ML20126B340
ML20126B340 | |
Person / Time | |
---|---|
Site: | Comanche Peak |
Issue date: | 12/11/1992 |
From: | Killgore M TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC) |
To: | |
Shared Package | |
ML20126B339 | List: |
References | |
NUDOCS 9212220061 | |
Download: ML20126B340 (16) | |
Text
.
RXE-92-002 CPSES UNIT 1 CYCLE 3 CORE OPERATING LIMITS REPORT December 1992 David P. Goodman Reviewed: N/c[M1INz((QME Date: lA//O, k I-Mickey Rf Killgore p # '
_ Supervisor, Reactor Physics Approved: d Date: Il II \
Manager, Nuclear Fuel t
9212220061 921214 PDR ADOCK 05000445 p PDR I
DISCLAIMER The information contained in this report was prepared for the specific requirement of Texas Utilities Electric Company (TUEC),
and may not be appropriate for use in situations other than those for which it was specifically prepared. TUEC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, OF ANY KIND OR NATURE WilATSOEVER, REGARDING TIIIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
By making this report available, TUEC does not authorize its use by others, and any such use is forbidden except with the prior written approval of TUEC. Any such. written approval shall itself be deemed to incorporate the disclaimers of 11ah'lity and disclaimers of warranties provided herein In no avent shall-TUEC have any liability for any incidental or consequential damages of any type in connection with the use, auth Sed or l unauthorized, of this report or of the information in it.
1 11 l
. , _ _ _ _ - ~ , . . _ , . _ . . . _ _ _ - , -
TABLE OF CONTENTS DISCLAIMER . . . . . . . . . . . . . . .. .. . . .. . . . 11 TABLE OF CONTENTS . . . . . . . . . . . .. . . . . ... . . 111 1
LIST OF FIGURES . . . . . . . . . . . . .. . . . . .. . . . iv SECTION 1.0 CORE OPERATING LIMITS REPORT . . . .. . . . . .. . . . . 1 2.0 OPERATING LIMITS . . . . . . . . . .. . . . . ... . . . 2 1
2.1 MODERATOR TEMPERATURE COEFFICIENT . . . . .. . . . . 2 2.2 SHUTDOWN ROD INSERTION LIMIT .. . . . . . . . . . . .3 2.3 CONTROL ROD INSERTION LIMITS .. . . . . . .. . . . 3 2.4 AXIAL FLUX DIFFERENCE . . . . .. . . . . .. . . . . 3 2.5 HEAT FLUX HOT CHANNEL FACTOR .. . . . .. . . . . . 4 2.6 NUCLEAR ENTHALPHY RISE HOT CHANNEL FACTOR . . . . . . . .. . . . .. . . . . . 5 lii
I J
1
)
LIST OF FIGUPES 1
4
- FIGURE PAGE !
1 ROD BANK INSERTION LIMITS VERCJS THERMAL POWER . . . . . . 6 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION
't I i OF RATED Tl!ERMAL POWER . . . . . . . . . . . . . . . . . 7 i i
)
3 K(Z) - NORMALIZED Pg(Z) AS A FUNCTION OF ;
CORE HEIGHT . . . . . . . . . . . . . . . . . . . . . . . 8 4
4 W(Z) AS A FUNCTION OF CORE HEIGHT - MAXIMUM i
l LOAD FOLLOW . . . . . .. . . ., . . . . . . . . . . . . 9 J
5 W(Z) AS A FUNCTION OF CORE HEIGHT -
150 MWD /MTU . . . . . . . . . . . . . . . . . .. . . . 10 6 .W(Z) AS A FUNCTION OF CORE HEIGHT -
4000 MWD /MTU . . . . . . . . . . . . . . . . . . . . . . 11 ,
i
! 7 W(Z) AS A FUNCTION OF CORE HEIGHT -
j 9340 MWD /MTU . . . . . . . . . . . . . . . . . ... . . 12 1
b l iv i
.. , - ~ - , _ ,. ~ . . , _ . , . _ . . . , , _ , .. , . , . _ . _ . .. . , - - _ . . _ -
COLR for CPSES UNIT 1 CYCLE 3 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPSES UNIT 1 CYCLE 3 has been prepared in accordance with the requirements of Technical Specification 6.9.1.6.
The Technical Specifications affected by this report are listed belows 3/4.1.1.3 Moderator Temperature Coefficient 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor 1
d COLR For CPSES UNIT 1 CYCLE 3 1
2.0 QPERATING LIMITS l
i The cycle-specific parameter limits for the specifications listed l in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC-approved methodologies
]
specified in Technical Specifications 6.9.1.6.
4 2.1 Moderator Temperature coefficient (Specification 3/4.1.1.3) l 2.1.1 The Moderator Temperature coef ficient (MTC) limits are i
The BOL/ARO/HZP-MTC shall be less positive than
- +5 pcm/*F.
i The EOL/ARO/RTP-MTC shall be less negative than
- - 4 0 pcm/'F.
2.1.2 The MTC surveillance limit ist The 300 ppm /ARO/RTP-MTC should be less negative than or equal to -31 pcm/*F.
where: BOL stands for Beginning of Cycle Life a ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER t'
EOL stands for End of Cycle Life e RTP stands for RATED THERMAL POWER I
2
COLR for CPSES UNIT 1 CYCLE 3 l l
- 2.2 Shutdown Rod Insertion Limit (Specification 3/4.1.3.5) j !
1 2.2.1 The shutdown rods shall be fully withdrawn.
j Fully withdrawn shall be the condition where i shutdown rods are at a position within the interval j of 222 and 231 steps withdrawn, inclusive. ,
a i
l 2.3. Control Rod Inser.t. ion Limits (Specification 3/4.1.3.6) i
- l The control banks shall be limited in physical 2.3.1 insertion as shown in Figure 1. ,
i i
2.4 Axial Flux Difference (Specification 3/4.2.1) i i
2.4.1 The AXIAL FLUX DIFFERENCE (AFD) target band is l +3%, -12%.
i 2.4.2 The AFD Acceptable Operation Limits are provided in l Figure 2.
i i
i e
i s
i i
3 1
,, _ , , , , .-,,-.,m... , .,, ..-.- , ,
4 :
COLR for CPSES UNIT 1 CYCLE 3 s
j 2.5 Heat Flux flot Channel Factor - (Specification 3/4.2.2)
! p RTP i F,(Z) 5 (K (Z)) for P > 0.5 !
] P i
j F,* I j F,(Z) s (K(Z)) for P S 0.5
- 0.5
- I
- where
- P= TilERMAL POWER RATED THERMAL POWER i
1 2.5.1 F,"I" = 2.32 2.5.2 K(Z) is provided in Figure 3 4
.i 2.5.3 Elevation dependent W(Z) - values for load follow operation are given in Figure 4.
j Figures 5, 6, and 7 give burnup dependent values for W(Z). Figures 5, 6, and 7 can be used-in place of Figure 4 to interpolate or i
extrapolate (via a three point fit) the W(Z) l at a particular burnup.
i a
I 1
l 4
COLR for CPSES UNIT 1 CYCLE 3 2.6 liggLqar Enthalpy Riso llot channel Factor (Specification 3/4.2.3)
F"3, 5 F R1P w [1 4 pp,u [1.p))
where P= TligBMAL POWER _,,_,
RATED THERMAL POFER 2.6.1 F RTP = 1.55 2.6.2 PF3 ,= 0.2 5
COLR for CPSES UNIT 1 CYCLE 3 FIGURE 1 ROD BANK INSERTION LIMITS VERSUS TilERMAL POWER 240 f,. __-.
- m. _._. . . . ____ _.. ____ . _. ____
_}.._..___.
vy
> r
_ (27.3,222) ____. __ _. _._ ____ __ . . /i (81.6,222) .._
.-_._. _.-- . -. . .__.. ____.. . .l_ . --. _._
-y_ly._ -- _. .- -._..
200 /
' ._L l
____/ ___ _ _ __ __ __._.. _
. ___ .. ____ /_ _._. _ __ _.___ _
180 /y d BANK B - --- - ---
_[_-
i f
/p__.
/
/ .
'E 160 #
- d-(0*164) - - - - --- ----- ---
_--_-- ?
E .__._ .. ____ -- (100,146)
}= 140
__[_ _._ __.
_y __
q_j 1 g -__ ._ /,, e f_.
u -__ .. . __-._.. __- \ . _ _ _. -- -_-__
/___
3
_._j/q/ .
BANK C
---~
/ ,t---
l
$I -._.._ L__. _ _ __._
/ .
/
l G .. _ _ _ ._.__ _._
./ _ _ _._.__. __ ,l._1._..
g
_j .___
..__ /___
[_ _ _____ _. . _ _.__ __ __. _____
.__[ ___ . _.
c [Il[ j C(( [illi [2[I[
8 80
' ~~
[Ill '. [Ill
~~~~
._/
f
___4 ___ __.__
_q__ j/~- BANK D
- - --'~
/(p _ __
___f _ ___.__ -.___
40 . (0,49) _f M. .g ' ____._ .. _ _ __ __ ___
_._-,f
__+_... -___ .
20 jf _____ . _..._
___ _q_h , ._ ____._ _.___
[ ((T((
~~"~~
(31,0). j / ____ ((l((
0 ' ' ' ' -
0 10 20 30 40 50 60 70 80 90 100 PERCENT OF RATED TiiERMAL POWER NOTES: 1. I Fully withdrawn shall be the condition where control rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.
- 2. Control Bank A shall be fully withdrawn.
6 s
i i COLR for CPSES UNIT 1 CYCLE 3
) ,
4, I FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTIOli j OF RATED TilERMAL POWER ;
i 100 y _ _ __._. . _ _ _._.
--(l1,90) l (11,90) --
1 1 90 1,
4,_
, -.UNACCEITABLE --- - --
~~ -~ -~~~
~~ '- -
UNACCE! TABLE
~
5 go -
_. OPERATION . Ol'ERATION -
3 70 g
~~~~~
ACCERTABLE-~~
~~~ ~-
' ~~
$ g- -- ~~ OPERATION -.
a w _j p m __ .
x .- - _ _ . - -.__-
H2 -.
i:
/
(
8 50 ~
3 l
h ~~~ ( 31.50) __
_ (31,50) Z _
i a O _
N 40 l g _ _
x f -. ---
4 30 I r -
e-4 _-
0 20
-M .e.@ei.g.gi-.-g emPh 10 0
-40 30 20 -10 0 10 20 30 40 I
AXIAL FLUX DIFFERENCE (%)
7
--,1, w , ,-y - ,--+.-w m..-,4 -
- - - , .r...~ . , - . . . , - ~ , . , ,
r, e---~r-:-,--.
COLR FOR CPSES UllIT 1 CYCLE 3 l
FIGURE 3 K(Z) - liORMALIZED F a(Z) AS A FUliCTIOli OF CORE IIEIGilT 1.1 (0.0,1.0) (6.0,1.0) iiei e i iiIt 1 % %
(10.8,0.939) '
_ __ ___ _ ____. _.___ ____ __. _ .. _._ D?N k1.1 . __-
0.9 T,
0.8 0.7 ,
17 g __ _. .
C.s h 0.6 (12.0.0.646) ~
- s y ___. . _-. -_ _-._.__ _ ...__.. . _ . ._.___ ___. ___._ . .____ ____ . _.__.__ _.__
5 7- 0.5 i
x 0,4 0,3 o.2 0.1 o
0 1 2 3 4- 5 6 7 8 9 10 11 12 BOTTOh! CORE HEIGHT (FEET) TOP i
8
COLR for CPSES UNIT 1 CYCLE 3 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT MAXIMUM LOAD FOLLOW 1.3 1.25 l l.2
_ _ . {_ _ _ _ . _ _ ._ _ __ _ __ ___ _ __. _.__
g
_ _ _ _ _ _ __._ _. h C .-_ __ __ .-._
__ __ _ __ &_.g_ __ _ _ ._ __ ___ ___ ___
A
-_. ___ __ ___ _ -._ - %/._ __
l.05 l
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BorrOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Nide W(Z) Nate W(Z) Nide W(Z) 1 10 - 21 1,1392 32 1.1327 43 1.1128 11 1.2026 22 1.1338 33 1,1414 44 1.l(40 12 1.1955 23 1.1340 34 1.1448 45 1.0957 13 1.1877 24 1.1317 35 1.1450 46 1.0898 14 1.1795 25 1.1291 36 1.1450 47 1.0917 15 1,1705 26 1.1257 37 1.1445 48 1.0986 16 1.1611 27 1.1211 38 1.1427 49 1.1064 17 1.1529 28 1.1149 39 1.1392 50 1.1134 18 1.1476 29 1.1083 40 1.1345 51 1,1186 19 I,1446 30 1.1088 41 1.1285 52 61 -
20 1.1420 31 1.1197 42 1.1211 Core Height (ft) = (Node - 1)
- 0.2 9
w -
COLR for CPSES UNIT 1 CYCLE 3 FIGURE 5 W(Z) AS A FUNCTION OF CORE IIEIGHT 150 MWD /MTU l.30 i 1.25 l.20 KL__
g - . __ _
y _
a 1.15 s g _5 __ __ __
S_
x
_S \_
9 __
g
_[. __
__ _J_ --
__ _L LZ_ __
l.05 l.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FELT) TOP Axial Asial Axial Axial Nate W(Z) Node W(Z) Nate W(Z) Nmie - W(Z) 1 10 -- 21 1.1392 32 1.1047 43 1.0968 11 1.2026 22 1.1355 33 1.1130 44 1.0908 12 1.1955 23 1.1313 34 1.1171 45 1.0892 13 1.1877 24 1.1266 35 1.1181 46 1.0898 14 1.1795 25 1.1220 36 1.1191 47 1.0917 15 1.1705 26 1.1168 37 1.1197 48 1.0986 16 1.1611 27 1.1103 38 1.1192 49 1.1064 17 1.1529 28 1.1024 39 1.1171 50 1.1134 18 1.1476 29 1.0939 40 1.1139 SI 1.1186 19 1.1446 30 1.0892 di 1.1094 52 61 -
20 1.1420 31 1.0938 42 1.1036 l
1 l
Core 1leight (ft) = (Node 1)
- 0.2 10
COI.R for CPSES UNIT 1 CYCLE 3 FIGURE 6 W(Z) AS A FUNCTION OF CORE IIEIGliT j 4000 MWD /MTU ;
I 1.30
___ __ __ y __ __ __
l.25 l.20 g __ __ __ _ _ ._ _ .__ _ . ._
y __ _ . __ __ __
u
- 1.15 g _\ q __ __ .__ _ _ _ _ __
y __._ .-_
m_ _,%_
- y. _._
_h - _ _ _
q.
gv __ _ _
o xs __
l.05 l.00 O.0 1,0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET) TOP Asial Asial Asial Asial Node W(Z) Node W(Z) Node W(Z) Node W(2)
I . 10 - 21 1.1323 32 1.1135 43 1.1049 11 1.1885 22 1.1301 33 1.1224 44 1.0977 12 1.1816 23 1.1275 34 1.1263 45 1.0902 13 1.1742 24 1.1244 35 1.1273 46 1.0861 14 1.1663 25 1.1210' 36 1.1282 47 1.0850 15 1.1597 26 1.1169 37 1.1287 48 1.0852 16 1.1532 27 1.1117 38 1.1279 49 1.0895 17 1.1470 28 1.1049 39 1.1256 50 1.0963 18 1.1415 29 1.0977 40 1.1223 SI 1.1043 19 1.1378 30 1.0942 41 1,3177 52 61 -
20 1.1347 31 1.1011 42 1.1116 Core lleight (ft) = (Node - 1)
- 0.2 !
11 1 i
)
1
, COLR for CPSES UNIT 1 CYCLE 3 4
FIGURE 7 W(Z) AS A FUNCTIoli or CORE 11EIGitT 9340 MWD /MTU 4,
J 1.30
. 1.25 l.20 g ___ .__._ ._ __ __ __ __ _ _
y __
,:_,1.15 m
g L __ _-
s$ __
u N __
%~
.>)
\
1.10
_ _ _ _ ___ ._.. _ _ __ _N
_N eu EmubM.- _s-_. e6h p. wau M_ 6 w _-e.eu.uur ems.uum.+ _ __. mo_
l.05 l.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BO M M CORE llEIGilT (FEET) M Axial Axial Axial Axial Node W(Z) Nmle W(Z) Nmie W(Z) Node W(Z) 1 10 - 21 1.1371 32 1.1327 43 1.1128 11 1.1991 22 1.1358 33 1.1414 44 1.1040 12 1.1902 23 1.1340 34 1.1448 45 1.0957 13 1.1809 24 1.1317 35 1.1450 46 1.0894 14 1.1719 25 1.1291 36 1.1450 47 1.0849 15 1.1628 26 1.1257 37 1.1445 48 1.0830 16 1.1532 27 1.1211 38 1.1427 49 1.0833 17 1.1445 28 1.1149 39 1.1392 50 1.0853 18 1.1384 29 1.1083 40 1.1345 Si 1.0885 19 1.1384 30 1.1088 41 1.1285 52 61 -
20 1.1380 31 1.1197 42 1.1211 Core lleight (ft) = (Ncxle - 1)
- 0.2 12
. _ _