ML20078D473

From kanterella
Jump to navigation Jump to search
CPSES Unit 2 Cycle 2 Colr
ML20078D473
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 10/25/1994
From: Killgore M, Maier S
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To:
Shared Package
ML20078D465 List:
References
RXE-94-004, RXE-94-4, NUDOCS 9411040192
Download: ML20078D473 (10)


Text

. .

n RXE-94-004 CPSES UNIT 2 CYCLE 2 CORE OPERATING LIMITS REPORT l

October 1994 John T. Bosma Reviewed:

  • Date: /0 7Y Step 6en M. Maier 1 Reactor Physics Supervisor Approved: / Ch>f I 8 Mickey Killgore 6f N Date: /6[8 ff/74 Nuclear alysis and Fuel Manager 9411040192 941028 PDR ADOCK 05000445 P PDR

DISCLAIMER F'

The information contained in this report was prepared for the

- specific requirement of Texas Utilities Electric Company. (TUEC),

and may not be appropriate for use in situations other than those for which it was specifically prepared. TUEC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND-OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING l

BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available, TUEC does not authorize its use by others, and any such use is forbidden except with the prior written approval of TUEC. Any'such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall TUEC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

ii

i 4

TABLE OF CONTENTS DISCLAIMER . . . . . . . . . . . . . . . . . . . . . . . . . ii TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . iii LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . iv-LIST OF FIGURES'. . . . . . . . . . . . . . . . . . . . . . . v SECTION 1.0 CORE OPERATING LIMITS REPORT . . . . . . . . . . . . . . . 1 2.0 OPERATING LIMITS . . . . . . . . . . . . . . . . . . . . . 2 2.1 MODERATOR TEMPERATURE COEFFICIENT . . . . . . . . . . 2 2.2 SHUTDOWN ROD INSERTION LIMIT . . . . . . . . . . . . 3 2.3 CONTROL ROD INSERTION LIMITS . . . . . . . . . . . . 3 2.4 AXIAL FLUX DIFFERENCE . . . . . . . . . . . . . . . . 3 I 2.5 HEAT FLUX HOT CHANNEL FACTOR . . . . . . . . . . . . 4 2.6 NUCLEAR ENTHALPHY RISE HOT CHANNEL FACTOR . . . . . . . . . . . . . . . . . 5 l

1 j

iii

1

. I e

LIST OF TABLES TABLES ~ PAGE 1 FoMARGIN DECREASES IN EXCESS.OF 2% PER 31 EFPD . . . . .6 1

I

'l l

1 iv

LIST OF FIGURES FIGURE PAGE 1 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER . . . . . . 7 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER . . . . . . . . . . . . . . . . . 8 3 K (Z) - NORMALIZED Fo (Z) AS A FUNCTION OF CORE HEIGHT . . . . . . . . . . . . . . . . . . . . . . . 9 4 W(Z) AS A FUNCTION OF CORE HEIGHT -

MAXIMUM . . . . . . . . . . . . . . . . . . . 10 5 W(Z) AS A FUNCTION OF CORE HEIGHT -

150 MWD /MTU . . . . . . . . . . . . . . . . . . . . . . 11 6 W(Z) AS A FUNCTION OF CORE HEIGHT -

8000 MWD /MTU . . . . . . . . . . . . . . . . . . . . . 12 7 W(Z) AS A FUNCTION OF CORE HEIGHT -

14000 MWD /MTU . . . . . . . . . . . . . . . . . . . 13 v

1

. COLR for CPSES UNIT 2 CYCLE 2 4

'1. 0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPSES UNIT 2 CYCLE 2

' has~been prepared to satisfy'the requirements of. Technical Specification 6.9.-l.6.

The Technical Specifications affected by this report are listed t

below:

3/4.1.1.3 Moderator Temperature Coefficient 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 -Heat Flux Hot Channel Factor 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor 1

l COLR for CPSES UNIT 2 CYCLE 2 1

2.0 OPERATING LIMITS The cycle-specific parameter limits for the specifications listed in.Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.6b, Items 1, 2, 3, 4, 5, 6, 7, 8, 16, and 18. These limits have been determined such that all applicable limits of the safety analysis are met.

2.1 Moderator Temperature Coefficient (Specification 3/4.1.1.3) 2.1.1 The Moderator Temperature Coefficient (MTC) limits are:

The BOL/ARO/HZP-MTC shall be less positive than-

+5 pcm/ F.

The EOL/ARO/RTP-MTC shall be less negative than

- 40 pcm/ F.

2.1.2 The MTC surveillance limit is:

The 300 ppm /ARO/RTP-MTC should be less negative than or equal to -31 pcm/ F.

where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2 l l

p ,

COLR for CPSES. UNIT 2 CYCLE 2 2.2 Shutdown Rod Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The. shutdown rods shall be fully withdrawn.

Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.

1 l

2.3. Control Rod Insertion Limits (Specification 3/4.1.3.6) 2.3.1 The control banks shall be limited in physical insertion as shown in Figure 1.

2.4 Axial Flux Difference (Specification 3/4.2.1) 2.4.1 The AXIAL FLUX DIFFERENCE (AFD) target band is

+3%, -12%.

2.4.2 The AFD Acceptable Operation Limits are prosided in Figure 2.

3

COLR'for CPSES UNIT 2 CYCLE 2 h .

i

=2.5 Heat Flux Hot Channel Factor - -(Specification 3/4.2.2)

F o5tTP Fo (Z) s [K(Z)] for P > 0.5  !

P p RTP Fo (Z) s [K(Z)] for P s 0.5 l- 0.5 where: P= THERMAL POWER RATED THERMAL POWER l

2.5.1 F o "T" = 2.32 I 2.5.2 K(Z) is provided in Figure 3.

)

l 2.5.3 Maximum elevation dependent W(Z) values are given in Figure 4. Figures 5, 6, and 7 give burnup dependent values for W(Z). Figures 5, 6, and 7 can be used in place of Figure 4 to interpolate or extrapolate (via a three point fit) the W(Z) at a particular burnup.

2.5.4 Table 1 shows Fo margin decreases that are greater than 2% per 31 Effective Full Power Days (EFPD). These values shall be used C

instead of a constant 2% to increase Fo(z) per Surveillance Requirement 4.2.2.2.f. A constant factor of 2% shall be used at all L

cycle burnups that are outside the range of Table 1.

l 4

i r j iCOLR'for.,CPSES UNIT 2 CYCLE 2 I

)

2 I

2.6 Nuclear Enthalov Rise Hot Channel Factor (Specification 3/4.2.3)

F"6a 5. ' F"TP an (1 + PF an (1-P)]

where: P= THERMAL POWER RATED THERMAL POWER  :

i RTP 2.6.1 F an = 1.55 l 2.6.2 PF 6u = 0.3 i

t b

}

f I

5 i

7, , .. . - , __

COLR for CPSES UNIT'2 CYCLE 2 TABLE 1 FoMARGIN DECREASES IN EXCESS OF 2% PER 31'EFPD' Cycle Maximum Decrease Burnup in Fo Margin (MWD /MTU) (Percent) 2560 2.00 2720 2.23 2881 2.52 3042 2.70 3202 2.55 3363 2.37 3524 2.18.

3684 2.04 3730 2.00 Note: All cycle burnups'outside the range of the table shall use a constant 2% decrease in Fa margin for compliance with the 4.2.2.2.f Surveillance Requirements.

Linear interpolation is acceptable to determine the Fa margin decrease for cycle burnups which fall between the specified burnups.

6

- -. _ .. . .- . . - . . __ _. = . _ . - . _ -

COLR for CPSES UNIT 2 CYCLE 2 FIGURE 1 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240 .

~ ~~ ~

i _ 1 [I $ [1 [ '..L. _

_p. q _ .. .__ ~.

j_ _ _ _. .

q _j 7_._ h._ __ .__ __.___._ ._.___

__I (17.1,222) (73.1,222) ._

_ _ _ . _ _t 4

__ a__.-_ -___._ - _ __._--

/ . y. _... -._

.3- -

[ __,__..

T ~

T^~

~~ ~' ' ' '~~ ~~~~~~

200 i

'.__ _j_ . /" J ._

._}_

180

..__4[f . ,,g BANK 3 ._

B

, j L.1 I i _J._y /

_.-._[.. l l l _{

(0,187) ; 77 _-

gg ii rF _.. _.___ _

-t (100,162)

J _.J_.

ll / J_3 1 _L

'Il}ll .522~~ .) 222(( ~p~_l 22 f* . __ _ _ ._ _. _ .. _

_p.

I 4:: ti:1::::+ i- -Ht:

7_ _.

._[_

BANK C t:::

-f

)t' Xl E _ _

_ p_ _ .. .

_..[. / _._. _ . ._ _.._

.-4

_ _ _- L l!-

m _ .. - -

.._._/ - ._ . _

Q p q_9_7 p._ ____.. _.p_ 7_

_7

/

s 4__p / _[

_.6 j_ _ __.

.d_L J4_ _ __J g . . . ___ ._ . . . . _ .._ _.

g _ _

_q_ _ _ _ _ _

.._7 7 y_.. _ - _g._ 7 _ _y 7 ._

..; . . Q[_L -.

l._[___ ._ _ ._. -

_7 O [_Lt. . _ _ _

j_L . j_ j _ _ . __L 4_}_{ _

qj _. _ .___.L.

.p.Q .._

. _ . -- __ a , -__

(0,72)

.. _.{..j_ _{_

y. _.

._y. p. f . t-- -t B A N K D _

7 60 ,

.., . r. .. _ _ .. _.

.J .4 _. J ! _ .J ._ . _ . _ _

l p_ .. . . . . _ _ _ _.{. p._ _4_. _ . . -

_.__+ _ .___-

_...q_

-_y 3_7. . . 7.__- _.9 7 y.. - _ - __

40

~~

1$ $ ' _L 1 _I _ 12 2122~

20

. _ _f 4 .{- __[ _ ; p.p 9_

}.. _ _ . _ _ , . _ _ _ _ _ . _ _ .

l 4L2J. .J ! !

Lt.J. ' ..

4 4 J._ j._ _.{ _p y.._ {.- __p __ _

.}-yp H.p.{

1 .-(21,0)-4

, _7.. 7 7-} _h.p+] 77_._.

._p

-+-- - - ---

3- h_.-- _7_p. .- . ._.__..

O O 10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED TIIERMAL POWER i

NOTES: 1. Fully withdrawn shall be the condition where control . rods -l are at a position within the interval of 222 and 231 steps withdrawn, inclusive.

2. Control Bank A shall be fully withdrawn. l 1

i 1

COLR for-CPSES UNIT 2 CYCLE 2 FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100

_ _ .._'  ! l  !  !

_1i _ _ _.L

_1_I

._. l _ _.._}__ I_ .

_._}. _._. _._

_7.__. _ _ . _

._4_

._q_7,__ _.7_ _g._7_ .

q_

90

_....q __L_ _j ._ _

_7_.h

. j_. _

___. _ . Lp_._7 .

y _

_.4

_p L

_{_.

~ ~~~ ~~

' UNACCEITABLE ] ~T- F ~ ~~

~ ~ -

UNACCEITABLE~

80 3 OPERATION ' ~1 OPERATION Z

_.Ly__. q< .j . _ _LL_

_j_J .

J ___ L

.J q_ .. _.

+.L_ _ _L ._._ . __ ___

-._{.y , _ . _..._

-._y __ _

7 y. } .; _._, y _ _. __ _

w 70 g _

L!.q_ _ {_ . _ _ __ .J_. _Q4_. _QQ ,

J k i. 1 1T_1 1 I_.))

~ ~ ~~~~ ~

{} ACCEPTABLE]

a 1.U i . j .,..  ; _' ! OPERATION -. T __ _

. +

7 - . _.3..

y .

l _ 4 J ._L _j _

L _ _._ _ L m 4. ,

7.t .-_

_1_7 , _

.1~ TT-(.-_ T ~ ~

y_

'^n ,

~, i c--t- r o 50

I i.] (-31,50)

";f-

^- - ~~ - ~~~~-

~"-b~~ ((Z[ (31,50) (([

g

- . _;_L q_ 4 _ _ _

_7_ ___ .

a __

m O 40 y..{_ q_ l 3 ,_ .

y I y .__

p_

. p, .J i J_4.LL __ L _ 1! 4_ _J __ . _.__.._

l g _.LLLL - pJ_L q.

__1_. ..L .___ _L__.___

44__

7 u

W 30

,H-t 77 +,g _. m-H _- ,# _- -

4 ._ j _ _l ..pL.

i

_{_q .

_((_ _

u .. J ,a ,_ __

_y_1_ _ __g_

_,9.p. _._ __,__ _ __

20 4.q_. q.q_._7 ._q .g.. _gj_g.. _q___ _._ q_ __

q._

.] _ ..q.4 _f_. _ . . J _ ___

_L!_ J._ ._ .

_,_H_---

- JJ---

. -4 _ _L.

a4 . _

.J 4..1 _ _ .; _ . .g. . JJ_,; ._ _

._!J. 1_ __ _.

10 yj. .Q.. _

4{_ p. q.q.. p.4._ _4.Q . __p.q_.__

_y_ _

J,441 _ [. L ...L .. L ._. _L l.1J_L J.J .J_ _

_4 . ! i __

IJ_ _

_1_.

[ .J .

p,h j.p._}_ q_ _ i. _1g%.p _ _ _ ..

Jp!__. __J. L _{!_j q.y .p

.yq + _p _

_7.y_ _,

_p_

.g_74 _} _ .7_p.4q_..q _; ___ _7_ _7 _7_74._

0

-40 -30 -20 -10 0 10 20 30 40 AXIAL FLUX DIFFERENCE (%)

l 8

I i

y. COLR for;CPSES UNIT 2 CYCLE 2 FIGURE'3 K(2) - NORMALIZED F o(Z) AS A FUNCTION OF CORE HEIGHT 1.1 I

d.hd d._ _..

_d )_ .,_. _ . __ . _ _ _ ._ . _ . . . _ . _ ___

l (0.0.1.0) , (6.0.1.0) h Q .LL l l'II lll j!!!

il lIll 0.9 I .I i il liti ...-

(12.0 0.925)-

.g __. _ -_..

7

_-.7 0.8

+ l l

3 ._ _ _.. ___ _ .

y. . . .. . .._ .. -._ .__.__ .._ _._ _ .._ _ _. _. . .

cv .i

n. 0.7 O _~..f _. ._ _. _ . _ . _ _ ._. __ __ .. _ _ _ _ . _ _.._. . .

N 0.6 2 l..q_ 1 i

3 __ _

$ 0.5 p J i i 1

  1. l l  ! I i 0.4 , ,  ;

6 - L 2 i,

W I _f.

0.3 '

0.2

._. b . . _ _I_ ..._ .

_.1_ __. d_ ._._ _ . _ _.. _ . . . _ _

I I l I 0.1

b. .d _ _ ... - - _._ _ _ ... ._ .- _. _._.

i i I 1 i 0

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 11orroM CORE IIEIGIIT (FEET) TOP f

Anal Axial Axial Axial Node K(Z) Nale K(2) Node K(Z) Node K(Z) 1 - 31 1.(X xx) 39 0.9800 47 0.96(X) 55 0. Woo 32 0.9975 40 0.9775 48 0.9575 56 0.9375 33 0.9950 41 0.9750 49 0.9550 57 0.9350 34 0.9925 42 0.9725 50 0.9525 58 0.9325 35 0 VAX) 43 0.9700 51 0.9500 59 0.9300 36 0.9875 44 0. % 75 52 0.9475 60 0.9275 37 0.9850 45 0.9650 53 0.9450 61 0.9250

. 38 0.9N25 46 0. % 25 54 0.9425 Core lleight (ft) = (Node - 1)

  • 0.2 9 .

r

COLR for CPSES UNIT 2 CYCLE 2 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT MAXIMUM 1.30

_d ._ .. L .L_.  !

I_

- .- i_ i

_p _._ __ _. __

_.. {

._ j ._ _ p. _ _7 _. ._ _ _ . . .__ __

l.25

_. [ ._ _ _ .

I

_L.. I I

.. {._. .. p.. _ __.

_j._ _ _ . . _ .

J _. _.._

q_

_ _,_ L. . _ , _ __. __ ___

_r l.20 7

_j_ __

q __j ... _ - _

_.p _ . _ _ __ _ . . . _

._j_. __

g 4 _ . . _ _ _\ 4 ...}_ _j_ __

j _y_ _ _ .L_ _j_

E Z _Ji _lZ Zb ZZ ZZ ~3Z ZE ZIZ .Z Z ZI g

_1l.1

_ y.. _y . _ _.- .- _ .- _ _ . . _ _ _.

g' y -._

_ . . _E __

_p

_3

.p

'.__.y ._

__K. _}_

_L_

..g - 4_ -y _7_

l.10

_._ {_ , _

._{._ \g _.q_

-- ) . .-- -.. . . _

_7-

.7

.7

.7

.; _3-l.05 4_ ... L . . . . _ _ .

_.L _ j .. _j __ q._ _._

_.{ .__.

. . . ..g _. .,_ - , _ _p _._ _,_ _. _ .

_u_ __

.1 I

L _._1.._. . , _ _ . . _

_,d._ ._ ..[ ... ._ .j __ ._ . . _ . -. _

... j . . 4._ ._

_.[_ . q .. 4_. '

.._j . . y._ 4.. '

_p 1.00 O.0 1.0 2.0 3.0 40 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM TOP CORE HEIGHT (FEET)

Axial Axial Axial Axial Ntxle W(Z) Node WIZ) Node W(2) Node W(Z) 1 - 10 -

21 1.1592 32 1.1491 43 1.1154 11 1.2375 22 1.1564 33 1.1533 44 1.1097 12 1.2277 23 1.1533 34 1.1562 45 1.0950 13 1.2171 24 1.1497 35 1.1577 46 1.0876 14 1.2058 25 1.1456 36 1.1577 47 1.0843 15 1.1960 26 1.1409 37 1.1563 48 1.0840 16 1.1876 27 1.1357 38 1.1532 49 1.0850 17 1.1779 28 1.1298 39 1.1487 50 1.0871 18 1.16 % 29 1.1290 40 1.1427 SI 1.0892 19 1.1661 30 1.1368 41 1.1352 52 - 61 -

20 1,1627 31 1.1435 42 1.1260 Core lleight (ft) => (Node - 1)

  • 0.2 10

I COLR for CPSES UNIT 2 CYCLE 2 I FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT 150 MWD /MTU l.30 , ,

_ . _ . _ __. __.. . _ ___ _._ _.l_. .

~~

ZZ J_ ZZ

- ~- - -- -- -- --

. ._j.___[_.._p _ _ . . __

_p_ ._ _

j 1.25

.L_ . _ . . . - ._.L I i _L- . L- _-._.

I  !

_ [_ _ 3._

l _._

_.. . _ _7._._

7_ ___

_s ._ ._

-. g - ~

l.20 g

m

.q _

l _[_ _p. _.f l ___

s: _

_+.. 7.. _ _ __ _ p. _. .p __ _ _._

g ._ _

q_._ __ l._. _p _

_{_ _ __ __

__7_

D 1.15 2 __L. . ._[___.._.. _4_ _p, __p_ L  ! I _ l .__ __p q_ .J_

_7_

_4_ _ _

,- 3, e. _t._- i .. r..--

( ._7.-

1.10

..-_ . . _ _ ... i- .-_.

_ L-. _ - _ _

.-\- J

__-._. -. _.,. ._ --. , . . . ...m ._ i.._ _ ._ _ ._ .

1.05

_.L - .- . i_ '

J _. _.- l l -__

ZZ ZZ ZZ

~

}.I. 1.ff_Z{Z __ ZZ~

1.00 1- t ~F

- - ~-

t-T-

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 noTTOM CORE IIEIGIIT (FEET) TOP Axial Axial Axial Axial Nude W(Z) Node W(Z) Node W(Z) Nm!w W(Z) 1 - 10 -

21 1.1589 32 1.1195 43 1.1%7 11 1.2001 22 1.1547 33 1.1240 44 1.0977 12 1.1967 23 1.1501 34 1.1278 45 1.0895 13 1.1933 24 1.1450 35 1.1306 46 1.0850 14 1.1892 25 1.1401 36 1.1321 47 1.0829 15 1.1847 26 1.1349 37 1.1325 48 1.0814 16 1,1797 27 1.1291 38 1.1317 49 1.0839 17 1.1744 28 1.1228 39 1.1295 50 1.0871 18 1.16 % 29 1.1158 40 1.1260 51 1.0892 19 1.1661 30 1.1102 di 1.1210 52 - 61 -

20 1.1627 31 1.1126 42 1.1146 1

Core lleight (ft) = (Node - 1)

  • 0.2 11

COLR for CPSES UNIT 2 CYCLE 2 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT 8000 MWD /MTU l.30

~~~

Efl ZZ

_~i ZZ ZZ ZZ ZZ Z

_y --

.y _. _ -- _-_

l.25

-(

._ j _. . _ _. .._ _

_y_ _

_d _ . _ _ _ _ _ _L._ ._._

._j _ . _ _ _ _ __ __

_r _4_ _ . _ _ . _ _ _ _

_.i _ __...L.- _r _ _ _.1_  ! ._L __ ___

_1_ __

l.20

. .}- _

. _. 7._

y l

__q _._.

l g _q_ _ _

_\ ___

l

__ L_ _ _ . _

._p._ _4_ _ _ . _

q_ _. _ . . _ , _ . _ . _ __

g .p. _ . .; _

._.77_

q_. _y._. _ . . _

__p _ _ _ __

R 1.15 2 _p 1

._p. .__ [_.___j3 y ___

_l L _. . _ _ _ . _

j l p .

_L. _ _4_

_ _. ;_ _4_ _t_ h. I

}_.. -=

.f_

1.10

.- ( --

...p_ - . . . . _

.._.{ _

y_ \g _ . _ _

_{.

.f E Z1 [ Zll ZIZ 3E

_j_

Z{i. Zjl ZZ ZjZ ZIZ

._.}4_ _1_

__,_ _[__

__J_

_i. .1._ '

_.4.. L ' ' ' '

l.05

..(

l . .-

.. .'( . .

i I

.4_

i p_._

.-. g ._

i t . -.

w_

._ ! _ __[-

3_

y _+_

.+ . ..t - ..

_7_.

_.__ _.p. . 7. _

y _-

._p _ _ _ _

_ p. q_  ;

l.00 O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM TOP CORE HEIGHT (FEET)

Axial Axial Axial Axtal Node W(Z) Ntxie W(Z) N<x!e W(Z) N<xte W(Z)

! + 10 -- 21 1.1592 32 1.1271 43 1.1100 11 1.2234 22 1.1564 33 1.1317 44 1.1005 12 1.2175 23 1.1533 34 1.1355 45 1.0923 j 13 1.2111 24 1.1497 35 1.1381 46 1.0870 J

14 1.2040 25 1.1456 36 1.1394 47 1.0843 15 1.1960 26 1.1409 37 L1395 48 1.0837 16 1.1876 27 1.1357 38 1.1381 49 1.0849 17 1.1779 28 1.1298 39 1.1354 50 1.0855 18 1.1686 29 1.1232 40 1.1312 51 1.0875 )

19 1.1633 30 1.1175 41 1.1255 52 - 61 -

j 20 1.1614 31 1.1199 42 1.1184 Core Height (ft) = (Node - 1) = 0.2 l

12 ,

I

E r i l

COLR for CPSES UNIT ~2 CYCLE 2  !

FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT 14000 MWD /MTU l.30

_ .l._. ._._ __ __ __._..

l ___

_.q_

_q _ q.__ __._

1.25

_.. { _

l.20 g ___.

__{ _

_a_

. . _ _ _. _ . _ _.L_ __L._ _ . _ _

4

_j_ _.

h _ _ _

g' _..__{_

_l _ __

._h. / _h __ ___

g g . . .

_L_.

Q_  ;

g ._

.p _ _ ._ _ __. _ _ . . _

._p_. __ _ _ _ _ . ._ __

l.10

_J__ _ _ _ . _ _ .

I _ _ _ _ _.J _ _ _ _

_l ___ __\. __4.._ . _ _

i _ . . . _ . _.. _ . _ _ _. l .__ _ -_

i u_

_.7._

1.05 I

ZZ _ ZZ ZZ T'- ELT t

ZZ _ _ .__ ZZ i

._ .4_ _.4___ .._____ ____ __

l.00 O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 ,

BOTTOM TOP CORE HEIGHT (FEET) l Axial Axial Axial Axial Nale W(Z) Nmle W(Z) Nixie W(Z) Nate W(Z) 1 10 -_ 21 1.1533 32 1.1491 43 1.1154 11 1.'375 22 1.1506 33 1.1533 44 1.1047 12 1.2277 23 1.1473 34 1.1562 45 1.0950 13 1.2171 24 1.1435 35 1.1577 46 1.0876 14 1.2058 25 1.1391 36 1.1577 47 1.0840 15 1.1936 26 1.1345 37 1.1563 48 1.0840 16 1.1803 27 1.1281 38 1.1532 49 1.0850 f 17 1.1674 28 1.1232 39 1.1487 50 1.0851 18 1.1592 29 1.1290 40 1.1427 51 1.0866 19 1.1576 30 1.1368 di 1.1352 52 - 61 -

20 1.1559 31 1.1435 42 1.1260 Core Height (ft) = (Node - 1)

  • 0.2 l

l 13

October 27,.1994 i l

1 Dr. Asadul Chowdhury, Manager CNWRA RDC0 Program Element CNWRA/ San Antonio Office Southwest Research Institute 6220 Culebra' Road San Antonio, TX 78238-5166

SUBJECT:

REVIEW 0F ANNOTATED.0UTLINE OF THE DOE TOPICAL REPORT, [

~" SEISMIC DESIGN METHODOLOGY FOR A GEOLOGIC REPOSITORY AT >

YUCCA MOUNTAIN", RDC0 INTERMEDIATE MILESTONE N0. 20-5702-641-511. (CNWRA 94-0148) 4

Reference:

Letter of October 14,1994, from A. Chowdhury of Center .to B. Jagannath of NRC; Submitting the Intermediate Milestone Deliverable.

Dear Dr. Chowdhury:

The Center's submittal of comments on the Annotated Outline for DOE's Topical '

Report on Seismic Design Methodology has been reviewed and found to be in compliance with the NRC review procedures for Topical Reports. The subject ,

submittal is accepted as a deliverable for IM No. 20-5702-641-511.

The action taken by this letter is within the scope of the current contract.

Please contact me at (301) 415-6653, if you have any questions regarding this-matter.

Sincerely, Dr. Banad N. Jagannath, Manager NRC RDC0 Program Element Engineering and Geosciences Branch, DWM Office of Nuclear Material Safety cc: J. Linehan, NMSS/PMDA B. Meehan, ADM/ CAB DISTRIBUTION: TICKET CNWRA 940148 Cent'.ral- File DWM r/f NMSS r/f JGreeves JSurmeier JAustin MFederline JHolonich ENGB r/f DWM t/f

- JThoma MBell BSiltenpole SFortuna Mark;$ mall [ Boxes in/ Concurrence 81ock tbLDefine Distritiuti6n CopylPrefePsijc^ey In small Box on "0FC:" line enter: C = Cover E'=' Cover & Enclosure N a N6~ Copy DOCUMENT NAME: '

S\DWM\ENGB\BNJQEISTOP2.CNT 0FC ENGB .q ENGB. .i p- #u NAME BJagannath/wd 'KMcCon6el DATE ~ ic /n/94 /N94 / /94 / /94 / /94 0FFICIAL RECORD COPY ACNW: YES NO X IG : YES NO e Delete file after distribution: Yes No Y LSS : YES N0 ( 2/85,/

D

)p N :: 3 g /cd 1

- ,- -