ML20096B677
| ML20096B677 | |
| Person / Time | |
|---|---|
| Site: | Comanche Peak |
| Issue date: | 01/05/1996 |
| From: | Choe W, Killgore M, Maier S TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC) |
| To: | |
| Shared Package | |
| ML20096B669 | List: |
| References | |
| RXE-94-004, RXE-94-004-R01, RXE-94-4, RXE-94-4-R1, NUDOCS 9601160372 | |
| Download: ML20096B677 (18) | |
Text
..~
..7.
l i
l RXE-94-004, Rev. 1 i
l l
l l
l CPSES UNIT 2 CYCLE 2 CORE OPERATING LIMITS REPORT January 1996 Kurt R.
Steger l
{h%
Y
/lS~l96 Reviewed:
Date:
i Stephen M. Maier Reactor Physics Supervisor I!
7b Reviewed:
Date:
Whee G.
Cl)6e Safety Analysis Manager
/!f!Yd Approved:
I 2I IM Date:
Mickeyf.Killgorf
//
Nuclear Analysis and Fuel Manager l
1 9601160372 960111 l
PDR ADOCK 05000445 P
PDR l
r.
DISCLAIMER l
l 1
\\
l i
The information contained in this report was prepared for the specific requirement of Texas Utilities Electric Company (TUEC),
and may not be appropriate for use in situations other than those for which it was specifically prepared.
TUEC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE l
i WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
l-By making this report available, TUEC does not authorize its use by i
others, and any such use is forbidden except with the prior written approval of TUEC.
Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein.
In no event shall TUEC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.
I l
i-ii r
m a
J
TABLE OF CONTENTS 1
DISCLAIMER ii TABLE OF CONTENTS iii i
LIST OF TABLES iv LIST OF FIGURES v
SECTION 1
1.0 CORE OPERATING LIMITS REPORT 1
2.0 OPERATING LIMITS 2
1 2.1 MODERATOR TEMPERATURE COEFFICIENT 2
2.2 SHUTDOWN ROD INSERTION LIMIT 3
2.3 CONTROL ROD INSERTION LIMITS 3
2.4 AXIAL FLUX DIFFERENCE 3
)
j 2.5 HEAT FLUX HOT CHANNEL FACTOR 4
2.6 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR 5
2.7 SHUTDOWN MARGIN 5
Rev. 1l iii
4 LIST OF TABLES TABLES PAGE l
1 Fo MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD 6
l l
l l
l l
l l
l i
I l
l l
iv 1
l
l l
l 9
l l
l LIST OF FIGURES l
FIGURE-PAGE l
l l
1 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER.
7 2
AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION i
OF RATED THERMAL POWER 8
l l
l l
3 K(Z) - NORMALIZED Fo(Z) AS A FUNCTION OF l
CORE HEIGHT 9
l 4
W(Z) AS A FUNCTION OF CORE HEIGHT -
1 MAXIMUM 10 i
5 W(Z) AS A FUNCTION OF CORE HEIGHT.-
l 1s0 MWD /MTU 11 l
6 W(Z) AS A FUNCTION OF CORE HEIGHT -
8000 MWD /MTU 12 7
W(Z) AS A FUNCTION OF CORE HEIGHT -
14000 MWD /MTU 13 I
i V
l
... ~. - -. -
_. _. ~ _.. ~. _ ~ - - -. - - - -.
COLR for CPSES UNIT 2 CYCLE 2 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPSES UNIT 2 CYCLE 2 l
l has been prepared to satisfy the requirements of Technical Specification 6.9.1.6.
The Technical Specifications affected by this report are listed below:
3/4.1.1.1 Shutdown Margin - T,y Greater Than 200 F Rev. 1 3/4.1.1.2 Shutdown Margin - T,y Less Than or Equal to 200 F 3/4.1.1.3 Moderator Temperature Coefficient 3/4.1.2.2 Flow Paths - Operating 3/4.1.2.4 Charging Pumps - Operating gey, 1 3/4.1.2.6 Borated Water Sources - Operating 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor l
l l
1
c COLR for CPSES UNIT 2 CYCLE 2 l
2.0 OPERATING LIMITS 1
l The cycle-specific parameter limits for the specifications listed in Section 1.0 are presented in.the following subsections.
These limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.6b, Items'1, 2,
3, 4,
5, 6,
7, 8,
16, 18, and 19.
These limits have been determined such Rev. 1 that all applicable limits'of the safety analysis are met.
2.1 Moderator Temeerature Coefficient (Specification 3/4.1.1.3) 2.1.1 The Moderator Temperature Coefficient (MTC) limits are:
The BOL/ARO/HZP-MTC shall be less positive than
+5 pcm/ F.
The EOL/ARO/RTP-MTC shall be less negative than
- 40 pcm/ F.
2.1.2 The MTC surveillance limit is:
The 300 ppm /ARO/RTP-MTC should be less negative 1
l than or equal to -31 pcm/ F.
where:
BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2
COLR for CPSES UNIT 2 CYCLE 2 2.2 Shutdown Rod Insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shutdown rods shall be fully withdrawn.
l Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.
2.3.
Control Rod Insertion Limits (Specification 3/4.l.3.6) 2.3.1 The control banks shall be limited in physical j
insertion as shown in Figure 1.
2.4 Axial Flux Difference (Specification 3/4.2.1) i 2.4.1 The AXIAL FLUX DIFFERENCE (AFD) target band is l
l
+3%,
-12%.
I I
2.4.2 The AFD Acceptable Operation Limits are provided in l
Figure 2.
l 3
COLR for CPSES UNIT 2 CYCLE 2 l
l 2.5 Heat Flux Hot Channel Factor
- (Specification 3/4.2.2)
F "TP o
F (Z) s (K(Z)] for P > 0.5 a
P p RTP F (Z) s (K(Z)] for P s 0.5 o
0.5 where
P=
THERMAL POWER RATED THERMAL POWER 2.5.1 F "TP = 2.32 g
2.5.2 K(Z) is provided in Figure 3.
2.5.3 Maximum elevation dependent W(Z) values are 1
given in Figure 4.
Figures 5, 6,
and 7 give burnup dependent values for W(Z).
Figures 5, 6,
and 7 can be used in place of Figure 4 to interpolate or extrapolate (via a three point i
l fit) the W(Z) at a particular burnup, i
l l
2.5.4 Table i shows F margin decreases that are a
greater than 2% per 31 Effective Full Power Days (EFPD).
These values shall be used C
instead of a constant 2% to increase Fo (z) per Surveillance Requirement 4.2.2.2.f.
A constant factor of 2% shall be used at all cycle burnups that are outside the range of Table 1.
4
COLR for CPSES UNIT 2 CYCLE 2 2.6 Nuclear Enthalov Rise Hot Channel Factor (Specification 3/4.2.3)
F"6a F""3a (1 + PFa (1-P)]
i where:
P=
THERMAL POWER RATED THERMAL POWER
)
2.6.1 F""4a = 1.55 2.6.2 PFa = 0.3 6
2.7 Shutdown Marcin 2.7.1 Shutdown Marcin - T.y Greater Than 200 F (Specifications 3/4.1.1.1, 3/4.1.2.2, 3/4.1.2.4, and 3/4.1.2.6)
The SHUTDOWN MARGIN shall be greater than or equal to 1.3% ak/k in MODES 1, 2,
3, and 4.
Rev. 1 2.7.2 Shutdown Marcin - T.y Less Than or Ecual to 200 F (Specification 3/4.1.1.2)
The SHUTDOWN MARGIN shall be greater than or equal to 1.3% Ak/k in MODE 5.
j 5
\\
l COLR for CPSES UNIT 2 CYCLE 2 i
TABLE 1 Fo MARGIN DECREASES IN EXCESS OF 2% PER 31 EFPD Cycle Maximum Decrease Burnup in Fa Margin (MWD /MTU)
(Percent) 2560 2.00 l
2720 2.23 2201 2.52 3942 2.70 3202 2.55 3363 2.37 3524 2.18 3684 2.04 3730 2.00 Note:
All cycle burnups outside the range of the table shall use a constant 2% decrease in F margin for compliance with the
{
a 4.2.2.2.f Surveillance Requirements.
Linear interpolation it, acceptable to determine the F margin decrease for cycle a
burnups which fall between the specified burnups.
6
COLR for CPSES UNIT 2 CYCLE 2 FIGURE 1 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240
! i i i 4,,i i;,
e i,,,
4
, i "O
/ ^ (17.1,222) !
(73.1,222) T'
/
/
e i./
e
_ jei i,,,
f i
i,
./ i
~
f t
/
BANK B ',
! ' i i !
/ i' i
~
r.
, i i
i i,
! fi ti
,,i
- ~
t.
i
-f, 180
/!
i,,
i i
i i<
l ie / I I i i i i l i
i *,
- (0,187)
,, fi i i i
,' e (10L 162) e i
i
- ifi, i,
i i
j 160 i
f,,
i
, i,
,<,j ii,i
- , i,
!_,, i
, i,,
i i
i i, fi i ! I i i, i i
i t
!I a i i ii i,
/.
3 E, 140 i fi
,i i
i
~
, ri
! it t '
I
'j,
,f
! '/ !! Ii
!I ii l I I!
i '
l /I ii/
j !
i
} iii i i i!
I i Z
/ s 0 120
, y;,
ii BANK C ii,,
,,ie i,#,
,ri i g
fi,
!i iii i,.
- ! if i ! ! i
,,i g
i i, i,f i,i, i i i i i iii lii tii i if I!!
i i j
i i if
- Iii, i i ! i j iii ii i
!ii if i
!t !,
- g 100
/I i i
iie i iii i,,, Ai i
,, i i
f;,,
,f ii;i/iitt litt i !! i
!!i!
i li!
fi/i i ! i it!i i
cm 3 if ii i !
I i ii i !
!i!i i ii !
i/ ; i i e i i i
i i i
Q fi
,s i,
is t i l i i i i,i i i o
80 fi i i t, #
is i i
i 7
f, i,,,
,,,j fi i
l i
I!!I i!.
ll
! /I l1 i' i!
i i '
iiii ji i
jijl
}ll li sf I
Il BM D
}i i
i i
60
..(0,72) l,i ili' l
l i
v ir1 i ii i l i lili i /i i
!!i liii i !!!
i ii i ) i i li jii!
/
I i
i Iii iiei
!i i
>i
) i j i
i iiii jri i
iii iii i i,
40 i i i!
i i '/
i iii t i.
i i i e
]
> i ii li i
I l /
1
!Il s'
I ! ! !
s '
i i
ii i
i Il i
i l !
li i sii i!!
6 i fii i,
i i i ii ii i
, i 20 i
i ii l l !/
is
'iii i !
+ii i i i
(21'0) IA II i,
i ;
i y
i
- i ii i
i i i e 1
i i i i i
' 'I'#I 0
O 10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED THERMAL POWER NOTES:
1.
Fully withdrawn shall be the condition where control rods are at a position within the interval of 222 and 231 steps withdrawn, inclurive.
2.
Control Bank A shall be fully withdrawn.
7
COLR for CPSES UNIT 2 CYCLE 2 FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 i i ! i i
i i
i i i i i iiii i
i i i i i i
i i i ! l i i i i i i, i
- iii, i
i 4
l t i i i
i 4 e i iiil l
1
- (-11,90)I
- i
' ! I i (11,90) !
i I
i e
1 i
i, i
+
i g
/
ii !.
1 i +
/
i i i <
r i
\\
i j j
i!
i i
- i fi i
- I i
i i) j i
1
-~ UNACCEPTABLE i ~fi i i e i
(
i UNACCEPTABLE T i t 2 OPERATION
/i iT i
OPERATION [
i
' i i i 80
/ii l
i i i i
! i (
i i i
/i 4
i ! i !
! ! ! i i I IN I 3 i
! i fi.i i i i
i i
- I i i j s i \\
jj i i i i
' ' i f!i'!
'l I i i i !
l !i i
l i i 6 i g
I i
<')
i i i i I i i i i ii
(
i i' 4 i l
w 70 f
3
./
i i i i i
i 4. i j
i - -
ii
(
i
- i i ACCEPTABLE
\\
i i i i i
i ! fi
! i i
e '
i OPERATION I
k I
i i i i i i i 'I' t '
a i II i 4 i i
i it i i i i j
g y
if
, i i i i
i i
\\
i 3, i i i !
i 2l; I i ( j f
j i i j j i I
l i l
il i i i '
i W
j i i i i i i i i !
(
i i i i a h
i i i f
i i !
! i t I i
i il I i i i i i j i > i i i
i ii iii t
g g
i i i 4
i i i
j l
i i i H
I ( 31,50) i i i i i i i
I (31,50) i y
,!,I i,!
! !i I
e i
i i i g
i i i
!iii i i i
i i
i i
it i i i
s i i i i i
! i i
gy i'i!
I I
L gj I i
g i i i i
i O
I l l l
I l
h l
ii,'
' i 30 a.
i i i i
i ii i i l i i I i l l
i i i
i i i i l l
I i
I 20 i
I i i I ! !
l 6
i l i I l l
I
~
i i t i I i
I i i i
I I I I i I
I i
' I I I i iiii l
i i
i 10 i
i i i
i I !
I '
i i I l
l I I I i i i
1 0
-40 30
-20
-10 0
10 20 30 40 AXIAL FLUX DIFFERENCE (%)
8
COLR for CPSES UNIT 2 CYCLE 2 FIGURE 3 K(Z) - NORMALIZED F (Z) AS A FUNCTION OF CORE HEIGHT a
1.1 1
l'!!
Il!i ll'l I;l llll ilil ill!
l(li l'i' (0.0.1.0)'
I
!ill Ill!
'(6.0.1.0)i Il!I lill ll!l I!l l
~
i iill l
I, Illi I il llll ll11 iii.
'll!
llli i
lill jiil Illi 1,li lill Ill!
llli Illi Illi li..
it!!
l! !
liil lll! lIll lIll llli Illi lll1 II yp2p li 11.4 Ill' ill! lill lill IIll Illi Illi l II lili ii' i
O.8 q
li.i
!.il Illi il
!!!! ll'!
ll>
11' ill!
lii l
5
!!il lliI llll lili 11-i!!
l I
Ill ll
((ll Ill i
u.
0.7 o
liii liii ill! llll Illi
'lli lll
'lll il 'lli llll li'i y
]0'6 l:ll ili ll!i l
i ll I '! ii Ill 1
11 lll Il!
I h 0.5 o
i,li ill!
11!l lll 11
'l ll l ll ll li; I!!!
Z illi lill llil lil II I
l ll l
l Ill I!
O.4 R
lill il
}
ll!
ll l
l I
lli l'.
W llll ll l
Ill t
lI l
I, I
III I
i l ll Ill ll il 1
il lll l
l
'll ll' i li lil ll ll l
III i
i li I
lll l
l l
l l
l i !
I It' lil l
l l.
I l
l.
I li
^
l'll l
I I
l lll lll l
)
I il ill i -l i
0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET)
TOP Anal Axml Axial Azul Node K(Z)
Node K(Z)
Node K(Z)
Node K(2) 1 31 1.0000 39 0.9800 47 0.9600 55 0.9400 32 0.9975 40 0.9775 48 0.9575 56 0.9375 33 0.9950 41 0.9750 49 0.9550 57 0.9350 34 0.9925 42 0.9725 50 0.9525 58 0.9325 35 0.9900 43 0.9700 51 0.9500 59 0.9300 36 0.M75 44 0.%75 52 0.9475 60 0.9275 37 0.9850 45 0.9650 53 0.9430 61 0.9250 38 0.9825 46 0.9625 54 0.9425 Core Height (ft) = (Node - 1)
- 0.2 9
s
COLR for CPSES UNIT 2 CYCLE 2 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT MAXIMUM 1.30 i
i i
t i
i i
1.25 i
i
(
i
\\.
i N
r i
i l
i i
1.20
\\
i
\\
i i
i i
,N
'(
i I
I l
j y
\\t i
i l
i i
N i
i i
i j
i i
1 15 8
/,
~
i i
N:/
i
! \\
I i
i i
i i
i i
j i
\\
i i
e i
i
\\
i g
\\
1.10 i
i i
i
!\\
l i
i i
i i
i i
V i
i i
l 1
i i
I
{
i i
i i
1.05 l
l l
i i
i i
i i
4 I
i i
i I
I i
i j
i i
i l
l i
j i
I i
i i
i i
i i
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BO N M CORE HEIGHT (FEET)
TOP AJuel Azaal Azani Axial Nods W(Z)
Node WCZ)
Nods W(Z)
Node W(Z) 1 - 10 21 1.1592 32 1.1491 43 1.1154 11 1.2375 22 1.1564 33 1.1533 44 1.1047 12 1.2277 23 1.1523 34 1.1562 45 1.0950 13 1.2171 24 1.1497 35 1.1577 46 1.0676 14 1.20$8 25 1.1456 36 1.1577 41 1.0843 15 1.1960 26 1.1409 37 1.1563 48 1.0840 16 1.1876 27 1.1357 38 1.1532 49 1.0850 17 1.1779 28 1.1298 39 1.1487 50 1.0871 18 1.1696 29 1.1290 40 1.1427 51 1.0892 19 1.1661 30 1.1368 41 1.1352 52 61 20 1.1627 31 1.1435 42 1.1260 Core Height (ft) = (Node 1)
- 0.2 10
COLR for CPSES UNIT 2 CTCLE 2 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT 150 MWD /MTU l.30 i
i r
i i
i j
i i
i 6
(
i i
i i
i 1.25 l
l l
4 i
l t
1 I
l I
i e
i l
1 1
i i
t
{
l i
6
(
l l
1.20
,N A
i i
i i
i i
j i
g
\\l i
i I
i t
i A
i l
l l
6 i
i I
e i
D 1.15 Xi i
i i
i g
I A
I f
t
+
i t
i i\\ i i
I i
(
i i
N
/
IT l
i i
i r
L/
\\
I g
i i
i T
I i
1.10 4
i 4
i i
i N7 i
I I
I I
i i
l 1.05 I
i l
I f
i i
i l
6 i
I l
1.00 O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET)
TOP Amt Asial Amt Axial Node W(Z)
Node W(Z)
Nods W(Z)
Node W(Z) 1 10 21 1.1589 32 1.1195 43 1.1%7 11 1.2001 22 1.154?
33 1.1240 44 1.0977 12 1.1967 23 1.1501 34 1.1278 45 1.0895 13 1.1933 24 1.1450 35 1.1306 46 1.0850 14 1.1892 25 1.1401 36 1.1321 47 1.0829 15 1.1847 26 1.1349 37 1.1325 48 1.0814 16 1.1797 27 1.1291 38 1.1317 49 1.0839 17 1.1744 28 1.1228 39 1.1295 50 1.0871 18 1.1696 29 1.1158 40 1.1260 51 1.0892 19 1.1661 30 1.!!Q2 41 1.1210 52 - 61 20 1.1627 31 1.1126 42 1.1146 Core Height (ft) = (Node - 1)
- 0.2 11
COLR for CPSES UNIT 2 CYCLE 2 1
1 FIGURE 6 W(Z) AS A FUNCTION OF CORE HEIGHT l
8000 MWD /MTU 1
l l
l 1.30 1
i i
i i
1.25 l
i i
m
\\i i
i 4
i i
\\
1.20
,\\
4 i
i
,3
(
e i
3
\\!
i t
A i
i 4
i N
o 1.15 i
6 y
i
\\i
,f T
I j
t
(
i i
\\
/i i i !
i i
i i
i
\\i i
i y
1.10
\\
t i
i
!\\
l 1
i i
l i
I i
u i
i 1
i i
I I
I i
I I
i l
l i
i 1.05 e
l i
i i
1 i
l l
l I
I l
l i
i i
I I
i I
i 1.00 O.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET)
TOP Anal Azial A.tml Amal Node W(Z)
Node W(Z)
Node W(Z)
Nods W(Z) 1 - 10 21 1.1592 32 1.1271 43 1.1100 11 1.2234 22 1.1564 33 1.1317 44 1.1005 12 1.2175 23 1.1533 34 1.1355 45 1.0923 13 1.2111 24 1.1497 35 1.1381 46 1.0870 14 1.20e0 25 1.1456 36 1.1394 47 1.0843 15 1.1960 26 1.1409 37 1.1395 48 1.0837 16 1.1876 27 1.1357 38 1.1381 49 1.0849 17 1.1779 28 1.1298 39 1.1354 50 1.0855 18 1.1686 29 1.1232 40 1.1312 St 1.0875 19 1.1638 30 1.1175 41 1.1255 52-61 20 1.1614 31 1.1199 42 1.1184 Core Height (ft) = (Node - 1)
- 0.2 12
COLR for CPSES UNIT 2 CYCLE 2 l
A FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT 14000 MWD /MTU 1.30 i
i i
l 5
i 6
A I
I I
1 I
i i
i i
i i
k I
i i
t i
1 i
i
( !
I I
I i
i l
t
\\!
i i
i i
i i
i i
N f
f i
i I
I i
i i
1.20 1
I i\\
l 6
I N
)
i I
I i
i i
jg
( i l
\\!
i i
i l
i i
i 2
\\ i i
1'15 2
\\
4 r
i iT i/
\\
i y
i i
v i
\\
i i
i u
2 I
\\
1.10
\\
l
\\
i i
i e
i i
j i
i I
i i
i I
I
{
l.05 l
l o
i I
i i
I I
i i
i 1
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET)
TOP Amt Azial Anal Axial Node W(Z)
Node W(Z)
Node W(Z)
Nods W(Z) 1 10 21 1.1533 32 1.1491 43 1.1154 11 1.2375 22 1.1506 33 1.1533 44 1.1047 12 1.2277 23 1.1473 34 1.1562 45 1.0950 13 1.2171 24 1.1435 35 1.1577 46 1.0876 14 1.2058 25 1.1391
?6 1.1577 47 1.0840 15 1.1936 26 1.1345 37 1.1563 48 1.0840 16 1.1003 27 1.1281 38 1.1532 49 1.0850 17 1.1674 28 1.1232 39 1.1487 50 1.0851 18 1.1592 29 1.1290 40 1.1427 51 1.0866 19 1.1576 30 1.1368 41 1.1352 52 - 61 20 1.1559 31 1.1435 42 1.1260 Core Height (ft) = (Node 1)
- 0.2 13