ML20082C578
| ML20082C578 | |
| Person / Time | |
|---|---|
| Site: | Comanche Peak |
| Issue date: | 04/04/1995 |
| From: | Choe W, Killgore M, Maier S TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC) |
| To: | |
| Shared Package | |
| ML20082C569 | List: |
| References | |
| RXE-95-002, RXE-95-2, NUDOCS 9504070084 | |
| Download: ML20082C578 (16) | |
Text
-
t s
RXS-95-002 I
i l
CPSES UNIT 1 CYCLE 5 5
CORE OPERATING LIMITS REPORT
'l
-J l
April.1995 Kurt R. Steger i
4Y 5~
b Date:
Reviewed:
~
Maier Stephen M.
Reactor Physics Supervisor j
Reviewed:
Date:
'WheV G. Ch e Safety An lysis Manager Date:
- [98~
Approved: M/
- / I. [.4/M4 Mic'ey Killgore
//
k Nuclea Analysis an Fuel Manager.
~
9504070094 950404 PDR ADOCK 05000445 P
PDR t
._=
i i
+
DISCLAIMER j
1 4
i l
The information contained in this report was prepared for the-specific requirement of Texas Utilities Electric Company (TUEC),
and may not be appropriate for use in situations other than those 2
for which it was specifically-prepared.
TUEC'PROVIDES NO 3
WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING I
BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
By making this report available, TUEC does.not authorize its use f
by others, and any such use is forbidden except with the prior i
written approval of TUEC.
Any such' written approval shall itself 2
t i
be deemed to incorporate the disclaimers of liability.and disclaimers of warranties provided herein.
In no event shall TUEC have any liability for any incidental or' consequential
- ~
damages of any type in connection with the use, authorized or j
unauthorized, of this report or of the information in it.
I i
t t
11 l
w
h TABLE OF CONTENTS-4 2
t 4
-' DISCLAIMER ii TABLE OF. CONTENTS iii' l
+
LIST OF FIGURES.
.iv o
a i
SECTION i
I 1.0. CORE OPERATING LIMITS REPORT.
1-
. s..
2.0 OPERATING LIMITS 2
2.1 MODERATOR TEMPERATURE COEFFICIENT
.'2-i l
l
- 2. 2' SHUTDOWN ROD INSERTION LIMIT 3
2.3 CONTROL ROD INSERTION LIMITS' 3
2.4 AXIAL FLUX DIFFERENCE.
3 1
2.5 HEAT FLUX HOT CHANNEL FACTOR-4 2.6 NUCLEAR ENTHALPHY RISE HOT-CHANNEL FACTOR 5
J-i 2
i 1-4 4
iii 4
4
l LIST OF FIGURES.
i l
?'
1 FIGURE PAGE 4
I i
1 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 6
)
i l
2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION.
l
\\
OF RATED THERMAL POWER 7
1, 1
3 7
3 K(Z) ' - NORMALIZED F (Z) AS A FUNCTION OF o
CORE HEIGHT 8
4 s
i 4
W(Z) AS A FUNCTION OF CORE HEIGHT -
1 MAXIMUM 9
4 5
W(Z) AS A FUNCTION OF CORE HEIGHT -
1 l
1so MWD /MTU 10 l
6 W(Z)' AS A FUNCTION OF CORE HEIGHT -
lo,000 MWD /MTU.
11 i
i 7
W(Z) AS A FUNCTION OF CORE HEIGHT -
18,000 MWD /MTU.
12 4
1
'J iv i
4
'COLR for-CPSES UNIT 1 CYCLELS I
1.0 CORE OPERATING LIMITS REPORT l
l l
This Core Operating Limits Report (COLR) for CPSES UNIT 1 CYCLE 5 1
has been prepared to satisfy tr.3 requirements of Technical l
)
Specification'6.9.1.6.
1 The Technical Specifications affected by this report are listed-i below:
1 3/4.1-1.3 Moderator Temperature Coefficient 3/4.1.3.5 Shutdown Rod Insertion Limit' i
3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference
^'
3/4.2.2 Heat. Flux Hot Channel Factor 4
J 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor t
i t
'l 4
1 i
i
}.
1 4
4
l~
COLR for CPSES UNIT 1 CYCLE 5 f
2'. 0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed d
in Section 1.0 are presented in the following subsections.
These i
limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.6b, Items 5, 6, 7,. 8, 9,
i 10, 11, 12, 13, 14, 15, 16, and 17.
These limits have been determined such that all. applicable limits of the safety analysis are met.
2.1 Moderator Temoerature Coefficient (Specification 3/4.1.1.3) 2.1.1 The Moderator Temperature Coefficient (MTC) limits i
are:
)
The BOL/ARO/HZP-MTC shall be less positive than
+5 pcm/ F.
The EOL/ARO/RTP-MTC shall be less negative than
- 4 0 pcm/ F.
)!
2.1.2 The MTC surveillance limit is:
The 300 ppm /ARO/RTP-MTC should be less negative than or equal to -31 pcm/ F.
where:
BOL stands for Beginning of Cycle Life ARO stands for All Rods Out i
HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life j'
RTP stands for RATED THERMAL POWER 2
i COLR for CPSES UNIT 1 CYCLE 5
.)
' l I
2.2 ' Shutdown Rod Insertion Limit (Specification 3/4.1.3.5)
)
2.2.1 The shutdown rods shall be' fully withdrawn.
Fully withdrawn shall be the condition where shutdown rods are.at a position within the interval of 222 and 231 steps withdrawn, inclusive, i
2.3. Control Rod Insertion Limits- (Specification 3/4.1.3.6) i 2. 3.1-The control banks shall be limited in physical 5
insertion as shown in Figure 1.
j i
i I.
4 2.4 Axial Flux Difference (Specification 3/4.2.1) 1.
2.4.1 The AXIAL FLUX DIFFERENCE (AFD) target band is
+3%,
-12%.
j 1
a Figure 2.
1 i
3 3
.i 4
s
~
e-
l.
COLR for CPSES UNIT 1 CYCLE 5 2.5 Heat Flux Hot Channel Factor
- (Specification 3/4.2.2) 1 F ""
I o
F (Z) s (K(Z)] for P > 0.5 o
P F ""
o F (Z) _s (K(Z)] for P s 0.5-o 0.5 4
i
)
\\
where:
P=
THERMAL POWER j
RATED-THERMAL POWER RTP
- 2. 5' 1 F
, g,4g g
'2.5.2 K(Z) 'is provided in Figure 3.
i 2.5.3 Maximum elevation dependent W(Z) values are i
1 given'in Figure 4.
Figures 5, 6,
and 7 give i
burnup dependent values for W(Z).
Figures 5, 6,
and 7 can be used in place of Figure 4 to I
interpolate or extrapolate (via.a three point fit) the W(Z) at a particular burnup.
4 2.5.4 A constant 2% decrease in F margin allowance o
i shall be used to increase Fo (z) for compliance C
with the 4.2.2.2.f Surveillance Requirement for all cycle burnups.
t I
)
i 4
i
=-,
- COLR'for CPSES UNIT 1 CYCLE 5.
l
.2.6:
Nuclear'Enthalov Rise Hot Channel Factor'
~
.(Specification 3/4.2.3).
F"an s ' F"TP
[1 + PF n. (1-P) ]
.AH 6
)
where:
.P.=
THERMAL POWER
-j RATED. THERMAL POWER' i
-)
2.6.1
~ F"T' a = 1.55' 6
2.6.2
' PFan = 0.2 1
l 1
i Ill l
i l
p-i 5
l 1
1 i
COLR for CPSES UNIT 1 CYCLE'5 FIGURE 1' ROD BANK INSERTION LIMITS VERSUS THERMAL PCWER d
i 240 220
?- (27.3,222)
/
(81.6,222) --
j
/
/
?
/
} /
y y
l
/!
t
!/
/
i V,' BANK B.
l l
f
/i I
/
180
/
/
/
/
/
'[
/'
160 I
e (0,164)
I
/
1 f
/
(Id0,146) 5
'I
!I7 140 g
t I
1 /
/
S' l
V I.
/
3 I /-
/
{ BANK Cl z
I'
/
9 ~120
/
/
t-
/
/
/
/
.k
/I
/ I
.(
100 w
t
/
/
\\
E i
-i f
/
m
/
/
i
- i
/
80 t-
</
+
i
!/
- i!i g
/[
f ii!i
/
I
/
BANK D I
I 60 i
if t/
/!
t
/
i
'ii i
t f
j (0,49)
I i
/
40 t :/
/
I
/
/I 20
,,j i
i 4
/l I (31,0) II I I O
O 10 20 30 40 50 60 70 80 90 100.
PERCENT OF RATED THERMAL POWER NOTES:
1.
Fully withdrawn shall be the condition where control rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.
2.
Control Bank A shall be fully wiudrawn.
I' 6
COLR for CPGES UNIT 1 CYCLE 5 FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER i
100 I
i
(-17,90)
(9,90) 90 I
1 i
i I
\\
/
\\
UNACCEPTABLE _,_J i\\
UNACCEPTABLE l
I\\
OPERATION fj 80 OPERATION I
\\
ff ACCEPTA$lLE j\\
j cz; y
i
/
OPERATION g
o i
\\
L J
\\
A 1
\\
l 60 I
\\
(I L-2
\\
m.,.
I
\\
p I
k I
I I
Q 50 I i Asn 03,5
%s H
_i i
m i
0 40 i
4 l'
i 8
i i
m l
O i !
b 30 i
i m
3 I
I'
).
I i
20 i
i t
I i
i 10 i
i i
I L
i i
i 1
'I i
I i
0
-40
-30
-20
-10 0
10 20 30 40 DEVIATION FROM TARGET AXIAL FLUX DIFFERENCE (%)
(:
7
COLR FOR CPSES UNIT 1 CYCLE 5 FIGURE 3 K(Z) - NORMALIZED F (Z) AS A FUNCTION OF CORE HEIGHT o
1 1.1 ilIIIti
~~
I IIIllll
~
)
i i
(0.0,1.0)~
j (6.0,1.0) 1 i
I l
1 lit O.9 (12.0,0.925)-
l l
[
l 0.8 a
I b
l
{
O.7 Q
t.u N
o,s 2
h 0.5 j
o I
I I
5 i
l I
0.4 m
i 6
l g
+
l 0.3
,I' lll t
0.2 1_.1 I
i h'
l O.1 I
O' 0
1 2
3 4
5 6
7 8
9 10 11 12 8 *M TOP CORE HEIGHT (FEET)
Axial Axial Axial Axial Node K(Z)
Node K(Z)
Node K(Z)
Node K(Z) 1 - 31 1.0000 39 0.9800 47 0.9600 55 0.9400 32 0.9975 40 0.9775 48 0.9575 56 0.9375 33 0.9950 41 0.9750 49 0.9550 57 0.9350 34 0.9925 42 0.9725 50 0.9525 58 0.9325
)
35 0.9900 43 0.7700 51 0.9500 59 0.9300 j
36 0.9875 44
- 0. % 75 52 0.9475 60 0.9275 37 0.9850 45 0.9650 53 0.9450 61 0.9250 38 0.9825 46 0.9625 54 0.9425 Core Height (ft) = (Node - 1)
- 0.2 h
8
1 COLR for CPSES UNIT 1 CYCLE 5 l
{'
FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT
.i l
MAXIMUM l
l 1
1.30 l
l s
1.25 i
v
(
1.20 m
t' 3
(
y N
I
\\
v 1.15 2
h l
R
\\
t s
X
'\\\\
1.10 f
V N_/
1.05 l
l
-t l
I i
I 1.00 O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 80"0M TOP l.
CORE HEIGHT (FEET) l Axial Arial Axial Axial Node W(Z)
Node W(Z)
Nods W(Z)
Node W(Z) -
l 1 10 21 1.138 32 1.094 43 1.092 l-11 1.186 22 1.133 33 1.096 44 1.088 12 1.181 23 1.129 34 1.100 45 1.089 13 1.175 24 1.125 35 1.103 46 1.092 l
14 1.168 25 1.121 36 1.104 47
. 1.094 l
15 1.163 26 1.119 37 1.106 48 1.098 f
16 1.158 27 1.116 38 1.105 49 1.103 l
17 1.154 28 1.112 39 1.105 50 1.106 18 1.150 29
't.108 40 1.103 51 1.105 19 1.146 30 1.104 41 1.099 52 61 20 1.142 31 1.099 42 1.096 Core Height (ft) = (Node - 1)
- 0.2 l
l 9
l
COLR for CPSES UNIT 1 CYCLE 5 t
i FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT 150 MWD /MTU r
i 1.30 1
f 1
1.25 s
4 i
l 1.20 O
i wN
, \\
i
\\s 1.15 x
i
\\
b
\\
'-2 N
1.10
^
/
q N
u I
t 1.05 4
t i
I I
j I
1.00 O.0 1.0 2.0 3.0 4.0 5.0-6.0 7.0 8.0 9.0 10.0 11.0 12.0 f
80"0M TOP CORE HEIGHT (FEET)
Axial Axial Axial Axial Node W(Z)
Node W(Z)
Node W(Z)
Node W(Z).
I - 10 21 1.138 32 1.090 43 1.088 11 1.175 22 1.133 33 1.086 44 1.088 12 1.172 23 1.129 34 1.082 45 1.089
{-
13 1.169 24 1.124 35 1.000
- 46 1.092 14 1.166 25 1.120 36 1.081 47 1.094 15 1.163 26 1.117 37 1.082 48 1.098
)
16-1.158 27 1.113 38 1.084 49 1.103 4
1 17 1.154 28 1.109 39 1.086 50 1.1%
j 18 1.150 29 1.104 40 1.087 si 1.105 19 1.146 30 1.100 41 1.087 52 61 j
20 1.142 31 1.095 42 1.088 l
1 Core Height (ft) = (Node - 1)
- 0.2 t-10 t
k
COLR for CPSES UNIT 1 CYCLE 5 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT 10,000 MWD /MTU 1.30 i
1.25 i
.i s
1.20 R
N
\\ \\
1.15 y
'N 1
4 N j
-1 2
s 1.10 s% f 0
V
~ %-
J-1 I
i i
1.05 i
i I
1.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BO
- M CORE HEIGHT (FEET)
TOP 4
Axial Axial Axial Axial Node W(Z)
Node W(Z)
Node W(Z)
Node W(Z)
I
- 10 21 1.132 32 1.085 43 1.088 i
11 1.179 22 1.129 33 1.085 44 1.085 12 1.175 23 1.126 34 1.087 45 1.082 13 1.170 24 1.123 35 1.089 46 1.080 14 1.164 25 1.119 36 1.092 47 1.M8 1
15 1.159 26 1.116 37 1.094 48 1.079 16 1.153 27 1.113 38 1.095 49 1.080 17 1.147 28 1.109 39 1.095 50 1.082 18 1.143 -
29 1.106 40 1.094 51 1.088 19 1.139 30 1.101 di 1.0m 52 61 20 1.135 31 1.093 42 1.090 i
't Core Height (ft) = (Node - 1)
- 0.2 11 1
COLR for CPSES UNIT 1 CYCLE 5 a
l FIGURE 7 W(Z). AS A FUNCTION OF CORE HEIGHT 18,000 MWD /MTU 1.30
- f ---
I i
a l
1.25 I
1 1.20 i
A.
R s
d'
('
\\\\
X 3
D
'1 15 t
N i
s A'N i
X
\\
1.10 V
I _
K.\\
1 v
}
i 8
I l
l 1.05 l
l l
1.00 i
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 -
8.0 9.0 10.0 11.0' 12.0 l
80N CORE HEIGHT (FEET)
TOP Axial Axial Axial Axial Node W(Z)
Node W(Z)
Node W(Z)
Node W(Z) 1 - 10 21 1.136 32 1.094 43 1.092 11 1.186 22 1.132 33 1.096 44 1.087 j
12 1.181 23 1.128 34 1.100 45 1.083 g
13 1.175 24 1.125 35 1.103 46 1.000
+
14 1.168 25 1.s21-36 1.104'-
47 1.077 15 1.162 26 1.119 37 1.106 48 1.077 l-16 1.155 27 1.116 '
38 1.105 49 1.078
)
4 17 1.148 28 1.112 39 1.105-50 1.000 18 1.145 29 1.108 40 1.103 51 1.085 19 1.142 30 1.104 41 1.099 52 61'
~
20 1.139 31 1.099 42 1.096 Core Height (ft) = (Node - 1)
- 0.2 12 i
j
_j
_