ML20216B866
ML20216B866 | |
Person / Time | |
---|---|
Site: | Comanche Peak |
Issue date: | 04/01/1998 |
From: | Brozak D, Choe W, Maier S TEXAS UTILITIES ELECTRIC CO. (TU ELECTRIC) |
To: | |
Shared Package | |
ML20216B850 | List: |
References | |
ERX-98-001, ERX-98-001-R00, ERX-98-1, ERX-98-1-R, NUDOCS 9804140145 | |
Download: ML20216B866 (16) | |
Text
{{#Wiki_filter:9 . ('. ERX 98 001. Rev. O CPSES UNIT 1 CYCLE 7 CORE OPERATING LIMITS REPORT l April 1998 i I l l l l I I 1 Prepared: 9 ' Date: #/98 l Daniel E. Brozak i Reactor Physics Approved: kN. NA Date: Y /!98 Stephen M. Maier Reactor Physics Supervisor Approved: Date: Whee G. C Safety Ana ysis Manager 1 i 9004140145 980400 l PDR ADOCK 05000445 p PDR j i 1
c 1 DISCLAIMER The information contained in this report was prepared for the specific requirement of Texas Utilities Electric Company (TUEC), and may not be appropriate for use in situations other than those for which it was specifically prepared. TUEC PROVIDES NO WARRANTY HEREUNDER, EXPRESS OR IMPLIED, OR STATUTORY, 0F ANY KIND OR NATURE l 1 WHATSOEVER, REGARDING THIS REPORT OR ITS USE, INCLUDING Blff NOT LIMITED TO ANY WARRANTIES ON MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. By making this report available. TUEC does not authorize its use by others, and any such use is forbidden except with the prior written approval of h. . Any such written approval shall itself be deemed to incorporate the disclaimers of liability and disclaimers of warranties provided herein. In no event shall TUEC have any liability for any incidental or consequential damages of any type in connection with the use, authorized or unauthorized, of this report or of the information in it. 11
e
]
COLR for CPSES Unit 1 Cycle 7 l l TABLE OF CONTENTS i DISCLAIMER ............................... 11 TABLE OF CONTENTS ........................... iii l LT,ST OF FIGURES ............................ iv SECTION l l 1.0 CORE OPERATING LIMITS REPORT .................. 1 2.0 OPERATING LIMITS ........................ 2 2.1 MODERATOR TEMPERATURE COEFFICIENT ............ 2 2.2 SHUTDOWN R00 INSERTION LIMIT ............... 3 i 2.3 CONTROL R0D INSERTION LIMITS ............... 3 l 2.4 AXIAL FLUX DIFFERENCE .................. 3 1 l 1 2.5 HEAT FLUX HOT CHANNEL FACTOR ............... 4 2.6 NUCLEAR ENTHALPY RISE HOT CHANNEL FACTOR ......... 5 l 2.7 SHUTD% N >%RGIN ..................... 5 i i iii
- r. ,
e COLR for CPSES Unit 1 Cycle 7 1 l LIST OF FIGURES 1 FIGURE PAGE 1 R00 BANK INSERTION LIMITS VERSUS THERMAL POWER ........ 6 ; l 4 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERMAL POWER .................... 7 3 K(Z) NORMALIZED oF (Z) AS A FUNCTION OF CORE HEIGHT .......................... 8 1 4 W(Z) AS A FUNCTION OF CORE HEIGHT - l i (MAXIMUM) ........................... 9 l
- 1
- j. 5 W(Z) AS A FUNCTION OF CORE HEIGHT -
t I l (150 MWD /MTU) ......................... 10 i l 6 W(Z) AS A FUNCTION OF CORE HEIGHT - (10,000 MWD /MTU) ....................... 11 I I l 7 W(Z) AS A FUNCTION OF CORE HEIGHT - (20,000 MWD /HTU) ....................... 12 l iv
r t COLR for CPSES Unit 1 Cycle 7
. l 1.0 CORE OPERATING LIMITS REPORT This Core Operating Limits Report (COLR) for CPSES UNIT 1 CYCLE 7 i has been prepared to satisfy the requiraults of Technical Specification 6.9.1.6.
i The Technical Specifications affected by this report are listed below: ; i 3/4.1.1.1 Shutdown Margin T,,, Greater Than 200 F i 3/4.1.1.2 Shutdown Margin T.,, Less Than or Equal to 200'F 3/4.1.1.3 Moderator Temperature Coefficient ) 3/4.1.2.2 Flow Paths Operating 1 3/4.1.2.4 Charging Pumps Operating 3/4.1.2.6 Borated Water Sources Operating 3/4.1.3.5 Shutdown Rod Insertion limit 3/4.1.3.6 Control Rod Insertion Limits 3/4.2.1 Axial Flux Difference 3/4.2.2 Heat Flux Hot Channel Factor 3/4.2.3 Nuclear Enthalpy Rise H . Channel Factor r 1
. COLR for CPSES Unit 1 Cycle 7 2.0 OPERATING LIMITS The cycle specific parameter limits for the specifications listed in Section 1.0 are presented in the following subsections. These limits have been developed using the NRC approved methodologies specified in Technical Specification 6.9.1.6b, Items 5.
9, 10, 11 12, 13, 14, 15, 16, 17, 19. and 20. These limits have been determined such thac all applicable limits of the safety analysis are met. 2.1 Moderator Temoerature coefficient (Specification 3/4.1.1.3) 2.1.1 The Moderator Temperature Coefficient (HTC) limits are: The BOL/AR0/HZP MTC shall be less positive than +5 pcm/*F. The E0L/AR0/RTP MTC shall be less negative than 40 pcm/ F. 2.1.2 The MTC surveillance limit is: The 300 pps/AR0/RTP KTC should be less negative than or equal to 31 pcm/ F. where: BOL stands for Beginning of Cycle Life ARO stands for All Rods Out HZP stands for Hot Zero THERMAL POWER E0L stands for End of Cycle Life RTP stands for RATED THERMAL POWER I l
l COLR for CPSES Unit 1 Cycle 7 I 2.2 Shutdown Rod insertion Limit (Specification 3/4.1.3.5) 2.2.1 The shatdown rods shall be fully withdrawn. Fully withdrawn shall be the condition where shutdown rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive. I 2.3 Control Rod Insertion Limits (Specification 3/4.1.3.6) l ! 2.3.1 The control banks shall be limited in physical insertion as shown in 1 Figure 1. 1 2.4 Axial Flux Difference (Specification 3/4.2.1) J 2.4.1 The AXIAL FLUX DIFFERENCE (AFD) target band is +5%, 12% at 100% RTP l l linearly expanding to +20%, -17% at 50% RTP. Below 50t RTP, the AFD , target band remains constant at +20%, 17%. 2.4.2 The AFD Acceptable Operation Limits are provided in Figure 2. I 3
i COLR for CPSES Unit 1 Cycle 7 1 l l 2.5 Heat Flux Hot Channel Factor (Specification 3/4.2.2) 1 F" a Fa(Z) 5 [K(Z)] for P > 0.5 P F* a Fa(Z) 5 [K(Z)] for P s 0.5
0.5 where
P= THERMAL POWER RATED THERMAL POWER I 2.5.1 Fa " = 2.42 2.5.2 K(Z) is provided in Figure 3. 2.5.3 Maximum elevation dependent W(Z) values are given in Figure 4. Figures 5, 6. and 7 give burnup dependent values for W(Z). Figures 5, 6, and 7 can be used in place of Figure 4 to interpolate or extrapolate (via a three point fit) the W(Z) at a particular burnup. i
. 2.5.4 A constant 2% decrease in Fa margin allowance shall be used to increase FaC (Z) for compliance with the 4.2.2.2.f Surveillance Requirement for all cycle burnups 4
COLR for CPSES Unit 1 Cycle 7 j 2.6 Nuclear Enthalov Rise Hot Channel Factor l (Specification 3/4.2.3) F% 5 F"", [1 + PF, (1 P)] l where: P= THERMAL POWEl1 RATED THERMAL POWER j 2.6.1 F"",s = 1.5 2.6.2 PF,a = 0.3 2.7 Shutdown Marain 2.7.1 Shutdown Marain - T.,; Greater Than 200'F l (Specifications 3/4.1.1.1, 3/4.1.2.2, I 3/4.1.2.4, and 3/4.1.2.6) 1 The SHlHDOWN MARGIN shall be greater than or equal 1 to 1.34 ak/k in MODES 1, 2, 3, and 4. 2.7.2 Shutdown Marain - T.,; Less Than or Eaual to 200'F (Specification 3/4.1.1.2) The SHUTDOWN MARGIN shall be greater than or equal to 1.3% Ak/k in MODE 5. 5 i l
1 l
- COLR for CPSES Unit 1 Cycle 7 FIGURE 1 R00 BANK INSERTION LIMITS VERSUS THERNAL POWER ! '240 4
220 . p (27.3.222) > (81.6,222) e V l V l y_t'_._. l/ 200 Y)
~
BANK B >
/\ '6 180 ,
l!/ b l , kL .. ! - - -
! i t h 160 - (0,164) , , g , , , ,,,,
2
- I f- I i i I Ii1 3 /1 T' i I (101 ' M)1 J 140
- g f
/!! ! ' I iI '
l p _ -- l t BANK C 1 - { 1 v 120
' ' Y
l / t i /i _ !
! / J/t i
! :: -/F /! l+ l E - 7 .
-yf a l l 80 ,/ , ,/ ,,,, , ~
( / BANK D !
^i '
60
-[#ll {--.-{-[ ! --
l 40 lj/ l I _ I
# /' ' ' ' ' 2 20 l i I V I 3 .0) _
j 0 C 10 20 30 40 50 60 70 80 90 100 l PERCENT OF RATED THERMAL POWER NOTES: 1. Fully withdrawn shall be the condition where control rods are at a position within the interval of 222 and 231 steps withdrawn, inclusive.
- 2. Control Bank A shall be fully withdr awn.
6
COLR for CPSES Unit 1 Cycle 7 l l FIGURE 2 AXIAL FLUX DIFFERENCE LIMITS AS A FUNCTION OF RATED THERHAL POWER 100 ( 18,90) (12,90) 90 l ll I I i _ UNACCEPTABLE .-- UNACCEPTABLE
-- OPERATION .
OPERATION B0 Ii iI \ I I I I I l/r-- } j
-- ACCEPTABLE -- OPERATION (g 4r' # .I - . - . i -- ' I 'I I I I 60 .- L-5 50 11 ! ,
( 34,50)' I (33,50) ,_ o 40 - m b 30 _ ! J l I }_ _. _7____ i 0 II
- 40 30 20 10 0 10 20 30 40 DEVIATION FROM TARGET AXIAL FLUX DIFFERENCE (%)
7
CCLR for CPSES Unit 1 Cycle 7 FIGURE 3 K(Z) NORMALIZED FQ(Z) AS A FUNCTION OF CORE HEIGHT I'I lll11 I tilli l (0.0.1.0)---- (6.0,1.0) -- III' II l 1
!! 'lli ll L j 'l l 0.9 ll .Il l l I lli iilr (12.0.0.925)-
I 0.8 l C i 5 l' l' lll
' ____ ll!
2 -, l
! l .
I Q
~
0.6 JI ! .d__d 0.5 li l I li I f f _. 1 C 0.4 s ll l _[ l ! ! 0.3 ll i l Ill 1
! ! ! 1._.1 0.2 I I ll l l l I d 0.1
____f Il i 1 0 - I 0 1 2 3 5 6 7 8 9 10 11 12 CORE HEIGHT (FEET) Axial Axial Axial Axial Node K(Z) Node K(Z) Node K(Z) Node K(Z) 61 0.9250 53 0.9450 45 0. % 50 37 0.9850 60 0.9275 52 0.9475 44 0. % 75 36 0.9875 59 0.9300 51 0.%00 43 0.9700 35 0.9900 58 0.9325 50 0. % 25 42 0.9725 34 0.9925 57 0.9350 49 0.9550 41 0.9750 33 0.9950 56 0.9375 48 0. % 75 40 0.9775 32 0.9975 55 0.9400 47 0.%00 39 0.9800 1 31 1.0000 54 0.9425 46 0. % 25 38 0.9825 Core Height (ft) = (Node 1)
- 0.2 8
, COLR for CPSES Unit 1 Cycle 7 FIGURE 4 W(Z) AS A FUNCTION OF CORE HEIGHT ;
(MAXIMJH) 1 1.300 , l l 1.250 v : 1.200 j
\
R T s S _
^
E 1.150 E _
,K -__ _ .
Y h 1.100
~
W Nj l l l 1.050 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTOM CORE HEIGHT (FEET) TOP Mial Axial Axial Axial Node W(Z) Node W(Z) Node W(Z) Node W(Z) 52 61 - 41 1.126 30 1.120 19 1.150 51 1.125 40 1.128 29 1.130 18 1.153 50 1.114 39 1.128 28 1.137 17 1.161 l 1 49 1.107 38 1.127 27 1.142 16 1.171 48 1.10f 37 1,126 26 1.147 15 1.181 47 1.104 36 1.124 25 1.150 14 1.190 l 46 1.105 35 1.120 24 1.153 13 1.197 l 45 1.109 34 1.112 23 1.154 12 1.206 44 1.114 33 1.105 22 1.154 11 1.215 l 1 43 1.119 32 1.103 21 1.154 1 10 - 42 1.123 31 1.110 20 1.152 Core Height (ft) = (Node 1)
- 0.2 9
l I. COLR for CPSES Unit 1 Cycle 7 FIGURE 5 W(Z) AS A FUNCTION OF CORE HEIGHT (150 M)/HTV) 1.300 1.250 < 1.200 , a iii
*~^ l g1.150 4 ;
i i 1'100
\ #
1.050 , , 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTON CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node W(Z) Node W(Z) Node W(Z) 52 61 - 41 1.104 30 1.097 19 1.147 51 1.125 40 1.103 29 1.105 18 1.152 50 1.114 39 1.102 28 1.111 17 1.157 49 1.107 38 1.099 27 1.116 16 1.163 48 1.103 37 1.0% 26 1.122 15 1.169 47 1.102 36 1.092 25 1.127 14 1.174 l 46 1.100 35 1.088 24 1.132 13 1.179 ) 45 1.100 34 1.084 23 1.136 12 1.183
)
44 1.101 33 1.081 22 1.139 11 1.187 i 43 1.103 32 1.082 21 1.141 1 10 - 1 42 1.104 31 1.088 20 1.143 1 Core Height (ft) = (Node 1)
- 0.2 10
)
, COLR for CPSES Unit 1 Cycle 7 ;
1 FIGURE 6 ) W(Z) AS A FUNCTION OF CORE HEIGHT (10,000 WD/MTU) 1.300 1 1.250 1,200
\ , ,
N l l 1 l g1.150 , , , K A i i 2 l 1.100
~~1-p N ,%
1.050 l l ' l 1.000 i 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTON CORE HEIGHT (FEET) TOP Axial Axial Mial Axial Node W(Z) Node W(Z) Node W(Z) Node W(Z)
. 52 61 - 41 1.113 30 1.104 19 1.146 51 1.123 40 1.114 29 1.112 18 1.153 50 1.113 39 1.113 28 1.117 17 1.101 49 1.107 38 1.112 27 1.122 16 1.171 48 - 1.105 37 1.109 26 1.1?.7 15 1.181 47 1.104 36 1.107 25 1.131 14 1.190 46 ' 1.103 35 1.103 24 1.135 13 1.197 45 1.104 34 1.095 23 1.138 12 1.205 44 1.106 33 1.089 22 1.139 11 1.212 43 1.109 32 1.088 21 1.140 1 10 -
42 1.112 31 1.094 20 1.142 Core Height (ft) = (Node 1)
- 0.2 11
l
~ , COLR for CPSES Unit 1 Cycle 7 FIGURE 7 W(Z) AS A FUNCTION OF CORE HEIGHT (20,000 MWD /HTU) l 1.300 1.250 1.200 -3 , \- i S X 1.150 t' "
b l g __ s _ N I # 1.100 I i I 1.050 ! - l 1.000 0 1 2 3 4 5 6 7 8 9 10 11 12 BOTTON CORE HEIGHT (FEET) TOP Axial Axial Axial Axial Node W(Z) Node W(Z) Node W(Z) Node W(Z) 52 61 - 41 1.126 30 1.120 19 1.150 51 1.109 40 1.128 29 1.130 18 1.150 50 1.104 39 1.128 28 1.137 17 1.154 49 1.101 38 1.127 27 1.142 16 1.164 48 1.101 37 1.126 26 1.147 15 1.176 ! 47 1.102 36 1.124 25 1.150 14 1.187 46 1.105 35 1.120 24 1.153 13 1.197 45 1.109 34 1.112 23 1.154 12 1.206 44 1.114 33 1.105 22 1.154 11 1.215 43 1.119 32 1.103 21 1.154 1 10 - l 42 1.123 31 1.110 20 1.152 t i Core Height (ft) = (Node 1)
- 0.2 l 12 i l
.}}