ML20044C062

From kanterella
Jump to navigation Jump to search
CPSES Unit 2 Cycle 1 Core Operating Limits Rept
ML20044C062
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 03/10/1993
From: Bosma J
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To:
Shared Package
ML20044C061 List:
References
RXE-93-003, RXE-93-3, NUDOCS 9303170096
Download: ML20044C062 (20)


Text

_ -.

f e

RXE-93-003

)

i CPSES UNIT 2 CYCLE 1 l

CORE OPERATING LIMITS REPORT March 1993 I

r 4

John T.

Bosma l

5AAA*

3/o M Reviewed:

Date:

Steplien M. Maier Supervisor, Reactor Physics Approved:

7/'[e/v// N kAIdMM Date:

3//p/43 Mickey Rf Killgore /'

Manager, Dallas Reactor i

Engineering 9303170096 930311 PDR ADOCK 05000446 PDR

, p

-l DISCLAIMER i

The information contained in this report was prepared for the specific requirement of Texas Utilities Electric Company (TUEC),

and may not be appropriate for use in situations other than those for which it was specifically prepared.

TUEC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available, TUEC does not authorize its use j

by others, and any such use is forbidden except with the prior written approval of TUEC.

Any such written approval shall itself be deemed to incorporate the disclaimers of liability and.

disclaimers of warranties provided herein.

In no event shall TUEC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

(

I

I.j i

1 TABLE OF CONTENTS DISCLAIMER 11 TABLE OF CONTENTS iii LIST OF FIGURES iv v

i SECTION l

l 1.0 CORE OPERATING LIMITS REPORT.

l' l

2.0 OPERATING LIMITS

.-2 t

2.1 MODERATOR TEMPERATURE COEFFICIENT.

2 i

2.2 SHUTDOWN ROD INSERTION LIMIT 3

2.3 CONTROL ROD INSERTION LIMITS 3

J 4

2.4 AXIAL FLUX DIFFERENCE 3

2.5 HEAT FLUX HOT CHANNEL FACTOR 4

2.6 NUCLEAR ENTHALPHY RISE HOT CHANNEL FACTOR 5

4

)

1 iii i

l

.l i

i LIST OF FIGURES FIGURE PAGE i

1 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 6

2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 7

3 K(Z) - NORMALIZED F (Z) AS A FUNCTION OF l

n CORE HEIGHT 8

4 W(Z) AS A FUNCTION OF CORE HEIGHT, MAXIMUM LOAD FOLLOW, BURNUP $ 5000 MWD /MTU (AFD BAND +5,-5) 9 4

5 W(Z) AS A FUNCTION OF CORE HEIGHT 150 MWD /MTU (AFD BAND +5,-5) 10 6

W(Z) AS A FUNCTION OF CORE HEIGHT 5000 MWD /MTU (AFD BAND +5,-5) 11 7

W(Z) AS A FUNCTION OF CORE HEIGHT, MAXIMUM LOAD FOLLOW, BURNUP > 5000 MWD /MTU (AFD BAND +3,-9) 12 8

W(Z) AS A FUNCTION OF CORE HEIGHT

{

5000 MWD /MTU (AFD BAND +3,-9) 13 l

1 l

IV

v e

e i

t 9

FIGURE-PAGE' 9

W(Z) AS A FUNCTION OF CORE HEIGHT 9000 MWD /MTU (AFD BAND +3,-9)

.14 10 W(Z) AS A FUNCTION OF CORE HEIGHT 11900 MWD /MTU (AFD BAND +3,-9) 15 b

e p

A D

7 h

i f

e E

v I

[J COLR for CPSES UNIT 2' CYCLE 1 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPSES UNIT 2 CYCLE 1 has been prepared in accordance with the requirements of Technical.

Specification 6.9.1.6.

L The Technical Specifications affected by this report are listed below:

3/4.1.1.3 Moderator Temperature Coefficient j

3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits t

3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor l

?

P b

F t

1 i

r m

i COLR For CPSES UMIT 2 CYCLE 1

'i i

i 2.0 2PERATING LIMITS The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections.

These limits have been developed using the NRC-approved methodologies i

specified in Technical Specifications 6.9.1.6.

2.1 Moderator Temperature Coefficient (Specification 3/4.1.1.3) 2.1.1 The Moderator Temperature Coefficient (MTC) limits are:

The BOL/ARO/HZP-MTC shall be less positive than i

+5 pcm/ F.

The EOL/ARO/RTP-MTC shall be'less negative than l

-40 pcm/ F.

l 1

2.1.2 The MTC surveillance limit is:

i The 300 ppm /ARO/RTP-MTC should be less negative j

i than or equal to -31 pcm/ F.

i l

where:

BOL stands for Beginning of Cycle Life ARO stands for All Rods Out i

HZP stands for Hot Zero THERMAL POWER i

EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER i

r 2

y

-~

I COLR for CPSES UNIT 2 CYCLE 1 i

l 2.2 Shutdown Rod Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be fully withdrawn.

i Fully withdrawn shall be the condition where 3

shutdown rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.

2.3.

Control Rod Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control banks shall be limited in physical insertion as shown in Figure 1.

k 2.4 Axial Flux Difference (Specification'3/4.2.1) 2.4.1 The AXIAL FLUX. DIFFERENCE (AFD) target band is

+5%, -5%,

for core average accumulated burnup 5 5000 MWD /MTU.

2.4.2 The AFD target band is +3%, -9%,

for' core average accumulated burnup > 5000 MWD /MTU.

j where:

MWD /MTU stands for megawatt days / metric tonne of initial uranium metal 2.4.3 The AFD Acceptable Operation Limits are provided in-Figure 2.

+

E

')

i

9 COLR for CPSES UNIT 2' CYCLE 1 2.5 Heat Flux Hot Channel Factor

- (Specification 3/4.2.2)

F arr

{

q F (Z) S

[K(Z)] for P > 0.5 n

P F "TP l

n F (Z) $

[K(Z)] for P $ 0.5 n

0.5 where:

P=

THERMAL POWER RATED THERMAL POWER 2.5.1 F " = 2. 32 l

n 5

2.5.2 K(Z) is provided in Figure 3 1

2.5.3 a)

Core Average Accumulated Burnup $5000 MWD /MTU.

i:

Elevation dependent W(Z) values for load follow operation are given in Figure 4-for Cycle 1 core average accumulated burnup between 0 and 5000 MWD /MTU.

Figures 5 and 6 give burnup dependent values for W(Z).

Figures 5 I

and 6 can be used in place of Figure 4 to interpolate the W(Z) at a particular burnup.

T 1

l 4

i COLR for CPSES UNIT 2 CYCLE 1 i

b).

Core Average Accumulated Burnup >5000 MWD /MTU.

l Elevation dependent W(Z) values for load follow operation are given'in Figure 7 for Cycle 1 core average accumulated burnup greater than 5000 MWD /MTU.

Figures 8, 9,

and 10 give burnup dependent values for 'W(Z).

Figures 8, 9,

and 10 can be used in place of Figure 7 to interpolate or extrapolate (via a three point fit) the W(Z) at a particular burnup.

2.6 Nuclear Enthalov Rise Hot Channel Factor 1

(Specification 3/4.2.3)

Nan 5 F""3n [1 + PFan (1-P))

F i

where:

P=

THERMAL POWER RATED THERMAL POWER 2.6.1 F""3n = 1.55 2.6.2 PFan = 0. 3 i

5

COLR for CPSES UNIT 2 CYCLE 1 FIGURE 1 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240 l

p[_

220 (17.1.222)

/

(73.1,222)

/

'/

i

/.4__'_

/

2%

l

/

BANKB 180 j

',f

_p j

~

/

(0,187)

/

(100,162) p,#

f' y160 E

'd

/

?

f'f

/

mE

/

T 140 f

,f E-

/

2

/

l

/

f 3

/T

--~

BANK C

/

g 120 f

f E

/

/

~~f

/

L 100 g.

g x

h


/

/l a

_ />!

8 80 i

k

/

i

/

/

^

60

- (0,72) j

/

/

40

/,

/

1

/

r h[

20 (21,0) --y[

I

'I#

0 O

10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED THERMAL POWER l

NOTES:

1.

Fully withdrawn shall be the condition where control rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.

2.

Control Bank A shall be fully withdrawn.

6 6

e

COLR for CPSES UNIT 2 CYCLE 1 FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION 1

OF RATED THERMAL POWER j

l 100 i

i

-- (-l 1,90)

(11,90) t

l 90 y

\\

-UNACCEPTABLE g

UNACCEPTABLE

OPERATION

'\\

OPERATION ;~~

J

\\--

\\

4 T

70 1

I

\\

l i

i 5

ACCEPTABLE

[~ OPERATION I

ii

, 60 h

M M

\\

\\

iE T

@ 50 i

i h

. -31,50)

(31,50) (([

(

E5

$ 40 55

~

30 20 10 0

-40

-30

-20

-10 0

10 20 30 40 AXIAL FLUX DIFFERENCE (%)

7

COLR FOR CPSES UNIT 2 CYCLE 1 FIGURE 3 K (.Z) - NORMALIZED F (Z) AS A FUNCTION OF CORE HEIGHT n

1.1 (0.0,1.0)

(6.0,1.0) 1I II I

I IIIl 1

i (10.8,0.939) '

1[T(

l!

l 0.9 i

I 0.8 I

\\,

0.7 h 0.6 (12.0.0.646) -

s E5 4

x 0.5 i

i g

0.4 t

0.3 I

0.2 0.1 0

0 1

2 3

4 5

6 7

8 9

10 11 12 BOTTOM CORE HEIGHT (FEET)

TOP 8

1 e

COLR for CPSES UNIT 2 CYCLE 1 l

FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT, MAXIMUM LOAD FOLLOW, BURNUP S 5000 MWD /MTU (AFD BAND +5,-5) i i

f 1.3 I

i 1.25 i

i l

1.2

[

-E*

l m

a 1.15 2E I

x5 A

p'%/

N s

'W

. h l_

i 1.05 B

1 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET)

TOP Axial Axial Axial Axial Node W(Z)

Node W(Z)

Node W(Z)

Node W(Z) 1 - 10 21 1.0959 32 1.0852 43 1.1149

-}

II 1.1152 22 1.0958 33 1.0888 44 1.1130

[

12 1.1127 23 1.0959 34 1.0948 45 1.1110 13 1.1092 24 1.0964 35 1.0998 46 1.1114 i

14 1.1054 25 1.0964 36 1.1045 47 1.1138 15 1.1015 26 1.0958 37 1.1089 48 1.1169 16 1.0976 27 1.0946 38 1.1122 49 1.1198

+

17 1.0943 28 1.0927 39 1.1142 50 1.1231 18 1.0924

- 29 1.0901 40 1.1156 51 1.1274 19 1.0940 30 1.0876 41 1.1165 52 - 61

[

20 1.0954 31 1.0847 42 1.1162 Core Height (ft) = (Node - 1)

  • 0.2 9

-.m-.-

COLR for CPSES UNIT 2 CYCLE 1 j

FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT 150 MWD /MTU (AFD BAND +5,-5) 1.30 i

1.25 1.20 G

I 5

m a 1.15 2

l 5:2 I

~ ~

~

_,em

/

1*IO

/

^&

f_

\\_

/

v i

4 i

1.05 l

1.00 l

-l 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 J.0 10.0 11.0 12.0

.)

i BOTTOM CORE HEIGHT (FEET)

TOP Axial Axis!

Axial Axial Node W(Z)

Node W(Z)

Node W(Z)

Node W(Z) 1 - 10 21 1.0959 32 1.0823 43 1.1149 11 1.1016 22 1.0958 33 1.0888 44 1.1130 12 1.1013 23 1.0952 34 1.0948 45 1.1110 13 1.1001 24 1.0939 35 1.0998 46 1.1114 14 1.0986 25 1.0924 36 1.1045 47 1.1138 15 1.0970 26 1.0902 37 1.1089 48 1.1169 16 1.0949 27 1.0874 38 1.1122 49 i.1198 17 1.0929 28.

1.0840 39 1.1142 50 1.1231 18 1.0918 29 1.0799 40 1.!!56 51 1.1274 19 1.0938 30 1.0762 41 1.1165 52 61 20 1.0954 31 1.0765 42 1.1162.

I Core Height (ft) = (Node - 1)

  • 0.2 10-1

.-,.l

COLR for CPSES UNIT 2 CYCLE 1 FIGURE 6 W(Z) AS A FUNCTION-OF CORE HEIGHT i

5000 MWD /MTU (AFD BAND +5,-5) i 1.30 1.25 I.20 i

R[

.i

s
o 1.15 E%

~

'/

i

~

y 1,10

~_

. j y

1.05 i

1 1.00 0.0 1.0

'2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET)

TOP Axial Axial Axial Axial Node W(Z)

Node W(Z)

Node W(Z)

Node W(Z) 1 - 10 21 1.0933 32 1.0819 43 1.1136 11 1.1152 22 1.0944 33 1.0831 44 1.1125 12 1.1127 23 1.0956 34 1.0883 45 1.1109 13 1.1092 24 1.0964 35 1.0938 46 1.1102 14 1.1054 25 1.0964 36 1.0988 47 1.1107 15 1.1015 26 1.0958 37 1.1035 48 1.1132 l

16 1.0976 27 1.0946 38 1.1073 49 1.1163 17 1.0943 28 1.0927 39 1.1099 50 1.1200 18 1.0924 29 1.0901 40 1.1120 51-1.1239 J

19 1.0925 30 1.0876 41 1.1134 61 20 1.0928 31 1.0847 42 1.1140 Core Height (ft) = (Node - 1)

  • 0.2 11 l

rw,,,

~

COLR for CPSES UNIT 2 CYCLE 1 FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT, MAXIMUM LOAD FOLLOW, BURNUP > 5000 MWD /MTU (AFD BAND +3,-9) l 1.3

.L-1.25 1.2

(

_\\

-E

- \\

V m

1 7f-N

/

.15 3 J,.

f

\\

)_

1 5

p N

NI 1.1 1.05 1

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BO N M CORE HEIGHT (FEET)

TOP Axial Axial Axial Axial Node W(Z)

Node W(Z)

Node W(Z)

Node

' W(Z) 1 10 21 1.1392 32 1.1524 43 1.1183 11 1.2039 22 1.1396 33 1.1567 44 1.1173 12 1.1939 23 1.1392 34 1.1598 45 1.1225 13 1.1834 24 1.1379 35 1.1608 46 1.1329 14 1.1740 25 1.1370 36 1.1601 47 1.1396 15 1.1647 26 1.1329 37 1.1581 48 1.1555 16 1.1541 27 1.1284 38 1.1541 49 1.1669 17 1.1440 28 1.1257 39 1.1482 50 1.1733 18 1.1364 29 1.1321 40 1.1411 51 1.1742 19 1.1379 30 1.1398

~ 41 1.1322 52 - 61 20 1.1386 31 1.1468 42 1.1236 Ccre Height (ft) = (Node - 1)

  • 0.2 22

COLR'for CPSES UNIT 2 CYCLE 1 FIGURE 8 W(Z) AS A FUNCTION OF CORE HEIGHT 5000 MWD /MTU (AFD BAND +3,-9) i 1.30 1.25 1.20 Ei

[1.15

__\\

i aE k

-b

/

\\

m r,

5

\\

^

K

/

V 1.10 1.05 1.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 i

BorrOM CORE HEIGHT (FEET)

TOP i

Axial Axial Axial Axial Node W(Z)

Node W(Z)

Node W(Z)

Node W(Z) 1 - 10 21 1.1258 32 1.1266 43 1.1151 11 1.1966 22 1.1237 33 1.1317 44 1.1173 12 1.1896 23 1.1213 34 1.1359 45 1.1225 13 1.1821 24 1.1181 35 1.1384 46 1.1329 14 1.1740 25 1.1146 36 1.1396 -

47 1.1388 15 1.1647 26 1.1096 37 1.1397 48 1.1403 16 1.1541 27 1.1048 38 1.1379 49 1.1351 17 1.1435 28 1.1011 39 1.1342 50 1.1285 18 1.1342 29 1.1061 40 1.1290 51 1.1244 19 1.1317 30 1.1136 41 1.1211 52 - 61 20 1.1284 31 1.1206 42 1.1163 Core Height (ft) = (Node - 1)

  • 0.2 13

=

COLR for CPSES UNIT 2 CYCLE 1 FIGURE 9 W(Z) AS A FUNCTION OF CORE HEIGHT 9000 MWD /MTU (AFD BAND +3,-9) 1.30 a

1.25 I

1.20 i

Y-3'\\

[

sE

s

\\

/r-N

/

1 g 1.15

\\

7 g

j

/

T

/

5:2

/

\\

/

S s,

-s j

y 1.10 1.05 1.00 O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BONM CORE HEIGHT (FEET).

TOP Axial Axial Axial Axial Node W(Z)

Node W(Z)

Nale W(Z)

Node W(Z) 1-10 21 1.1251 32 1.1524 43 1.1172 11 1.1953 22 1.1224 33 1.1567 44 1.1141 12 1.1871 23 1.1195 34 1.1598 45 1.1147 13 1.1785 24 1.1160 35 1.1608 46 1.1240 14 1.1692 25 1.1103 36 1 1601 47 1.1396 15 1.1581 26 1.1081 37 1.1581 48 1.1555 16 1.1475 27 1.1118 38 1.1541 49 1.1669 17 1.1387 28 1.1227 39 1.1482 50 1.1733 18 1.1327 29 1.1321 40 1.1409 51 1.1742 19 1.1300 30 1.1398 41 1.1312 52 - 61 20 1.1274 31 1.1468 42 1.1230 Core Height (ft) = (Node - 1)

  • 0.2

~

14

COLR for CPSES UNIT 2 CYCLE 1 FIGURE 10 W(Z) AS A FUNCTION OF. CORE HEIGHT 11900 MWD /MTU (AFD BAND +3,-9) 1.30 1.25 1.20

(

\\

21

\\

3=

\\

m

\\

s, g 1.15 7-V

/

p N

f 5

\\

/

\\

/

A

/

1.10 y

1.05 1.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BO N M CORE HEIGHT (FEET)

TOP Axial Axial Axial Axial Node W(Z)

Node W(Z)

Node W(Z)

Node W(Z) 1 10 21 1.1392 32 1.1489 43 1.1138 11 1.2039 22 1.1396 33 1.1526 44 1.1037 12 1.1939 23 1.1392 34 1.1552 45 1.0950 13 1.1825 24 1.1379 35 1.1561 46 1.0915 14 1.1706 25 1.1370 36 1.1554 47 1.0910 15 1.1562 26 1.1329 37 1.1537 48 1.0970 16 1.1446' 27 1.1284 38 1.1502 49 1.1097 17 1.1375 28 1.1256 39 1.1450 50 1.1262 18 1.1364 29 1.1309 40 1.1391 51 1.1445 19 1.1379 30 1.1378 41 1.1321 52 - 61 20 1.1386 31 1.1441 42 1.1235 Core Height (ft) = (Node - 1)

  • 0.2 15