ML20217M363

From kanterella
Jump to navigation Jump to search
Rev 2 to ERX-96-004, CPSES Unit 1,Cycle 6 Colr
ML20217M363
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 08/15/1997
From: Brozak D, Choe W, Maier S
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To:
Shared Package
ML20217M360 List:
References
ERX-96-004, ERX-96-004-R02, ERX-96-4, ERX-96-4-R2, NUDOCS 9708220166
Download: ML20217M363 (16)


Text

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ - _ - _ _ _ _ _ - _ _ _ _ _ _ _ _ _ _

i.

ERX-96-004, Rev. 2 CPSES UNIT 1 CYCLE 6 CORE OPERATING LIMITS REPORT August 1997 Prepared: 7r Dates Daniel E. Brozak Reactor Physics Approved: -

N Date: I// 5"/II Stephen M. Mcier Reactor Physics Supervisor Approved * ' ~ ' '

Date:

I Whee G. Choe Safety Analysis Manager 9700220166 PDR 970015 P ADOCK 05000445 pop

l DISCLAIMER The infotmation contained in this report was prepared for the specific requirement of Texas Utilities Electric Company (TURC),

and may not be appropriate for use in situations other than those for which it was specifically prepared. TUEC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTI.BILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available, TUEC does not authorize its use by others, and any such use is forbidden except with the prior written approval of TUEC. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and

~

disclaimers of warranties provided herein. In no event shall TUEC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

'I 11 l

I

I i COLR for CPSES Unit 1 Cyclo 6

-TABLE OF CONTENTS l

DISCLAIMER ................................................. 11 TABLE OF CONTENTS .......................................... iii LIST OF FIGURES ............................................ iv SECTION 1.0 CORE OPERATING LIMITS REPORT .......................... 1 2.0 OPERATING LIMITS ...................................... 2 2.1 MODERATOR TEMPERATURE COEFFICIENT ................ 2 2.2 SHUTDOWN ROD INSERTION LIMIT ..................... 3 2.3 CONTROL ROD INSERTION LIMITS .....................~3 2.4 AXIAL FLUX DIFFERENCE ............................ 3 2.5 HEAT FLUX HOT CHANNEL FACTOR ..................... 4 2.6 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR ......... 5 2.7 SHUTDOWN MARGIN .................................. 5 iii 1

_ .__b

COLR for CPSES Unit 1 Cyclo 6 LIST OF FIGURES FIGURE PAGE 1 ROD BANK INEERTION LIMITS VERSUS THERMAL POWER ..... 6 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER ............................. 7 3 K(Z) - NORMALIZED Fa(Z) AS A FUNCTION OF CORE HEIGHT ........................................ 8 4 W(Z) AS A FUNCTION OF CORE HEIGHT -

(MAXIMUM) .......................................... 9 5 W(Z) AS A FUNCTION OF CORE HEIGHT -

(150 mwd /MTU) ...................................... 10 6 W(Z) AS A FUNCTION OF CORE HEIGHT -

(10000 MWD /MTU) .................................... -11 7 W(Z) AS A FUNCTION OF CORE HEIGHT -

(19000 MWD /MTU) .................................... 12 iv

COLR for CPSES Unit 1 Cyclo 6 1.0 ' CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPSES UNIT 1 CYCLE 6 has been prapared to satisfy tho requirements of Technical Specification 6.9.1.6.

The Technical Specifications affected by this report are listed below:

3/4.1.1.1 Shutdown Margin - T., Greater Than 200*F 3/4.1.1.2 Shutdown Margin - T., Less Than or Equal to 200*F 3/4.1.1.3 Moderator Temperature Coefficient 3/4.1.2.2 Flow Paths - Operating 3/4.1.2.4 Charging Pumps - Operating 3/4.1.2.6 Borated Water Sources - Operating 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flun Ect Channel Factor 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor 1

, ,. COLR for CPSES Unit 1 Cyclo 6-

2. 0- OPERATING LIMITS The cycle-specific parameter limits for-the specifications listed in Section 1.0 are presented in the following subsections. These limits have been' developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.6b, Items 5, 9, 10, R2 11, 12, 13, 14, 15, 16, 17, 19, and 20. These limits have been

! determined such that all applicable limits of the safety analysis are met.

l j 2.1 Moderator Temocrature coefficient (Specification 3/4.1.1.3) 2.1.1 The Moderator Temperature coefficient (MTC) limits are:

The BOL/ARO/HZP-MTC shall be less positive than

+5 pcm/ F.

The EOL/ARO/RTP-MTC shall be less negative than

-40 pcm/ F.

2.1.2 The MTC surveillence limit ist The 300 ppa /ARO/RTP-MTC=should be less negative than or equal to -31 pcm/ F.

where BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER

'EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2

COLR for CPSES Unit 1 Cyclo 6 2.2 f)ntA$own Rod Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive, i

2.3. Control Rod Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control banks shall be ?imited in physical insertion as shown in Figure 1.

2.4 Axial Flux Difference (Specification 3/4.2.1) 2.4.1 The AXIAL FLUX DIFFERENCE (AFD) target band is

+3%, -12%.

2.4.2 The AFD Acceptable Operation Limits are provided in Figure 2.

3 I

COLR for CPSES Unit 1 Cyclo 6 2.5 Heat Flux-Hot Channel Factor (Specification 3/4.2.2)

Fo (Z) s (K(Z)] for P > 0.5 P

Fg (Z) s (K(Z)] for P s 0.5

0.5 where

P= THERMAL POWER RATED THERMAL POWER

(

2.5.1 F o"' = 2 . 4 0 2.5.2 K(Z) is provided in Figure 3.

2.5.3 Maximum elevation dependent W(Z) values are given in Figure 4. Figures 5, 6, and 7 give burnup dependent values for W(Z) . Figures 5, 6, and 7 can be used in place of Figure 4 to interpolate or extrapolate (via a three point -fit) the W(Z) at a

.particular burnup.

2.5.4 A constant 2% decrease in Fa margin allowance shall be used to increase F ge(Z) for compliance with the 4.2.2.2.f Surveillance Requirement for all cycle burnups.

4

.__...___.____..____...___.._.m-.__-- . _ _ . _ . _ _ . _

COLR for CPSCS Unit 1 Cycic 6 4 2.6 thtclear EnthalDv Rise M _ Channel Factor (Specification 3/4.2.3)

F" , s F", [1 + PFu (1-P)] '

where P _._.THERMW W W4R ..._

RATED THFAMAL FOWER 2.6.1 F*, = 1.55 2.6.2 PFa = 0.25 Rev. 1 i

i 2.7 Shutdown Marain

-2.7.1 ~ _.

Whutdown (Specifications Marcin 3/4. - T.3_. 1.1, Greater 3/4.1.2.2, Than 200'F 3/4.1.2.4, and 3/4.1.2.6)

The SHUTDOWN MARGIN shall be greater than or equal

, to 1.3% Ak/k in MODES 1, 2, 3, and 4. .

t l

2.7.2 Shutdown Marain - T._ Less Than or Eaual to 200*F  !

(Specificution 3/4.I.1.2)

The SHUTDOWN MARGIN shall be greater than or equal to 1.3% Ak/k in NODE 5.

l 5 l

l . _

CCLR for CPSES UNIT 1 CYCLE 6 FIGURE 1 3 ROD BANK INSERTION LIMITS VERSUS THERNAL POWER

240 220 . (27.3,222) (81.5,222).

4L- ,

/,

--y..

/ -

1 --

-p - - -

l 200 l,

../ /rl-c r'

l4

)/

180 / l- BANK B

/

--/C-

/---

3, ----

,r

_150 7--- ,.

go,ig43 ,

p

.-. ---3_

140

--/C

" (100,145)g'

U f --- . _.

f--

a / '-~~

  • f g 120 / '

i.,. --../

O I BANK C #

g

=

y H 100

--m- , /f- -.

K / =w /

f 7

, /--- ,/;

s

/ 7

/

.i so  ;

g ,7

/,- --

/ . BANK D 3 /--

~(0,49) 7 40 g

--p. . ..

y .

20 - #

i

,(31,0),[ ,

0 0_ 10 20 30 40 50 50 70 80 90 100

, PERCENT OF RATED THERNAL POWER NOTBS 1. Fully withdrawn shall be the condition where control rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.

2. Control Bank A shall be fully withdrawn.

6

. . , , COLR fer CPSES UNIT 1 CYCLE 6 FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100

( - 17, 9 0 ) -- -(9,so)-

90

- T --

\ i UNACCEPTABLE --) UNACCEPTABLE 80 CPERATION

\_ _ OPERATION

\.__

~~~. - - -

ACCEPTABLE 70 -

OPERATION

- l___ k ) '

._f.

l h

__L_

l60___l 1 ._

50 i i

(-34,50) --

(29 50)---

4 0 40 s ,0 20 4__iemme+

10 0

-40 -30 -20 -10 0 10 20 30 40 DEVIATION FROM TARGET AXIAL FLUX 9IFFERENCE (%)

7

COLR for CPSES UNIT 1 CYCLE 6 FIGURE 3 K(Z) -

NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT 1.1 i ~~~~~ ~~~~~

( 0. 0,1.,

0, ), ( 6, .,0,1,.

, , 0, ),

3 l

l 0.9 (12. 0,'0. '9 2 5 )!

, 0. 8 0

E 0.7 g _____

d 0.6 0 .5 R _____

i 0.4 N ____ ____ .

M 0.3 a_____

_ .0.2 -- - .

0.1 ,,

0 0 1 2 3 4 5 6 7 8 9 10 11 12 gonog CORE HEIGHT (FEET) yo, Axial Axial Axial Axial Not.: K(E) Node K(1) Node K(E) Node K(E) 1 - 31 1.0000 39 0.9800 47 0.9600 55 0.9400 32 0.9975 40 0.9775 48 0.9575 56 0.9375 33 0.9950 41 0.9750 49 0.9550 57 0.9350 34 0.9925 42 0.9725 50 0.9525 58 0.9325 35 0.9900 43 0.9700 51 0.9500 59 0.9300 36 0.9875 44 0.9675 52 0.9475 60 0.9275 37 0.9850 45 0.9650 53 0.9450- 61 0.9250 38 0.9825 46 0.9625 54 0.9425 Core M11ght (ft) = (Node - 1)

  • 0.2 _

8

, , COLR for CPSES Unit 1 Cyclo 6 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT (MAXIMUM) 1.300 1.250 l 1.200 w.

  • K

~

,h I1.150 1.100 h

X

\- - ew

/

e y sf

-. =--

1.050 1.000 I 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 soTTON CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Mode M(E) Node W(E) Node W(Z) Node W(Z) 1 - 10 --- 21 1.136 32 1.093 43 1.097 11 1.182 22 1.132 33 1.095 44 1.095 12 1.176 23 1.128 34 1.05) 45 -1.098 13 1.172 24 1.125 35 1.103 46 1.100 14 1.167 25 1.122 36 1.105 47 1.104 15 1.163 26 1.119 37 1.106 48 1.109 16 1.159 27 1.115 38 1.105 49 1.113 17 1.154 28 1.110 39 1.104 50 1.115 18 1.149 29 1.105 40 1.103 51 1.112 19 1.144 30. 1.100 41 1.101 52 - (*. ---

20 1.140 31 1.095 42 1.100 Core Height (ft) = (Node - 1)

  • 0.2 9

COLR fcr CPSES UNIT 1 CYCLE 6 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD /MTU) 1.300 1.250 1.200 N - -

N 5

\

\

l1.150 1.100-N_

N \.

.. A

\% -- -

/,

/

==

1.050-1.000 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTON CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Mode W(z) Node W(E) Node W(Z) Node W(Z) 1 - 10 --- 21 1.136 32 1.080 43 1.093

-11 1.176 22 1.132 33 1.077 44 1.095 12 1.173 23 1.128 34 1.076 45 1.098

. 13 1.170 24 1.125 35- 1.076 46 1.100 14 1.167 25 1.121 36 1.079 47 1.104

_ 15 1.163 26 1.117 37 1.081 48 1.109 16 1.159 27 1.111 38 1.084 49 1.113 17 1.154 28 1.105 39 1.086 50 1.115 18 1.149 29 1.098 40 1.087 51 1.112 19 1.144 30 1.091 41 1.089 52 - 61 ---

20 1.140 31 1.085 42 1.091 Core Height (ft) = (Node - 1)

  • 0.2 10 h

COLR for CPSES UNIT 1 CYCLE 6 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT (10000 MWD /MTU) 1.300 1.250 1.200

~~~

m U \

1.150 5 __

\___

g ...

N N

N 1.100

\ -

Nm./

1.050

-1.000 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTON CORE HEIGHT (FEET) Top Axial Axial Axial Axial Nou i W(E) Node N(Z) Node N(Z) Mode W(Z) 1 - 10 --- 21 1.134 32 1.079 43 1.091 11 1.180 22 1.131 33 1.078 44 1.089 12 1.176 23 1.128 34 1.083 45 1.086

. -13 1.172 24 1.125 35 1.088 46 1.085 14 1.167 25 1.122 36 1.091 47 1.083 15 -1.162 26 1.118 37 1.092 48 1.083 16 1.156 27 1.113 38 1.092 49 1.084 17 1.150 28 1.108 39 1.093 50 1.088 18 1.146 29 1.103 40 1.093 51 1.094 19 1.142 30 1.095 41 1.093 52 - 61 ---

20 1.138 31 1.085 42 1.092 Core Height (ft) = (Node - 1)

  • 0.2 11 1

, , COLR for CPSES UNIT 1 CYCLE 6 FIGURD 7 W(Z) AS A FUNCTION OF CORE EtIGHT (19000 MWD /MTU) 1.300 3 1.250 1.200 N ~

  • x

\

- I1.150 1.100 h N

\

x r

-w

%)

1.050 1.000 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 sorroN CORE HEIGIIT (FEET) Top Axial Axial Axial Axial Mode W(1) Node W(Z) Node- W(Z) Node W(Z) 1 - 10 --- 21 1.136 32 1.093 43 1.097 11 1.182 22 1.132 33 1.095 44 1.093 12 1.176 23 1.128 34 1.099 45 1.089

, 13 1.171 24 1.125 35 1.103 46 1.085 14 1.164 25 1.122 36 1.105 47 1.083 15 1.159 26 1.119 37 1.106 48 1.081 16 1.153 27 1.115 38 1.105 49 1.080 17 1.149 28 1.110 39 1.104 50 1.083 18 1.145 29 1.105 40 1.103 51 1.088 19 1.142 30 1.100 41 1.101 52 - 61 ---

20 7.139 31 1.095 42 1.100 Core Height (ft) = (Node - 1)

  • 0.2 12