3_ ._ANANN- ___._{.N
- . ~ .. . , _ _ _ . -. . - _ . _ . .
1.200
\ _ . ___
\ . _ _ . _ . _ _ _ . _ _ _ _ _ _
3 \ _ . _ _ . . _ _ _ _ _ . _ _ _ . _ . _ _ _
\
E 1.150 \
r ____ _ _ _ _ . . _ _ _ _ _ . _
~
! .3 . _ . _ _ . _ _ _ . _ _. . _ . _
1.100 l !
l ; t "~~1^'~
1.050 , , ,
i i 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE MEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node W(Z) Node W(Z) Node W(Z) 52 - 61 - 41 1.119 30 1.111 19 1.142 51 1.121 40 1.118 29 1.118 18 1.146 50 1.11:i 39 1.117 28 1.123 17 1.152 49 1.112 38 1.115 27 1.127 16 1.159 48 1.111 37 -1.112 26 1.130 15 1.168 47 1.112 36 1.108 25 1 133 14 1.176 46 1.114 35 1.103 24 1.136 13 1.183 45 1.116 34 1.099 23 1.138 12 1.190 44 1.118 33 1.096 22 1.139 11 1.197 43 1.120 32 1.09S 21 1.140 1 10 --
42 1.120 31 1.104 20 1.141 Core Height (ft) = (Node 1)
- 0.2 11
l
. i COLR for CPSES Unit 2 Cycle 5 I FIGURE 7 4 a W(Z) AS A FUNCTION OF CORE HEIGHT (20.000 MWD /MTU) ,
i 1.300 > 4 i i 4___.
_._ 9 1.250
___K L____..._.__ _ _ _ . _ .
_J__ q____.]
L. _
- _ _ . - _ . _ . . _ - . _ ~ -
j 1.200 3 _ _ _ . _ _ _ _ _ . _ ___ .. _ __ . , _ _.
E 1.150 r ___._. . _ _ . .
G __ Zh s \
& _ - -/
' i Tj.__. ..
1.100 l
1.050
{
1.000 0 1 2 3 4 5 6 7 8 9 10 11 -
BOTTOM CORE HEIGHT (FEET) TOP l
I Axial Axlal Axial Axial Node W(Z) Node W(2) Node W(.Z ) Node W(Z) 52 61 -
41 1.138 30 1.170 19 1.149 51 1.129 40 1.137 29 1.126 18 1.151 50 1.132 39 1.136 2B 1.134 17 1.156 49 1.133 38 1.134 27 1.139 16 1.165 48 1.130 37 1.132 26 1.144 15 1.177 ,
47 1.129 36 1.129 25 1.247 14 1.188 l 46 1.130 35 1.125 24 1.150 13 1.199 45 1.132 34 1.117 23 1.152 12 1.208 44 1.135 33 1.110 22 1.152 11 1.218 43 1.137 32 1.108 21 1.151 1 10 A2 1.139 31 1.112 20 1.150 Core Helght (ft) = (Node 1)
- 0.2 12