ML20217E802

From kanterella
Jump to navigation Jump to search
CPSES Unit 1 Cycle 8 Colr
ML20217E802
Person / Time
Site: Comanche Peak Luminant icon.png
Issue date: 10/07/1999
From: Brozak D, Choe W, Maier S
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To:
Shared Package
ML20217E800 List:
References
ERX-99-005, NUDOCS 9910200070
Download: ML20217E802 (20)


Text

r

~ i

. , l 1

ERX 99 005 l

c j l

l l

i CPSES UNIT 1 CYCLE 8 j i

I CORE OPERATING LIMITS REPORT October 1999 I

Prepared: M5 %I Date: /*N/??

Daniel E. Brozak /

Reactor Physics i

)

1 Approved: N N- M Date: /#~ M 7 I

Steph'en M. Maier Reactor Physics Supervisor i

Approved: N/ Date: /#/7//f I Whee G. Choe I Safety Analysis Manager )

if U.3,8 m a w i

l I

9910200070 991007 '

PDR ADOCK 05000445 P POR

e' s.

l l DISCLAIMER J

1 1

The information contained in this report was prepared for the specific requirement of TXU Electric and may not be appropriate for use in situations other than those for which it was specifically prepared. TXU Electric PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, 0F ANY KIND OR NATURE WHATSOEVER, i REGARDING THIS REPORT OR ITS USE, INCLUDING BlIT NOT LIMITED TO ANY WARRANTIES ON HERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

~

l By making this report available. TXU Electric does not authorize its use by others, and any such use is forbidden except with the prior written approval of TXU Electric. Any such written approval shall itself be deemed to incorporate the l l

disclaimers of liability and disclaimers of warranties provided herein. In no event shall TXU Electric have any liability for any incidental or consequential damages of j l

. any type in connection with the use, authorized or unauthorized, of this report or of the information in-it.

l 1

l 11 l: -o i

COLR for CPSES Unfi 1 Cycle 8 TABLE OF CONTENTS l

DISCLAIMER ............................... 11 1

( TABLE OF CONTENTS ........................... iii i

! l l

LIST OF FIGURES ................ ........... iv

! l SECTION l 2804 1.0 CORE OPERATING LIMITS REPORT .................. 1 1

2.0 - OPERATING LIMITS ........................ 2 l 2.1 SAFETY LIMITS ...................... 2 l l

r 2.2 SHtHDOWN MARGIN ..................... 2 2.3 MODERATOR TEMPERATURE COEFFICIENT ............ 2 2.4 R00 GROUP ALIGNMENT LIMITS ................ 3 2.5 SHUTDOWN BANK INSERTION LIMITS .............. 3 2.6 CONTROL BANK INSERTION LIMITS ............. 4 2.7 PHYSICS TESTS EXCEPTIONS - MODE 2 ............ 4 2.8 HEAT FLUX H0T CHANNEL FACTOR ............... 4 2.9 ' NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR ......... 5 2.10 AXIAL FLUX DIFFERENCE .................. 6

'2.11 REACTOR TRIP SYSTEM INSTRUMENTATION ........... 6 2.12 - RCS PRESSURE. TEMPERATURE AND FLOW DEPARTURE FROM NUCLEATE BOILING LIMITS ................. 7 l 2.13 BORON CONCENTRATION ................... 8 t

l iii

re

.. . l COLR for CPSES Unit 1 Cycle 8 l i -. j i l LIST OF FIGURES i-l FIGURE E8GE i-

.1 REACTOR CORE SAFETY LIMITS .................. 9 l

i-L

-2 -R0D BANK-INSERTION LIMITS VERSUS THERMAL POWER ,....... 10 i-3' K(Z): NORMALIZED Fa(Z) AS A FUNCTION OF CORE HEIGHT .......................... 11 l

4 W(Z) AS A FUNCTION OF CORE HEIGHT -

. (MAXIMUM). ............... ........... '12 5 W(Z) AS A FUNCTION OF CORE HEIGHT -

l (150 MWD /MTV) ......................... 13 i 6 W(Z) AS A FUNCTION OF CORE HEIGHT -

(10.000 MWD /MTU) ....................... 14 7' W(Z) AS A FUNCTION OF CORE HEIGHT -

-(20.000 MWD /MTU)- ....................... 15  ;

l

8 ' AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION  !

l 0F RATED THERMAL POWER' .................... 16 iv

COLR for CPSES Unit 1 Cycle 8 l

l l'. 0 CORE OPERATING LIMITS REPORT j This Core Operating Limits Report (COLR) for CPSES UNIT 1 CYCLE 8 has been prepared

, in accordance with the requirements of Technical Specification 5.6.5.

The Technical Specifications affected by this report are listed below:

1 SL 2.1 -

SAFETY LIMITS 1

l LC0 3.1 1 SHUTDOWN MARGIN 1

LC0 3.1.3 MODERATOR TEMPERATURE COEFFICIENT LC0 3.1.4 R00 GROUP ALIGNMENT LIMITS i.C03.1.5 SHUTE 0WN BANK INSERTION LIMITS LC0 3.1.6 CONTROL BANK INSERTION LIMITS LC0 3.1.8 PHYSICS TESTS EXCEPTIONS MODE 2 LC0 3.2.1 HEAT FLUX HOT CHANNEL FACTOR LC0 3.2.2 NUCLEAR ENiliALPY RISE HOT CHANNEL FACTOR LCO 3.2.3 AXIAL FLUX DIFFERENCE LC0 3.3.1 REACTOR TRIP SYSTEM INSTRUMENTATION LC0 3.4.1 RCS PRESSURE, TEMPERATURE, AND FLOW DEPARTURE FROM NUCLEATE B0ILING LIMITS LCO 3.9.1 BORON CONCENTRATION f

l 1

COLR for CPSES Unit 1 Cycle 8 2.0 'DPERATIM3 LIMITS The cycle .spr.cific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Technical Specification 5.6.5b, Items 5 and 9 through 19. These limits have been determined such that all applicable limits of the safety analysis are met.

2,1 SAFETY LIMITS (SL 2.1)

, 2.1.1 In H0 DES 1 and 2, the combination of thermal power, reactor coolant

~

system highest loop average temperature, and pressurizer pressure shall not exceed the safety limits specified in Figure 1.

2.2 SHUTDOWN MARGIN (SDM) (LCO 3.1.1) 2.2.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODE 2 with K.,, < 1.0, and in H0 DES 3, 4, and 5.

2.3 MODERATOR TEMPERATURE COEFFICIE'(T {MTC) (LC0 3.1.3))

2.3.1 The KTC upper and lower limits, respectively, are:

The 80L/AR0/HZP-MTC shall be less positive than +5 pcm/ F.

The E0L/AR0/RTP HTC shall be less negative than -40 pcm/ F.

2

. i COLR for CPSES Unit 1 Cycle 8 l

'2.3.2 SR 3.1.3.2

'The MTC surveillance limit is:

The 300 pps/AR0/RTP MTC shall be less negative l than or equal- to -31 pcm/ F.

l The 60 pps/ARO/RTP MTC shall be less negative than or equal to -38 pcm/ F.

where: BOL stands for Beginning of Cycle Life

! AR0 stands for All Rods Out HZP stands for Hot Zero THERMAL POWER i

~

EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER l

2.4 ROD GROUP ALIGNMENT LIMITS (LC0 3.1.4) 2.4.1 The SDM shall be greater than or equal to 1.3% Ak/k in MODES 1 and 2.

2.5 - SHUTDOWN BANK. INSERTION LIMITS (LC0 3.1.5) l l

2.5.1 The shutdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 222 and 231-steps withdrawn, inclusive.

l 3 l l

COLR ftr CPSES Unit 1 Cycle 8 2.6 CONTROL BANK INSERTION LIMITS (LC0 3.1.6) 2.6.1 The control banks shall be limited in physical insertion as shown in Figure 2.

I 2.6.2 The control banks shall always be withdrawn and inserted in the  !

prescribed sequence. For withdrawal, the sequence is control bank A, control bank B, control bank C, and control bank D. The insertion sequence is the reverse of the withdrawal sequence. )

i 2.6.3 A 115 step Tip to Tip relationship between each sequential control bank shall be maintained.

l 2.7 PHYSICS TESTS EXCEPTIONS MODE 2 (LC0 3.1.8) 2.7.1 The SDH shall be greater than or equal to 1.3% ak/k in MODE 2 during l PHYSICS TESTS.

2.8 HEAT FLUX HOT CHANNEL FACTOR3 (F (Z11 (LC0 3.2.1) p an 2.8.1 Fa(Z) s [K(Z)] for P > 0.5 P

Fa ""

Fa(Z) s [K(Z)] for P s 0.5

0.5 where

P= THERMAL POWER RATED THERMAL POWER 4

COLR for C.'SES Unit 1 Cycle 8

, 2.8.2 F/"' = 2.42 2.8.3 K(Z) is provided in Figure 3.

2.8.4 Maximum elevation dependent W(Z) values are given in Figure 4.

Figures 5, 6, and 7 give burnup dependent values for W(Z). Figures 5, 6, and 7 can be used in place of Figure 4 to interpolate or e,xtrapolate (via a three point fit) the W(Z) at a particular burnup. )

2.8.5 SR 3.2.1.2 If the two most recent Fa(Z) evaluations show an increase in the l

expression maximum over Z [ F/(Z) / K(Z) ]

l F/(Z) shall be increased by a factor of 1.02. This requirement is  ;

( for all cycle burnups.

2.9 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR (F (J (LC0 3.2.2)

,_ 2.9.1 F"a s F"",, [1 + PF, (1-P)]

l where: P= THERMAL POWER RATED THERMAL POWER 2.9.2 F""a = 1.55 2.9.3 PF , = 0.3 5

COLR for CPSES Unit 1 Cycle 8 U.10 'AXIALFLUXDIFFERENCE(AFD) (LCO 3.2.3) 2.10.1. The AFD target band is +5%. -12% at 100% RTP linearly expanding to

+20%. -17% at 50% RTP. Below 50% RTP, the AFD target band remains constant at +20%. -17t.

2.10.2 The AFD Acceptable Operation Limits are provided in Figure 8.

1 2.11 REACTOR TRIP SYSTEM (RTS) INSTRUMENTATION (LC0 3.3.1) 2.11.1 The numerical values pertaining to the Overtemperature N 16 reactor trip setpoint are listed below:

K3 = 1.150 K, = 0.0139 /*F K3 = 0.00071 /psig T,' = 559.8 'F P2 a 2235 psig T3 2 10 sec l l

T s 3 sec f (aq) = 0.00 - {(q,-q,) + 65t}

3 when (q,-q ) s -65% RTP  !

- Of when -65% RTP.< (q,-q ) < +7.8% RTP

= 1.95 - {(q,-q,) - 7.8t} when (q,-q,) a +7.8% RTP 6

j

+

COLR for CPSES Unit l' Cycle 8 2^.12 RCS PRESSURE. TEMPERATURE. AND FLOW DEPARTURE FROM E LEATE BOILING (DNB) LIMITS (LC0 3.4.1)

.2.12.1 RCS DNB parameters for pressurizer pressure. RCS average temperature, and RCS' total flow rate shall be within the surveillance limits specified below:

2.12.2 SR 3.4.1.1 l

Pressurizer pressure 2 2220 psig (4 channels)  !

2 2222 psig (3 channels)

I

~

The pressurizer pressure limits correspond to the analytical limit of 2205 psig used in the safety analysis with allowance for measurement uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

2.12.3 SR 3.4.1.2 i

RCS average temperature s 592 'F (4 channels) s 592 'F (3 channels)  !

The RCS average temperature limits correspond to the analytical limit of 595.7 'F used in the safety analysis with allowance for measurement i uncertainty. These uncertainties are based on the use of control board indications and the number of available channels.

l l

7

,. ,. j COLR for CPSES Unit 1 Cycle 8 i 1

. 2 12.4 SR 3.4.1.3

. 4 l.

l The RCS total flow rate based on precision heat balance shall l be a 397,200 gpm 2.12.5 SR 3.4.1.4 .

The RCS total flow rate based on precision heat balance shall bh a 397,200 gpm The required RCS flow, based on an elbow tap differential pressure measurement prior to MODE 1 after the refueling outage, shall be greater than 317,000 gpm.

2.13 BORON CONCENTRATION (LCO 3.9.1) ,

1 2.13.1 The required refueling boren concentration is 2174 ppm. ,

I i

l I

1 I

i 8

l t

L_

?  : .:-

p

- COLR for CPSES Unit 1 Cycle 8 t

i L- FIGURE 1 REACTOR CORE SAFETY LIMITS l~ 670 l 660

\

N unccE m ate l P = 2385 psig OPERATION l 650 -

N w P = 2235 psig e.0 x

N x

630 N x \

N . 1, 1, s

6,0 N N i N . 1 . 1, N F 610 s ,

N t

i N 600 x

ACCEPTABLE OPERATION 590 580 570

-560 l

550 0 20 .0 60 80 100 120 PERCENT OF RATED THERMAL POWER 9

e l- 'COLR for CPSES Unit 1 Cycle 8

! FIGURE 2 R00 BANK INSERTION LIMITS VERSUS THERMAL POWER

'240

+j.

220 '

(27.3.222)- > (81.6.222) I

/ I1 /

/ 51 / ~

/ i, A 200 jr ,, .i,,

, r;

/ BANK B /

i / . . / ~

180 i / II IIII #

^

_J/ i /

f -

/

/'l /

.160 d(0.164) j/

6 I /l

/ 11 11il~

' (100,146)7 140 y l, # '

Sf- k l,(

A BANK C i l A

. h120 #' i I ' / '

p. / \ II/ \

B

[100 #

f '

~l----

g ,/ ..-

l ,ld.-

j[ 3 i

[. , _. . - _ . . _

]

O 'I il I '/ 1II!

Ii O /  !! /

I E / IT 60

  1. ' /p BANK D I/\ \ t -

/Il 1

- (0,49) 40 f i

, y , ,

l,f I l

/ .L '

20 #' '

ti iI/ I j

( l Z

~~ (31,0) /t 1  !

O I ' # '

O 10 20 30 40 50 60 70 80 90 100 j

PERCENT OF RATED THERMAL POWER i

l NOTES: 1. Fully withdrawn shall be the condition where control rods l are at a position within the interval of 222 and 231 steps withdrawn, inclusive.

2. . Control Bank A shall be fully withdrawn.

l-

.l.

10

: j COLR for CPSES Unit 1 Cycle 8 FIGURE 3

. . \

K(Z) NORMALIZED Fa(Z) AS A FUNCTION OF CORE HEIGHT l

{

lllllll 11111III

'(0.0.1.0) (6.0.1.0) 1.0 ' '

!. I II ll l 0.9 IIII '

(12.0.0.925) 0.8 Q

  • a 0.7 u.

bl

.a 0.6 i

g 0.5 Z _____ _____ ___.__ _._.__

Q 0.4 5I l l l 0.3 I I I

0.2

  • I I 0.1 I I 0 1 2 3 4 5 6 7 8 9 10 11 12 CORE HEIGHT (FEET)

Axial Axial Axial Axial Node K(Z) Node K(Z) Node K(Z) Node K(Z) 61 0.9250 53 0.9450 45 0. % 50 37 0.9850 60 0.9275 52 0.9475 44 0. % 75 36 0.9875 59 0.9300 51 0.9500 43 0.9700 35 0.9900 58 0.9325 50 0.9525 42 0.9725 34 0.9925 57 0.9350 49 0.9550 41 0.9750 33 0.9950 l

56 0.9375 48 0.9575 40 0.9775 32 0.9975 55 ,0.9400 47 0.%00 39 0.9800 1 31 1.0000 l

54 0.9425 46 0.9625 38 0.9825 Core Height (ft) - (Node 1)

  • 0.2 11

t..

t  :

. COLR for CPSES Unit 1 Cycle 8

[ FIGURE 4 l . ~.

W(Z) AS A FUNCTION OF CORE HEIGHT (NAXIMUM) 1.300 l

l 1.250 i

(

1.200 R \

l N \

!1.150 ^

\1

-3 l

\ -w i 2

\ / X /

V -l I

1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTON CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node W(Z) Node W(Z) Node W(Z) 52 61 -

41 1.135 30 1.126 19 1.148 51 1.134 40 1.135 29 1.133 18 1.148 50 1.126 39 1.134 28 1.138 17 1.153 i 49 1.121 38 1.133 27 1.143 16 1.163 48 1.119 37 1.130 26 1.148 15 1.176 47 1.119 36 1.127 25 1.151 14 1.188 l '46 1.120 35 1.123 24 1.153 13 1.198 I

45 -1.125' 34 1.118 23 1.154 12 1.207 44 1.129 1.113 1.153 1.216

( 33 22 11 43 1.132- 32 1.113 21 1.151 1 - 10 --

42 1.134 31 1.118 20 1.149 Core Height (ft) = (Node

~

1)
  • 0.2 12 l

l L.

t t COLR for CPSES Unit 1 Cycle 8 i FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (150 MdD/NTU) 1.300' 1.250 1

l'200

^

N v

\

\

5 N 31 1.150 \

w_,N ,

\ /

% - i'

' 1$100 I h] ' I 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node W(Z) Node W(Z) Node W(Z)

52. 61 -- 41 - 1.114 20 1.110 19 1.145 51 1.134 40 1.113 9 1.114 18 1.148 50 - 1.124 39 1.110 28 1.117 17 1.153 49 - 1.118 38 1.108' 27 1.122 16 1.159

! 48 1.116 37 1.104 26 1.128 15 1.166 l

47 1.116 36 1.100 25 1.133- 14 1.171 46 1.116 35 1.097 24 1.137 13 1.176 45 1.116 34 1.098 23 1.139 12 1.181 44 1.116 33 1.100 22 1.140 11 1.186 43 1.116 32 1,104 21 1.141 1 10 --

42 1.116 31 1.107 20 1.143 Core Height (ft) = (Node 1)

  • 0.2 13 L:'

p,

a.  :

l -

COLR for CPSES Unit 1 Cycle 8 ,

j

! FIGURE 6

)

W(Z) AS A FUNCTION OF CORE HEIGHT I (10,000 MWD /HTU) l l

1.300 ---

l l

l 1.250

~

1.200 Q \

5 \

3 v' 1.150 s .

h \ /

2 ,

T #T 1.100 \ I I l

1.050 ,

1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node. W(Z) Node W(Z) Node W(Z) 52 61 --

41 1.121 30 1.117 19 1.144 51 1.134 40 1.119 29 1.122 18 1.146 50 1.126 39 1.118 28 1.126 17 1.150 49 1.121 38 1.116 27 1.130 16 1.158 48 1.119 37 1.112 26 1.135 15 1.168 47 1.119 36 1.107 25 1.139 14 1.177 46 1.120 35 1.103 24 1.142 13 1.184 45 1.121 34 1.101 23 1.143 12 1.192 44 1.122 33 1.102 22 1.143 11 1.199 I' 43 1.122- 32 1.105 21 1.144 1 10 -

42 1.122 31 1.111 20 1.144

{ Core Height (ft) = (Node 1)

  • 0.2 1

14 I

o e

4 COLR for CPSES Unit 1 Cycle 8-FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT (20,000 MWD /MTU)

1.300 1.250

(

1.200

\

ff \ l

\

'1.150 ^

3 \1 1

\ Ms.

\ / X s l

. . V y  :

I I 1.100 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node- W(Z) Node W(Z) Node W(Z) Node W(Z) 52 61 -

41- 1.135 30 1.126 19 1.148 51 1.126 40 1.135 29 1.133 18 1.148 50 1.119 39 1.134 28 1.138 17 1.153 49 1.115 38 1.133 27 1.143 16 1.163 48 1.115 37 1.130 26 1.148 15 1.176

! 47 1.117 36 1.127 25 1.151 14 1.188

> 46 - 1.120 35 1.123 24 1.153 13 1.198 45 1.125 34 1.118 23 '1.154 12 1.207 44 1.129. 33 1.113 22 1.153 11 1.216 43 1.132 32 '1.113 21 1.151 1 10 -

42 1.134 31 1.118 20 1.149 Core Height (ft) = (Node 1)

  • 0.2 l

'15 J.

I i i

1 l COLR for CPSES Unit 1 Cycle 8 I

i FIGURE 8 l

)

AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 l i

( 17.90) (11,90) 90

' ' ' ' I '

> a i iii if N ie i i e i UNACCEPTABLE f \ UNACCEPTABLE

] OPERATION

/ \ OPERATION l 1 l l l l r I I I l I 1 I I ' I I I ' ' I I I I I 80

!/ ACCEPTABLE \ 1 l

OPERATION j l 70

/ \i e /__. \

g /-- --\ ,

k 60 II I '\ ' l

/ \l I i t kk -

E  ;

^

l A 50

  1. I '

~ , , , i , a i ,

a ',-..- ( 31,50)

(30,50)

I '

40 g f _

g _ _

8g 30 t l Hl

_1_.. j -

20 10 0

l 40 30 20 10 0 10 20 30 40 DEVIATION FROM TARGET AXIAL FLUX DIFFERENCE (%)

16