ML20202B457

From kanterella
Jump to navigation Jump to search
Rev 1 to Nomograph for Simplified Seismic Analysis,(Piping Size Less than Four Inches,Operating Temp Less than 200 F)
ML20202B457
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 02/28/1984
From: Mentel H
GIBBS & HILL, INC. (SUBS. OF DRAVO CORP.)
To:
Shared Package
ML18052B537 List: ... further results
References
FOIA-85-59 PROC-840228, NUDOCS 8607100304
Download: ML20202B457 (40)


Text

.

,(*

s.

CCMANCIE PEAR STEAM E1,ICTRIC STATION G61 PROJECT 1e0. 2423

~._

l NoMcGRAPE PCR SIMPLITIED SEISMIC ANALYSIS (Piping Size < 4 inches, operating Temperature < 200M j

1 s

March 1977 original Issue:

February 1984 Revisio,n One:

GISBS S BILL, INC..

I ENGINEERS, DESIGNERS, CONSTRUCTCPS NEW YCRK, Nrd YORK

(

6 8607100304 860630 PDR FOIA GARDE 85-59 PDR

,****"*,"***"'*6

.. - - - - - - - - ~.

4 O

a DECD This Revision was required to incorporate DECD S-1174.

was reviewed and approved by A. Rutkowski on November 10, 1978, and D. C. Purdy on November 21, 1978. (DCA-3305 Approved DECD S-ll74.)

Subsequent to this the DECD as well as the entire Procedure was re-reviewed by H. W. Mental on February 8,1984.

  • i

-senry w. Mental e

l I

..U.

1 uk

  • _____y m.,,.

B Iccus No. 1 March 30, 1917 4

+

Page i O

CONTENTS,

152.f.

1 1

PROCEDURE PCR APPLICATION A.

1 STRAIGIT PIPE SECTIONS 1.O SECTION WITE ELBOWS, BINDS, AND 2

CCICIN000 SLY CURVED SEGMENTS OF PIPE 2.0 4

GENERAI PIPING LAYOUT 3.0 ADDITIONAL CRITERIA FOR 8EI8MIC 8

4.0 RISTRAINTS i

6 SAMPLZ PROIL2M 3.

O I

i i

l

(

,(

8

.(.j j

4 i

...... n - -

)

~

.I' Issue No. 1 harch 30e 1977 Page 11 G

e

'TA3123 leumber Piping Category Tabulation 1

seismic Restraint spacing values of

~

I 2

ca.nstant ca Resultant G-14 ads Tabulation 3

FIGURES somograph for simplified seismic 1

Analysis Correction Factor for Elbows 2

APPEND 2X 2.eory Appendix

, Nomograph for simplified seismic Analysis I

I-k 0

t

.'.f.

Is0cc Mo. 1 March 30, 1977 Page 1 1

O PPecrocRE Pon APPLICA?ICU 3.

seismic This nomograph will be used to establish the span between in.

in restraints for piping with a nominal diameter less than 43 system class 2 and code during all plant conditions.

nuclear safety (less than 200 F) are for TosI, GCE Project No. 2323, only.

The tabulated procedure to obtain seismic values subsequent paragraphs present therestrains locations for th and continuously curved f

St.raight pipe sections 1.

2.

Sections with elbows,

bands, segments of pipe General piping layout 3.

s PA or-PIPE srcTIOMs.

1.0 O

stee No. 1 and the corresponding 1.1 the schedule Trom Table No. 1, obtain designation A, 3, or C for given piping categories.

l stee No. 2 from Table 1.2 these two values and the given pipe sire, select developed for were The values Cs pipe + insulation i

With No. 2 the constant value Cs.

No. 1, six cases:

pipe, pipe + insulation d

pipe +

No. 2, pipe + water, pipe + w'ater + insulation No.1, an insulation No. 2.

  • Insulation No. 1 means Insulation No. 2 means stainless-calciu::-silicate insulationinsulation used inside the reactor water +

steel reflective building.

6 U, k

...~-

- - -.,- -s.

, s,

9.

.....-2..

Issue No. 1 March 30, 1977 Page 2 O

stee No. 3 i

and building.

1.3 Frcus Table No. 3, obtain Es for the given elevat on h

ld be the The elevation for which the Ks is selected

tem, I

Fote:

If the given portion of piping i.e.,

from fixed point branch connections.between different buildings, the higher extends chosen.

If the. given interpolation systascorresponding Ks value will beelevation is no In the case of a

should be used to obtain Ks value.of the support of the erdpment the elevation

nozzle, should be considered.

f sees No a

between two seismic 1.s and Ks vaines, read the span restraints f rom the nomograph, Figure No.1.

With the Cs i

Y CURV Q C

SECTION WI;n z;,3ews, 3rNes, AND coNTINoo05t.

2.0 SIWIWS OF PIPJ 1

2.1 5_ tee No.__1

~

sa.se as 1.1 steo No._2 2.2 same as 1.2 e

e

(

(

0

..... ~...

~-

es.. em.43 -

._.-_n

i.

. _ _ _ ~ _.

.i Issue No. 1 March 30, 1977 Page 3 0

2.3 Stee Mo 3

For elbows and bends (five times the nominal pipe size) from angle cg Figure No. 2, based on the pipe size and schedule, thethe two ratio L2/L1 of the two legs, select correction factor K.

between where:

g d,

Span L = L1 + L2 L1 = distance from intersection point to the first t

l

' restraint location on leg No.1 l

. ' L1 L2 = distance from intersection point to the first,

Y restraint location on leg No. 2 i

i calcultte the new value for Ch for elbows and bends:

@ = K z Cs i

1 2.4 sten No. 4 Cc sa=e -,.=

2. 5 sten No. 1

~

(New values of L1 and L2 should With ch' and Ks, read the span L.

have suf ficient straight length for restraint location.)

radius bigger than five times the 2.6 For a bend with a K=1.

In such a case it is l

nominal size of the pipe, usea. seismic restraint in the middle of the the plane of the head.

(see sample recommended to locate band, perpendicular to problem.)

2.7 For continuously curved segments of pipe with a very (e.g.,

piping which follows the large ra' us of curvature containment building), use the steps i

curvatare of the reactor outlined.in Paragraph 1.0 for straight pipe section.

[

.(-

i Q

.. ~

-... ~.

4. n....

,/

[,

Issue No. 1 March 30, 1977 Page 4 h

yLiDAL PTPD80 IAYoCT 3.0

- ~ ~ ~

j

/

3.1 seismic restraints have to be located as close as I

concentrated possible to the valves, flanges, and other types ofIf two valves ar i

other, select the first restraint location between them.

loads an the piping system.

l f

Judgment should be used, if additional location on either side

. the valves is necessary.

branches, a seismic restraint 3.2 For runs with toes or should be located at 1/2 of span L from the connection point, on.,

the branch.

The main line should be treated as a regular l

straight section of pipe.

3.3 starting from first selected

anchor, on the first at L depending on straight section of pipe, locate restraint (s) f an elbow, locate a j

l distance L1 to the tangent point o L2 = L -Lt.

Find remaining a

distance as in Paragraph 2.0 and modify L2 restraint on the second le at i

correction factors for e

r' accordingly.

L case of short straight sections connected by several the total correction factor is a

product of the

3. 4 In
elbows, correction factors f or each elbow.

4 a

o(1, L1/L2 gives K1 e

K2 j

c(2, L2/L3 gives c( 3. L3/L4 gives K3

~

7 gA a

{ = K1 x K2 x K3

[g

, L4_

ADDITIONAL CDITUIA rom stISMIC PtsTRA:Fil 4.0 a seismic restraint, provide two 4.1 At each location of mutually perpendicular restraints, normal to the pipe.

l

(

O

.t.

._REV I

FE B. 8,19 B4 Page 5 O

4.2 At the changes of pipe direction, one of the restrair.ts should be perpendicular to the plane which contains the elbow or bend.

4.3 For straight sections of pipe not anchored and longer than one span & established from the acanograph or containing concentrated mass es such as

valves, flanges, and so forth, provide a restraint parallel to the axis of the pipe.

R 1

I l

I t

0 S

l O

e i

l

(-

(

0

- - -. - - - r - -, me. - -- -

I

y~g-, -

3.

SAMPLE PRSSLEM i

O iga' i

f

,c, 26 d

40 i,

s I

I 1-4 f.

Y 8

EL g

s; a

., ~ yaps

.-s, e

s N

'I

'I

/

o, i

x.

I.,i j (g s. t.

k 4

,,g6' j t

A i

/'

'l g

g

- ] Q N-N -eraan aamu

.(

i U-t.

~ - ~'

l-

.(..

Iccue N3. 1 s

March 30, 1977 l

Page 7 O

3.

S_AMPt.E MtOELEM l

1 2

see sample Problem Figure, page 5. Elbow, Yalve, and B i

1.

Sections of Pipe with Catiagory 2501 in Table No.1 gives (1-8) i Specificationschedule 160, designation C.

Step No.1:

with Ins.

step 5o. 2:

For pipe size,

3 in.,

schedule 160, Table *No. 2, read inside from l

90. 1, and water 1

l Ca = 1144.

is at anchor No. 1 s l

The highest elevation (828.5 ft) step No. 3:

in the safeguards blog.

The Es value will be I

interpolated.

Es = 5.89 l

l E1. 310.5 ft Es = 1.06 i

E1. 331.'5 ft Es = 6.s9 E1. 828.5 ft l

l l

O ste,,o.

& = 13 f t on the other side of No restraints required on pipe section 1-2.

at l

to the valve the elbow (2-3), select restraint location c oseThe distance between accordance with Faragraph 3.1.

24 ft.

Two i

and point 5 isOne of these locations l

in point 5the ta.ngent point of the elbow (2-3)shumid be selected.

so that the total I

restraint locations will be close to the elbow (point 4) second location The for section 1-2-3-4.

1ength L1 + L2 $ L,will be as point so, 13 ft away frcus point 4.

l followst To check section with elbow (1,-2-3-4), proceed as Cs = 1144, as for straight section step Nos.1 and 2: For pipe size, 3 in., schedule 160, and ratio of L2/L1 = 1/10 5 1/4,' read step No. 3:

Then from Figuze No. 2 that E = 1.

l Ch = Et,Cs = 1 x 1144 = 114 4.

Es = 4.89 Step No. 4:

& = 13 f t > L1 + L2 = 10 + 1 = 11 f t step No. 5:

f

[e

(

G

_ _. _ _. _. _ _ _ _ _ _ _.. _. _ _.. _ _. _ _ - _ _ ~ _ _.., _

.=

-- -,..- m Issue No. 1 March 30, 1977 Page s (D) will be restraint parallel to the axis of pipe (3-8)

(See Paragraph 4.3.)

vertical A

located at point 4.

h that (5-8), a restraint location at point 7 is suc as in For section between 7 and 8

is 1/2 of span L, the distance Paragraph 3.2.

d Masses of Pipe With Bends, Elbows, and' concentrate 2.

see. ions (13-27) point 12, 13 ft away from 1

l restraint location at select first anchor peint 13.

int 10, in the middle s

i The second restraint location shall be at po l

pipe size) with a

of tha band (radius bigger than 5 x nomina as in Paragraph 4.2.

15, between the vertical restraint, be at point additional The next restraint location will An Paragraph 3.1.

located to the axis of pipe (9-15), will be as per valve and flanges, restraint, parallel Based on l

at peint 15.

4 ft.

the leg L1 is on the other side elbow (16-17),

i Paragraph 3.3, a preliminary restraint locat onelbow Es 9 ftt however, Por the follows:

connection factors change this location as of the Cs = 1144, as for straight section l

Step Nqs.1 and 2: For pipe size, 3 in., schedule 160, l

1/4, and ratio of L1/L2 = 4/9 =.444 >

Step No. 3:

a = 90*, read from Figure No. 2 thatThen

=

X = 0.75.

I 858.

Es = 6.89 step No. 4:

L = 10.25 ft and L2 = 6.25 ft ft final restraint location is at point 18, 6.25 Step No. 5:

(16-17).

The next two away from the tangent point of the elbowat the points 19 and the Therefore, will be is selected at restraint locations restraint locationA vertical restraint 13 ft.

The last 13 ft away from anchor point 27.will be located at point 23 1

span L =6, l

is checked for correction point 2 parallel to the axis of pipe (17-24)

The sectica with the elbow (24-25)

(

factor.

(

j C

l

.t' Issue No. 1 March.30, 1977 Fage 9 O

step Mos.1 and 2: cs = 1144, as for straight section For pipe size 3 in., schednie 150, ratio of step No. 3:

L1/L2 = 1.75/7 = 1/4, from Figure No. 2, read K = 1.

Then Ch = KXOs = 1 x 1144 = 1144.

Step No. 4:

Es = 6.89 step tio. 5:

L = 13 ft. > L1 + L2 = 1.75 + 7 = 8.75 ft Straight Pipe With sranch Connection (22-20) 3.

specification category 2501 in Table step No. 1:

No. 1 gives schedule 160, designation C

.j For pipe size 2 in., schedule 160, with Ins.

No.1 and water inside from Table No. 2, read step No. 2:

cs = 740.

I step No. 4:

L = 9.8 ft 1

f Point 21 is selected for restraint location.

The distance hetween points 20 and 21 is 5 ft, which is approxinately 1/2 L as f.V per Paragraph 3.2.

restraint location, two mutually perpendicular Notes:

At each restraints normal to ths' pipe will be

provided, as described in Paragraphs 4.1 and 4.2.

detailed dynamic analysis of the previously mentioned sample problem was performed in order to confirm A

restraint locations.

9

(*

(

~

O'

,,......w...-..-

  • Q Issue No. 1 March 30,1977 a

1 Th3LE No. 1 i

PIPING CATEGORY TA3CIATION i

Category I

spee:. fication Material schedule Desienaticm fesi)

Pipe sh at 200 F h'

150 33-444 44 A

21,300 151 SA-312 40 TP-304 e

17,800 or TP-316 152 SA-106 Gr. 3 40 3

15,000 301 SA-312 40 C

17,800 TP-304 or TP-306 e

601 SA-312 40 TP-30s or C

- 17,800 TP-316 r i 602 SA-106 Gr. 3 40 3

15,000

~

1302 SA-106 Gr. B 40 3

15,000

i 1303 SA-333 Gr. 6 80 3

15,000

~

1501 j.

SA-312 to -

TP-304 or c

17,800 TP-316 2002 SA-106 Gr. 3 160 3

15,000

^

t.,.

2003 SA-333 Gr. 6 14 0 3

15,000 2501 SA-376 140 c

17,000 l

TP-304 cr TP-314 2503 5A-106 Gr. 3 160 3

15,000 w

-~ ~.......

--,-e y-,-,w ww w

w-vw,

-ew-

- - - - - - - - - + - - - - - -

---v---

r-- - - - -,--- -- - -

wwr-y

=__w-,-e,-ne

-ww


,-----,c-s-w m--w,ew-----

O Issue N..

i March 30, 1977 TARI.E NO. 2 (Sheet 1 of 14) 1' SEISMIC AESTRAINT SPACING VAI.UES OF CONSTANTS Cs 1

schedule schedule Schedule 40 to 160 A.

3/4-in. Pipe Wall Thick =ess, in.

.113

.15a

.218 Piee cases (Unit Weicht, ib/ft)

Pipe 1.131 1.474 1.937 Pipe + Ins. 1*

1.781 2.124 2.587

'i Pipe"+ Ins.

2**

3.581 3.92s 4.337 d

Pipe

  • Water 1.341 1.661 2.065 Pipe + Water + Ins. 1 2.011 2.311 2.715 Pipe + Water + Ins. 2 3.811 4.111 4.515 Pice Desienatiens and Cases Pipe - A 532 493 442 Pipe - 3 374 347 311 Pipe - C 445 412 369 1

l Pipe - A + Ins. 1 336 342 330 T

Pipe - 3 + Ins. 1 238 242 233 I

Pipe - C + Ins.,1

282, 285 276 i

Pipe - A + Ins. i 168 185 195

  • Ins. 1 = calcium-silicate insulation
    • Ins. 2 = stainless steel reflective insulation i

': S

.l r *

/.

      • 'w'***co a.p ey.

.:. a ;____,

1 l

Issue No. 1 i

March 30, 1977 TABLE No. 2 (Sheet 2 of 14) t stIsMIC RESTRAINT SPACING i

VALUES OF CONSTANTS Cs Schedule schedule schedule 40 3/4-in. Pipe (continued) so 160 A.

Pipe - 3 + Ins. 2 118 131 Pipe - C + Ins. 2 137,

,T.

140 154 Pipe - A + W 163 7'

442 438 414 Pipe - 3 + W 311 308 Pipe - C + W 292

}.

369 366 346' 5, -

Pipe - A + W + Ins. 1

~'

299 314 i

315

's Pipe - 3 + W + Ins. 1 211 221 222 Pipe - C + W + Ins. 1 250 263 264 Pipe

.A + W + Ins. 2 1

i 158 176 189 Pipe - 3 + W + Ins. 2 111 124 133 Pipe - C + W + Ins. 2 I

132 148 r

159 t.

i e

^

i

}

l 4

l

, ~ m~ ~~ -

,y,.

.t Issue No. 1 March 30, 1977 i

v-i TABLE NO. 2 (Sheet 3 of 14)

SEISMIC RESTRAINT SPACING l

VALUES OF CONSTANTS Cs schedule schedule schedule 160 30 _

so

)

i s.

1-in. Pipe

.133

.179

.250 Wall Thickness, in.

Pipe cases (Unit veichts. Ib/fti l

J 1.579 2 172 2.844 Fipe 2.399 2.892 3.564 Pipe + Ins. 1*

l 4.379 4.872 5.544 Pipe + Ins.

2**

l 2.053 2.4 3 3.070 O

Pire + w.ter 2.773 3.203 3.790 l

Pipe + water + Ins. 1 i

4.753 5.183 5.770 e

i Pipe + Water + Ins. 2 Pice Ce'sinations and cases 574 630 570 Pipe - A 476 443 401 Pipe - 3 543 527 476 Pipe - c l

455 472

473, Pipe - A + Ins. 1 332 333 320 Pipe - 3 + Ins. 1 395 396 380 i

Pipe - C + Ins. 1

  • Ins. 1 = calcium-silicate insulation
    • Ins. 2 = stainless steel reflectite insulation

[

e I

g 9

e

lC Issuo No. 1 March 30, 1977 R.

TABLE 30. 1 (Sheet 4 of 14) 3 SEI5MIC RESTRAINT SPACING VALUES OF CCNSTANTS Cs Schedule schedule schedule so 80 160 1-in. Pipe (Continued) 3.

259 281 252 Pipe - A + Ins. 2 182 198 206 Pipe - 3 + Ins. 2 215 235 244 Pipe - C + Ins. 2 551 551 524 f

Pipe - A + #

385 386 372 Pipe - 3 + W 460 460 442 Pipe - C + W 408 427 428 A + W + Ins. 1 Pi.w.

287 301 302 Pipe - 3 + W + Ins. 1 341 357 357 Pipe C + W + Ins. 1 238 264 281 Pipe - A + W + Ins. 2 167 186 198 Pipe - 3 + W + Ins. 2 199 221 234 Pipe - C + W + Ins. 2 e

I'

(

0..

...m..

m._..

ene een a.e ameepe s. ge emme en ge e

4--

%-,, - ~ - - - - - -

--.--.-em,,,,,

,-.-r-----.

Issue No. 1 March 30, 1977 O

TABLE 30. 2 (Sheet 5 of 14)

SEISMIC RESTRAINT 8FACINO VAI,UES OF CONSTA)FIS C8 Schedule Schedule schedule so 80 160 C.

1-1/2-in. Pipe.

.1s5

.'200

.281 Hall Thickness, in.

N f Unit neichts, 15/ftt Pim cases 2.718 3.631 4.859 Pipe 3.558 4.471 5.699 J

\\

Fipe + Ins. 1*

5.838 6.751 7.979 Fipe + Ins.

2**

3.600 4.396 5.467 Pipe + Water

(:~;~

Pipe + water + Ins. 1 4.440 5.236 6.307 6.720 7.516 8.587 Pipe + water + Ins. 2 Pipe Desiunations and casen 942 966 890 Pipe a A 719 681 627 Pipe - 5

  • 853 80s 745 Pipe - C 781 785 759 Pipe - A.+ Ins. 1 550 553 535 Pipe - 3 + Ins. 1 652 656 634 Pipe - C + Ins. 1 i
  • Ins. 1 = calcium-silicate-insulation 1
    • Ins. 2 = Stainless steel reflective insulation

(

G g g, gg

.e p g pg O p e y,g g g g

-~88 h w_

_y,

.(*.

Issuo Co. 1 March 30, 1977 l

l O

TABI2 30. 2 (Sheet 6 of 14)

SEISMIC RES*3AINT SPACING

6 VALUIS OF cCNSTANTS Cs schedule schedule schedule

$~

40 so

__ 160 1-1/2-in. Pipe (Continued).

~

C.

474 520 542 Pipe - A + Ins. 2 335 366 382 Pipe - 3 + Ins. 2 397 434 453 Pipe - C + Ins. 2 771 728 792 Pipe - A + W 54s 543 557 Pipe - 3 + W 444 667 662 Pipe - c + W 626 47O 686 Pipe - A + W + Ins 1

440 473 483 Pipe - 3 + W + Ins. 1 Pipe - c + W + Ins. 1 523 560 574 414 467 50s Pipe

-A + W + Ins. 2 i

231 330 355 1

Pipe - 3 + W + Ins. 2 346 390 422 Pipe - C + W + Ins. 2 e

e e

O 9

e"~

m U-

        • -*Mr,*

ee

  • **w e mme %.use y...

.m=== sum *==

meme.mmaue=,

e.===,.-_2 l

1 i

Issue No. 1 March 30, 1977 TABLE NO. 2 (sheet 7 of 14) i i

SEISMIC RESTRAINT SPACING VAI,UES OF CONSTANTS Cs Schedule schedule schedule so 80 160 D.

2-in. Pip'e uall Thickness, in.

.154

.218

.3s3 Piee cas es (Unit Weichts, ib/ft1 3.'653 5.022 7.444 Pipe Pipe + Ins. 1*

4.663 6.032 8.45s Pipe + Ins. 2**

7.053 8.422 10.8aa Pipe + Water 5.108 6.302 8.415 Pipe + water + Ins. 1 6.118 7.312 9.425 Pipe + Water + Ins. 2 8.508 9.702 11.815

~

Pi=e Desiona tiens and Cases Pipe - A 1309 1240 1121 Pipe - 3 922 874 789 Pipe - C 1093 1036 937 Pipe - A + Ins. 1 1025 1033 986 Pipe - 3 + Ins. 1 722 728 495 Pipe - C + Ins. 1 857 843 824 i

Pipe - A + Ins. 2 678 740 759 i

i

  • Ins.1 = Calciu=-silicate insulation
    • Iss. 2 = Stainless steel reflective insulation

_, (

b w--

-wm-

^

^

'. (

\\

~

O I

\\

Issue No. 1 March 30, 1977 TABLE 80 2

  • (Sheet 8 of 14)

{

SEISMIC RESTRAINT SPA 0 YALUES OF CONSTANTS Cs No

ij t

Schedule schedule 80 schedule 2-in. Pips (centinued) 80 D.

- 160 Pipe = 'E

  • Ins. 2 i

477 521 Pipe - C + Ins. 2 542 t

567 Pipe - A'+ W 618 i

642 936

)

Pipe - 3 + W 988 991 659 Pipe - C + W 696 698

+

.)

782 825 Pipe - A + W + Ins. 1 828 782 6'

452 Pipe - 3 + W + Ins. 1 885 t

551

(.

400 Pipe - C + W + Ins. 1 623 453

.s 712 Pipe

  • A + W + Ins. 2 740 562 642 L

Pipe - 3 + W + Ins. 2

- 296 706 452 Pipe - C + W + Ins. 2 497

~

469 537 590

~

e G

8 g

e.

e e

f O

.A 1

6

.*%,4==*M9*e y.~-

.. ~..-,

Issue No. 1 March 30, 1977 o

O-ThBLE 50. 2 (Sheet 9 of 14)

SEISMIC RESTRAINT SPACING i

s YALUES OF CONSTANTS Cs schedule Schedule 160 _

schedule so se 2-1/2-in. ~ pipe

.375 2.

.276

.203 wall Thickness, in.

i Weichts, ib/ft)

Pim cases (Unit 10.010 7.661 5.793 11.150 Pipe 8.801 6.933 Pipe + Ins. 1*

11.231 13.630 9.413 Pipe + Ins. 2**

9.498 11.545 7.869 th Pipe + Water 10.638 1,2.685 9.009 pipe + Water + Ins. 1 15.165 13.118 11.489 Pipe + Water + Ins. 2 i

I Pice Desienation and cases 1394 i

1489 1565 f

981 Pipe - A 1049 1103 1164 Pipe - 3 1244 1304 1251 Pipe - C 1296 1307 Pipe - A + Ins. 1 913 881 921 Pipe - 3 + Ins. 1 1084 1045 1993 Pipe - C + Ins. 1 1011 1023 963 Pipe - A +. Ins. 2 insulation.

i

  • Ins. 1 = calcium-silicatst
    • Ins. 2 = stainless steel reflective insulat on O(

- ~ _...

~

i Issue No. 1 Mar =h 30, 1977 TABLE N0. 2 (Sheet 10 of 14)

SEISMIC EEST3AINT SPACING VALUES OF CCHSTANIS Cs Schedule Schedule Schedule 40 Se 160 2.

2-1/2-in. Pipe (Continued)

Pipe - 3 + Ins. 2 478 712 721 Pipe - C + Ins. 2 805 Ss4 855 s

Pipe - A + W 1152 1201 12'J 8 Pipe - 3 + W 912 846 851 Pipe - C + W 963 100s 1039 Pipe - A + W + Ins. 1 1006 1973 1999

(._v,

)

Pipe - 3 + W + Ins. 1 709 755 775 Pipe - C + W + Ins. 1 841 897 919 Pipe - A + W + Ins. 2 785 470 919 Pipe - 3 + W + Ins. 2 556 612 (48 Pipe - C + W + Ins. 2 660 727 769 8

e 9

g h

.()

e

"**.4 men,4

--r

s i

Issue No. 1 March 30, 1977 TABLE NO. 2 (Sheet 11 of 14)

SEISMIC REST 1tADtT SPACING YALUES OF CCNSTANTS Ca Schedule Schedule Schedule 40 F.

3-in. Pipe 80

_ 160 i

Wall Thickness, in.

.216

.300

.437 Jioe cases i

(Unit veichts. Ib/ft1 Pipe 7.580 10.250 14.320 Pipe + Ins. is 3,-

8.830 11.500 15.570 y_

Pipe + Ins.

2**

11.480 14.150 18.220 i

Pipe + Water 10.780 13.134 16.668 Pipe + Watar + :ss. 1 12.030 14.364 17.918 i

y-Pipe + Wat h + :ns. 2 14.680 17.014 20.568 I'

Pice Desienation and cases v.

Pipe - A

[.,.

19'38 1850 1711 Pipe - 3 1264 1304 1205 Pipe - C

['

1620 1546 1830 Pipe - A + Ins. 1 1663 1649 1574 Pipe - 3 + Ins. 1 1172 1162 1109 Pipe - C + Ins. 1 1390 1378 1315

  • Ins. 1 = calcium-silicate insulation Ins. 2 = Stainless steel reflective insulation e

O e

G G--

-6 NN M9^

-- W m8Me

- eg g Gem pe.g e.

ge gpq

'

  • h m.

.m.

A 4 e

_.-~..._.;......._....__....

~

Issue No. 1 March 30, 1977 O

TABLE NO. 2 (sheet 12 of 14)

SEISMIC RESTRADC SPACING YALUES OF CONSTANT Cs schedule schedule schedule 40 so 160 P.

3-in. Pipe (continued)

Pipe - A + Ins. 2 1279 1340 1345 Pips - 3 + Ins 2

901 944 948 i

Pipe - C + Inc. 2 1069 1120 1124 Pipe - A + W 1362 1446 1470 Pipe - 3 + W 959 1019 1035 Pipe - C + W 1139 1208 1228 Pipe - A + W + Ins. 1 1221 1320 1367 Pipe - 3 + W + Ins. 1 860 930 963 J

Pipe - C + W + Ins. 1 1020 1104 1144 Pipe - A + W + Ins 2

1001 1114 1191 Pipe - 3 + W + Ins. 2 705 785 839

~

Pipe - C + W + Ins. 2 836 932 997

?

e n

O

Issue No. 1 March 30, 1977 TAsLk NC.

2 l-(Sheet 13 of 1s; stIsMIC RESTRAINT sPAcInc VALUES CF CONSTANTS Cs Schedule 3-1/2-in Pipe so schedule G.

go wall Ihick:sess, in.

)

226

.318 ZLw cases (Unit v ichts. 1.b/ft) e t.

Pipe

. i 9.11 Pipe + Ins. 1*

12.51 F'

if i

10.94

$^

Pipe + Ins. 2e=

13,33

~

13.40 Jip'e + Water 1g.3o 13*39 Pipe + Water + Ins. 1 15.36 15.22 Pipe + Water + Ins. 2 13.13 I'

' 7, gg 1

20.65 71:e Disicr.ation and case _s Pipe - A 2239 Pipe - 3 213g 1577

' Pipe - C 1506 1871 Pipe - A + Iss. 1 1737 7,

1865 Pipe,- 3 + Ins. 1 1gg6 A.-

g313 Pipe - C + Ins. 1 g

1$33

, l 1559

' ~ '

y.

  • Ins.1 = calcium-silicate insulation p,_,

=&

  • Ins. 2 = stainless steel reflective insulati T

on

~.

  • T*'
  • ~~-

A.-

7

..m..,.v,

~

^

I Issue No. 1 March 30, 1977 l

mz.:

2 (sheet 14 of 14)

SEISMIC RES'IRAINT SPACING YALUES OF CCHSIANIS C3

~

Schedule Schedule 30 to G.

3-1/2-in. Pipe (continued)

Pipe - A + Ins. 2 1523 1593 Pipe - 3 + Ins. 2 1972 1122 Pipe - C '+ Ins. 2 1272 1331 Pipe - A + W 1523 1635 Pipe - 3 + W 1073 1151 Pipe - C + W 1273 1366 l

l

{'-

Pipe - A + W + Ins. 1 q

1340 1470 Pipe - E + W + Ins. 1 944 1036 Pipe

,C + W + Ins. 1 1120 1229 Pipe - A + W + Ins. 2 1154 1295 Pipe - B + W + Ins. 2 813 913 Pipe - C + W +' Ins. 2 964 1083 R

9 f-O'

O Issue No. 1 March 30, 1977 wit.x so. 3 (shr.et 1 of si b

azsm.: ANT a-wAms TAsmx:Ios 5

Eleratier.

~

tfti B

21 h

Ef.

A.

centair. ment Building 783.58 1.0 1.*83 1.19 2.88 805.50 1,.12

  • 2.07 1.27 3.21 i

860.00 1.84 2.42 1.84 4.26 905.75 2.88

.3.06 2.88 6.11 950.58 3.92 4.10 3.92 8.27 1000.50 5.0 5.19 5.0 10.52 j

i 3.

Int 4:nal structure of Reactor Building 783.58 0.62 1.87 0.89 2.59 S08.00 1.06 2.08 1.21 3.15

[

832.50 2.04 2.27 2.07 4.42 860.00 3.28 2.49 3.53 6.51 l

885.50

4. 37

. 2.75 4.86 8.51 905.75 5.27 3.0 5.95 10.19

]

b i

I h

j~l.

e

~

J

- - - - = _

._ y.,

7......

?

m ~-

4.u a....

...-..u.

u.

Issue leo. 1 March 30, 19.77 l

Tu LE 50. 3 (sheet 2 of 3)

Rzst2I.TMT G-ICADS TABUIATIC14 l

Elevation 2r, 23.

Et fft1 93 i

Saf eguard Building C.

773.5 0.75 1.96 0.55 2.54 785.5 1.04 2.0 0.90 2 91 790.5 1.35 2 40 1.15 3.58 810.5 2.19 3.81 2.19 5.89 831.5 3.04 3.94 3.09 7.04 852.5 4.16 3.97 4.00 8.40 C2 4.87 4.55 4.87

.9.91 s

873.5 896.5 4.67 3.19 4.80

'8.90 At.uciliary Building D.

790.5 0.81 2.50 1.00 3.44 810.5 1.37 2.41 1.50 4.16 2.22 5.34 831.5.

2.34 3.17 852.5 3.22 3 32 3.00 6.61 873.5 4.19 3.42 3.75 8.02 i.

886.5 4.75 3.44 4.10 8.58 j

l 3.69 4.56 9.50 899.5 5.32

(

l p.

Issue No. 1 March 30, 1977 O

TABLE NO. 3 (sheet 3 of 3) 1 REstn. ANT Q-14 ADS TA3DIATION Elevation fft) gg g

g g

2.

Electrical anildisy 778.00 0.56 2.36 0.85 3.05 807.00 1.44 2.50 1.50 3.90 830.'00 2.21 2.58 2.07 '

4.77 854.33 3.00 2.65 2.72 5.41 873.33 3.66 2.65 3.25 6.68 G

. l e

e e

I

)

F 1

e t -

e f

/

e e

4 5

4 e

- W* w

_ enge m --

-=

- - - - - - - - - - - ~ ~... - -,. _., _ _.

+p-$

e


c r

w-w---

r-


r--

--,a w

+------------e

- - - - - - - - - - ' - - + - -

..s

=

.J.

-ss l

-60 40eo.

50

. 12 U,

,30co..-

.40

.a 30 2.5 M.

nd 3

- 25

,ng is00 -

30 4

m i

.O.

g g

.s C

6 @gioo.

/

t 6

l 300-7

,jo 700- -

E y.

g

s
a..-
.)

to e

7 M

500 N

400-k

.s 15 7

i 300-4 20 3J

.g 2s l

200 2J Is0 - =

v NQwoGRAPH FOR g-

'00

~

swumo sesswc wusis z%

i }t3 sa34 l

  1. W 8 N## #"

esaare G QA f aweft i

" Y ""

4

.= 4 a 1.= 1 -=. :::1

.~i=?

a p

,g l 1_

  • ~ ~ *- - r=

===- - -

==.

.%..=,----...g,,,......

O h


ve--

~'-

-~:7 em'

- - * - ^ - - ' - - - - - - - ' - " " * ' ' - - * - - - " ' ' ' " " *

~

~

~

March 30, 1977 CORRECTION FACTOR FOR EL30Ws I M RZ NO. 2 Y

9 4\\

s-ts

'f$*

W g,r,

  • \\

2 q p

  • /E '"

2 d'

s f's

~

M-a, k

iJ 12

3 IA S7RESS IN7ENSFXAWfgp J I

0.4 - -

i S

C*

og.

so'yQ y y, j'

\\

o.s. -

20 0.7 - -

i-g.

j&e w.

08 -

?.

=

y h

^l l

5 ** * "

t1/1-zsh C's a sieo-)

g i.e. -

a-

?

2 9..

e 4

e.

w,g g,,,, __

'*****-=*=meo.

I

~'*****%%.%,,

~,

~ _...

.g Issue No. 1 March 30, 1977 Fage.1 T1rroRY A.PI-ENDIX locMocRAPH FoR sIMPLIFIm STISMIC ANALYSIE 1.

Introduction

  • The nomogra ph, based on References (1) the simplified method for seismic design of pipiand (2), will be used in size less than 4-in.

in nuclear ng with a nominal conditions.systens, which remain cold (less than safety code class 2 and 3 200 F) during all plant The hetween supports as follows: formula used to develop the nomograph g 1

a span 1 = 2.19 (shz)12xsw) 1/2 j

where:

l'=

span length between seismic supports (ft)

(3)

)

sh = basic material allowabis stress at 200 F (1h/ sq. in. )

s s = elastic section' modulus of pipe (in.e) w = weight distribution of the pipe (ib/ft)

Ks = the effective seismic coefficient expressed in gravity The factor 2.19 replaced formula because the moment was consideredthe value of 2.45 from th M = W18/10.

M = Wla/6 instead of This is anchored or attached to a nozzle.more conservative and covers the case

?quation (1) could be written as follows:

4.4shz/Ka' t.

1**

12W (2) 1I e

        • g, em,

,.-___y

-e 7--____y_,_,p


,,,,_-__w.-

_-,y._

-,,-__,-.-_,,..,__,.7

Issue No. 1 March 30, 1977 O'

Page 2 1

2.

Tabulation of value cs (straight Piping)

The 'value Cs depends on the size, schedule, and material of the pipe.

This information is provided in TUSI specification 2323-MS-433,

Piping, which specifies 13 piping categories with different schedules and materials for saf ety-r elated piping.

Three designations (A, 3, and c) were l

established for different types of satorials, which have different values of Sh.

(see Table No.1.)

The weight of the empty pipe (1h/kt), the weight of water inside the pipe (1b/f t),

and the elastic section modulus (in*),

depending upon the sizes and schedule of pipe, are given in Table A, page 6.

The tabulated Cs vclues (Table No. 2) include the weight of an insulation corresponding to a

maximum temperature of 200 F.

included.

Insulatien No. 1 is Two types of insulation are calciun-silicate insulation.

Insulation No. 2 is stainless steel insulaticas.

The unit weights of the two kinds of reflective of insulation, depending on sizes of pipes, are given in Table 3 saia Arsenat=-

O i

Multiplier Factor K (Cb for Piping With Bend or Elbow)

)

3.

I Equation (1) was considered for a straight pipe.

For piping with a bend or an elbow, the value cs win be multiplied by the correction factor K givenin Figure No. 2.

e i

1 j

g(

i i

,h 2u.... x.-

~

Issue No. 1 March 30, 1977 Page 3 The following is a description of factor I calculations:

done for a pipe with an outside diameter The computations were thickness of 0.3 in.

linear weight to.D.)

of 3 in.,

wall and modulus of elasticity 2 = 28.3 x too psi.

1r =. 8 54 lbs/in.,

were taken The lengths of the two legs and t.he different ratios as follows:

3tatio Length fL2/L11 (L = L 1 + L2, f ti _

1/4

.s 15 1/2 is 3/4 21 1

24 i

Zach leg was divided into segmen:s of 1-ft length.

Both legs were anchored at the ends.

The angles used for each ratio, were 0, 30, 60, 90, 120, 150, and 180.

l the calculations wie done by hand,

)

O-For the 180-degree

angle, l

hased on the equation M = W18/12, for a beam with both ends i

fixed.

The results are as follows:

21 2,s.

L Cf t) 15 18

-4520 59c2 M (in.-lb) 2306 3320 For the angle O( = 08, calculations were done for a layout as j

shcwn below

~

2 e

4 m

4.

N82k

)t

+-

L. s.

9 G

- 8W mmh e.6 9. guwtM

-66 8 F M 9 M **

4-

..__.-,--,._n.,

.-. - -,,.., - ~.,, _

n

c

/a Issue No. 1

[

t/

March 30, 1977 Page 4 The final results of the highest values of the combined moments are as follows:

Z2/L1 0*

30*

s#

e#

1W 156*

1an*

l 3408 8718 8317 7679 68t8 6197 5902 q

1 3/4 8292 7379 6982 6274 5487 480s 4520 1/2 5169 4744 4717 4426 3965 3515 3320 1/4 1757 1686 2034 2268 2339 2324 2306 Iat us define the reference moment as a moment for straight pipe (o(= 180 degrees) - last column in the previous table.

2ecause the accograph is based on the bending moment for a 1

straight pipe, the fc11owing ratio applies:

1

' q g, reference nement l

! v actual moment for given o< and L2/L1 These ratics are tabulated in Table c.

i As is shown in Table D the ratio values for L2/L1 = 1/n are). 1, while the ratio values for 1/2 5 L2/L1 5 1, are approximately the same for different angles.

in the last column of the Table c.The mean values of these ratios are For the given size of pipes and schedules in this nomograph, the I

stress intensification factors for standard elbows (1.5 x nominal dianeter) are given in Table E.

With the mean ratios from Table c and the values of stress intensification factors from Table E, the K values are tabulated in Table F, as a function of angle CC.

Figure No. 2 was constructed, based on the data in Tables E and

~

F, in order to determine the value of K in one step for 1

a given pipe size, schedule, angle, and leg ratio.

h 4

  • 996 996 m OS N99 e a eneG* M

--W*

GM eW em e 9*

a m

I O

.=

r,

,--n-----.-----

.b... -

c.

g _ ___.. - __.

...... av.. a u a.._.

e Issue No. 1 March 30, 1977 Page 5 (h

.a ThesEismiccoefficientsa 4.

This coef ficient has the value Ks = 1.2 x G.

The G-loads are the safeguards, and peak floor response spectra for the containment,they are listed in Table auxiliary buildings at given elevations:

No. 3.

To be conservative, the Ks value is the SRss of the Gx, Gy, Gz, for each elevation, multiplied by 1.2.

5.

References (1) stevenson, J.D.,

  • seismic Design of small Diameter Pipe and Tubing for Nuclear Power Plants,e Paper No. 31e, Presented at 1973.

5th World conference on Earthquake Engineering, Rome, stevenson, J.D. and Lapay, W.s.,

  • Amplification Factors to se (2)

Csed in simplified seismic Dynamic Analysis of Fi; ping systems," Paper No. 74-NE-9, ASME, 1975.

e 0-e e

O e

i

( :

.(

O.-

. ~,

.___.....a....__.....-.....

..I,..ii.Ir Issue No. 1

'.j - - !

March 30,' 1977 Page 6

~

Th.5LE A i:

i.

PIPE PROPERTIES c

pipe w

w size P

W 5

t

,i li n. )'

sebedule fib /ft) fib /ft) fin) 1 fin.L 2/4 40 1.131

.2301

.0706

.113

~

1 80 1.474

.1875

.0453

.15a 160 1.937

.1284 1004

.218s i

1 40 1.679

.374

.1329

.133 1

80 2.172

.311

.1606

.179 t

160 2.844

.2261

.1903

.250 i

1-1/2 40 2.718

.482

.326

.145 40 3.631

.765

.412

.200 150 4.859

.608

.508

.281 2

40 3.653 1.453

.561

.154 0'..

80 5.022 1.280

.731

.218 160 7.444

.371

.979

.343 2-1/2 40 5.793 2.076 1.064

.203 80 7.661 1.837 1.339

.276 140 10.01 1.535 1.637

.375 3

40 7.58 3.20 1.724

.216 80 10.25 2.864 2.226

.300 160 14.32 2.348 2.876 437 3-1/2 40 9.11 4.28 2.394

.226 40 12.51 3.85 3.14

.318 I

s b.

(

1

(

)

i M

i w

._ _ _ a..

i

(-

Issue lle. 1 March,30, 1,27

(

p' s Page l

nau a 3/.

1 1-1/2 2

2-1/2 3

3-1/2 Pipe Sizes fia.)

i calcium-silicate Ins. No. 1 (ib/ft)

0. 5 0.72 0.8s 1.01 1 is 1.9s i si stal.nless steel Reg 1 c dye Ins. No. 2 (1b/ft)
2. 5 2.70 3.12 3.s 3.43
3. e - e.se i

\\

nau e s

1. n.,.,

s n.,..,i.

s n.,.,n 2

2 2

. 1..

g.,

g.,

g.,

g.....

.u.

g..... g...n g..u, ci su.

g..u. g..n g..>.

..n g..n, g....,

g..,

..o g..u. g...u g.....

u.

g..o, g....., g...o e-9 9

\\

- i O'

1 1

_ _, _ - - _ _ _ _ _ __. - _ _ _ ~ _, - _ _ _... _

(c b gov M j\\

T 0

lf 8L 1

TEXAS UTILITIES SERVICES INC.

Q AGENT FOR TEXAS UTILITIES GENERATING CCMPANY ACTING FOR DALLAS POWER & LIGHT COMPANY TEXAS ELECTRIC FERVICE COMPANY tex ^S lo_WE3..,'_9IGHT COMPANY

P=

,-4,s s,,_.

s., % :,, y..e e,-,r,s--

y;r

.}y L s ses a,,,,

-.,-, c.

, T 1.*,.c

~

' ' $ ['s 7, p i;,., ; - - - 7 a 4 'd L

.,.. )-' ' ', l:.,;&, ', ' *,'

COM' CEE PEAK ST:'

E STA "N

  • ~~"'d' OS. A p D 1&2 UNITS O

L' OcStf./**6u'Ckb' ;

>~

G DV 7 Y DESIGN SPECIFICA 4.) /

FOR ALL s

SECTION III, CODE CLASS 2 &

T.

2323-MS-200

[

O O-O /

h [y%

f i

DECEMBER 11, 1975 N

{

REVISION 1 - MARCH 16, 1976 REVISION 2 - APRIL 25, 1980 t

REVISION 3 - SEPTEMBER 30, 1981 REVISION 4 - JUNE 29, 1984 (TUSI REFERENCE 05200)

THIS DOCUMENT COMPLIES WITH PARA OF ASME BOILER AND PRESSURE VESS,

?NE 870 hWi+52Sd,,,

tY1.\\ <

f ApesovEp f.'

e _ *,p S' --

D or **aaov a- < c a atsuewir DATF.

p,g C FC# INF0 ate 4flOM ONLY CMtchEO'rCA OENEAAL COMPLjANCE WlTM PLANS AND SPECIFICAff0Ns, rMis 00($ MQT ro= rwe CoaasCNe'ss"or" n'Is**S*T="

em ruuitt Ma twc catieArnoas ce nas g

g ge,

uritmca no

. NGI

RS, DESIGNERS, CONSTRUCTORS O

. /A a

,NEW YORK, NEW YORK AM K ff &-

^

50)A45-59 i

cc-309

i

)

O Gibbs & Hill, Inc.

Specification 2323-MS-2OO 4

Revision 4 Page i PIPING DESIGN SPECIFICATION l

TABLE OF CONTENTS SECTION TITLE PAGE 1.0 GENERAL 1

1 1.1 SCOPE 1.1.1 MATERIALS AND SERVICES COVERED BY THIS SPECIFICATION.

1 1.1.2 MATERIALS AND SERVICES NOT COVERED BY THIS SPECIFICATION 2

1.2 CLASSIFICATION BOUNDARIES 3

1.3

~ DOCUMENTATION REQUIREMENTS AND DOCUMENT CONTROL 3

2.0 SYSTEM FUNCTIONAL REQUIRE N S AND SYSTEM DESCRIPTIONS 3

2.1 REACTOR COOLANT SYSTEM 3

2.2 CHEMICAL AND VOLUME CONTROL SYSTEM 4

2.3 BORON RECYCLE SYSTEM S

2.4-RESIDUAL HEAT REMOVAL SYSTEM 5

s 2.5 SAFETY INJECTION SYSTEM S

2.6 LIQUID WASTE PROCESSING SYSTEM 5

2.7 GASEOUS WASTE PROCESSING SYSTEM 6

2.8 MAIN STEAM, REHEAT AND STEAM DUMP SYSTEM 6

2.9 STEAM GENERATOR FEEDWATEF, SYSTEM 6

2.10 AUXILIARY FEEDWATER SYSTZM 6

O 2.11 DIESEL GENERATOR AU'.*ILIARY SYSTEMS 7

/

--y

.-ece a

y,--,p

+

--y----_

-m- - - -.,., - - - - - -. - -

._m----w

-=rei m -- -

wrw wse

O Gibbs & Hill, Inc.

Specification 2323-MS-2OO Revision 4 Page ii 1

TABLE OF CONTENTS (cent.)

SECTION TITLE PAGE f

2.12 PROCESS SAMPLING SYSTEM 7

2.13 COMPONENT COOLING WATER SYSTEM 7

2.14 CONTAINMENT SPRAY SYSTEM 7

2.15 STATION SERVICE WATER SYS17.M 8

2.16 SPENT FUEL POOL COOLING AND CLEANUP 8

SYSTEM 2.27 DEMINERALIZED AND REACTOR MAKEUP WATER SYSTEM 8

2.18 HVAC-NUCLEAR SAFETY RELATED CHILLED WATER SYSTEM 8

l 2.19 COMPRESSED AIR SYSTEM 9

2.20 STEAM GENERATOR BLOWDOWN SYSTEM 9

2.21 HYDROGEN PURGE SYSTEM 9

2.22 HYDROGEN ANALYZING SYSTEM 10 2.23 RADIATION MONITORING SYSTEM 10 3.0 DESIGN INFORMATION.

13 3.1 PIPING IDENTIFICATION 13 3.1.1 GENERAL 13 3.1.2 PIPING SYSTEM DESIGNATION 14 3.1.3 PIPING CATEGORY 14 3.1.4 PIPING SAFETY CLASS 14 3.1.5 HIGH ENERGY PIPING 14 s

O Gibbs & Hill, Inc.,

Specification 2323-MS-2OO Revision 4 Page iii TABLE OF CONTENTS (cent.)

PAGE SECTION TITLE 3.2 PIPING ENVIRONMENTAL DESIGN REQUIREMENTS 19 19 3.2.1 AMBIENT DESIGN CONDITIONS 3.2.2 DESIGN RADIATION DOSE 19 3.2.3 WATElf AND GAS CHEMISTRY 19 3.2.3.1 PLANT OPERATING LIQUIDS 19 i

3.2.3.2 TESTING AND CLEANING FLUIDS 19 3.2.3.3 PLANT GAS SYSTEM CHEMISTRY 19 35 3.2.4

. VALVE INFORMATION 3.3 MATERIALS AND FABRICATION 35 3.3.1 MATERIAL, FABRTCATION AND INSTALLATION 35 REQUIREMENTS 3.3.2 REQUIREMENTS FOR CONTAINMENT PRESSUrd BOUNDARY PIPING 35 i

3.4 SPRING CONSTANTS (STIFINESSES) OF PIPING SUPPORTS 35 36 3.5-INSULATION DATA 3.6 SLEEVE STIITNESSES 36 3.7 EXPANSION JOINTS 36 i

4.0 ENVIRONMENTAL Emer., CTS 38 39 i

5.0 DESIGN 5.1 DESIGN CODES AND DOCUMENTS 40 5.2 PLANT OPERATING CONDITIONS / SYSTEM c ""^ ".

'o^"'"

O 9

- -,.. ~, - -

,-.e.,

.5 O

Gibbs & Hill, Inc.

Specification 2323-MS-2OO Revision 4 Page iv TABLE OF CONTENTS (cont.)

SECTION TILL" PAGE 5.2.1 PLANT NORMAL OPERATING CONDITIONS 41 5.2.2 PLANT UPSET OPERATING CONDITIONS 41 5.2.3 PLANT EMERGENCY OPERATING CONDITIONS 42 s

5.2.4 PLAN? FAULTED OPERATING CONDITIONS 42 5.2.5-TESTING CONDITION 42 5.3 LOADING COMBINATIONS AND STRESS LIMITS 54 5.3.1 LOADING COMBINATIONS 54 5.3.1.1 JET IMPINGEMENT LOADS 54 5.3.1.2 PIPE WHIP IMPACT LOADS 54 5.3.1.3 SEISMIC LOAD 54 5.3.1.4 LOCA LOADS 55 5.3.1.5 OTHER OCCASIONAL LOADS 55 5.3.2 STRESS LIMITS 55 5.4 DESIGN CONDITIONS 55 5.4.1 DESIGN PRESSURE 56 5.4.2 DESIGN TEMPERATURE 56 5.5 DESIGN. RESPONSIBILITIES 56 5.6 METHODS OF ANALYSIS 57 5.6.1 COMPUTER ANALYSIS 57 5.6.1.1 MODELING 57

)O

O Gibbs & Hill, Inc.

Specification 2323-MS-2OO Revision 4 Page v TABLE OF CO?tTENTS (cont.)

SECTION TITLE PAGE 5.6.1.2 THERMAL EXPANSION AND ANCHOR MOVEMENT ANALYSIS 57

~

5.6.1.3 DEADWEIGHT ANALYSIS 58 V

5.6.1.4 SEISMIC ANA5YSfS 58 5.6.1.5 SEISMIC DISPLACEMEhT 59 ANALYSIS 5.6.1.6 OCCASSIONAL LOADS 59 5.6.1.7 OTHER LOADS 59 5.6.2 NON-COMPUTER ANALYSIS 59 6.0 OVERPRESSURE PROTECTION 60 6.1 GENEP.AL REQUIREMENTS 60 6.2 INSTALLATION OF SAFETY / RELIEF DEVICES 60 6.3 PIPING DESIGN DUE TO SAFETY / RELIEF VALVE ACTUATION 61 l

7.0 TESTING 62 7.1 GENERAL 62 7.2 SHOP HYDROSTATIC TESTING 62 7.3 FIELD HYDROSTATIC TESTING 62 APPENDIX 1

- FLOW DIAGRAMS e

APPENDIX 2

- COMPOSITE PIPING DRAWINGS' APPENDIX 3

- SPECIFICATIONS APPENDIX 4

- LIST OF EQUIPMENT SPECIFICATIONS O

FCR DETERMINATION OF NOZZLE LOADS 4

1

.),

I O

Gibbs & E111, Inc.

Specification 2323-MS-2CO Revision 4 Page vi TABLE OF CONTENTS (cont.)

SECTION TITLE PAGE APPENDIX 5

- INSTRUCTURE RESPONSE SPECTRA APPENDIX 6

- DELETED i

APPENDIX 7

- SYS m LINE LISTS APPENDIX 8

- SYSTEM MODES OF OPERATION APPENDIX 9

- METHODS FOR NON-COMPUTER ANALYSIS OF PIPING APPENDIX 10 - VALVE INFORMATION APPENDIX 11 - INSULATION TABLES APPENDIX 12 - LIST CF HIGH ENERGY PIPING APPENDIX 13 - PI.8ING INFORMATION TRACKING SYSTEM (PITS)

APPENDIX 14 - MINIMUM WALL THICKNESS VIOLATION EVALUATION PROCEDURE (AEP-502)

APPENDIX 15 - WELDED ATTACH!ENTS CALCULATION ENGINEERING GUIDE (AEG-Sil)

APPENDIX 16 - SLEEVE STIFFNESS APPENDIX 17 - INCORPORATION'OF LOCA EFFECTS INTO TEE PIPING STRESS ANALYSIS - TUSI UNITS 1 & 2 APPENDIX 18 - MISCELLANEOUS CORRESPONDENCE APPENDIX 19 - DESIGN CHANGES INCORPORATION Rev.4 0

---.---c-

-m

1 Gibbs & Hill, Inc.

Specification 2323-MS-200 Revision 4 June 29, 1984 Page 59 l

5.6.1.5 SEISMIC DISPLACEMENT ANALYSIS Piping stresses resulting from this loading category depend on the magntiude of relative displacements between supports.

The movements of the interior structures are provided in Appendix 5.

5.6.1.6 OCCASSIONAL LOADS

! in,

Pipe stresses due to the application of occassional loads such as LOCA, other pipe ruptures, safety / relief valve blowdown, etc.

shall be considered, as identified in the Loading Combinations shown in Table 5.2.-1 of this specification.

5.6.1.7 OTHER LOADS 1

Other loads shall be considered in the analysis, as required by the loading combinations shown in Table 5.2-1 of this f

Specification.

5.6.2 NON-COMPUTER ANALYSIS p,,,g.4 a.

Analysis of piping 4 inches and smaller-in size may be accomplished by the use of non-computer methods as delineated by the Piping Information Tracking System (PITS) of Appendix 13 to this specification.

3 b.

Analysis of piping smaller than 4-inches in size, with operating temperatures less than 200 F, may be accomplished by the use of a simplified method included in Appendix 9 to this specification.

A listing of lines being anglyzed by the simplified method is included in the PITS listing of Appendix 13 to this specification.

A listing of lines being analyzed by the Alternate Analysis method is included in the PITS listing of Appendix 13 to this specification.

6.0 OVERPRESSURE PROTECTION 6.1 GENERAL REQUIREMENTS 4.

Piping within the scope of this specification shall be adequately protected from overpressurization due to any fluid transient exceeding the limitations of paragraph 5.4.1.

b.

This protection shall be accomplished by installation of pressure relieving devices, adequately sized to discharge any

,, _ _,,. = - -

s e.. g.a - a r g \\ cs m 1 s

,3%

n,l h no^ hw 6n cb

- us- %

w m-%x

?

- iwa,,

m. m u % w. p k?t?6.>4%W-ON 6 573 b 25 NhD TLG L.\\IA (R$ (b4 ORT \\

hh

\\%o Vw O

50 % 2-ht 2

\\%D b\\

sms

\\rm m \\% \\

%2

~

syls\\

1m L

mM bs-542 %

bee

\\%\\

T2eo 4-stAss b e c 2.

tm bo DAa,c YIAq

\\g Q Sr.m<5

\\T\\

S o N%\\ by bc \\ ww N t.u t.ucwa

( '-

J 6r D S I-h s % c.

i g Sa we sh

?OlA-85-59

i%

Y 8

(((*

\\ ' dr h \\. ' L

^

+

N 3

w ne (c&e

.s i

d ; 'y N LI

\\\\0

.2 m

.v.v.3[

.t

/

.uma1

'/

w

/,

l t

pua c L.

\\.

j

\\.

/.

\\

,.. / ~

q G

s L.

s qq M

.-.3 N o^ (

_h4 M db.

r

~ Unn ~Z ~ b l' @

- 1 bmr

Ca4e_Sm 3%'de+l7

'j TEXAS UTILITIES GENERATING COMPANY

~

OrrICE MEMOR ANDUM To Charles Osborne -PPRV Glen Rose. Texas December 6.

1984 Subject Historical File - CP-EI-4.0-13 Revisions 3 and 6

Reference:

TUGCO QA Audit TCP-114 The following information is provided to you in order to assist in the required response for the reference audit.

CP-EI-4.0-13 Rev. 3 r'

t ;t This revision was a complete re-write and title change.

It was issued on 12-11-81.

The scope of this instruction changed from a general PSDG instruction to a PSE stress analysis group instruction.

This revision incorporated (combined and deleted) information from the PSDG Engineering Manual.Section XVI (voided 3-23-82), and an internal guideline dated 5-1-81 (copies attached).

This action was part of the PSE Manual rework program as a result of' CAR No. 003 (Ref. QTN -468).

Since the contents of CP-EI-4.0-13 Rev.4, dated 1-5-82, closely resemble the combined gu id elin e s it i.s.r e a s o n a b l e to assume that Rev.3 of CP-EI-4.0-13 would be similar to Rev.4.

(My opinion is that the revised forms DHE-13 and DHE-14 were the only changes.) Since the dates between Rev.'s and Rev'. 4 are so close (12-11-81 vs. 1-5-82) there is no effect on the Historical File at CPSES due to Rev.3 of CP-EI-4.0-13 not being available.

CP-EI-4.0-13 Rev. 6 Attached is a marked-up copy of CP-EI-4.0-13 Rev.

5.

This copy shows the changes which'were incorporated into Rev.6 (issued 12-1-82). Note: The only change made is on page 6 of 6.

Should any future problems ue tions arise concerning these procedures, ple c

at ext. 685 O

\\h MS CO Dale Le5ch PSE Design Control Supv.

cc:

R.

Baker es PSDCs i..

\\

v w

!:0 A-85-50 ch308