ML20134F624

From kanterella
Jump to navigation Jump to search
Rev 1 to RXE-96-001, CPSES Unit 2 Cycle 3 Colr
ML20134F624
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 10/30/1996
From: Brozak D, Choe W, Maier S
TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC)
To:
Shared Package
ML20134F620 List:
References
RXE-96-001, RXE-96-001-R01, RXE-96-1, RXE-96-1-R1, NUDOCS 9611070072
Download: ML20134F624 (16)


Text

. . .

RXE-96-001, Rev. I 1

CPSES UNIT 2 CYCLE 3 l

CORE OPERATING LIMITS REPORT October 1996 s ", '

1 I

i Prepared : -

  • M Date:  ! 70 Daniel E. Brozak' Reactor Physics Approved: bbkl~s lb $0 Date: /
  • Mf% j Stephen M. Maier l Reactor Physics Supervisor j l l Approved: [ w Dates l$h0 f?b l

Whee G. oe l Safety alysis Manager l l

l l

l l

o6110700TJ 961030

PDR ADOCK 05000445 p PDR J

1 j

$ r l DISCLAIMER I i

? -

! The information contained in this report was prepared for the a

specific requirement of Texas Utilities Electric Company (TURC),

i,-

and may not be appropriate for use in situations other than those l for whic's it was specifically prepared. TUEC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY j 'OF ANY KIND OR NATURE WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

By making this report available, TUEC does not authorize its use by others, and any such use is forbidden except with the prior written approval of TUEC. Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall TURC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it.

J l

11

COLR for CPSES Unit 2 Cyclo 3 i

TABLE OF CONTENTS DISCLAIMER ................................................. 11 4

TABLE OF CONTENTS .......................................... iii LIST OF FIGURES ............................................ iv 1

SECTION

. 1.0 CORE OPERATING LIMITS REPORT .......................... 1

=

2.0 OPERATING LIMITS ............................'.y....... 2 2.1 MODERATOR TEMPERATURE COEFFICIENT ................ 2 2.2 SHUTDOWN ROD INSERTION LIMIT ..................... 3 s 2.3 CONTROL ROD INSERTION LIMITS ..................... 3 2.4 AXIAL FLUX DIFFERENCE ............................ 3 .

i 2.5 HEAT FLUX HOT CHANNEL FACTOR ..................... 4 2.6 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR ......... 5 j 2.7 SHUTDOWN MARGIN .................................. 5  !

j

)

i.

'l i

l lii

COLR for CPSES Unit 2 Cyclo 3 4

LIST OF FIGURES i

4 FIGURE PAGE

, 1 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER ..... 6 f

i l j 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION )

i OF RATED THERMAL POWER ............................. 7 1

1 3 K(Z) - NORMALIZED F,(Z) AS A FUNCTION OF

  • l

\

CORE HEIGHT ................................T....... 8 l 4 W(Z) AS A FUNCTION OF CORE HEIGHT - )

i (MAXIMUM) .......................................... 9 I

5 W(Z) AS A FUNCTION OF CORE HEIGHT - '

l (150 MWD /MTU) ...................................... 10 6 W(Z) AS A FUNCTION OF CORE HEIGHT -

(10000 mwd /MTU) .................................... 11 7 W(Z) AS A FUNCTION OF CORE HEIGHT -

(20000 mwd /MTU) .................................... 12

'I i

i a

iv

4 i

COLR for CPSES Unit 2 Cyclo 3 l

- 1 4

i 1.0 CORE OPERATING LIMITS REPORT i i

$ This Core Operating Limits Report (COLR) for CPSES UNIT 2 CYCLE 3 has been prepared to satisfy the requirements of Technical I Specification 6.9.1.6.

i i

j The Technical Specifications affected by this report are listed l below:

4 3/4.1.1.1 Shutdown Margin - T., Greater Than 200'F 3/4.1.1.2 Shutdown Margin - T,y Less Than or Equal to 200*F '

3/4.1.1.3 Moderator Temperature Coefficient i

! 3/4.1.2.2 Flow Paths - Operating 3/4.1.2.4 Charging Pumps - Operating 3/4.1.2.6 Borated Water Sources - Operating 3/4.1.3.5 Shutdown Rod Insertion Limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial i' lux Dif ference l 1

3/4.2.2 Heat FluA Hot Channel Factor l 1

l 3/4.2.3 Nuclear Enthalpy Rise Hot Channel Factor j l

4

)

l l

l I

1

1 l

COLR for CPSES Unit 2 Cyclo 3  ;

. - - l l

2.0 OPERATING LIMITS The cycle-specific parameter limito for the specifications listed in Section 1.0 are presented in the following subsections. These

, limits have been developed using the NRC-approved methodologies specified in Technical Specification 6.9.1.6b, Items 5, 6, 7, 8, 4

9, 10, 11, 12, 13, 14, 15, 16, 17, and 19. These limits have a been determined such that all applicable limits of the safety analysis are, met. - ,

l 2.1 Moderator Temperature Coefficient (Specification 3/4.1.1.3) 4 2.1.1 The Moderator Temperature coefficient (;MTC) limits i

are:

l The BOL/ARO/HZP-MTC shall be less positive than

+5 pcm/ F.

The EOL/ARO/RTP-MTC shall be less negative than

-4 0 pcm/ F .

2.1.2 The MTC surveillance limit is:

The 300 ppm /ARO/RTP-MTC should be less negative

, than or equal to -31 pcm/ F.

I i

where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER EOL stands for End of Cycle Life RTP stands for RATED THERMAL POWER 2

COLR for CPSES Unit 2 Cyclo 3 f .

! 2.2 Shutdown Rod Insertion Limit (Specification 3/4.1.3.5) 4

! 2.2.1 The shutdown rods shall be fully withdrawn. Fully j

withdrawn shall be the condition where shutdown

rods are at a position within the interval of 222 i

j and 231 steps withdrawn, inclusive.

i 4 >

2.3. Control Rod Insertion Limits (Specification 3/4.1.3.6) f The control banks shall be limited in# physical

~

l 2.3.1 insertion as shown in Figure 1.

l;

! 2.4 Axial Flux Difference (Specification 3/4.2.1) l 2.4.1 The AXIAL FLUX DIFFERENCE (AFD) target band is i +3%, -12%.  ;

t 2.4.2 The AFD Acceptable Operation Limits are provided in Figure 2.

1 i

, i 1

3 l

COLR for CPSES Unit 2 Cyclo 3 I

2.5 Heat Flux Hot Channel Factor (Specification 3/4.2.2) l l

Fj"' \

[K (3) ] for P > 0.5 F,(Z) 5 P

Pg (Z) s [K(Z)] for P 5 0.5 0.5 where P= THERMAL POWER RATED THERMAL POWER

~

~

2.5.1 Fjer = 2.40 lRev.1 2.5.2 K(Z) is provided in Figure 3.

2.5.3 Maximum elevation dependent W(Z) values are given in Figure 4. Figures 5, 6, and 7 give burnup dependent values for W(Z). Figures 5, 6, and 7 can be used in place of Figure 4 to interpolate or extrapolate (via a three point fit) the W(Z) at a particular burnup.

2.5.4 A constant 2% decrease in Fg margin allowance shall be used to increase F ac(Z) for compliance with the 4.2.2.2.f Surveillance Requirement for

, all cycle burnups.

l 4

.. . . _ . . - . . _ . __ _ . . ~ . _ _ _ . _ . - ._. .- . __

COLR for CPSES Unit 2 Cyclo 3 2.6 Nuclear Enthalov Rise Hot Channel Factor (Specification 3/4.2.3) f F" , s F"'" , [1 + PF , (1-P)]

i

. where: P= THERMAL POWER RATED THERMAL POWER 2.6.1 F", = 1.55 l

1 2.6.2 PF, = 0.3

- e 1

i

2.7 Shutdown Marain i,

2.7.1 Shutdown Marcin - T er Greater Than 200DE (Specifications 3/4.1.1.1, 3/4.1.2.2, 3/4.1.2.4, and 3/4.1.2.6)

The SHUTDOWN MARGIN shall be greater than or equal to 1.3% Ak/k in MODES 1, 2, 3, and 4.

2.7.2 Shutdown Marcin - T ry Less Than or Eaual to 200 F (Specification 3/4.1.1.2)

The SHUTDOWN MARGIN shall be greater than or equal to 1.3% ak/k in MODE 5.

5

COLR for CPSES UNIT 2 CYCLE 3 FIGURE 1 ROD BANK INSERTION LIMITS VERSUS THERMAL POWER 240 g, 1

220 j

' (17.1,222) ,e (73.1,222)

/ /

/ /

200 f

}BANKB j,#

- /i I / I r n i f r a 180 g y e ._

g / .. _

.C / -

4 / (100, 162).

M 160 l If I j'/ if a / /

De I '

e 140 /  ! /

p / BANK C if

' / 1 . . /

/[' ' '

2 120

[

O > >/

H / /

E-e / /

H 100 ,f  ; y to ,

/ )

/ /

80 fj , f, e n s

/J>

-(0,72) / I BANK D 60 jj i g i O / '

i N / l 40 f

/ l

/ \

20

,# ' I ie i i is j il l '/ i (21,0) / l 0 l 0 10 20 30 40 50 60 70 80 90 100 l PERCENT OF RATED THERMAL POWER 1

l NOTES: 1. Fully withdrawn shall be the condition where control rods I are at a position within the interval of 222 and 231 steps withdrawn, inclusive.

2. Control Bank A shall be fully withdrawn. ,

l 1

6

COLR for CPSES UNIT 2 CYCLE 3 FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER 100 a

I

(-16,90) (9,90) 90 , 3 dCCEPTABLE ' UNACCEPTABLE

~~

OPERATIosi f

\'g

. OPERATION---

80

/ \

/ \

/ \ .

/ \

M f (

I

, kdCEPTABN.E h j OPERATION g 4 I 60

/ h(-

y g

/ \

/ \

/ \

H 50 I

(-34,50) fi (33,50)'-

k.

O 40 0

M 1 M

De 30 8 l

, 10 o

0

-40 -30 -20 -10 0 10 20 30 40 DEVIATION FROM TARG3T AXIAL FLUX DIFFERENCE (%)

7

COLR for CPSES UNIT 2 CYCLE 3 FIGURE 3 K(Z) -

NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT i

1.1 )

l

( 0. 0,,1. C ) , M.,0,,10) ,

l 1 . . . - = l l

. l l l lt .. _

(12.0,0.925)-

)

0.9 i 1

l

_ 0.8 0 )

O *'

b 0.7 h

00.6 0 0.5 2

O.4 9

w M 0.3 0.2 0.1 ,  ;

1 ,

0 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTON CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node K(Z) Node K(Z) Node K(Z) Node K(Z) 1 - 31 1.0000 39 0.9800 47 0.9600 55 0.9400  ;

32 0.9975 40 0.9775 48 0.9575 56 0.9375 l 33 0.9950 41 0.9750 49 0.9550 57 0.9350 34 0.9925 42 0.9725 50 0.9525 58 0.9325 35 0.9900 43 0.9700 51 0.9500 59 0.9300 36 0.9875 44 0.9675 52 0.9475 60 0.9275 37 0.9850 45 0.9650 53 0.9450 61 0.9250 38 0.9825 46 0.9625 54 0.9425 Core Height (ft) = (Node - 1)

  • 0.2 8

l I

COLR for CPSES Unit 2 Cycle 3 ,

FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT (MAXIMUM) 1.30 l

l 1.25 -

1.20 1

^ \ l U \ l

  • \

1.15

\ l

'N N \

X X 1.10

\ __

f 'N-#

1.05 l

1.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node N(Z) Node N(Z) Node M(Z) Node W(Z) 1 - 10 --- 21 1.134 32 1.089 43 1.098 11 1.109 22 1.128 33 1.089 44 1.095 1

, 12 1.183 23 1.124 34 1.090 45 1.094 i 13 1.177 24 1.121 35 1.092 46 1.091 14 1.170 25 1.118 36 1.095 47 1.088 15 1.164 26 1.114 37 1.098 48 1.091 16 1.157 27 1.110 38 1.100 49 1.096 17 1.152 28 1.106 39 1.101 50 1.098 18 1.148 29 1.101 40 1.102 51 1.095 19 1.144 30 1.097 41 1.102 52 - 61 ---

20 1.139 31 1.093 42 1.102 Core Height (ft) = (Node - 1)

  • 0.2 9 ]

l

COLR for CPSES UNIT 2 CYCLE 3 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (150 MWD /MTU) 1.30

) 1.25 a

n J

1.20 4 m -

I U

  • x 1.15 H \

U \

2 \

T 1.10

(% /

p 1.05 1.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node W(z) Node W(Z) Node N(Z) 1 - 10 --- 21 1.134 32 1.080 43 1.096

/ 11 1.171 22 1.128 33 1.080 44 1.095 i 12 1.168 23 1.122 34 1.080 45 1.094

' 13 1.165 24 1.116 35 1.081 46 1.091 14 1.163 25 1.109 36 1.081 47 1.088 15 1.160 26 1.102 37 1.082 48 1.091 16 1.156 27 1.096 38 1.084 49 1.096 17 1.152 28 1.090 39 1.087 50 1.098 18 1.148 29 1.085 40 1.090 51 1.095 19 1.144 30 1.082 41 1.093 52 - 61 ---

20 1.139 31 1.081 42 1.096 Core Height (ft) = (Node - 1)

  • 0.2 10

i.

l COLR for CPSES UNIT 2 CYCLE 3 l 0 -

1 l FIGURE 6 i

I i

W(Z) AS A FUNCTION OF CORE HEIGHT 1 (10000 MWD /MTU)  :

)

l 1.30 1.25 l

1.20 i

i n.

U \

  • X 1.15 H \
1. N \

x \

1.10

\( '

% s #

-s N

\ w.e /

1.05 1.00 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET) TOP Axial Axial -Axial Axial Mode W(Z) Node W(Z) Node W(Z) Node W(Z) 1 - 10 --- 21 1.132 32 1.084 43 1.091

/ 11 1.181 22 1.127 33 1.083 44 1.087 i ~12 1.177 23 1.123 34 1.082 45 1.082

' 13 1.172 24 1.118 35 1.081 46 1.075 14 1.167 25 1.113 36 1.084 47 1.067 15 1.162 26 1.107 37 1.086 48 1.066 16 1.156 27 1.102 38 1.088 49 1.068 17 1.151 28 1.098 39 1.090 50 1.070 18 1.146 29 1.093 40 1.092 51 1.077 19 1.141 30 1.089 41 1.093 52 - 61 ---

20 1.136 31 1.087 42 1.094 Core Height (ft) = (Node - 1)

  • 0.2 11 I

COLR for CPSES UNIT 2 CYCLE 3 FIGURE 7 1 j W(Z) AS A FUNCTION OF CORE HEIGHT 1

(20000 MWD /MTU)

, 1.30 g 4 .

i l  ;

J j 1.25 j i ,

1.20 I - \ ~~

j 5 \

i

  • x, j 1.15 H \

A

! \

l N

{

1.10 g

\

U

).

s 1.05 l

i i

i 1.00  ;

) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 BOTTOM CORE HEIGHT (FEET) TOP

, l Axial Axial Axial Axial l l Node N(Z) Node W(Z) l Node W(Z) Node W(Z) 1 - 10 --- 21 1.132 32 1.089 43 1.098 ,

3 11 1.189 22 1.127 33 1.089 44 1.093 i

1.124 1.090 45 1.087 j' 12 1.183 23 34 46 1.078

'I 13 1.177 24 1.121 35 1.092 14 1.170 25 1.118 36 1.095 47 1.069 15 1.164 26 1.114 37 1.098 48 1.066

j. 1.065 16 1.157 27 1.110 38 1.100 49 l 17 1.150 28 1.106 39 1.101 50 1.066 18 1.145 29 1.101 40 1.102 51 1.071 19 1.141 30 1.097 41 1.102 52 - 61 ---

I 20 1.137 31 1.093 42 1.102 4 Core Height (ft) = (Node - 1)

  • 0.2 12 4

.